EXPONENTIAL CHI SQUARED DISTRIBUTIONS IN
INFINITE ERGODIC THEORY

JON. AARONSON & OMRI SARIG

ABSTRACT. We prove distributional limit theorems for random
walk adic transformations obtaining ergodic distributional limits
of exponential chi squared form.

§0 INTRODUCTION

As in [A1], for (X,B,m) a o-finite measure space, F,, : X — [0, oo]
measurable, and Y € [0, co] a random variable, we say that (F,,) con-

verges strongly in distribution to Y, (written F, LN Y,) if it converges

in law with respect to all m-absolutely continuous probabilities; equiv-
alently

g(F,) - E(g(Y)) weak = in L*(m)

for each bounded, continuous function f: [0, 0] - R.

For discussion of strong distributional convergence, see [Al], [A2],
[E] and [TZ].

Here, we study distributional stability. Asin [A2], we'll call a
conservative, ergodic measure preserving transformations (X, B,m,T')
distributionally stable if there are constants a(n) > 0 and a random
variable Y on (0, 00) so that

ySn(f) = Ym(f) ¥ felLi

where S,,(f) := Y52 foT* and m(f) = [y fdm.
By the ratio ergodic theorem, if the above convergence holds for some
feLl then it holds V feL!l.
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If the ergodic distributional limit Y is integrable and normalized by
E(Y) =1, the constants a(n) are determined uniquely up to asymptotic
equality and are also known as the return sequence of T'. Both the
(normalized) ergodic distributional limit and the return sequence are
invariant under similarity (see [A1]).

By the Darling-Kac theorem ([DK]), pointwise dual ergodic transfor-
mations (e.g. Markov shifts) with regularly varying return sequences
are distributionally stable with Mittag-Leffler ergodic distributional
limits (see also [A1], [A2]).

Our present study concerns random walk adic transformations.

A random walk adic transformation is a conservative, ergodic mea-
sure preserving transformation associated to a Markov driven, aperi-
odic, random walk on a group of form G = ZF x RP-*_ These were first
considered in [HIK] (and are sometimes known as ”generalized HIK
transformations”).

It is the (unique) G-extension of the adic transformation on the
underlying Markov shift which parametrizes the tail relation of the
random walk. This definition is explained in §1.

The degree of a random walk adic transformation is the dimension
of the associated group G: dim(spanG). It appears as the number of
degrees of freedom in the x? distribution appearing in the limit.

We establish the following

Theorem
Suppose that (X, B, m,T) is a random walk adic transformation with
degree D € N, then

L5 Su(f) = (25 2D)u(f) ¥ feLl

an(T)=M

where S, (f) = LiZg fo TF, an(T) o Toamyorzs and x4, = [E]3 for & a
standard Gaussian random vector on RP.

Here, for a(n), b(n) >0, a(n) < b(n) means 3 lim,,_c % € (0, 00).
This ergodic distributional limit first appears in [LS] (see below).
Most of the paper is devoted to proving the theorem. In §1, we

define adic transformations and random walk adic transformations as

group extensions of adic transformations. In §2, we establish compact
representation for (all) adic transformations and a uniform convergence
theorem for stationary adic transformations which latter is needed in

the proof of the theorem. We review the distributional limit theory of
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Markov shifts in §3 and prove the theorem in §4, giving applications to
exchangeability in §5 and horocycle flows in §6.

Related, earlier work can be found in [AW], [ANSS] and [LS] (see
§6).

§1 BRATTELI DIAGRAMS, ADIC AND RANDOM WALK ADIC
TRANSFORMATIONS

Bratteli diagrams.
Fix b, 22 (n>1) and set 8 :={0,1,...,bp =1}, Q:=TI32; Sk
A Bratteli diagram is a subset X c 2 of form

Ye={weQ: Ap(wp,wi1)=1 VEk>1}

where for k > 1, Ag : S, x Spy1 =~ {0, 1} is the k% transition matriz.
We assume throughout that the transition matrices are non-degenerate
in that they have no zero rows or columns.

Recall that €2 is compact when equipped with the standard metric
d(z,y) :=exp[-min{n: x, #+ y,}] and ¥ is a closed subset.

The Bratteli diagram ¥ is called stationaryif S, =S, A=AV k> 1.
In this case, ¥ is a topological Markov shift (TMS) with transtition
matriz A as in [LM].

The only result in this paper concerning non-stationary Bratteli di-
agrams is the compact representation lemma in §2.

