Lecture 6: Arnol'd's Cat Map

Overview: Arnol'd's "cat map" is a classical example of a chaotic dynamical system. We'll

- · Define it
- · Discuss its symbolic dynamical representation
- · Use symbolic dynamics to introduce <u>Ruelle's operator</u>

Arnolid's Cat Map

The Torus:
$$\mathbb{R}^2 := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} + \mathbb{Z}^2 : x, y \in \mathbb{R} \right\}$$

The "Cat Map": $T_A: T^2 \rightarrow T^2$, $T_A[\binom{x}{9}+\mathbb{Z}^2] = A\binom{x}{9}+\mathbb{Z}^2$ Where $A = \binom{ab}{cA}$ is a matrix s.t.:

- (1) a,b,c,d & Z
- (2) det(A) = 1
- (3) Hyperbolicity: Two eigenvalues 14, 15 st. (129 >1 O<129)<1

Example: (21)

Basic Properties:

• Well-Defined:
$$\binom{x}{y} + \mathbb{Z}^2 = \binom{x'}{y'} + \mathbb{Z}^2 \Rightarrow T_A \left[\binom{x}{y} + \mathbb{Z}^2 \right] = T_A \left[\binom{x'}{y'} + \mathbb{Z}^2 \right]$$
(because $a, b, c, A \in \mathbb{Z}$)

- · Area preserving, because det (A) = 1
- Invertibile, with inverse T_{A-1}
 (det A = 1 ⇒ A⁻¹ is also integer-valued)
- Two Lyapunov Exponents: $\chi^{\alpha} = \log |\lambda^{\alpha}|$, $\chi^{\beta} = \log |\lambda^{\beta}|$ with Oseledets decomposition provided ngtv $T_{p}(T^{2}) = Span \{T^{\alpha}\} \oplus Span \{T^{\beta}\}$

Where it are the eigenvectors with eigenvalues ht (t=u,s) Indeed, at every point p, the linearization of TA acts as follows:

In particular: We have exporential sensitivity to initial conditions everywhere -> unstable numerics!

Symbolic Dynamics

Overview: Symbolic dynamics is a charge of coordinator which "simpleties the dynamics":

- · space of orbits -> space of paths on a finite graph
- · periodic orbits -> loops on this graph
- · TA -> T = left shift map (easy to iterate)
- · In our special case, area measure -> Markon measure

Naïve Idea (which doesn't work):

- (1) Fix a partition $d = \{R_a, ..., R_s\}$ of \mathbb{T}^2 , and build the <u>dynamical graph</u> G_d with
 - · vertices Ry, ..., Ry
 - · edges R; →R; Whenever TA(R;) ∩R; ≠ \$
- (2) The itinerary of peTP is (... R_{x-1}, R_x, R_x, ...) s.t. T^k(p) e R_{x0} (keZ).
 - · for "good" partitions, the itinerary determines p
 - · TA acts on itineraries by the left shift:

If in every
$$(p) = \underline{z} \implies \text{If in every}(T_A(p)) = \sigma^k(\underline{x})$$

- · Every itinerary is a path on the dynamical graph.
- (3) Let $\Sigma = \{\text{paths on } G_{d}\} = \{(...,R_{x_{-1},R_{2},R_{2},...}): R_{x_{i}}\}$ This is a <u>Subshift of finite type</u> (see prov. Lecture).

The Difficulty: Some paths on G, may not be itineraries of genuine initial condition, because

$$\begin{pmatrix}
R_1 \rightarrow R_3 \\
R_2 \rightarrow R_3
\end{pmatrix}$$

$$\vdots$$

$$\vdots$$

$$R_{n-i} \rightarrow R_n$$

$$\vdots$$

$$\exists x_1 \in R_1 \text{ s.t. } T_A(x_1) \in R_2 \\
\exists x_2 \in R_1 \text{ s.t. } T_A(x_2) \in R_3$$

$$\vdots$$

$$\vdots$$

$$\exists x_1 \in R_1 \text{ s.t. } T_A(x_2) \in R_3$$

$$\vdots$$

$$\exists x_1 \in R_1 \text{ s.t. } T_A(x_1) \in R_3$$

$$\vdots$$

$$\exists x_1 \in R_1 \text{ s.t. } T_A(x_1) \in R_3$$

$$\vdots$$

$$\exists x_1 \in R_1 \text{ s.t. } T_A(x_1) \in R_3$$

$$\vdots$$

$$\vdots$$

$$\exists x_1 \in R_1 \text{ s.t. } T_A(x_1) \in R_3$$

$$\vdots$$

Markov Partition: A special partition $\{R_n, ..., R_s\}$ s.t. every path $(..., R_x, R_x, R_x, ...)$ on the dynamical graph is the itinerary of some p "cup to closures":

