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Abstract. We study the entropy and Lyapunov exponents of invariant measures µ for

smooth surface diffeomorphisms f , as functions of (f, µ). The main result is an inequality
relating the discontinuities of these functions. One consequence is that for a C∞ surface

diffeomorphisms, on any set of ergodic measures with entropy bounded away from zero,

continuity of the entropy implies continuity of the exponents. Another consequence is
the upper semi-continuity of the Hausdorff dimension on the set of ergodic invariant

measures with entropy bounded away from zero. We also obtain a new criterion for the

existence of SRB measures with positive entropy.

Introduction

Entropy and Lyapunov exponents play a major role in the study of differentiable dynam-
ical systems, and their dependence on the measure and the map is of great interest. This
dependence is sometimes continuous, but not always (for entropy, see [33, 35, 12, 9, 17, 10],
and for Lyapunov exponents, see [44, 20, 6, 7, 1, 47]). While there are many works relat-
ing the values of the entropy to the values of the Lyapunov exponents [43, 39, 31, 27], the
relation between the (dis)continuity of these objects as functions of the measure and the
diffeomorphism has not yet been studied. The purpose of this work is to fill this gap, in the
smooth two-dimensional case. For instance, we show:

Theorem. Let f be a C∞ diffeomorphism of a compact surface without boundary. Let
ν1, ν2, . . . be ergodic measures for f , which converge in the weak-∗ topology to an ergodic
measure µ with positive entropy.

If the entropy of νk converges to the entropy of µ, then the Lyapunov exponents of νk
converge to the Lyapunov exponents of µ.

This has strong dynamical consequences, some of which we will discuss here, and some of
which we will discuss in a companion paper. For example, we have the following application
to the problem of the existence of SRB measures. Let δu(µ) denote the unstable dimension
of µ in the sense of Ledrappier and Young (see Section 1.5).

Corollary. Let f be a C∞ diffeomorphism of a compact surface without boundary. If there
exist ergodic invariant probability measures νk, with entropy uniformly bounded away from
0, and such that δu(νk)→ 1, then f admits an ergodic SRB measure with positive entropy.
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For other consequences, including the upper semi-continuity of the unstable dimension and
of the Hausdorff dimension of ergodic measures with positive entropy, see Section 1.5.

These results follow from inequalities between the multiplicative size of the defects in
continuity of the entropy and the top Lyapunov exponent. These inequalities, which are the
main results of this work, are described in detail in the next section.

1. Main results

Throughout this paper, M is a two-dimensional compact C∞ Riemannian manifold with-
out boundary. Let Diffr(M) denotes the class of Cr diffeomorphisms on M (see §3.1).

Suppose µ is an f -invariant probability measure for some f ∈ Diff1(M). The Kolmogorov-
Sinăı entropy of µ will be denoted by h(f, µ). Almost every x ∈ M has two well-defined
Lyapunov exponents λ−(f, x) ≤ λ+(f, x). The Lyapunov exponents of µ are defined by

λ−(f, µ) := λ−µ :=

∫
λ−(f, x)dµ , λ+(f, µ) := λ+

µ :=

∫
λ+(f, x)dµ.

We are interested in the regularity of (f, µ) 7→ h(f, µ) and (f, µ) 7→ λ±(f, µ).
In the C∞ case, these functions are semi-continuous. Specifically, suppose fk, f ∈

Diff∞(M), νk are ergodic fk-invariant measures, fk → f in C∞ and νk → µ weak-∗. Then

lim sup
k→∞

h(fk, νk) ≤ h(f, µ),

lim sup
k→∞

λ+(fk, νk) ≤ λ+(f, µ), lim inf
k→∞

λ−(fk, νk) ≥ λ−(f, µ).
(1)

(See Section 1.6 for the history of these results.)
By (1) and Ruelle’s inequality, if lim supk h(fk, νk) > 0, then λ+(f, µ) ≥ h(f, µ) ≥

lim supk h(fk, νk) > 0, and

lim sup
k→∞

λ+(fk, νk)

λ+(f, µ)
,

lim sup
k→∞

h(fk, νk)

h(f, µ)
∈ (0, 1].

We call these quantities the discontinuity ratios, and think of them as measures for the
difference between the two sides of the inequalities in (1).

We will provide inequalities relating the discontinuity ratio of the entropy to the discon-
tinuity ratio of λ+. (It is enough to consider λ+, because λ−(f, µ) = −λ+(f−1, µ).)

1.1. The ergodic C∞ case. Our results are simplest and strongest when the maps are C∞

and the limiting measure is ergodic:

Theorem A. For every k ≥ 1, let fk ∈ Diff∞(M) and let νk be an fk-ergodic invariant
measure. Suppose

– limk λ
+(fk, νk) and limk h(fk, νk) exist and are positive,

– fk converge in the C∞ topology to a diffeomorphism f ∈ Diff∞(M),
– νk converge weak-∗ to a probability measure µ (necessarily f -invariant).

If µ is f -ergodic, then lim
k→∞

h(fk, νk)

h(f, µ)
≤ lim
k→∞

λ+(fk, νk)

λ+(f, µ)
.

The following result is an immediate consequence of this and (1), and was the original
aim of our work:
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Corollary 1.1. For every k ≥ 1, let fk ∈ Diff∞(M) and let νk be an fk-ergodic invariant
measure. Suppose fk → f in the C∞ topology, and νk → µ weak-∗ where µ is an f -ergodic
invariant measure with positive entropy. If h(fk, νk)→ h(f, µ), then:

λ+(fk, νk)→ λ+(f, µ) and λ−(fk, νk)→ λ−(f, µ).

The result mentioned in the introduction is the special case f1 = f2 = · · · = f .

1.2. The ergodic Cr case. The following result extends Theorem A to the Cr case up
to an extra term similar to what happens in Yomdin’s theory. We define the asymptotic
dilation of a C1 map f : M →M to be

λ(f) := lim
n→+∞

1

n
log ‖Dfn‖sup, where ‖Df‖sup := sup

x∈M
sup

v∈TxM
v 6=0

‖Dfxv‖f(x)

‖v‖x
. (2)

Since M is compact, λ(f) is independent of the choice of a Riemannian metric ‖ · ‖x.

Theorem B. Fix r > 2. For every k ≥ 1, let fk ∈ Diffr(M) and let νk be an fk-ergodic
invariant measure. Suppose

– lim
k→∞

λ+(fk, νk) and lim
k→∞

h(fk, νk) exist and are positive,

– fk → f in the Cr-topology,
– νk converge weak-∗ to a probability measure µ.

If µ is f -ergodic and has positive entropy, then

lim
k→∞

h(fk, νk)

h(f, µ)
− 1

h(f, µ)

λ(f) + λ(f−1)

r − 1
≤

lim
k→∞

λ+(fk, νk)

λ+(f, µ)
.

By [10], the condition h(f, µ) > 0 holds once lim
k→∞

h(fk, νk) > min(λ(f),λ(f−1))
r .

As we will explain in Section 1.4, the smoothness index r above does not need to be an
integer.

1.3. The non-ergodic case. The assumption that the limiting measure is ergodic is often
difficult to check, and we now explain what can be said in its absence (a more general but
also more technical result, Theorem D, will be given in section 7).

Theorem C. Fix r > 2. For every k ≥ 1, let fk ∈ Diffr(M) and let νk be an fk-ergodic
invariant measure. Suppose

– lim
k→∞

λ+(fk, νk) and lim
k→∞

h(fk, νk) exist and are positive,

– fk → f in the Cr-topology,
– νk → µ weak-∗ for some f -invariant probability measure µ (perhaps non-ergodic).

If lim
k→∞

h(fk, νk) > λ(f)+λ(f−1)
r−1 then there exist β ∈ (0, 1], and two f -invariant probability

measures µ0, µ1 with h(f, µ1) > 0 such that µ = (1− β)µ0 + βµ1 and

lim
k→∞

h(fk, νk)

h(f, µ1)
− 1

h(f, µ1)

λ(f) + λ(f−1)

r − 1
≤ β =

lim
k→∞

λ+(fk, νk)

λ+(f, µ1)
. (3)

Moreover λ+(f, x) > 0 ≥ λ−(f, x) for µ1-a.e. x ∈M .

Note that for C∞ diffeomorphisms, the term (λ(f) + λ(f−1))/(r − 1) can be replaced by
zero, because the theorem can be applied with r arbitrarily large.

The decomposition µ = (1− β)µ0 + βµ1 depends on the sequences (fk)k≥1, (νk)k≥1, and
not just on their limits. We give a heuristic description of this decomposition in Section 2.2.
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1.4. Additional comments. We now supplement Theorems A, B and C by some examples,
comments, strengthenings, and generalizations. The proofs can be found in Section 8.

1.4.1. Examples of discontinuities. Theorem A is sharp in the following sense:

Example 1.2. For every 0 < α ≤ β ≤ 1, there exist a C∞ surface diffeomorphism f and
a sequence of ergodic and invariant measures νk converging weak-∗ to an ergodic invariant
probability measure µ such that limk h(f, νk) > 0, and

lim
k→∞

h(f, νk)/h(f, µ) = α , lim
k→∞

λ+(f, νk)/λ+(f, µ) = β.

1.4.2. Variant inequality. Theorem A does not use the symmetry between a diffeomorphism
and its inverse. When 0 < −λ−(f, µ) < λ+(f, µ), this symmetry yields a sharper bound:

Corollary 1.3. Under the assumptions of Theorem A,

λ+(f, µ)− lim
k
λ+(fk, νk) ≤ |λ−(f, µ)|

(
1− limk h(fk, νk)

h(f, µ)

)
. (4)

1.4.3. Sequences of non-ergodic measures. Our results can be extended to the case when
the invariant measures νk are not ergodic, but this requires stronger assumptions on the
Lyapunov exponents of νk, which in the non-ergodic case are functions and not constants.
See Corollary 8.5.

1.4.4. Lifted version. f induces a dynamical system f̂ on the projective tangent bundle M̂ ,
see Section 3.2. It turns out that µ = (1 − β)µ0 + βµ1 is a projection of a decomposition

of a limit point µ̂ := lim ν̂ki , where ν̂k are lifts of νk to f̂ -invariant measures on M̂ . The
decomposition of µ̂ contains more information than the decomposition of µ, and leads to a
stronger statement, Theorem D, in Section 7. This strengthening is essential to the proof of
Corollary 8.5 on the case when νk are not ergodic.

1.4.5. Convergence of Cr-diffeomorphisms. In finite differentiability, Theorem D allows a

weaker convergence assumption (denoted by fk
r−bd−→ f , see Section 3.1), and r does not have

to be an integer.

1.4.6. Entropy upper semi-continuity in the Cr case. It is well-known that for Cr-diffeo-
morphisms the entropy may fail to be upper semi-continuous, but the defect in upper semi-
continuity can be bounded (see the discussion in Section 1.6 below). This bound manifests

itself in Theorems B and C in the expression λ(f)+λ(f−1)
r−1 . But our proof gives a slightly

stronger bound λ(f̂)
r−1 , in terms of the dynamics of f̂ on the projective tangent bundle, see

§3.2, §3.5, and Theorem D.
In some special cases, even this stronger bound can be improved. For instance, if

λ+(fk, νk)→ λ+(f, µ), then

lim
k→∞

h(fk, νk) ≤ h(f, µ) +
min{λ(f), λ(f−1)}

r
, (5)

which is stronger than the assertion of Theorem B. When f1 = f2 = · · · = f , (5) is a
refinement of a classical inequality of Yomdin and Newhouse; it follows from bounds on the
tail entropy, which were first written explicitly in [10], and which are consequences of the
Downarowicz variational principle [16]. When the sequence (fk) is non-constant, it follows
from a bound on robust tail entropy, which can be shown using techniques in [11]. We thank
David Burguet for explaining this to us.
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1.5. Applications to dimension theory and to SRB measures. The Hausdorff dimen-
sion of a Borel measure µ on M is defined to be the infimum of the Hausdorff dimensions
of all Borel sets of full µ-measure [49, p.115]. We denote this by HD(µ).

Corollary 1.4. For every k ≥ 1, let fk ∈ Diff∞(M) and let νk be an fk-ergodic invariant
measure. Suppose fk → f in the C∞ topology, νk → µ weak-∗, and lim inf

k→∞
h(fk, νk) > 0. If

µ is ergodic, then lim sup
k→∞

HD(νk) ≤ HD(µ).

Proof. One can always take a subsequence such that limk h(fk, νk) > 0, limk λ
+(fk, νk) > 0

and limk λ
−(fk, νk) < 0 exist, and such that HD(νk) converges to the limsup of the initial

sequence. In [49], Young gives the following formula for the Hausdorff dimension:

HD(µ) = h(f, µ)
(
1/λ+(f, µ) + 1/|λ−(f, µ)|

)
. (6)

Writing lim
k

h(fk, νk)

λ+(f, νk)
=

(
h(f, µ)

λ+(f, µ)

)(
limk h(fk, νk)

h(f, µ)

)(
limk λ

+(fk, νk)

λ+(f, µ)

)−1

, we conclude

from Theorem A that limk
h(fk,νk)
λ+(f,νk) ≤

h(f,µ)
λ+(f,µ) . Working with f−1

k and f−1 we obtain in a

similar way that limk
h(fk,νk)
|λ−(f,νk)| ≤

h(f,µ)
|λ−(f,µ)| . �

Suppose f ∈ Diff2(M). An f invariant probability measure is called a Sinai-Ruelle-
Bowen (SRB) measure, if λ+(f, x) > 0 µ-a.e., and if the conditional measures of µ obtained
by disintegrating it with respect to a measurable partition subordinated to the lamination by
unstable manifolds are a.e. absolutely continuous with respect to the induced Riemannian
measures. We recall two classical characterizations of SRB measures from [31] and [27].

Suppose λ+(f, x) > 0 µ-almost everywhere. The geometric pressure of µ is

Pu(µ) = Pu(f, µ) := h(f, µ)− λ+(f, µ).

By Ruelle’s inequality, Pu(µ) ≤ 0 for all invariant probability measures, and by Ledrappier-
Young [31], Pu(µ) = 0 iff µ is an SRB measure.

Next suppose µ is ergodic and λ+(f, µ) > 0. The unstable dimension of µ is

δu(f, µ) :=
h(f, µ)

λ+(f, µ)
.

By Ledrappier-Young Theory [27], δu(f, µ) is the a.s. value of the Hausdorff dimension of
the conditional measures of µ on a measurable partition subordinated to the local unstable
manifolds, and µ is an SRB measure iff δu(µ) = 1.

Theorem A immediately implies the following:

Corollary 1.5. For every k ≥ 1, let fk ∈ Diff∞(M) and let νk be an fk-ergodic invariant
measure. Suppose fk → f in the C∞ topology, νk → µ weak-∗, and limh(fk, νk) exists and
is positive. If µ is ergodic, then:

(1) lim sup
k→∞

δu(νk) ≤ δu(µ)

(2) lim sup
k→∞

Pu(fk, νk) ≤ Pu(f, µ)
lim
k→∞

h(fk,νk)

h(f,µ)

(3) if Pu(fk, νk)→ 0 or δu(νk)→ 1, then µ is an SRB measure.

Proof. The proof of Corollary 1.4 also shows (1); (1) ⇒ (2) is a simple algebraic manipu-
lation; and (1)+(2)⇒ (3) by the Ledrappier-Young characterizations of SRB measures as
measures with zero pressure and/or unstable dimension equal to one. �

We can remove the assumption that µ is ergodic, using Theorem C:
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Corollary 1.6. For every k ≥ 1, let fk ∈ Diff∞(M) and let νk be an fk-ergodic invariant
measure. Suppose fk → f in the C∞ topology, νk → µ weak-∗, and limh(fk, νk) exists and
is positive. Then there are ergodic components µ′, µ′′ of µ satisfying λ+(µ′), λ+(µ′′) > 0 and

δu(µ′′) ≥ lim
k→∞

δu(νk) , Pu(f, µ′) ≥ lim
k→∞

Pu(fk, νk).

Proof. Consider the decomposition µ = (1−β)µ0+βµ1 and take suitable ergodic components
of µ1. �

The following statement implies the corollary in the introduction.

Corollary 1.7. Let f be a C∞ diffeomorphism of a compact smooth surface without bound-
ary, and fix some h > 0. The following are equivalent:

(i) f admits an SRB measure with entropy at least h;
(ii) sup{Pu(f, µ) : µ ergodic measure for f s.t. h(f, µ) ≥ h} = 0;

(iii) sup{δu(µ) : µ ergodic measure for f s.t. h(f, µ) ≥ h} = 1.

Proof. (i)⇒(ii) is due to Ledrappier & Strelcyn [29], and (ii)⇔(iii) is trivial.
To see (ii)⇒ (i), we take a sequence of f -ergodic measures νk with h(f, νk)→ h′ ≥ h and

Pu(f, νk) → 0. We select a subsequence (νki)i≥1 s.t. λ+ := limλ+(νki) and µ := lim νki
exist. By Ruelle’s inequality, λ+ ≥ h′ > 0, and by Theorem C, µ = βµ1 + (1− β)µ0 where

lim
i→∞

λ+(f, νki) = βλ+(f, µ1), and lim
i→∞

h(f, νki) ≤ βh(f, µ1).

It follows that 0 = limi→∞ Pu(f, νki) ≤ βPu(f, µ1) ≤ 0, where the last inequality is
Ruelle’s inequality for µ1. Since βλ+(f, µ1) = limλ+(f, νki) = λ+ 6= 0, it must be
the case that β 6= 0, and Pu(f, µ1) = 0. If µ1 =

∫
µ′ξdξ is the ergodic decomposi-

tion of µ1, then
∫
Pu(f, µ′ξ)dξ = Pu(f, µ1) = 0. By Ruelle’s inequality, the integrand

is non-positive, so Pu(f, µ′ξ) = 0 for µ1-a.e. ergodic component. At the same time,

h(f, µ1) ≥ β−1 limh(fk, νk) > h′, so some of these ergodic components must have entropy
≥ h′. Thus µ1 has ergodic components with entropy bigger than h, and zero pressure. By
Ledrappier-Young Theory, these are SRB measures with entropy bigger than h, and (i) is
proved. �

Notice that it is essential in this proof to be able to deal with non-ergodic limits, since
we have no control of lim νk.

1.6. Related works. In this paper we relate the continuity properties of the entropy to
those of the Lyapunov exponents. The continuity of these objects has been studied separately
before in several works, which we now recall.

Entropy. In general, the entropy map (f, µ) 7→ h(f, µ) is not lower semi-continuous, even
in the uniformly hyperbolic case. For example, it is easy to construct sequences of atomic
measures (with zero entropy) on a basic set, which converge to limits with positive entropy.

However, for C∞ diffeomorphisms on compact manifolds, the entropy map is upper semi-
continuous: This is due to Newhouse [35]. For Cr diffeomorphisms with finite r, even
upper semi-continuity may fail (for examples in dimension four see [33], and for examples
in dimension two see [14]). However, the (additive) defect in semi-continuity:

D(f, µ) := lim sup
(g,ν)→(f,µ)

h(g, ν)− h(f, µ)

can be bounded from above by min(λ(f), λ(f−1))/r, using Yomdin theory [35, 12, 10, 11].
A subject of more recent interest is the loss of semi-continuity due to non-compactness.
This has been studied for countable Markov shifts [22, 23], geodesic flows on non-compact
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homogeneous spaces [18, 25], and geodesic flows on non-compact manifolds with negative
sectional curvatures [21, 42].

Lyapunov exponents. The top Lyapunov exponent map (f, µ) 7→ λ+(f, µ) varies continu-
ously for uniformly hyperbolic systems on surfaces. It even depends analytically on the dif-
feomorphism f [44]. Moreover if µmax is the unique measure of maximal entropy of a mixing
Anosov surface diffeomorphism, then [24] (see also [41, 45]) implies that |λ+(µmax)−λ+(ν)| ≤
c
√
|h(f, µmax)− h(f, ν)|, where c only depends on f .
In the non-uniformly hyperbolic case, the situation is different. For example, [6] proves

that among conservative systems the Lyapunov exponents of the volume measure are dis-
continuous when the diffeomorphism varies in the C1-topology, unless they vanish.

We are not aware of other general results on the continuity of the Lyapunov exponents
for general non-uniformly hyperbolic surface diffeomorphisms.

By contrast, much is known on the continuity of Lyapunov exponents of random prod-
ucts of independent identically distributed SL(2,R) matrices, as functions of the under-
lying Bernoulli process, see [20, 7]. More general Hölder continuous matrix cocycles with
holonomies are considered in [2], and a higher-dimensional extension has been announced
in [47].

Dimension. L.-S. Young gave the famous formula (6) for the dimension of hyperbolic invari-
ant measures in [49] in terms of the entropy and the Lyapunov exponents of the measure.
For further dimension theoretic properties of hyperbolic invariant measures, see [4] and [3].
The continuity of the dimension of invariant sets and measures for hyperbolic systems have
been considered in numerous works, for instance [37] proves that basic sets on surface have a
Hausdorff dimension which varies continuously with the diffeomorphism, [5] proves that the
supremum of the Hausdorff dimensions of ergodic measures on such a basic set is attained
by a measure of maximal dimension and [3] discusses some non-uniformly hyperbolic cases.

2. A heuristic overview of the proof

All our results follow from Theorem C, and the remainder of the paper is dedicated to
the proof of this theorem. Here we give a heuristic overview of the proof, in the special case
when f1 = f2 = · · · = f is a C∞ diffeomorphism.

2.1. The origin of the discontinuities in λ+. As Furstenberg discovered, the Lyapunov

exponents are easier to study in terms of the projective dynamics f̂(x,E) = (f(x), Dfx(E))
on the projective tangent bundle

M̂ := {(x,E) : x ∈M, E ⊂ TxM is a one-dimensional linear space}.

Indeed by Ledrappier’s work, a Lyapunov exponent of an f -ergodic measure µ is simply the
integral of the continuous function

ϕ(x,E) := log ‖Dfx|E‖,

with respect to the lift of µ to the bundle of the associated Oseledets spaces.
Suppose νk are ergodic measures with positive entropy such that νk → µ weak∗, and

suppose for the moment that µ is ergodic and with positive entropy. Since dim(M) = 2, νk
have two simple Lyapunov exponents, and there are exactly two ergodic lifts ν̂+

k and ν̂−k , one
carried by the bundle Eu of unstable Oseledets spaces, and the other carried by the bundle
Es of the stable Oseledets spaces. (The third bundle E0 associated to the zero exponent has
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measure zero for all lifts of νk.) Hence,

λ±(f, νk) =

∫
ϕdν̂±k .

Suppose ν̂+
k converge weak-star on M̂ to an f̂ -invariant probability measure µ̂ (this is true

for a subsequence). Since ϕ : M̂ → R is continuous,

lim
k→∞

λ+(f, νk) = lim
k→∞

ν̂k(ϕ) = µ̂(ϕ).

The limiting measure µ̂ is a lift of µ, but this does not have to be the lift of µ to Eu, µ̂+. If
µ̂(ϕ) 6= µ̂+(ϕ), then limk→∞ λ+(f, νk) 6= λ+(f, µ).

It is certainly possible that µ̂ 6= µ̂+: The Oseledets bundle Eu carrying the lifts ν̂+
k is not

necessarily bounded away from Es, and some mass 0 ≤ ρ ≤ 1 on Eu can escape to Es.
Escape of mass to Es is reflected in long stretches of time when νk-typical orbits do

not experience the exponential growth of Eu-directions predicted by λ+. Instead, they see,
temporarily, exponential decay at rate λ−, cancelling some of the previous growth. If µ̂+, µ̂−

denote the two ergodic lifts. we must have µ̂ = (1− ρ)µ̂+ + ρµ̂− and thus,

lim
k→∞

λ+(f, νk) = (1− ρ)µ̂+(ϕ) + ρµ̂−(ϕ) = λ+
µ − ρ(λ+

µ − λ−µ ).

In the language of Theorem C (and since µ = µ1 by ergodicity), the discontinuity ratio β is:

β :=
limk λ

+(f, νk)

λ+(f, µ)
= 1− ρ(1− λ−µ /λ+

µ ).

(A different description of β will be given below.) So if µ is ergodic, then β is a function of
ρ, whence of the amount of mass which escapes to Es.

