CONTINUITY PROPERTIES OF LYAPUNOV EXPONENTS
FOR SURFACE DIFFEOMORPHISMS
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ABSTRACT. We study the entropy and Lyapunov exponents of invariant measures p for
smooth surface diffeomorphisms f, as functions of (f, ). The main result is an inequality
relating the discontinuities of these functions. One consequence is that for a C'°° surface
diffeomorphisms, on any set of ergodic measures with entropy bounded away from zero,
continuity of the entropy implies continuity of the exponents. Another consequence is
the upper semi-continuity of the Hausdorff dimension on the set of ergodic invariant
measures with entropy bounded away from zero. We also obtain a new criterion for the
existence of SRB measures with positive entropy.

INTRODUCTION

Entropy and Lyapunov exponents play a major role in the study of differentiable dynam-
ical systems, and their dependence on the measure and the map is of great interest. This
dependence is sometimes continuous, but not always (for entropy, see [33, 35, 12, 9, 17, 10],
and for Lyapunov exponents, see [44, 20, 6, 7, 1, 47]). While there are many works relat-
ing the values of the entropy to the values of the Lyapunov exponents [43, 39, 31, 27], the
relation between the (dis)continuity of these objects as functions of the measure and the
diffeomorphism has not yet been studied. The purpose of this work is to fill this gap, in the
smooth two-dimensional case. For instance, we show:

Theorem. Let f be a C*™ diffeomorphism of a compact surface without boundary. Let
v1,Vs,... be ergodic measures for f, which converge in the weak-x topology to an ergodic
measure p with positive entropy.

If the entropy of vy converges to the entropy of u, then the Lyapunov exponents of vy
converge to the Lyapunov exponents of .

This has strong dynamical consequences, some of which we will discuss here, and some of
which we will discuss in a companion paper. For example, we have the following application
to the problem of the existence of SRB measures. Let 6%(u) denote the unstable dimension
of p in the sense of Ledrappier and Young (see Section 1.5).

Corollary. Let f be a C™ diffeomorphism of a compact surface without boundary. If there
exist ergodic invariant probability measures vy, with entropy uniformly bounded away from
0, and such that §*(vg) — 1, then f admits an ergodic SRB measure with positive entropy.
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For other consequences, including the upper semi-continuity of the unstable dimension and
of the Hausdorff dimension of ergodic measures with positive entropy, see Section 1.5.

These results follow from inequalities between the multiplicative size of the defects in
continuity of the entropy and the top Lyapunov exponent. These inequalities, which are the
main results of this work, are described in detail in the next section.

1. MAIN RESULTS

Throughout this paper, M is a two-dimensional compact C*° Riemannian manifold with-
out boundary. Let Diff" (M) denotes the class of C" diffeomorphisms on M (see §3.1).

Suppose 1 is an f-invariant probability measure for some f € Diff' (M). The Kolmogorov-
Sinai entropy of p will be denoted by A(f, ). Almost every x € M has two well-defined
Lyapunov exponents A~ (f,z) < AT(f,z). The Lyapunov exponents of i are defined by

N (o)== [ A G X () = N = [N (G

We are interested in the regularity of (f,u) — h(f, ) and (f, u) = A\E(f, 1)
In the C*° case, these functions are semi-continuous. Specifically, suppose fi,f €
Diff > (M), vy, are ergodic fy-invariant measures, fr — f in C* and vy — pu weak-*. Then

hmsuph(fk;l/k) < h(fa :u’)v
limsup A" (fi, ve) < AT(f,p),  lminf A7 (fr, ve) > A7 (f, 1)
k—o00 k—o0
(See Section 1.6 for the history of these results.)
By (1) and Ruelle’s inequality, if limsupy A(fi,vx) > 0, then AT(f,u) > h(f,p) >
lim supy, h(fr, vi) > 0, and

Hmsup A*(fr,ve)  limsup h(fr, vk)
k— o0 k— o0 c (O, 1]

AH(f, ) ’ h(f, )

We call these quantities the discontinuity ratios, and think of them as measures for the
difference between the two sides of the inequalities in (1).

We will provide inequalities relating the discontinuity ratio of the entropy to the discon-
tinuity ratio of A*. (It is enough to consider A*, because A\~ (f, ) = —AT(f~1, u).)

1.1. The ergodic C'*° case. Our results are simplest and strongest when the maps are C'*°
and the limiting measure is ergodic:

Theorem A. For every k > 1, let fr € Diff (M) and let vy be an fi-ergodic invariant
measure. Suppose

— limg AT (fr, vk) and limy, h(fx,vy) ewist and are positive,

— fx converge in the C™ topology to a diffeomorphism f € Diff (M),

— v, converge weak-x to a probability measure p (necessarily f-invariant).

. : . h(fr,vk) A (fr, )
If u is f-ergodic, then lim ———= < lim ————=.
Junis frery k=oo h(f,pu) T koo AT(f,p)

The following result is an immediate consequence of this and (1), and was the original
aim of our work:
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Corollary 1.1. For every k > 1, let fi € Diff (M) and let vy, be an fi-ergodic invariant
measure. Suppose fr — f in the C* topology, and vy — p weak-x where p is an f-ergodic
invariant measure with positive entropy. If h(fi,vi) = h(f, 1), then:

>‘+(fkv Vk) - )‘+(f7 :u’) and )‘_(fkv Vkr) - )‘_(fv /1’)
The result mentioned in the introduction is the special case f; = fo =--- = f.

1.2. The ergodic C" case. The following result extends Theorem A to the C" case up
to an extra term similar to what happens in Yomdin’s theory. We define the asymptotic
dilation of a C* map f: M — M to be

1 1D fzvll ()
A(f):= lim —log||[Df"||sup, Where ||Df|lsup := sup sup ————>=. 2
(1) = lim_10g]|Df |y where D | = sup sup 1= @)
v#0
Since M is compact, A(f) is independent of the choice of a Riemannian metric || - ||,.

Theorem B. Fiz r > 2. For every k > 1, let fi, € Diff"(M) and let vy, be an fi-ergodic
invariant measure. Suppose

— lim AT (fx,vi) and lim h(fy,vy) exist and are positive,
k—o0 k—r00
— fr = f in the C"-topology,
— v converge weak-x to a probability measure p.
If 1 is f-ergodic and has positive entropy, then

. o a
G Ade) 1 ATy N e
h(f, ) Wfp) r=1 7 A(fin)
By [10], the condition A(f, 1) > 0 holds once klim h(fr, i) > w
—00

As we will explain in Section 1.4, the smoothness index r above does not need to be an
integer.

1.3. The non-ergodic case. The assumption that the limiting measure is ergodic is often
difficult to check, and we now explain what can be said in its absence (a more general but
also more technical result, Theorem D, will be given in section 7).

Theorem C. Fiz r > 2. For every k > 1, let fi, € Diff" (M) and let vy, be an fi-ergodic
imvariant measure. Suppose

— lim A*Y(fk,v) and lim h(fy,vg) exist and are positive,

k—o0 k—ro00

— fr = f in the C"-topology,

— v — b weak-x for some f-invariant probability measure v (perhaps non-ergodic).
If klim h(fr,vi) > % then there exist 5 € (0,1], and two f-invariant probability

—00

measures (g, b1 with h(f, u1) > 0 such that p= (1 — B)uo + Bu1 and
lim )\+(fk, l/k)
k— o0

R R

am hFee) 1 A+
h(f?ﬂ'l) h(f>/1'1) r—1
Moreover A\t (f,x) > 0> X" (f,z) for p1-a.e. © € M.

Note that for C*° diffeomorphisms, the term (A(f) + A(f~1))/(r — 1) can be replaced by
zero, because the theorem can be applied with r arbitrarily large.

The decomposition p = (1 — B)po + Sp1 depends on the sequences (fx)e>1, (Vk)k>1, and
not just on their limits. We give a heuristic description of this decomposition in Section 2.2.
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1.4. Additional comments. We now supplement Theorems A, B and C by some examples,
comments, strengthenings, and generalizations. The proofs can be found in Section 8.

1.4.1. Ezamples of discontinuities. Theorem A is sharp in the following sense:

Example 1.2. For every 0 < a < 8 < 1, there exist a C*° surface diffeomorphism f and
a sequence of ergodic and invariant measures vy converging weak-* to an ergodic invariant
probability measure p such that limg h(f, 1) > 0, and

klggo h(f,ve)/R(f p) = o, klggoA-i_(fv Vk)/)‘+(fvﬂ) = p.

1.4.2. Variant inequality. Theorem A does not use the symmetry between a diffeomorphism
and its inverse. When 0 < —A~(f, u) < AT (f, u), this symmetry yields a sharper bound:

Corollary 1.3. Under the assumptions of Theorem A,

NS ) = Him AT (fi, k) < A7 ()] (1 _ hmkh(W) .

e )

1.4.3. Sequences of non-ergodic measures. Our results can be extended to the case when
the invariant measures v are not ergodic, but this requires stronger assumptions on the
Lyapunov exponents of v, which in the non-ergodic case are functions and not constants.
See Corollary 8.5.

1.4.4. Lifted version. f induces a dynamical system fon the projective tangent bundle M ,
see Section 3.2. It turns out that u = (1 — S)uo + Bp1 is a projection of a decomposition

of a limit point fi := lim 7y, where Uy are lifts of v to f-invariant measures on M. The
decomposition of i contains more information than the decomposition of y, and leads to a
stronger statement, Theorem D, in Section 7. This strengthening is essential to the proof of
Corollary 8.5 on the case when v} are not ergodic.

1.4.5. Convergence of C"-diffeomorphisms. In finite differentiability, Theorem D allows a
weaker convergence assumption (denoted by fi — f, see Section 3.1), and r does not have

to be an integer.

1.4.6. Entropy upper semi-continuity in the C" case. It is well-known that for C"-diffeo-
morphisms the entropy may fail to be upper semi-continuous, but the defect in upper semi-
continuity can be bounded (see the discussion in Section 1.6 below). This bound manifests

AN
r—1

itself in Theorems B and C in the expression . But our proof gives a slightly

stronger bound %, in terms of the dynamics of fon the projective tangent bundle, see

63.2, 83.5, and Theorem D.
In some special cases, even this stronger bound can be improved. For instance, if

A (fr, i) = AT(f, 1), then
min{A(f),A\(f ")}

im h(fe,v) < h(f,p) + ; (5)
k—o0 r
which is stronger than the assertion of Theorem B. When f; = fo = - = f, (5) is a

refinement of a classical inequality of Yomdin and Newhouse; it follows from bounds on the
tail entropy, which were first written explicitly in [10], and which are consequences of the
Downarowicz variational principle [16]. When the sequence (fi) is non-constant, it follows
from a bound on robust tail entropy, which can be shown using techniques in [11]. We thank
David Burguet for explaining this to us.
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1.5. Applications to dimension theory and to SRB measures. The Hausdorff dimen-
sion of a Borel measure p on M is defined to be the infimum of the Hausdorff dimensions
of all Borel sets of full y-measure [49, p.115]. We denote this by HD(u).

Corollary 1.4. For every k > 1, let fr, € Diff™ (M) and let vy, be an fi-ergodic invariant
measure. Suppose fr — f in the C*° topology, vy — u weak-*, and likm inf h(fi,vk) > 0. If
bde el
u is ergodic, then limsup HD(vg) < HD(p).
k—o0

Proof. One can always take a subsequence such that limy h(fx,vg) > 0, limg AT (fx, v) > 0
and limg A~ (fx, vx) < 0 exist, and such that HD(vy) converges to the limsup of the initial
sequence. In [49], Young gives the following formula for the Hausdorff dimension:

HD(n) = A7) (1/X* () + /A (S, ). (©
i i AU ) () (g (e ve) \ (L AT () \
wiing i 2 = (53025 ) (™) () e concae

from Theorem A that limy f&;’}’;’;)) < )\}1({}‘2). Working with f, ! and f~! we obtain in a

similar way that limy &Ef(’}l;z))‘ < \,\h—({}#,z)\' O

Suppose f € Difo(M ). An f invariant probability measure is called a Sinai-Ruelle-
Bowen (SRB) measure, if AY(f,z) > 0 p-a.e., and if the conditional measures of y obtained
by disintegrating it with respect to a measurable partition subordinated to the lamination by
unstable manifolds are a.e. absolutely continuous with respect to the induced Riemannian
measures. We recall two classical characterizations of SRB measures from [31] and [27].

Suppose AT (f,z) > 0 p-almost everywhere. The geomelric pressure of i is

P"(u) = P"(f, 1) = h(f, 1) = X" (f, p).-
By Ruelle’s inequality, P*(u) < 0 for all invariant probability measures, and by Ledrappier-
Young [31], P*(p) = 0 iff 4 is an SRB measure.
Next suppose p is ergodic and AT (f, ) > 0. The unstable dimension of p is

S = S5

By Ledrappier-Young Theory [27], 6%(f, p) is the a.s. value of the Hausdorff dimension of
the conditional measures of p on a measurable partition subordinated to the local unstable
manifolds, and p is an SRB measure iff 6%(p) = 1.

Theorem A immediately implies the following:

Corollary 1.5. For every k > 1, let fr, € Diff (M) and let vy, be an fi-ergodic invariant
measure. Suppose fr, — [ in the C™ topology, vi — p weak-+, and lim h(fy, vy) exists and
is positive. If u is ergodic, then:
(1) Tim sup 6% (1) < 8 (1)
k—o0
3 U u klggo h(Fevi)
(2) limsup P*(fx,vi) < P*(f, 1) =S —

k—o00
(3) if P*(fr,vi) = 0 or 6"(vg) — 1, then p is an SRB measure.

Proof. The proof of Corollary 1.4 also shows (1); (1) = (2) is a simple algebraic manipu-
lation; and (1)+(2)=- (3) by the Ledrappier-Young characterizations of SRB measures as
measures with zero pressure and/or unstable dimension equal to one. (I

We can remove the assumption that p is ergodic, using Theorem C:
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Corollary 1.6. For every k > 1, let fi € Diff (M) and let vy, be an fi-ergodic invariant
measure. Suppose fr, — f in the C™ topology, vi — p weak-+, and Uim h(fy,vy) exists and
is positive. Then there are ergodic components p', ' of p satisfying A ('), AT (1) > 0 and

0"(p") = lim 6" (vy) , P*(f,p') = lim P"(fi,vg).
k—o0 k—o0

Proof. Consider the decomposition p = (1—3)uo+Su1 and take suitable ergodic components
of py. O

The following statement implies the corollary in the introduction.

Corollary 1.7. Let f be a C* diffeomorphism of a compact smooth surface without bound-
ary, and fir some h > 0. The following are equivalent:

(i) f admits an SRB measure with entropy at least h;
(i1) sup{P"(f,p) : p ergodic measure for f s.t. h(f,pu) > h} =0;
(#i) sup{d*(u) : p ergodic measure for f s.t. h(f,u) > h} =1.

Proof. (i)=-(ii) is due to Ledrappier & Strelcyn [29], and (ii)<(iii) is trivial.

To see (ii)= (i), we take a sequence of f-ergodic measures vy, with h(f, ) — h' > h and
P"(f,vx) — 0. We select a subsequence (v, )i>1 s.t. AT := Im A" (v,) and p = limuy,
exist. By Ruelle’s inequality, AT > A’ > 0, and by Theorem C, p = Bu1 + (1 — 8)uo where

hm )‘Jr(fv Vkri) = B/\+(fa /-1’1)7 and hm h’(f? Vk'i) < Bh(fhul)

1—> 00 1—> 00
It follows that 0 = lim; oo P*(f,vk;) < BP“(f,pu1) < 0, where the last inequality is
Ruelle’s inequality for py. Since SBAT(f,p1) = HmAT(f,vr,) = AT # 0, it must be
the case that 8 # 0, and P“(f,u1) = 0. If puy = f,uédf is the ergodic decomposi-
tion of gy, then [ PU(f, ,u’f)df = P%(f,u1) = 0. By Ruelle’s inequality, the integrand
is non-positive, so P“(f, ,ué) = 0 for pj-a.e. ergodic component. At the same time,
h(f, 1) > B~ lim h(fx,vx) > B, so some of these ergodic components must have entropy
> h/. Thus p; has ergodic components with entropy bigger than h, and zero pressure. By
Ledrappier-Young Theory, these are SRB measures with entropy bigger than h, and (i) is
proved. (Il

Notice that it is essential in this proof to be able to deal with non-ergodic limits, since
we have no control of lim vy,.

1.6. Related works. In this paper we relate the continuity properties of the entropy to
those of the Lyapunov exponents. The continuity of these objects has been studied separately
before in several works, which we now recall.

Entropy. In general, the entropy map (f, 1) — h(f, ) is not lower semi-continuous, even
in the uniformly hyperbolic case. For example, it is easy to construct sequences of atomic
measures (with zero entropy) on a basic set, which converge to limits with positive entropy.

However, for C'*° diffeomorphisms on compact manifolds, the entropy map is upper semi-
continuous: This is due to Newhouse [35]. For C” diffeomorphisms with finite r, even
upper semi-continuity may fail (for examples in dimension four see [33], and for examples
in dimension two see [14]). However, the (additive) defect in semi-continuity:

D(f,u) == limsup h(g,v) = h(f,p)
(g:v)=(fn)

can be bounded from above by min(A(f), A(f~1))/r, using Yomdin theory [35, 12, 10, 11].
A subject of more recent interest is the loss of semi-continuity due to non-compactness.
This has been studied for countable Markov shifts [22, 23], geodesic flows on non-compact
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homogeneous spaces [18, 25], and geodesic flows on non-compact manifolds with negative
sectional curvatures [21, 42].

Lyapunov exponents. The top Lyapunov exponent map (f,u) — AT(f, ) varies continu-
ously for uniformly hyperbolic systems on surfaces. It even depends analytically on the dif-
feomorphism f [44]. Moreover if .« is the unique measure of maximal entropy of a mixing
Anosov surface diffeomorphism, then [24] (see also [41, 45]) implies that [A* (ftmax)—AT (v)] <
ev/Ih(f, ttmax) — h(f, V)], where ¢ only depends on f.

In the non-uniformly hyperbolic case, the situation is different. For example, [6] proves
that among conservative systems the Lyapunov exponents of the volume measure are dis-
continuous when the diffeomorphism varies in the C!-topology, unless they vanish.

We are not aware of other general results on the continuity of the Lyapunov exponents
for general non-uniformly hyperbolic surface diffeomorphisms.

By contrast, much is known on the continuity of Lyapunov exponents of random prod-
ucts of independent identically distributed SL(2,R) matrices, as functions of the under-
lying Bernoulli process, see [20, 7]. More general Holder continuous matrix cocycles with
holonomies are considered in [2], and a higher-dimensional extension has been announced
in [47].

Dimension. L.-S. Young gave the famous formula (6) for the dimension of hyperbolic invari-
ant measures in [49] in terms of the entropy and the Lyapunov exponents of the measure.
For further dimension theoretic properties of hyperbolic invariant measures, see [4] and [3].
The continuity of the dimension of invariant sets and measures for hyperbolic systems have
been considered in numerous works, for instance [37] proves that basic sets on surface have a
Hausdorff dimension which varies continuously with the diffeomorphism, [5] proves that the
supremum of the Hausdorff dimensions of ergodic measures on such a basic set is attained
by a measure of maximal dimension and [3] discusses some non-uniformly hyperbolic cases.

2. A HEURISTIC OVERVIEW OF THE PROOF

All our results follow from Theorem C, and the remainder of the paper is dedicated to
the proof of this theorem. Here we give a heuristic overview of the proof, in the special case
when f1 = fo =--- = f is a C*° diffeomorphism.

2.1. The origin of the discontinuities in A\*. As Furstenberg discovered, the Lyapunov

exponents are easier to study in terms of the projective dynamics f(x, E) = (f(x), Df,(E))
on the projective tangent bundle

M= {(z,E):z € M, E CT,M is a one-dimensional linear space}.

Indeed by Ledrappier’s work, a Lyapunov exponent of an f-ergodic measure p is simply the
integral of the continuous function

p(x, E) :=log | Dfs|ell,

with respect to the lift of x4 to the bundle of the associated Oseledets spaces.

