

Lecture 2: Symbolic Dynamics of MME

Last Time we stated without proof that BMC can carry at most one MME.

Today we will sketch the proof:

- (a) We'll describe the symbolic dynamics of f on a BMC
- (b) We'll calculate the form of the MME in symbolic coordinates
- (c) We'll deduce uniqueness (and much more).

Markov Shifts

Setup: Suppose we're given

- a countable set of "states" S
- a collection of directed edges $E \subseteq S \times S$ denoted by $a \rightarrow b$ $(a, b) \in E$.
- $\mathcal{G} :=$ directed graph with vertices S , edges E .

Non-Degeneracy Assumption: We assume throughout that $\forall a \in S \ \exists \exists \exists, \gamma \in S \text{ s.t. } \exists \rightarrow a, a \rightarrow \gamma$.

Markov Shift: $\Sigma(\mathcal{G}) := \left\{ (\underline{x}_i)_{i \in \mathbb{Z}} \in S^{\mathbb{Z}} : \forall i \ x_i \rightarrow x_{i+1} \right\}$
with the metric $d(\underline{x}, \underline{y}) := \exp \left[-\min \left\{ |i| : x_i \neq y_i \right\} \right]$
and the action of the left-shift map $\sigma: \Sigma(\mathcal{G}) \rightarrow \Sigma(\mathcal{G})$,
 $\sigma[(x_i)_{i \in \mathbb{Z}}] = (x_{i+1})_{i \in \mathbb{Z}}$.

Exercise: The topology of $\Sigma(\mathcal{G})$ is generated by the base of (non-empty) cylinder sets

$$_m[a_0, \dots, a_n] := \left\{ \underline{x} \in \Sigma(\mathcal{G}) : x_{i+m} = a_i \ (i=0, \dots, n) \right\}$$

Exercise:

(1) $\Sigma(g)$ is compact iff $|S| < \infty$

(2) $\Sigma(g)$ is locally compact iff g is locally finite:
 $\forall a \in S, \left(\begin{array}{l} \deg_{in}(a) := \#\{f: \mathbb{Z} \rightarrow a\} < \infty \\ \deg_{out}(a) := \#\{f: a \rightarrow \mathbb{Z}\} < \infty \end{array} \right).$

Exercise:

(1) The left shift map is a homeomorphism.

(2) It's topologically transitive iff $\forall a, b \in S \exists$ non-empty cylinder $[a, \mathbb{Z}_1, \dots, \mathbb{Z}_{l-1}, b]$, $l \geq 1$.
In this case we write $a \xrightarrow{l} b$

(3)* It's topologically mixing if it's top transitive, and for some $a \in S$ $\gcd\{l: a \xrightarrow{l} a\} = 1$.

Exercise: Let $\Sigma^{\#}(g) := \{(x_i)_{i \in \mathbb{Z}} : (x_i)_{i \geq 0}, (x_i)_{i \leq 0} \}$.
contain constant sub sequences
Prove that $\mu[\Sigma^{\#}(g)] = 1$ for all μ probability measures μ .

Symbolic Dynamics of Diffeos

The Coding Theorem Suppose $f \in \text{Diff}^{H\infty}(M)$, $\dim M \geq 2$, M compact. Let H be a BHC. For any $\chi > 0$, there's a Markov shift $\Sigma_x = \Sigma(g)$ and a Hölder map $\pi: \Sigma \rightarrow H$ s.t.

$$\begin{array}{ccc} \Sigma_x & \xrightarrow{\sigma} & \Sigma_x \\ \pi \downarrow & & \downarrow \pi \\ M & \xrightarrow{f} & M \end{array} \quad \text{commutes, and}$$

(1) Σ_x is topologically transitive. Moreover, g is locally finite, and every cylinder B compact.

(2) $\pi: \Sigma_x^\# \rightarrow H$ is finite-to-one

(3) $\pi(\Sigma_x^\#) = H \pmod{\mu}$ for each

- ergodic inv χ -hyperbolic measure on H

- projection of any σ -inv measure on Σ_x

(4) Hyperbolicity: For some $\chi_0 > 0$, $\forall \underline{x} \in \Sigma_x$ there's a splitting

$$T_{\pi(\underline{x})} M = E^s(\underline{x}) \oplus E^u(\underline{x}) \text{ s.t.}$$

- $\limsup_{n \rightarrow \infty} \frac{1}{n} \log \|Df^n|_{E^s(\underline{x})}\| < -\chi_0$

- $\limsup_{n \rightarrow \infty} \frac{1}{n} \log \|Df^{-n}|_{E^u(\underline{x})}\| < -\chi_0$

- $\underline{x} \mapsto E^s(\underline{x})$, $\underline{x} \mapsto E^u(\underline{x})$ are Hölder continuous

(5) Barnsberger Property: $\exists \varepsilon > 0$ $\forall (\chi, \varepsilon)$ -Pesin block $\Lambda \subseteq H$,

$$\exists \text{ cylinders } A_1, \dots, A_N \subseteq \Sigma \text{ s.t. } \pi^{-1}(\Lambda) \subseteq \bigcup_{i=1}^N A_i \pmod{\mu}$$

for any σ -inv measure μ on Σ_x .

We omit the proof.

We explore some of the properties of the Coding.