Tail relation on a Bratteli diagram.
The tail relation on Y is the equivalence relation

T=F(X) ={(x,y) eXxX: In such that x2° =y>}

where x%° := (L, Ty, - - )-
The equivalence classes of the tail relation are linearly ordered by the
reverse lexicographic order, namely the partial order < on ¥ defined by

r<y<dnst z5, =yn and T, <yp,.

If x is maximal, then z, = max{y € S, : A, (y,Tns1) = 1} V n 2 1;
therefore the collection of non-maximal points is open and the collection
Ymax Of maximal points is closed. A similar argument shows that the
set Ypin of minimal points is closed.

In case ¥ is a TMS (stationary Bratteli diagram), more is true.
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If = is maximal, then x, = ¢,(z,41) where p,(z) = max{y € S :
A(y,z) =1} (well defined by non-degeneracy); and we claim that

(b®) x is periodic, with period < #S.

To see (#), note first that 3 s € S so that #{n>1: x, = s} = co.
The sequence n — p?(s) is eventually periodic with a final period

(t o (t) .. o7 (1) = (91(5), .., 07N (s))
with J >1 & k < #S.

Let p:= (@1 (t), o 2(t), ..., t, 051 (t), o 2(t),...,t,...). We prove
our claim by showing that x = o¢(p) for some £ > 1. Let ny 1 oo be so
that z,, =s VY k>1. It follows that z,,_, = ¢%(s) whence 3 1<, <k
so that z{*™7 = o/ (p)*~/. There is a subsequence m; = ny, - 0o s0
that (x, =y, =€ V j > 1 whence x = o(p) and (#) is established.

Thus the set of maximal points (and the set of minimal points) is
finite.

Adic transformations.
The adic transformation (generated by <) on the Bratteli diagram X
is
T:YN Yhax = X\ X defined by 7(x) :==min{y:y > x}.

It is called stationary if the underlying Bratteli diagram is stationary.
As shown in [V], every ergodic, probability preserving transformation
is isomorphic to some adic transformation.
Stationary adic transformations are
e isomorphic to odometers or primitive substitutions, have zero en-
tropy but can be weakly mixing (see [L1]); and
e are always uniquely ergodic; moreover the unique 7—invariant proba-
bility measure v is globally supported, non-atomic, Markov and equiv-

alent to the Parry measure p (of maximal entropy) for the associated
TMS (see [BM]).

The (%, f)-random walk.

Let ¥ be a topologically mixing TMS on the (ordered) finite state
space S, let o : ¥ - X be the shift and let 7 : ¥/ — ¥/ be the corre-
sponding stationary adic transformation where

DEEDIEN U 0" (Xnax U Xnin) = m TN (Bpax YU Xnin))-
n>0 nez
The tail relation of X is the tail relation of o:

TX) =%(0) = U{(z,y) eZxT: 0"(2) =0"(y)}:

n>0
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and this is parametrized by the adic transformation:
T(o)n (X' xX) ={(x,7"(z)): v X, nel}.

A function f: ¥ — R? is Holder continuous if 3 6 € (0,1), M > 1 so
that

(«) If(z) = fy)l < MO™ VY z,yeX, z =y

Specifically for we call f: X - R? §-Holder continuous (6 € (0,1)) if
(¢") is satisfied for some M > 1.
For f:Y% — R4 Holder continuous let

H:=({fu(x): n21, zeX, o"r=x})

where (-) means “the group generated by” and

fulz) = £ (@) = kz f(o*z).

Let

G:=({fu(z) - fuly): n21, z, yeX, o"w=1x, o"y=y}),
then G, H are both closed subgroups of R¢ and G < H.
It follows from Livsic’s cohomology theorem [L2], (see e.g. [ANS],
[SA], [PS]) that
f=9g—goo+h+a where

e ¢:X — R?is Holder continuous;
e ace€H is such that (G +a) = H;

e h:X¥ - G is Holder continuous and o-aperiodic in the sense that
if veG, MeS!, ¢g:% - S Holder continuous and o f = )\%, then
v=1 A=1 and g is constant.

It follows that dim(G) = dim(H) =: D where for A ¢ R4, dim(A)
denotes the dimension of the closed linear subspace spanned by A.

Any closed subgroup G < RP with dim(G) = D is conjugate by
linear map to a group of form Z*F x RP=* where 0 < k < D := dim(G)
and Z° RO :={0}.