In the case where µ is not ergodic, the different ergodic components of µ have to be
considered, and some of them may have zero Lyapunov exponents. The way in which νk-
typical orbits approximate those ergodic components determine the possible cancellations.
So if µ is not ergodic, then β may depend on the entire sequence (νk), not just on its limit
µ.

2.2. Neutral blocks, the decomposition of µ, and the parameter β. Recall the

measurable f̂ -invariant decomposition X = Es ∪ Eu ∪ E0 defined by the Oseledets theorem
according to the sign of the limit 1

n log ‖Dfnx |E‖. It has full measure with respect to any

f̂ -invariant measure. To get quantitative estimates, we select compact subsets K∗ ⊂ E∗, for
∗ ∈ {s, u, 0}, from which the contraction, expansion, or “central” behavior of the sequence
‖Dfnx |E‖ are uniformly controlled, and such that the µ̂-measure of K := Ks ∪ Ku ∪ K0

is close to 1. Since each E∗ is invariant, we can choose these compact sets to be nearly
invariant: Points in a very small neighborhood stay close for a long time.

Hence, if x̂0 is a ν̂+
k -typical point for some very large k, its orbit under f̂ spends nearly

all its time close to K and every visit in a small neighborhood of Ks ∪K0 is the beginning
of a long period of uniform contraction (or weak expansion/contraction). One expects no
entropy creation not only during this period, but also during the “recovery period” which
follows, i.e., until the expansion predicted by the Lyapunov exponent of νk cancels this
period of contraction (or weak expansion/contraction).

We select such long time intervals along the orbit of x̂0 in the following greedy way.
Fixing α > 0 small and L large, an (α,L)–neutral block is a maximal interval of integers
(n0, . . . , n0 + `) such that ` ≥ L and

‖Dfnfn0 (x0)|Eu‖ ≤ exp(α(n− n0)) for all 0 < n ≤ `.
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We will check that indeed, there is very little if any entropy creation during neutral blocks.
Our estimates will be in terms of the distribution of these long neutral blocks. Let

x̂k = (xk, E
u(xk)) be ν̂+

k -generic points and let Nα,L(x̂k) denote the union of all (α,L)-
neutral blocks of the orbit of x̂k. In Section 6 we show that it is possible to choose a

subsequence ki →∞ so that following limits make sense weak-∗ on M̂ for (ν̂+
k1
× ν̂+

k2
× · · · )–

a.e. (x̂k1 , x̂k2 , . . .):

m̂0 := lim
α→0
L→∞

lim
i→∞

 lim
N→∞

1

N

∑
j∈[0,N)∩Nα,L(x̂k)

δf̂j(x̂ki )


m̂1 := lim

α→0
L→∞

lim
i→∞

 lim
N→∞

1

N

∑
j∈[0,N)\Nα,L(x̂k)

δf̂j(xki )

 .

Notice that the sum of the two limits in the brackets is a.s. ν̂+
ki

, because this is the limit of

the empirical measure of x̂ki , and x̂ki are all a.s. ν̂+
ki

–generic. So

m̂0 + m̂1 = lim
k→∞

ν̂+
k = µ̂.

The measures m̂0, m̂1 are f̂ -invariant. We will see that
∫
ϕdm̂0 = 0, and that m̂1 is

carried by Eu. The decomposition µ = βµ1 + (1− β)µ0 in Theorem C is defined by

β := 1− µ̂0(M̂), (1− β)µ0 := π̂∗(µ̂0), and βµ1 := π̂∗(µ̂− µ̂0),

where π̂ : M̂ → M is the natural projection. Note that β is indeed the discontinuity ratio
limk λ

+(f, νk)/λ+(f, µ1) and the quantity 1−β coincides with the fraction of the time spent
in maximal neutral blocks. The measures µ0, µ1 and β depend not just on µ̂, but also on
the way the measures ν̂+

k accumulate on µ̂.

2.3. Upper bound on the entropy. To complete the proof of the theorem it remains to
show that lim

k→∞
h(f, νk) ≤ βh(f, µ1). This is the heart of the proof, and where most of the

difficulties lie. We use Ledrappier-Young Theory and Yomdin Theory.

• Ledrappier-Young theory bounds h(f, νk) by the exponential rate of growth of the
minimal number of (n, ε)-balls needed to cover a definite fraction of a local unstable
manifold Wu

loc(xk), where xk is a fixed νk-typical point and the scale ε tends to zero.
The “fraction” is measured using the conditional measure νuxk of νk on Wu

loc(xk). In
particular, it suffices to follow points x ∈Wu

loc(xk) with TxW
u
loc(xk) = Eu(x).

• Yomdin theory provides tools for controlling the number of (n, ε)-balls needed for
such covers, for Cr maps. Instead of working with (n, ε)-balls, one works with
parametrized pieces of unstable manifolds which lie inside (n, ε)-balls and which
have uniformly bounded Cr size, and Yomdin Theory allows to bound the number
of such pieces. Here the regularity assumptions on f come into play. The expression
λ(f)+λ(f−1)

r−1 in (3) is due to Yomdin theory (see section 2.4).

Let us sketch our argument for the upper bound on the entropy using the neutral blocks.
Since the unstable lift of νuxk -almost every point is ν̂+

k -typical, neutral blocks represent
roughly a fraction 1 − β of their time. During a neutral block, typical points on a small
piece of fn(Wu

loc(xk)) do not separate much, therefore this piece remains small (or can be
kept small by a subdivision into a small exponential number of pieces). For the rest of the
time, these subcurves follow the ergodic components of µ1, hence they experience entropic
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separation at an exponential rate given by h(f, µ1). Since the time outside neutral blocks is
a proportion β of the total time, this leads to the bound

h(f, νk) ≤ βh(f, µ1).

This argument explains the link between the entropy bound and the semicontinuity defect
of the Lyapunov exponents.

This sketch glosses over several difficulties. We will only comment on the main issue:
How to use non-expansion of the linearization Df at (xk, E

u(xk)) during a neutral block,
to infer non-expansion of the map f itself on a small piece of Wu

loc(xk) during this neutral
block. The difficulty is in controlling Df on (x′k, E

u(x′k)) for x′k close to xk.

2.4. Control of the expansion during neutral blocks. This is one of the most delicate
points in the proof. To deduce the non-expansion of the small piece of the unstable manifold
containing this point, we need to know that not only the diameter of this curve is small but
that its tangent is almost constant too. This forces us to work with pieces of Wu

loc(xk) whose

lifts to M̂ are also small: The size in the fiber of M̂ measures the variability of the tangent
directions.

How small is small enough? To use information on Df to control what happens on
Wu
loc(xk), we need the fluctuations of the tangent direction along any piece to be smaller

than some ε̂ > 0, determined (mostly) by the modulus of continuity of Df . Using the
uniform continuity of the measurable unstable bundle on a set of large measure, we find an
ε > 0 such that if the diameter of the projection to M is less than ε, then the fluctuation of
the tangent is smaller than ε̂.

The price we pay for this solution is that we need to work with different scales in M and

along the fibers of the bundle M̂ → M . This leads us to introduce fibered (n, ε, ε̂)-balls,

and to work with Yomdin theory for f̂ : M̂ → M̂ . When dealing with diffeomorphisms of

finite regularity, there is an additional price to pay: If f is Cr, then f̂ is only Cr−1, and this
accounts for the extra term from Yomdin theory

λ̂(f̂)

r − 1
≤ λ(f) + λ(f−1)

r − 1
in (3).

2.5. Organisation of the paper. The different ingredients of the proof appear as follows
in the text.

Section 3: background on tangent dynamics and Lyapunov exponents.
Section 4: results from Ledrappier-Young and Yomdin theories on the entropy in dif-

ferentiable dynamics.
Section 5: reparametrization lemmas estimating the entropy from neutral blocks and

other time intervals.
Section 6: neutral decomposition of typical orbits.
Section 7: proof of the technical version of our main theorem.
Section 8: proof of the remaining statements.

A remark on style. Our constructions, estimating entropy for a sequence of measures con-
verging to a nonergodic one, require many parameters. We have chosen to make the depen-
dences as explicit as possible to help the reader check that there is no circular argument.

2.6. Standing notations for the duration of the paper. We collect here some notations
that we will use frequently below.

• |X| or Card(X): the cardinality of a set X.
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• M is a compact Riemannian C∞ manifold without boundary, with tangent bundle TM ,
tangent spaces TxM , and Riemannian norm ‖ · ‖x. Derivatives of maps f : M →M are
denoted by Df : TM → TM or Dfx : TxM → Tf(x)M .

• h(f, µ), λ±µ , λ±x , TM = E+ ⊕ E−: the entropy, average and pointwise Lyapunov expo-

nents, Osededets splitting associated to a measure µ (also denoted λ
s/u
µ , Es/u when the

measure is hyperbolic of saddle type), see section 3.3.

• M̂ , f̂ , x̂ = (x,E): the projective tangent bundle, the lift of a diffeomorphism f and of
a point x, see section 3.2.

• Bf (x, n, ε), rf (n, ε,X): an (n, ε)-Bowen ball for f and the (n, ε)-covering number of a
set X ⊂M , see section 4.2.

• ‖Df‖sup: the sup-norm of the tangent map, see section 1.2.
• λ(f) := limn→+∞

1
n log ‖Dfn‖sup: the asymptotic dilation.

• ‖f‖Cr : the Cr size of f , see section 3.1.
• Qr,N (f): the supremum of the Cr sizes of f, f2, . . . , fN and of the Cr−1 semi-norm of

f̂ , f̂2, . . . , f̂N see section 4.6.
• If v is a vector, then R.v := {tv : t ∈ R}.

3. Tangent dynamics and the semi-continuity of Lyapunov exponents

Let M be a smooth compact Riemannian surface without boundary.

3.1. Review of the Cr size of maps. Let U be an open subset of Rn.
Given k ∈ N, we say that a map F : U → Rd is Ck if for all ω ∈ (N ∪ {0})n such that

|ω| := ω1 + · · ·+ ωn = k, the partial derivative

∂ωF :=
∂ω1+···+ωnF

∂ω1x1 · · · ∂ωnxn
exists and is continuous on U . For any compact subset K ⊂ U , we then define the Ck size

‖F‖Ck,K := max
1≤|ω|≤k

max
x∈K
‖∂ωF (x)‖.

Given α ∈ (0, 1), we say that a map F is Cα if the following quantity is finite for any
compact set K ⊂ U ,

‖F‖Cα,K := sup
x, y ∈ K
x 6= y

‖F (x)− F (y)‖
‖x− y‖α

.

Given r > 1 which is not an integer, we decompose it as r = k + α, with k = brc and
α ∈ (0, 1). We say that F is Cr if it is Ck and each partial derivative ∂ωF , |ω| = k is Cα.
For any compact set K ⊂ U , we define the Cr size

‖F‖Cr,K := ‖F‖Ck,K + max
|ω|=k

‖∂ωF‖Cα,K .

Let Ω be a compact subset of Rn which is equal to the closure of its interior (we mostly
need [0, 1]n). A map F : Ω→ Rd is Cr if F has a Cr extension to an open neighborhood of
Ω. In this case, the Cr size of F on Ω is

‖F‖Cr := sup
K⊂int(Ω)

‖F‖Cr,K .

This (finite) quantity is independent of the extension of F to the neighborhood of Ω. Notice
that the Cr size of a constant function is zero.
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A Cr structure on a smooth manifold N is defined by a maximal atlas A with Cr changes
of coordinates. A smooth manifold equipped with a Cr structure A is called a Cr manifold.
A finite subset of A which covers N is called a Cr atlas of N .

Let N1, N2 be two compact Cr manifolds (later this will be M , M̂ or the circle S1), and
let Ai be finite Cr atlases of Ni. Let Ω be a compact subset of N1 equal to the closure of
its interior. We say that f : Ω→ N2 is a Cr map if each map χ−1

2 ◦ f ◦ χ1, where χi ranges
over Ai, is Cr. The Cr size of f is:

‖f‖Cr := max
χ1∈A1,χ2∈A2

‖χ−1
2 ◦ f ◦ χ1‖Cr <∞.

Again, the constant map has size zero.
The quantity ‖f‖Cr depends on the choice of atlases Ai, but if Ni are compact, then

finite atlases induce equivalent Cr sizes. In case N1 = S1, we will always use the Euclidean
atlas.

Suppose fk, f ∈ Diffr(M) and 1 ≤ r <∞. We will say that fk converges to f uniformly
in a Cr-bounded way, if fk → f uniformly, and supk≥1 ‖fk‖Cr <∞. We write in this case

fk
r−bd−→ f.

If M is compact, fk, f ∈ Diff∞(M), and fk → f in C∞, then fk
r−bd−→ f for all r finite.

The Arzela-Ascoli theorem implies the following.

Lemma 3.1. Let N1, N2 be compact Cr manifolds, and f, f1, f2, . . . : N1 → N2 be a collec-
tion of Cr maps such that (fk) converges to f uniformly, and supk ‖f‖Cr <∞. Then (fk)
converges to f in the C`-topology for any ` < r, ` ∈ N.

Thus, if for some real r > 1 s.t. r 6∈ N, f, f1, f2, · · · ∈ Diffr(M) where M is a compact

manifold, then fk
r−bd−→ f implies that fk → f in the Cbrc-topology.

3.2. The projective tangent bundle. Let

PxM := {E : E is a one-dimensional linear subspace of TxM}.

PxM is the quotient of TxM \ {0} by the equivalence relation v ∼ w ⇐⇒ ∃λ 6= 0, v = λw.
It can also be viewed as the image of {v ∈ TxM : ‖v‖x = 1} by the two-to-one map
v 7→ Span{v}. These identifications allow us to endow PxM with a topology and with a
smooth structure, and to identify the tangent spaces TE(PxM) with {w ∈ TxM : w ⊥ E}.
We can also pull back the induced Riemannian inner product on {w ∈ TxM : w ⊥ E} to an
inner product on TE(PxM). This endows PxM with a Riemannian structure. The resulting
Riemannian distance on PxM is simply dist(E1, E2) = |](E1, E2)|. With this structure,
PxM is isometric to the circle with perimeter π.

The projective tangent bundle (or just “projective bundle”) of M is the bundle (M̂, π̂,M)

where π̂ : M̂ →M is the natural projection π̂(x,E) = x, and

M̂ := {(x,E) : x ∈M,E is a one-dimensional linear subspace of TxM} =
⊔
x∈M

PxM.

M̂ is a smooth compact three-dimensional manifold. We endow it with the Riemannian
metric

√
ds2 + dθ2, where ds is the length element on M and dθ is the length element on

PxM . Points in M̂ will be denoted by x̂ = (x,E).
Let f : M → M be a C1 diffeomorphism. The canonical lift of f is the homeomorphism

f̂ : M̂ → M̂ given by

f̂(x,E) = (f(x), Dfx(E)). (7)
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If f is of class Cr, then f̂ is of class Cr−1. Notice that π̂ ◦ f̂ = f ◦ π̂, and

f̂n(x,E) = (fn(x), (Dfn)x(E)).

Every f̂ -invariant probability measure ν̂ on M̂ projects to an f -invariant probability
measure ν on M given by

ν := π̂∗(ν̂) := ν̂ ◦ π−1.

We call ν the projection of ν̂, and ν̂ a lift of ν. In what follows, when we “lift”, we always mean

an f̂ -invariant lift. The following lemma is a well-known consequence of the compactness of

M̂ .

Lemma 3.2. (1) Every f -invariant probability measure ν has at least one lift ν̂.
(2) If ν is f -ergodic and ν̂ lifts ν, then a.e. ergodic component of ν̂ is a lift of ν.

Hence every ergodic f -invariant probability measure has at least one ergodic lift.

3.3. Review of Lyapunov exponents. We review some facts on Lyapunov exponents
in dimension two (see [46, Theorems 3.12 and 3.14]). Suppose f ∈ Diff1(M) and µ is
an f -invariant Borel probability measure. Oseledets’ theorem asserts that for µ-a.e. x,
lim|n|→∞

1
n log ‖Dfnx v‖ exists for all v ∈ TxM \ {0}. The possible values of the limit are

called the Lyapunov exponents of x. There are at most two such values. We denote them
by λ+(f, x), λ−(f, x), or λ+

x , λ−x , with the convention

λ+(f, x) ≥ λ−(f, x).

If λ+(f, x) 6= λ−(f, x) then TxM = E+(x)⊕ E−(x) where

E±(x) :=

{
v ∈ TxM \ {0} : lim

|n|→∞

1

n
log ‖Dfnx v‖ = λ±(f, x)

}
∪ {0}.

The decomposition TxM = E+(x)⊕ E−(x) is called the Oseledets splitting.
If µ is ergodic, the functions λ+(f, x) ≥ λ−(f, x) are equal µ-almost everywhere to con-

stants called the Lyapunov exponents of µ and denoted by λ+(f, µ), λ−(f, µ). If µ is not
ergodic, the Lyapunov exponents of µ are defined by

λ+(f, µ) :=

∫
λ+(f, x)dµ(x), λ−(f, µ) :=

∫
λ−(f, x)dµ(x).

In both cases, λ+(f, µ) ≥ λ−(f, µ).
By the subadditive ergodic theorem, the largest Lyapunov exponent also satisfies

λ+(f, µ) = lim
n→∞

1

n

∫
log ‖Dfny ‖ dµ(y) = inf

n

1

n

∫
log ‖Dfny ‖ dµ(y). (8)

Throughout this paper, an ergodic invariant probability measure µ is called hyperbolic
if one of its Lyapunov exponents is positive, and the other is negative (sometimes this is
called hyperbolic of saddle-type). If µ is hyperbolic, we sometimes write λu = λ+, λs = λ−,
Eu = E+ and Es = E−.

3.4. Semi-continuity of Lyapunov exponents. We will use the dynamics of the projec-
tive tangent bundle to study the semi-continuity properties of (f, µ) 7→ λ+(f, µ) (and by
symmetry of (f, µ) 7→ λ−(f, µ)). The principal tool is the function

ϕ : M̂ → R , ϕ(x,E) = log ‖Dfx|E‖.
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Notice that if f is a C1 diffeomorphism, then ϕ is bounded and uniformly continuous. We
will make frequent use of the following identity:

log ‖Dfn|E‖ =

n−1∑
k=0

(ϕ ◦ f̂k)(x,E) ((x,E) ∈ M̂). (9)

This is because E is a one-dimensional subspace of TxM , and therefore by the chain rule

‖Dfnx |E‖ =
∏n−1
k=0 ‖Dffk(x)|Dfkx (E)‖ =

∏n−1
k=0 exp[(ϕ ◦ f̂k)(x,E)]. Equation (9) presents the

subadditive cocycle log ‖Dfn|E‖ for f as an additive cocycle for f̂ . See [28, Prop. 5.1 on
p. 328] for a proof of a more general fact (and [19, Lemma 8.7] for the first use of a related
idea).

Lemma 3.3. Suppose f ∈ Diff1(M), and µ is an ergodic f -invariant probability measure.
Then:

(1) λ is a Lyapunov exponent of µ iff µ has an f̂ -ergodic lift µ̂ s.t.
∫
ϕdµ̂ = λ;

(2) If µ has two different Lyapunov exponents, then it has exactly two ergodic f̂–invariant
lifts:

µ̂+ :=

∫
M̂

δ(x,E+(x))dµ(x), and µ̂− :=

∫
M̂

δ(x,E−(x))dµ(x).

Moreover
∫
ϕdµ̂± = λ±(f, µ).

For any f̂ -invariant probability measure, it will be convenient to denote

λ̂(f̂ , µ̂) :=

∫
M̂

ϕdµ̂.

When µ is hyperbolic, the lifts µ̂+, µ̂− are called the unstable and stable lifts of µ.

Proof. If µ has equal Lyapunov exponents, (1) follows from eq. (9) and the ergodic theorem.
Otherwise, by Oseledets theorem, there are two a.e. defined sections x 7→ E±x s.t. DfxE

±
x =

E±f(x). Every f̂ -invariant probability measure carried by the graph of an invariant section

x 7→ Ex is ergodic, and coincides with
∫
M
δ(x,Ex) dµ(x). So (1) and (2) follow from Lemma

3.2 and (9) (see [28]). �

Corollary 3.4. Suppose f ∈ Diff1(M) and µ is an f -invariant probability measure (not

necessarily ergodic) s.t. λ+(f, x) > λ−(f, x) for µ-a.e. x ∈ M . Then any f̂ -invariant lift

µ̂ of µ is carried by graph(E+) ∪ graph(E−), and there are unique f̂ -invariant lifts µ̂+, µ̂−

s.t. µ̂+(graph(E+)) = 1, µ̂−(graph(E−)) = 1.

Proof. By a general Borel construction, the graphs of E+, E− are measurable. There are
unique lifts µ̂+, µ̂− of µ to graph(E+), graph(E−), and it is easy to check using the identity

Dfx(E±x ) = E±f(x) that µ̂± are f̂ -invariant.

Now let µ̂ be an arbitrary lift of µ and consider its ergodic decomposition µ̂ =
∫
µ̂ξ dm.

For almost every ξ, the ergodic measure µξ = µ̂ξ ◦ π̂−1 has two different exponents, hence,
by Lemma 3.3, its lift µ̂ξ is some combination a(ξ)µ̂+

ξ +(1−a(ξ))µ̂−ξ of its lifts µ̂±ξ where 0 ≤
a(ξ) ≤ 1. Observe that a(ξ) = µ̂ξ(graph(E+)), hence the function ξ 7→ a(ξ) is measurable.
It follows that

µ̂ =

∫
a(ξ)µ̂+

ξ + (1− a(ξ))µ̂−ξ dm.

In particular, any lift µ̂ is carried by the union of the graphs of E+ and E−. �
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For each n ≥ 1, (f, µ) 7→
∫

log ‖Dfnx ‖ dµ(x) is continuous as a function on Diff1(M) ×
{probability measure on M}. Eq. (8) now give us the following “folklore” fact:

Theorem 3.5 (Upper semicontinuity). Let fk ∈ Diff1(M) be diffeomorphisms with ergodic

invariant probability measures νk. If fk
C1

−→ f and νk
w∗−→ µ, then the largest Lyapunov

exponents λ+(fk, νk) satisfy lim supk λ
+(fk, νk) ≤ λ+(f, µ).

The next result computes the defect in continuity λ+(f, µ)− lim supλ+(fk, νk) in terms
of the dynamics on the projective bundle. It relates the defect in continuity to the escape
of some of the mass of the lifts to graph(E+) to the vicinity of graph(E−).

Let µ̂ be an f̂ -invariant probability measure with ergodic decomposition µ̂ =
∫

Ω
µ̂ξdm.

The projection µ of µ̂ to M has ergodic decomposition µ =
∫

Ω
µξ dm, where µξ = µ̂ξ ◦ π−1.

Note that in general, the map µ̂ξ 7→ µξ is not injective.
We split the set of ergodic components µ̂ξ (ξ ∈ Ω) by considering whether they are carried

by the invariant line bundles E+ or E− or by a subset of M̂ where these bundles are not
defined:

Ω− := {ξ ∈ Ω : λ−(f, µξ) < λ+(f, µξ) , µ̂ξ = µ̂−ξ }
Ω+ := {ξ ∈ Ω : λ−(f, µξ) < λ+(f, µξ) , µ̂ξ = µ̂+

ξ }
Ω0 := {ξ ∈ Ω : λ−(f, µξ) = λ+(f, µξ)}.

Theorem 3.6 (Defect in continuity). Let M be a compact smooth boundaryless surface.
For each k ≥ 1, fix fk ∈ Diff1(M) and ergodic fk-invariant measures νk with λ−(fk, νk) <

λ+(fk, νk). Let ν̂+
k be the ergodic lift to M̂ carried by the bundle E+. Suppose fk

C1

−→ f ,

νk
w∗−→ µ, and ν̂+

k
w∗−→ µ̂. Considering the ergodic decompositions µ̂ =

∫
Ω
µ̂ξdm, µ =

∫
Ω
µξ dm

and defining Ω = Ω+ ∪ Ω− ∪ Ω0 as above, we have

lim
k→∞

λ+(f, νk) = λ+(f, µ)−
∫

Ω−
[λ+(f, µξ)− λ−(f, µξ)]dm.

In the special case when µ is ergodic, we have the following (see Lemma 3.3):

(1) If λ+(f, µ) = λ−(f, µ) or µ̂ = µ̂+ , then limk λ
+(fk, νk) = λ+(f, µ).