Projection Lemma: Any ergodic σ -invariant measure $\hat{\mu}$ on Σ projects to an f -invariant measure on H given by

$$\mu = \pi_*(\hat{\mu}) := \hat{\mu} \circ \pi^{-1}$$

- (1) If $\hat{\mu}$ is ergodic, μ is ergodic
- (2) μ is X_0 -hyperbolic
- (3) $h_\mu(f) = h_{\hat{\mu}}(\sigma)$

Sketch of Proof: Part (1) is trivial. Part (2) is by the "hyperbolicity property" of π . Part (3) is a consequence of finiteness-to-one, and the following general fact:

Abraamov Thm: countable-to-one factors preserve entropy. \square

Lifting Lemma: Any ergodic f -inv X -hyperbolic measure μ on H is the projection of some σ -inv ergodic measure $\hat{\mu}$ on Σ_X , with the same entropy.

Wrong Proof: $\hat{\mu} := \mu \circ \pi$. This doesn't work because π is not injective, so $\mu \circ \pi$ is not σ -additive.

Correct Proof (Sketch): Take a.e. ergodic component of

$$\tilde{\mu} := \int_H \frac{1}{|\Sigma^* \cap \pi^{-1}(y)|} \left(\sum_{\substack{\pi(x)=y \\ x \in \Sigma^*}} \delta_x \right) d\mu(y)$$

using finiteness-to-one to guarantee the existence of the integral. (Measurability issues are non-trivial.) \square

Corollary: Any x -hyperbolic MME μ lifts to the MME $\hat{\mu}_{\max}$ of the symbolic model $\sigma: \Sigma_x \rightarrow \Sigma_x$ of its BHC $H(\mu_{\max})$.

Proof: Firstly, $h_{\mu_{\max}}(\sigma) = h_{\mu_{\max}}(f) = h_{\text{top}}(f)$.

If there were another σ -inv $\hat{\mu}$ s.t. $h_{\hat{\mu}}(\sigma) > h_{\text{top}}(f)$, then its projection $\mu = \pi_x(\hat{\mu})$ would be an f -inv prob measure with entropy $> h_{\text{top}}(f)$, which contradicts the variational principle.

$\Rightarrow \hat{\mu}_{\max}$ is an MME of $\sigma: \Sigma_x \rightarrow \Sigma_x$. □

Next, we'll show that transitive Markov shifts can have at most one MME, and identify it. This will

- Imply that any BHC can carry at most one MME μ_{\max} and will complete the proof that in dim 2, the number of ergodic MME is finite.
- Give us an explicit formula for $\hat{\mu}_{\max}$, opening the way for the proof that $\hat{\mu}_{\max}$, whence μ_{\max} , is Bernoulli up to a period.

Uniqueness and Structure of MME for Transitive Markov Shifts

Reduction to One-Sided Shifts: Let \mathcal{G} be a countable directed graph with set of vertices ("states") S . The One-sided Markov shift associated to \mathcal{G} is

$$\begin{aligned}\Sigma^+ &= \Sigma^+(\mathcal{G}) = \left\{ (x_i)_{i \geq 0} : x_i \in S, \forall i \ x_i \rightarrow x_{i+1} \right\} \\ \sigma: \Sigma^+ &\rightarrow \Sigma^+, \sigma: (x_i)_{i \geq 0} \mapsto (x_i)_{i \geq 1}, d(x, y) = e^{-\min\{i \geq 0 : x_i \neq y_i\}}\end{aligned}$$

Exercise: $\sigma: \Sigma^+(\mathcal{G}) \rightarrow \Sigma^+(\mathcal{G})$ is top. transitive (resp top. mixing) iff $\sigma: \Sigma(\mathcal{G}) \rightarrow \Sigma(\mathcal{G})$ is top. transitive (resp top. mixing).

Let $p: \Sigma \rightarrow \Sigma^+$ be the projection $p: (x_i)_{i \in \mathbb{Z}} \mapsto (x_i)_{i \geq 0}$. Any σ -inv prob. measure μ on Σ projects to a σ -inv measure $\mu^+ := \mu \circ p^{-1}$ on Σ^+ given by

$$\mu^+([a_0, \dots, a_n]) = \mu([a_0, \dots, a_n]).$$

Conversely, any σ -inv prob. measure μ^+ on Σ^+ extends uniquely to a σ -inv prob. measure μ on Σ called the natural extension of μ and given by

$$\mu([a_0, \dots, a_n]) = \mu^+([a_0, \dots, a_n]).$$

Note that $\mu \circ p^{-1} = \mu^+$.

Exercise: $h_\mu(\sigma) = h_{\mu^+}(\sigma)$

Corollary: μ is MME $\Leftrightarrow \mu^+$ is MME. Thus, it's enough to study MMEs of one-sided Markov shifts.

Ruelle's Operator: Fix some $\phi: \Sigma^+ \rightarrow \mathbb{R}$ Hölder cts

(e.g. $\phi \equiv 0$). Ruelle's Operator is

$$(L_\phi f)(x) = \sum_{\sigma y=x} e^{\phi(y)} f(y) \equiv \sum_{a: a \rightarrow x_0} e^{\phi(a, x_0, x_1, \dots)} f(a, x_0, x_1, \dots)$$

(the domain depends on the context).

We will see that L_ϕ is intimately tied to the variational problem of maximizing $h_m(\sigma) + \int \phi dm$.

Let $P_G(\phi) = \sup \{ h_m(\sigma) + \int \phi dm \}$ (the "Gurevich pressure" of ϕ).