Now suppose that f: ¥ - G = ZF x RP~* is Holder continuous and o-
aperiodic and consider the (X, f)-random walk (¥x G, B(XxG),m, o)
where 05 : X x G - X x G is defined by

op(z,y) = (o(z),y+ f(2)) & dim(z,y) = du(z)dy
where g is the o-invariant Parry measure (with maximal entropy) and
dy is Haar measure on G.
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We note for future reference that o%(z,y) = (0™ (x),y + fu(x))-
As shown in [G], by the aperiodicity of f, (X x G, oy, M) is exact.

Random walk adic transformation over (X, f, 7).

The random walk adic transformation over (3, f,7) is that skew
product over 7 which parametrizes the tail (o) of the (¥, f)-random
walk. To see existence and uniqueness of such:

oy) = L>JO{(($,y), (.y) € (ExG)*: of(a"y') = o} (x,y)}

“U{((), (') € (ExG)?: 0™(a') = 0™(x) & of + fula') =y + ful))

= {_((l’,y), (2.y)) € (ExG)*: (z,2") € T(0) &y =y + ¥ (z,2")}

where

Thus

o) n (X' xG)? = {((z,9), (+",y)) € (X' xG)?: of(',y') = 0} (2,9)}
={((z,9), T"(z,y))  (z,y) € (X' xG)? neZ}
holds for T: ¥ x G - ¥’ x G of form

T(J],y) = T¢(l‘7y) = (T(l’),y-l— ¢($))
if and only if

o0

¢(2) = v(x,7(2)) = 3, (f(o"rz) - f(o"x)).

k=0

We consider T' with the invariant measure
dm(z,y) = dv(x)dy

where v € P(X) is the 7—invariant Markov measure (equivalent to the
Parry measure 1) and dy is Haar measure on G.

As mentioned above, it was shown in [G] that (X x G, o, M) is ex-
act, whence (X x G,T,m) is ergodic and also conservative (being an
invertible, ergodic, measure preserving transformation of a non-atomic
space).

The degree of the random walk adic transformation (X x G,T,m) is

deg (T) := dim (span G).

In this paper we ignore the other invariant measures for 7' (which
are considered in [ANSS]).
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§2 UNIFORM CONVERGENCE

Uniform Convergence Lemma
Let 3 be a mixing TMS and let 7 : %" — X' be the associated sta-
tionary adic transformation with T—invariant Borel probability measure

vy € P(X), then

1 n-1
— Y For"—— | Fdyy uniformly on ¥ V¥V FeC(%).

Although 7 is a uniquely ergodic homeomorphism on >, this space is
not compact.

The main part of the proof is to provide a suitable continuous trans-
formation of a related compact space. This latter construction is made
for any adic transformation.

Compact Representation Lemma
Let ¥ be a Bratteli diagram and let T be the associated adic transfor-
mation. There are:
e a compact metric space (i,@;
o a continuous injection T : X\ Xpnax = S and
e continuous surjections w : PR X, T S>3 so that

wom=Id|s.g,.., ToT=Tonr & woT=Tow.

Proof. For w € Y., set
A(w) ={aeX: I sequence 2™ € T\ a0 st. 2 > w and 7(2™) > a},

then A(w) ¢ Xpin-

Let
Yo:= X\ Yhax & X1:= | {w}x A(w).
wWeXmax
Define the metric space (2 A) by
Si=Y0 WD dlyyun, =d & for (w,a) € Yy :

d(w, z) +d(a,7z) 2z € Xp;
d{w,w") +d(a,a’) z=(w,a')eXy.

To see that this is a compact metric space, let (2,).»1 be a sequence in
S, then:

T (wa),2) {
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o If 3 ny - oo, 2,, = (wg, ;) € Xy, then (possibly passing to a
subsequence) we may assume that (wg,ar) = (W, @) € Lpax X
Ymin- To see that (w,«) € Xq, for each k > 1, choose ) € g
so that d(zy,wy) + d(7(x), ar) = 0. It follows that (w,a) € ¥4
and (wg, ag) = (w, @) in 5.

e Otherwise 3 ny —» o0, z,, € X, 2,, »r€X and

— if 7 € X, then z,, - r in S
— if r € ¥4, then 3 my = n,, - oo so that 7(z,,) > s € %;
whence (7, 5) € ¥y and 2,,, - (1, s) in &.

Let 7 : Y - 3 be the identity map. The following map is a contin-
wous left inverse: @ : 5 — ¥ defined by the identity map on o and by
(w,a) » w on .

Now define 7: 5 —» & by 7(xz) = 7(z) for = € ¥y and 7(w, @) = o for
(w, ) € X1, then 7 is continuous and o7 =T o .