(2) If λ+(f, µ) < λ−(f, µ) and µ̂ 6= µ̂+, then limk λ
+(fk, νk) < λ+(f, µ).

More precisely, there is a unique 0 < a ≤ 1 such that µ̂ = aµ̂− + (1− a)µ̂+ and

lim
k→∞

λ+(fk, νk) = λ+(f, µ)− a(λ+(f, µ)− λ−(f, µ)).

If νk and µ are hyperbolic (of saddle type), then a 6= 1.

Proof. Using Lemma 3.3, we see that

∫
ϕdµ̂ξ =


∫
ϕdµ̂+

ξ = λ+(f, µξ) if ξ ∈ Ω+∫
ϕdµ̂−ξ = λ−(f, µξ) if ξ ∈ Ω−

λ+(f, µξ) if ξ ∈ Ω0,

(10)

lim
k→∞

λ+(fk, νk) = lim
k→∞

∫
ϕdν̂+

k =

∫
ϕdµ̂ =

∫∫
ϕdµ̂ξdm. (11)
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Substituting (10) in (11), we obtain

lim
k→∞

λ+(fk, νk) =

∫
Ω−

λ−(f, µξ)dm+

∫
Ω+∪Ω0

λ+(f, µξ)dm

=

∫
Ω−

λ−(f, µξ)dm+

∫
Ω

λ+(f, µξ)dm−
∫

Ω−
λ+(f, µξ)dm

= λ+(f, µ)−
∫

Ω−
[λ+(f, µξ)− λ−(f, µξ)]dm,

which proves the theorem for general, possibly non-ergodic, limits µ.
When µ is ergodic, we apply equation (11) and Lemma 3.3:

(1) If λ+(f, µ) = λ−(f, µ) or µ̂ = µ̂+, then
∫
ϕdµ̂ = λ+(f, µ) and item (1) follows.

(2) Otherwise, µ has two different exponents and m(Ω+) < 1. Necessarily, m(Ω0) = 0,
a := m(Ω−) ∈ (0, 1] and the lift µ̂ can be written as (1− a)µ̂+ + aµ̂−. So

lim
k→∞

λ+(fk, νk) =

∫
ϕdµ̂ = (1− a)λ+(f, µ) + aλ−(f, µ)

= λ+(f, µ)− a(λ+(f, µ)− λ−(f, µ))

< λ+(f, µ).

Finally, note that, if a = 1 and µ is hyperbolic, then limk λ
+(fk, νk) = λ−(f, µ) < 0, and νk

are not hyperbolic of saddle type for k large enough. �

Notice that the defect in continuity originates at Ω−, the set of ergodic components of
lim ν̂+

k which are carried by graph(E−). This confirms the heuristic that discontinuity in
Lyapunov exponents is due to the asymptotic escape of mass from graph(E+), which carries
ν̂+
k , to graph(E−), which carries µ̂ξ for ξ ∈ Ω−.

3.5. A bound for the asymptotic dilation of f̂ .

Lemma 3.7. For any C2 diffeomorphism f of a surface M , λ(f̂) ≤ λ(f) + λ(f−1).

Proof. Working locally in charts, we identify the iterates fn locally with diffeomorphisms
Fi : Ui → R2 defined on open subsets of R2. We choose the charts so that the change of

coordinates distorts the metric by a factor of less than 2. The lift f̂n ∈ Diff1(M̂) is identified
with:

F̂i(x, v) =

(
Fi(x),

(DFi)xv

‖(DFi)xv‖

)
.

In what follows, we omit the first factor.

The differential of F̂i can be computed in a straightforward way (writing a ∗ b for the
scalar product of two vectors in R2):

(DF̂i)(x,v)(y, w) =
(DFi)xw

‖(DFi)xv‖
+

(D2Fi)x(y).v

‖(DFi)xv‖

−
(

(DFi)xv

‖(DFi)xv‖
∗ (DFi)xw + (D2Fi)x(y).v

‖(DFi)xv‖

)
(DFi)x(v)

‖(DFi)xv‖
.

(12)

Thus,

‖(DF̂i)(x,v)‖ ≤ 2
(
‖(DFi)x‖ ‖(DF−1

i )f(x)‖+ ‖(D2Fi)x‖ ‖(DF−1
i )f(x)‖

)
.

We apply this to some iterate of f on M , remembering the distortion in the metric:

‖Df̂n‖sup ≤ 32‖Dfn‖sup‖Df−n‖sup + 16‖Df−n‖sup‖D2fn‖sup
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Let 0 < ε < 1/4. Fix n an integer so large that 32 ≤ eεn/4 and

‖Dfn‖sup ≤ en(λ(f)+ε/8) and ‖Df−n‖sup ≤ en(λ(f−1)+ε/8).

Therefore,

λ(f̂) ≤ λ(f) + λ(f−1) + ε/2 + log
(

1 + e−λ(f)‖D2fn‖1/nsup

)
By dilating the metric on M , we can ensure that ‖D2fn‖1/nsup ≤ (ε/4)eλ(f) without changing

the asymptotic dilations. Thus λ(f̂) ≤ λ(f) +λ(f−1) + ε As ε is arbitrarily small, the claim
follows. �

These computations allow the following control of the Cr−1 size of the lift of a Cr diffeo-
morphism.

Lemma 3.8. For every real 2 < r < ∞, there is a constant A = A(r) with the following

property. For any g ∈ Diffr(M) with lift ĝ ∈ Diffr−1(M̂),

‖ĝ‖Cr−1 ≤ A
(
‖g‖Cr · ‖Dg−1‖sup

)A
.

Proof. We first consider the kth derivative of f in charts for the maximal integer k ≤ r. A
straightforward induction on the integer k ≥ 2 based on eq. (12) shows that the (k − 1)th

differential of F̂ at some point (x, v) ∈ M̂ can be written as a linear combination of terms:

1

‖DxF.v‖p
(Dα1F ∗Dβ1F ) . . . (DαjF ∗DβjF ) ·DγF

where p, α1, β1 . . . , αj , βj , γ are integers, and α1, β1, . . . , γ ≤ k. The coefficients of this linear
combination depend only on k.

If k = r, the claim is immediate. If α := r − k > 0, recall that the Cr size is the sum of
the Ck size and α-Hölder size of the k-th derivative. A further computation using the above
expression gives the required bound for the Hölder constant of order α of Dkĝ. �

4. Entropy formulas and reparametrizations

We saw in last section that the defect in continuity of (f, µ) 7→ λ+(f, µ) can be described

in terms of the canonical lift f̂ : M̂ → M̂ . In this section we develop tools for studying the

entropy map (f, µ) 7→ h(f, µ) in terms of f̂ : M̂ → M̂ .
Specifically, we will show that the entropy of hyperbolic measures on M can be studied

in terms of the exponential rate of growth in Cr–complexity of f̂n ◦ σ̂, where σ̂ : [0, 1]→ M̂
is the curve σ̂(t) = (σ(t),R.σ′(t)) and σ : [0, 1]→M is a smooth parameterization of a local
unstable manifold.

4.1. Review of entropy and the ergodic decomposition. This section collects several
classical facts on the entropy theory of non-ergodic measures. For proofs and details, see
[15, chap. 13].

Consider a compact metric space X together with a continuous map T preserving an
invariant Borel probability measure µ and the σ-algebra X of Borel subsets of X. The
ergodic decomposition of µ with respect to T is:

µ =

∫
X

µx dµ(x)

where µx := limn→∞
1
n

∑
0≤k<n δTkx (the weak-∗ limit exists almost everywhere by the

ergodic theorem).
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The map x 7→ µx is µ-measurable with respect to the σ-algebra I of invariant mea-
surable subsets; for µ-a.e. x ∈ X, µx is a T -invariant and ergodic Borel probability
measure and for every Borel µ-absolutely integrable u, x 7→ µx(u) belongs to L1(µ) and
µ(u) =

∫
X
µx(u) dµ(x). The metric entropy of µ and µx are related by

h(T, µ) =

∫
X

h(T, µx)dµ(x).

Suppose ξ is a countable measurable partition of X with finite mean entropy Hµ(ξ) :=

−
∑
A∈ξ µ(A) logµ(A). Let ξn := {

⋂n−1
i=0 T

−iAi : Ai ∈ ξ}. It is a classical fact that

h(T, µ, ξ) := limn→∞
1
nHµ(ξn) exists.

Similarly, one defines h(T, µx, ξ). The function x 7→ h(T, µx, ξ) is defined µ-a.e., is measur-
able with respect to the µ-completion of I. Let ξn(x) denote the atom of ξn which contains
x. The Shannon-McMillan-Breiman theorem, in its version for non-ergodic measures [15,
(13.4)], states that,

lim
n→∞

− 1

n
logµ (ξn(x)) = h(T, µx, ξ) both µ-a.e. and in L1(µ). (13)

In addition, we have the following identity: [15, (13.3)]: h(T, µ, ξ) =
∫
X
h(T, µx, ξ) dµ(x). In

particular, h(T, µ, ξ) ≤ h(T, µ, ξ), where

h(T, µ) := ess-supx∈X h(T, µx). (14)

We call h(T, µ) the essential supremum entropy of µ:

4.2. Bowen and Katok entropy formulas. Let T : X → X be a continuous map on a
compact metrix space X. An (n, ε)-Bowen ball is a set of the form

BT (x, n, ε) := {y ∈ X : ∀0 ≤ k < n, d(T ky, T kx) < ε}.

The (n, ε)-covering number of a subset Z ⊂ X, is

rT (n, ε, Z) := min{|C| :
⋃
x∈C

BT (x, n, ε) ⊃ Z}.

Bowen [8] defined the topological entropy of a (possibly non-invariant) set Z ⊂ X for T
to be

htop(T,Z) = lim
ε→0

htop(T,Z, ε) with htop(T,Z, ε) = lim sup
n→∞

1

n
log rT (n, ε, Z), (15)

and showed that the topological entropy of T is htop(T ) = htop(T,X).
Katok gave a similar formula for the metric entropy of an invariant measure. Let µ be

an invariant probability measure. For every γ ∈ (0, 1), let

rT (n, ε, µ, γ) := inf{rT (n, ε, Z) : Z ⊂ X measurable s.t. µ(Z) > γ}.

He showed that if µ is ergodic, then h(T, µ) = lim
λ→1

lim
ε→0

lim sup
n→∞

1

n
log rT (n, ε, µ, γ). Katok’s

proof in [26] also works in the non-ergodic case, if we replace the usual Shannon-McMillan-
Breiman Theorem by (13). The result is that for a general (possily non-ergodic) invariant
probability measure µ,

h(T, µ) = lim
λ→1

lim
ε→0

lim sup
n→∞

1

n
log rT (n, ε, µ, γ). (16)

Here h(T, µ) is the essential supremum entropy from (14).
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4.3. The lift to the projective tangent bundle preserves entropy. This is a standard
consequence of the following theorem [30].

Theorem 4.1 (Ledrappier-Walters). Let (X,T ), (Y, S) be continuous self-maps of compact
metric spaces and let π : (Y, S)→ (X,T ) be a topological factor map s.t.

∀x ∈ X htop(S, π−1(x)) = 0. (17)

Then, for any S-invariant Borel probability measure ν on Y , h(S, ν) = h(T, π∗ν).

Thus by the variational principle, in the setup of the theorem, htop(T ) = htop(S).

Corollary 4.2. Suppose f ∈ Diff1(M) and f̂ is the canonical extension of f to the projective

bundle M̂ . Then htop(f̂) = htop(f), and for every f̂ -invariant probability measure ν̂ with

projection ν, h(f̂ , ν̂) = h(f, ν) and h(f̂ , ν̂) = h(f, ν).

Proof. We check condition (17) for T = f , S = f̂ , and apply the previous theorem. M̂ is
a topological bundle over M , and its fibers PxM are homeomorphic to circles. The map

f̂ : PxM → Pf(x)M is a homeomorphism. For every ε > 0, one can find partitions ξx
of PxM into a bounded number of arcs with diameter at most ε. It is easy to see that

ξx∨ f̂−1ξf̂ x̂∨· · ·∨ f̂
−n+1ξf̂n−1x̂ has cardinality at most

∑n−1
k=0 Card(ξf̂kx̂) = O(n). It follows

that htop(f̂ , PxM) = 0 for all x. �

4.4. Bowen and Katok entropy formulas on the bundle M̂ . We need a variant of the
Bowen and Katok entropy formulas which uses a different type of Bowen balls, which are

better adapted to the bundle structure of M̂ .

Recall the natural projection π̂ : M̂ → M , π̂(x,E) = x. The fibered ball with center

x̂ ∈ M̂ and scales ε, ε̂ > 0 is the set

B(x̂, ε, ε̂) := {ŷ ∈ M̂ : d(x̂, ŷ) < ε̂ and d(π̂(x̂), π̂(ŷ)) < ε}.

A set S ⊂ M̂ has fibered size ≤ (ε, ε̂) if S ⊂ B(x̂, ε, ε̂) for some x̂.

Suppose f ∈ Diff1(M) and f̂ is the canonical extension of f to M̂ . The fibered (n, ε, ε̂)–

Bowen ball with center x̂ ∈ M̂ , size (ε, ε̂) and length n is the set

Bf̂ (x̂, n, ε, ε̂) := {ŷ ∈ M̂ : ∀0 ≤ k < n, d(f̂k(x̂), f̂k(ŷ)) < ε̂

and d(fk(π̂(x̂)), fk(π̂(ŷ))) < ε}.
(18)

The (n, ε, ε̂)-covering number of a subset Z ⊂ M̂ is the minimal number of fibered (n, ε, ε̂)-
Bowen balls whose union contains Z. It is denoted by

rf̂ (n, ε, ε̂, Z).

Clearly if ε1 ≤ ε2 and ε̂1 ≤ ε̂2, then rf̂ (n, ε1, ε̂1, Z) ≥ rf̂ (n, ε2, ε̂2, Z).

Similarly, given an ergodic measure µ̂ of f̂ and a number 0 < γ < 1, the (n, ε, ε̂, γ)-
covering number of µ̂ is the minimal number of fibered (n, ε, ε̂)-Bowen balls whose union
has µ̂-measure at least γ. It is denoted by

rf̂ (n, ε, ε̂, µ̂, γ).

If ε1 ≤ ε2, ε̂1 ≤ ε̂2, and γ1 ≥ γ2, then rf̂ (n, ε1, ε̂1, µ̂, γ1) ≥ rf̂ (n, ε2, ε̂2, µ̂, γ2).

Proposition 4.3. Fix f ∈ Diff1(M) with canonical lift f̂ . We have:
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(1) Bowen’s formula: For every ε̂ > 0,

htop(f) = lim
ε→0

lim sup
n→∞

1

n
log rf̂ (n, ε, ε̂, M̂) = lim

ε→0
lim inf
n→∞

1

n
log rf̂ (n, ε, ε̂, M̂)

(2) Katok’s formula: Suppose µ is an f -ergodic invariant measure, and let µ̂ be an f̂ -ergodic
lift of µ. Then for every ε̂ > 0 and 0 < γ < 1,

h(f, µ) = lim
ε→0

lim sup
n→∞

1

n
log rf̂ (n, ε, ε̂, µ̂, γ),

If µ is f -invariant, but possibly not ergodic, then for every lift µ̂,

h(f, µ) = lim
γ→1

lim
ε→0

lim sup
n→∞

1

n
log rf̂ (n, ε, ε̂, µ̂, γ),

Proof. We follow the proof of [8, Thm 17]. We need the following claim.

Claim 4.4. For every ε̂, α > 0, there are C, ε∗ > 0 such that

∀ε ∈ (0, ε∗), ∀n ≥ 1, ∀x ∈M, rf̂ (n, ε, ε̂, π̂−1Bf (x, n, ε)) ≤ Ceαn.

Proof of the Claim. Let ε̂, α > 0. Note first that

rf̂ (n, ε, ε̂, π̂−1Bf (x, n, ε))≤rf̂ (n, ε̂, π̂−1Bf (x, n, ε)),

hence it is enough to bound the latter. Since htop(f̂ , π̂−1(x)) = 0, for each x ∈M there is a
smallest integer nx ≥ 1 such that rf̂ (nx, ε̂/2, π̂

−1(x)) ≤ eαnx .

Recall that a set-valued function F from a topological space X to the set of subsets of
a topological set Y is called upper semi-continuous, if for every E ⊂ Y closed, {x ∈ X :

F (x) ∩ E 6= ∅} is closed. The continuity of π̂ and the compactness of M̂ implies that
x 7→ π̂−1(x) is upper semi-continuous.

It follows that if π̂−1(x) is contained in some open set U (say the union of a minimal
cover by fibered Bowen balls), then π̂−1(y) is contained in U for all y sufficiently close to x.
Hence there is an rx > 0 such that

rf̂ (nx, ε̂/2, π̂
−1B(x, rx)) ≤ rf̂ (nx, ε̂/2, π̂

−1(x)) ≤ eαnx . (19)

Using a compactness argument, we see that n∗ := sup{nx : x ∈ M} is finite and that one
can arrange for ε∗ := inf{rx : x ∈M} to be positive.

Let ε ∈ (0, ε∗), n ≥ 1 and x ∈ M . Define t0(x) := 0 and ti+1(x) := ti(x) + nfti(x)x.

Choose i ≥ 0 maximal such that ti(x) ≤ n. Note that 0 ≤ n − ti(x) < n∗. Thus, setting
xj := f tj(x)x and nj := nxj ,

Bf (x, n, ε) =

i−1⋂
j=0

f−tj(x)Bf (xj , nj , ε) ∩ f−ti(x)B(xi, n− ti(x), ε).

Let {z1, . . . , zC} be a (n∗− 1, ε̂/2)-cover of M̂ with cardinality C. For each 0 ≤ j < i, let
{yj1, . . . , yjm} with m ≤ eαnj be the (nj , ε̂/2)-cover of π̂−1B(xj , nj , ε) implied by eq. (19).
Then π̂−1Bf (x, n, ε) is contained in the following union:⋃

k, k0, . . . , ki−1
kj ≤ expαnj

k ≤ C

i−1⋂
j=0

f̂−tj(x)Bf̂ (yjkj , nj , ε̂/2) ∩ f̂−ti(x)Bf̂ (zk, n− ti(x), ε̂/2).
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Any two points contained in the same term of this union are not (n, ε̂)-separated. So the
cardinality of any (n, ε̂)-separated subset of π̂−1Bf (x, n, ε) is bounded by

C ×
i−1∏
j=0

eαnj ≤ Ceαn.

Since a maximal (n, ε̂)–separated subset is the set of centers of a cover by (n, ε̂)–Bowen balls,
rf̂ (n, ε̂, π̂−1Bf (x, n, ε)) ≤ Ceαn, which proves the claim.

The claim implies that for any ε̂, α > 0, there are C, ε∗ > 0 such that, for any 0 < ε ≤ ε∗
and any Z ⊂M ,

rf (n, ε, Z) ≤ rf̂ (n, ε, ε̂, π̂−1Z) ≤ Ceαnrf (n, ε, Z).

The proposition now follows from the classical identities (15) and (16). �

4.5. Curves and Cr reparametrizations. The entropy of a diffeomorphism can be related
to the exponential rate of growth in Cr complexity of the iterates of a local unstable manifold.
To do this we need to control the curvature, and for this purpose it is useful to lift the curve

to projective bundle M̂ and study its iterations there. Here we develop the tools needed for
doing this.

Definition 4.5. A Cr curve σ : [0, 1]→M is regular if its derivative σ′(t) never vanishes.

In this case, it has a canonical lift σ̂ : [0, 1]→ M̂ defined by

σ̂(t) := (σ(t),R.σ′(t)).

Here and throughout, R.σ′(t) ≡ span{σ′(t)} is a linear subspace of TxM . By regularity,
R.σ′(t) is one-dimensional.

Definition 4.6. Fix r ≥ 2 and let ε, ε̂ be two positive numbers. A regular Cr curve σ :
[0, 1]→M has Cr size (or just size) less than (ε, ε̂) if

‖σ‖Cr<ε and ‖σ̂ ‖Cr−1<ε̂.

The curve has diameter less than (ε, ε̂) if

diamM (σ([0, 1])) < ε and diam
M̂

(σ̂([0, 1])) < ε̂.

To say that a curve has finite Cr size implies that it is regular and Cr.

Remark 4.7. If a curve σ is parametrized by length (i.e., ‖σ′(t)‖ = 1 for all t), then it has
size at most (‖σ‖Cr , C‖σ′‖Cr−1) for some constant C > 0 which depends on the choice of

Cr−1 atlas of M̂ used to define Cr−1 size (see section 3.1).

Suppose σ : [0, 1] → M is a curve. If we cut [0, 1] into small intervals [ai, bi] and
reparametrize σ|[ai,bi] by σ◦ψi where ψi[0, 1]→ [ai, bi] is an affine bijection, then ‖σ◦ψi‖Cr ≤
κ‖σ‖Cr , ‖σ̂ ◦ ψi‖Cr ≤ κ‖σ̂‖Cr , where κ = |ai − bi| < 1. Cutting sufficiently finely, we can
obtain covering by pieces with affine reparametrizations with Cr size as small as we wish.

Yomdin measured the Cr complexity of a curve (more generally a set) by counting how
many reparametrized pieces with Cr size less than 1 are needed to cover it. We adapt this
to the projective dynamics:

Definition 4.8. Let σ : [0, 1] → M be a Cr curve. A reparametrization of σ is a non-
constant affine map ψ : [0, 1]→ [0, 1].
A family of reparametrizations of σ over a subset T ⊂ [0, 1] is a collection R of reparametriza-
tions such that T ⊂

⋃
ψ∈R ψ([0, 1]).
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Let f ∈ Diffr(M) and let σ be a regular Cr curve. We will be interested in families of
reparametrizations which remain bounded in Cr size after application of fn for certain n.
Specifically, fix numbers ε, ε̂ > 0, an integer N ≥ 1, and T ⊂ [0, 1].

Definition 4.9. A reparametrization ψ of σ is (Cr, f,N, ε, ε̂)-admissible up to time n, if
there exists an increasing sequence (n0, n1, . . . , n`) such that

• n0 = 0, n` = n, and nj − nj−1 ≤ N for each 1 ≤ j ≤ `,
• for each 0 ≤ j ≤ ` the curve fnj ◦ σ ◦ ψ has Cr size less than (ε, ε̂).

We call the integers nj the admissible times.
A family R of reparametrizations of σ over T is (Cr, f,N, ε, ε̂)-admissible up to time n,

if each ψ ∈ R is (Cr, f,N, ε, ε̂)-admissible up to time n.

Lemma 4.10 (Concatenation of reparametrizations). Let f ∈ Diffr(M), r ≥ 2, and con-
sider a regular Cr curve σ on M , and T ⊂ [0, 1]. Suppose that

• R is a family of reparametrizations of σ over T ;
• R is (Cr, f,N, ε, ε̂)-admissible up to time n;
• for each ψ ∈ R, there is a family Rψ of reparametrizations of fn ◦ σ ◦ ψ over ψ−1(T ),

which is (Cr, f,N, ε, ε̂)-admissible up to time n′.

Then R′ :=
⋃
ψ∈R{ψ ◦ φ : φ ∈ Rψ} is a family of reparameterizations of σ over T , and R′

is (Cr, f,N, ε, ε̂)-admissible up to time n+ n′.

Proof. Since ψ, φ : [0, 1] → [0, 1] are non-constant and affine, ψ ◦ φ : [0, 1] → [0, 1] is non-
constant and affine. Next,⋃

ψ∈R

⋃
φ∈Rψ

(ψ ◦ φ)[0, 1] =
⋃
ψ∈R

ψ
( ⋃
φ∈Rψ

φ[0, 1]
)
⊇
⋃
ψ∈R

ψ(ψ−1(T )) =
⋃
ψ∈R

T ∩ ψ[0, 1] = T,

So R′ is a family of reparametrizations of (σ, σ̂) over T .
To see that R′ is admissible, fix ψ ∈ R, φ ∈ Rψ, and choose admissible times 0 = n0 <

n1 < · · · < n` = n and 0 = n′0 < n′1 < · · · < n′m = n′ for ψ and φ. Let

n`+k := n+ n′k (k = 0, . . . ,m).