Suppose vy, are ergodic measures with positive entropy such that vy, — p weak®, and
suppose for the moment that p is ergodic and with positive entropy. Since dim(M) = 2, vy
have two simple Lyapunov exponents, and there are exactly two ergodic lifts 17,:' and 7,_, one
carried by the bundle £" of unstable Oseledets spaces, and the other carried by the bundle
E* of the stable Oseledets spaces. (The third bundle £° associated to the zero exponent has



8 JEROME BUZZI, SYLVAIN CROVISIER, AND OMRI SARIG

measure zero for all lifts of vy.) Hence,
ME(fu) = /apdﬁfj
+

Suppose 7, converge weak-star on M to an f—invariant probability measure g (this is true
for a subsequence). Since ¢ : M — R is continuous,

lim A*(f, ) = Tim 9i() = ().
k—o0 k—o0

The limiting measure /i is a lift of 4, but this does not have to be the lift of u to &%, ut. If
) £ 7+ (), then limy o0 ¥ (f,71) # A* (f, ).
It is certainly possible that fi # fit: The Oseledets bundle £ carrying the lifts f/\lj is not
necessarily bounded away from £°, and some mass 0 < p < 1 on £" can escape to £°.
Escape of mass to £° is reflected in long stretches of time when vg-typical orbits do
not experience the exponential growth of £%-directions predicted by A*. Instead, they see,

temporarily, exponential decay at rate A~, cancelling some of the previous growth. If ™, i
denote the two ergodic lifts. we must have i = (1 — p)u™ + pp~ and thus,

m AT (f, ) = (1= p)* (0) + pi~ () = A — p(NF = A)).

k—o0
In the language of Theorem C (and since u = pq by ergodicity), the discontinuity ratio 3 is:
B o hmk )‘+(fa Vk)

A (L)
(A different description of 8 will be given below.) So if u is ergodic, then 3 is a function of
p, whence of the amount of mass which escapes to £°.
In the case where p is not ergodic, the different ergodic components of p have to be

considered, and some of them may have zero Lyapunov exponents. The way in which v-

typical orbits approximate those ergodic components determine the possible cancellations.
So if p is not ergodic, then 8 may depend on the entire sequence (1), not just on its limit

L.

=1—p(1—=X;/A}).

2.2. Neutral blocks, the decomposition of i, and the parameter 3. Recall the
measurable f-invariant decomposition X = £° U &% U £° defined by the Oseledets theorem
according to the sign of the limit 1log||Df?|g|. It has full measure with respect to any

f-invariant measure. To get quantitative estimates, we select compact subsets K* C £*, for
x € {s,u,0}, from which the contraction, expansion, or “central” behavior of the sequence
|Df2|g| are uniformly controlled, and such that the fi-measure of K := K®U K* U K°
is close to 1. Since each £* is invariant, we can choose these compact sets to be nearly
invariant: Points in a very small neighborhood stay close for a long time.

Hence, if Z is a ﬁ,j -typical point for some very large k, its orbit under fspends nearly
all its time close to K and every visit in a small neighborhood of K* U K is the beginning
of a long period of uniform contraction (or weak expansion/contraction). One expects no
entropy creation not only during this period, but also during the “recovery period” which
follows, i.e., until the expansion predicted by the Lyapunov exponent of v cancels this
period of contraction (or weak expansion/contraction).

We select such long time intervals along the orbit of Zy in the following greedy way.
Fixing @ > 0 small and L large, an (o, L)—neutral block is a maximal interval of integers
(ng,...,no+ ¢) such that £ > L and

D fFno(zo) [l < exp(a(n —ng)) for all 0 <n < L.
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We will check that indeed, there is very little if any entropy creation during neutral blocks.

Our estimates will be in terms of the distribution of these long neutral blocks. Let
Ty = (wp, B%(xk)) be U} -generic points and let Ny 1 (T)) denote the union of all (o, L)-
neutral blocks of the orbit of Zx. In Section 6 we show that it is possible to choose a
subsequence k; — 0o so that following limits make sense weak-+ on M for (O, x> )=

a.e. (Ekl 5 ﬁs\kz, . )

~ o 1
o= Yy fim | Jm D G
L—oo JE[O,N)NNo, L(Tk)

mq = li li li 1 1)
A= lmlm | im0 Y b,
L—o00 JEO,N)\MNq,L(ZTk)

Notice that the sum of the two limits in the brackets is a.s. ﬁ,ji, because this is the limit of
the empirical measure of Ty,, and Ty, are all a.s. ﬁ,j;generic. So

mg +mq = lim f/\]j = [.
k—o0

The measures myg,m; are f—invariant. We will see that [ @dmg = 0, and that m; is
carried by £%. The decomposition = Buy + (1 — B)uo in Theorem C is defined by

—

Bi=1—qig(M), (1= B)po = 7x(lio), and Bu1 =T (1t — fio),

where 7 : M — M is the natural projection. Note that 3 is indeed the discontinuity ratio
lim AT (f, vk) /AT (f, p1) and the quantity 1 — 3 coincides with the fraction of the time spent
in maximal neutral blocks. The measures pg, 11 and 8 depend not just on i, but also on
the way the measures 7,/ accumulate on Ji.

2.3. Upper bound on the entropy. To complete the proof of the theorem it remains to
show that lerr;C h(f,vr) < Bh(f,u1). This is the heart of the proof, and where most of the

difficulties lie. We use Ledrappier-Young Theory and Yomdin Theory.

e Ledrappier-Young theory bounds h(f,vy) by the exponential rate of growth of the
minimal number of (n, €)-balls needed to cover a definite fraction of a local unstable
manifold W}’ _(z), where zy, is a fixed vj-typical point and the scale € tends to zero.
The “fraction” is measured using the conditional measure vy, of v on W (zx). In
particular, it suffices to follow points z € Wi (x)) with T, W% (z)) = E%(x).

e Yomdin theory provides tools for controlling the number of (n,e)-balls needed for
such covers, for C” maps. Instead of working with (n,e)-balls, one works with
parametrized pieces of unstable manifolds which lie inside (n,¢)-balls and which
have uniformly bounded C” size, and Yomdin Theory allows to bound the number
of such pieces. Here the regularity assumptions on f come into play. The expression
7)‘“);@971) in (3) is due to Yomdin theory (see section 2.4).

Let us sketch our argument for the upper bound on the entropy using the neutral blocks.
Since the unstable lift of v} -almost every point is ﬁ,j -typical, neutral blocks represent
roughly a fraction 1 — 8 of their time. During a neutral block, typical points on a small
piece of f™*(W}.(zx)) do not separate much, therefore this piece remains small (or can be
kept small by a subdivision into a small exponential number of pieces). For the rest of the
time, these subcurves follow the ergodic components of p;, hence they experience entropic
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separation at an exponential rate given by h(f, u1). Since the time outside neutral blocks is
a proportion 3 of the total time, this leads to the bound

h(f,vi) < Bh(f, ).

This argument explains the link between the entropy bound and the semicontinuity defect
of the Lyapunov exponents.

This sketch glosses over several difficulties. We will only comment on the main issue:
How to use non-expansion of the linearization D f at (xy, E“(xy)) during a neutral block,
to infer non-expansion of the map f itself on a small piece of W} _(zx) during this neutral
block. The difficulty is in controlling D f on (x}, E*(x})) for z}, close to xy.

2.4. Control of the expansion during neutral blocks. This is one of the most delicate
points in the proof. To deduce the non-expansion of the small piece of the unstable manifold
containing this point, we need to know that not only the diameter of this curve is small but
that its tangent is almost constant too. This forces us to work with pieces of W (1) whose
lifts to M are also small: The size in the fiber of M measures the variability of the tangent
directions.

How small is small enough? To use information on Df to control what happens on
W (xr), we need the fluctuations of the tangent direction along any piece to be smaller
than some & > 0, determined (mostly) by the modulus of continuity of Df. Using the
uniform continuity of the measurable unstable bundle on a set of large measure, we find an
€ > 0 such that if the diameter of the projection to M is less than e, then the fluctuation of
the tangent is smaller than €.

The price we pay for this solution is that we need to work with different scales in M and
along the fibers of the bundle M — M. This leads us to introduce fibered (n, e, €)-balls,
and to work with Yomdin theory for f: M — M. When dealing with diffeomorphisms of
finite regularity, there is an additional price to pay: If f is C", then fis only C™~1, and this
accounts for the extra term from Yomdin theory

M) AN +FAUTY

r—17— r—1

n (3).

2.5. Organisation of the paper. The different ingredients of the proof appear as follows
in the text.

Section 3: background on tangent dynamics and Lyapunov exponents.

Section 4: results from Ledrappier-Young and Yomdin theories on the entropy in dif-
ferentiable dynamics.

Section 5: reparametrization lemmas estimating the entropy from neutral blocks and
other time intervals.

Section 6: neutral decomposition of typical orbits.

Section 7: proof of the technical version of our main theorem.

Section 8: proof of the remaining statements.

A remark on style. Our constructions, estimating entropy for a sequence of measures con-
verging to a nonergodic one, require many parameters. We have chosen to make the depen-
dences as explicit as possible to help the reader check that there is no circular argument.

2.6. Standing notations for the duration of the paper. We collect here some notations
that we will use frequently below.

e | X| or Card(X): the cardinality of a set X.
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e M is a compact Riemannian C'*° manifold without boundary, with tangent bundle T'M,
tangent spaces T, M, and Riemannian norm || - ||;. Derivatives of maps f : M — M are
denoted by Df : TM — TM or Dfy : T,M — Ty M.

o h(f, ), )\f, AE.TM = ET @ E~: the entropy, average and pointwise Lyapunov expo-
nents, Osededets splitting associated to a measure u (also denoted )\f/ “ E*/" when the
measure is hyperbolic of saddle type), see section 3.3.

o« M , f, Z = (z, E): the projective tangent bundle, the lift of a diffeomorphism f and of
a point z, see section 3.2.

® Bi(z,n,¢e), r¢(n,e,X): an (n,e)-Bowen ball for f and the (n,e)-covering number of a

set X C M, see section 4.2.

|IDf|lsup: the sup-norm of the tangent map, see section 1.2.

A(f) = limy—s 400 2 log | Df™||sup: the asymptotic dilation.

Ifllcr: the C” size of f, see section 3.1.

Qr N (f): the supremum of the C sizes of f, f2,..., f¥ and of the C"~! semi-norm of

]?, fz, RN fN see section 4.6.

e If v is a vector, then R.v := {tv : t € R}.

3. TANGENT DYNAMICS AND THE SEMI-CONTINUITY OF LYAPUNOV EXPONENTS

Let M be a smooth compact Riemannian surface without boundary.

3.1. Review of the C" size of maps. Let U be an open subset of R"™.
Given k € N, we say that a map F : U — R? is C* if for all w € (NU {0})" such that

|w| :== w1 + -+ + w, = k, the partial derivative
guitetwn
F = ————
6w1$1 e 6wn,xn

exists and is continuous on U. For any compact subset K C U, we then define the C* size

F = max max|0YF(x)|.
IFles e = max max [0 F(@)]

Given « € (0,1), we say that a map F is C* if the following quantity is finite for any
compact set K C U,

||FHC” K= sup ||F(l‘) — F(y)H )
’ nyer  llz=yl*
T #y

Given r > 1 which is not an integer, we decompose it as r = k + «, with &k = [r] and

€ (0,1). We say that F is C" if it is C* and each partial derivative O F, |w| = k is C®.
For any compact set K C U, we define the C" size

[Fller ko= 1 Fller,x + max |0%Fl|co k-
w|=

Let Q be a compact subset of R” which is equal to the closure of its interior (we mostly
need [0,1]"). A map F : Q — R?is C" if F has a C" extension to an open neighborhood of
Q. In this case, the C” size of F' on § is

[Fllor = sup [|F]|
KCint(€)

cr K-

This (finite) quantity is independent of the extension of F' to the neighborhood of Q. Notice
that the C" size of a constant function is zero.
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A C7 structure on a smooth manifold N is defined by a maximal atlas 2 with C" changes
of coordinates. A smooth manifold equipped with a C” structure 2l is called a C" manifold.
A finite subset of 2l which covers N is called a C" atlas of N. -

Let N1, N3 be two compact C” manifolds (later this will be M, M or the circle S!), and
let A; be finite C" atlases of N;. Let € be a compact subset of N7 equal to the closure of
its interior. We say that f: Q@ — Ny is a C" map if each map X2_1 o f ox1, where x; ranges
over A;, is C". The C" size of f is:

-1
o= max ofo r < 00.
I fllc eax Xz o foxille

Again, the constant map has size zero.

The quantity ||f|lc- depends on the choice of atlases A;, but if N; are compact, then
finite atlases induce equivalent C” sizes. In case N; = S', we will always use the Euclidean
atlas.

Suppose fr, f € Diff"(M) and 1 < r < co. We will say that fi converges to f uniformly
in a C"-bounded way, if f — f uniformly, and supy~q || fx[|cr < oo. We write in this case

fo =3 f.
r—bd

If M is compact, fi, f € Diff*(M), and fr — f in C*°, then f = f for all r finite.
The Arzela-Ascoli theorem implies the following.

Lemma 3.1. Let Ny, Ny be compact C" manifolds, and f, f1, fa,...: N1 — Ny be a collec-
tion of C" maps such that (fi) converges to f uniformly, and supy, ||fllcr < oco. Then (fx)
converges to f in the C*-topology for any ¢ < r, £ € N.

Thus, if for some real v > 1 s.t. r € N, f, f1, fa,--- € Dift " (M) where M is a compact

manifold, then fi, =5 f implies that fr — f in the C")-topology.
3.2. The projective tangent bundle. Let
P, M :={FE : FE is a one-dimensional linear subspace of T, M }.

P, M is the quotient of T, M \ {0} by the equivalence relation v ~ w <= I\ # 0, v = \w.
It can also be viewed as the image of {v € T, M : ||v||z = 1} by the two-to-one map
v +— Span{v}. These identifications allow us to endow P,M with a topology and with a
smooth structure, and to identify the tangent spaces Tg(P, M) with {w € T,M : w L E}.
We can also pull back the induced Riemannian inner product on {w € T, M : w L E} to an
inner product on Tg(P,M). This endows P, M with a Riemannian structure. The resulting
Riemannian distance on P, M is simply dist(Eq, E2) = |£(E1, E2)|. With this structure,
P, M is isometric to the circle with perimeter .

The projective tangent bundle (or just “projective bundle”) of M is the bundle (]\//.77 T, M)

where 7 : M — M is the natural projection 7(z, F) =z, and

M := {(z,E) : x € M, E is a one-dimensional linear subspace of T, M} = |_| P, M.
xeM

M is a smooth compact three-dimensional manifold. We endow it with the Riemannian
metric v/ds? + df?, where ds is the length element on M and df is the length element on
P, M. Points in M will be denoted by & = (z,E).

Let f: M — M be a C! diffeomorphism. The canonical lift of f is the homeomorphism
f: M — ]/\/[\given by

o~

f(x, E) = (f(x), Df(E)). (7)
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If f is of class C", then fis of class C"~!. Notice that 7 o f: fom, and
'@, E) = (f"(2), (Df")2(E)).

Every f—invariant probability measure 7 on M projects to an f-invariant probability
measure v on M given by

vi=m,(0):=von L

We call v the projection of U, and v a lift of v. In what follows, when we “lift”, we always mean
an f-invariant lift. The following lemma is a well-known consequence of the compactness of
M.

Lemma 3.2. (1) Every f-invariant probability measure v has at least one lift .
(2) If v is f-ergodic and U lifts v, then a.e. ergodic component of U is a lift of v.
Hence every ergodic f-invariant probability measure has at least one ergodic lift.

3.3. Review of Lyapunov exponents. We review some facts on Lyapunov exponents
in dimension two (see [46, Theorems 3.12 and 3.14]). Suppose f € Diff' (M) and p is
an f-invariant Borel probability measure. Oseledets’ theorem asserts that for u-a.e. =,
lim 00 = log || D f2v]| exists for all v € T, M \ {0}. The possible values of the limit are
called the Lyapunov exponents of x. There are at most two such values. We denote them
by AT(f,z), A (f,z), or A}, A, with the convention

XF(f,2) = X7 (f, ).
If AT (f,z) # X\~ (f,z) then T,M = E*(z) ® E~(x) where

E*(zx) := {U e T, M\ {0}: \nl|igloo % log | Dfmv|| = AE(f, x)} U {0}.

The decomposition T, M = ET(x) & E~(z) is called the Oseledets splitting.

If u is ergodic, the functions AT (f,z) > A~ (f, ) are equal p-almost everywhere to con-
stants called the Lyapunov ezponents of p and denoted by AT (f, ), A= (f,p). If p is not
ergodic, the Lyapunov exponents of u are defined by

N (o) = [N (), X (= [ X (fa)duo).

In both cases, AT(f, 1) > A7 (f, ).
By the subadditive ergodic theorem, the largest Lyapunov exponent also satisfies

.1 n el n
N (o) = i [1og|DF | duty) = int [ 1og D] duty). (®)

Throughout this paper, an ergodic invariant probability measure p is called hyperbolic
if one of its Lyapunov exponents is positive, and the other is negative (sometimes this is
called hyperbolic of saddle-type). If u is hyperbolic, we sometimes write A = AT, \* = A~,
E*=FEt and ES = E~.

3.4. Semi-continuity of Lyapunov exponents. We will use the dynamics of the projec-
tive tangent bundle to study the semi-continuity properties of (f,u) — AT(f, 1) (and by
symmetry of (f, ) — A7 (f, 1)). The principal tool is the function

o: M =R, p(x, FE)=1log|Df|E|-
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Notice that if f is a C'' diffeomorphism, then ¢ is bounded and uniformly continuous. We
will make frequent use of the following identity:

n—1

log | Df"|gll =Y (¢0 fF)(@, BE) ((x,E) € M). (9)

k=0
This is because E is a one-dimensional subspace of T, M, and therefore by the chain rule
IDf21sll = TThzo 1D lpsrcm || = TTizo expl( o f¥)(x, E)). Equation (9) presents the
subadditive cocycle log ||Df™|g| for f as an additive cocycle for f. See [28, Prop. 5.1 on
p. 328] for a proof of a more general fact (and [19, Lemma 8.7] for the first use of a related
idea).

Lemma 3.3. Suppose f € Diffl(M), and p is an ergodic f-invariant probability measure.

Then:

(1) X is a Lyapunov exponent of p iff p has an f—ergodic lift o s.t. [ pdi = X;

(2) If 1 has two different Lyapunov exponents, then it has exactly two ergodic ffim;ariant
lifts:

pt= /A Oz, E+ (2))dp(x), and @~ = /A (2, B~ (2))dp(T).
M M
Moreover [ pdi® = NE(f, ).

For any f-invariant probability measure, it will be convenient to denote
MF7) = [ dn
M
When p is hyperbolic, the lifts 7iT, i~ are called the unstable and stable lifts of p.

Proof. If u has equal Lyapunov exponents, (1) follows from eq. (9) and the ergodic theorem.
Otherwise, by Oseledets theorem, there are two a.e. defined sections = ++ EF s.t. Df, Ef =
Efi(m). Every ]?—invariant probability measure carried by the graph of an invariant section
@ — E, is ergodic, and coincides with [, ¢, g,) du(z). So (1) and (2) follow from Lemma
3.2 and (9) (see [28]). O

Corollary 3.4. Suppose f € Diff'(M) and p is an f-invariant probability measure (not
necessarily ergodic) s.t. AT (f,x) > A~ (f,x) for p-a.e. x € M. Then any f-invariant lift
i of w is carried by graph(E™) U graph(E™), and there are unique f—invariant lifts g+, i~
s.t. it (graph(E™1)) =1, i~ (graph(E™)) = 1.

Proof. By a general Borel construction, the graphs of E+, E~ are measurable. There are
unique lifts @+, i~ of u to graph(E™), graph(E ™), and it is easy to check using the identity
Df.(Ef) = E}—L(x) that fit are f-invariant.