To see that 7 is onto, it suffices to show that ?(f] D Ymin. To this end,
fix av € Xy, then 3z, € XN X, x, = a. Without loss of generality,
Ty ¢ Ymax and so x, = 7(y,) for some y, € ¥ where y, > w € X. It
follows that w € Spax (else @ = 7(w) ¢ Spim) whence (w,a) € S and @
is onto. 0

Proof of the Uniform Convergence Lemma

Since vy € P(X), it lifts to a 7-invariant measure v; € P(8): vjont =
vo. We claim that 7 is uniquely ergodic on & with invariant measure
vy. Else 3 v #15 € P(i) with 15 071 = 1. This entails 15 0 w™! = 1y
whence vy = 1.

It follows that

1n—1
S For - [ P,
n b

Ap(F) = sup
b k=0

——0VY FeC(D).

If f e C(X), then fow e C(E) and for every w e ¥’ and k > 1, we have
TFw € X' whence f(7*w) = f o w(7*nw). Thus

n-1
sup %Zf(fkw)—ﬁde1|SAn(f0¢)—>0. Vv

weX! k=0 P n—o0
§3 LIMIT THEORY FOR THE SHIFT

Let (X, A, 11, 0) be a mixing TMS with p a o-invariant, Markov mea-
sure let @ =G, be its transfer operator, let G c R? be a closed subgroup
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of dimension D; and let f = (fM,..., f(P)):¥ - G be Holder contin-
uous and o-aperiodic. Let f:= f —E(f). Note that f may have values
outside G.

WEe’ll need the following results for the sequel. The results are not
new although we did not find references for their statements. The
proofs are standard and will only be sketched.

3.1 Asymptotic variance theorem
3 a DxD, symmetric, positive definite matriz I' =1y so that

—()4()
)

RankI'y =D & E(f fn ooFm- V1<i,j<D

where f Y 7P o gk,

Since I' is symmetric and positive definite, it can be put in the form
I=(U'M)({U'M)*
with U unitary and M > 0 diagonal.

3.2 Central limit theorem

1
o = e [ex
[Frellnoeo /(27)D det T /1

whenever I ¢ RP is Riemann integrable (i.e. with Riemann integrable
indicator function).

(CLT) "1 p[-2u' T u]du

3.3 Local limit theorem (mixed lattice-nonlattice case)

Let 0 e I ¢ G be Riemann integrable; then
(LLT)
me (/)

(V1) PG 114, en( )+ /e (on
[fnenE(f)+vnen+l] " om0, (27)P det T

Proof sketches
Suppose that f is #-Holder continuous and let p = py be the metric
on Y defined by

cexp[-3u'Tu).

p(,y) = GO e,
Let IL = Ly be the Banach space of p-Lipschitz continuous (equivalently,
6-Holder continuous functions) on ¥ equipped with the norm

|F(z) - F(x)]
|F|L = sup |F(x)|+ mSl;EE —p(% D
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As shown in [D-F|, [GH], for some N > 1, GV : L - L satisfies the
Doeblin-Fortet inequality, namely 3 r € (0,1) & H >0 so that

(DF) IGNF||lL < 7| F|. + Hsup|F(x)] V Fel,
TeY

whence ([D-F], [IT-M]) 7 : L. - L is quasi-compact in that 3 6 €
(0,1) & M > 1 so that

(c) |67 F - fz Fduln < MO"|F|l. V Fel.

Proof of the asymptotic variance theorem

The absolute convergence of the series Y51 | [ f@ - f() o o™dy| for
1 <i,j < D follows from (QC) and the convergence follows from this.
The non-singularity of the limit matrix follows from the aperiodicity of
each t- f:X: >R (teRP) via Leonov’s theorem (as in [RE]). @

Proof of the central and local limit theorems
Both of these results are established using Nagaev’s perturbation
method as in [HH], [PP], [RE] (also known as characteristic function
operators [AD]).
For t € CP define P, : LY(X) —» L' (X) by P,(F) := 5(e*/F), then
P,(F):L - L and the map t —» P, is analytic CP - hom(L, L) with
o r ,
———P)(F) =5[] f* e F);
G P =731 F)
where hom(IL, L) is equipped with the uniform topology. We have (see
[N], [PP] &/or [RE])
e [P]<1 VteG=TkxRP* with equality iff ¢ = 0;
o P, satisfies (DF) for |¢| small; whence

Nagaev’s Theorem [N] There are constants e >0, K >0 and
0 € (0,1); and analytic functions X : (=€,€) - Bc(0,1), N : (-¢€,¢) >
hom(L, L) such that

[Bh =A@ N (@)L < KO"|hll. V[t <e, n21, hel

where V|t| < €, N(t) is a projection onto a one-dimensional subspace,
A0) =1 & N(0)F := [, Fdp.