We claim that 0 = n0 < n1 < · · · < n`+m = n + n′ are admissible times for ψ ◦ φ. That
the gaps are no larger than N is clear. If j = ` + 1, . . . , ` + m, then fnj ◦ ψ ◦ φ is a
regular curve with size < (ε, ε̂), because φ ∈ Rψ and Rψ is admissible. If j ≤ `, then using
the fact that φ′ = c with c a constant s.t. |c| ≤ 1, we find that ‖fnj ◦ σ ◦ ψ ◦ φ‖Cr ≤
‖fnj ◦ σ ◦ψ‖Cr · |c| ≤ ‖fnj ◦ σ ◦ψ‖Cr . This is less than ε, because of the admissibility of R.

Similarly ‖f̂nj ◦ σ̂ ◦ ψ ◦ φ‖Cr−1 ≤ ‖f̂nj ◦ σ̂ ◦ ψ‖Cr−1 < ε̂. �

Lemma 4.11 (Length of reparametrizations). Let f ∈ Diffr(M), r ≥ 2. For any η > 0 and
N ≥ 1, there exist ε∗ > 0 and a C2-neighborhood U∗ of f in Diffr(M) with the following
property.

Consider g ∈ U∗, ε, ε̂ ∈ (0, ε∗), a regular Cr curve σ, and a reparametrization ϕ of σ
which is (Cr, g,N, ε, ε̂)-admissible up to time n. Then for any (x,E) ∈ σ̂[0, 1],

Length(gn ◦ σ ◦ ϕ) < eηn/10‖Dgnx |E‖Length(σ ◦ ϕ).

Proof. M̂ is compact, so one can find ε∗ > 0 and a small C2-neighborhood U∗ of f in

Diffr(M) such that for all g ∈ U∗ and x̂, ŷ ∈ M̂ satisfying d(x̂, ŷ) < ε∗,

log ‖Dg|ĝk(x̂)‖ ≤ log ‖Dg|ĝk(ŷ‖) + η
10 (0 ≤ k ≤ N).
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Let us consider g ∈ U∗, a curve σ and a reparametrization ϕ as in the statement, with
admissibility times n0, . . . , n`. One gets for any 0 ≤ i < `,

∀(x,E), (y, F ) ∈ ĝni ◦ σ̂[0, 1], ‖Dgni+1−ni
y |F ‖ < e(ni+1−ni)η/10‖Dgni+1−ni

x |E‖,
which immediately implies the conclusion of the lemma. �

Admissible families of reparametrizations yield covers by fibered Bowen balls with size of
the same order of magnitude.

Lemma 4.12 (Bowen covers from admissible reparametrizations). Let f ∈ Diffr(M), r ≥ 2,
T ⊂ [0, 1], and σ be a regular Cr curve. Fix ε∗, ε̂∗ > 0 and N ≥ 1. Let R be a family of
reparametrizations of σ over T which is (Cr, f,N, ε∗, ε̂∗)-admissible up to time n. Then, for
every ε, ε̂ > 0,

rf̂ (n, ε, ε̂, σ̂(T )) ≤
2ε̂∗‖Df̂‖Nsup

min(ε, ε̂)
|R|.

Proof. Let L := ‖Df̂‖sup. L ≥ 1 since f̂ is surjective.

Let ρ :=
min(ε, ε̂)

ε̂∗LN
, and construct a ρ–dense set Cρ ⊂ [0, 1] s.t. |Cρ| ≤ 2

ρ . Set Cρ(R) :=

{(σ̂ ◦ ψ)(t′) : t′ ∈ Cρ, ψ ∈ R} .
Fix ψ ∈ R with admissible times 0 = n0 < n1 < · · · < n` = n. Then nj+1 − nj ≤ N and

the regular curve fnj ◦ σ ◦ ψ has Cr size at most (ε∗, ε̂∗), whence

‖Df̂k ◦ σ ◦ ψ‖sup ≤ ε̂∗Lk−nj for k ∈ [nj , nj+1).

In particular, ‖Df̂k ◦ σ ◦ ψ‖sup ≤ ε̂∗LN for all 0 ≤ k ≤ n.
For every x̂ ∈ σ̂(T ∩ ψ[0, 1]) with x̂ = σ̂ ◦ ψ(t), there is ŷ = σ̂ ◦ ψ(t′) with t′ ∈ Cρ such

that |t− t′| < ρ, whence

d(f̂k(x̂), f̂k(ŷ)) < ρε̂∗L
N and d(fk(π̂(x̂)), fk(π̂(ŷ))) < ρε̂∗L

N for all k = 0, . . . , n.

(the second inequality follows from the first). Notice that ŷ ∈ Cρ(R).

All this shows that σ̂(T ) ⊂
⋃

ŷ∈Cρ(R)

Bf̂ (ŷ, n,ρε̂∗L
N , ρε̂∗L

N ) ⊂
⋃

ŷ∈Cρ(R)

Bf̂ (ŷ, n, ε, ε̂). So

rf̂ (n, ε, ε̂, σ̂(T )) ≤ |Cρ(R)| ≤ |R| · |Cρ| ≤ 2
ρ |R| ≤

2ε̂∗
min(ε,ε̂)‖Df̂‖

N
sup|R|. �

4.6. Yomdin estimates. In this section we discuss a converse to Lemma 4.12: Covers by
Bowen balls generate admissible reparametrizations with cardinality of the same order of
magnitude. This result is much more delicate than Lemma 4.12, and requires Yomdin’s
Theorem [48]. Here is the tool we need from Yomdin’s work, in a form adapted to our setup.
Let

Qr(g) := max(‖g‖Cr , ‖ĝ‖Cr−1) , Qr,N (g) := max
n=1,2,...,N

Qr(g
n). (20)

Theorem 4.13 (Yomdin). Given real numbers 2 ≤ r < ∞ and Q > 0, there are Υ =
Υ(r) > 0 and εY = εY (r,Q) > 0 with the following properties. For every

• Cr diffeomorphism g : M →M such that Qr(g) ≤ Q
• regular Cr curve σ with Cr size at most (ε, ε̂) with 0 < ε, ε̂ ≤ εY ,
• x̂ ∈ σ̂[0, 1], and T := {t ∈ [0, 1] : ĝ(σ̂(t)) ∈ B(ĝ(x̂), ε, ε̂)}.

there exists a family R of reparametrizations of σ over T such that

(1) for every ψ ∈ R, g ◦ σ ◦ ψ is a regular Cr curve with Cr size at most (ε, ε̂),

(2) |R| ≤ Υ‖Dĝ‖1/(r−1)
sup .
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Proof. The reader who will compare this theorem to Yomdin’s original statement in [48]
will find that the two results are nearly the same, except for the following differences: (1)
Yomdin considered the more general case of σ : [0, 1]` → M whereas we restrict to ` = 1;
(2) Yomdin did not specify that all reparametrizations are affine as we do; (3) Our result

allows r to be real, not just an integer; and (4) We use (n, ε, ε̂) balls in M̂ , whereas Yomdin
used (n, ε) balls in M .

In the special case of curves ` = 1, Yomdin’s proof works verbatim with affine reparametriza-
tions, see, e.g., [48, p. 297–298]. The extension to non-integer smoothness is also simple and
well-known, see, e.g., [13, p.133].

To deal with (4), we apply the Yomdin’s original theorem twice, first for (g, σ) on M and

then for the lift (ĝ, σ̂) on M̂ . This yields numbers Υi = Υi(r) (i = 1, 2) and εY = εY (r,Q) >
0 as follows. Suppose 0 < ε, ε̂ ≤ εY , g ∈ Diffr(M), Qr(g) ≤ Q, and σ : [0, 1] → M has Cr

size at most (ε, ε̂). Then

(1) There is a family R1 of reparametrizations of g ◦ σ over T s.t. |R1| ≤ Υ1‖Dg‖1/rsup, and
so that each ψ ∈ R1 is affine, contracting, and ‖g ◦ σ ◦ ψ‖Cr ≤ ε.

(2) There is a family R2 of reparametrizations of ĝ ◦ σ̂ over T s.t. |R2| ≤ Υ2‖Dĝ‖
1
r−1
sup and

so that each ψ ∈ R2 is affine, contracting, and ‖ĝ ◦ σ̂ ◦ ψ‖Cr ≤ ε̂.
Each family of reparametrizations Ri generates a cover of T by the intervals ψ([0, 1]),

ψ ∈ Ri. Without loss of generality, the interiors of these intervals are pairwise disjoint
(otherwise discard some of them and shrink the rest by composing the reparametrizations
by affine contractions). We define

R := {φψ1,ψ2
| (ψ1, ψ2) ∈ R1 ×R2 s.t. ψ1((0, 1)) ∩ ψ2((0, 1)) 6= ∅}

where φψ1,ψ2
: [0, 1] → ψ1([0, 1]) ∩ ψ2([0, 1]) is an affine diffeomorphism. The image of this

new family of reparametrizations contains the intersection of the images ofR1 andR2, hence
R is a family of reparametrizations of σ over T .

As the reparametrizations are affine and contracting, we see that

‖g ◦ σ ◦ φψ1,ψ2
‖Cr ≤ ‖g ◦ σ ◦ ψ1‖Cr<ε

Likewise for ĝ ◦ σ̂ ◦ φψ1,ψ2
. Since ĝ ◦ σ̂ ◦ φψ1,ψ2

coincides with the lift of g ◦ σ ◦ φψ1,ψ2
, item

(1) of the theorem holds.
Next, using the order structure on the interval, it is not difficult to show that |R| ≤

|R1|+ |R2| − 1 ≤ Υ1‖Dg‖1/rsup + Υ2‖Dĝ‖
1
r−1
sup . Obviously ‖Dg‖1/rsup ≤ ‖Dĝ‖1/(r−1)

sup , so item (2)
holds with Υ := Υ1 + Υ2. �

Corollary 4.14 (Existence of admissible reparametrizations). For 2 ≤ r < ∞, Q > 0, let
Υ(r), εY (r,Q) be the constants from Theorem 4.13. Suppose

• g ∈ Diffr(M) and Qr,N (g) < Q,
• σ : [0, 1]→M is a regular curve with Cr size ≤ (ε, ε̂), where 0 < ε, ε̂ < εY ,
• N,n ≥ 1, and T ⊂ [0, 1].

Then there exists a family R of reparametrizations of σ over T , which is (Cr, g,N, ε, ε̂)-
admissible up to the time n, and with cardinality

|R| ≤ C(r, ĝ)rĝ(n, ε, ε̂, ĝ ◦ σ̂(T )),

where C(r, ĝ) = Υ(r)d
n
N e‖DĝN‖

b n
N
c

r−1
sup ‖Dĝn−Nb

n
N c‖

1
r−1
sup .
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Proof. Fix n ≥ 1 and divide with remainder n = qN + p, q ≥ 0, p = 0, . . . , N − 1.
Let ` := rĝ(n, ε, ε̂, ĝ ◦ σ̂(T )), then there exists a cover of ĝ◦σ̂(T ) by ` fibered (n, ε, ε̂)–

Bowen balls Bi := B(ĝ(x̂i), n,ε, ε̂). For each Bi, we will construct an admissible family of
reparametrizations of σ over Ti := (ĝ ◦ σ̂)−1(Bi), and then take the union over i.

Step 0. If p = 0 move to step 1. Otherwise proceed as follows.
Fix 1 ≤ i ≤ `. Yomdin’s theorem for gp, σ and x̂i gives a family of reparametrizations

R0 of σ over

T 0
i := {t ∈ [0, 1] : ĝp(σ̂(t)) ∈ B(ĝp(x̂i), ε, ε̂)},

which is (Cr, g,N, ε, ε̂)-admissible up to time p (the admissible times are 0, p), and such that

|R0| ≤ Υ‖Dĝp‖1/(r−1)
sup . Notice that T 0

i ⊃ Ti. If q = 0, we have a reparametrization up to
time n, and we stop.

Step 1. Fix ψ ∈ R0 and apply Yomdin’s theorem to gN , gp ◦ σ ◦ ψ, and ĝp(x̂i). The result
is a family Rψ of reparametrizations of gp ◦ σ ◦ ψ over

T 1
i (ψ) := {t ∈ [0, 1] : ĝN+p[(σ̂ ◦ ψ)(t)] ∈ B(ĝN+p(x̂i), ε, ε̂)}

which is (Cr, g,N, ε, ε̂)-admissible up to time N (the admissible times are 0, N), and with

cardinality |Rψ| ≤ Υ‖DĝN‖1/(r−1)
sup .

Notice that T 1
i (ψ) ⊃ ψ−1(Ti), therefore the concatenation

R1 := {ψ ◦ φ : ψ ∈ R0, φ ∈ Rψ}

is an admissible family of reparametrizations of σ over Ti up to time N + p, with admissible
times 0, p,N + p and cardinality

|R1| ≤ Υ2‖DĝN‖1/(r−1)
sup ‖Dĝp‖1/(r−1)

sup .

If q = 1, we have a reparametrization up to time n, and we stop.

Otherwise we continue as before to a “step 2” which applies Yomdin’s theorem to gN ,
gN+p ◦ σ ◦ ψ and ĝN+p(x̂i).

Eventually, at step q, we arrive to a family of reparametrizations Rq over Ti which is
admissible up to time qN + p = n, and which has cardinality

|Rq| ≤ Υq+1‖DĝN‖q/(r−1)
sup ‖Dĝp‖1/(r−1)

sup ≡ Υdn/Ne‖DĝN‖
bn/Nc
r−1

sup ‖Dĝn−Nbn/Nc‖1/(r−1)
sup .

Taking the union over i = 1, . . . , `, we obtain the family of reparametrizations over
⋃
Ti ⊃ T ,

as required. �

4.7. Entropy and growth of Cr complexity of unstable manifolds. In this section f
is a Cr diffeomorphism, r > 1, of a surface M and ν is an ergodic hyperbolic probability
measure of saddle type, ie λs := λ−(f, ν) is strictly negative, and λu := λ+(f, ν) is strictly
positive. Pesin’s Unstable Manifold Theorem says that ν–a.e. x belongs to an unstable
manifold Wu(x), which is an injectively immersed Cr curve and is characterized as:

Wu(x) = {y : lim sup
n→+∞

1

n
log d(f−n(x), f−n(y)) < 0}.

A measurable partition ξ is subordinated to the unstable lamination Wu of ν if for ν-
almost every x ∈M , the atom ξ(x) is a neighborhood of x inside the curve Wu(x) and ξ is
increasing: Every atom of f(ξ) is a union of atoms of ξ. By [29], such measurable partitions
exist.
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Since ξ is measurable, Rokhlin’s disintegration theorem applies, and for ν–a.e. x there
exists a probability measure νux on ξ(x) so that

ν =

∫
νuxdν(x).

The family {νux} is not unique, but given ξ, any two families like that are equal outside a
set of x of measure zero. Therefore it is not a serious abuse of terminology to call νux the
conditional measure on ξ(x).

In this section we use the entropy theory of Ledrappier and Young [27] and especially
the following corollary established by Zang (see [50, Remark 1.8]) to show that the entropy
of ν can be bounded by the exponential rate of growth of the Cr complexity of the curve
fn(Wu

loc(x)), as quantified in the previous section using admissible Cr reparametrizations
up to time n.

Theorem 4.15 (Y. Zang). Let us consider f ∈ Diffr(M) with r > 1, an ergodic hyperbolic
probability measure ν, and a system of conditional measures {νux} on local unstable manifolds.
Then for ν-a.e. x ∈M , the measure νux satisfies:

h(f, ν) = inf
γ>0

lim
ε→0

lim inf
n→∞

1

n
log rf (n, ε, νux , γ).

The difference between this result and Ledrappier-Young theory is that Zang assumes Cr

smoothness for some r > 1 and hyperbolicity, whereas Ledrappier and Young assume C2

smoothness, but no hyperbolicity.

Corollary 4.16. Let f ∈ Diff2(M), and let ν be an ergodic hyperbolic measure with a
system of conditional measures {νux} on local unstable manifolds. For any F ⊂ M with
positive ν-measure, for ν-a.e. x0 ∈ F , and for any choice of

• σ : [0, 1]→Wu(x0), a regular Cr curve,
• T ⊂ [0, 1], a set such that νux0

(σ(T ) ∩ F ) > 0,

the following holds. If Rn (n ≥ 1) are families of reparametrizations of σ over T which are
(Cr, f,N, ε∗, ε̂∗)-admissible up to time n for some (any) ε∗, ε̂∗ > 0, N ≥ 1 independent of

n, then h(f, ν) ≤ lim inf
n→∞

1

n
log |Rn|.

Proof. Fix ε∗, ε̂∗, N > 0 and let Rn be families of admissible reparametrizations as in the

statement. Let σ̂ : [0, 1] → M̂ be the canonical lift of the regular curve σ. Fix ε, ε̂ > 0
arbitrarily small. By Lemma 4.12,

rf̂ (n, ε, ε̂, σ̂(T )) ≤ C|Rn|,

where C := C(f, ε, ε̂, ε̂∗, N) :=
2ε̂∗‖Df̂‖Nsup

min(ε,ε̂) is independent of n.

By the definition of rf̂ (n, ε, ε̂, σ̂(T )), there exist x̂1, . . . , x̂` ∈ M̂ with ` ≤ C|Rn| such that⋃`
i=1Bf̂ (x̂i, n, ε, ε̂) ⊃ σ̂(T ). Necessarily

⋃̀
i=1

Bf (π(x̂i), n, ε) ⊃ σ(T ).

In particular, rf (n, ε, σ(T )) ≤ rf̂ (n, ε, ε̂, σ̂(T )) ≤ C|Rn|, whence by Zang’s Theorem, h(f, ν) ≤
lim
ε→0

lim inf
n→∞

1
n log rf (n, ε, σ(T ) ∩ F ) ≤ lim inf

n→∞
1
n log |Rn|. �
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5. Main reparametrization lemmas

This section collects our main technical results on the existence of admissible families of
reparametrizations of pieces of unstable manifolds.

The point is to produce families with cardinality as small as possible. The first result pro-
vides admissible families of reparametrizations of local unstable manifolds, with cardinality
controlled in terms of the entropy. The second result, which is much more subtle, produces
much smaller families of reparametrizations for the subset of the local unstable stable where
there is little expansion up to some iterate, see Definition 6.1.

5.1. Statements. Throghout this section M is a compact smooth surface without bound-

ary, f : M → M is a diffeomorphism, f̂ : M̂ → M̂ is the canonical lift (7), and µ̂ is a

(possibly non-ergodic!) f̂ -invariant probability measure, which projects to an f -invariant
measure µ. Qr,N (f) is given by (20) in the previous section, h is the essential entropy (14),

and λ(f̂) is the asymptotic dilation of f̂ , see (2) and §3.5.
The statements of the following two propositions should be formally understood as stating

the existence of functions N1, n1, γ0, and N0 with values in (0,∞) such that the following
stated properties hold.

Proposition 5.1. Let us consider f ∈ Diffr(M) with 2 ≤ r <∞, an f̂ -invariant probability
µ̂, some real numbers Q, η, γ, ε, ε̂ > 0, and integers N,n. Assume that:

– N ≥ N1(r, f, η),
– 0 < ε, ε̂ ≤ εY (r,Q) (the constant in Yomdin’s theorem 4.13), and
– n ≥ n1(f, µ̂, η, γ,N, ε, ε̂).

Then there are:

– a C2 neighborhood U1(f, η, γ, ε, ε̂, N, n) of f in Diffr(M),

– an open set Û1(f, µ̂, η, γ, ε, ε̂, n) ⊂ M̂ with µ̂(Û1) > 1− γ2 and µ̂(∂Û1) = 0,

such that the following property holds:

(*) For any g ∈ U1 with Qr,N (g) < Q and for any regular curve σ with Cr size at most

(ε, ε̂), there is a family R of reparametrizations over σ̂−1(Û1) s.t.
– R is (Cr, g,N, ε, ε̂)-admissible up to time n,

– |R| ≤ exp
[
n
(
h(f, µ) + λ(f̂)

r−1 + η
)]

,

The following and key estimate applies to the part of the local unstable manifold which
does not (initially) see much expansion. More precisely, suppose g is a diffeomorphism
with canonical lift ĝ, and let α > 0. An orbit segment with length n is a string ϑ :=
(x̂, ĝ(x̂), . . . , ĝn−1(x̂)).

Definition 5.2. An orbit segment ϑ = (x̂, ĝ(x̂), . . . , ĝn−1(x̂)) is α-neutral, if, denoting
x̂ = (x,E), we have ‖Dgmx |E‖ ≤ eαm for every 1 ≤ m ≤ n.

Proposition 5.3. Let us consider f ∈ Diffr(M) with 2 ≤ r <∞, an f̂ -invariant probability
µ̂, some real numbers Q, η, γ, δ > 0, and an integer N . Assume that:

– 0 < γ ≤ γ0(r, f, η),
– N ≥ N0(r, f, η, γ).

Then there are:

– 0 < ε, ε̂ ≤ δ.
– a C2 neighborhood U0(f, µ̂, Q, η, γ, δ,N) of f in Diffr(M),

– an open set Û0(f, µ̂, Q, η, γ, δ,N) ⊂ M̂ with µ̂(Û0) > 1− γ2 and µ̂(∂Û0) = 0,
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– an integer n0 := n0(f, µ̂, Q, η, γ,N, δ) ≥ 1,

such that the following property holds:

(**) For any g ∈ U0 with Qr,N (g) < Q, any regular curve σ with Crsize at most (ε, ε̂), and
any n ≥ n0 there is a family Rn of reparametrizations over

T := σ̂−1

{
x̂ : (x̂, . . . , ĝn−1(x̂)) is η

10 -neutral and
1

n

n−1∑
j=0

δĝj(x̂)(Û0) > 1− γ
}
, (21)

such that
– Rn is (Cr, g,N, ε, ε̂)-admissible up to time n,

– |Rn| ≤ exp
[
n
(
λ(f̂)
r−1 + η

)]
.

Unlike Proposition 5.1, here the upper bound has no entropic term. Indeed, in the C∞

case, the exponential rate of growth tends to zero with η. This low complexity is due to the
neutrality of the piece of σ we are parametrizing.

The proofs of these two propositions may be skipped at the first reading.

5.2. Proof of Proposition 5.1. Let r ∈ [2,∞), f ∈ Diffr(M), Q, η, γ > 0, and consider

a f̂ -invariant probability measure µ̂. Note that the lift f̂ ∈ Diffr−1(M̂) is uniquely defined
by f and depends continuously on f ∈ Diffr(M). Recall the number Υ := Υ(r) given by
Yomdin’s Theorem 4.13.

– Fix an integer N1 = N1(r, f, η) ≥ 1 such that for all N ≥ N1,

Υ < exp(ηN10 ) and 1
N log ‖Df̂N‖sup < λ(f̂) + η

10 . (22)

This is possible since λ(f̂) = limN→+∞
1
N log ‖Df̂N‖sup.

– Fix N ≥ N1.

– Set εY := εY (r,Q) as in Yomdin’s Theorem 4.13.

– Let ε, ε̂ be arbitrary in (0, εY ).

– Pick an integer n1 = n1(f, µ̂, η, γ,N, ε, ε̂) > N using Proposition 4.3(2) such that for any
n ≥ n1,

1
n log rf̂ (n, ε2 ,

ε̂
2 , µ̂, 1− γ

2) < h(f̂ , µ̂) + η
4 , (23)

log ‖Df̂‖Nsup <
nη
10 . (24)

– Let n be some integerlarger than n1.

– Let U1 = U1(f, η,N, n, ε, ε̂) ⊂ Diffr(M) be a small enough C2 neighborhood of f in
Diffr(M) such that the lift ĝ of any g ∈ U1 satisfies:

‖DĝN‖sup ≤ eηN/10‖Df̂N‖sup, ‖Dĝ‖sup ≤ eη/10‖Df̂‖sup, (25)

and so that every fibered (n, ε2 ,
ε̂
2 )-Bowen ball for f̂ is contained in a fibered (n, ε, ε̂)-Bowen

ball for ĝ.

By the regularity of Borel measures, there is a compact set K̂ = K̂(f, µ̂, η, γ, n, ε, ε̂) with

µ̂(K̂) > 1− γ2. By eq. (23) there is a neighborhood Û1 of K̂, such that ĝ(Û1) is contained

in the union of a collection C of fibered (n, ε2 ,
ε̂
2 )-Bowen balls for f̂ with cardinality at

most exp(n(h(f, µ̂) + η
4 )). Passing to a smaller open set containing K̂, we can ensure that

µ̂(∂Û1) = 0.