Now let /i be an arbitrary lift of 4 and consider its ergodic decomposition fi = [ fie dm.
For almost every &, the ergodic measure g = fig o 7! has two different exponents, hence,
by Lemma 3.3, its lift ji¢ is some combination a(f)ﬁz +(1—a(§))ne of its lifts ﬁgt where 0 <
a(§) < 1. Observe that a(§) = fig(graph(E™)), hence the function & — a(§) is measurable.
It follows that

A= [ @O + (1~ a(@)fg dm.

In particular, any lift [ is carried by the union of the graphs of £ and E~. O
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For each n > 1, (f,p) + [log||Df?| du(x) is continuous as a function on Diff' (M) x
{probability measure on M}. Eq. (8) now give us the following “folklore” fact:
Theorem 3.5 (Upper semicontinuity). Let f € Diffl(M) be diffeomorphisms with ergodic
invariant probability measures vi. If fi < f and v, == p, then the largest Lyapunov
exponents ANV (fi,vk) satisfy limsup, AT (fx, vi) < AT(f, p).

The next result computes the defect in continuity A™(f, u) — limsup AT (fx, vx) in terms
of the dynamics on the projective bundle. It relates the defect in continuity to the escape
of some of the mass of the lifts to graph(E™) to the vicinity of graph(E™).

Let 11 be an f—invariant probability measure with ergodic decomposition i = [, fiedm.
The projection p of i to M has ergodic decomposition u = fQ pe dm, where pg = fig o1,
Note that in general, the map fi¢ — f¢ is not injective.

We split the set of ergodic components fig (£ € §2) by considering whether they are carried

by the invariant line bundles E* or E~ or by a subset of M where these bundles are not
defined:

O = {6 QAT (fpe) < AT(fope) s e = Hig }
O = {6 QAT (fpe) < AT (frme) s e = i }
00 = {€ € 0 A~ (fop1e) = NF(fu i)}

Theorem 3.6 (Defect in continuity). Let M be a compact smooth boundaryless surface.
For each k > 1, fix f, € Diff (M) and ergodic fi-invariant measures vy, with X\~ (fr, vi) <

AV (fryvk). Let ’V\,j' be the ergodic lift to M carried by the bundle ET. Suppose fi <, 7,

Vi — 1, and vl v fi. Considering the ergodic decompositions [i = [, fiedm, o = [ pre dm
and defining Q = QT UQ~ UQ° as above, we have

Jm AT (fv) = A (f ) _/m V(S pe) = A7 (f, pe)ldm.
In the special case when u is ergodic, we have the following (see Lemma 3.3):

(1) IfXNT(fop) = A (f,p) or i =", then limy AT (fi, vi) = A*(f, ).

(2) If )‘+(fa :u) < )‘_(f7 M) and //I 7& ﬁ+7 then limg )‘+(fka Vk) < )‘+(f7 /’L)
More precisely, there is a unique 0 < a < 1 such that i = ai~ + (1 —a)u* and

kli)rgo )‘+(fkv Vk) = )‘+(f7 M) - a()‘+(f7 ﬂ) - A_(f7 M))
If v, and p are hyperbolic (of saddle type), then a # 1.

Proof. Using Lemma 3.3, we see that

Jodiit = N(fipe) i€ €0
[ wdie =1 [ odig =X~(fpe) ifg€0- (10)
NE(f pe) if § € 27,

lim A" (fr,vx) = lim /cpdﬁ,j = /g@dﬁ: //godﬁgdm. (11)
k—o0 k—o0
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Substituting (10) in (11), we obtain

Jm A () = [N (fpddmet [ X pe)m

QtuQo

= [ A Cedmt [ NGyt [N (pieydm

.
=N = [N Fae) = A (Foe)lim.

which proves the theorem for general, possibly non-ergodic, limits pu.
When p is ergodic, we apply equation (11) and Lemma 3.3:

(1) EAT(fo ) =N (f, ) or p=p", then [@du = A"(f,p) and item (1) follows.
(2) Otherwise, o has two different exponents and m(Q*) < 1. Necessarily, m(Q°) = 0,
a:=m(Q7) € (0,1] and the lift z can be written as (1 — a)u™ 4+ au~. So

kILH;oA+(fkaVk) :/‘Pdﬁ: (L—a)A"(f, 1) +ar™(f, p)
= X(f ) — aNH(f ) = A (f> )

<X, w)-
Finally, note that, if @ = 1 and g is hyperbolic, then limg AT (fx, vx) = A~ (f, 1) < 0, and vy,
are not hyperbolic of saddle type for k large enough. U

Notice that the defect in continuity originates at 2, the set of ergodic components of
lim ﬁ,j which are carried by graph(E~). This confirms the heuristic that discontinuity in
Lyapunov exponents is due to the asymptotic escape of mass from graph(E ™), which carries
v, to graph(E~), which carries fi¢ for £ € Q™.

3.5. A bound for the asymptotic dilation of f
Lemma 3.7. For any C? diffeomorphism f of a surface M, )\(f) <AE+H Y.

Proof. Working locally in charts, we identify the iterates f™ locally with diffeomorphisms
F;: U; — R? defined on open subsets of R2. We choose the charts so that the change of
coordinates distorts the metric by a factor of less than 2. The lift f € Diff* (M) is identified

with: ( )
~ DF;),v
Fi(x,v) = <F1($)7 v ) .
[(DF;)zv|l
In what follows, we omit the first factor.
The differential of F; can be computed in a straightforward way (writing a * b for the

scalar product of two vectors in R?):

~ ) — (DF),w  (D*F).(y).v
(DFJ(@,U)(?J’ ) [(DE).v| [(DF;)v| 12)
_( (DF;)zv . (DFi)zw+(D2Fi)x<y)‘v> (DF;)z(v)
[(DEF;)av]| [(DE;)zv|| [(DF;)zvl|

Thus,
I(DE) @l < 2 (IPE) N I(DEY) sl + (D> E)aHIDE) g ) -

We apply this to some iterate of f on M, remembering the distortion in the metric:

IDf™lsup < 32D f™ lsup | DF " llsup + 16D~ lsup | D f™ lsup
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Let 0 < ¢ < 1/4. Fix n an integer so large that 32 < /4 and
||Dfn||sup < en(A(f)Jre/S) and ||Df ||gup < en()\(f 1)+6/8)
Therefore,

AP S A + A +e/2+log (1+ e XD D2 |

By dilating the metric on M, we can ensure that ||D2f"||il<g < (e/4)e*) without changing

the asymptotic dilations. Thus )\(f) < M) +A(f1) +¢ As ¢ is arbitrarily small, the claim
follows. O

These computations allow the following control of the C" 1 size of the lift of a C" diffeo-
morphism.

Lemma 3.8. For every real 2 < r < oo, there is a constant A = A(r) with the following
property. For any g € Diff" (M) with lift § € Diff"~* (M),

~ _ A
1glcr— < Allgler - 1Dg™" lsup)

Proof. We first consider the kth derivative of f in charts for the maximal integer k& < r. A

straightforward induction on the integer k£ > 2 based on eq. (12) shows that the (k — 1)th

differential of F' at some point (z,v) € M can be written as a linear combination of terms:

1

1D. ol

where p, a1, 31 ..., 5, 85, are integers, and o, f1, ..., < k. The coefficients of this linear
combination depend only on k.

If k = r, the claim is immediate. If a := r — k > 0, recall that the C" size is the sum of

the C* size and a-Holder size of the k-th derivative. A further computation using the above
expression gives the required bound for the Holder constant of order a of D*3. O

(D*F«DP'F).. (D*F«DPiF).D'F

4. ENTROPY FORMULAS AND REPARAMETRIZATIONS

We saw in last section that the defect in continuity of (f, 1) = AT(f, ) can be described
in terms of the canonical lift f M — M. In thls section we develop tools for studying the
entropy map (f, u) — h(f, ) in terms of F:M— M.

Specifically, we will show that the entropy of hyperbolic measures on M can be studied
in terms of the exponential rate of growth in C"—complexity of f” oo, where 5 : [0,1] — M
is the curve 7 (t) = (o(t),R.0’(t)) and o : [0, 1] — M is a smooth parameterization of a local
unstable manifold.

4.1. Review of entropy and the ergodic decomposition. This section collects several
classical facts on the entropy theory of non-ergodic measures. For proofs and details, see
[15, chap. 13].

Consider a compact metric space X together with a continuous map 7' preserving an
invariant Borel probability measure p and the o-algebra X of Borel subsets of X. The
ergodic decomposition of u with respect to T is:

p= /X fre dp()

where p, = lim, % Zogk <n 07y (the weak-* limit exists almost everywhere by the
ergodic theorem).
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The map = +— p, is p-measurable with respect to the o-algebra Z of invariant mea-
surable subsets; for p-a.e. x € X, u, is a T-invariant and ergodic Borel probability
measure and for every Borel p-absolutely integrable u, x ~ . (u) belongs to L'(x) and

= « Mo (w) du(z). The metric entropy of p and i, are related by

BT, 1) = /X BT, ) dpa(z).

Suppose § is a countable measurable partition of X with finite mean entropy H, (&) :=
= ace H(A)log p(A). Let &, = (NI T7A; © A € €. Tt is a classical fact that
MT, 1, €) :=limy 00 %Hu(fn) exists.

Similarly, one defines h(T, pi, €). The function z — h(T, piy, €) is defined p-a.e., is measur-
able with respect to the p-completion of Z. Let &,(x) denote the atom of &, which contains
z. The Shannon-McMillan-Breiman theorem, in its version for non-ergodic measures [15,
(13.4)], states that,

hﬁm —= log,u(ﬁn( )) = h(T, jiz,€) both p-a.e. and in L' (p). (13)
In addition, we have the following identity: [15, (13.3)]: h(T, &) = [ MT, pie, €) dpu(). In
particular, h(T, u, &) < h(T, i, &), where

B(Ta :U’) 1= €8S-SUPgex h(Tv /~Lz) (14)
We call h(T, 1) the essential supremum entropy of u:

4.2. Bowen and Katok entropy formulas. Let T : X — X be a continuous map on a
compact metrix space X. An (n,€)-Bowen ball is a set of the form

Br(z,n,e) :={y € X :Y0<k <n, dT",T"z) < ¢}.
The (n, €)-covering number of a subset Z C X, is
rr(n,e, Z) :=min{|C| : | ] Br(z,n,e) > Z}.
zeC
Bowen [8] defined the topological entropy of a (possibly non-invariant) set Z C X for T
to be

hiop (T, Z) = hm htop(T Z,e) with hiop(T, Z, ) = limsup flong(n e, 7), (15)
n—oo N
and showed that the topological entropy of T is hop(T") = hiop(T, X).
Katok gave a similar formula for the metric entropy of an invariant measure. Let p be
an invariant probability measure. For every v € (0, 1), let

rr(n, e, u,y) = inf{rr(n,e, Z) : Z C X measurable s.t. u(Z) > ~}.

He showed that if p is ergodic, then h(T,u) = hm hm lim sup — log rr(n,e, u,y). Katok’s

n— oo
proof in [26] also works in the non-ergodic case, 1f we replace the usual Shannon-McMillan-

Breiman Theorem by (13). The result is that for a general (possily non-ergodic) invariant
probability measure p,

h(T, 1) = lim lim lim sup — - long(n €, 1y 7Y)- (16)

Ao1e—=0 pisog

Here h(T, 1) is the essential supremum entropy from (14).
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4.3. The lift to the projective tangent bundle preserves entropy. This is a standard
consequence of the following theorem [30].

Theorem 4.1 (Ledrappier-Walters). Let (X,T), (Y,S) be continuous self-maps of compact
metric spaces and let w: (Y, S) — (X, T) be a topological factor map s.t.

Ve e X  hwop(S, 7 (z)) = 0. (17)
Then, for any S-invariant Borel probability measure v on'Y, h(S,v) = h(T, m.v).
Thus by the variational principle, in the setup of the theorem, hiop(T) = hiop(,S).

Corollary 4.2. Suppose f € Difft (M ) and fis the canonical extension of f to the projective
bundle M. Then htop(f) = hiop(f), and for every f-invariant probability measure U with

projection v, h(f,0) = h(f,v) and h(f,) = h(f,v).

Proof. We check condition (17) for T = f, S = ]?, and apply the previous theorem. M is
a topological bundle over M, and its fibers P, M are homeomorphic to circles. The map
[+ PeM — Py M is a homeomorphism. For every ¢ > 0, one can find partitions &,
of P,M into a bounded number of arcs with diameter at most €. It is easy to see that
EoV [T1Ep VoV [T E R, o has cardinality at most S Card(£5;) = O(n). It follows

that yop(f, PaM) = 0 for all z. O

4.4. Bowen and Katok entropy formulas on the bundle M. We need a variant of the
Bowen and Katok entropy formulas which uses a different type of Bowen balls, which are
better adapted to the bundle structure of M.

Recall the natural projection 7 : M — M, 7(z,E) = x. The fibered ball with center
7 € M and scales €,& > 0 is the set

B(F,2,8) = {je M: di,j) < and dF@),7(7)) < ).

A set S C M has ﬁbered size < (s €)if S C B(Z,¢,¢) for some 7.
Suppose f € Diff' (M) and f is the canonical extension of f to M. The fibered (n,e,&)-
Bowen ball with center @ € M, size (e,€) and length n is the set

By(#,n,e,8):=={g € M: Y0 <k<n, d(f*@), ") <& 18)
and d(f*(7(@)), f*(®([@))) < e}

The (n, €, €)-covering number of a subset Z C M is the minimal number of fibered (n,e,&)-
Bowen balls whose union contains Z. It is denoted by

rf(n,s,a Z).
Clearly if 1 < g5 and & < &3, then rf(n,sl,a, zZ)> rf(n,sz,fg, Z).

Similarly, given an ergodic measure ji of f and a number 0 < vy < 1, the (n,&,&,7)-
covering number of [ is the minimal number of fibered (n,e,&)-Bowen balls whose union
has ji-measure at least . It is denoted by

Tf(ﬂ,{-f,aﬁ, ’Y)
If €1 S 527;:\1 S 527 and 71 Z Y2, then Tf(naglaglaﬁa ,71) Z rf(n7 52752aﬁ,’72)'

Proposition 4.3. Fiz f € Diff' (M) with canonical lift f We have:
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(1) Bowen’s formula: For every € > 0,

- 1 ~ T | =

hiop(f) = 21_13% h?—ﬂip - log rf(n, g, &, M) = sh—% hnrglgf - log rf(n, g, &, M)

(2) Katok’s formula: Suppose p is an f-ergodic invariant measure, and let i be an f—ergodic
lift of u. Then for every € >0 and 0 <y < 1,

1
h(f,n) = gl_r% lim sup — log rf(n, €,6,1,7),

n—oo T

If p is f-invariant, but possibly not ergodic, then for every lift i,

_ 1
h(f, ) = lim lim lim sup — log rf(n,s,aﬁ, v),

Y—=1e—=0 pn 300 N

Proof. We follow the proof of [8, Thm 17]. We need the following claim.

Claim 4.4. For every €,a > 0, there are C,e, > 0 such that
Ve € (0,e4), Yn > 1, Vo € M, rf(n,a,a 7 'By(z,n,¢)) < Ce™™.

Proof of the Claim. Let €, a > 0. Note first that

rf(ms,a %_1Bf(a:,n,5))§rf(n,§, %_1Bf(a:, n,e)),

hence it is enough to bound the latter. Since htop(]?7 7-1(x)) = 0, for each € M there is a
smallest integer n, > 1 such that Tf(nmé\/Q,%_l(x)) < e,

Recall that a set-valued function F from a topological space X to the set of subsets of
a topological set Y is called upper semi-continuous, if for every E C Y closed, {z € X :
F(z) N E # @} is closed. The continuity of 7 and the compactness of M implies that
x — 7 1(x) is upper semi-continuous.

It follows that if 77!(z) is contained in some open set U (say the union of a minimal
cover by fibered Bowen balls), then 7! (y) is contained in U for all y sufficiently close to z.
Hence there is an r, > 0 such that

rfA(nI,?/Q,?r_lB(x,rI)) < r]?(nw,z?/Q,?r_l(a:)) < M (19)

Using a compactness argument, we see that n, := sup{n, : £ € M} is finite and that one
can arrange for e, := inf{r, : € M} to be positive.

Let € € (0,e4), n > 1 and z € M. Define to(z) := 0 and ti41(x) = ti(2) + Njiice,-
Choose 7 > 0 maximal such that ¢;(z) < n. Note that 0 < n — ¢;(x) < n.. Thus, setting
zj = f4 @z and n; == n,,,

i—1
Bi(z,n,e) = ﬂ FE@ B (z;,n5,6) N @ Bz, n — ti(x),€).
§=0

Let {z1,...,2¢} be a (n. — 1,€/2)-cover of M with cardinality C. For each 0 < j < 4, let
{yj1, .-, Yjm} with m < e“" be the (n;,£/2)-cover of 7' B(z;,n;,c) implied by eq. (19).
Then 7! Bf(x,n,€) is contained in the following union:

U N F49Bry,n,8/2) 0 F 1O Bi(z,n — t(2),6/2).
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Any two points contained in the same term of this union are not (n, £)-separated. So the
cardinality of any (n,€)-separated subset of 771 By(z,n,€) is bounded by
i—1
C x H e < Ce™".
j=0
Since a maximal (n, €)-separated subset is the set of centers of a cover by (n, €)-Bowen balls,
rf(n,a/ﬁ_le(x, n,e)) < Ce®, which proves the claim.

The claim implies that for any &, a > 0, there are C,e, > 0 such that, for any 0 < & < &,
and any Z C M,

ry(n,e,Z) <rp(n,e, &7 17) < Ce*™ry(n,e, Z).

The proposition now follows from the classical identities (15) and (16). O

4.5. Curves and C" reparametrizations. The entropy of a diffeomorphism can be related
to the exponential rate of growth in C” complexity of the iterates of a local unstable manifold.
To do this we need to control the curvature, and for this purpose it is useful to lift the curve
to projective bundle M and study its iterations there. Here we develop the tools needed for
doing this.

Definition 4.5. A C" curve o : [0,1] — M is regular if its derivative o’ (t) never vanishes.
In this case, it has a canonical lift ¢ : [0,1] — M defined by

a(t) :== (a(t),R.0’(t)).

Here and throughout, R.o'(t) = span{c’(¢)} is a linear subspace of T, M. By regularity,
R.o’'(t) is one-dimensional.

Definition 4.6. Fiz r > 2 and let €, be two positive numbers. A reqular C" curve o :
[0,1] = M has C" size (or just size) less than (¢,€) if

lollcr<e and 7 llcr-1 <E.
The curve has diameter less than (g,€) if
diam s (0([0,1])) < e and diamg3(5 ([0, 1])) < &.
To say that a curve has finite C" size implies that it is reqular and C.

Remark 4.7. If a curve o is parametrized by length (i.e., ||o’(¢)|| = 1 for all ¢), then it has
size at most (||o|l¢r, C||o’||cr—1) for some constant C' > 0 which depends on the choice of
C"~1 atlas of M used to define C"~! size (see section 3.1).

Suppose ¢ : [0,1] — M is a curve. If we cut [0,1] into small intervals [a;, ;] and
reparametrize o[, p,] by ocotp; where 1[0, 1] — [a;, b;] is an affine bijection, then oot ||cr <
klloller, | o ¥iller < K||d]lcr, where k = |a; — b;| < 1. Cutting sufficiently finely, we can
obtain covering by pieces with affine reparametrizations with C” size as small as we wish.

Yomdin measured the C" complexity of a curve (more generally a set) by counting how
many reparametrized pieces with C” size less than 1 are needed to cover it. We adapt this
to the projective dynamics:

Definition 4.8. Let o : [0,1] — M be a C” curve. A reparametrization of o is a non-
constant affine map 1 [0,1] — [0, 1].

A family of reparametrizations of o over a subset T' C [0, 1] is a collection R of reparametriza-
tions such that T C e ¥((0,1]).
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Let f € Diff"(M) and let o be a regular C" curve. We will be interested in families of
reparametrizations which remain bounded in C" size after application of f™ for certain n.
Specifically, fix numbers ¢, > 0, an integer N > 1, and T C [0, 1].