Variational Principle: Let Σ^+ be a top transitive Markov shift with finite top entropy, and let $\phi: \Sigma^+ \rightarrow \mathbb{R}$ be a (bounded) Hölder function. Then for any $a \in S$, $x_a \in [a]$,

$$P_G(\phi) = \overline{\lim}_{n \rightarrow \infty} \frac{1}{n} \log (L_\phi^n 1_{[a]})(x_a)$$

Exercise (Gurevich Variational Principle): Let Σ^+ be a top transitive Markov shift such that $\sup_m h_m(\sigma) < \infty$. * Then

$$\text{Have } S, \sup \{ h_m(\sigma) \} \text{ inv. Borel prob. meas. } \zeta = \overline{\lim}_{n \rightarrow \infty} \frac{1}{n} \log t_{ab}^{(n)},$$

where $t_{ab}^{(n)}$ are the entries of A^n , and A is the transition matrix of Σ^+ , i.e. $A = (t_{ab})_{S \times S}$, $t_{ab} = \begin{cases} 1 & a \rightarrow b \\ 0 & \text{else} \end{cases}$.

* Exercise*: Remove the condition on the finiteness of $\sup_m h_m(\sigma)$.

Generalized "Ruelle's Perron-Frobenius Thm": Let $\lambda = \exp P_G(\phi)$.

Under the prev. assump., if $\exists a \in S, \exists x_a \in [a]$ s.t. $\sum_{n=1}^{\infty} \lambda^n (L_{\phi}^{-1})^n(x_a) = \infty$ (" ϕ is recurrent"), then \exists Borel measure \mathbb{J} and \exists positive continuous function h s.t. $L_{\phi}^n \mathbb{J} = \lambda^n \mathbb{J}$ and $L_{\phi} h = \lambda h$. Moreover,

- (1) \mathbb{J} is finite and positive on cylinders, and without wandering sets of positive measure (but perhaps $\mathbb{J}(\Sigma^+) = \infty$)
- (2) $\log h, (\log h) \circ \sigma$ are uniformly Hölder on cylinders. But perhaps $\int h d\mathbb{J} = \infty$.
- (3) If $\phi = \text{const}$, h is constant on cylinders (i.e. $h(x) = h(x_0)$).

Structure Thm for Equilibrium Measures: Suppose

- (Σ^+, σ) is a top. transitive one-sided Markov shift with finite top entropy ($\sup \{h_p(\sigma)\} < \infty$).
- $\phi: \Sigma^+ \rightarrow \mathbb{R}$ is a bounded Hölder continuous function
- m_{ϕ} is an equilibrium measure:
$$h_{m_{\phi}}(\sigma) + \int \phi d m_{\phi} = \sup \{h_p(\sigma) + \int \phi d \mu : \mu \text{ is } \sigma\text{-inv}\}$$

Then:

(1) Structure: $m_{\phi} = h \cdot d\mathbb{J}$ where $h \geq 0$ is cts, \mathbb{J} is a Borel measure finite and positive on cylinders, and $L_{\phi} h = \lambda h$, $L_{\phi}^n \mathbb{J} = \lambda^n \mathbb{J}$, $\int h d\mathbb{J} = 1$, $\lambda = \exp(P_G(\phi))$

(2) Ergodic Properties: The equilibrium is ergodic and its natural extension is Bernoulli up to a period.

In the special case of MMEs ($\phi \equiv 0$), it's Markov.

(3) Uniqueness: There's at most one equilibrium measure.

The proof requires some preparation.

Sub-Eigenfunctions: For any Hölder continuous $\exists h$ positive continuous s.t. $L_\phi h \leq \lambda h$, $\lambda = \exp P_\epsilon(\phi)$.

Sketch of Proof:

(1) If ϕ is "recurrent" ($\sum_{n=1}^{\infty} \lambda^{-n} (L_\phi^n 1_{\{a\}})(x_a) < \infty$ for some $a \in S$, $x_a \in \{a\}$), then we can apply the "generalized Perron-Frobenius theorem" above.

(2) Otherwise $\exists a \in S$, $\exists x_a \in \{a\}$ s.t. $\sum_{n=1}^{\infty} \lambda^{-n} (L_\phi^n 1_{\{a\}})(x_a) < \infty$.
By Hölder continuity $\forall x \in \{a\}$, $\sum_{n=1}^{\infty} \lambda^{-n} (L_\phi^n 1_{\{a\}})(x) < \infty$.

By top transitivity $\forall x \in \Sigma^+$, $\sum_{n=1}^{\infty} \lambda^{-n} (L_\phi^n 1_{\{a\}})(x) < \infty$.

Moreover the partial sums are uniformly bounded and equicontinuous on partition sets.

$\Rightarrow h := \sum_{n=1}^{\infty} \lambda^{-n} L_\phi^n 1_{\{a\}}$ is positive and continuous.

One checks that $L_\phi h \leq \lambda h$. □

The Measure $m \circ \sigma$: Let m be a σ -inv prob. measure on Σ^+ . Let $\alpha = \{[a] : a \in S\}$ denote the natural partition. Define a Borel measure $m \circ \sigma$ via

$$(m \circ \sigma)(E) := \sum_{A \in \alpha} m(\sigma(E \cap A))$$

Explanation: $\forall A \in \alpha$, $\sigma|_A : A \rightarrow \sigma(A)$ is injective.

But $\sigma : \Sigma^+ \rightarrow \Sigma^+$ is not. The measure $m \circ \sigma$ measures the size of $\sigma(E)$ "with multiplicity":

Example: If $\Sigma^+ = \{0,1\}^{\mathbb{N}}$ then $\sigma([i]) = \Sigma^+$ but $(m \circ \sigma)([1]) = m(\sigma[1]) + m(\sigma[2]) = 2 \cdot m(\Sigma^+) = 2$.