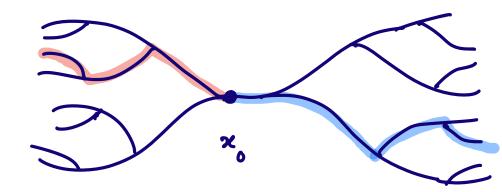
Thm (Adlor-Weiss): Amol'd's cat map has a finite Markov partition or. For this partition

- (1) every itinerary is a path on the dynamical graph Gz
- (i) every peth (·· R_{x.,} R_x, R_x, ···) on G_x determines a <u>unique</u> p=π(x) s.t. T_A(p) ∈ R_{xk} for all k ∈ Z
- (3) TI: E -> To is Hölder, finite-to-one, and TOT = TOT.
- (4) If μ is the area measure on \mathbb{T}^2 , then $\mu \circ \mathbb{T}^2$ is a Markov measure: \exists strick matrix $(p_{ij})_{abal}$ and a prob. vector $(p_{ij})_{abal}$ $\{p_{ij}\}_{abal}$ and a prob. vector $(p_{ij})_{abal}$ $\{p_{ij}\}_{abal}$ $\{p_{ij}\}_{abal}$

Let
$$\Sigma = \{path, on G_{\chi}\}$$
, if $\chi, y \in \Sigma$ and $\chi_0 = y_0$,
then $(\cdots \chi_{-2} \chi, \chi_0 y, y_1 \cdots) \in \Sigma$
pasted fature
of y

Corollary 1: Suppose $T^k(p) \in R_{x_k}$, $T^k(p) \in R_{y_k}$ (keZ). If $R_{x_0} = R_{y_0}$, then $\exists \xi s. \xi$.

- · past (2) = post (p) = (... Rx Rx Rx)
- · fatore (2) = fatore (2) = (Pg, Pg, Pg, Ps, ...)



"Given the present, the part and future are combinatorially independent"

Corollary 2: Let B = transition matrix of G_q . We saw in the previous lecture that $\{cops of legal\} = tr(B^n) \sim cont. \lambda^n$ in on G

Where $\lambda = Permu-Frobenius$ eigenvector of B.

If G(z)=2, then $T_A^{n}(\pi(z))=\pi(G(z))=\pi(\underline{z})$ Thus $\# \{p \in \mathbb{T}^2: T_A^{n}(p)=p\} \geq Cont. \lambda^n$. (in fact, it's $\sim Cont. \lambda^n$).

Ruelle's Operators

Symbolic dynamics allows us to replace $T_A: T^2 \to T^2$ by the subshift of finite type $\sigma: \Sigma \to \Sigma$ where

- · $\Sigma = \{ two-sided paths on the dynamical graph \}$
- $\sigma: \Xi \to \Xi$ is the <u>left shift map</u> $\sigma(\underline{\varkappa}) = \underline{\vartheta} \quad \text{where} \quad \underline{\vartheta}_k = \varkappa_{k+1}.$

One-Sided Functions: $f: \Sigma \to \mathbb{R}$ measurable s.t. $f(x) = f(x_0, x_1, x_2, ...)$ only depends on x_k where $k \ge 0$.

Let $\mathcal{H}' := \{ f \in L^2(\mu) : f \in \mathcal{F} \text{ one-sided } \}$

Then Koopman's Operator Uff = for preserves Hf:

 $U_{\tau}(\mathcal{X}^{\dagger}) \subseteq \mathcal{X}^{\dagger}$

(but U_T (91t) = 96t, so U_T is not invertible on Ht).

The <u>duel operator</u> $U_{\tau}^{*}: \mathcal{H}^{t} \to \mathcal{H}^{t}$ is the unique operator s.t. $\langle U_{\tau}^{*}f, g \rangle = \langle f, U_{\tau}g \rangle = \int f \cdot g \cdot \tau \, d\mu$.

