Lecture 5: Entropy Theory in Metric Spaces

Overview: We discuss a <u>dimemion theoretic</u> approach

to entropy. Main Advantage: No need for smoothnen!

Background on Metric Spaces

Metric Space (X,d): A set X with a non-negative function d(x,y) s.t. d(x,x) = 0, d(x,y) = d(y,x), and $d(x,z) \leq d(x,y) + d(y,z)$ for all $x,y,z \in X$.

- <u>E-Balls</u>: B(x, e) := {y e X : d(x,y) < e}
- Convergence: $x_n \rightarrow y$ if $d(x_n, y) \rightarrow \delta$.
- Compactnen: (X,d) is compact if every sequence $\{x_n\}_{n\geq 1}$ has a convergent subsequence $x_{n_k} \xrightarrow{k-2} y$

Fact: Suppose X is a compact metric space. Then for every $\varepsilon > 0$, X can be covered by finitely many $\varepsilon - bells$.

Proof. Fix $x_1 \in X$. If $X \subseteq B(x_1, \in)$, stop.

Otherwise $\exists x_2 \in X \setminus B(x_1, \epsilon)$. If $X \subseteq \bigcup_{i=1}^{n} B(x_i, \epsilon)$, stop.

—— $\exists x_3 \in X \setminus \bigcup_{i=1}^{n} B(x_i, \epsilon)$. If $X \subseteq \bigcup_{i=1}^{n} B(x_i, \epsilon)$, stop.

Continue in this way.

At the moment the process stops, we obtain our finite cover. The process must stop, otherwise we obtain x_1, x_2, x_3, \dots s.t.

 $i \neq j \Rightarrow d(x_{i,x_{j}}) \geq \epsilon \quad (: x_{i} \notin UB(x_{j,\epsilon})).$ But such a sequence is paradoxical, because its convergent subsequence $x_{i_{k}} \rightarrow g$ satisfies $\epsilon \leq d(x_{i_{k}}, x_{i_{k+1}}) \leq d(x_{i_{k}}, g) + d(x_{i_{k+1}}, g) \rightarrow \delta.$

How to Coarse-Grain a Compact Metric Space

Aim: Replace (X,d) by a discrete object which

represents it "at resolution e."

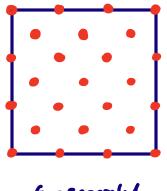
Approach 1: Replace $x \in X$ by the ϵ -ball $B(x, \epsilon)$.

Replace X by the smallest cover of X by ϵ -balls.

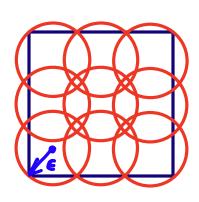
Approach 2: Replace X by a maximal E-separated set F.

- · E-separated: ∀x,yeFe (x+y => d(x,y)≥e)
- <u>maximal</u>: if we add a single point to Fe, it stops being maximal.

$$\Gamma(x, \epsilon) := \begin{bmatrix} \text{cardinality of largest} \\ \text{maximal } \epsilon \text{-separated set} \end{bmatrix}$$



E-separated



t-aver

Lemma: Suppose F_t is a maximal t-separated set. Then $|F_{2e}| \leq S(X,e) \leq |F_e|$.

Corollary: r(x,ze) = s(x,e) = r(x,e).

Proof of the Lemma: Let $\{B(x_1, \epsilon), ..., B(x_N, \epsilon)\}\$ be a cover of X with minimal cardinality.

• If $F_{2\epsilon} = \{y_1, ..., y_H\}$ then each y_i is contained in some $B(x_j, \epsilon)$ and no two y_i, y_i , are in the same $B(x_j, \epsilon)$ (: $d(y_i, y_i) > 2\epsilon$). We get a one-to-one map $y_i \mapsto x_j$. If follows that $|F_{2\epsilon}| \leq N = s(X, \epsilon)$.

• If $F_{\epsilon} = \{y_{\eta_1}, ..., y_{\ell}\}$ then $\bigcup_{i=1}^{\ell} B(y_{i,\epsilon}) \ge x_{\eta_i}$ otherwise $\exists z \in X$ s.t. $d(z, y_i) \ge \epsilon$ for all i. But in this case F_{ϵ} ultil is ϵ -separated, in contradiction to the maximality of F_{ϵ} .