The expansion of A is obtained by considering ¢- f: X - R (t € RP)
as in [GH]. It is given by
<I't,t>

A(t) = 1+it-E(f) -

+o([t]*) ast—0.
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The central limit theorem follows from this in the standard manner
(see [GH], [RE]); and the local limit theorem follows with a proof as in
[S] (see [AD]).

§4 PROOF OF THE THEOREM

For n > 1, set £, := [log,n] where X = e"op®)  Let 0 e I ¢ G be
Riemann integrable with 0 < |I| < oo of form I = {0} x J where
0k) ¢ Z*, 0§k) =0 (1<j<k)and0eJcRP*is Riemann integrable
with 0 < |J| < co. Here, |- | denotes Haar measure on G.

To achieve our goal, we’ll establish:

(%) VR>0,VazeX,
/D12

n ?énw)

— Su(lewa) (@, 0) 1y (Z777)
|1] IMLUT,, ()] oo (2)
N e e R

where f:= f—E(f) and B(R) := {zeRP: |z|| < R} and a, ~ b, means
a, — b, — 0.

We'll show first that (%) holds, and then we’ll prove that (%) =
the theorem.

Overview of the proof of (%).
The proof uses a process of block splitting where in order to
estimate

Sn(lglx])(l’, 0) = nz;(:) 1E’x](7_kx7 ¢k(x))

we split the 7-orbit block {7%z: 0 <k <n -1} into simpler blocks on
which it is easy to apply the results of §3.

This is done as follows.
For x e/, N>1

oMoz} = {r*0pin : 0 <k < F#Ho NV {oN 2} - 1}
where T, := min o~V {oN 2} with respect to the reverse lexicographic

order and

#o N{oNz}-1

Z 1E'xI°Tk($mim 0)=#{ye U_N{UNI} : [n(y) € fn(Tnin)+1}

J=0
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Quantities appearing, such as

#yeo ™Mzt fu(y) e fu(z)+1}
where [ ¢ G is Riemann integrable, are estimated using (LLT) as in
lemma 4.1 (below).
The arbitrary blocks are estimated from the simple ones of suitably
smaller size. This is calibrated using the Perron-Frobenius theorem:

N{U x}= Z AsmN+1 ~ c(xN+1))\N

0<s<d-1
where A is transition matrix of 3, A = e™op(¥) ig its leading eigenvalue
and ¢: 8 = (0, 00).

Fix M > 1 large. For each n > 1 large, let N = N,, be such that
MMN = X\*1n, then

, M-1
{riz: 0<j<n}= ) o N{rFo"x}
k=0

up to relatively small edge effects (estimated in the proof below using
lemma 4.2) and

S (lz;rx[)(l‘ O) =
Z #{y e o™ oM} fn(y) = fn(min o™ {7*oVa})}

up to relatively small errors (estimated in lemma 4.3 below).
Proof of (&) on page 11.
ForzeX, tWeG, sup, % < oo, set
No(z) =#{zeo™{o"x}: f,(2)et™ +1T}.

Lemma 4.1

nh -1 (n)||2
D 1 o LI e ML

(27m)D detT 2n

uniformly on ¥ where h = & m and p being the T- and o-invariant
probabilities (respectively).

Proof

Let G,,,, G, be the transfer operators of o with respect to m & p
respectively, then G, f = hﬁu(ﬁ) and
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Ny(z) = )\"Tfﬁll[?net(n)”](anx)
= Xh(o"2)7 (L) (o)
Ath(omx)|I|
(2mn)P det T’
uniformly on ¥ by (LLT). @

1 - n
xp[=5 MU ]

Block splitting.
For n > 17 let Zn,s = {(-rla s wrn) ‘P TE Za Tp+1 = 5}7 Jn(s) = #En,sa
then
=Y AL~ e(s)A”

ueS nmee
uniformly in s € S where A = ¢"top-(%9) and ¢: § - R,.
It will be convenient also to set J,(z) := #07"{z}. Here
j;(l') = #Zn,zl = Jn(xl)
and
Jp(z) ~ c(x)A\"

uniformly in z € ¥ where ¢: ¥ - R, ¢(x) := c(z1).