Fact: \exists one-sided function $g_{\mu}(x_{1},x_{1},x_{2},...)$ called the g-function of μ s.t. $0 \le g_{\mu} \le 1$, $\sum g_{\mu}(p_{1}x_{2}) = 1$ and

$$(U_{T}^{*}f)(x_{0,}x_{0,}...) = \sum_{p:p\rightarrow n_{0}} g_{p}(p_{p}x_{0,}x_{0,}...) f(p_{p}x_{0,}x_{0,}...)$$

Roughly,
$$g_{\mu}(p,x_{0},x_{1},...) = \lim_{n\to\infty} \frac{\mu[p;x_{0},x_{1},...,x_{n}]}{\mu[x_{0},x_{1},x_{2},...,x_{n}]}$$

Notice that Ut is an averaging operator. This gives it "good" proportion.

D. Ruelle introduced the following construction:

- $\Sigma^{+}=$ { one-sided paths on the dynamical graph ζ . We think of (x_0,x_0,\ldots) e Σ^{+} on of the "configuration" of a 10 lattice gas model
- fix a one-sided potential $\phi(x_0,x_1,...)$ 1.1. $|\phi(x_1)-\phi(y_1)| \leq comt. \exp\left[-\epsilon \min\left\{n: x_n \pm y_n\right\}\right]$ We think $\phi = -\frac{1}{kT}$ where $U(x_0|x_1,...) = \sum_{k=1}^{n} c_k c_k c_k$ U(x_0|x_1,...) = \text{Uniform} \text{Continue}

 \[
 \text{Continue}
 \]

 Continue

 (untinue)
- Ruelle's Operator: L_{ϕ} : $C(\Sigma^{\phi}) \rightarrow C(\Sigma^{\phi}) \stackrel{\text{one-sides}}{=} functions$ $(L_{\phi}f)(x_{\bullet}, x_{\bullet}, ...) = \sum_{p:p-x_{\bullet}} e^{\phi(p \times x_{\bullet})} f(p \times x_{\bullet})$

Ruelle's Perron-Frobenius Thm: Suppose Σ^{\dagger} is a Subshift of finite type of a connected, aperiodic graph. Suppose $\phi: \Sigma^{\dagger} \to \mathbb{R}$ is an above. Then there exist $\lambda > 0$, $h(x_0, x_1, ...)$ positive and continuous, and a proh. We cause $\lambda > 0$.

In addition:

- (2) du = h d) is an <u>invariant</u> prob. measure on \geq
- (3) Mg B Ke unique measure which minimizes

 the "free energy" Strop kgT hy (T)

 (recall: $\phi = -\frac{1}{kT}$).
- (4) He value of the minimal free energy is $-k_8T$. log λ .

Various choices of & lead to interesting measures

Mp. For example, &= court. leads to the measure

of maximal entropy.

Anoson Diffeomorphism

Take some <u>non-area preserving</u>, non-linear, small perturbation of Arnol'21's cat map.

Sinai: If the perturbation is small, there's still a Markov partition. (It looks very different from 16 Adler - Weiss partition.)

Since the perturbation is non-volume presenting, the area is no longer invariant. For "most" perturbation there's no invariant density.

However, if we use Ruelle's Perron-Frobenius for the "potential" $d(x) := -log ||Df||_{E'(fics)} \subset Useledets space then we obtain an important measure <math>p_{sxs}$, called the Sinai-Bowen-Ruelle measure with the following property:

area $\{p \in \mathbb{T}^2 \mid \frac{1}{N} \in \mathbb{T}^2 \mid \mathbb{R} \text{ continuous} \} > 0$

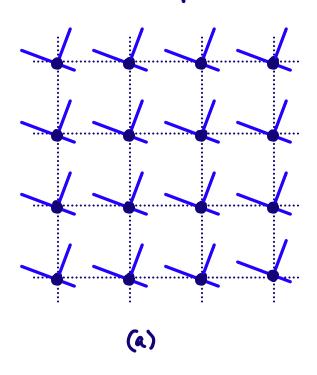
MSRB sits on an <u>attractor</u>, which typically has <u>zero area</u>. But it captures the behavior of <u>positive area</u> of initial condition.

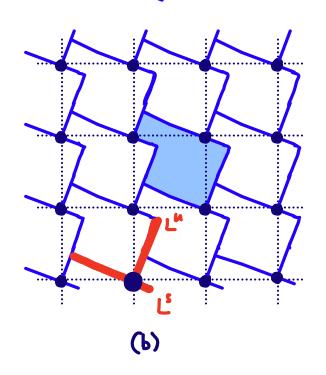
" strange attractor"

Construction of Adler-Weiss Partition

Recall that A has two eigenvectors Ju, Jus with e.v. Ni, 1's.t. |X" |>1, 0< |X" |< 1.