Thus $\{B(g_1, \epsilon), ..., B(g_1, \epsilon)\}\$ is a cover of X_1 and $\{F_{\epsilon}|=\ell \geq s(X_{\epsilon})\}$.

Example 1: $X = [0,1]^d$ Clearly, there's a maximal ϵ -separated set with $\sim (1/\epsilon)^d$ points. So $S(X,\epsilon) \sim (1/\epsilon)^d$

Example 2: X = Cantor set

Take Fine { endpoints of the level intervals }

This is a maximal $\frac{1}{5}$ n - separated set, and $|F_{4/}| = 2^{h+1}$. Thus

and $|F_{4/sn}| = 2^{n+1}$. Thus $S(X_{\epsilon}) \sim (1/\epsilon)^{2/ln/3}$

Def = . The upper box dimension of X is

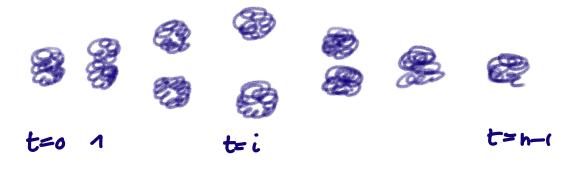
dim $X = \frac{\log S(X, \epsilon)}{\log (1/\epsilon)}$ * aka "Kolmogorov Capacity",

"Entropy Dimension"

The Topological Entropy

Setup: Suppose T is a continuous map on a compact metric space (X, d).

Insight: Observing $T^i(x)$ (i=0,1,...,n-i), we can distinguish E-close initial conditions with resolution E, whenever $d(T(x),T^i(y)) \ge E$ for some $0 \le i \le h-i$.



Definition: Bowen's Metrics: d, (x,y) = max d(Tico), Tig)
0 (10) P = D Max.

• (n,e) - Bowen Bells:

$$B(x, n, \epsilon) = \{y \in X : d(T^i(x), T^i(y)) \in (i = 0, 1, ..., n - 1)\}$$

$$S(T, n, \epsilon) := \begin{bmatrix} \text{minimal carolinelity of a cover of } X \\ \text{by } (n, \epsilon) - \text{bells} \end{bmatrix}$$

• Maximal (n, ϵ) - Separated Sets: $F = \{y_n, ..., y_n\}$ s.t. * $\forall i \neq j \ d(T^k(y_i), T^k(y_j)) \ge \epsilon$ for some $0 \le k \le n$. * Cannot add any point to F without destroying this

$$T(T, n, e) = \begin{bmatrix} maximel cardinality of a maximal \\ (n, e) - separated set \end{bmatrix}$$

Det? The topological entropy of
$$T: X \rightarrow X$$
 is

$$h_{top}(T) = \lim_{\epsilon \to 0} \left[\lim_{n \to \infty} \frac{1}{n} \log_n S(T, n, \epsilon) \right]$$

$$= \lim_{n \to \infty} \left[\lim_{n \to \infty} \frac{1}{n} \log_n T(T, n, \epsilon) \right]$$

 $T(T,n,2e) \leq S(T,n,e) \leq C(T,n,e)$ by the lemma applied to Bower's metric $d_n(\cdot,\cdot)$.

Remark: Why is hyp (f) called "topological" and hy (7) is called "metric"? Because mathematicians are bad at naming things.

The Variational Principle: Suppose T: X -> X is a continuous map on a compact metric space X. Then:

$$h_{top}(T) = \sup \{h_{\mu}(T) : \mu T-invariant \}$$

Corollary 1: h (T) >0 => Finvariant measure with positive entropy.

Thus "positive topological entropy" is a criterion for "deterministic chaos." = simulating Bornelli

Corollary 2: For every invariant prob. measure μ , $f_{\mu}(T) \leq h_{top}(T)$

and this general bound is optimal

Def-. A measure s.t. $h_{\mu}(\tau) = h_{top}(\tau)$ is called a measure of maximal entropy. Such measures exist sometimes, but not always.