CONTINUITY PROPERTIES OF LYAPUNOV EXPONENTS 29

Suppose g ∈ U1, Qr,N (g) < Q, and let σ be a regular Cr curve with Cr size at most (ε, ε̂).

By construction, we can cover ĝ(σ̂[0, 1]∩ Û1) using only the (n, ε2 ,
ε̂
2 )-Bowen balls for f̂ from

the collection C. Every ball in C is contained in some (n, ε, ε̂)–Bowen ball for ĝ. Thus,

rĝ(n, ε, ε̂, ĝ(σ̂[0, 1] ∩ Û1)) ≤ exp(n(h(f, µ̂) + η
4 )).

Since ε, ε̂ < εY , we can apply Yomdin theory in the form of Corollary 4.14. The result is

a family R of reparametrizations of σ over σ̂−1Û1 which is (Cr, g,N, ε, ε̂)–admissible up to
time n, and such that

|R| ≤ Υdn/Ne‖DĝN‖
bn/Nc
r−1

sup ‖Dĝ‖
N
r−1
sup exp(n(h(f, µ̂) + η

4 )).

Using (22), (24) and (25), one gets |R| ≤ exp(n(h(f, µ̂) + λ(f̂)
r−1 + η)). �

5.3. Proof of Proposition 5.3. The proof splits into two parts: In steps 0-6 we select the

parameters γ0, N0, ε, ε̂,U0, Û0, n0; In steps 7-11 we build admissible families of reparametriza-
tions as in the statement, and estimate their cardinality.

Fix r ∈ [2,∞), f ∈ Diffr(M), Q, η, δ > 0, and consider an f̂ -invariant probability measure
µ̂. Let Υ := Υ(r) given by Yomdin’s Theorem 4.13. Let

H(t) := t ln 1
t + (1− t) ln 1

1−t . (26)

Step 0 (Preliminary choices). – Choose γ0 = γ0(r, f, η) > 0 such that:

∀0 < γ ≤ γ0, 3Υ ≤ exp( η
10γ ), H(4γ) < η

10 , ‖Df̂‖sup < exp
(
η

10γ

)
. (27)

– Let 0 < γ < γ0 be arbitrary.

– Fix an integer N0 = N0(r, f, γ, η) > max( 1
γ ,

10
η ) such that (cf. (2), §3.5):

∀N ≥ N0,
1
N log ‖Df̂N‖sup < λ(f̂) + η

10 . (28)

– Let N ≥ N0 be arbitrary.

– Fix εY = εY (r,Q) as in Yomdin’s Theorem 4.13.

– Let V = V(f, η,N) be a C2 neighborhood of f in Diffr(M) such that for g ∈ V,

‖Dĝk‖sup ≤ eη/10‖Df̂k‖sup (k = 1, . . . , N). (29)

Step 1 (Decomposition of µ̂). µ̂ projects to an f -invariant probability measure. Let
λ±x := λ±(f, x) denote the Lyapunov exponents. These are well-defined µ-a.e., but since we
are assuming nothing on µ̂ they could be equal on a set of positive measure. Consider the
invariant measurable subset

M# := {x ∈M | λ−x and λ+
x are defined and distinct}.

We decompose µ̂ as a barycenter of two invariant probability measures:

µ̂ = aµ̂# + (1− a)µ̂0,

where a := µ(M#), aµ̂# := µ̂(· ∩ π̂−1(M#)) and (1 − a)µ̂0 := µ̂(· ∩ π̂−1(M \M#)). In the
following we assume a ∈ (0, 1). Indeed, in the special case where a = 0 (resp. a = 1), we
simply write µ̂ = µ̂0 (resp. µ̂ = µ̂#) and the proof of Proposition 5.3 becomes simpler and
can be easily obtained by adapting the general case.

Let µ0 and µ# be the projections of µ̂0, µ̂# to M . These are f -invariant measures; µ0–a.e.
x has two equal Lyapunov exponents; and µ#–a.e. x has two different Lyapunov exponents.
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Step 2 (Compact subsets K̂+, K̂− approximating µ̂#). As in section 3.3, the Oseledets

splitting induces two f̂ -invariant measurable sections x 7→ (x,E±(x)), M → M̂ , defined µ#-
a.e.

– By Lusin’s theorem there exists a compact set K# = K#(f, µ̂, γ,N) inside M# such that
µ#(K#) > 1− γ2, and so that the functions

x 7→
(
x,E+(fk(x))

)
, x 7→

(
x,E−(fk(x))

)
(0 ≤ k ≤ N)

are continuous on K#. By Lemma 3.3, µ̂# is carried by graph(E+)∪graph(E−). Therefore,
the sets

K̂+ := graph(E+|K#
) and K̂− := graph(E−|K#

)

are compact and disjoint, and µ̂#(K̂+ ∪ K̂−) = µ#(K#) > 1− γ2. We set

K̂# := π̂−1(K#) = K̂− t K̂+.

Every z ∈ K# has two lifts: ẑ+ ∈ K̂+, and ẑ− ∈ K̂+. It is easy to see that f̂k(ẑ±) =
(fk(z), E±(fk(z))).

Step 3 (Control of N iterates starting near K̂#).

– There exist ε∗ = ε∗(r, f, η,N) > 0 and a C2 neighborhood U∗ = U∗(f, η,N) of f in
Diffr(M) such that the conclusion of Lemma 4.11 holds.

– Let ε̂ = ε̂(r, f,Q, η, δ,N,K#) := 1
10 min(δ, εY , ε∗,dist(K̂+, K̂−)). Note that the latter

distance is positive since K̂+ and K̂− are disjoint compact sets.

– By construction of K#, there is ε = ε(f, ε̂,K#, N) ∈ (0, ε̂) such that if x, y ∈ K# satisfy
d(x, y) ≤ ε, then

∀0 ≤ k ≤ N, d(f̂k(x̂+), f̂k(ŷ+)) < ε̂
2 and d(f̂k(x̂−), f̂k(ŷ−)) < ε̂

2 .

By the choice of ε̂, if x̂, ŷ ∈ K̂# satisfy d(x̂, ŷ) ≤ ε̂, then either x̂ = x̂+, ŷ = ŷ+ or x̂ =

x̂−, ŷ = ŷ−. Consequently, for any x̂, ŷ ∈ M̂ ,

x̂, ŷ ∈ K̂#

d(x̂, ŷ) ≤ ε̂, d(x, y) ≤ ε

}
=⇒ ∀0 ≤ k ≤ N, d(f̂k(x̂), f̂k(ŷ)) < ε̂

2 .

Below, B(S, β) denotes the β-neighborhood of a subset S.

– Since M̂ is compact, there exist δ∗∗ = δ∗∗(f,N, ε, ε̂) > 0 and a C2 neighborhood U∗∗ =
U∗∗(f,N, ε, ε̂) of f in Diffr(M) such that

g ∈ U∗∗
x̂, ŷ ∈ B(K̂#, δ∗∗)

d(x, y) ≤ ε, d(x̂, ŷ) ≤ ε̂

 =⇒ ∀0 ≤ k ≤ N, d(ĝk(x̂), ĝk(ŷ)) < ε̂. (30)

– Choose an open set Ŵ# = Ŵ#(K̂#, δ∗∗) such that K̂# ⊂ Ŵ# ⊂ B(K̂#, δ∗∗) and µ̂(∂Ŵ#) =
0. By (30), if σ is a regular curve with Cr size at most (ε, ε̂), then for all g ∈ U∗∗,

∀0 ≤ k ≤ N diam(ĝk(σ̂ ∩ Ŵ#)) < ε̂. (31)
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Step 4 (Control of n∗ iterates starting near µ̂0). Recall that µ0 has equal Lyapunov
exponents almost everywhere. By Ruelle’s inequality µ0 must have zero entropy. It follows
that h(f, µ0) = 0.

– By Proposition 4.3, lim
γ→1

lim
ε→0

lim sup
n→∞

1

n
log rf̂ (n, ε, ε̂2 , µ̂0, γ) = 0. If 0 < ε < ε

2 and γ < γ < 1,

then rf̂ (n, ε2 ,
ε̂
2 , µ̂, γ) ≤ rf̂ (n, ε, ε̂2 , µ̂0, γ). It follows that

lim sup
n→∞

1

n
log rf̂ (n, ε2 ,

ε̂
2 , µ̂0, γ) = 0.

So we can find a large integer n∗ = n∗(f, µ̂, η, γ, ε, ε̂, N) that is a multiple of N and a

compact set K̂0 := K̂0(f̂ , µ̂, η, γ, ε, ε̂, n∗) ⊂ M̂ with µ̂0(K̂0) > 1− γ2, s.t.

1
n∗

log rf̂ (n∗,
ε
2 ,

ε̂
2 , f̂(K̂0)) < η

10 .

– By continuity, we can choose a neighborhood Ŵ0 = Ŵ0(f, η, ε, ε̂, n∗, K̂0) of K̂0 with

µ̂(∂Ŵ0) = 0, and a C2 neighborhood U∗∗∗ = U∗∗∗(f, η, ε, ε̂, n∗, K̂0) of f in Diffr(M) so that:

∀g ∈ U∗∗∗, 1
n∗

log rĝ(n∗, ε, ε̂, ĝ(Ŵ0)) < η
10 . (32)

Step 5 (Û0 and a decomposition of long typical orbit segments). Let

Û0 := Ŵ0 ∪ Ŵ#.

Then Û0 = Û0(r, f, µ̂, Q, η, γ, δ,N), µ̂(Û0) > 1− γ2 and µ̂(∂Û0) = 0.

Claim 5.4. Suppose n > n∗/γ. Any orbit segment (x̂, ĝ(x̂) . . . , ĝn−1(x̂)) which spends a

proportion of time larger than 1− γ in Û0 can be decomposed into:

(a) orbit segments of length n∗ with initial point in Ŵ0,

(b) orbit segments of length N with initial point in Ŵ#,
(c) orbit segments of length 1, of total number less than 2γn.

(Ŵ0 and Ŵ# are not necessarily disjoint, so the decomposition may not be unique.)

Proof. A decomposition as in the statement is completely characterized by the increasing
sequence of times (n0, n1, . . . , n`), where ĝni(x̂) is the initial point of the i-th segment. (So
n0 = 0, n` = n.)

We set n0 = 0 and define the sequence inductively. Assuming that ni < n has already
been defined, we set

(a) ni+1 := ni + n∗ if ni + n∗ ≤ n and ĝni(x̂) ∈ Ŵ0 \ Ŵ#,

(b) ni+1 := ni +N if ni +N ≤ n and ĝni(x̂) ∈ Ŵ#,
(c) ni+1 := ni + 1 otherwise.

We stop when ni+1 = n.

Since n∗ ≥ N , the times ni such that ĝni(x̂) ∈ Û0 but which are not associated to case
(a) or (b) must satisfy ni > n − n∗. Since n > n∗/γ and since (x̂, . . . , ĝn−1(x̂)) spends a

proportion of time larger than 1− γ in Û0, the set of times ni corresponding to case (c) has
size smaller than 2γn. �

The sequence of times θ := (n0, n1, . . . , n`) obtained in the previous claim is called type
of a decomposition. Recall that H(t) = t ln 1

t + (1− t) ln 1
1−t .

Claim 5.5. There exists nH := nH(γ) such that for all n > nH , the number of possible
types θ is less than exp(H(4γ)n).
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Proof. By our choices of N,N0 and n∗, we have n∗, N > 1/γ. Hence there can be at most
γn times ni such that ni+1 − ni ∈ {n∗, N}. Since there are also at most 2γn times ni such
that ni+1 − ni = 1, we must have ` ≤ b3γnc.

The number of types is thus bounded by
∑b3γnc
`=1

(
n
`−1

)
. Since 3γ < 1

2 , this is less than

3γn
(

n
b3γnc

)
, which by de Moivre’s approximation is less than exp[nH(3γ) + o(n)]. Since

4γ < 1
2 , we have H(3γ) < H(4γ), and the claim follows. �

Step 6 (Definition of U0, n0). We fix the last parameters of our construction. Recall the
C2 neighborhoods of f in Diffr(M) introduced in Lemma 4.11 and eqs. (29), (30), (32).

– Let U0 := U0(r, f, µ̂, Q, η, γ, ε, ε̂, n∗, N) := V ∩ U∗ ∩ U∗∗ ∩ U∗∗∗.

– Define n0 = n0(f, µ̂, η, γ, δ,N) := max{n∗/γ, nH}.

Step 7 (An inductive scheme). Now we fix some g ∈ U0 with Qr,N (g) < Q, a regular Cr

curve σ with Cr size at most (ε, ε̂) and n > n0. We need to bound the minimal cardinality
of a family Rn of reparametrizations of σ which are (Cr, g,N, ε, ε̂)-admissible up to time n,
over the set

T = σ̂−1

{
x̂ : (x̂, ĝ(x̂), . . . , ĝn−1(x̂)) is η

10 -neutral and
1

n

n−1∑
j=0

δĝj(x̂)(Û0) ≥ 1− γ
}
.

For each type θ = (n0, . . . , n`), we introduce the corresponding subset

Tθ := T ∩ σ̂−1

{
x̂ : (x̂, ĝ(x̂), . . . , ĝn−1(x̂)) has type θ

}
.

Then T is the union of Tθ over all possible type θ.
Fixed some type θ = (n0, . . . , n`). We will build by induction a familyRθni of reparametriza-

tions ψ of σ over Tθ satisfying the following properties:

(i) admissibility: Rθni is (Cr, g,N, ε, ε̂)-admissible up to time ni;
(ii) small cardinality: if i ≥ 1,

|Rθni | ≤ exp
(

(λ(f̂)
r−1 + 7η

10 )ni

)
|Rθni−1

| when ni − ni−1 ≥ N,

|Rθni | ≤ exp(η/γ) |Rθni−1
| otherwise;

(iii) small length: for each ψ ∈ Rθni and any (x,E) ∈ σ̂ ◦ ψ([0, 1]),

Length(gni ◦ σ ◦ ψ) < εe−
η
10ni‖Dgnix |E‖.

At the end of the construction, one obtains a family Rθn := Rθn` over Tθ which is admissible
up to time n. Then one can take the union over all θ and finish the construction.

We begin the construction by defining Rθ0 := {Id}: This meets our requirements because
n0 = 0 and σ has Cr size at most (ε, ε̂).

Now we assume by induction that Rθni has been constructed, and we build Rθni+1
. The

construction uses the concatenation procedure described in Lemma 4.10. For each ψ ∈ Rθni
we have to build a family Rψ of reparametrizations of the curve gni ◦ σ ◦ ψ over ψ−1(Tθ)
with the following properties:

(i’) Rψ is (Cr, g,N, ε, ε̂)-admissible up to time ni+1 − ni,
(ii’) log |Rψ| is bounded by (λ(f̂)

r−1 + 7η
10 )(ni+1−ni) if ni+1−ni ≥ N and by η

γ otherwise,
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(iii’) for each ϕ ∈ Rψ and (x,E) ∈ σ̂ ◦ ψ ◦ ϕ([0, 1]),

Length(gni+1 ◦ σ ◦ ψ ◦ ϕ) < εe−
η
10ni+1‖Dgni+1

x |E‖.

The family Rθni+1
:= {ψ ◦ ϕ, ψ ∈ Rθni ϕ ∈ Rψ} then satisfies (i–iii) above.

– Given a type θ = (n0, . . . , n`), an integer i ∈ {0, . . . , ` − 1} and a reparametrization
ψ ∈ Rθni , the construction of the families Rψ depends on which of the following cases from
Claim 5.4 holds for ni:

Case (a): ĝni(x̂) ∈ Ŵ0 and ni+1 − ni = n∗.

Case (b): ĝni(x̂) ∈ Ŵ# and ni+1 − ni = N .
Case (c): ni+1 − ni = 1.

The three cases are discussed in steps 8-10 below.
In order to simplify the notations, we set

σ′ := gni ◦ σ ◦ ψ and T ′ := ψ−1(Tθ).

Note that σ′ has Cr size at most (ε, ε̂); moreover the induction assumption (iii) gives for
each (x,E) ∈ ĝ−ni ◦ σ̂′[0, 1],

Length(σ′) < εe−
η
10ni‖Dgnix |E‖. (33)

Step 8 (Case (a)): In this case ni+1 − ni = n∗ and σ̂′(T ′) ⊂ Ŵ0. By eq. (32),

rĝ(n∗, ε, ε̂, ĝ ◦ σ̂′(T ′)) ≤ eηn∗/10. (34)

The integer n∗ is a multiple of N . Corollary 4.14 of Yomdin’s theorem yields a family R0
ψ of

reparametrizations of σ′ over T ′ which is (Cr, g,N, ε, ε̂)-admissible up to time n∗ and with
cardinality:

|R0
ψ| ≤ Υn∗/N‖DĝN‖n∗/(r−1)N

sup rĝ(n∗, ε, ε̂, ĝ ◦ σ̂′(T ′)).

Combining with (27), (28), (29), (34) and N > 1
γ , we get log |R0

ψ| ≤ (λ(f̂)
r−1 + 4η

10 )n∗.

The conclusion of Lemma 4.11, together with (33) gives that, for each ϕ ∈ R0
ψ and

(x,E) ∈ ĝ−ni ◦ σ̂′([0, 1]),

Length(gn∗ ◦ σ′ ◦ ϕ) < εe−
η
10ni+1‖Dxg

ni+1 |E‖ · e
η
5n∗ . (35)

In order to compensate for the factor e
η
5n∗ , we subdivide [0, 1] into intervals I1, . . . Im with

length less or equal to e−
η
5n∗ . Since n∗ ≥ N ≥ N0 >

10
η , e

η
10n∗ > 2, whence

m ≤ de
η
5n∗e< 2e

η
5n∗ < e

3η
10n∗ .

Let χj : [0, 1]→ Ij be affine bijections, and let

Rψ := {ϕ ◦ χj , ϕ ∈ R0
ψ, j = 1, . . . ,m}.

The cardinality of log |Rψ| is thus bounded as required by (λ(f̂)
r−1 + 7η

10 )n∗, so (ii’) holds.

Property (iii’) follows from (35) and the choice of m and χj , and (i’) follows from Lemma
4.10.
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Step 9 (Case (b)): In this case ni+1−ni = N and σ̂′(T ′) ⊂ Ŵ#. We combine Lemma 4.11
with (33) and get that, for each (x,E) ∈ ĝ−ni ◦ σ̂′([0, 1]),

Length(gN ◦ σ′) < εe−
η
10ni+1‖Dxg

ni+1 |E‖ · e
η
5N .

One can thus subdivide [0, 1] into intervals I1, . . . , Im with m ≤ de
η
5Ne ≤ e

3η
10N , such that:

Length(gN ◦ σ′(Ij)) < εe−
η
10ni+1‖Dxg

ni+1 |E‖ for (x,E) ∈ ĝ−ni ◦ σ̂′([0, 1]). (36)

We can focus on the intervals Ij such that Ij ∩ T ′ 6= ∅. Fixing such an Ij , there exists
x̂ = (x,E) ∈ (ĝ−ni ◦ σ̂′)(Ij), such that (x̂, ĝ(x̂), . . . , ĝni+1−1(x̂)) is η

10 -neutral. In particular,

‖Dxg
ni+1 |E‖ ≤ e

η
10ni+1 , whence

Length(gN ◦ σ′(Ij)) < εe−
η
10ni+1e

η
10ni+1 = ε.

On the other hand since σ̂′(T ′) ⊂ Ŵ#, eq. (31) implies:

diam(ĝN ◦ σ̂′(T ′ ∩ Ij)) < ε̂.

We have shown that the image ĝN ◦ σ̂′(T ′ ∩ Ij) is contained in a (ε, ε̂)-ball. We can apply
Yomdin’s Theorem 4.13 and obtain a family Rj of reparametrizations ϕ of σ′ over T ′ ∩ Ij
with cardinality at most Υ‖DĝN‖1/(r−1)

sup such that each curve gN ◦ σ′ ◦ ϕ has Cr size at
most (ε, ε̂). Consequently, Rj is (Cr, g,N, ε, ε̂)-admissible up to time N .

The union Rψ :=
⋃
j Rj is thus a family of reparametrizations ϕ of σ′ over T ′ which is

(Cr, g,N, ε, ε̂)-admissible up to time N . By (36) they satisfy the bound (iii’) of the induction
scheme (Step 7) on the length of σ′ ◦ ϕ. Combining the bounds on m and |Rj |, one bounds
the cardinality of Rψ by

|Rψ| < Υe
3η
10N‖DĝN‖1/(r−1)

sup .

which by (27), (29) and N > 1
γ , is bounded by exp(λ(f̂)

r−1N + 6η
10N) as required.

Step 10 (Case (c)): In this case ni+1 − ni = 1. By our assumptions on σ′, we have

Length(σ̂′) < ε̂ and Length(σ′) < εe−
η
10ni‖Dgnix |E‖ for each (x,E) ∈ ĝ−ni ◦ σ̂′[0, 1]. One

can thus decompose [0, 1] into intervals I1, . . . , Im with m ≤ d‖Dĝ‖supe+ de
η
10 ‖Dg‖supe − 1

such that:

(a) Length(g ◦ σ′(Ij)) < εe−
η
10ni+1‖Dgni+1

x |E‖ for each (x,E) ∈ ĝ−ni ◦ σ̂′[0, 1],
(b) Length(ĝ ◦ σ̂′(Ij)) < ε̂.

In particular, for each 1 ≤ j ≤ m, the image ĝ ◦ σ̂′(Ij) is contained in a (ε, ε̂)-ball. We can
thus apply Yomdin’s Theorem 4.13 and obtain a family Rj of reparametrizations of σ′ over

Ij which is (Cr, g, 1, ε, ε̂)-admissible up to time 1 and with cardinality at most Υ‖Dĝ‖1/(r−1)
sup .

The union Rψ :=
⋃
j Rj is thus a family of reparametrizations ϕ of σ′ over [0, 1] which is

(Cr, g,N, ε, ε̂)-admissible up to time 1. By property (a) above they satisfy the bound (iii’)

of the induction scheme (Step 7) on the length of σ′ ◦ ϕ. Note that m ≤ 3e
η
10 ‖Dĝ‖1/(r−1)

sup ,
hence Rψ has cardinality smaller than

|Rψ| < 3Υe
η
10 ‖Dĝ‖1+1/(r−1)

sup ,

which by (27) and (29), is bounded by exp(η/γ).



CONTINUITY PROPERTIES OF LYAPUNOV EXPONENTS 35

Step 11 (Completion of the proof). Steps 7–10 provide the construction of the family
Rθn for each type θ. The inductive bounds (ii) for |Rθni |/|R

θ
ni−1
| imply

|Rθn| ≤ exp

(
λ(f̂)

r − 1
n+

7η

10
n+

η

γ
Ac(θ)

)
,

where Ac(θ) is the number of times ni belongs to case (c) for the type θ.
LetRn denote the union ofRθn over all possible types θ. This is a family of reparametriza-

tions of σ over T =
⋃
θ Tθ, which is (Cr, g,N, ε, ε̂)-admissible up to time n.

Since Ac(θ) ≤ 2γn for all θ (by Claim 5.4), since the number of types θ is bounded by
exp(H(4γ)n) (by Claim 5.5), and since H(4γ) < η

10 (by our choice of γ, see (27)), this gives

|Rn| ≤ exp

(
λ(f̂)

r − 1
n+

7η

10
n+

η

10γ
· 2γn+H(4γ)n

)
≤ exp

(
λ(f̂)

r − 1
n+

7η

10
n+

η

5
n+

η

10
n

)
= exp

(
λ(f̂)

r − 1
n+ ηn

)
.

This concludes the proof of Proposition 5.3. �

6. The neutral decomposition

Let f be a homeomorphism on a compact metric space X. We denote the point mass
measure at x ∈ X by δx. Given N ⊂ N, let

µN
x,n :=

1

n

∑
j∈[0,n)∩N

δfj(x).

The weak-∗ limit points of (µN
x,n)n≥1 are called the N-empirical measures of x.

Definition 6.1. Suppose ϕ : X → R is continuous, α > 0 and L ≥ 1. An (α,L)-neutral
block of (x, f, ϕ) is an interval of integers (n0, n0 + 1, . . . , n1 − 1) s.t.