Definition 4.9. A reparametrization ¢ of o is (C", f, N, e, €)-admissible up to time n, if
there exists an increasing sequence (ng,ny,...,ng) such that
e nyg=0,n=n, andn; —nj_1 <N foreach1<j </,
e for each 0 < j < /¢ the curve f™ oo o has C" size less than (g,£).
We call the integers n; the admissible times.
A family R of reparametrizations of o over T is (C", f, N, e, €)-admissible up to time n,
if each ¢ € R is (C", f, N, e,€)-admissible up to time n.

Lemma 4.10 (Concatenation of reparametrizations). Let f € Diff" (M), r > 2, and con-

sider a regular C" curve o on M, and T C [0,1]. Suppose that

o R is a family of reparametrizations of o over T’;

e Ris (C", f,N,e,&)-admissible up to time n;

e for each 1 € R, there is a family Ry of reparametrizations of f o o o) over =1(T),
which is (C", f, N, ,)-admissible up to time n'.

Then R’ := UweR{¢ op:¢p € Ry}t is a family of reparameterizations of o over T, and R’

is (C", f, N, e,€)-admissible up to time n+n'.

Proof. Since 9, ¢ : [0,1] — [0,1] are non-constant and affine, ¢ o ¢ : [0,1] — [0,1] is non-
constant and affine. Next,

U U @eeo,n1=»( U ¢0.1) 2 J v @)= |J Tnelo,1] =T,

YER PER Y YER  PERy YER YER

So R’ is a family of reparametrizations of (o,0) over T.
To see that R’ is admissible, fix ) € R, ¢ € Ry, and choose admissible times 0 = ng <
ng<---<mp=nand 0=ny<nj <---<n,, =n for ¢ and ¢. Let

nerk =n+ny (k=0,...,m).

We claim that 0 = ng < ny < -+ < ngam = n +n' are admissible times for ¢ o ¢. That
the gaps are no larger than N is clear. If j = £+ 1,...,£ + m, then f™ oY o ¢ is a
regular curve with size < (g, €), because ¢ € Ry, and R, is admissible. If j < ¢, then using
the fact that ¢’ = ¢ with ¢ a constant s.t. |c¢| < 1, we find that ||f™ oo o1 o ¢|cr <
|f% oao)|cr-|c| < ||f™ oootp|cr. Thisis less than e, because of the admissibility of R.
Similarly || f 0G0 th o @||crr < ||F 05 0 ¢)||aro1 < & O

Lemma 4.11 (Length of reparametrizations). Let f € Diff" (M), r > 2. For anyn > 0 and
N > 1, there exist . > 0 and a C%-neighborhood U, of f in Diff" (M) with the following

property.
Consider g € U, €, € (0,e4), a regular C" curve o, and a reparametrization @ of o
which is (C", g, N, €, €)-admissible up to time n. Then for any (z, E) € 5[0, 1],

Length(g" o o 0 @) < "/ Dg"| 5| Length(a o ¢).

Proof. M is compact, so one can find £, > 0 and a small C%-neighborhood U, of f in
Diff" (M) such that for all g € U, and T,y € M satisfying d(T,7) < e,

log [ Dglge@ || < log||Dglgrgll) + 15  (0<k < N).
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Let us consider g € U,, a curve ¢ and a reparametrization ¢ as in the statement, with
admissibility times ng,...,n¢. One gets for any 0 < i < £,

Y(z, E), (y, F) € §" 05[0,1], ||Dg;“+1_”'i Fll < e(m+1—m)n/10||Dg;w+1—m

E”v

which immediately implies the conclusion of the lemma. t

Admissible families of reparametrizations yield covers by fibered Bowen balls with size of
the same order of magnitude.

Lemma 4.12 (Bowen covers from admissible reparametrizations). Let f € Diff" (M), r > 2,
T C [0,1], and o be a regular C" curve. Fiz e.,&. >0 and N > 1. Let R be a family of
reparametrizations of o over T which is (C”, f, N, e, Ex)-admissible up to time n. Then, for
every €,€ > 0,

26.||Df|1 &
min(e, €)

~ o~

ro(n,e,85(I)) <

Proof. Let L := ||Df||sup. L > 1 since [ is surjective.

Let p := %, and construct a p-dense set C,, C [0,1] s.t. |C,| < %‘ Set C,(R) :=

{(Goy)(t'):t' € Cpp e R} .
Fix 9 € R with admissible times 0 =ng <mn; <--- <mng=n. Then nj; —n; <N and
the regular curve f™ oo o1 has C” size at most (e, &%), whence

”ka 000 "/}Hsup < g*Lk_nj for k € [nj,njﬂ).

In particular, ||D]/c7C 00 0t||sup < ELLYN for all 0 < k < n.

For every Z € o(T N[0,1]) with = & o ¢(t), there is § = 7 o ¢(t’) with ¢ € C, such
that |t —t'| < p, whence

d(f*@), F* @) < pe. LV and d(f*(7(2)), f*(F(@))) < pe. L™ for all k =0,...,n.

(the second inequality follows from the first). Notice that y € C,(R).

All this shows that o(T) C U Bf@,n,p&LN,p@LN) C U B#(y,n,e,€). So

yeCy(R) yeCy(R)

r7(n,e,&6(T)) < [Co(R)| < R 1Co| < 2|R| < Zm IDFINGIRI O

min(e,g) sup

4.6. Yomdin estimates. In this section we discuss a converse to Lemma 4.12: Covers by
Bowen balls generate admissible reparametrizations with cardinality of the same order of
magnitude. This result is much more delicate than Lemma 4.12, and requires Yomdin’s
Theorem [48]. Here is the tool we need from Yomdin’s work, in a form adapted to our setup.
Let

Qr(9) := max(|lgllcr, [gllor—) > @rlg) = max Qr(g"). (20)

14y

Theorem 4.13 (Yomdin). Given real numbers 2 < r < oo and Q > 0, there are T =
Y(r) >0 and ey = ey (r,Q) > 0 with the following properties. For every

o C" diffeomorphism g : M — M such that Q.(g9) < Q

o regular C" curve o with C” size at most (¢,€) with 0 < ¢, < ey,

e T€0[0,1], and T :={t € [0,1] : g(c(t)) € B(g(2),¢,2)}.
there exists a family R of reparametrizations of o over T such that

(1) for every v € R, goo ot is a reqular C" curve with C" size at most (g,€),
(2) IR < Y| Dgllshs .
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Proof. The reader who will compare this theorem to Yomdin’s original statement in [48]
will find that the two results are nearly the same, except for the following differences: (1)
Yomdin considered the more general case of o : [0,1]° — M whereas we restrict to £ = 1;
(2) Yomdin did not specify that all reparametrizations are affine as we do; (3) Our result
allows 7 to be real, not just an integer; and (4) We use (n, ¢, €) balls in M , whereas Yomdin
used (n, &) balls in M.

In the special case of curves ¢ = 1, Yomdin’s proof works verbatim with affine reparametriza-
tions, see, e.g., [48, p. 297-298]. The extension to non-integer smoothness is also simple and
well-known, see, e.g., [13, p.133].

To deal with (4), we apply the Yomdin’s original theorem twice, first for (g,0) on M and
then for the lift (g,7) on M. This yields numbers T; = Ti(r) (i =1,2) and ey = ey (r,Q) >
0 as follows. Suppose 0 < ¢, < ey, g € DIff" (M), Q-(9) < Q, and o : [0,1] = M has C”
size at most (e,€). Then

(1) There is a family R; of reparametrizations of g o o over T s.t. |Rq| < T1||Dg||ié£, and
so that each ¢ € R; is affine, contracting, and ||g o 0 o ¢||cr < &.

1
(2) There is a family Ry of reparametrizations of §o & over T s.t. |Ra| < Y2/ Dg|lsup and
so that each 1) € R is affine, contracting, and |[go 7 o ¢)||cr < E.

Each family of reparametrizations R; generates a cover of T by the intervals ([0, 1]),
¥ € R;. Without loss of generality, the interiors of these intervals are pairwise disjoint
(otherwise discard some of them and shrink the rest by composing the reparametrizations
by affine contractions). We define

R = {dyy w0 | (Y1,92) € R1 x Ry s.t. ¥1((0,1)) N4p2((0,1)) # @}

where ¢y, 4, ¢ [0,1] = ¥1([0,1]) N42([0,1]) is an affine diffecomorphism. The image of this
new family of reparametrizations contains the intersection of the images of R1 and Ro, hence
R is a family of reparametrizations of ¢ over T.

As the reparametrizations are affine and contracting, we see that

g o0 0@y, pller <llgooot|cr<e

Likewise for g o 0 o ¢y, 4,. SiNCE G0 T © ¢y, 4, coincides with the lift of g o o © @y, 4, item
(1) of the theorem holds.

Next, using the order structure on the interval, it is not difficult to show that |R| <
[Ral +[Ra| = 1 < Y| Dyl + X2 DG - Obviously Dl < DI, so item (2)
holds with T :=Y; + T». O

Corollary 4.14 (Existence of admissible reparametrizations). For 2 <r < 0o, @ > 0, let
Y(r), ey (r,Q) be the constants from Theorem 4.13. Suppose

e g € DIff"(M) and Q. n(g) < Q,
e 0:[0,1] = M is a regular curve with C" size < (,2), where 0 < ,€ < ey,
e Nyn>1, and T C [0,1].

Then there exists a family R of reparametrizations of o over T, which is (C",g,N,¢,&)-
admissible up to the time n, and with cardinality

IR| < C(r,g)rg(n,e, & goa(T)),

2\*

where C(r,g) = T(r)I¥ WDQNHsup |Dg N |5
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Proof. Fix n > 1 and divide with remainder n =¢N +p, ¢ >0, p=0,...,N — 1.

Let ¢ := r5(n,e,6,g 0 o(T)), then there exists a cover of gog(T") by ¢ fibered (n,e,&)-
Bowen balls B; := B(g(Z;),n,s,€). For each B;, we will construct an admissible family of
reparametrizations of o over T; := (g o) 1(B;), and then take the union over i.

Step 0. If p = 0 move to step 1. Otherwise proceed as follows.
Fix 1 <14 < /. Yomdin’s theorem for ¢?, ¢ and Z; gives a family of reparametrizations
Ro of o over

TP = {t€[0,1:3°(3(t)) € B(g"(@:),¢,8)},
which is (C", g,N, g, €)-admissible up to time p (the admissible times are 0, p), and such that

IRo| < T||DAP||;1<I(J Y Notice that T O T;. If ¢ = 0, we have a reparametrization up to
time n, and we stop.

Step 1. Fix ¢ € R and apply Yomdin’s theorem to gV, g? o 5 0 9, and gP(@;). The result
is a family R of reparametrizations of g¥ o o o 9 over

T} () = {t € [0,1]: g"P[G o v)(t)] € B(gV (%), ¢, 8)}

which is (C", g,N,¢,€)-admissible up to time N (the admissible times are 0, N), and with

cardinality |R,| < T||D§N||1/ (r=1)
Notice that T} () D ¥~ 1(T3), therefore the concatenation

Ri:= {ﬂ)O(ﬁ: w S 710,¢ S 73¢}

is an admissible family of reparametrizations of o over T; up to time N + p, with admissible
times 0,p, N + p and cardinality

Ra| < T2 DGV SV IDGP .

sup sup
If ¢ = 1, we have a reparametrization up to time n, and we stop.

Otherwise we continue as before to a “step 2” which applies Yomdin’s theorem to gV
gN*tP oo op and gNtP (7).

Eventually, at step g, we arrive to a family of reparametrizations R, over T; which is
admissible up to time ¢N + p = n, and which has cardinality

Rl < X7 DGV LSV I DgP Iy~ _T("/NWIIDgNllsup IID BRAE A

sup sup sup

Taking the union over ¢ = 1,..., ¢, we obtain the family of reparametrizations over | JT; D T,
as required. (I

4.7. Entropy and growth of C" complexity of unstable manifolds. In this section f
is a C" diffeomorphism, r» > 1, of a surface M and v is an ergodic hyperbolic probability
measure of saddle type, ie A* := A7 (f,v) is strictly negative, and A% := At (f,v) is strictly
positive. Pesin’s Unstable Manifold Theorem says that v—a.e. x belongs to an unstable
manifold W*(z), which is an injectively immersed C" curve and is characterized as:

W(z) ={y : hmsupflogd(f "(x), f7"(y)) < 0}

n—+4oo

A measurable partition £ is subordinated to the unstable lamination W* of v if for v-
almost every « € M, the atom £(x) is a neighborhood of z inside the curve W*(z) and € is
increasing: Every atom of f(§) is a union of atoms of £. By [29], such measurable partitions
exist.
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Since ¢ is measurable, Rokhlin’s disintegration theorem applies, and for v—a.e. x there
exists a probability measure v¥ on £(z) so that

u:/ﬁww.

The family {v%} is not unique, but given £, any two families like that are equal outside a
set of x of measure zero. Therefore it is not a serious abuse of terminology to call v¥ the
conditional measure on &(x).

In this section we use the entropy theory of Ledrappier and Young [27] and especially
the following corollary established by Zang (see [50, Remark 1.8]) to show that the entropy
of v can be bounded by the exponential rate of growth of the C” complexity of the curve
fr(WE.(x)), as quantified in the previous section using admissible C” reparametrizations
up to time n.

Theorem 4.15 (Y. Zang). Let us consider f € Diff" (M) with r > 1, an ergodic hyperbolic
probability measure v, and a system of conditional measures {v¥} on local unstable manifolds.
Then for v-a.e. x € M, the measure vy satisfies:

I | w
h(f,v) = inf lim liminf ~logrs(n, e, vz, 7).
The difference between this result and Ledrappier-Young theory is that Zang assumes C”
smoothness for some r > 1 and hyperbolicity, whereas Ledrappier and Young assume C?
smoothness, but no hyperbolicity.

Corollary 4.16. Let f € DifEQ(M), and let v be an ergodic hyperbolic measure with a
system of conditional measures {2} on local unstable manifolds. For any F C M with
positive v-measure, for v-a.e. xg € F, and for any choice of

e 0:[0,1] > W¥(xg), a regular C" curve,

e T'C[0,1], a set such that vy (o(T)NF) >0,
the following holds. If R,, (n > 1) are families of reparametrizations of o over T which are
(C", f, N, e, Ex)-admissible up to time n for some (any) e.,&x > 0, N > 1 independent of

1
n, then h(f,v) < liminf —log|R,|.
n—oo m

Proof. Fix €,,&«, N > 0 and let R,, be families of admissible reparametrizations as in the
statement. Let ¢ : [0,1] — M be the canonical lift of the regular curve o. Fix £,€ > 0
arbitrarily small. By Lemma 4.12,

Tf(nv &, 5; E(T)) < C|Rn|7

~ N
where C' := C(f,¢,8,6,N) := 21D Newp 5 independent of n.

min(e,g)

By the definition of rf(n, g,&,0(T)), there exist T1,...,Ty € M with £ < C|R,| such that
Ule B#(@i,n,e,€) D o(T). Necessarily

¢
U Bs(x(@i),n,¢) > o(T).
i=1
In particular, r¢(n,e,0(T")) < rzn,e,€,6(T)) < C|Ry|, whence by Zang’s Theorem, h(f,v) <
lim liminf L logrs(n,e,0(T) N F)

< liminf % log |R,|.
e—0 n—oo n—oo ™
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5. MAIN REPARAMETRIZATION LEMMAS

This section collects our main technical results on the existence of admissible families of
reparametrizations of pieces of unstable manifolds.

The point is to produce families with cardinality as small as possible. The first result pro-
vides admissible families of reparametrizations of local unstable manifolds, with cardinality
controlled in terms of the entropy. The second result, which is much more subtle, produces
much smaller families of reparametrizations for the subset of the local unstable stable where
there is little expansion up to some iterate, see Definition 6.1.

5.1. Statements. Throghout this section M is a compact smooth surface without bound-
ary, f : M — M is a dlffeomorphlsm f M — M is the canonical lift (7), and @ is a
(possibly non-ergodic!) f—mvarlant probability measure, which projects to an f-invariant
measure g. Q. n(f) is given by (20) in the previous section, h is the essential entropy (14),
and )\(]?) is the asymptotic dilation of f, see (2) and §3.5.

The statements of the following two propositions should be formally understood as stating
the existence of functions Ny,7y, 70, and Ny with values in (0, 00) such that the following
stated properties hold.

Proposition 5.1. Let us consider f € Dift" (M) with 2 < r < oo, an f—invariant probability
i, some real numbers Q,n,v,e,& > 0, and integers N,n. Assume that:
- N > Nl(’ra fﬂ?),
- 0<e,e<ey(r,Q) (the constant in Yomdin’s theorem 4.13), and
- n Zﬁl(ﬂﬁﬂ%%N’&a-
Then there are:
— a C? nezghborhood Uy (f,n,v,¢,& N, n) of [ in Diff" (M),
— an open set Ul(f,u,n v,€,&,n) C M with M(Ul) >1—+2 and u(@Ul)
such that the following property holds:
(*) For any g € Uy with Q. n(g) < Q and for any regular curve o with C” size at most
(e,8), there is a family R of reparametrizations over 6~ (Uy) s.t
- R is (C’",g,N,E,é\)—admissjble up to time n,
Rl < exp [0 (R(f )+ 28 +)],

The following and key estimate applies to the part of the local unstable manifold which
does not (initially) see much expansion. More precisely, suppose ¢ is a diffeomorphism
with canonical lift g, and let « > 0. An orbit segment with length n is a string ¢ =

(,9(@),....5" (@)

Definition 5.2. An orbit segment 9 = (Z,9(Z),...,g" 1(Z)) is a-neutral, if, denoting
T = (z,E), we have ||Dg*|g| < e*™ for every 1 < m < n.

Proposition 5.3. Let us consider f € Diff" (M) with 2 <r < oo, an f-invariant probability
i, some real numbers Q,n,v,0 > 0, and an integer N. Assume that:

= 0<y <(r, fn),

- N > N()(T, fa7777)'
Then there are:

- 0<ege<d.

~ a C? nezghborhood Uo(f, 1, Q,m,y, 0, N) of f in lefr( ),

— an open set Ug(f, ,Q,n,7v,6,N) C M with M(Uo) >1—+2% and M(BUO) =0,
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— an integer o == no(f, 1, Q, 1,7, N,0) > 1
such that the following property holds:

(**) For any g € Uy with Qr n(g) < Q, any reqular curve o with C"size at most (£,€), and
any n > ng there is a family R, of reparametrizations over

n—1
1 ~
T := &—1{55: (@,...,g" " N(@)) is {5-neutral and - g 0gi(z)(Uo) > 1 — fy}, (21)
Jj=0

such that
~ Ry is (C", g, N, e, €)-admissible up to time n,

— |R,| <exp [n (’T\(ff;) +77)},

Unlike Proposition 5.1, here the upper bound has no entropic term. Indeed, in the C*°
case, the exponential rate of growth tends to zero with n. This low complexity is due to the
neutrality of the piece of o we are parametrizing.

The proofs of these two propositions may be skipped at the first reading.
5.2. Proof of Proposition 5.1. Let r € [2,00), f € lefr( ), Q, 7,7 > 0, and consider
a f invariant probability measure fi. Note that the lift f € Diff"™” 1( ) is uniquely defined

by f and depends continuously on f € Diff"(M). Recall the number Y := Y(r) given by
Yomdin’s Theorem 4.13.

— Fix an integer Ny = Ny(r, f,n) > 1 such that for all N > Ny,
T <exp(4y) and R log | DFY |l < A(F) + 3. (22)
This is possible since )\(f) =limy_ 400 7 log HDf Ilsup-
- Fix N > Nj.
— Set ey = ey (r,Q) as in Yomdin’s Theorem 4.13.
— Let €, be arbitrary in (0,ey).