For n > 1 fixed, we call a point x €
e n-minimal if x =min o™ {0z} =min{y e X: Y41 =Tp1}t &
o n-mazimal if z=max o™ {o"x} =max{y € X: Y41 = Tpy1};

Now define

K, >->N&r7,: -3 by
Ku(x):=min{k>1: 72 is n-maximal} & 7,,(z) =7

then:
¢ ovra(a) -
. (o) is
e K,(z)<

It follows that for j > 1,

Knp(z)+1
)

7(omx);

minimal and

n-m
T, (onx) = #o{o"x} with equality if z is n-minimal.

o"7i(z) = 7 (0"x)

and R
K. (ti(z)) = J, (77 0"x).
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For n > 1 fixed and r > 1, set
r—1 _
K (2) = Y Ku(ri(x)) = K Z (c"z)).
30 j=1

Lemma 4.2 3 1,, 0. 0 so that

K}(Lr)($) _ 6:{:(77n+9r)7«)\nE(c) Vnr>1, xeX.

Proof By the uniform convergence lemma 3 6, | 0 such that

1
o(ri(o"x)) = etPrrE(c) VaeX, n, r>1.

<3
|

<.
Il
—_

Suppose that J,(s) = e*™ \*¢(s) where n, | 0, then for z € ¥/,

= K (2) + efmetfrr \n B (c).

Since K, (z) < J,(c"z) = O(A"), the lemma follows. @

Lemma 4.3 ForreN fized, x €X' and R>0, asn — co:

(1) S0y (1) (2, 0) sy (£422) 2
oz n 1 z)||? I (z
r71(nD/2)|I|)\ eXp[—”M U2]:Ln( ) ]1B(R)(f%))
and
(2) 810y (et ) (,0) 1y (£22)
o n 1 z)||? I (z
L UFa@I ]y, (La2))

where h,(z) = Y520 h(772).

Here, for A,,, B, >0, A, 2 B, means lim

means lim,,_, % <1
n

Proof

An
——n—o0 B,

>land A, < B

n
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Writing K9 = 0, we have
SK(T)( )(12x1)(£€ 0)
= Z ( K(JH)( ) 1E><I)(x 0) SK,(,])(x)(lle)(x’O))
= SKn(r)(12><I)($ 0)+
+ Z( K9 () (1sxr)(x,0) - SKSLf)(x)(IZXI)(x’O))'
For fixed j > 1,
SK7(LJ'+1)($) (1E><I) (33', O) - SKSLj)(J?) (1E><I) (x, 0)
K9 (2)-1
= Y lsa(*z, dn(x))
k=K (z)
Kn(T%(I))_l ’ K(j)
= Z_ZO ]-EXI(T (T " (x)x)vgng)(z)_'_g(x))
Tn(rionz)-1 '
= ZZ(:) 1EXI(7_K(7_7JL(‘I))7 ¢K7(Lj)(z)+g(l‘))
Now,
{r(ri(x): 0<l< T, (rPo"z) -1} = o {rio"x},
O ye®) = (22) = (1040 = 1(042)) (V<0< T, (o) =1);
and so

Sk (4 (Isxr)(2,0) - Sk (2 (1sxs)(2,0)

=#{zeo{o" ()} : Y(z,x)el}.

For z = 7¢(7)(x) e o™ {riomz} we have

P (ay40()) = (2, 7)
= Z f(o*2))
—ft( ) = fi(2)

where t = t(z,z) :==min{N >1: oNz=0Vz}.
Here, 0"z = 770™x and

t(z,2) <n+t(rio"w, o"x).
Thus
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P(z,x) = fu(2) = fulz) + Knj(x)
where
|fonj(2)] < 2sup|f|(N = n) < 2sup|f|t(r/ o™z, 0"z).
We claim that for a.e. x €3,

(&) max t(to"x,0"r) = O(logn) as n — oco.
<]<r

Proof of (A)
For M >0 set A, (M) :={xeX: t(ro"x,0"z) > Mlogn}, then

m({z eX: max t(/o"x,0"x) > Mlogn}) <m( |J 77A.(M))

l<j<r 0<j<r-1

<rm(An(M)).
Now t(ro™z,0mx) > Mlogn iff 3 z € ¥, so that
Tpsj=2; V1< 5< Mlogn.
Thus
m(An(M)) < sup hy( A, (M))
=sup h Z (21, 2 m0gng])

Z€Xmax

— O(}\—Mlogn)

and Y, m(A,(M)) < oo for M > loé/\. The claim (&) now follows
from the Borel-Cantelli lemma. @

we have by lemma 4.1 that for a.e. x:

In view of (&),
D) (S0 gy (L) (2,0) = Sy, (L) (,0))
(=)

Ly (L2

- 1B(R)(? = V#{z e o7 {o"TI(2)}: ful(2) € fulx) = Kpy(z) + 1}

~ [15(r) (? )) Ao ) ooy [ MM V)i s (DI
|]|1B(R)( (@) M) expl - UL @I

The lemma follows from this. &

Completion of the proof of (%) on page 11
Given 0 < e < %,
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e use the uniform convergence lemma to fix r. such that V y e ¥/, r >
re, €% <1+e¢ where 6, is as in lemma 4.2, and

(), err2(y) = (12 )rEn(c) & he(y), hria(y) = (1% €)rEn(h).

o fix J>e Vr>1andforn>1let
Ln = Ln,s = Uog)\ QJE—y(LC)reJ

and let r,, =, . be such that

K(T")(Tanx) <n< K(T"H)(Tanx) < K(T"+2)(0”I)

Ln - Ln Ln :
It follows that
SK&")(TU"JC) (1E><I) ([L’, 0) < Sn(lExI) (:U7 0) < SKg;ziJf?)(Unx)(lExI) (Z’, O)

By lemma 4.2,

n< KU (0ma) < ettty Mo E(c) § €7y gris— E(c) < g

whence for large n, r,, > r. and

S () (@00 10 () 2 S,y (Le1) (.0 Ly (52

,,.n(To'Lnx))\Ln eXp[_”M 1Uan(:E)|| ]1 (an(.’E))

& L, P2 2Ln
2 (1 _€)|[|A 575 exp[- ||M71Uz?LLnn(x)”2]1B(R)(an—\/L(_n))
and similarly
S”(lxxf)(ﬁﬂo)lB(R)(?\/L ) < SK<rn+2>( n )(1zx1)(x O)lB(R)(ff/"f))
< Mexp[_w 1(12];?(9@)”2]1 B )(?y_(m))
<(1 +€)|]|A 75 exp[ - ”M_IUQ?LLH"(QS)”Z]1B(R)(hn?L(:))-

Now,
o L,~0l,=log,n V e>0 and since r,, >,

n > Kg:)(TO'nZL‘) > e~ nt0m)p AInB(c) 2 L, AN E(c).

T+e

< K&”H)(TU 1) S (1+e)rp, "E(c) < J’nAL"E(C)

whence
L”rn _ n
z\n—D/Q = (1 + 6)2m.
This proves (%) (on page 11). &
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Proof that (%) = the theorem. Let I' be as in §3 and write
' = V'Vt where V := U'M with U unitary and M > 0 diagonal.

Let & = (&1,...,&g) where &1,...,&; are independent, identically dis-
tributed, Gaussian random variables with E(¢;) =0, E(&?) = 1, then
Z =U'M¢ = V¢ is Gaussian with correlation matrix

E(Z:Z;) = E(Y. Vis&Viu&) = 2. VisVis = T
s,t s
By (CLT)
r 0
L = vMe=z

Now suppose that (%) (as on page 11) holds. We’'ll show that for some
a(n) o< o and for g e C'([0,00]), f e L'(m),,

(5t - Sn(£)) — E(g(e 02 -m(f))) weak x in L(m).

n—oo

By the asymptotic variance theorem, E(|| £, |2) = O(v/n) and V € >
0 3 R so that mg/(C,(R)) >1-€ V n > 1 where C,(R) := [f‘;%(_gg) €
B(R)].

Thus for n € N & R > 0 both large enough and = € C,,( R) we have

P12

9(55=5u (Lsrsr) (2.0)) = g (gt - oxp[-500]) x e

Next, by (CLT),

1 ITRAL ; -
‘/;J’xlg(\/ﬁ.exp[_ o ])dmaE(Q(\/ﬁ-exp[—T]))
I 2
= E(Q(\/ﬁ -eXp[—XTD])),

/;, Ig(a(ln) - Sp(Lsiwr))dm — E(g(me(I)-2PPe 3%b)).

n—oo

Using Corollary 3.6.2 of [Al], we obtain that V F € LY(m),, g €
C([0, 0]),

(=S, (F)) — E(g(m(F)-ZD/Qe_%X%)) weak * in L®(m)

a(n) n—o00

where m(F) := [y, o Fdm. v
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§5 APPLICATION TO EXCHANGEABILITY

Let § = {0,1,...,d -1} and let ¥ c 8N be a mixing TMS. Define
Fu:¥ - 731 by Fi(x)y = 0z, k-