• n1 − n0 ≥ L, and
• ϕ(fn0(x)) + ϕ(fn0+1(x)) + · · ·+ ϕ(fn−1(x)) ≤ α · (n− n0) for all n0 < n ≤ n1.

We denote by Nα,L(x, f, ϕ) the union of the (α,L)-neutral blocks of (x, f, ϕ).

Any interval of integers which is a union of two neutral blocks is still a neutral block.
Therefore, if lim inf

n→∞
1
n

∑n−1
k=0 ϕ(fk(x)), lim inf

n→∞
1
n

∑−1
k=−n ϕ(fk(x)) > α, then Nα,L(x, f, ϕ) is

a disjoint union of (finite) maximal neutral blocks.

Proposition 6.2. Let f, f1, f2, . . . be homeomorphisms of a compact metric space X, and
let ϕ,ϕ1, ϕ2, . . . be continuous functions on X such that fk → f and ϕk → ϕ uniformly.
For each k, let νk be an ergodic probability for fk such that

∫
ϕkdνk ≥ 0. Then there exist

a subsequence (νki) and (positive) measures m0,m1 such that:

(i) Both m0 and m1 are f -invariant.
(ii) The subsequence (νki) converges weak-∗ to m0 +m1.

(iii) For any neighborhoods V = (V0, V1) of m0,m1, if α < α∗(V ), L ≥ L∗(V ), i ≥
i∗(V, α, L), then for νki-a.e. x, the Nα,L(x, fki , ϕki)-empirical measures belong to V0,
and the (N \Nα,L(x, fki , ϕki))-empirical measures belong to V1.

(iv)
∫
ϕdm0 = 0.

(v) For m1-almost every point x, the limit of 1
n

∑n−1
j=0 ϕ(f j(x)) is positive.

Remark 6.3. The measuresm0,m1 are not normalized, but there are f -invariant probabilities
µ0, µ1 such that m0 = (1− β)µ0 and m1 = βµ1, where β = m1(X).
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Example 1. The following constructions show that the decomposition m0 + m1 depends
on the sequence (νk) and not just on its limit.

Let X = {−2, 1, 2}Z, fk = f = the left shift, and ϕk(x) := ϕ(x) = x0. For each k ≥ 1,
consider the periodic sequence p(k) with period

−2, . . . ,−2︸ ︷︷ ︸
k

,+2, . . . ,+2︸ ︷︷ ︸
k

,+1, . . . ,+1︸ ︷︷ ︸
k

.

Let νk be the unique shift invariant probability measure on the orbit of p(k). Let δs := the
probability measure concentrated on (· · · s, s, s · · · ). It is easy to see that νk converges to
µ := 1

3 (δ−2 + δ+1 + δ+2)

If 0 < α < 1, L ≥ 1, and k ≥ L/2, then the maximal (α,L)-neutral blocks of (p(k), fk, ϕk)
are [n0, n1) ∩ Z where

(p(k)
n0
, . . . , p

(k)
n1−1) = (−2, . . . ,−2︸ ︷︷ ︸

k

,+2, . . . ,+2︸ ︷︷ ︸
k

,+1, . . . ,+1︸ ︷︷ ︸
`

),

with ` = b 2α
1−αkc. So m0 = 1

3 (δ−2 + δ+2) and m1 = 1
3δ+1.

Now consider the measures ν′k obtained from the periodic sequence q(k) with period
−2, . . . ,−2︸ ︷︷ ︸

k

,+1, . . . ,+1︸ ︷︷ ︸
k

,+2, . . . ,+2︸ ︷︷ ︸
k

. These measures also converge to µ. But now, if 0 <

α < 1, L ≥ 1 and k > L/2, then the maximal neutral blocks of (q(k), fk, ϕk) are [n0, n1)∩Z
where

(q(k)
n0
, . . . , q

(k)
n1−1) = (−2, . . . ,−2︸ ︷︷ ︸

k

,+1, . . . ,+1︸ ︷︷ ︸
k

,+2, . . . ,+2︸ ︷︷ ︸
`

),

with ` = b 2α+1
2−α kc. So m0 = 1

3δ−2 + 1
3δ+1 + 1

6δ+2 and m1 = 1
6δ+2.

Example 2: Suppose (fk) converges to f in Diffr(M), and νk are fk-invariant measures
which converge to an f -invariant measure µ. Assume the limiting measure µ := lim νk is
ergodic and hyperbolic of saddle type. Let λ−µ < 0, λ+

µ be the Lyapunov exponents of µ.
Consider the unstable lifts ν̂uk to the fibered bundle. Passing to a subsequence, we may

assume that ν̂uk converge weak-∗ to a limit µ̂ (a lift of µ). Let ϕk : M̂ → R be ϕk(x,E) :=

log ‖(Dfk)x|E‖. We apply Proposition 6.2 to f̂k, ϕk, ν̂
u
k , obtaining a decomposition µ̂ =

m0 +m1 = (1− β)µ̂0 + βµ̂1. On the other hand, since µ is ergodic and hyperbolic,

µ̂ = aµ̂− + (1− a)µ̂+

where µ̂± are the unique lifts of µ to graph(E±). So µ̂0, µ̂1 � µ̂+ + µ̂−, whence by the
ergodicity of µ̂±, µ̂0, µ̂1 are convex combinations of µ̂+, µ̂−. By (v), µ̂1 has no µ̂− component,
so µ̂1 = µ̂+. By (iv), if µ̂0 = bµ̂−+(1−b)µ̂+ then necessarily 0 =

∫
ϕdµ̂0 = bλ−µ +(1−b)λ+

µ ,

whence b = λ+
µ /(λ

+
µ + |λ−µ |). It follows that

µ̂1 = µ̂+, µ̂0 =
λ+
µ µ̂
− + |λ−µ |µ̂+

λ+
µ + |λ−µ |

.

To finish the calculation of m0 = (1 − β)µ̂0,m1 = βµ̂1 it remains to determine β. To
do this, we substitute the formulas for µ̂0, µ̂1 in the identity aµ̂− + (1 − a)µ̂+ = µ̂ =
(1 − β)µ̂0 + βµ̂1. Since µ̂± are ergodic, the coefficient of µ̂− on both sides must be equal,

which leads to β = 1 − aλ
+
µ+|λ−µ |
λ+
µ

. Looking at case (2) of Theorem 3.6, we recognize that

β =
1

λ+(f, µ)
lim
k→∞

λ+(fk, νk).
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Proof of Proposition 6.2. Without loss of generality, (νk) converges weak-∗ to an f -invariant
probability measure µ (otherwise pass to a suitable subsequence). We abbreviate Nk

α,L(x) :=

Nα,L(x, fk, ϕk) ⊂ Z and define

Nk
α,L := {x ∈ X : 0 ∈ Nk

α,L(x)}. (37)

This is a measurable set. We call it the (α,L)-neutral set of (ϕk, fk). Let χkα,L denote the

indicator function of Nk
α,L. Since νk is ergodic, for νk-a.e. point x,

lim
n→∞

µ
Nk
α,L(x)

x,n = χkα,Lνk in the weak-∗ topology.

Claim 6.4. There exists an increasing sequence of integers (ki) such that

∀(α,L) ∈ (0, 1]× N lim
i→∞

χkiα,Lνki exists

in the weak-∗ topology. We write these limits as mα,L.

Proof of the claim. Fix some countable dense set E ⊂ (0, 1]. By compactness and a diagonal
argument, there is an increasing sequence ki →∞ such that the following limits exist in the
weak-∗ topology:

∀(α,L) ∈ E × N lim
p→∞

χkiα,Lνki = mα,L.

Let us check that this can be extended to all (α,L) ∈ (0, 1] × N, maybe after pass-
ing to a subsequence. Indeed, select a countable family (uj) of nonnegative continuous
functions which generate a countable dense algebra over Q in C0(M) (the space of con-
tinuous real-valued functions on M with the supremum norm). Fix L and uj . The func-
tion α ∈ E 7→ mα,L(uj) is non-decreasing on E, and therefore extends uniquely to a left-
continuous function α ∈ [0, 1] → m̃α,L(uj). The discontinuity points form a countable set
DL,j . Again by monotonicity with respect to α,

mα,L(uj) = m̃α,L(uj) = lim
i
χkiα,Lνki(uj)

at every α ∈ [0, 1) \DL,j . By a further extraction of a subsequence, we ensure that χα,Lνki
converge for all (α,L) in the countable set

⋃
L∈N,j≥1DL,j . �

We return to the proof of Proposition 5.2. To simplify notation, from now on (νk) will
denote the subsequence (νki).

The following weak-∗ limit exists by monotonicity:

m0 := lim
α→ 0
L→∞

mα,L = inf
α>0,L≥1

mα,L.

We set m1 := µ−m0. Since 0 ≤ χkα,Lνk ≤ νk, it follows that 0 ≤ m0 ≤ µ so that both m0

and m1 are positive measures.

Neutral blocks have length at least L, therefore for every continuous function u, we have
(χkα,Lνk)(u− u ◦ fk) ≤ (2/L)‖u‖sup. Since u ◦ f − u ◦ fk → 0 uniformly, mα,L(u− u ◦ f) ≤
(2/L)‖u‖sup. It follows that m0 is f -invariant. So is m1 = µ −m0. This proves items (i)
and (ii).

Item (iii) is a simple consequence of the construction.

We turn to (iv). For any function ψ : X → R, we define

Sknψ :=

n−1∑
j=0

ψ ◦ f jk and S∞n ψ :=

n−1∑
j=0

ψ ◦ f j .
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For every x, we decompose Nk
α,L(x) ∩ [0,∞) into maximal disjoint intervals:

Nk
α,L(x) ∩ [0,∞) =

⊔
i≥1

[ai, ai + bi).

Since νk is ergodic, for νk-a.e. x,

(χkα,Lνk)(ϕk) =

∫
χkα,Lϕk dνk = lim

n→∞

1

n
Skn(χkα,Lϕk)(x)

= lim
j→∞

1

aj + bj

∑
i≤j

(
Skbiϕk

)
(faik (x)).

Each interval [ai, ai + bi) is a maximal (α,L)-neutral block except possibly the initial one,
if it contains 0. The first block contributes C0(x)/n→ 0 to the limit. The other blocks are
all maximal neutral blocks, and satisfy the bounds

α(bi + 1)− ϕk(fai+bik (x)) < (Skbiϕk)(faik (x)) ≤ αbi.

The first inequality comes from the maximality of the block, the second is the definition of
neutrality. Summing over i = 1, . . . , j, we obtain the bounds

C0(x)+α
( ∑

1<i≤j
bi + j

)
− j sup

x,k
ϕk(x) < (Skbj+ajχα,Lϕk)(x) ≤ C0(x)+α

∑
1<i≤j

bi.

Since each such complete neutral block has length at least L, there are j ≤ n/L maximal
(α,L)-blocks in [0, aj + bj). Dividing by aj + bj ≥

∑
i≤j bi and discarding some nonnegative

terms from the lower bound, we obtain in the limit j →∞,

− sup
x,k

ϕk(x)/L < (χα,Lνk)(ϕk) ≤ α.

Passing to the limit α → 0, L → ∞ and recalling that ϕk → ϕ uniformly, we obtain item
(iv): m0(ϕ) = 0.

We prove item (v) by contradiction, assuming that

γ :=
1

2
m1({x : lim

n→∞
(1/n)(S∞n ϕ)(x) ≤ 0}) > 0.

There are α0 > 0, L0 <∞ such that, for 0 < α ≤ α0, L ≥ L0,

|mα,L(X)−m0(X)| < γ

100
. (38)

Given K ≥ 0, let

V k0 (K) := {x ∈M |∃0 ≤ a ≤ K s.t. [−a, 0] ∩ Z is (α0, L0)-neutral for (x, fk, ϕk)},
W∞0 (K) := {x ∈M |∃0 ≤ a ≤ K s.t. [−a, 0] ∩ Z is (α0/2, L0)-neutral for (x, f, ϕ)}.

These are closed sets, and W∞0 (K) ⊂ V k0 (K) for all large k. We can ensure that α0/2 is not
a member of the countable set of α’s such that

µ ({x ∈ X : ∃n ≥ 1 (1/n)S∞n ϕ(x) = α}) > 0.

In particular, µ(∂W∞0 (K)) = 0 for each integer K ≥ 1. Therefore, for any K ≥ 1,

lim
α,L

lim
k
νk(W∞0 (K) \Nk

α,L) = lim
α,L

lim
k

[
(1− χkα,L)νk

]
(W∞0 (K)) = m1(W∞0 (K)). (39)

By the ergodic theorem, for µ-a.e. x ∈ M such that limn→∞(1/n)S∞n ϕ(x) ≤ 0, it is also

the case that limn→∞
1
n

∑0
j=−n+1 ϕ(f j(x)) ≤ 0. For such x, the Pliss lemma [40], [32, Ch.
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IV.11] yields arbitrarily large integers a ≥ 0 such that [−a, 0] is α0/2-neutral. In particular,
fixing K0 ≥ L0 large enough,

m1(W∞0 (K0)) > γ.

Hence there exist 0 < α1 ≤ α0 and L1 > max(200K0/γ, L0) such that for all k large enough,

νk(V k0 (K0) \Nk
α1,L1

) ≥ νk(W∞0 (K0) \Nk
α1,L1

) > γ. (40)

Since νk is ergodic, for νk-a.e. x, the set N1 := Nk
α1,L1

(x) of visits under iterations of fk
to the (α1, L1)-neutral set Nk

α1,L1
has density

d(N1) := lim
n→∞

|N1 ∩ [0, n− 1]|
n

= νk(Nk
α1,L1

) −−−−→
k→∞

mα1,L1(X).

So by eq. (38), for k large enough and νk-a.e. x,

d(N1) > m0(X)− γ/100. (41)

Similarly, the set N0 := Nk
α0,L0

(x) has density

d(N0) = νk(Nk
α0,L0

) < m0(X) + γ/100. (42)

for k large enough and νk-a.e. x. Finally, let V denotes the set of j such that f j(x) ∈
V k0 (K0) \Nk

α1,L1
. Then by eq. (40), for k large enough and νk-a.e. x,

d(V) = νk(V k0 (K0) \Nk
α1,L1

) > γ. (43)

We will show that (41)–(43) lead to a contradiction.
By definition of V k0 (K0), each j ∈ V is the last element of an (α0, L0)-neutral block I(j)

with length ≤ K0 (we do not claim that this block is maximal). Let

I :=
⋃
{I(j) : j ∈ V, I(j) ∩N1 = ∅} , I′ :=

⋃
{I(j) : j ∈ V, I(j) ∩N1 6= ∅}.

We claim that the upper asymptotic density d(I′) := lim sup 1
n |I
′ ∩ [0, n)| is less than

γ/100. To see this note that if j ∈ V and I(j) ∩ N1 6= ∅, then j 6∈ N1 (by definition of
V) and since L0 < L1, I(j) contains the last element of a maximal sub-interval of N1. The
interval with length 2K0 centered at this last element must contain I(j). Since the number
of maximal sub-intervals of N1 ∩ [0, n] is bounded by n/L1, the upper asymptotic density of
I′ is no more than 2K0/L1 < γ/100.

It follows that the upper asymptotic density of I is at least

d(I) ≥ d(V)− γ

100
>

99

100
γ,

and since N1 and I are disjoint d(N1 ∪ I) = d(N1) + d(I) > m0(X) + 98
100γ.

But N1 and I are a union of (α0, L0)-neutral blocks, so N1∪I ⊂ N0, whence by eq. (42),
d(N1 ∪ I) < m0(X) + γ/100. This contradiction proves item (v). �

7. Proof of the main theorem

We recall the notation λ̂(f̂ , µ̂) :=
∫
M̂

log ‖Dfx|E‖dµ̂(x,E). In this section, we prove the
following stronger version of Theorem C.

Theorem D. Fix a real number r > 2. For every k ≥ 1, let fk ∈ Diffr(M) and let νk be an

fk-ergodic measure. Let ν̂k be an f̂k-ergodic lift satisfying λ̂(f̂k, ν̂k) = λ+(fk, νk) such that:

– the limits limk λ
+(fk, νk) and limk h(fk, νk) exist and limk λ

+(fk, νk) ≥ 0,

– fk
r−bd−→ f for some f ∈ Diffr(M) (i.e. fk → f uniformly and supk ‖fk‖Cr <∞),

– ν̂k
w∗→ µ̂ for some f̂ -invariant probability measure µ̂ on M̂ , perhaps non-ergodic.
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Then there exist β ∈ [0, 1], two f -invariant measures µ0, µ1 with f̂ -invariant lifts µ̂0, µ̂1 s.t.

µ̂ = (1− β)µ̂0 + βµ̂1, (44)

lim
k→∞

λ+(fk, νk) = βλ+(f, µ1), (45)

lim
k→∞

h(fk, νk)− 1
r−1λ(f̂) ≤ βh(f, µ1). (46)

Moreover:

– If β > 0, then λ̂(f̂ , µ̂1) = λ+(f, µ1) and λ+(f, x) > 0 for µ1-a.e. x.

– If β < 1, then λ̂(f̂ , µ̂0) = 0.

Note that when νk is hyperbolic, the measure ν̂k above is simply the unstable lift ν̂+
k .

7.1. Reductions. We assume the setting of Theorem D. There is no loss of generality in
assuming that r is finite, since the C∞ case follows from the Cr case by letting r →∞. By

Lemma 3.1 and since fk
r−bd−→ f with r > 2,

fk → f in the C2 topology and f̂k → f̂ in the C1 topology. (47)

Let h := lim
k→∞

h(fk, νk). By Ruelle’s inequality and (47), h is bounded by supk ‖Dfk‖sup <

∞. It is clearly non-negative. The theorem has a simple proof when h = 0:

Proof of Theorem D when h = 0. In this case eq. (46) is trivial. Since log ‖Dg(x)|E‖ de-
pends continuously on (x,E) and g, one gets 0 ≤ limk λ

+(fk, νk) = limk λ(fk, ν̂k) = λ(f, µ̂).

If all ergodic components µ̂′ of µ̂ satisfy λ̂(f̂ , µ̂′) > 0, it is enough to take µ̂0 = µ̂1 = µ̂

and fix β = 1. If some ergodic components of µ̂ satisfy λ̂(f̂ , µ̂) ≤ 0 and since λ̂(f̂ , µ̂) > 0,

one can decomposes µ̂ = (1 − β)µ̂1 + βµ̂0 where µ̂0, µ̂1 are two f̂ -invariant measures such

that λ̂(f̂ , µ̂0) = 0 and all ergodic components µ̂′ of µ̂1 satisfy λ̂(f̂ , µ̂′) > 0. �

Henceforth, we assume that

h := lim
k→∞

h(fk, νk) > 0, and h(fk, νk) > 0 for all k.

In particular, each measure νk is hyperbolic, i.e. has one positive and one negative Lya-
punov exponent. Note that it is enough to prove the theorem for any convenient further
subsequence.

7.2. The decomposition of the limiting measure. Theorem D is stated in terms of the
properties of a special decomposition µ = (1− β)µ0 + βµ1 of the µ = lim νk. In this section
we construct β, µ0 and µ1.

The idea is to apply Proposition 6.2 to a suitable sequence of measures. By Ruelle’s
inequality and the reduction to the case h(fk, νk) > 0, νk must be fk-hyperbolic of saddle

type. Let ν̂+
k denote the unstable lift of νk to M̂ , and let f̂k, f̂ be the lifts of fk, f to M̂ .

Define ϕk, ϕ : M̂ → R by

ϕk(x,E) := log ‖Dfk|E‖ , ϕ(x,E) := log ‖Df |E‖.

We apply Proposition 6.2 to M̂ , f̂k, ϕk, ν̂+
k . (The proposition is applicable, because by

eq. (47), f̂k → f̂ in Diff1(M̂) and ϕk → ϕ uniformly on M̂ , and because by Lemma 3.3 and
Ruelle’s inequality,

∫
ϕkdν̂k = λ+(fk, νk) ≥ h(fk, νk) > 0.)

Proposition 6.2 gives us a subsequence {ki} and two finite positive measures m̂0, m̂1 with
the following properties.

(i) m̂i ◦ f̂−1 = m̂i.
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(ii) ν̂+
ki

w∗−−−→
i→∞

m̂0 + m̂1 =: µ̂. The limit µ̂ is f̂–invariant and lifts µ.

(iii) Suppose V̂0, V̂1 are weak-∗ open sets of measures such that V̂i 3 m̂i, then there are

α∗(V̂0, V̂1) ∈ (0, 1) and L∗(V̂0, V̂1) ≥ 1 as follows. If 0 < α < α∗ and L > L∗, then for

all ki > k∗(V̂0, V̂1, α, L), for ν̂ki–a.e. x̂ ∈ M̂ ,

– the Nα,L(x̂, f̂ki , ϕki)–empirical measures of x̂ belong to V̂0,

– the N \Nα,L(x̂, f̂ki , ϕki)–empirical measures of x̂ belong to V̂1.
(iv)

∫
ϕdm̂0 = 0.

(v) For m̂1–a.e. point x̂, limn→∞
1
n

∑n−1
j=0 ϕ(f̂ j(x̂)) > 0.

(vi) h(fki , νki) −−−→
i→∞

h > 0 and h(fki , νki) > 0 for all i.

(vii) λ+(fki , νki) −−−→
i→∞

∫
ϕdµ̂.

Parts (i)–(v) are in Proposition 6.2; Part (vi) is the reduction in §7.1; and Part (vii) is
because λ+(fki , νki) =

∫
ϕkidν̂

+
ki

(by Lemma 3.3), ϕki → ϕ uniformly, and ν̂+
ki
→ µ̂ weak-∗

. To keep the notation as simple as possible we will henceforth assume without loss of
generality that {νk} = {νki}.

Let

β := 1− m̂0(M̂) = m̂1(M̂).

µ̂i :=
1

m̂i(M̂)
m̂i, or any invariant probability measure if m̂i(M̂) = 0.

µi := the projections of µ̂i to the corresponding f -invariant measures on M.

Notice that µ̂ = (1− β)µ̂0 + βµ̂1, µ = (1− β)µ0 + βµ1, and 0 ≤ β ≤ 1.

Claim 7.1. If β < 1, then µ̂0(ϕ) = m̂0(ϕ)/(1− β) = 0.

Proof. This is property (iv). �

Claim 7.2. β 6= 0. Consequently, m̂1(M̂) 6= 0, and µ1 is a probability measure.

Proof. Assume by contradiction that β = 0. Then µ̂ = m̂0, and

0 =

∫
ϕdm̂0 =

∫
ϕdµ̂, by (iv)

= lim
k→∞

λ+(fk, νk), by (vii) and the assumption that {ki} = {k}

≥ lim
k→∞

h(fk, νk) > 0, by Ruelle’s inequality and (vi).

This contradiction shows that β 6= 0. �

Claim 7.3. µ1–a.e. x has one positive and one non-positive Lyapunov exponent.

Proof. By (v), the definition of ϕ, and Fubini’s Theorem, for µ1–a.e. x ∈M , there exists a
one-dimensional subspace E ⊂ TxM such that

lim
n→+∞

1

n
log ‖Dfn|E‖ = lim

n→+∞

1

n

n−1∑
j=0

(ϕ ◦ f̂ j)(x,E) > 0.

It follows that µ1–a.e. x has at least one positive Lyapunov exponent.
Assume by contradiction that the claim is false, then there is an f -invariant set Ω of

positive µ1-measure such that every x ∈ Ω has two (possibly equal) positive Lyapunov
exponents. Recall the following well-known fact:
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Fact: If dim(M) = 2, then µ1-almost every x with two positive Lyapunov exponents has an
open neighborhood Ux such that lim

n→+∞

1
n log ‖Df−ny ‖ < 0 for all y ∈ Ux.

Proof. Pesin’s local stable manifold theorem [38, Thm 2.2.1] implies that µ1-almost every
point x admits a neighborhood Ux and constants C > 0 and κ ∈ (0, 1) such that for any
y ∈ Ux and n ≥ 0,

d(f−n(x), f−n(y)) ≤ Cκn.
Since the orbit of x is recurrent, this implies that the forward orbit of x converges towards
a periodic orbit O and in fact must coincide with that periodic orbit, again by recurrence.
As a consequence, x is a hyperbolic sink so ‖Df−Nx ‖ < 1

2 for some N ≥ 1 such that

fN (x) = x. �

This fact enables us to build an open set U such that

µ1(U) > 0 , µ1(∂U) = µ0(∂U) = 0 , lim
n→+∞

1

n
log ‖Df−ny ‖ < 0 for all y ∈ U.