— Pick an integer m; = w1 (f, @, n,v, N,&,€) > N using Proposition 4.3(2) such that for any
n > ni,

Llogrs(n, 5,5, /i, 1 — %) < h(f, ) + 1, (23)
log | DfIIN, < 5. (24)

— Let n be some integerlarger than n;.

~ Let Uy = Uy(f,n,N,n,e,8) C Diff"(M) be a small enough C? neighborhood of f in
Diff" (M) such that the lift § of any g € U satisfies:

HD/Q\NHStlp < enN/m”DfNHsup’ 1Dgllsup < en/m”Dstum (25)

and so that every fibered (n, §, g)—Bowen ball for fis contained in a fibered (n, ¢, €)-Bowen
ball for g.
By the regularlty of Borel measures, there is a compact set K = K (f, I, 771, € ,€) with

7i(K) > 1 —~2 By eq. (23) there is a nelghborhood U, of K, such that §(U;) is contained
in the union of a collection C of fibered (n, 5, 5) Bowen balls for f with cardinality at
most exp(n(h(f, 1) + 7)). Passing to a smaller open set containing K , we can ensure that

7i(0U,) = 0.
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Suppose g € Uz, Qr n(g) < Q, and let o be a regular C” curve with C” size at most (e £).

By construction, we can cover §(5[0,1] N U;) using only the (n, 5, 5) ~Bowen balls for f from
the collection C. Every ball in C is contained in some (n, €, &)-Bowen ball for g. Thus,

rg(n,e,89(5[0,1]NTU1)) < exp(n(h(f, i) + 1))-
Since ¢, < ey, we can apply Yomdin theory in the form of Corollary 4.14. The result is

a family R of reparametrizations of o over 510U, which is (C",g,N,¢e,&)-admissible up to
time n, and such that

IR] < T DG i DGl exp(n(A(f, ) + 1))-

Using (22), (24) and (25), one gets |R| < exp(n(h(f,1i) + 2 f +n)). O

5.3. Proof of Proposition 5.3. The proof splits into two parts: In steps 0-6 we select the
parameters g, No, €, &, Uy, (70, Tp; In steps 7-11 we build admissible families of reparametriza-
tions as in the statement, and estimate their cardinality.

Fixr € [2,00), f € Dift" (M), Q,n, 6 > 0, and consider an f—invariant probability measure
i. Let T := Y (r) given by Yomdin’s Theorem 4.13. Let

H(t):=tlni+ (1—t)In 1. (26)
Step 0 (Preliminary choices). — Choose 79 = vo(r, f,77) > 0 such that:

Y0 <y <70, 3T <exp(rl), H(4y) < 25, [DFllsup < exp (7). (27)
— Let 0 < v < 9 be arbitrary.
— Fix an integer Ny = No(r, f,v,n) > max(% ?) such that (cf. (2), §3.5):

~

VN 2 No. log [ DFY fsup < ACF) + 15 (28)
— Let N > Ny be arbitrary.
~ Fix ey = ey (r,Q) as in Yomdin’s Theorem 4.13.
—Let V=V(f,n, N) be a C? neighborhood of f in Diff" (M) such that for g € V,
1D lswp < €D ¥ oy (k=1,...,N). (29)

Step 1 (Decomposition of [i). [i projects to an f-invariant probability measure. Let
A = A*(f,z) denote the Lyapunov exponents. These are well-defined j-a.e., but since we
are assuming nothing on fi they could be equal on a set of positive measure. Consider the
invariant measurable subset

My = {z € M | A\, and A\ are defined and distinct}.

We decompose [i as a barycenter of two invariant probability measures:

fi = ai + (1— a)fo,
where a 1= p(My), afiy == (- N7 1 (Myg)) and (1 — a)fip := p(- N7~ (M \ My)). In the
following we assume a € (0,1). Indeed, in the special case where a = 0 (resp. a = 1), we
simply write i = fig (resp. & = fix) and the proof of Proposition 5.3 becomes simpler and
can be easily obtained by adapting the general case.

Let po and py be the projections of fig, iy to M. These are f-invariant measures; po—a.e.
x has two equal Lyapunov exponents; and p4—a.e. = has two different Lyapunov exponents.
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Step 2 (Compact subsets IA(JF, K_ approximating fix). Asin section 3.3, the Oseledets
splitting induces two f-invariant measurable sections x — (z, E*(x)), M — M, defined f14-
a.e.

— By Lusin’s theorem there exists a compact set Kx = Kx(f, li,7, N) inside My such that
p(Ky) > 1 —~% and so that the functions

z e (2, Y ([ () , o= (0, B (ff(2))  (0<Kk<N)

are continuous on Kx. By Lemma 3.3, [i4 is carried by graph(E™)Ugraph(E ™). Therefore,
the sets

Kt .= graph(E ™|k, ) and K== graph(E™ |k, )
are compact and disjoint, and fiy (I/(\'+ U I/(\") = pup(Ky) >1—~% We set
Ky =7 YKy)=K_ UK,.
Every z € K4 has two lifts: zZt € K+, and 2= € KT. It is easy to see that ]ﬂf(gi) =
(f*(2), EX(f*(2)))-
Step 3 (Control of N iterates starting near [A(#)

— There exist €, = e.(r, f,n, N) > 0 and a C? neighborhood U, = U.(f,n,N) of f in
Diff" (M) such that the conclusion of Lemma 4.11 holds.

—Let € = &(r, f,Q,n,0,N,Ky) = %0min(é,ey,s*,dist(fﬁr,IA(_)). Note that the latter

distance is positive since K and K_ are disjoint compact sets.

— By construction of Ky, there is ¢ = ¢(f,€, Kx, N) € (0,€) such that if z,y € Ky satisfy
d(z,y) < e, then

VO<k<N, d(f*@"),f*@") < § and d(FF@), FF@))

rolm)

AN
rolmy

By the choice of €, if Z,7 € [?# satisfy d(z,7) <

o~

g, then either 7 = 2+, = g or T =

7,y =y . Consequently, for any z,5 € M,

o[ my

7,ye Ky e e
d(z,7) <&, (f&y)<s}:> VO <k <N, d(f*(@),["([®) <

Below, B(S, 3) denotes the S-neighborhood of a subset S.

S

~ Since M is compact, there exist d.x = 04 (f, N,€,2) > 0 and a C? neighborhood U, =
Ui (f,N,e,€) of f in Diff" (M) such that

g < u**
2,7 € B(Ky4,0..) — YO<k<N, dF°@),7"®) <& (30)
d(z,y) <e, d(z,y) <€

— Choose an open set W# = W#(I/(\'#, 44 ) such that I/(\'# C W# C B(I?#7 Jss) and ﬁ(aW#) =
0. By (30), if o is a regular curve with C” size at most (g,&), then for all g € U,

VO<k<N diam(@@EnWy)) <a (31)



CONTINUITY PROPERTIES OF LYAPUNOV EXPONENTS 31

Step 4 (Control of n, iterates starting near jip). Recall that pg has equal Lyapunov
exponents almost everywhere. By Ruelle’s inequality o must have zero entropy. It follows
that h(f, uo) = 0.

— By Proposition 4.3, lim lim lim sup — logT =(n, E,z,uo, 7)=0.If0<g< fandy <7y <1,

F—+12—=0 n—oo

then rf( 5 Q,ﬁ ~) < (n g, 2,,uo, ) It follows that

lim sup — logr( %,gﬁ ,7) = 0.
n

n—oo
So we can find a large mteger Ny = n*(f, ,1n,7,€,& N) that is a multiple of N and a
compact set Ko := Ko(f Ly 1,7,6, €, 1y ) C M with Ho(Ko) >1—+2 s.t.
IOgT (n*a 2 27f(K0)) < %

By continuity, we can choose a neighborhood WO = Wo(f,n,e 3 n*,Ko) of K, with
(aVVo) =0, and a C?2 neighborhood Us,x = Usrs(f, 1, €, ., Ko) of f in Diff” (M) so that:

Vg € Uynx, n—* log rg(n*,s,f,:q\(Wo)) < 15 (32)

Step 5 (5’0 and a decomposition of long typical orbit segments). Let
(70 = /V[70 U /V[7#.

Then Uy = Uo(r, £y, Q,n,7v,0,N), ﬁ(ﬁo) >1—~% and ﬁ(aﬁo) =0.

Claim 5.4. Suppose n > n./v. Any grbit segment (Z,9(Z)...,g""

proportion of time larger than 1 — ~ in Uy can be decomposed into:

Y(®)) which spends a

(a) orbit segments of length n, with initial point in W(),
(b) orbit segments of length N with initial point in Wy,
(c) orbit segments of length 1, of total number less than 2yn.

(Wg and ﬁ/\# are not necessarily disjoint, so the decomposition may not be unique.)

Proof. A decomposition as in the statement is completely characterized by the increasing
sequence of times (ng,nq,...,ny), where g"i(Z) is the initial point of the i-th segment. (So
ng =0, ng =n.)

We set ng = 0 and define the sequence inductively. Assuming that n; < n has already
been defined, we set
(a) 11 :=n; +n, if n; +n, <nand g™ (7) € WO\W#,

(b) nip1:=n;+ N if n; + N <n and g% (%) € W#,
(¢) niy1:=n; + 1 otherwise.
We stop when n; 11 = n.

Since n, > N, the times n; such that §"i(Z) € ﬁo but which are not associated to case
(a) or (b) must satisfy n; > n — n,. Since n > n, /vy and since (Z,...,9""(Z)) spends a
proportion of time larger than 1 — v in [70, the set of times n; corresponding to case (c) has
size smaller than 2yn. U

The sequence of times 6 := (ng,n1,...,ny) obtained in the previous claim is called type
of a decomposition. Recall that H(t) =tIn 1 + (1 —t)In 1.

Claim 5.5. There exists ng := ng(vy) such that for all n > ny, the number of possible
types 0 is less than exp(H (47y)n).
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Proof. By our choices of N, Ny and n,, we have n,, N > 1/+. Hence there can be at most
~n times n; such that n;11 —n; € {n., N}. Since there are also at most 2yn times n; such
that n;41 — n; = 1, we must have ¢ < [3yn].

The number of types is thus bounded by Z}gﬂ (521). Since 3y < %, this is less than
37”([3% j)’ which by de Moivre’s approximation is less than exp[nH (3vy) + o(n)]. Since
4y < 1, we have H(3v) < H(4y), and the claim follows. O

Step 6 (Definition of Uy, 7p). We fix the last parameters of our construction. Recall the
C? neighborhoods of f in Diff" (M) introduced in Lemma 4.11 and eqs. (29), (30), (32).

— Let Z/{0 = Z/{O(Taf7ﬂaQ7na’Ya€7an*aN) =V NUN U ﬁu***
— Define 7y = 71 (f, 12,1, 7,9, N) := max{n./y,nm}.

Step 7 (An inductive scheme). Now we fix some g € Uy with Q, n(g9) < Q, a regular C”
curve o with C" size at most (g,€) and n > 7. We need to bound the minimal cardinality
of a family R,, of reparametrizations of o which are (C", g, N, ¢, €)-admissible up to time n,
over the set

n—1
1 N
T= 81{3: (2,9(@),...,5""(&)) is s5-neutral and - g 051z (Uo) > 1 — 7}.
=0

For each type 6 = (ng,...,ns), we introduce the corresponding subset

Te:=TnN 3_1{55: (#,9(2),...,3" *(2)) has type 9}.

Then T is the union of Ty over all possible type 6.
Fixed some type 6 = (ng, . .., n¢). We will build by induction a family bei of reparametriza-
tions ¢ of o over Ty satisfying the following properties:
(i) admissibility: Rzi is (C", g, N,e,€)-admissible up to time n;;
(ii) small cardinality: if i > 1,

IRY | < exp ((i(jl) + %)nl) RY | when n; —n;_1 > N,
|RZ\ < exp(n/7) |Rf“71| otherwise;

(iii) small length: for each ¢ € RY and any (z, E) € 5 0 ([0, 1]),
Length(g™ o o 0 ¢)) < ee” 10" || Dg™ | g]|.

At the end of the construction, one obtains a family R? := R , over Tp which is admissible
up to time n. Then one can take the union over all # and finish the construction.

We begin the construction by defining R := {Id}: This meets our requirements because
ng = 0 and o has C” size at most (g, &).

Now we assume by induction that RY has been constructed, and we build th,“. The
construction uses the concatenation procedure described in Lemma 4.10. For each v € Rf”
we have to build a family R, of reparametrizations of the curve g™ o o o 1 over v Y(Ty)

with the following properties:
(i) Ry is (CT,yg, N,ag)—admisASible up to time n; 11 — ny,
(i") log|Ry| is bounded by (’\(fl) + %)(ni+1 —n;) if nip1 —n; > N and by I otherwise,

T
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(iii’) for each ¢ € Ry and (x,E) € 0 09 0 ¢([0,1]),

Length(g™*+! 0 0 01 0 @) < ge~ 10™+1|| Dgli+t | g||.

The family RziH ={¢op, v eRE ¢ Ry} then satisfies (i-iii) above.
— Given a type 6 = (ng,...,n¢), an integer ¢ € {0,...,£ — 1} and a reparametrization

(NS wa the construction of the families Ry depends on which of the following cases from
Claim 5.4 holds for n;:

Case (a‘): /g\nb(f/f) S /WO and N1 — Mg = M.
Case (b): G (7) € Wy and ngps — ny = N.
Case (c): njy1 —n; = 1.

The three cases are discussed in steps 8-10 below.
In order to simplify the notations, we set

o' :==gMocgotand T' = (Tp).

Note that ¢’ has C” size at most (e,€); moreover the induction assumption (iii) gives for
each (z,E) € g~ ™ 005’'[0, 1],

Length(c') < ce~ 167

Dgy

el (33)

Step 8 (Case (a)): In this case n;y1 —n; = n, and o' (T") C Wo. By eq. (32),
rg(n.,e,8,§od' (")) < /10, (34)

The integer n. is a multiple of N. Corollary 4.14 of Yomdin’s theorem yields a family R% of
reparametrizations of o’ over 7" which is (C", g, N, ¢, €)-admissible up to time n, and with
cardinality:

n./(r—1)N
sup

[Ro| < Y7/N||Dg"|

Tﬁ(n*v 57 57 @\ o EI(T/))

Combining with (27), (28), (29), (34) and N > 1, we get log |RY| < (A0 4y,

r—1
The conclusion of Lemma 4.11, together with (33) gives that, for each ¢ € R?p and
(2,E) € 5" 0 5/([0,1]),

Length(g"™ o 0’ o @) < ge” 10741 || Dyg"i+ | - €37 (35)

In order to compensate for the factor e3"+ we subdivide [0,1] into intervals Iy, ... I, with
length less or equal to e~ 5"+, Since n, > N > Ny > 1—770, e > 2, whence
m < e8] < 2e3™ < eTome
Let x;: [0,1] — I; be affine bijections, and let
Ry = {poxj, @ER%,j: 1,...,m}.
The cardinality of log|Ry| is thus bounded as required by (i(:l) + %)n*, so (ii”) holds.

Property (iii’) follows from (35) and the choice of m and x;, and (i’) follows from Lemma
4.10.
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Step 9 (Case (b)): In this case n;o1—n; = N and ¢/ (T") C ﬁ/\#. We combine Lemma 4.11
with (33) and get that, for each (z, E) € g i 66'([0,1]),

Length(g" 0 0') < ce™ #7641 D, g™+ g - €.

One can thus subdivide [0, 1] into intervals Iy, ..., I, with m < ( M <e BN , such that:
Length(g" 0 0'(I})) < e~ "1 |D,g™ 1| for (2,B) €3 ™ 03/(0,1)).  (36)
We can focus on the intervals I; such that I; N 7" # @. Fixing such an I;, there exists

L, g~ " o0’)(I;), such that (z,9(Z),...,g"*+*~1(Z)) is <t-neutral. In particular,
E " I; h that (2, g(z grni(@ 10 t 11 ticul
||Dx9 1+1|E|| S eT0™i+1 whence

Length(gN o a/(_[j)) < ce TN eTo it — ¢
On the other hand since ¢’ (T") C ﬁ/\#7 eq. (31) implies:
diam(’g\N o&’(T’ e [j)) < ?

We have shown that the image g% o &’(T” N I;) is contained in a (,£)-ball. We can apply
Yomdin’s Theorem 4.13 and obtain a family R; of reparametrizations ¢ of ¢’ over T N I;
with cardinality at most Y| Dg™v ||;<§)T71) such that each curve gV o ¢’ o ¢ has C" size at
most (g,€). Consequently, R; is (C", g, N, ¢,&)-admissible up to time N.

The union Ry := |J iR is thus a family of reparametrizations ¢ of ¢’ over T’ which is
(C",g,N,¢e,&)-admissible up to time N. By (36) they satisfy the bound (iii’) of the induction
scheme (Step 7) on the length of 0’ o ¢. Combining the bounds on m and |R;|, one bounds
the cardinality of R by

Ryl < Tett V|| DGN||LD.

sup

which by (27), (29) and N > %, is bounded by exp( i(_fl)N + %N) as required.

Step 10 (Case (c)): In this case n;y; —n; = 1. By our assumptions on o', we have

. . ~
Length(c’) < £ and Length(c’) < ge” 10™¢|| Dg2 (x,E) € g™ 00'[0,1]. One
can thus decompose [0, 1] into intervals Iy, ..., I, with m < [[|Dgllsup| + [€70 | Dgllsup| — 1
such that:

]
(a) Length(goo’(I;)) < ee” 10"+ || Dgy " |g|| for each (x, E) € g™ 0 5’[0,1],
(b) Length(god'(I;)) <&.

In particular, for each 1 < j < m, the image g o 6'(I;) is contained in a (g, €)-ball. We can
thus apply Yomdin’s Theorem 4.13 and obtain a family R; of reparametrizations of o’ over
I; whichis (C", g, 1, ¢, €)-admissible up to time 1 and with cardinality at most THDgH;{I(f 23

The union Ry := (J; R; is thus a family of reparametrizations ¢ of o’ over [0, 1] which is
(C",g,N,e,€)-admissible up to time 1. By property (a) above they satisfy the bound (iii’)
of the induction scheme (Step 7) on the length of o’ o . Note that m < 3e16 HDg||¥,§,T 28
hence Ry has cardinality smaller than

[Ry| < 3Yes||Dg|li5 Y,

sup

which by (27) and (29), is bounded by exp(n/7).
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Step 11 (Completion of the proof). Steps 7-10 provide the construction of the family
RY for each type 6. The inductive bounds (ii) for |RY [/|RY | | imply

0 A(S) mo.n
|RY| < ex p( n+ 0" ’YAC(G))’
where A.(0) is the number of times n; belongs to case (c) for the type 6.
Let R,, denote the union of RY over all possible types #. This is a family of reparametriza-
tions of o over T = |J, Ty, which is (C", g, N, ¢, €)-admissible up to time n.
Since A.(0) < 2vyn for all  (by Claim 5.4), since the number of types 6 is bounded by
exp(H (4y)n) (by Claim 5.5), and since H (4vy) < 75 (by our choice of v, see (27)), this gives

Mf) T
< — — 2 H(4
Ryl eXp( n+ " +10 yn + H(4y)n
A(f) ™mo.mnom M)
< _— = .
eXp( +10 —|—5n+10n exp T_ln—l—nn
This concludes the proof of Proposmon 5.3. O

6. THE NEUTRAL DECOMPOSITION

Let f be a homeomorphism on a compact metric space X. We denote the point mass
measure at € X by §,. Given M C N, let

1
Hom =~ Y O

FE€[0,n)NMN
The weak-* limit points of (u?n)nzl are called the M-empirical measures of x.

Definition 6.1. Suppose p: X — R is continuous, « > 0 and L > 1. An («, L)-neutral
block of (x, f, ) is an interval of integers (ng,mo +1,...,n1 — 1) s.t

e ny—ng>L, and

o p(fro(x)) +o(frr (@) + -+ o(f" =) < a- (n—no) for all ng <n < ny.
We denote by Ny, (x, f, @) the union of the («, L)-neutral blocks of (z, f,¥).