Exercise:

(1) We cannot define a measure by $\tilde{m}(E) = m(\sigma(E))$, because (sometimes) $E \mapsto m(\sigma(E))$ is not σ -additive.

(2) If $f : \Sigma \rightarrow \mathbb{R}^+$ is bounded and measurable, then

$$\int_{\Sigma^+} f \, d(m \circ \sigma) = \sum_{a \in S} \int_{\sigma[a]} f(ax) \, dm(x) \quad (ax := (a, x_0, x_1, \dots))$$

(3) If $m \circ \sigma^{-1} = m$, then $m \circ \sigma \ll m$

Sol'n of Exercise:

(1) If $\Sigma^+ = \{0,1\}^{\mathbb{N}}$, then $\sigma[0] = \sigma[1] = \Sigma^+$ so
 $\tilde{m}([0]) + \tilde{m}([1]) = 2 \cdot m(\Sigma^+) = 2$,
 But $\tilde{m}([0] \cup [1]) = \tilde{m}(\Sigma^+) = m(\sigma(\Sigma^+)) = m(\Sigma^+) = 1$.

(2) It's enough to check the identity for indicator of Borel sets: $\int 1_E dm \circ \sigma = (m \circ \sigma)(E) = \sum_{a \in S} m(\sigma(E \cap [a]))$

$$= \sum_{a \in S} \int 1_{\sigma(E \cap [a])}(y) dm(y)$$

$$\stackrel{!}{=} \sum_{a \in S} \int_{\sigma([a])} 1_E(ay) dm(y).$$

$$y \in \sigma(E \cap [a])$$

$$\Leftrightarrow \sigma|_{[a]}^{-1}(y) \in E \cap [a]$$

$$\Leftrightarrow ay \in E \cap [a]$$

$$\Leftrightarrow y \in \sigma[a], ay \in E$$

(3) We are asked to show that for every Borel set E , $(m \circ \sigma)(E) = 0 \Rightarrow m(E) = 0$. Indeed,

$$(m \circ \sigma)(E) = 0 \Rightarrow \sum_{a \in S} m(\sigma(E \cap [a])) = 0$$

$$\Rightarrow \forall a \in S \quad m(\sigma(E \cap [a])) = 0$$

$$\stackrel{m \circ \sigma^{-1} = m}{\Rightarrow} \forall a \in S \quad (m \circ \sigma^{-1})(\sigma(E \cap [a])) = 0$$

$$\Rightarrow \forall a \in S \quad m(E \cap [a]) \leq (m \circ \sigma^{-1})(\sigma(E \cap [a])) = 0$$

$$\Rightarrow m(E) = \sum_{a \in S} m(E \cap [a]) = 0. \quad \square$$

The Jacobian: The Jacobian of an invariant measure m is
The Radon-Nikodym derivative

$$g_m = \frac{dm}{dm_{\sigma}} \quad (m_{\sigma}\text{-a.e.})$$

(I.e. the function g_m s.t. $\int f g_m dm_{\sigma} = \int f dm$)

Explanation: The "ordinary" Jacobian is the function which appears in the change of variables formula.

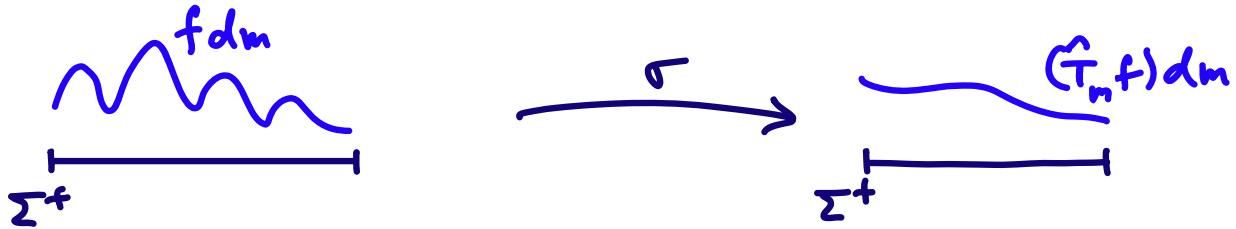
The Jacobian g_m is the "Jacobian" of the "substitution" $x = ay = (a_1 y_1, a_2 y_2, \dots)$ for $x \in \mathbb{R}^n$:

Fact:
$$\int_{\mathbb{R}^n} f dm = \int_{\sigma(\mathbb{R}^n)} f(ax) \left(\frac{dm}{dm_{\sigma}} \right)(ax) dm_{\sigma}(x)$$

Proof:
$$\begin{aligned} \int_{\mathbb{R}^n} f dm &= \sum_{S^+} \int_{\{1_{\{a\}} \cdot f \cdot \frac{dm}{dm_{\sigma}}\}} dm_{\sigma} \\ &= \sum_{b \in S} \int_{\sigma(b)} \left(1_{\{a\}} \cdot f \cdot \frac{dm}{dm_{\sigma}} \right)(bx) dm_{\sigma}(x) \quad (\text{prev. exercise}) \\ &= \int_{\sigma(\mathbb{R}^n)} \left(1_{\{a\}} \cdot f \cdot \frac{dm}{dm_{\sigma}} \right)(ax) dm_{\sigma}(x) \quad (\text{all other terms vanish}) \\ &= \int_{\sigma(\mathbb{R}^n)} f(ax) \left(\frac{dm}{dm_{\sigma}} \right)(ax) dm_{\sigma}(x) . \end{aligned}$$