Newhouse Thm: Every infinitely differentiable map T on a compact smath manifold has a measure of max entropy.

Katok Entropy Formula

For general invariant measures, it could happen that $h_{\mu}(T) < h_{top}(T)$ "because μ occupies a lower-dimensional part of X." Given $0 < \delta < 1$, let

 $S(T, n, \epsilon, \delta) := \begin{bmatrix} \text{Cardinality of smallest cover of a} \\ \text{Set of measure} > 1-\delta \text{ by } (n, \epsilon) - \text{Bowen balls} \end{bmatrix}$

Katok Entropy Formula: For every 0< 5<1,

$$h_{\Gamma}(T) = \lim_{\epsilon \to 0^{+}} \left[\frac{1}{n \to \infty} \frac{1}{n} \log_{\Gamma} S_{\Gamma}(T, n, \epsilon, \delta) \right]$$

Example:

•
$$X = \{(x_0, x_1, x_2, ...) : x_i = 0 \text{ or } 1\}$$

T: X → X left shift

$$T(x_0,x_1,x_2,...) = (x_1,x_2,x_3,...)$$

· metric d(z, z) = exp[-min{i: x; +y;}]

In this metric $d(x,y) \le e^{-k} \implies x_i = y_i$ for i = 0,...,k-r. In addition, for $e^{-k-r} \le \varepsilon < e^{-k}$, the (n,e)-Baran back is $B(x,n,e) = \{y: y_i = x_i \text{ for } i = 0,...,n+k-r\}$.

is $B(x, n, e) = \{ y : y_i = x_i \text{ for } i = 0, ..., n + k - i \}$ = $[x_0, ..., x_{n+k-1}]$.

Thus $S(X, \epsilon) = \# \{(n+k-1) - cyclinders\} = 2^{n+k-1}$

$$h_{top}(T) = \lim_{k \to \infty} \left(\lim_{n \to \infty} \frac{1}{n} \log_2 2^{n + k - 1} \right)$$

(Note that the E doesn't matter).

But if $\mu = \delta_{(1,1,...)}$ then it takes just one cylinder to cover most (over all) of the mass of μ . So $h_{\mu}(\tau) = \delta$.

A less trivial example: Let μ be the Bernoulli measure $B(\frac{1}{5},\frac{2}{5})$.

Fix 5,4 >0 very small, and let

$$\Omega_{\mathsf{K}}(\mathsf{h}) = \left\{ \underbrace{\times \in \mathsf{X}} : \begin{array}{l}
\# \left\{ 0 \leq \mathsf{i} \leq \mathsf{h}_{\mathsf{-l}} : \, x_{\mathsf{i}} = 0 \right\} \leq \left(\frac{1}{5} + \mathsf{k} \right) \mathsf{n} \\
\# \left\{ 0 \leq \mathsf{i} \leq \mathsf{h}_{\mathsf{-l}} : \, x_{\mathsf{i}} = 1 \right\} \geqslant \left(\frac{1}{5} - \mathsf{k} \right) \mathsf{n} \end{array} \right\}$$

By the weak law of large numbers (or the ergodic thm), $\exists N_{5,k} s.t.$ $\mu \left(SZ_k(n) \right) \ge 1-\delta$ for all $n > N_{5,k}$.

To cover $S_R(n)$ by n+k-1 cylinder we just need.

$$\frac{\left(\frac{1}{3}+k\right)n}{\sum_{k=0}^{\infty}\left(\frac{1}{3}+k\right)n} \sim \exp\left[n\left(H\left(\frac{1}{3},\frac{2}{3}\right)+\varepsilon(k)\right]\right]$$

$$e^{-\left(\frac{1}{3}-k\right)n}$$

Cylinder, where $\varepsilon(k) \xrightarrow{k \to 0} 0$. $-\frac{1}{5}lg_{\frac{1}{5}} - \frac{2}{5}lg_{\frac{1}{5}} = \frac{2}{5}lg_{\frac{1}{5}}$

Thus

$$\lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \log_{r} s_{r}(T, n, \epsilon, s) = H(\frac{1}{3}, \frac{2}{3})$$

Subshifts of Finte Type (SFT)