Any interval of mtegers Wthh is a union of two neutral blocks is still a neutral block.
Therefore, if hmmf Ly o Y o(fF(x )),liminf%Z,::lfn o(f*(z)) > a, then N, 1(, f,p) is
n—r oo

a disjoint union of (finite) maximal neutral blocks.

Proposition 6.2. Let f, f1, f2,... be homeomorphisms of a compact metric space X, and
let @, p1,p2,... be continuous functions on X such that fr, — f and @ — ¢ uniformly.
For each k, let vy, be an ergodic probability for f such that [ @rdv, > 0. Then there exist
a subsequence (v,) and (positive) measures mg, my such that:

(i) Both mg and my are f-invariant.
(ii) The subsequence (vy,) converges weak-x to mg + my.
(iii) For any meighborhoods V. = (Vo,Vi) of mo,m1, if a« < a.(V), L > L.(V), i >
i+(V, o, L), then for vy, -a.e. x, the N (2, fr,, Pk, )-empirical measures belong to Vy,
and the (N\ Mo, L(x, fr;, ok, ))-empirical measures belong to Vi.
(iv) [ dmg=0.
(v) For my-almost every point x, the limit of 1 Z] i Y o(fI(x)) is positive.

Remark 6.3. The measures mg, m; are not normalized, but there are f-invariant probabilities
Lo, 11 such that mg = (1 — B)uo and my = Buq, where 5 = mq(X).
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Example 1. The following constructions show that the decomposition mg + m; depends
on the sequence (v;) and not just on its limit.
Let X = {-2,1,2}2, fi, = f = the left shift, and ¢y (7) := p(x) = z. For each k > 1,
consider the periodic sequence p*) with period
2 =242, 42,4,
k k k

Let vy, be the unique shift invariant probability measure on the orbit of p*). Let 8, := the
probability measure concentrated on (---s,s,s---). It is easy to see that v, converges to
pi=5(6-2 + 01 + 042)

If0<a<1,L>1,and k > L/2, then the maximal (c, L)-neutral blocks of (p*), fi., or)
are [ng,n1) NZ where

E P ) = (=2, 2,42, 42,41, ),
k k ?
with ¢ = L%kJ So mo = %(5_2 + 5+2) and my = %5_},.1.
Now consider the measures v}, obtained from the periodic sequence ¢ with period
—2,...,=2,41,...,4+1,42,...,+2. These measures also converge to u. But now, if 0 <
k k k

a<1,L>1andk > L/2, then the maximal neutral blocks of (¢*), fx, @) are [ng,n1) NZ
where
@, ) = (=2, =2, 41, 1L 42, 42),
k k ‘

with ¢ = L%kj So mgy = %(5,2 + %5+1 + %6+2 and m; = %6”.

Example 2: Suppose (fx) converges to f in Diff" (M), and vy are fi-invariant measures
which converge to an f-invariant measure p. Assume the limiting measure p := limyy is
ergodic and hyperbolic of saddle type. Let A\, <0, )\: be the Lyapunov exponents of p.

Consider the unstable lifts 7}’ to the fibered bundle. Passing to a subsequence, we may
assume that U}' converge weak-* to a limit i (a lift of p). Let ¢y : M — R be or(z, B) =
log (D fr)z|ell- We apply Proposition 6.2 to fk,cpk,ﬁ}j, obtaining a decomposition 1 =
mo +mq = (1 — B)fio + Bii1. On the other hand, since p is ergodic and hyperbolic,

fi=afi +(1-a)it

where 7it are the unique lifts of y to graph(E*). So fig, i1 < [T + fi~, whence by the
ergodicity of it fip, i1 are convex combinations of fit, i~. By (v), 7i1 has no i~ component,
so fiy = ft. By (iv), if fig = b~ + (1 —b)* then necessarily 0 = [ pdfio = bA;; + (1 —=b)A},
whence b = )\:[/()\:[ + AL ]). It follows that
B =p,  pfo= M
A+

To finish the calculation of my = (1 — 8)fig, m1 = Bp1 it remains to determine 5. To
do this, we substitute the formulas for fig,fi; in the identity ap~™ + (1 — a)gt = 1 =
(1 — B)jio + Bri1. Since T are ergodic, the coefficient of i~ on both sides must be equal,

Sl
which leads to 8 = 1 — a)\“—:ik\“‘

ﬁ = lim )\+(fk, l/k).
k—o0

. Looking at case (2) of Theorem 3.6, we recognize that

_ 1
AT(f, 1)
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Proof of Proposition 6.2. Without loss of generality, (v) converges weak-* to an f-invariant
probability measure p (otherwise pass to a suitable subsequence). We abbreviate ‘)’t’; (z) =
No,r(x, fi, pr) C Z and define

NE i ={zeX:0eN ()} (37)

This is a measurable set. We call it the («, L)-neutral set of (o, fi). Let XQL denote the
indicator function of Ngj’L. Since vy, is ergodic, for vg-a.e. point z,

. R .
lim pzn Y= Xi,LVk in the weak-* topology.
Claim 6.4. There exists an increasing sequence of integers (k;) such that
Y(e, L) € (0,1] x N lim x™ vy, exists
11— 00 ’
in the weak-* topology. We write these limits as mq, .-

Proof of the claim. Fix some countable dense set E C (0, 1]. By compactness and a diagonal
argument, there is an increasing sequence k; — co such that the following limits exist in the
weak-* topology:
: ki _
V(a,L) € Ex N pgr&xa’Lyki = Mq,L

Let us check that this can be extended to all (o, L) € (0,1] x N, maybe after pass-
ing to a subsequence. Indeed, select a countable family (u;) of nonnegative continuous
functions which generate a countable dense algebra over Q in C°(M) (the space of con-
tinuous real-valued functions on M with the supremum norm). Fix L and w;. The func-
tion a € E — mq, 1 (u;) is non-decreasing on E, and therefore extends uniquely to a left-
continuous function o € [0,1] — mq,r(u;). The discontinuity points form a countable set
Dy, ;. Again by monotonicity with respect to

Ma, (1) = Ma,1(u;) = lim Xo Vi, (1)

at every a € [0,1) \ Dz ;. By a further extraction of a subsequence, we ensure that Xa,7V,
converge for all (o, L) in the countable set ULENJ>1 Dy ;. O

We return to the proof of Proposition 5.2. To simplify notation, from now on (vj) will
denote the subsequence (v, ).
The following weak-* limit exists by monotonicity:

mo:= lim mg = inf mgr.
a—0 a>0,L>1
L — oo

We set my := u — myg. Since 0 < x’; Vi < vy, it follows that 0 < mg < i so that both myg
and m; are positive measures. 7

Neutral blocks have length at least L, therefore for every continuous function u, we have
(8 ) (= wo fi) < (/1) ullap. Since wo f —wo fi — 0 uniformly, ma.p (u— o f) <
(2/L)||u|lsup- It follows that mg is f-invariant. So is mi = p —mg. This proves items (i)
and (ii).

Item (iii) is a simple consequence of the construction.

We turn to (iv). For any function ¢: X — R, we define

n—1 n—1
Swi= Yo fl and Sp = wo f.

Jj=0 Jj=0
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For every x, we decompose ‘ﬁ’; .(x) N[0, 00) into maximal disjoint intervals:

‘IK’;L(JL‘) N1[0,00) = Ll[ai,ai +b;).

i>1

Since vy, is ergodic, for vg-a.e. x,
. 1
(Xe,ve) (r) = /xi,m dvg = lim —S}(xq, on) ()

= lim 1 Z (Sl’figak)( ().

j—o00 a; + b,
! RIS

Each interval [a;,a; + b;) is a maximal («, L)-neutral block except possibly the initial one,
if it contains 0. The first block contributes Cy(x)/n — 0 to the limit. The other blocks are
all maximal neutral blocks, and satisfy the bounds

a(by +1) = @r(fi (@) < (Sp00) (fi* () < abi.

The first inequality comes from the maximality of the block, the second is the definition of

neutrality. Summing over ¢ = 1,..., 7, we obtain the bounds
Co(x)+a( X bi+j) — jsuppr(z) < (SzfﬁanmLsOk)(f) < Co(x)+a 3 b;.
1<i<y z,k 1<i<j

Since each such complete neutral block has length at least L, there are j < n/L maximal
(v, L)-blocks in [0, a; +b;). Dividing by a; +b; > >, b; and discarding some nonnegative
terms from the lower bound, we obtain in the limit j — oo,

=S (@) /L < (o, Lve) (1) < 0

Passing to the limit « — 0, L — oo and recalling that ¢ — ¢ uniformly, we obtain item
(iv): mo(p) = 0.

We prove item (v) by contradiction, assuming that

7= gm({a: Tim (1/n)(S30)(x) < 0)) > 0.

There are ag > 0, Ly < oo such that, for 0 < a < g, L > Ly,

M.z (X) — mo(X)| < 1%0 (38)

Given K > 0, let
VHK) :={zr e M|30<a <K st. [-a,0]NZis (ag, Lo)-neutral for (x, fr, or)},
Wi(K) :={x € M|30 < a < K s.t. [-a,0]NZ is (ag/2, Lo)-neutral for (x, f,)}.

These are closed sets, and W°(K) C VF(K) for all large k. We can ensure that ag/2 is not
a member of the countable set of a’s such that

p{xeX:3In>1(1/n)SFe(x) =a}) > 0.
In particular, p(OW§°(K)) = 0 for each integer K > 1. Therefore, for any K > 1,
il v (W () \ NE 1) = lim lim [(1— & )os] (W32 (K)) = my (WEP(K)). (39)

By the ergodic theorem, for p-a.e. € M such that lim,, . (1/n)Sp(z) <0, it is also

the case that lim, oo = ZngnJrl ©(f7(z)) < 0. For such x, the Pliss lemma [40], [32, Ch.
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IV.11] yields arbitrarily large integers a > 0 such that [—a, 0] is ag/2-neutral. In particular,
fixing Ko > Lo large enough,
my(Wo* (Ko)) > 7.
Hence there exist 0 < a1 < ag and Ly > max(200Ky /v, Lo) such that for all k large enough,
(Vo' (Ko) \ N&, 1,) = vi(Ws* (Ko) \ Nit, 1) > 7. (40)

Since vy, is ergodic, for vg-a.e. x, the set My = ‘ﬁ’;hLl(x) of visits under iterations of fi
to the (a1, Li)-neutral set NF | has density
N N0,n-—1
LN [n 1)

n— 00 n

dMy) = = (NS 1) P May .1, (X).

a1,L
So by eq. (38), for k large enough and vg-a.e. x,
d(My) > mo(X) —~/100. (41)

Similarly, the set Mg := ME , (z) has density

ao,Lo
A(Ro) = ve(NE, 1) < mo(X) + /100, (12)

for k large enough and v-a.e. z. Finally, let U denotes the set of j such that f/(x) €
VE(Ko) \ Nil,Ll' Then by eq. (40), for k large enough and vy-a.e. x,

d(0) = v, (Vg (Ko) \ N&, 1,) > 7. (43)

We will show that (41)—(43) lead to a contradiction.
By definition of V§*(Ky), each j € U is the last element of an (v, Lo)-neutral block I(j)
with length < Ky (we do not claim that this block is maximal). Let

3=JUG) 5 €D IG) N = o}, 3= J{TG) 1 € B, 1(G) N9 # 2}

We claim that the upper asymptotic density d(J’) := limsup %|TJ’ N [0,n)| is less than
~v/100. To see this note that if j € U and I(j) NNy # &, then j € Ny (by definition of
) and since Ly < L1, I(j) contains the last element of a maximal sub-interval of 91;. The
interval with length 2K centered at this last element must contain I(j). Since the number
of maximal sub-intervals of 91; N[0, n] is bounded by n/L1, the upper asymptotic density of
7’ is no more than 2Ky/Ly < «/100.

It follows that the upper asymptotic density of J is at least

— 0% 99
d(3) 2 d(V) = 155 > 1007
and since 9M; and J are disjoint d(9; UJ) = d(M1) + d(T) > mo(X) + 7.

But 91; and J are a union of (ag, Lg)-neutral blocks, so 9t; UT C 9y, whence by eq. (42),

d(9 UT) < mo(X) +~/100. This contradiction proves item (v). O

7. PROOF OF THE MAIN THEOREM

We recall the notation :\\(f, i) := [37log | Dfz|plldii(z, E). In this section, we prove the
following stronger version of Theorem C.
Theorem D. Fiz a real number r > 2. For every k > 1, let fi, € Diff" (M) and let vy, be an
fr-ergodic measure. Let Uy, be an fk—ergodic lift satisfying X(ﬁc, Uk) = AT (fx,vk) such that:
— the limits limg AT (fx, vi) and limy h(fx,vy) exist and limg AT (fi, ) > 0,
— fx =5 f for some f € Diff"(M) (i.e. fi — f uniformly and supy || fr|lcr < 00),

— Dp 5 [ for some f-invariant probability measure [i on M, perhaps non-ergodic.
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Then there exist 8 € [0,1], two f-invariant measures po, p1 with f—invariant lifts fig, i1 S.t.

i=(1-B)io + B, (44)
AEEJA+(fk7Vk)==5A+(f7M1% (45)

li — L7
kiﬁ;)h(fk7Vk) —

A(f) < Bh(f, pa)- (46)
Moreover:

— If B> 0, then A(f,7i1) = AT (f, 1) and A\t (f,z) > 0 for pi-a.e. x.

— If B <1, then A(f,io) = 0.

Note that when vy is hyperbolic, the measure 7 above is simply the unstable lift ﬁ,j‘

7.1. Reductions. We assume the setting of Theorem D. There is no loss of generality in
assuming that 7 is finite, since the C'*° case follows from the C" case by letting » — co. By
Lemma 3.1 and since fr —5 f with r > 2,

fx — f in the C? topology and fi — f in the C* topology. (47)
Let h := klim h(fx,vk). By Ruelle’s inequality and (47), h is bounded by supy, || D f|lsup <
— 00

oo. It is clearly non-negative. The theorem has a simple proof when h = O:

Proof of Theorem D when h = 0. In this case eq. (46) is trivial. Since log | Dg(x)|g| de-
pends continuously on (z, ) and g, one gets 0 < limg AT (fx, vi) = limy A(fx, Uk) = A(f, 10)-

If all ergodic components g’ of i satisfy X(f ') > 0, it is enough to take [ Jio = 1 =q
and fix 8 = 1. If some ergodic components of ji satisfy )\(f ) < 0 and since )\(f, ) > 0,
one can decomposes [ = (1 — 8)fy + Bpo where [ig, ji1 are two f invariant measures such
that X(f, Lo) = 0 and all ergodic components fi’ of fi; satisfy X(f, ') > 0. O

Henceforth, we assume that
h = klim h(fr,vk) > 0, and h(fx,vr) > 0 for all k.
—00

In particular, each measure vy is hyperbolic, i.e. has one positive and one negative Lya-
punov exponent. Note that it is enough to prove the theorem for any convenient further
subsequence.

7.2. The decomposition of the limiting measure. Theorem D is stated in terms of the
properties of a special decomposition p = (1 — 8)uop + Su1 of the g = lim vg. In this section
we construct 3, po and pig.

The idea is to apply Proposition 6.2 to a suitable sequence of measures. By Ruelle’s
inequality and the reduction to the case h(f, Vk) > 0, v must be fi-hyperbolic of saddle
type. Let U;F denote the unstable lift of v, to M and let fk, f be the lifts of f, f to M.

Define gak,ga .M >R by
pr(x, E) :=log | Dfi| sl ,¢(x, E) := log | Df| sl

We apply Proposition 6.2 to M , f;w Pk, ﬁ]j. (The proposition is applicable, because by

eq. (47), ]?k — ]?in Diﬁl(ﬂ) and ¢ — ¢ uniformly on ]\//.7, and because by Lemma 3.3 and
Ruelle’s inequality, [ ¢rdDy = A (f,vi) > h(fr,vi) > 0.)

Proposition 6.2 gives us a subsequence {k;} and two finite positive measures myg, i, with
the following properties.

(i) Mo f1 =
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(i) 7" w—*> Mo + My =: fi. The limit fi is f-invariant and lifts p.
* i—o00
(iii) Suppose Vp, V7 are weak-x open sets of measures such that V; > m;, then there are
a.(Vo, V1) € (0,1) and L, (Vp, V1) > 1 as follows. If 0 < o < e and L > L, then for
all k; > k.(Vo,V1,a, L), for U, —a.e. T € M,
— the Ny (T, fr,;, Yk, )—empirical measures of Z belong to Vj,
— the N\ Ny (T, fx,, Pk, )—empirical measures of Z belong to V.
(iv) [ dmg = 0.
(v) For mj—a.e. point Z, lim, o %Z?;Ol o(f7 (7)) > 0.
(vi) h(fr,,vk;) — h >0 and h(fy,,v,) > 0 for all i.
71— 00
(ViD) A (fri vi) —— [ pdpi.
Parts (i)—(v) are in Proposition 6.2; Part (vi) is the reduction in §7.1; and Part (vii) is
because A" ([, vk;) = [ gokidﬁ,ji (by Lemma 3.3), ¢r, — ¢ uniformly, and ﬁkt — [ weak-x
To keep the notation as simple as possible we will henceforth assume without loss of
generality that {v,} = {v, }.
Let
ﬁ =1 ?’/7\7,0(M) = ’f)’\ll(M)
~ I . . e R
i = Tmh or any invariant probability measure if m;(M) = 0.
m;
1; = the projections of [i; to the corresponding f-invariant measures on M.
Notice that i = (1 — 8)po + Bpir, p = (1 — B)po + Bpa, and 0 < § < 1.
Claim 7.1. If 8 < 1, then fip(¢) = Mmo(p)/(1 — 8) = 0.
Proof. This is property (iv). O
Claim 7.2. g # 0. Consequently, ﬁzl(]\/j) # 0, and py is a probability measure.

Proof. Assume by contradiction that 8 = 0. Then i = mg, and

0= [ din = [ i by v)
= klim AT (fr,vr), by (vii) and the assumption that {k;} = {k}
hde el

> klim h(fr,vk) >0, by Ruelle’s inequality and (vi).
—o0

This contradiction shows that S # 0. (]
Claim 7.3. pi-a.e. x has one positive and one non-positive Lyapunov exponent.

Proof. By (v), the definition of ¢, and Fubini’s Theorem, for p;—a.e. x € M, there exists a
one-dimensional subspace F C T, M such that
1 1=
lim —1 Mgl = lim — J .
S 5 g I1DF el = g 5 3 (0o P B) >0
J=
It follows that pi—a.e. x has at least one positive Lyapunov exponent.
Assume by contradiction that the claim is false, then there is an f-invariant set € of
positive pj-measure such that every x € Q has two (possibly equal) positive Lyapunov
exponents. Recall the following well-known fact:
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Fact: If dim(M) = 2, then uy-almost every x with two positive Lyapunov exponents has an
open neighborhood U, such that lim 2 log D"l <0 for all y € U,.
n—+oo

Proof. Pesin’s local stable manifold theorem [38, Thm 2.2.1] implies that u-almost every
point x admits a neighborhood U, and constants C' > 0 and « € (0,1) such that for any
ye U, and n >0,
a(f~"(z), f"(y)) < Ck".

Since the orbit of x is recurrent, this implies that the forward orbit of x converges towards
a periodic orbit O and in fact must coincide with that periodic orbit, again by recurrence.
As a consequence, x is a hyperbolic sink so |Df || < 3 for some N > 1 such that
N(x) = . O

This fact enables us to build an open set U such that

1
p1(U) >0 ,u1(0U) = pp(0U) =0, ET ElogHny_"H <0 forall y € U.

By (ii), vk kw—> (1 — Bpo + Bu1, and B # 0 by claim 7.2. So vx(U) > 0 for all k large
— 00

enough. But this is a contradiction, because the v} have one negative Lyapunov exponent,

so that lim Xlog|Df; ™| > 0 vg-almost everywhere. O
n—+oo ™ Y

Claim 7.4. [iy is the unstable lift i of p1.