The Transfer Operator: Suppose m is a σ -invariant prob measure. The transfer operator of m is $\hat{T}_m: L^1(m) \rightarrow L^1(m)$ s.t.

$$\sigma_*(f dm) = (\hat{T}_m f) dm$$



Lemma: $(\hat{T}_m f)(x) = \sum_{\sigma y=x} g_m(y) f(y), \quad g_m = \frac{dm}{dm \circ \sigma}$

Proof: For each $\varphi \in L^\infty(m)$,

$$\int \varphi \cdot \hat{T}_m f \ dm \equiv \int \varphi \cdot \sigma_*(f dm) \equiv \int (\varphi \circ \sigma) \cdot f dm$$

$$= \sum_{a \in S} \int \varphi(\sigma x) f(x) dm$$

$$= \sum_{a \in S} \int \varphi(\sigma(ax)) f(ax) g_m(ax) dm(x)$$

(because $\int \varphi dm = \int \varphi(ax) \left(\frac{dm}{dm \circ \sigma} \right)(ax) dm(x)$)

$$= \int \varphi(x) \left(\sum_{a \in S} 1_{\sigma(a)}(x) f(ax) g_m(ax) \right) dm(x)$$

$$= \int \varphi(x) \left(\sum_{\sigma y=x} g_m(y) f(y) \right) dm(x).$$

Since this holds for all $\varphi \in L^\infty$, $\hat{T}_m f = \sum_{\sigma y=x} g_m(y) f(y)$ in L^1 . \square

Properties of the Transfer Operator Let m be a

σ -inv prob measure, then:

(1) $\forall \varphi \in L^\infty(m), f \in L^1(m), \int \varphi \hat{T}_m f dm = \int \varphi \circ \sigma f dm$

(2) $E_m(f | \mathcal{L}_i^\infty) = (\hat{T}_m f) \circ \sigma, \mathcal{L}_i^\infty := \{[a] : a \in S\},$

$\mathcal{L}_i^\infty := \left(\sigma\text{-algebra generated by } \bigcup_{i=1}^\infty \sigma^{-i} \mathcal{L}_i \right)$

Proof: The first part follows from the previous proof.

To see the second part we recall the defⁿ of the definition of the conditional expectation $E_m(f | \mathcal{L}_i^\infty)$: It's the unique $L^1(m)$ element s.t.

(a) $E(f | \mathcal{L}_i^\infty)$ is \mathcal{L}_i^∞ -measurable;

(b) $\forall \varphi \in L^\infty \mathcal{L}_i^\infty$ -measurable, $\int \varphi E(f | \mathcal{L}_i^\infty) dm = \int \varphi f dm$.

We need the following exercise: $\varphi \in L^\infty$ is \mathcal{L}_i^∞ -measurable iff $\varphi = \varphi \circ \sigma$ where φ is Borel.

Exercise in Measure Theory: Suppose φ is bounded, then φ is \mathcal{L}_i^∞ -measurable iff $\varphi = \varphi \circ \sigma$ for φ Borel.

By the exercise,

(a) $(\hat{T}_m f) \circ \sigma$ is \mathcal{L}_i^∞ -measurable, and

(b) $\forall \varphi \in L^\infty \mathcal{L}_i^\infty$ -meas, $\varphi = \varphi \circ \sigma$ with φ Borel meas., and

$$\begin{aligned} \int \varphi (\hat{T}_m f) \circ \sigma dm &= \int \varphi \circ \sigma (\hat{T}_m f) \circ \sigma dm = \int \varphi \hat{T}_m f dm \\ &= \int \varphi \circ \sigma \cdot f dm = \int \varphi f dm. \end{aligned}$$

So $(\hat{T}_m f) \circ \sigma = E_m(f | \mathcal{L}_i^\infty)$ a.e.

Solution of Exercise: The Borel σ -algebra \mathcal{B} is generated by the cylinders, therefore $\mathcal{B} = \mathcal{L}_0^\infty$. It follows that $\bar{\sigma}'\mathcal{B} = \mathcal{L}_1^\infty$. Thus φ is \mathcal{L}_1^∞ -measurable iff φ is $\bar{\sigma}'\mathcal{B}$ -measurable.

Any $\varphi = \varphi \circ \sigma$ with φ Borel is $\bar{\sigma}'(\mathcal{B})$ -measurable:

$$\{x: \varphi(x) > t\} = \{x: \varphi(\sigma x) > t\} = \bar{\sigma}'\{\sigma x: \varphi(\sigma x) > t\} \in \mathcal{B}.$$

Conversely, if φ is $\bar{\sigma}'\mathcal{B}$ -measurable, then $\forall |k| < N$ s.t.

$$\left\{x: \frac{k}{N} \leq \varphi(x) < \frac{k+1}{N}\right\} \in \bar{\sigma}'\mathcal{B}, \text{ therefore } \exists A_{k,N} \in \mathcal{B} \text{ s.t.}$$

$$\left\{x: \frac{k}{N} \leq \varphi(x) < \frac{k+1}{N}\right\} = \bar{\sigma}A_{k,N}, \text{ whence}$$

$$\varphi(x) = \lim_{N \rightarrow \infty} \sum_{k=-\|\varphi\|N-1}^{\|\varphi\|N+1} \frac{k}{N} 1_{A_{k,N}} \quad (\text{uniform convergence})$$

$$= \lim_{N \rightarrow \infty} \sum_{k=-\|\varphi\|N-1}^{\|\varphi\|N+1} \frac{k}{N} 1_{A_{k,N}} \circ \sigma = \varphi \circ \sigma$$

$$\text{for the Borel function } \varphi := \lim_{N \rightarrow \infty} \sum_{k=-\|\varphi\|N-1}^{\|\varphi\|N+1} \frac{k}{N} 1_{A_{k,N}}.$$