Setup: Suppose G is a connected appriodic*finite directed graph with set of vertices S, and transition matrix $A = (t_{ab})_{SXS}, t_{ab} = \begin{cases} 1 & a \rightarrow b \\ 0 & a \not \rightarrow b \end{cases}$

•
$$X := \{(x_0, x_1, x_2, \dots) : x_i \in S, t_{x_i x_{i+1}} = 1 \text{ for all } i\}$$

T: X→X is the left shift

•
$$d(x,y) = exp[-min\{i: x; \neq y;\}]$$

Again, for $e^{-k-1} \in e^{-k}$, every (n, e) - Bowen bell is a (n+k-1) - cylinder

$$B(z,n,\epsilon) = [x_0,x_1,...,x_{n+k-1}]$$

Thus $S(X, n, \epsilon) = \# \{ \text{ non-empty cylinder } \}$

$$= \sum_{x_{0}, \dots, x_{n+k-1}} t_{x_{0}, x_{1}} t_{x_{1}, x_{2}} \dots t_{x_{n+k-1}, x_{n+k-1}} (x)$$

(because the summand is one when $x_0 - x_1 - \cdots - x_{nder}$ is a legitimate path, and zero otherwise).

* apeniodic: gcd {n: a connects to } = 1

To continue with the calculation we note that the power of A are given by

$$A^{n} = (t_{ab}^{(n)})_{SXS}$$
, $t_{ab}^{(n)} = \sum_{s_{1} \dots s_{n-1} \in S} t_{a s_{1}} t_{s_{1} s_{2}} \dots t_{s_{n-1} b}$

Thus

$$S(X,n,e) = Sum of the |S| \times |S|$$

entries of Ante-1

A is a positive matrix. By the Perron-Frobenius theorem (and the assumption that G is connected),

$$\forall a,b$$
 $\lim_{n\to\infty}\frac{1}{n}\log(A^n)_{ab}=\log\lambda$

Where \ = maximal positive e.v. of A. Thus,

$$h_{top}(\tau) = log \lambda$$

Approximation By Periodic Points on SFT:

Let $Fix(T^n) := \{ \underline{x} \in X : T^n(\underline{x}) = \underline{x} \}$.

Each ZEFix (T) has the form

(a,x1,x1, ...,x1,a,x1,x2,...,x1,a) determinen x

Thus the same calculation as before gives

 $\frac{2}{2} := |Fix(T')| = \sum_{\alpha \in S} (A^n)_{\alpha \alpha} = tr(A^n) \sim \lambda^n.$

Corollary: Fix(T) is a (non-maximal)
(n,e) - separated set of cardinality ~ exp[nh (T)]

Thm (Bowen): Let $\mu_n = \frac{1}{2n} \sum_{n \in Fix(T^n)} \delta_n$. This is a T-invariant atomic prob measure, and

 $\mu_n \xrightarrow[n\to\infty]{} \mu = \underset{\text{maximal entropy}}{\text{measure of}}$

More generally, suppose $U: X \rightarrow \mathbb{R}$ is a function s.t. $|U(z)-U(z)| < const. exp[-x.min in i: x; \pm gis]$

Let $U_n(x) = U(x) + U(T(x)) + \cdots + U(T(x))$. Fix an "inverse temperature" $\beta > 0$ and set

$$\mu_{\varphi}^{(h)} = \frac{1}{Z_{h}(\varphi)} \sum_{x \in Fix(T^{n})} \frac{Z_{h}(\varphi)}{Z_{h}(\varphi)} = \sum_{x \in Fix(T^{n})} \frac{Z_{h}(\varphi)}{Z_{h}($$

Thm (Bower, Ruelle): μ_{φ} $\frac{(n)}{n-\infty}$ μ_{φ} where μ_{φ} is the unique measure which minimizes the free energy? $\int U d\mu - \frac{1}{\beta} h_{\mu}(\tau)$.

"energy - temperature × entropy"

The value of the minimized free energy is $-\frac{1}{\beta} \times \lim_{n\to\infty} \frac{1}{n} \log z_n(q)$ "pressure of q"

There are additional "thermodynamic" rosults like this, including linear response formulas etc.