By (ii), νk
w∗−−−−→
k→∞

(1 − β)µ0 + βµ1, and β 6= 0 by claim 7.2. So νk(U) > 0 for all k large

enough. But this is a contradiction, because the νk have one negative Lyapunov exponent,
so that lim

n→+∞
1
n log ‖Df−ny ‖ > 0 νk-almost everywhere. �

Claim 7.4. µ̂1 is the unstable lift µ̂+
1 of µ1.

Proof. By Claim 7.3 and the Oseledets theorem, for µ1-a.e. x, TxM = Eu(x)⊕Ec(x), where
DfxE

∗(x) = E∗(f(x)), (∗ = u, c). By Corollary 3.4, µ1 has a unique lift µ̂+
1 to graph(Eu),

and all other lifts charge some part of graph(Ec). Since lim(1/n)
∑n−1
j=0 ϕ(f̂ j(x̂)) ≤ 0 on

graph(Ec), property (v) forces µ̂1 = µ̂+
1 a.e. �

7.3. Proof of Theorem D part (1). We compare the exponents of νk and µ.

βλ+(f, µ1) = β

∫
ϕdµ̂+

1 by Lemma 3.3

= β

∫
ϕdµ̂1 =

∫
ϕdm̂1 by claim 7.4 and definition of m̂1

=

∫
ϕdm̂1 +

∫
ϕdm̂0 =

∫
ϕdµ̂ by (iv) and definition of µ̂

= lim
k→∞

λ+(fk, νk) by (vii) and the convention {νki} = {νk}.

Thus limk→∞ λ+(fk, νk) = βλ+(f, µ1), as required.

7.4. Proof of Theorem D part (2). We now come to the heart of the proof of Theorem D.

Step 1 (The decomposition µ1 =
∑
acµ1,c). We decompose µ1 into invariant measures

µ1,c all of whose ergodic components have nearly the same entropy.
Let Υ := Υ(r) be as in Yomdin’s Theorem 4.13, and let γ0(r, f, η) > 0 be as in Proposi-

tion 5.3. We fix η, γ > 0 arbitrarily small, and ` ∈ N arbitrarily large as follows. First we
choose η > 0; then we take an integer ` such that

`η > h(f, µ1); (48)

and then we then fix 0 < γ < min(γ0(r, f, r), 1/20) such that for each k ≥ 1,

10γ

(
log(2Υ) +

r

r − 1
log ‖Df̂k‖sup

)
< η, (49)
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(`+ 10)γ < 1, and h(f, µ1)`γ < η. (50)

By (48), we can decompose µ1 =

`′∑
c=1

acµ1,c , ac ∈ (0, 1] ,

`′∑
c=1

ac = 1 where `′ ≤ ` and

µ1,c are f -invariant probability measures such that:

– For c 6= c′, the measures µ1,c and µ1,c′ are mutually singular;
– For each c there is a number hc such that all the ergodic components of µ1,c have

entropy in [hc, hc + η);
– h(f, µ1)− η <

∑
c achc ≤ h(f, µ1).

Since µ1,c � µ1, Claim 7.3 implies that µ1,c-a.e. x has one positive and one non-negative
Lyapunov exponent. By Corollary 3.4, µ1,c has an unstable lift µ̂+

1,c carried by graph(Eu).
By Claim 7.4, this gives

µ̂1 = µ̂+
1 =

`′∑
c=1

acµ̂
+
1,c.

Step 2 (The neutral segment parameters Û0, n0).

− Let N1(r, f, η) and N0(r, f, η, γ) be as in Propositions 5.1 and 5.3.
− Fix N larger than N1(r, f, η) and N0(r, f, η, γ).
− Let Q := supk≥1Qr,N (fk) + 1, with Qr,N (·) defined as in (20). This supremum is finite

because, for any n = 1, . . . , N , any k ≥ 1,

‖f̂nk ‖Cr−1 ≤ A(‖fnk ‖Cr · ‖Df−nk ‖sup)A ≤ B(‖fk‖Cr · ‖Df−1
k ‖

n
sup)B

for some A = A(r) by Lemma 3.8, and B = B(r, n) by the formulas for the differential

of a composition. Since fk
r−bd−→ f , the factors ‖fk‖Cr , k ≥ 1, are bounded. Since fk → f

in Diff1(M), ‖Df−1
k ‖sup converges to ‖Df−1‖sup and is therefore bounded too.

− Let εY := εY (r,Q) be as in Yomdin’s Theorem 4.13. We also set δ := εY .

With these choices of η, γ, δ,N , we apply Proposition 5.3 to µ̂0 and obtain:

– some numbers 0 < ε, ε̂ < δ,
– an integer n0,
– a C2 neighborhood U0 of f in Diffr(M),

– and an open set Û0 satisfying µ̂0(Û0) > 1− γ2 and µ̂0(∂Û0) = 0,

such that property (**) holds.

By further reducing Û0, we can also ensure that

µ̂(∂Û0) = 0. (51)

Step 3 (Expanding segment parameters Û1,c, n1,c). Having fixed N, ε, ε̂ as above, Pro-
position 5.1 now associates to each µ̂1,c, with 1 ≤ c ≤ `′, an integer n̄1,c := n̄1(f, µ̂1,c, η, γ,N, ε, ε̂).
We then introduce the integers

n1 := max({n̄1,c : 1 ≤ c ≤ `′} ∪ {1/γ}),

n1,c := n1 + c.

We construct open sets Û1,c and an integer k0 with the following properties:

(a) µ̂1,c(Û1,c) > 1− γ2 and µ̂(∂Û1,c) = 0.
(b) For all fk with k > k0, for any regular curve σ with Cr size at most (ε, ε̂), there exists

a family of reparametrizations R of σ over σ̂−1(Û1,c) such that
(b1) R is (Cr, fk, N, ε, ε̂)–admissible up to time n1,c := n1 + c,
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(b2) 1
n1+c log |R| ≤ hc + λ(f̂k)

r−1 + η.

(c) For all fk with k > k0, for any different 1 ≤ c, c′ ≤ `, and for any 0 ≤ j ≤ n1,c,

f̂ jk(closure(Û1,c)) ∩ closure(Û1,c′) = ∅.

(d) If c 6= c′, then µ̂1,c(Û1,c′) < γ2.

Construction. For each c, we apply Proposition 5.1 to f , µ1,c and to the parameters

η, γ, ε, ε̂, N and n = n1,c. This gives an open set Û1,c s.t.

(a’) µ̂1,c(Û1,c) > 1− γ2 and µ̂1,c(∂Û1,c) = 0.
(b’) For all g sufficiently close to f in C2-topology such that Qr,N (g) < Q and for any regular

Cr curve σ with Cr size at most (ε, ε̂), there exists a family of reparametrizations R of

σ over σ̂−1(Û1,c) satisfying (b1) and (b2).

Choose k′0 so that (b’) holds for all g = fk with k > k′0, for all 1 ≤ c ≤ `.
By assumption, the measures µ̂1,c (for 1 ≤ c ≤ `′) are mutually singular and there

exist pairwise disjoint f -invariant measurable sets Xc such that µ̂1,c(Xc′) equals one when

c = c′, and zero otherwise. Using (a’), one constructs compact sets K̂1,c ⊂ Xc ∩ Û1,c such

that µ̂1,c(K̂1,c) > 1 − γ2. Necessarily f̂ j(K̂1,c) ∩ K̂1,c′ ⊂ Xc ∩ Xc′ = ∅ for all different
1 ≤ c, c′ ≤ `′ and every 0 ≤ j ≤ n1,c. So

min

{
dist(f̂ j(K̂1,c), K̂1,c′) : 1 ≤ c, c′ ≤ `′, c 6= c′, j = 1, . . . , n1,c

}
> 0.

This inequality remains true if one replaces f̂ by f̂k with k large enough and the compact

sets K̂1,c by small enough neighborhoods Û ′1,c. We may choose those neighborhoods so that

µ̂(∂Û ′1,c) = 0. Replacing each Û1,c by its intersection with Û ′1,c, we obtain sets satisfying
both the conclusion (*) of Proposition 5.1 and:

f̂ jk(Û ′′1,c) ∩ Û ′′1,c′ = ∅ (1 ≤ c 6= c′ ≤ `′, ∀0 ≤ j ≤ n1,c)

for k large enough. We replace the sets Û1,c by these new Û ′′1,c. Moreover (a’) and (b’) are
preserved.

Notice that if c 6= c′, then Û1,c′ ∩ Û1,c = ∅, so µ̂1,c(Û1,c′) < µ̂1,c(M̂ \ K̂1,c) < γ2. Then,
all the properties (a)-(d) hold.

Step 4 (weak-∗ neighborhoods of m̂0 and m̂1). We construct weak-∗ open neighbor-

hoods V̂0, V̂1 of the measures m̂0, m̂1 s.t.

m̂ ∈ V̂0 ⇒

{
|m̂(Û0)− m̂0(Û0)| < γ2,

|m̂(M̂)− m̂0(M̂)| < γ2,

m̂ ∈ V̂1 ⇒

{
|m̂(Û1,c)− m̂1(Û1,c)| < γ2, 1 ≤ c ≤ `′,
|m̂(M̂)− m̂1(M̂)| < γ2.

(52)

Such neighborhoods exist since m̂i(∂Û1,c) = 0 and m̂i(∂Û0) = 0 from the property (a) in
step 3 and (51).

Step 5 (Neutral block parameters α,L, k∗). Recall the integer k0 obtained in step 3.
Using property (iii) in §7.2, one finds α ∈ (0, η/10), L ≥ 1 satisfying

L > 2γ−1 max{n0, n1,1, . . . , n1,`′}, (53)

and k∗ = k∗(α,L) ≥ k0 such that for k > k∗ and ν̂+
k -a.e. x̂ ∈ M̂ ,
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– the Nα,L(x̂, f̂k, ϕk)-empirical measures are in a compact subset of V̂0;

– the N \Nα,L(x̂, f̂k, ϕk)-empirical measures are in a compact subset of V̂1.

These compact sets will give the extra margin necessary to deal with boundary terms (see
the proof of Lemma 7.5 below).

Step 6 (Decomposition of orbits into orbit segments). Recall that the orbit segment

of f̂k with length t and initial point x̂ is the string (x̂, f̂k(x̂), . . . , f̂ t−1
k (x̂)). It is associated

with the measure

µ̂t
f̂k,x̂

:=
1

t

t−1∑
j=0

δf̂jk(x̂).

An orbit segment will be called neutral if (0, 1, . . . , t − 1) is an (α,L)-neutral block of

(x̂, f̂k, ϕk) as defined in Section 6, i.e. if t ≥ L and if x̂ = (x,E) satisfies:

‖Dfmk |E‖ ≤ eαm for all 0 < m ≤ t. (54)

Using the open sets Û0, Û1,c and the integers n1,c defined at steps 2 and 3, we introduce

`′ + 2 classes of orbit segments (x̂, f̂k(x̂), . . . , f̂ t−1
k (x̂)):

(a) Segments with color 1 ≤ c ≤ `′: orbit segments such that x̂ ∈ Û1,c and t = n1,c.

(b) Blank segments: neutral orbit segments such that µ̂t
f̂k,x̂

(Û0) ≥ 1− γ.

(c) Fillers: orbit segments with length t = 1.

The class of an orbit segment as above can be recognized from its length t: If t = 1, it is a
filler, if t ∈ [n1 + 1, n1 + `′], it is colored with color t− n1, and if t is larger than L, then it
is blank, see (53). So these `′ + 2 classes are disjoint.

Lemma 7.5. For all k > k∗ and for ν̂+
k -a.e. x̂, there exists nk(x̂) ∈ N such that all the

orbit segments (x̂, f̂k(x̂), . . . , f̂n−1
k (x̂)) with n ≥ nk(x̂) can be decomposed into:

(a) colored segments of total length at most βacn+ γn, for each color c,
(b) blank segments of total length at least (1− β)n− 4γn,
(c) fillers of total length at most 6γn.

Proof. By the reduction in section 7.1, the ergodic measures νk have positive entropy, and

therefore the ν̂k measure of f̂k-periodic points is zero. Thus it is sufficient to consider non-
periodic x̂ only. Orbit segments of non-periodic points can be identified with the non-ordered
sets of points they contain without any loss of information, because there is only one way
to order them to get an orbit segment. We will therefore feel free to abuse terminology and
treat orbit segments as sets, subject to the usual set-theoretic operations.

Given an orbit segment ϑ := (x̂, . . . , f̂n−1(x̂)), we are going to build a decomposition

(f̂ t0(x̂), . . . , f̂ t1−1(x̂)︸ ︷︷ ︸
ϑ1

; . . . ; f̂ tm−1(x̂), . . . , f̂ tm−1(x̂)︸ ︷︷ ︸
ϑm

) (55)

where t0 = 0 < t1 < · · · < tm = n and each segment ϑi := (f̂ ti−1
k (x̂), . . . , f̂ ti−1

k (x̂)) is either
a colored segment, a blank segment, or a filler.

We call the sequence (t0, . . . , tm) the type of the decomposition since it determines not
only how the orbit segment is divided but to which class each segment belong.

By analogy with Section 6, a neutral sub-segment of ϑ is called maximal, if it does not
lie in a strictly longer neutral sub-segment of ϑ. Let Sneut(ϑ) denote the collection of all
maximal neutral sub-segments of ϑ. It is not difficult to see that every neutral sub-segment
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of ϑ is contained in some element of Sneut(ϑ), and that the segments in Sneut(ϑ) are pairwise
disjoint.

Decomposition. We define ti inductively beginning with t0 := 0. Assuming that 0 ≤
ti−1 < n has been defined, we consider the following three possibilities:

– Case (a). There exists 1 ≤ c ≤ `′ such that f̂ ti−1(x̂) ∈ Û1,c, the orbit segment (f̂
ti−1

k (x̂), . . . ,

f̂
ti−1+n1,c−1
k (x̂)) does not intersect any segment in Sneut(ϑ), and ti−1 + n1,c ≤ n. The

color c is uniquely defined because the Û1,c are disjoint. We set ti := ti−1 + n1,c. The

resulting orbit segment ϑi := (f̂
ti−1

k (x̂), . . . , f̂ ti−1
k (x̂)) with length n1,c is a segment with

color c.

– Case (b). There exists T such that ϑi := (f̂
ti−1

k (x̂), . . . , f̂
ti−1+T−1
k (x̂)) ∈ Sneut(ϑ), and

|ϑi ∩ Û0| > (1 − γ)|ϑi|. The integer T is unique by maximality and, by the definition
of Sneut(ϑ), it satisfies T ≥ L and ti−1 + T ≤ n. We set ti := ti−1 + T . Then ϑi =

(f̂
ti−1

k (x̂), . . . , f̂ ti−1
k (x̂)), and ϑi is a blank segment with length T .

– Case (c). There are no such T or c. In this case we set ti := ti−1 +1, and ϑi := (f̂
ti−1

k (x̂)).
This is a filler.

These cases are mutually exclusive and at least one of them must happen (case (b) implies
that ϑi ∈ Sneut(ϑ), excluding case (a), and case (c) happens iff case (a) and case (b)
both fail), and in all cases, ti ≤ n since ti−1 < n. Thus we have defined ti+1 ∈ (ti, n]
unambiguously.

The inductive process stops with tm = n. The result is a decomposition of ϑ as in eq. (55)
into blank segments, colored segments, and fillers.

Size estimates. We now fix a ν̂k-typical x̂, a large n, set ϑ := (x̂, . . . , f̂n−1(x̂)), and

estimate the total size of the fillers, blank segments, and the segments of given color in ϑ.
“Typical” means that our estimates apply to a set of full ν̂k-measure, and the “largeness”
of n is allowed to depend on x̂.

Let Neut be the union of all neutral sub-segments of ϑ and Neutc its complement:

Neut :=
⋃
Sneut(ϑ), Neutc := ϑ \ Neut.

Clearly Neut ⊆ Nα,L(x̂, f̂k, ϕk) ∩ [0, n), but the sets could be different, because the neutral

segments in Nα,L(x̂, f̂k, ϕk) which contains 0 or n may have a non-(α,L)-neutral intersection

with [0, n). However, it is not difficult to see that 1
n

∣∣Neut4(Nα,L(x̂, f̂k, ϕk)∩[0, n)
)∣∣ −−−−→

n→∞
0.

Therefore, for ν̂k-a.e. x̂ there exists nk(x̂) such that for all n > nk(x̂) and k > k∗ (cf. step
5)

m̂′0 :=
1

n

∑
ŷ∈Neut

δŷ ∈ V̂0, m̂′1 :=
1

n

∑
ŷ∈Neutc

δŷ ∈ V̂1.

Recall that m̂1 = β
∑
c acµ̂1,c with

∑
c ac = 1 and 0 < β ≤ 1. Since m̂′1 ∈ V̂1, eq. (52)

and items (a) and (c) of Step 3 imply:

m̂′1(M̂ \
⋃
c′

Û1,c′) = m̂′1(M̂)−
∑
c′

m̂′1(Û1,c′) < m̂1(M̂) + γ2 −
∑
c′

(m̂1(Û1,c′)− γ2)

≤ β

(
1−

∑
c′

ac′(1− γ2)

)
+ (1 + `′)γ2

≤ (`+ 2)γ2,because the number of colors `′ is at most `. (56)
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Let Cc denote the union of all colored segments with color c; let B denote the union of
all blank segments; and let F denote the union of all fillers.

(a) Colored segments. By construction, if c 6= c′, then
⋃n1,c

j=0 f̂
j
k(Û1,c) ∩ Û1,c′ = ∅. So if ϑi

has color c, then ϑi ⊂ Neutc \
⋃
c′ 6=cÛ1,c′ , and

|Cc| ≤ |Neutc \
⋃

c′ 6=c
Û1,c′ |≤|Neutc \

⋃
c′
Û1,c′ |+ |Neutc ∩ Û1,c|

≤n · m̂′1(M̂ \
⋃
c′

Û1,c′) + n · m̂′1(Û1,c) < n(`+ 2)γ2 + n[m̂1(Û1,c) + γ2],

by eqs. (52) and (56). By step 3 (d), m̂1(Û1,c) < β(ac + γ2). Substituting this in the above
and using (50) give

|Cc| ≤ nβac + n(`+ 4)γ2 ≤ nβac + nγ.

(b) Blank segments. By definition, every blank segment is neutral, so B ⊂ Neut, and
|B| = |Neut| − |Neut \ B|. By (52) and the definition of m̂′0,

|Neut| = n · m̂′0(M̂) ≥ n(m̂0(M̂)− γ2) = n(1− β − γ2).

The set Neut \ B is the union of the maximal neutral orbit segments which visit Û0 with

frequency less than 1 − γ. Thus γ · |Neut \ B| < m̂′0(M̂ \ Û0)n. By (52) and the bound

µ̂0(Û0) > 1− γ2 in step 2,

m̂′0(M̂ \ Û0) < m̂0(M̂)− m̂0(Û0) + 2γ2 < (1− β)− (1− β)(1− γ2) + 2γ2 = γ2(3− β),

so |Neut \ B| ≤ γ−1m̂′0(M̂ \ Û0)n < γ(3− β)n. It follows that |B| > (1− β)n− 4γn.

(c) Fillers. By construction, a filler is a segment of length one (ŷ) such that one of the
following holds:

(i) ŷ does not belong to a colored segment or to a segment in Sneut(ϑ);
(ii) ŷ belongs to a segment in Sneut(ϑ), but this segment is not a blank segment;

(iii) ŷ belongs to a segment of length n1,c which begins at Û1,c, but it fails to be a colored
segment because it extends beyond the right endpoint of ϑ;

(iv) ŷ belongs to a segment of length n1,c which begins at Û1,c, but it fails to be a colored
segment because it intersects an element of Sneut(ϑ).

The fillers of type (i) belong to Neutc\
⋃
c Û1,c, so their cardinality is bounded by eq. (56):

|Neutc \
⋃
c Û1,c| = n · m̂′1(M̂ \

⋃
c Û1,c) < (2 + `)γ2n < γn

The fillers of type (ii) belong to Neut\B. As we saw above this means that their cardinality
is less than γ(3− β)n < 3γn.

The number of fillers of type (iii) is clearly bounded by the maximum length of a colored
segment maxc n1,c = n1 + `′ ≤ n1 + `. This can be assumed to be less than γn when n is
large enough.

It remains to control the fillers of type (iv). Fix ϑ0 ∈ Sneut(ϑ), and suppose ŷ belongs to
a colored segment which intersects ϑ0. All colored segments have lengths at most n1 + `′,
therefore ŷ must belong to one of two segments of length n1 +`′ adjacent to the endpoints of
ϑ0. This gives the following bound for the number of fillers of type (iv): 2(n1+`′)·|Sneut(ϑ)|.
Recalling that Sneut(ϑ) consists of disjoint sub-segments of ϑ, each with length at least L,
we find that

|Sneut(ϑ)| ≤ n

L
.

Thus by (53), the number of fillers of type (iv) is at most 2(n1+`′)
L n < γn.
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It follows that the total length of the fillers is |F| < 6γn. �

Step 7 (A bound on the number of decomposition types). In the previous step
we decomposed orbit segments of typical points with length n large enough into colored
segments, blank segments and fillers.

Let θ = (t0, t1, . . . , tm) be the type of the decomposition, see (55) and the discussion
which follows it. Here we bound the number of possible types. As always, let H(t) :=
t log 1

t + (1− t) log 1
1−t for 0 < t < 1.

Claim 7.6. There exists nH := nH(γ) such that the number of types of decompositions

of all f̂k–orbit segments as in Lemma 7.5 with length n > nH and k arbitrary is at most
exp[nH(10γ)].

Proof. A decomposition of an orbit segment with length n has

– at most γn blank segments (because these have lengths ≥ L > 1/γ),
– at most γn colored segments (because these have lengths ≥ n1 + 1 > 1/γ),
– and at most 6γn fillers (by Lemma 7.5).

This gives a total of at most b8γnc segments.
So every type θ = (t0, . . . , tm) has length m < b8γnc+ 1. Since t0 = 0, tm = n, there can

be at most
∑b8γnc
m=1

(
n

m−1

)
different types. Since 8γ < 1/2, the sum is bounded by 8γn

(
n

b8γnc
)
.

By De Moivre’s approximation, this is less than exp[nH(8γ) + o(n)] as n→∞.
The claim follows, because 10γ < 1/2 so H(8γ) < H(10γ). �

Step 8 (Conditional measures and choice of Nk, Fk). The measures νk are assumed
to be fk-ergodic, and by the reductions in section 7.1 they have positive entropy. So by
Ruelle’s inequality, each νk is a hyperbolic measure.

As explained in Section 4.7, one can introduce a measurable partition subordinated to the
unstable lamination of νk and associate to it a system of conditionals probability measures
νuk,x.

We fix Nk ≥ 1 and a Borel set Fk ⊂M with νk(Fk) > 1
2 such that for every point x ∈ Fk

and for the diffeomorphism fk:

– x has a well-defined unstable manifold, an immersed Cr curve Wu(x) ⊂M ;
– νuk,x is well-defined and x belongs to the support of the restriction of νuk,x to Fk;

– x̂ := (x,Eu(x)) satisfies Lemma 7.5 with nk(x̂) ≤ Nk. In particular for each n ≥ Nk,

the orbit segment (x̂, f̂k(x̂), . . . , f̂n−1
k (x̂)) has a decomposition as in Lemma 7.5. Let

θ = θ(x, n) be the type of decomposition.

Step 9 (Construction of reparametrizations). Choose a point x ∈ Fk which satisfies
Corollary 4.16.

Let σ : [0, 1]→ Wu(x) be a regular Cr-curve which parametrizes a neighborhood of x in
Wu(x) in the intrinsic topology, and which has Cr size at most (ε, ε̂). By the choice of Fk,
T := σ−1(Fk) has positive measure for νuk,x.

Fix n ≥ Nk, and let ε, ε̂ and N be as in step 2. Our aim is to construct a particular
family of reparametrizations Rn of σ over T , which is (Cr, fk, N, ε, ε̂)–admissible up to time
n. In later steps, we will estimate the cardinality of Rn and use Corollary 4.16 to obtain
the upper bound for h(fk, νk) which completes the proof of the theorem.