(The previous formula shows that the limit exists everywhere) \square

Entropy Formula: Our aim is to show

Thm. Suppose m_ϕ is the equilibrium measure of a (bounded) Hölder continuous potential on a Markov shift with finite top entropy. Then:

$$h_{m_\phi}(\sigma) = - \int \log g_{m_\phi} \, dm_\phi$$

(Here $g_{m_\phi} = dm_\phi/dm_\phi \circ \sigma$ is the Jacobian of m_ϕ .)

Review of Entropy Theory: Let m be a σ -inv prob measure.

- Natural Partition: $\alpha = \{\{a\} : a \in S\}$
- Entropy of α : $H_m(\alpha) = - \sum_{A \in \alpha} m(A) \log m(A)$
- Information Function: $I_m(\alpha | \alpha_i^\infty) = - \sum_{a \in S} 1_{\{a\}} \log E_m(1_{\{a\}} | \alpha_i^\infty)$
- Conditional Entropy: $H_m(\alpha | \alpha_i^\infty) = \int I_m(\alpha | \alpha_i^\infty) \, dm$
- Sinai-Rokhlin Thesis: If $H_m(\alpha) < \infty$, then
$$h_m(\sigma) \stackrel{!}{=} h_m(\sigma, \alpha) \stackrel{!}{=} H_m(\alpha | \alpha_i^\infty) \equiv \int I_m(\alpha | \alpha_i^\infty) \, dm$$

(The marked identities could be false when $H_m(\alpha) = \infty$.)

Ledrappier Identity: For any inv Borel prob measure on a Markov shift,

$$I_m(\alpha | \alpha_i^\infty) = - \log g_m$$

Exercise: Use the transfer operator to prove Ledrappier's identity.

$$\begin{aligned}
 \text{Solution: } I_m(\omega | \omega_i^\infty)(x) &= -\sum_{a \in S} 1_{[a]}(x) \log I\mathbb{E}_m(1_{[a]} | \omega_i^\infty)(x) \\
 &= -\sum_{a \in S} 1_{[a]}(x) \log (\hat{T}_m 1_{[a]})(\sigma x) \quad (\because I\mathbb{E}_m(f | \omega_i^\infty) = (\hat{T}_m f)(\omega)) \\
 &= -\sum_{a \in S} 1_{[a]}(x) \log \sum_{\sigma y = \sigma x} g_m(y) 1_{[a]}(y) \\
 &= -\log \sum_{\sigma y = \sigma x} g_m(y) 1_{[x_0]}(y) \quad (\because a \neq x_0 \Rightarrow 1_{[a]}(x) = 0) \\
 &= -\log g_m(x), \text{ because } \begin{cases} \sigma y = x_0 \\ y \in [x_0] \end{cases} \Rightarrow y = x. \quad \square
 \end{aligned}$$

Proof of Entropy Formula: If $H_{m_\phi}(\omega) < \infty$, then the Sinai-Rokhlin theory tells us that

$$h_{m_\phi}(\sigma) = \underbrace{\int I_{m_\phi}(\omega | \omega_i^\infty) dm_\phi}_{\text{Sinai-Rokhlin}} = -\underbrace{\int \log g_{m_\phi} dm_\phi}_{\text{Ledrappier}}.$$

The rest of the proof treats the case $H_{m_\phi}(\omega) = \infty$. The main idea is to consider the induced map on some partition set $[a]$, and show that it's a Markov shift, and that its natural partition has finite entropy for the "induced" measure $\bar{m}_\phi = m_\phi(\cdot | [a])$. Now

$$(\text{Rokhlin's formula for the induced map}) + (\text{Abramov's formula}) + (\text{Kac formula}) \Rightarrow \begin{pmatrix} \text{Rokhlin's formula for} \\ m_\phi \end{pmatrix}$$

For details, see:

Buzzi, Saig: Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. Ergodic Theory & Dynamical Syst. 25, 1383–1400 (2005). \square

Proof of the Structure Theorem (1): Suppose $\phi: \Sigma^+ \rightarrow \mathbb{R}$

is a (bounded) Hölder function on a top transitive Markov shift Σ^+ with finite top entropy. Necessarily,

$$P_\phi(\phi) = \sup \left\{ h_m(\sigma) + \int \phi d\mu \right\} < \infty.$$

Let $\lambda = \exp P_\phi(\phi)$. Recall that $\exists h \geq 0$ continuous s.t $L_\phi h \leq \lambda h$. Let

$$g(x) := \frac{e^{\phi(x)} h(x)}{\lambda h(\sigma x)}$$

Exercise: For each x

(1) $\sum_{\sigma y=x} g(y) \leq 1$,

(2) $0 < g(x) \leq 1$,

(3)* $\log g \in L^1(\mu_\phi)$ for any equilibrium measure μ_ϕ ,

(4) $\log h - \log h \circ \sigma \in L^1(\mu_\phi)$, therefore $\int (\log h - \log h \circ \sigma) d\mu_\phi = 0$.

(Soln of (3)): See [Buzzi - Saig, ETDS (2003)], p. 1391).