Proof. By Claim 7.3 and the Oseledets theorem, for pi-a.e. x, T, M = E*(z)® E°(x), where
Df.E*(z) = E*(f(z)), (+ = u,c). By Corollary 3.4, u; has a unique lift i to graph(E"),
and all other lifts charge some part of graph(FE¢). Since lim(1/n) Z?:_ol o(fi(Z)) < 0 on
graph(E°), property (v) forces fi; = jif” a.e. O

7.3. Proof of Theorem D part (1). We compare the exponents of v; and p.
BAT(f, 1) = B/@dﬁf by Lemma 3.3

=4 / pdpy = /(pdﬁzl by claim 7.4 and definition of 7,

= /gpdﬁu —I—/godﬁzo = /(pdﬁ by (iv) and definition of i
= lerr;O AT (fr,vx) by (vii) and the convention {vg,} = {vx}.
Thus limy_yeo AT (fx, V&) = BAT(f, 1), as required.
7.4. Proof of Theorem D part (2). We now come to the heart of the proof of Theorem D.

Step 1 (The decomposition p1 =" acp1,c.). We decompose pq into invariant measures
1,c all of whose ergodic components have nearly the same entropy.

Let T := Y(r) be as in Yomdin’s Theorem 4.13, and let vo(r, f,7) > 0 be as in Proposi-
tion 5.3. We fix n,v > 0 arbitrarily small, and ¢ € N arbitrarily large as follows. First we
choose n > 0; then we take an integer ¢ such that

> h(f, m); (48)
and then we then fix 0 < v < min(vo(r, f,7),1/20) such that for each k > 1,
T ~
107 (tog(21) + " 08 Dy ) < 1. (49)
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(0 +10)y <1, and h(f, u)ly <n. (50)
14 o
By (48), we can decompose p3 = Zacul,c , ac € (0,1] , Zac =1 where ¢/ < /£ and
H1,c are f-invariant probability measucre; such that: =
— For ¢ # ¢/, the measures p1q . and i are mutually singular;
— For each c there is a number h. such that all the ergodic components of p; . have
entropy in [he, he +1);
= h(f; 1) =n < 3. ache < h(f, p).
Since pi1,c < p1, Claim 7.3 implies that p; .-a.e. x has one positive and one non-negative
Lyapunov exponent. By Corollary 3.4, 111 . has an unstable lift ﬁfc carried by graph(E™).
By Claim 7.4, this gives ’

el
H1 = Hy = § Gefly -
c=1

Step 2 (The neutral segment parameters ﬁo,ﬁo).

— Let Ny(r, f,n) and No(r, f,7n,7v) be as in Propositions 5.1 and 5.3.

— Fix N larger than Ny(r, f,n) and No(r, f,n,7).

— Let @ :=supy>q Qr n(fr) + 1, with Q. n(-) defined as in (20). This supremum is finite
because, for any n =1,..., N, any k > 1,

kllcr—1 < Lllcr - kj sup ~ kllCT * l; sup
/5] < A(If#ler - IDF  sup)® < Bl filler - 1D fi Hloup)”

for some A = A(r) by Lemma 3.8, and B = B(r,n) by the formulas for the differential

of a composition. Since f, 5 f, the factors ||fx||cr, k > 1, are bounded. Since fj, — f
in Diff' (M), | Df; ! |lsup converges to ||Df~"||sup and is therefore bounded too.
— Let ey := ey (r,Q) be as in Yomdin’s Theorem 4.13. We also set § := ey

With these choices of 7,+,d, N, we apply Proposition 5.3 to jip and obtain:

— some numbers 0 < g, < 6,
— an integer ny,
— a C? neighborhood Uy of f in Diff" (M),
~ and an open set Uy satisfying ﬁo(ﬁo) >1—+~2 and /70(8(70) =0,
such that property (**) holds.
By further reducing (70, we can also ensure that

1i(0U,) = 0. (51)

Step 3 (Expanding segment parameters U‘LC, n1.). Having fixed N, e, € as above, Pro-
position 5.1 now associates to each fi1 ., with 1 < ¢ < ¢, an integer 711 . := 71 (f, i1,¢, 1, 7, N, €, €).
We then introduce the integers

ny:=max({n1.: 1 <c<l}U{l/v}),
Nie:=ny+c.
We construct open sets (71,0 and an integer kg with the following properties:
(a) fir,e(Urc) > 1 —~2 and 7i(8U; ) = 0.
(b) For all fy with k > ko, for any regular curve o with C” size at most (g,€), there exists

a family of reparametrizations R of o over 8*1((71&) such that
(bl) Ris (C", fx, N, e, €)—admissible up to time ny . :=nj + ¢,
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(b2) ke log|R| < he + A .
(¢) For all fi with k > ko, for any different 1 < ¢,¢’ < ¢, and for any 0 < j < nq,

fg(closure(ﬁl,c)) N closure(ﬁl,c/) =g.
(d) If ¢ # ¢, then fiy o (U1 o) < 7%

Construction. For each ¢, we apply Proposition 5.1 to f, p;. and to the parameters
n,7,¢,&, N and n = nq .. This gives an open set [7176 s.t.
(a") fir.o(Ure) > 1 —~2 and Jiy o(8U; ) = 0.
(b’) For all g sufficiently close to f in C*-topology such that @, n(g) < @ and for any regular
C" curve o with C" size at most (g,€), there exists a family of reparametrizations R of
o over 8*1((71@) satisfying (b1) and (b2).
Choose k{ so that (b’) holds for all g = fi with k > k{, for all 1 < ¢ < L.
By assumption, the measures fi; . (for 1 < ¢ < ¢') are mutually singular and there
exist pairwise disjoint f-invariant measurable sets X. such that i1 .(X) equals one when

¢ = ¢, and zero otherwise. Using (a’), one constructs compact sets K1 . C X. N Uy . such
that fi1,.(K1,.) > 1 —~?% Necessarily f/(K1.) N K1« C X.N Xy = @ for all different
1<e¢,d < andevery 0 < j <mnq.. So

min{dist(f(ch) )il <ed <l cetd, j=1,. 1,C}>O.

This inequality remains true if one replaces fby ﬁﬂ with k large enough and the compact
sets K . by small enough neighborhoods U7 .. We may choose those neighborhoods so that
ﬁ(BU{C) = 0. Replacing each Tj’l,c by its intersection with U{’C, we obtain sets satisfying
both the conclusion (*) of Proposition 5.1 and:

ﬁz(ﬁ{/,)mUlc’_ (1§C7éc/§£lv vogjgnl,c)

for k large enough. We replace the sets (71,0 by these new ﬁ{’c Moreover (a’) and (b’) are
preserved.

Notice that if ¢ # ¢/, then 17170/ N (7170 =, so ﬁl,c(ﬁl,c’) < ﬁl,c(M\\ IA(LC) < 2. Then,
all the properties (a)-(d) hold.

Step 4 (weak-* neighborhoods of 7y and m;). We construct weak-* open neighbor-
hoods Vp, Vi of the measures myg, 1 s.t.

_ 71(0o) — o (0
me%:pmo> (To)] <2,

AT — mo(WD)] < 77,
~ |m(U; ) — m1(U1 I <v? 1<t (52)
me”:{m<> ()] < 72,

Such neighborhoods exist since fr\zi(aUl,C) = 0 and mi(aﬁo) = 0 from the property (a) in
step 3 and (51).

Step 5 (Neutral block parameters «, L, k.). Recall the integer ko obtained in step 3.
Using property (iii) in §7.2, one finds « € (0,7/10), L > 1 satisfying

L>2y7!

and k., = k.(a, L) > ko such that for £ > k, and ﬁ;:—a.e. T e ]\//.7,

max{7, n1,1,...,N1e}, (53)
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— the Ny, (7, fk, k)-empirical measures are in a compact subset of 170;
— the N\ My, (T, fx, pr)-empirical measures are in a compact subset of V;.

These compact sets will give the extra margin necessary to deal with boundary terms (see
the proof of Lemma 7.5 below).

Step 6 (Decomposition of orbits into orbit segments). Recall that the orbit segment

of f, with length t and initial point % is the string (7, fk(ﬁc\), ce /z_l(f)) It is associated
with the measure
=
~t _
Hfo =7 Zoéﬂ(f)
=

An orbit segment will be called neutral if (0,1,...,t — 1) is an («, L)-neutral block of
(Z, fr,¢r) as defined in Section 6, i.e. if t > L and if ¥ = (z, E) satisfies:

IDfi el < e*™ forall 0 <m <t (54)

Using the open sets [A]O, 6176 and the integers n; . defined at steps 2 and 3, we introduce
¢ + 2 classes of orbit segments (Z, fr(Z),..., f,z—l(ff)):

(a) Segments with color 1 < ¢ < ¢': orbit segments such that T € (/J\'Lc and t = nq ..

(b) Blank segments: neutral orbit segments such that ﬁj?ka(ﬁo) >1—7.

(c¢) Fillers: orbit segments with length ¢ = 1.

The class of an orbit segment as above can be recognized from its length ¢: If t =1, it is a
filler, if ¢ € [ny + 1,nq + ¢'], it is colored with color ¢t — nq, and if ¢ is larger than L, then it
is blank, see (53). So these ¢ + 2 classes are disjoint.

Lemma 7.5. For all k > k. and for ﬁ,j-a.e. Z, there exists ni(Z) € N such that all the

orbit segments (Z, ﬁ(f), e A,?_l(ff)) with n > n(Z) can be decomposed into:

(a) colored segments of total length at most Ba.n + yn, for each color c,

(b) blank segments of total length at least (1 — 5)n — 4vyn,
(c) fillers of total length at most 6yn.

Proof. By the reduction in section 7.1, the ergodic measures v have positive entropy, and
therefore the 7, measure of fk—periodic points is zero. Thus it is sufficient to consider non-
periodic Z only. Orbit segments of non-periodic points can be identified with the non-ordered
sets of points they contain without any loss of information, because there is only one way
to order them to get an orbit segment. We will therefore feel free to abuse terminology and
treat orbit segments as sets, subject to the usual set-theoretic operations.

Given an orbit segment ¥ := (7, ..., fn_l(f)), we are going to build a decomposition

(Fo@),..., LY@ fort @), f (@) (55)

U G

where t) =0 < ¢; < --- < t,, =n and each segment ¥, := (ﬁii_l(’x\), cee f;‘;_l(f)) is either
a colored segment, a blank segment, or a filler.

We call the sequence (%, ...,ty) the type of the decomposition since it determines not
only how the orbit segment is divided but to which class each segment belong.

By analogy with Section 6, a neutral sub-segment of ¥ is called maximal, if it does not
lie in a strictly longer neutral sub-segment of . Let Syeut(9) denote the collection of all
maximal neutral sub-segments of ¢. It is not difficult to see that every neutral sub-segment
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of ¥ is contained in some element of S,¢:(¢), and that the segments in S,¢.t (V) are pairwise

disjoint.

DEcoMPOSITION. We define t; inductively beginning with ¢y := 0. Assuming that 0 <

t;_1 < n has been defined, we consider the following three possibilities:

— Case (a). There exists 1 < ¢ < ¢ such that Fli- 1(2) e Uy ¢, the orbit segment (f HZ), ...,
]/"Z‘ 1, °_1( )) does not intersect any segment in Speut(9), and t;—1 +ny . < n. The
color ¢ is uniquely defined because the Ul,c are disjoint. We set t; := t;_1 + n1,. The
resulting orbit segment ¥; := (ﬁci’l(i), cee ﬁcfl(f)) with length n; . is a segment with
color c.

~ Case (b). There exists T such that ¢; :== (f' ' (@),..., /i7" (&) € Spewt(V), and
[9; N Up|l > (1 —7)|¥;]. The integer T is unique by maximality and, by the definition
of Spewt (), it satisfies T > L and t,_1 + T < n. We set t; :== t;—1 +T. Then 0; =
(/ZL @), ..., fk ~1(@)), and ¥; is a blank segment with length 7.

~ Case (c). There are no such T or ¢. In this case we set t; :== t;_1+1, and 9; := (fz"”l (@)).
This is a filler.

These cases are mutually exclusive and at least one of them must happen (case (b) implies
that ¥; € Spewut(?), excluding case (a), and case (c) happens iff case (a) and case (b)
both fail), and in all cases, t; < n since t;—1 < n. Thus we have defined t;1; € (¢;,n]
unambiguously.

The inductive process stops with t,, = n. The result is a decomposition of ¢ as in eq. (55)
into blank segments, colored segments, and fillers.

SIZE ESTIMATES. We now fix a Ug-typical Z, a large n, set ¢ := (Z,.. .,f"’l(f)), and

estimate the total size of the fillers, blank segments, and the segments of given color in .
“Typical” means that our estimates apply to a set of full x-measure, and the “largeness”
of n is allowed to depend on Z.

Let Neut be the union of all neutral sub-segments of 1 and Neut® its complement:

Neut := USneut(ﬁ), Neut® := ¢ \ Neut.
Clearly Neut C 91, (7, fk? ©k) N [0,n), but the sets could be different, because the neutral
segments in N, (T, fk, ©x) which contains 0 or n may have a non-(c, L)-neutral intersection
with [0,n). However, it is not difficult to see that 2| NeutA (Mg, (2, fr, wx)N[0,n))| —— 0.
n—oo
Therefore, for Vg-a.e. T there exists ny(Z) such that for all n > nk(Z) and k > k. (cf. step

5)
25336‘70, ma::% Z 5@6‘71.

yeNeut yeNeut®

Recall that m; = 3", acfi1,c with > a. =1 and 0 < 3 < 1. Since mj € 171, eq. (52)
and items (a) and (c) of Step 3 imply:

iy (M| Oe) = i) Z (Urer) < n (M) +4% =3 (7 (Tr,00) =)

<B (1 =Y ag(l- ﬂ) +(1+)

< (£ + 2)¥%, because the number of colors ¢ is at most /. (56)
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Let C. denote the union of all colored segments with color c¢; let B denote the union of
all blank segments; and let F denote the union of all fillers.

(a) Colored segments. By construction, if ¢ # ¢/, then U;ia f,g(ﬁlc) n (71,6/ = @. So if ¥,

has color ¢, then ¥; C Neut®\ Uc,#ﬁl)d, and

Cel < [Neut™\ |, O <INewt*\ | U + INewt* 0 U]

<n -y (MN\|JUrer) +n-if (Ure) < n(l+2)9% + i (Ur,c) + 97,
by egs. (52) and (56). By step 3 (d), 71 (U1..) < B(a. +~2). Substituting this in the above
and using (50) give
|Ce| < nBac+n(l +4)y* < npac +ny.

(b) Blank segments. By definition, every blank segment is neutral, so B C Neut, and
|B| = |[Neut| — |[Neut \ B|. By (52) and the definition of my,

[Neut| = n - ity (M) > n(ing(M) —7%) = n(1 - § = 1%).

The set Neut \ B is the union of the maximal neutral orbit segments which visit Uy with
frequency less than 1 —~. Thus v - |[Neut \ B| < mg(M \ Up)n. By (52) and the bound
fio(Ug) > 1 —~2 in step 2,

g (M \ To) < g (M) = iiio(To) +27* < (1= ) = (1= B)(1 = %) + 29* =1°(3— ),
so [Neut \ B| < 7_17716(1\7\ Uo)n < (3 — B)n. It follows that |B| > (1 — 8)n — 4yn.

A~

(c) Fillers. By construction, a filler is a segment of length one (7) such that one of the
following holds:

(i) ¥ does not belong to a colored segment or to a segment in Syeyt(V);
(ii) ¥ belongs to a segment in Syeu: (), but this segment is not a blank segment;
(iii) ¥ belongs to a segment of length n . which begins at (71,6, but it fails to be a colored
segment because it extends beyond the right endpoint of ¥;
(iv) ¥ belongs to a segment of length n . which begins at ﬁLc, but it fails to be a colored
segment because it intersects an element of S,eq: ().

The fillers of type (i) belong to Neut®\J, ﬁLC, so their cardinality is bounded by eq. (56):
INeut® \ U, Usc| = n - #f (M\ U, T1.e) < (24 £)y*n < n

The fillers of type (ii) belong to Neut\B. As we saw above this means that their cardinality
is less than (3 — 8)n < 3vyn.

The number of fillers of type (iii) is clearly bounded by the maximum length of a colored
segment max.ni . = n1 + ¢ < ny + £. This can be assumed to be less than yn when n is
large enough.

It remains to control the fillers of type (iv). Fix ¢¥g € Spewt(¥), and suppose § belongs to
a colored segment which intersects 9. All colored segments have lengths at most n; + ¢,
therefore 7 must belong to one of two segments of length n; + ¢ adjacent to the endpoints of
¥9. This gives the following bound for the number of fillers of type (iv): 2(n1+£')-|Sneut(P)].
Recalling that Syeu:(9¥) consists of disjoint sub-segments of ¥, each with length at least L,
we find that

|Sneut('l9)| S

1S

Thus by (53), the number of fillers of type (iv) is at most 2(%%’)” < yn.
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It follows that the total length of the fillers is |F| < 6yn. O

Step 7 (A bound on the number of decomposition types). In the previous step
we decomposed orbit segments of typical points with length n large enough into colored
segments, blank segments and fillers.

Let 6 = (to,t1,-..,tm) be the type of the decomposition, see (55) and the discussion
which follows it. Here we bound the number of possible types. As always, let H(t) :=
tlog + + (1 —t)log 1+ for 0 <t < 1.

Claim 7.6. There exists ng := ng(y) such that the number of types of decompositions

of all fkforbit segments as in Lemma 7.5 with length n > ng and k arbitrary is at most
exp[nH (107)].

Proof. A decomposition of an orbit segment with length n has

— at most yn blank segments (because these have lengths > L > 1/7),
— at most yn colored segments (because these have lengths > n; +1 > 1/7),
— and at most 6yn fillers (by Lemma 7.5).

This gives a total of at most |8yn] segments.

So every type 6 = (to,...,tm) has length m < |8yn| + 1. Since ty = 0, t,, = n, there can
be at most Z}:ZIJ (mil) different types. Since 8y < 1/2, the sum is bounded by 8777’([8'7;71])'
By De Moivre’s approximation, this is less than exp[nH (8y) + o(n)] as n — oco.

The claim follows, because 10y < 1/2 so H(8y) < H(107). O

Step 8 (Conditional measures and choice of Ny, Fi). The measures vy are assumed
to be fi-ergodic, and by the reductions in section 7.1 they have positive entropy. So by
Ruelle’s inequality, each vy is a hyperbolic measure.

As explained in Section 4.7, one can introduce a measurable partition subordinated to the
unstable lamination of v, and associate to it a system of conditionals probability measures
Vi -

We fix N, > 1 and a Borel set Fy, C M with vy (Fy) > % such that for every point x € Fj
and for the diffeomorphism f:

— x has a well-defined unstable manifold, an immersed C” curve W*(z) C M;

— V), is well-defined and z belongs to the support of the restriction of v, to Fj;

~ 7 := (2, E“(z)) satisfies Lemma 7.5 with ng(Z) < Ni. In particular for each n > N,
the orbit segment (E,fk@), e A,zkl(g?)) has a decomposition as in Lemma 7.5. Let
0 = 6(x,n) be the type of decomposition.

Step 9 (Construction of reparametrizations). Choose a point x € Fy, which satisfies
Corollary 4.16.

Let o: [0,1] — W"(z) be a regular C"-curve which parametrizes a neighborhood of z in
W*(z) in the intrinsic topology, and which has C” size at most (g,€). By the choice of F,
T := o~ !(F}) has positive measure for Vi o

Fix n > Ng, and let £, and N be as in step 2. Our aim is to construct a particular
family of reparametrizations R,, of o over T, which is (C", fi, N, ¢, €)—admissible up to time
n. In later steps, we will estimate the cardinality of R, and use Corollary 4.16 to obtain
the upper bound for A(fx, ) which completes the proof of the theorem.

We begin by fixing a type 0 := (to,t1,...,tn) with ¢,, = n, and constructing a family of
reparametrizations RY of o admissible up to time n over the set

Ty := o~ '{y € F}, with type 6}.
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Then we will take the union over all possible types and obtain the family R,, of reparametriza-
tions over T'.