We begin by fixing a type θ := (t0, t1, . . . , tm) with tm = n, and constructing a family of
reparametrizations Rθn of σ admissible up to time n over the set

Tθ := σ−1{y ∈ Fk with type θ}.



CONTINUITY PROPERTIES OF LYAPUNOV EXPONENTS 49

Then we will take the union over all possible types and obtain the familyRn of reparametriza-
tions over T .

Rθn is obtained inductively by defining families Rθti of parametrizations of σ over Tθ,
which are (Cr, fk, N, ε, ε̂)–admissible up to time ti. The base of the induction is defined
by taking Rθ0 := {Id}. This parametrization is admissible, because σ has Cr size at most
(ε, ε̂). After m steps, we will obtain the family Rθn = Rθ,tm , which is an admissible family
of reparametrizations over Tθ, up to time n.

Induction step: We build Rθti , assuming Rθti−1
was already constructed. We proceed by

concatenation (see Lemma 4.10). We will set

Rθti−1
:= {ψ ◦ ϕ : ψ ∈ Rθti−1

, ϕ ∈ R(ψ, ti−1)}

for well-chosen families R(ψ, ti−1) which parametrize of f
ti−1

k ◦ σ ◦ ψ over ψ−1(Tθ) in a
(Cr, fk, N, ε, ε̂)-admissible up to time ti − ti−1, and which we now construct.

Fix ψ ∈ Rθti−1
and let σ′ := f

ti−1

k ◦σ ◦ψ and T ′ := ψ−1(Tθ). By the induction hypothesis,

Rθti−1
is admissible, therefore σ′ has Cr size at most (ε, ε̂).

By the definition of Tθ, the orbit segments (ŷ, f̂k(ŷ), . . . , f̂
ti−ti−1

k (ŷ)) have the same type
for every ŷ ∈ σ̂′(T ′): If ti − ti−1 = n1,c they are all colored segments with color c; if
ti − ti−1 ≥ L they are all blank; and if ti − ti−1 = 1 they are all fillers. See step 6. Our
construction of R(ψ, ti−1) depends on the case:

Case (a): ti − ti−1 = n1,c. In this case, (f̂
ti−1

k (ŷ), . . . , f̂ ti−1
k (ŷ)) are colored segments with

the same color c for all ŷ ∈ σ̂(Tθ). Thus f̂
ti−1

k (σ̂(Tθ)) ⊂ Û1,c. Applying Proposition 5.1 to
µ̂1,c, n1,c and σ′, we obtain a family R(ψ, ti−1) of reparametrizations ϕ over the set T ′ which
is (Cr, fk, N, ε, ε̂)–admissible up to time ti − ti−1, and which satisfies the cardinality bound

1

ti − ti−1
log |R(ψ, ti−1)| ≤ h(f, µ1,c) +

λ(f̂)

r − 1
+ η ≤ hc +

λ(f̂)

r − 1
+ 2η

(Recall that the entropy of every ergodic component of µ1,c is in [hc, hc + η).)

Case (b): ti − ti−1 ≥ L. In this case (f̂
ti−1

k (ŷ), . . . , f̂ ti−1
k (ŷ)) are blank for all ŷ ∈ σ̂(Tθ). By

the choice of α,L in Step 5, these segments are η
10 -neutral, and their lengths are larger or

equal to n0. Consequently, the set T ′ is contained in the set controlled by Proposition 5.3,
when applied to the diffeomorphism g = fk and to the curve σ′ (see eq. (21)). Hence, this
proposition gives us a family R(ψ, ti−1) of reparametrizations ϕ of σ′ over the set T ′ which
is (Cr, fk, N, ε, ε̂)–admissible up to time ti − ti−1, and which satisfies the cardinality bound

1

ti − ti−1
log |R(ψ, ti−1)| ≤ λ(f̂)

r − 1
+ η.

Case (c): ti − ti−1 = 1. As σ′ has Cr size at most (ε, ε̂),

rf̂k(ε, ε̂, 1, f̂k(σ̂(T ′))) ≤ ‖Df̂k‖sup + 1 ≤ 2‖Df̂k‖sup.

Since ε, ε̂ have been chosen smaller than εY , Corollary 4.14 of Yomdin’s Theorem applies and
provides a family R(ψ, ti) of reparametrizations ϕ over the set Tθ which are (Cr, fk, N, ε, ε̂)–
admissible up to time ti − ti−1 = 1, and which satisfy the cardinality bound |R(ψ, ti−1)| ≤
Υ‖Df̂k‖1/(r−1)

sup × 2‖Df̂k‖sup, hence

1

ti − ti−1
log |R(ψ, ti−1)| ≤ log(2Υ) +

r

r − 1
log ‖Df̂k‖sup.
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This completes the inductive step.

Step 10 (Cardinality of Rn). The families of reparametrizations obtained in step 9 satisfy
|R(ψ, ti)| ≤ exp(κi(θ)(ti − ti−1)), where

κi(θ) :=


hc + (r − 1)−1λ(f̂) + 2η if ti − ti−1 = n1,c, (case a),

(r − 1)−1λ(f̂) + η if ti − ti−1 ≥ L, (case b),

log(2Υ) + r
r−1 log ‖Df̂k‖sup if ti − ti−1 = 1, (case c).

It follows that |Rθn| ≤ exp

(∑m
i=1 κi(θ)(ti − ti−1)

)
.

The total length of the blank segments is (trivially) less than n, and the total lengths of
the segments with color c and fillers is respectively, less than βacn+γn and 6γn, by Lemma
7.5. Denoting the total length of colored segments with color c (resp. blank segments, fillers)
by Nc (resp. Nb, Nf ), we find that

m∑
i=1

κi(θ)(ti − ti−1) ≤
∑
c

hcNc +
λ(f̂)

r − 1

(∑
c

Nc +Nb

)
+ 2η

∑
c

Nc + ηNb

+

(
log(2Υ) +

r

r − 1
log ‖Df̂k‖sup

)
Nf .

Using the trivial bounds
∑
cNc+Nb = n−Nf ≤ n, Nb ≤ n, and the bounds Nc ≤ βacn+γn,

Nf ≤ 6γn from Lemma 7.5, we find that

m∑
i=1

κi(θ)(ti − ti−1) ≤ n
∑
c

hc[βac + γ] + n
λ(f̂)

r − 1
+ 2ηn

+ 6γn

(
log(2Υ) +

r

r − 1
log ‖Df̂k‖sup

)
.

Recall that we chose ac, hc, ` and γ so that

–
∑
achc ≤ h(f, µ1) by the choice of the decomposition of µ1 in Step 1;

– γ
∑
c hc ≤ `γmax{hc} < η by eq. (50);

– 6γ(log(2Υ) + r
r−1 log ‖Df̂k‖sup) < η by eq. (49).

Hence, |Rθn| ≤ exp

(
βh(f, µ1)n+

λ(f̂)

r − 1
n+ 4ηn

)
.

Recalling that Rn :=
⋃
θRn(θ) and the number of types is bounded for all n large enough

by exp[nH(10γ)], we conclude that

|Rn| ≤ exp

(
βh(f, µ1)n+

λ(f̂)

r − 1
n+ 4ηn+H(10γ)n

)
.

Step 11 (Completion of the proof). By Corollary 4.16, for all k large enough

h(fk, νk) ≤ lim sup
n→∞

1

n
log |Rn| ≤ βh(f, µ1) +

λ(f̂)

r − 1
+ (4η +H(10γ)).

Passing to the limits in the order k →∞, γ → 0, η → 0 gives the second part of Theorem D,
and completes its proof. �

8. Supplements

We prove here the additional properties mentioned in Section 1.4.
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8.1. Discontinuities: construction of the Example 1.2. Let us recall that two tran-
sitive hyperbolic sets K1,K2 are homoclinically related if a stable manifold of K1 has a
transverse intersection point with an unstable manifold of K2 and a stable manifold of K2

has a transverse intersection point with an unstable manifold of K1. In this case there exists
a transitive hyperbolic set that contains K1 and K2.

If O is a periodic orbit, we will denote by µO the invariant probability measure supported
on O. We say that a sequence of periodic orbits (Ok) converges weak-∗ to a measure µ, if
the sequence of measures (µOk) converges weak-∗ towards µ.

We say that a C∞ diffeomorphism f0 belongs to the Newhouse domain if there exist
an attracting region U where |detDf0| < 1, a transitive hyperbolic, locally maximal set
K ⊂ U (not reduced to a periodic orbit) and a C∞ neighborhood U of f0 such that for
any diffeomorphism f ∈ U the hyperbolic continuation of K (still denoted by K) admits a
stable manifold and an unstable manifold with a non-transverse intersection. The Newhouse
domain is open by definition, and non-empty by [34].

We prove the following more precise version of Example 1.2:

Proposition 8.1. The Newhouse domain in Diff∞(M) contains a dense Gδ subset of dif-
feomorphisms f with the following property. For any pair of numbers 0 < α ≤ β ≤ 1, there
is a sequence of ergodic measures (νk) converging weak-∗ to a measure µ with h(f, µ) > 0
and such that:

limh(f, νk) = αh(f, µ) and limλ+(f, νk) = βλ+(f, µ).

Remark 8.2. One can choose for µ any invariant probability measure with positive entropy,
ergodic or not, and carried by the hyperbolic set K associated with the Newhouse domain
of f .

Lemma 8.3. There is a dense Gδ subset of the Newhouse domain in Diff∞(M), made of
diffeomorphisms f with the following property. For any periodic orbit P contained in the
hyperbolic set K associated to f , there exists a sequence of hyperbolic periodic orbits Ok
homoclinically related to P which converge weak-∗ towards P and satisfy λ+(Ok)→ 0.

Proof. Let f0 ∈ U . By an application of Baire’s argument, it is enough to find f C∞ close
to f0 with a periodic orbit O homoclinically related to P which is weak-∗ close to P and has
a top Lyapunov exponent close to 0. We sketch the proof which uses classical arguments on
the behavior near homoclinic tangencies, and we refer to [36] for further details. In order to
simplify the presentation, we assume that P is fixed and the eigenvalues 0 < λ < 1 < µ of
Df(P ) are positive. By dissipation, λ · µ < 1.

Since the stable (resp. unstable) manifold of P is dense in the stable (resp. unstable)
lamination of K, and since f0 belongs to the Newhouse domain, one can perturb f0 in
such a way that P exhibits a quadratic homoclinic tangency z ∈ W s

loc(P ). One can also
assume that the eigenvalues λ, µ are non-resonant, so that by Sternberg’s theorem, there
exists a smooth chart on a neighborhood U ' [−1, 1]2 of P , where the dynamics is linear:
On [−1, 1] × [−µ−1, µ−1], f coincides with the map L : (x, y) 7→ (λ · x, µ · y). The local
manifolds W s

loc(P ) and Wu
loc(P ) coincide with {y = 0} and {x = 0}. Moreover z has a

preimage z′ ∈Wu
loc(P ) by an iterate fN and one denotes by T the map induced by fN from

a neighborhood of z′ to z. The unstable manifold at z is locally a graph {(x, ϕ(x))} and by
a suitable rescaling of the axis of U , one can require that D2ϕ ' 1 near z.

Let us fix δ > 0 small. When n is large one considers a rectangle

R = z + [−δ, δ]× [a− δµ−n, a+ δµ−n],



52 JÉRÔME BUZZI, SYLVAIN CROVISIER, AND OMRI SARIG

where a is chosen such that z′ = (0, a · µn). Note that C−1 ≤ a · µn ≤ C where C depends
on the Sternberg linearization domain U , but not on n.

The rectangle R is mapped by fn+N to a thin curved rectangle T ◦ Ln(R) whose width
is of the order of δλn, hence much smaller than the width of R. One perturbs f near z′ in
such a way that the transition map T is composed with a vertical translation. The tip of
the image can thus be adjusted to be at distance L · a from the rectangle R where L is a
large constant independent from n. Therefore fn+N (R) crosses {y = 0} and also R with a
slope s close to L · a (since D2ϕ ' 1). See Figure 1.

q
P R

fn+N (R)

Figure 1. Return map near an homoclinic tangency.

Moreover R ∩ fn+N (R) contains a periodic point q whose unstable direction is dilated
at the period by a factor of the order of s exp(−λ+n) ' L · a · µn, which is close to a large
constant (comparable to L). As the period n + N of q can be chosen arbitrarily large, the
unstable Lyapunov exponent of q is close to 0.

Note that the unstable manifold of q crosses fn(R) along its largest dimension (see Fig-
ure 1), hence crosses W s

loc(P ). The local stable manifold of q is a graph which crosses R
horizontally. The image fn(W s

loc(P )) if close to fn(R), crosses R, and then the local stable
manifold of Q. Hence P and the orbit of q are homoclinically related. As the n first iterates
of q belong to the linearization domain U , the orbit of q spends an arbitrarily large propor-
tion of time in any neighborhood of P , as the period n + N goes to infinity, proving that
the invariant probability measure supported on the orbit of q gets arbitrarily close to P in
the weak-∗ topology. �

We will also need the following fact:

Lemma 8.4. Let Λ be a locally maximal, hyperbolic compact set carrying an invariant
probability measure m, not necessarily ergodic. Then there exist ergodic invariant probability
measures mk carried by Λ which converges to m in the weak-∗ topology and in entropy:
limk h(f,mk) = h(f,m).

Sketch of proof. This is routine, even if we could not locate an exact reference. Observe
that it is enough to show this for a transitive subshift of finite type Σ. Given an invariant
probability measure on Σ, approximate it by a Markov measure with finite memory N .
Taking N sufficiently large, we can make this approximation arbitrarily close, both weak-∗



CONTINUITY PROPERTIES OF LYAPUNOV EXPONENTS 53

and in entropy. By a small modification of the transition probabilities we can make the
measure fully supported on Σ, and therefore ergodic. �

Proof of Proposition 8.1. For convenience, we fix some distance d on the space of Borel
probability measures of M , compatible with the weak-∗ topology. Let f be a diffeomorphism
with a locally maximal transitive hyperbolic set K as given by Lemma 8.3. Since K is not
reduced to a single periodic orbit, it carries invariant probability measures with positive
entropy. We choose any one of them. Lemma 8.3 yields a sequence (Ok)k≥1 of hyperbolic
periodic orbits homoclinically related to K such that d(µOk , µ) < 1/k and |λ+(Ok)| < 1/k.

Fix k ≥ 1. Let P be a periodic orbit in K so close to µ that d(µP , µ) < 1/k and
|λ+(f, µP )− λ+(f, µ)| < 1/k (by continuity of the unstable bundle over K).

Let Λ be a transitive, hyperbolic, locally maximal invariant set containing K∪Ok. Define
m = αµ+ (β − α)µP + (1− β)µOk on Λ. Now Lemma 8.4 yields νk such that:

– |h(f, νk)− αh(f, µ)| = |h(f, νk)− h(f,m)| < 1/k;
– d(νk, µ) < d(νk,m) + 1/k < 2/k;
– |λ+(f, νk)− βλ+(f, µ)| < |λ+(f, νk)− λ+(f,m)|+ 1/k < 2/k.

The sequence (νk)k≥1 is as claimed. �

8.2. Variant inequality on Lyapunov exponents: proof of Corollary 1.3. By the
Oseledets theorem, λ+(f, µ)+λ−(f, µ) =

∫
log |detDf |dµ, which is continuous with respect

to (f, µ) in the C1×weak-∗ topology. Since the sum is continuous, the discontinuities in the
summands must cancel out, whence

λ+(f, µ)− lim
k→∞

λ+(fk, νk) = −
(
λ−(f, µ)− lim

k→∞
λ−(fk, νk)

)
. (57)

Now, Theorem A is equivalent to the statement

λ+(f, µ)− lim
k→∞

λ+(fk, νk) ≤ λ+(f, µ)

(
1− limk h(fk, νk)

h(f, µ)

)
. (58)

Applying this to f−1
k and noting (57) and λ−(f, µ) = −λ+(f−1, µ), we obtain (4). Since

0 < −λ−(f, µ) < λ+(f, µ), this is stronger than the conclusion of Theorem A. �

8.3. Sequences of non-ergodic measures. We state and prove a version of Theorem D
removing its assumption that the converging measures νk are ergodic.

Corollary 8.5. Fix a real number r > 2. For every k ≥ 1, let fk ∈ Diffr(M), νk be an fk-

invariant measure, not necessarily ergodic, and ν̂k be a lift satisfying λ̂(f̂k, ν̂k) = λ+(fk, νk).
Let us assume that:

(1) limk λ
+(fk, νk) and limk h(fk, νk) exist and lim infk

∫
min(λ+(fk, x), 0)dνk(x) = 0,

(2) fk
r−bd−→ f for some f ∈ Diffr(M),

(3) ν̂k
w∗→ µ̂ for some f̂ -invariant probability measure µ̂ (perhaps non-ergodic) on M̂ .

Then there exist β ∈ [0, 1], two f -invariant measures µ0, µ1 with f̂ -invariant lifts µ̂0, µ̂1 s.t.

(a) µ̂ = (1− β)µ̂0 + βµ̂1;
(b) limk→∞ λ+(fk, νk) = βλ+(f, µ1);

(c) limk→∞ h(fk, νk)− 1
r−1λ(f̂) ≤ β

(
h(f, µ1) + λ(f)

r

)
;

(d) if β < 1, λ̂(f̂ , µ̂0) = 0;

(e) if β > 0, then λ̂(f̂ , µ̂1) = λ+(f, µ1) and λ+(f, x) > 0 for µ1-a.e. x.
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Note that if fk ∈ Diff∞(M) and fk → f in C∞, then the corollary applies for all r > 2,
and Property (c) becomes limk→∞ h(fk, νk) ≤ βh(f, µ1).

Note also that the conclusions (a)-(e) are the same as in Theorem D, except for the extra
term λ(f)/r on the right hand side. See the following remark on this term.

Remark 8.6. Our proof relies on discretizing the ergodic decompositions of the measures νk
and applying Theorem D to the atoms thus defined and taking a limit. This limiting process
is responsible for the term λ(f)/r in the entropy estimate in Property (c).

Using the decomposition in the projective bundle is the key to avoid any such loss in the
Lyapunov estimate eq. (b) and is therefore essential for our proof of this generalization.

Proof. Let P(M) denote the set of Borel probability measures on M , and let d be the L1-
Wasserstein distance over P(M). This distance is compatible with the weak-∗ topology and

satisfies d(
∑N
i=1 αiµi,

∑N
i=1 αiνi) ≤

∑N
i=1 αid(µi, νi) for all convex combinations.

We fix some ε > 0 and discretize the ergodic decompositions

νk =

∫
X

νk,ξ dPk(ξ).

By compactness of P(M), there are measurable partitionsX = Xε
k,1t· · ·tXε

k,Nε with number
of elements Nε independent of k, and with the following property for every 1 ≤ i ≤ Nε:

There is an f̂k-ergodic measure ν̂εk,i with projection νεk,i satisfying λ̂(f̂k, ν̂
ε
k,i) = λ+(fk, ν

ε
k,i)

and, for Pk-a.e. ξ ∈ Xε
k,i,

d(νk,ξ, ν
ε
k,i) < ε, |h(fk, νk,ξ)− h(fk, ν

ε
k,i)| < ε, and (59)

λ+(fk, νk,ξ)− 1
k < λ+(fk, ν

ε
k,i) < λ+(fk, νk,ξ) + ε. (60)

Passing to a subsequence, we may assume without loss of generality the existence of the
following limits:

µ̂εi := lim
k
ν̂εk,i, lim

k
h(fk, ν

ε
k,i), lim

k
λ+(fk, ν

ε
k,i), αεi := lim

k
Pk(Xε

k,i).

For each i = 1, . . . , N , we set µεi := π̂∗(µ̂
ε
i ). By inequalities (60) and by our assumption

lim infk
∫

min(λ+(fk, x), 0)dνk(x) = 0, it follows that either αεi = 0 or limk λ
+(fk, ν

ε
k,i) ≥ 0.

One can thus apply Theorem D to the sequence (fk, ν̂
ε
k,i)k≥1 converging to (f, µ̂εi ) and obtain

a decomposition

µ̂εi = (1− βεi )µ̂ε0,i + βεi µ̂
ε
1,i

for some 0 ≤ βεi ≤ 1 and µ̂ε0,i, µ̂
ε
1,i f̂ -invariant measures such that

lim
k
h(fk, ν

ε
k,i) ≤ βεi h(f, µε1,i) +

λ(f̂)

r − 1
and lim

k
λ+(fk, ν

ε
k,i) = βεi λ

+(f, µε1,i) = βεi µ̂
ε
1,i(ϕ).

We collect all the pieces, setting:

ν̂εk :=

Nε∑
i=1

αεk,iν̂
ε
k,i, µ̂

ε :=

Nε∑
i=1

αεi µ̂
ε
i , β

ε :=

Nε∑
i=1

αεiβ
ε
i , µ̂

ε
s :=

Nε∑
i=1

αεi µ̂
ε
s,i for s = 0, 1.

We denote by νεk, µ
ε, µεs the projections by π̂. We have that:

µ̂ε = (1− βε)µ̂ε0 + βεµ̂ε1.

By eq. (59),

d(νεk, νk) ≤ ε, |h(fk, ν
ε
k)− h(fk, νk)| < ε, |λ+(fk, ν

ε
k)− λ+(fk, νk)| < ε.
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Using that the entropy and average exponents are affine functions, we get

lim
k
h(fk, νk) ≤ lim inf

k
h(fk, ν

ε
k) + ε ≤ βεh(f, µε1) +

λ(f̂)

r − 1
+ ε (61)

and ∣∣∣∣limk λ+(fk, νk)− lim
k
λ+(fk, ν

ε
k)

∣∣∣∣ ≤ ε so

∣∣∣∣limk λ+(fk, νk)− βελ+(f, µε1)

∣∣∣∣ ≤ ε. (62)

To conclude, we pick a sequence of numbers (εj)j≥1 decreasing to zero along which the three
sequences µ̂ε, µ̂ε0 and µ̂ε1 converge to measures µ̂, µ̂0 and µ̂1. Since d(µε, µ) ≤ ε, we must
have π̂∗µ̂ = µ. We define µs := π∗(µ̂s) for s = 0, 1. Property (a) follows by continuity.

By Yomdin theory (see the discussion after eq. (5)),

lim
j
h(f, µ

εj
1 ) ≤ h(f, µ1) + λ(f)/r,

yielding Property (c). The decomposition converges in the projective bundle, hence, recalling
that ϕ(x,E) := log ‖Dxf |E‖ is a continuous function,

lim
j
λ+(f, µ

εj
1 ) = lim

j
µ̂
εj
1 (ϕ) = λ+(f, µ1).

Property (b) follows. For each i, one has µ̂ε0,i(ϕ) = 0 once βεi 6= 0; this implies Property (d).

We now turn to Property (e). We have βλ̂(f̂ , µ̂1) = λ̂(f̂ , µ̂) = limk→∞ λ̂(fk, ν̂k) and by

Property (b): limk→∞ λ̂(fk, ν̂k) = limk→∞ λ+(fk, νk) = βλ+(f, µ1). This gives the first
part, assuming β > 0.

Note that λ+(f, x) ≥ 0 for µ-a.e. x since otherwise the ergodic decomposition of µ would
contain a source as an atom and therefore νk would contain the same atom with uniform
weight for large k, in contradiction to our assumption lim infk

∫
min(λ+(fk, x), 0)dνk(x) = 0.

Let

Ẑ := {x̂ ∈ M̂ : λ+(f, π̂(x̂)) = 0}.
We assume 0 < µ̂1(Ẑ) < 1 since it is otherwise easy to conclude. We set:

β′ := β(1− µ̂1(Ẑ)), (1− β′)µ̂′0 := (1− β)µ̂0 + β
µ̂1( · ∩ Ẑ)

µ̂1(Ẑ)
, β′µ̂′1 := β

µ̂1( · \ Ẑ)

1− µ̂1(Ẑ)

obtaining a new decomposition µ̂ = (1− β′)µ̂′0 + β′µ̂′1. Note that, setting µ′1 := π̂∗µ̂
′
1,

β′h(f, µ′1) = βh(f, µ1) and β′λ+(f, µ′1) = βλ+(f, µ1).

since the probability measure µ1( ·∩Z)
µ̂1(Z) has both zero entropy and zero top Lyapunov expo-

nent. This concludes the proof of the Corollary 8.5. �
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