Exercise: Suppose m is an inv prob measure with finite entropy.

Let $g_m = \log \frac{dm}{dm \circ \sigma}$. Then:

(1) $\sum_{\sigma y=x} g_m(y) = 1$ m-a.e. (Hint: Prove that $\hat{T}_m 1 = 1$)

(2) $0 \leq g_m(y) \leq 1$ m-a.e.

(3) If m satisfies Rokhlin's Entropy formula, then $g_m \in L^1(m)$

Now suppose m_ϕ is an equilibrium measure of ϕ . Then

$$0 = h_{m_\phi}(\sigma) + \int \phi dm_\phi - P_\phi(\phi)$$

$$\stackrel{\substack{\text{prev.} \\ \text{exercice}}}{=} h_{m_\phi}(\sigma) + \int [\phi + (\log h - \log h \circ \sigma) - P_\phi(\phi)] dm_\phi$$

$$= h_{m_\phi}(\sigma) + \int \log g dm_\phi$$

$$\stackrel{\substack{\text{Rokhlin} \\ \text{formula}}}{=} - \int \log g dm_\phi + \int \log g dm_\phi = \int \log \left(\frac{g}{g_{m_\phi}} \right) dm_\phi$$

$$= \int T_{m_\phi} \left[\log \frac{g}{g_{m_\phi}} \right] dm_\phi \quad (\because \int T_m \varphi dm = \int 1 \circ \varphi dm = \int \varphi dm)$$

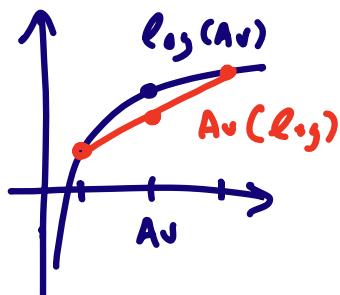
$$= \int \underbrace{\sum_{\sigma y = x} g_{m_\phi}(y) \log \frac{g(y)}{g_{m_\phi}(y)}}_{\text{weighted average}} dm_\phi$$

weighted average

$$\text{Since } \sum_{\sigma y = x} g_{m_\phi}(y) = 1$$

$$\stackrel{\text{Jensen's}}{\leq} \int \log \left(\sum_{\sigma y = x} g_{m_\phi}(y) \frac{g(y)}{g_{m_\phi}(y)} \right) dm_\phi = \int \underbrace{\log \sum_{\sigma y = x} g(y)}_{\leq 1} dm_\phi \leq 0.$$

Jensen's
Inequality for
the concave $\log x$



Necessarily the red ineq. is an
equality.

↓
strict concavity
of $\log x$

For m_ϕ -a.e. x , $\frac{g(y)}{g_{m_\phi}(y)}$ are equal
for all $y \in \sigma^{-1}(x)$ s.t. $g_{m_\phi}(y) \neq 0$

Equivalently, $\exists c(x)$ s.t. $g(y) = c(x) g_{m_\phi}(y) \forall y \in \sigma^{-1}(x)$ s.t. $g_{m_\phi}(y) \neq 0$.
 Substituting this above, we obtain $\int_{\sigma y=x} \log(c(x) \sum_{y \in \sigma^{-1}(x)} g_{m_\phi}(y)) dm_\phi = 0$
 So $\int_{\sigma y=x} c(x) dm_\phi = 0$.

Also $1 \geq \sum_{\sigma y=x} g(y) \geq c(x) \sum_{\sigma y=x} g_{m_\phi}(y) = c(x) m_\phi\text{-a.e.}$, so $c(x) \leq 1$ a.e.

Necessarily $c(x) = 1$ a.e., and so

$$\boxed{\text{For } m_\phi\text{-a.e. } x, \left. \begin{array}{l} \sigma y = x \\ g_{m_\phi}(y) > 0 \end{array} \right\} \Rightarrow g_{m_\phi}(y) = g(x)}$$

Thus: $(\hat{T}_{m_\phi} f)(x) = \sum_{\sigma y=x} g(y) f(y) = \lambda^{-1} h^{-1} L_\phi(h f)$

and we have identified the transfer operator of m_ϕ .

We are now nearly done: Let $\mathcal{J} = h^{-1} dm_\phi$. Then:

(1) $dm_\phi = h d\mathcal{J}$: Trivial

$$\begin{aligned} (2) L_\phi^* \mathcal{J} &= \lambda \mathcal{J} : \forall f \in L^1(\mathcal{J}), (L_\phi^* \mathcal{J})(f) = \int (L_\phi f) d\mathcal{J} = \int h^{-1} L_\phi(h \frac{f}{h}) dm_\phi \\ &= \lambda \int \hat{T}_{m_\phi}(f/h) dm_\phi = \lambda \int (f/h) dm_\phi = \lambda \int f d\mathcal{J} = \lambda \mathcal{J}(f). \\ \Rightarrow L_\phi^* \mathcal{J} &= \lambda \mathcal{J}. \end{aligned}$$

Exercise: Show that $\text{Supp}(\mathcal{J}) = \Sigma^+$. (Hint: Use transitivity to show that \forall cylinders $[a], [b] \exists N$ s.t. $L_\phi^N 1_{[a]} > 0$ on $[b]$).

$$\begin{aligned} (3) L_\phi h &= \lambda h : \text{Since } m_\phi \text{ is } \sigma\text{-inv, } \hat{T}_{m_\phi} 1 = 1, \text{ whence} \\ &\lambda^{-1} h^{-1} L_\phi(h \cdot 1) = \hat{T}_{m_\phi} 1 = 1 \Rightarrow L_\phi h = \lambda h \text{ } m_\phi\text{-a.e.} \\ &\Rightarrow L_\phi h = \lambda h \text{ everywhere (because both sides of the equation are continuous functions, and } \text{Supp}(m_\phi) = \text{Supp}(\mathcal{J}) = \Sigma^+). \quad \square \end{aligned}$$

Proof that m_ϕ is Bernoulli - up to - a Period : We do this in the special case of MMEs ($\phi \equiv \sigma$).