RY is obtained inductively by defining families R?i of parametrizations of o over Ty,
which are (C", fx, N,e,&)-admissible up to time ¢;. The base of the induction is defined
by taking R := {Id}. This parametrization is admissible, because ¢ has C" size at most
(¢,€). After m steps, we will obtain the family RY = Ry, , which is an admissible family
of reparametrizations over Ty, up to time n.

INDUCTION STEP: We build RY , assuming RY _ was already constructed. We proceed by
concatenation (see Lemma 4.10). We will set

Ri_, ={op:veR]_,, ¢ €R(W,ti1)}

for well-chosen families R(1),t;—1) which parametrize of f,if"l oo o over P 1(Ty) in a
(C", fx, N,e,€)-admissible up to time ¢; — t;_1, and which we now construct.

Fixy € R?i,l and let o/ := f]z“l ooot and T" := ¢~ 1(Tp). By the induction hypothesis,
RY _ is admissible, therefore o’ has C" size at most (e, €).

By the definition of Ty, the orbit segments (7, fk@), ey }Zﬁti’l (y)) have the same type
for every y € o'(T"): If t; — ti_1 = ny. they are all colored segments with color ¢; if
t; —t;—1 > L they are all blank; and if ¢; — ¢;_1 = 1 they are all fillers. See step 6. Our

construction of R(t,t;—1) depends on the case:

Case (a): t; —t;—1 = n1 . In this case, (J?,?‘l(ﬂ), e fzfl@)) are colored segments with
the same color ¢ for all §¥ € 5(Tp). Thus ﬁi’l(’a\(Tg)) C Ui .. Applying Proposition 5.1 to
f1.¢,n1,c and o, we obtain a family R(1,t;_1) of reparametrizations ¢ over the set 7" which
is (C", fx, N, &,€)-admissible up to time ¢; — ¢;_1, and which satisfies the cardinality bound
z ) )
g [ROb )| <B(f )+ M < h+ 2
ra——— 0g [R(¢,tim1)l < A(f, pe) + =7 +1 + 2
(Recall that the entropy of every ergodic component of 1 . is in [k, he +1).)

Case (b): t; —t;—1 > L. In this case (ﬁj’l(g’/\), e J/‘Zfl(g/j)) are blank for all § € (Tp). By
the choice of , L in Step 5, these segments are 75-neutral, and their lengths are larger or
equal to mg. Consequently, the set T” is contained in the set controlled by Proposition 5.3,
when applied to the diffeomorphism g = f; and to the curve o’ (see eq. (21)). Hence, this
proposition gives us a family R(4,t;_1) of reparametrizations ¢ of ¢’ over the set 77 which
is (C", fx, N, e,€)-admissible up to time ¢; — ¢;_1, and which satisfies the cardinality bound
log [R(¥,ti—1)] < A -

tiftl'_l r—1

Case (c): t; —ti—1 = 1. As ¢’ has C" size at most (g, &),
7681, fi(G(T")) < 1D fillsup + 1 < 2D filsup-

Since ¢, € have been chosen smaller than ey, Corollary 4.14 of Yomdin’s Theorem applies and
provides a family R(t, t;) of reparametrizations ¢ over the set Ty which are (C”, f, N, ¢,&)—
admissible up to time t; — t;_1 = 1, and which satisfy the cardinality bound |R(v,t;—1)| <
TIDfillsts ™" * 2D fillaup, hence

T o~
T logR(¥,ti-1)] < log(2T) + 1og || D fi lsup-
i~ li—1 r—1
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This completes the inductive step.

Step 10 (Cardinality of R,,). The families of reparametrizations obtained in step 9 satisfy
‘R(l/f, tl)' < exp(/ﬁ(e)(tl - ti—l))a where

he + (r—1)71 )\(f) +2n ift; —t;1 =ni1., (casea),

ki(0) =< (r—1)7IN(f) + ift,—t;_1 > L, (caseb),
log(2Y) + -~ log IDfillsup if ti —tiog =1, (case c).

It follows that |R?| < exp (Z:’il ki (0)(t; — ti_l))

The total length of the blank segments is (trivially) less than n, and the total lengths of
the segments with color ¢ and fillers is respectively, less than Sa.n+~n and 6vn, by Lemma
7.5. Denoting the total length of colored segments with color ¢ (resp. blank segments, fillers)
by N, (resp. Ny, Ny), we find that

> ri)(ti —tio1) <Y heNe + % <ZNC + Nb> +27 ) Ne+ 1Ny

i=1

r ~
+ (1og) 4 - 08 DRl ) Ny

Using the trivial bounds ZC Nc+Ny =n—Ny <n, N, <n, and the bounds N, < Ba.n+vn,
Ny < 6yn from Lemma 7.5, we find that

i‘%i(g)(ti —ti1) < nth[ﬂac +9]+ n:\(ff) + 2nn

- 1
=1

L
+67m (1og(21) + 108 Dl )

Recall that we chose a., h¢, ¢ and v so that
= > ache < h(f, pn1) by the choice of the decomposition of pq in Step 1;
— 7> he < lymax{h.} < n by eq. (50);
— 6v(log(27) + £ sup) < 1 by eq. (49).

Hence, |RY| < exp (ﬁh(f,ul)n + )\(f)ln + 417n).
r—

Recalling that R,, := |J, R, (6) and the number of types is bounded for all n large enough
by exp[nH (10v)], we conclude that
()
Rl < exp( Bn(F. pan + 2L g - 1107,

Step 11 (Completion of the proof). By Corollary 4.16, for all k large enough

(i) < timsup Ltog Rl < g7 m) + L) 4 (an 4 H(109).

n— oo ].

Passing to the limits in the order k& — oo, v — 0, n — 0 gives the second part of Theorem D,
and completes its proof. O

8. SUPPLEMENTS

We prove here the additional properties mentioned in Section 1.4.
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8.1. Discontinuities: construction of the Example 1.2. Let us recall that two tran-
sitive hyperbolic sets K1, Ko are homoclinically related if a stable manifold of K; has a
transverse intersection point with an unstable manifold of K5 and a stable manifold of Ko
has a transverse intersection point with an unstable manifold of K;. In this case there exists
a transitive hyperbolic set that contains K7 and K.

If O is a periodic orbit, we will denote by uo the invariant probability measure supported
on O. We say that a sequence of periodic orbits (Oy) converges weak-+ to a measure pu, if
the sequence of measures (o, ) converges weak-* towards p.

We say that a C'°° diffeomorphism f belongs to the Newhouse domain if there exist
an attracting region U where |det Dfy| < 1, a transitive hyperbolic, locally maximal set
K C U (not reduced to a periodic orbit) and a C*° neighborhood U of fy such that for
any diffeomorphism f € U the hyperbolic continuation of K (still denoted by K) admits a
stable manifold and an unstable manifold with a non-transverse intersection. The Newhouse
domain is open by definition, and non-empty by [34].

We prove the following more precise version of Example 1.2:

Proposition 8.1. The Newhouse domain in Diff (M) contains a dense Gs subset of dif-
feomorphisms f with the following property. For any pair of numbers 0 < a < 8 < 1, there
is a sequence of ergodic measures (vy) converging weak-x to a measure p with h(f,u) > 0
and such that:

lim h(f,vi) = ah(f, 1) and Tm A (f,v) = BAT(f, ).

Remark 8.2. One can choose for y any invariant probability measure with positive entropy,
ergodic or not, and carried by the hyperbolic set K associated with the Newhouse domain

of f.

Lemma 8.3. There is a dense Gs subset of the Newhouse domain in Diff (M), made of
diffeomorphisms f with the following property. For any periodic orbit P contained in the
hyperbolic set K associated to f, there exists a sequence of hyperbolic periodic orbits Oy
homoclinically related to P which converge weak-x towards P and satisfy AT (Oy) — 0.

Proof. Let fo € U. By an application of Baire’s argument, it is enough to find f C* close
to fo with a periodic orbit O homoclinically related to P which is weak-x close to P and has
a top Lyapunov exponent close to 0. We sketch the proof which uses classical arguments on
the behavior near homoclinic tangencies, and we refer to [36] for further details. In order to
simplify the presentation, we assume that P is fixed and the eigenvalues 0 < A < 1 < p of
Df(P) are positive. By dissipation, A -y < 1.

Since the stable (resp. unstable) manifold of P is dense in the stable (resp. unstable)
lamination of K, and since fy belongs to the Newhouse domain, one can perturb fy in
such a way that P exhibits a quadratic homoclinic tangency z € W7 _(P). One can also
assume that the eigenvalues A, u are non-resonant, so that by Sternberg’s theorem, there
exists a smooth chart on a neighborhood U ~ [~1,1]? of P, where the dynamics is linear:
On [—1,1] x [-u~Y, u~Y, f coincides with the map L: (z,y) — (A~ 2, -y). The local
manifolds W _(P) and W _(P) coincide with {y = 0} and {z = 0}. Moreover z has a
preimage 2’ € W} _(P) by an iterate f and one denotes by 7 the map induced by f~ from
a neighborhood of 2z’ to z. The unstable manifold at z is locally a graph {(z, ¢(z))} and by
a suitable rescaling of the axis of U, one can require that D?p ~ 1 near z.

Let us fix § > 0 small. When n is large one considers a rectangle

R=z + [757 6] X [a’ - 5/17”,04 + 5/“’771]7
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where a is chosen such that 2’ = (0,a - u™). Note that C~! < a - u™ < C where C' depends
on the Sternberg linearization domain U, but not on n.

The rectangle R is mapped by f"*¥ to a thin curved rectangle 7 o L"(R) whose width
is of the order of A", hence much smaller than the width of R. One perturbs f near 2’ in
such a way that the transition map 7 is composed with a vertical translation. The tip of
the image can thus be adjusted to be at distance L - a from the rectangle R where L is a
large constant independent from n. Therefore f"*¥(R) crosses {y = 0} and also R with a
slope s close to L - a (since D?p ~ 1). See Figure 1.

X‘*”(R)
af]

R

g o/

FIGURE 1. Return map near an homoclinic tangency.

Moreover RN f"*V(R) contains a periodic point ¢ whose unstable direction is dilated
at the period by a factor of the order of sexp(—A*Tn) =~ L -a - u™, which is close to a large
constant (comparable to L). As the period n + N of ¢ can be chosen arbitrarily large, the
unstable Lyapunov exponent of ¢ is close to 0.

Note that the unstable manifold of ¢ crosses f™(R) along its largest dimension (see Fig-
ure 1), hence crosses W} (P). The local stable manifold of ¢ is a graph which crosses R
horizontally. The image f™ (W7 .(P)) if close to f™(R), crosses R, and then the local stable
manifold of Q. Hence P and the orbit of ¢ are homoclinically related. As the n first iterates
of ¢ belong to the linearization domain U, the orbit of ¢ spends an arbitrarily large propor-
tion of time in any neighborhood of P, as the period n + N goes to infinity, proving that
the invariant probability measure supported on the orbit of ¢ gets arbitrarily close to P in
the weak-* topology. O

We will also need the following fact:

Lemma 8.4. Let A be a locally mazimal, hyperbolic compact set carrying an invariant
probability measure m, not necessarily ergodic. Then there exist ergodic invariant probability
measures my, carried by A which converges to m in the weak-x topology and in entropy:

limg h(f,my) = h(f,m).

Sketch of proof. This is routine, even if we could not locate an exact reference. Observe
that it is enough to show this for a transitive subshift of finite type ¥. Given an invariant
probability measure on 3, approximate it by a Markov measure with finite memory N.
Taking N sufficiently large, we can make this approximation arbitrarily close, both weak-x*
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and in entropy. By a small modification of the transition probabilities we can make the
measure fully supported on ¥, and therefore ergodic. O

Proof of Proposition 8.1. For convenience, we fix some distance d on the space of Borel
probability measures of M, compatible with the weak-* topology. Let f be a diffeomorphism
with a locally maximal transitive hyperbolic set K as given by Lemma 8.3. Since K is not
reduced to a single periodic orbit, it carries invariant probability measures with positive
entropy. We choose any one of them. Lemma 8.3 yields a sequence (Of)r>1 of hyperbolic
periodic orbits homoclinically related to K such that d(uo,,p) < 1/k and [AT(Oy)| < 1/k.

Fix k > 1. Let P be a periodic orbit in K so close to u that d(up,p) < 1/k and
IANT(f,up) — AT (f, )| < 1/k (by continuity of the unstable bundle over K).

Let A be a transitive, hyperbolic, locally maximal invariant set containing K UQy. Define
m=ap+ (f—a)up + (1 — B)uo, on A. Now Lemma 8.4 yields vy such that:

= |h(fsvk) = ah(f, )| = [h(f,ve) = h(f,m)| < 1/k;

— d(vg, p) < d(vg,m) +1/k < 2/k;

— NF(Fo) — BN )] < X ) = AF(Fm)| 4+ 1/k < 2/k.

The sequence (vk)i>1 is as claimed. O

8.2. Variant inequality on Lyapunov exponents: proof of Corollary 1.3. By the
Oseledets theorem, AT (f, n) + A~ (f, ) = [log|det D f|dy, which is continuous with respect
to (f,p) in the C* xweak-* topology. Since the sum is continuous, the discontinuities in the
summands must cancel out, whence

AL = Jim X () == (A () = fim X ()). (57)

Now, Theorem A is equivalent to the statement

. limg, h(fx, Vi)
+ -1 + < AT 11— —— =),
AL = Jim X () <47 (1 2l (59)
Applying this to f, ! and noting (57) and A~ (f, 1) = —AT(f~1, 1), we obtain (4). Since
0 < —=A"(f, ) < AT(f, ), this is stronger than the conclusion of Theorem A. O

8.3. Sequences of non-ergodic measures. We state and prove a version of Theorem D
removing its assumption that the converging measures v, are ergodic.

Corollary 8.5. Fiz a real number r > 2. For every k > 1, let fi, € Diff (M), vy be an fi-
invariant measure, not necessarily ergodic, and Uy be a lift satisfying M fi, V) = AT (fr, vk)-
Let us assume that:

(1) Yimyu AT (fx, vi) and limy h(fx,vi) exist and liminfy [ min(A\*(fx, z),0)dvg(z) = 0,

(2) fu =5 f for some f € Diff"(M),

(3) vy N 1 for some f—invam’ant probability measure i (perhaps non-ergodic) on M.
Then there exist 8 € [0,1], two f-invariant measures po, pi1 with f-invariant lifts 19, 111 S.t.

(a) 1i=(1—B)Ho + Bhn;

(b) limg—so0 AT (fie, vi) = BAT(f, p11);

(¢) limiroo hfi ) = 72 < 8 (A(fop) + 22

(d) if B <1, N(f,fio) = 0;

(e) if >0, then X(f, 1) = AT(f, 11) and AT(f,z) > 0 for yi-a.e. x.
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Note that if fi € Diff (M) and fr — f in C°, then the corollary applies for all r > 2,
and Property (c) becomes limg_, o0 h(fi, Vi) < Bh(f, p1)-

Note also that the conclusions (a)-(e) are the same as in Theorem D, except for the extra
term A(f)/r on the right hand side. See the following remark on this term.

Remark 8.6. Our proof relies on discretizing the ergodic decompositions of the measures vy
and applying Theorem D to the atoms thus defined and taking a limit. This limiting process
is responsible for the term A(f)/r in the entropy estimate in Property (c).

Using the decomposition in the projective bundle is the key to avoid any such loss in the
Lyapunov estimate eq. (b) and is therefore essential for our proof of this generalization.

Proof. Let P(M) denote the set of Borel probability measures on M, and let d be the L!-
Wasserstein distance over P(M). This distance is compatible with the weak-* topology and
satisfies d(Zf\Ll o i, vazl ;) < Zf\il a;d(p;, v;) for all convex combinations.

We fix some ¢ > 0 and discretize the ergodic decompositions

Vk:/Xl/k’gde(f).

By compactness of P(M), there are measurable partitions X = X kU -UXE ne with number
of elements N¢ independent of k, and with the following property for every 1 < < N=:
There is an fg-ergodic measure Vi, with projection vj ; satisfying )\(fk, Vi) = N (frs vk )
and, for Py-a.e. £ € X, /

d(Vke, Vi) <& [h(fisvie) — h(fr, Vi) < e, and (59)

>\+(fk7 l/kaf) - % < )\+(fk7 Vli,i) < )\+(fk7 Vk?:f) +e. (60)
Passing to a subsequence, we may assume without loss of generality the existence of the
following limits:

s = lilgnﬁ,i’i, liinh(fk,l/;ii), lilgn)\'*(fkﬂ/,i’i), af = lilgnPk(XZ’i).
For each i = 1,..., N, we set u$ := 7. (115). By inequalities (60) and by our assumption
liminfy, [ min(A*(fk, z),0)dvg(z) = 0, it follows that either af = 0 or limy, A (fy, v} ;) > 0.

One can thus apply Theorem D to the sequence (f, U} ;)k>1 converging to (f, i7) and obtain
a decomposition

pi = (L= Bi)io,; + Bi 1t

for some 0 < 87 < 1 and g ;, 145 ; f-invariant measures such that

. . e o AME . . . . ce
h}gn h(fk»l/k,i) < Bin(f, M1,i) + r (_f)l and hin )‘+(fk,l/k,i) = B; )‘Jr(fa M1,i) =5 Nl,i(%ﬁ)'

We collect all the pieces, setting:

NE
l/)li:_zakzykzv/\ Zaaﬁf, EZZZO‘? 756’ Ns'_zaﬂszfors_01
i=1
We denote by v, u°, uS the projections by 7. We have that:
= (1= pB%)uo + B3
By eq. (59),

d(vp,ve) <&, [h(fi,vi) — M(feovw)| <&, AT (feovg) = AT (fr,ve)| <e.
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Using that the entropy and average exponents are affine functions, we get

lm A i ) < limind B(fi, 1) + € < GR(F, i) + ) 4 (61)

and

li]£nA+(fk,Vk) — lilgn)\+(fk,l/,§) <eso

li£nA+(fk7Vk) - 6€>‘+(f7 /fi) <e. (62)

To conclude, we pick a sequence of numbers (£;),>1 decreasing to zero along which the three
sequences %, f§ and {5 converge to measures fi, fo and ;. Since d(p, p) < &, we must
have 7,1 = p. We define pg := 7. (fis) for s = 0,1. Property (a) follows by continuity.

By Yomdin theory (see the discussion after eq. (5)),

lim h(f, 1) < h(f, pa) + M)/,

yielding Property (c). The decomposition converges in the projective bundle, hence, recalling
that ¢(z, F) :=log || D, f|g| is a continuous function,

lim M(fpy’) = lim 1y’ (o) = AT (f, ).

Property (b) follows. For each 7, one has g ;(¢) = 0 once 37 # 0; this implies Property (d).

We now turn to Property (e). We have 55:(?, p1) = X(f, 1) = limg_, o0 X(fk,ﬁk) and by
Property (b): limg_o0 X(fk,ﬁk) = limg_ 00 AT (fr, k) = BAT(f,11). This gives the first
part, assuming 3 > 0.

Note that AT (f,x) > 0 for p-a.e. x since otherwise the ergodic decomposition of y would
contain a source as an atom and therefore v, would contain the same atom with uniform
weight for large k, in contradiction to our assumption lim infy, [ min(A*(fx, z), 0)dvg(x) = 0.
Let -

Z:={zeM: Xt (f,7(@)) =0}
We assume 0 < i1 (Z) < 1 since it is otherwise easy to conclude. We set:

~

I _ (7 BN — (1 _ B\ /71(02) 1L -\ 2)
6 *6(1 :ul(Z))v (1 B):LLO (1 5);“’0+ﬂ ﬁl(é) aﬂ;ufl' 61—,&1(2)

obtaining a new decomposition @ = (1 — 8')fi(, + 8'f1}. Note that, setting p} := 7. ji],
/B/h(fv /’Lll) = /Bh(f7 .U’l) and /6,A+(f7 :u’ll) = /6)\+(f7 /'Ll)

since the probability measure “l(l &?) has both zero entropy and zero top Lyapunov expo-
nent. This concludes the proof of the Corollary 8.5. (]
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