As shown in [ADSZ], F : 3 — Z! is g-aperiodic iff ¥ is almost onto
in the sense that

VbceS, Inx>1, b=ag,ay,...,a, =ce8 such that

U[ak]ﬂa[ak+1]¢® (OS]{STL—l).
Define ¢ : ¥ > Nand R: % - X by
@(x):=min{n>1: 7"(x); = 2, some finite permutation o of N}

and
R(x) = 779 (1),

Corollary 5.1
Suppose that ¥ is almost onto, then (X,B(X2), R ) is an ergodic,

probability preserving transformation and 3 b(n) o< W such that

1 =l E 0 1.2
— ) poR" — e2Xd1,
i) &

Proof.
The random walk adic

(X x Z31 B(E x Z%7Y),m x mga, T)
over (X, F, 1) is conservative and ergodic. Calculation shows that
Tsqoy(x,0) = (Rz,0) whence (X, B(X), R,m) is an ergodic, probability
preserving transformation.
By the theorem,

0

Sa(f) = e Xap(f) V¥ feL}

1
a(n)
where a(n) o Ve (we absorbed the factor in a(n)).

In particular,
1

a(n)

whence by inversion (proposition 1 in [A2]),

Sn ( 1Ex{0}) i’ e_%xgl_l

1zl 0 1.2
N po R —s e2Xa-1
)



20 Jon. Aaronson & Omri Sarig (©)2012
— -1 n
where b(n) =a (n) (S8 W. v

§6 CHI SQUARED LAWS FOR HOROCYCLE FLOWS

Let My be a compact, connected, orientable, smooth, Riemannian
surface with negative sectional curvature, and let T M, denote the set
of unit tangent vectors to My. The geodesic flow on T My is the flow
which moves a vector v € T'M at unit speed along its geodesic.

Margulis [Mrg] and Marcus [Mrc| constructed a continuous flow At :
T'M — T'M such that

(a) The h—orbit of ¥ € T My equals
W2 (v) := {u | dist(¢*(9),¢°(d)) — 0}

(b) 3u s.t. g7 o htog® = h#
In the special case when M is a hyperbolic surface, h is the stable horo-
cycle flow. Properties (a) and (b) should be compared to the relation
between the odometer and the left shift.
A ZP —cover of My is a surface M together with a continuous map
p: M — M, such that p is a local isometry at every point, the group of
deck transformations

G:={A: M — M|D an isometry s.t. po A =p}

is isomorphic to ZP, and for every x € My, p~'(x) is a G-orbit of some
point in M.

The flows g, h: TTMy - T My lift to flows g, h: T*M — T M which
commute with the elements of G, and which satisfy (a),(b). Now (a)
and (b) could be compared to the relation between the HIK transfor-
mation and a ZP-skew-product over the left shift map [Po].

The locally finite ergodic invariant measures for h are described in
[BL] and [S]. There are infinitely many, but only one up to normal-
ization, is non-squashable [LS]. This measure, which we call my, is
rationally ergodic, and it is invariant under the action of the geodesic
flow and the deck transformations. .

We choose a normalization for mp as follows. Let M, be a connected
pre-compact subset of M s.t. p: My — My is one-to-one and onto, then
we normalize mg so that me[T Mp] = 1.

The following can be extracted from [LS]:
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Theorem 6.1
There exists a(T) o< T/(InT)P/2 such that for every f € L'(mg) with
positive z'ntegml

ffhs Vds —— (255 )img (f).

T—o0

Proof sketch
Enumerate G' = {A¢ : £ € ZP} such that A¢ o A¢ = Ag 4¢ , then

M = Weepr AE[Z\A/[’O]. The ZP—coordinate of ¥ € T'M 1is the unique
§(¥) € ZP such that © € Tl[Aé(MO)].
It is known that ﬁ§ og” %) N, where N is a D-dimensional

Gaussian random variable with positive definite covariance matrix Cov(/\)
(Ratner [R], Katsuda & Sunada [KS]).

Let || |# denote the norm on RP given by ||v| g := \/v!Cov(N) 1.
The following is proved in [LS] (Theorem 5): Suppose f € L'(my), then
for every € > 0, for mg—a.e. © € T'M, for all T large enough

é(glog“ V)

logp‘

&(glog” v)

logu

0]

D —%(1+e)

D
22 e )]ds < 2?*6 H

where a(T) = const T/ (lnT )D/2 (the value of the constant is known,
see [LS]).

This is the version of () (see page 11) needed to deduce the theorem
as above.
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