The general case can be found in §3 of :

O. Sarig : Bernoulli equilibrium states for diffeomorphisms,
J. Modern Dynamics (2011)

Recall that if $\phi \equiv \sigma$, then h is constant on partition sets,
i.e. $h = h(x_0)$. Therefore,

$$m_\phi[a_0, \dots, a_n] = m_\phi(1_{[a_0, \dots, a_n]}) = m_\phi(\hat{T}_{m_\phi}^n 1_{[a_0, \dots, a_n]})$$

$$= m_\phi(\lambda^{-n} h^{-1} L_\phi^n(h 1_{[a_0, \dots, a_n]})) \quad (\text{check!})$$

$$= m_\phi(\lambda^{-n} h^{-1} \sum_{\sigma^n y = x} e^{\phi_n(y)} h(y) 1_{[a_0, \dots, a_n](y)})$$

$$= m_\phi(\lambda^{-n} h^{-1} h(a_0) \underbrace{1_{[a_0, \dots, a_n]}(a_0, \dots, a_{n-1}, x)}_{= 1_{[a_n]}(x)})$$

$$= m_\phi(\lambda^{-n} \frac{h(a_0)}{h(a_n)} 1_{[a_n]})$$

$$\stackrel{\phi \equiv \sigma}{=} \frac{m_\phi[a_n] h(a_0)}{\lambda^n h(a_n)} = m_\phi[a_0] \cdot \frac{h(a_0) / m_\phi[a_0]}{\lambda^n h(a_n) / m_\phi[a_n]}$$

$$\stackrel{h(x) = h(x)}{=} m_\phi[a_0] \frac{1/\mathcal{D}(a_0)}{1/\mathcal{D}(a_n)} = m_\phi[a_0] \cdot \frac{\mathcal{D}[a_n]}{\lambda^n \mathcal{D}[a_0]} = m_\phi[a_0] \cdot \prod_{i=0}^n \frac{\mathcal{D}[a_{i+1}]}{\lambda \mathcal{D}[a_i]}$$

$$= P_{a_0} \cdot P_{a_0, a_1} \cdot \dots \cdot P_{a_{n-1}, a_n}, \text{ where}$$

$$P_a = m_\phi[a] \quad \text{and} \quad P_{a,b} = \begin{cases} \frac{\mathcal{D}[b]}{\lambda \mathcal{D}[a]} & a \rightarrow b \\ 0 & \text{else.} \end{cases}$$

Exercise: (p_a) is a prob. vector; $(p_{a,b})$ is a stoch. matrix, and $\forall a \ p_a \neq 0$; If $a \rightarrow b$, then $p_{a,b} \neq 0$.

[Sol]: (p_a) is a prob. vector because m_ϕ is a prob. measure. Next, by the previous formula $p_{ab} = \frac{p_a p_{ab}}{p_a} = \frac{m_\phi(a, b)}{m_\phi(a)}$, so $\sum_{b: a \rightarrow b} p_{ab} = \sum_{b: a \rightarrow b} \frac{m_\phi(a, b)}{m_\phi(a)} = \frac{m_\phi(a)}{m_\phi(a)} = 1$.]

The exercise proves:

Gurevich's Thm: The MME of a top transitive Markov shift is a globally supported Markov measure.

It's well-known that globally supported Markov measures on transitive Markov shifts are Bernoulli-up-to-a-period. □

Uniqueness of the Equilibrium Measure: Suppose by way of contradiction there were two different equilibrium measures m'_ϕ, m''_ϕ . Then $m_\phi := \frac{1}{2}(m'_\phi + m''_\phi)$ is a non-ergodic equilibrium measure. But we just saw that eq. measures are Bernoulli up to a period, and this implies ergodicity. □

References for Lecture 2

Main Coding Theorem: We use the formulation in

Buzzi - Crovisier - Saig: Strong Positive Recurrence and Exponential Mixing for Diffeomorphisms. ArXiv (2025).

See also:

Saig: Symbolic dynamics for surface diffeomorphisms with positive entropy, J. of AMS (2018)

Ben Ovadia: Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds. J. Modern Dynam. (2018)

Buzzi - Crovisier - Saig: Measures of maximal entropy for surface diffeomorphisms, Ann. Math. (2022)

Araujo - Lima - Poletti: Symbolic dynamics for non-uniformly hyperbolic maps with singularities in higher dimension. Memoirs of AMS (2022)

Structure of MME for Markov Shifts:

Buzzi & Saig: Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps ETDS (2003)

Gurevich: Shift entropy and Markov measures in the space of paths of a countable graph. Dokl. Acad. Nauk. SSSR (1970)

Parry: Intrinsic Markov chains. Trans. AMS (1969)

Saig: Thermodynamic formalism for countable Markov shifts. Lecture notes freely available from my homepage.

Bernoulli Property: **Saig**: Bernoulli equilibrium states for surface diffeomorphisms. J. Modern Dynam. (2011)