Step 1: Find a new fundamental domain of 12/22 with sides parallel to Ta, Ts Lu



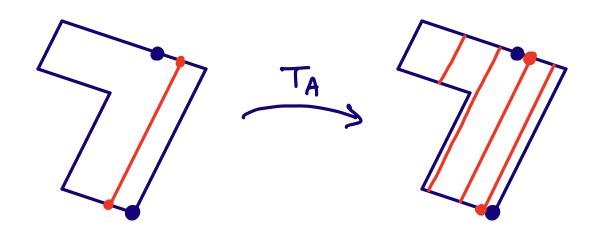


Notice: All sides are are on L^n , L^s where L^t are linear segments in direction \overline{u}^t (t=u,s), and passing through the fixed point $\bullet = ({}^o_o) + \mathbb{Z}^2$.

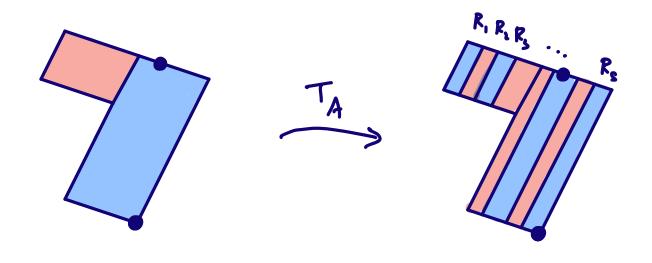
Terminology: A u-fibre is a line segment in direction is, and endpoints on L.

Fact: $T_A(L^S) \subseteq L^S$ (because L^S contains a fixed point, and is in direction T^S).

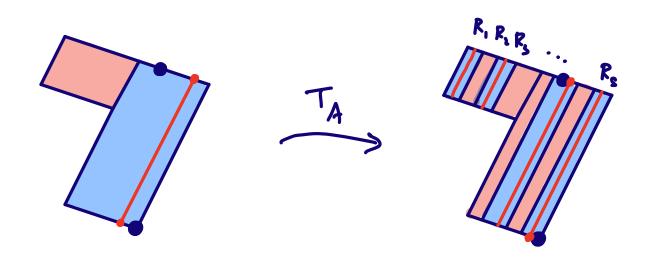
Corllary: TA (u-fibre) = union of union of



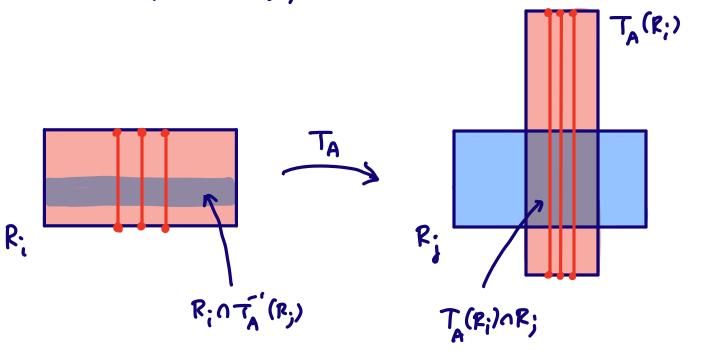
Adler Weiss Partition: {R1, ..., R5} obtained from



Crucial Property: The image of each u-fibre intersects each R; at one full u-fibre, or not at all



Thus, if TA (P;) n P; then the intersections look like this:



Claim: Suppose (... $R_{x_1}, R_{x_2}, R_{x_3}$) is a backward infinite sequence on the algorithm of the Adler-Weisz partition. Then $\{p: T_A(p) \in R_{x_2}, (k \ge 0)\}$ G a u-fibre in R_{y_0} .

Ĵ₽I

Ĵ₽4

170

Let $P_{x_0} \cap T_{\lambda}(P_{x_1}) \cap T_{\lambda}(P_{x_2}) \cap \cdots \cap T_{\lambda}(P_{x_k})$ H reveals that this set is a rectargle of u-fibrar in P_{x_0} of width $\sim |X|^k$ Since 129 e (0,17) in the limit we get a single u-fibre.

This picture represents the

₽]

Similarly, if $(R_{x_0}, R_{x_1}, \dots)$ is a forward infinite path on the dynamical graph, then

{PETT2: TAGERX (k=0)} = S-fibre in Px

Thun, for any doubly infinite path (... R. R. R. R.)

{ peTt2: The GreRx (keZ)}

= (u-fibre) n (s-fibre) = single pointp.

Past = (-- Rx., Rx., Px., Px.,)

This point satisfies

The period of the second of t

In summary, every path on the dynamical graph is the itinerary "up to closures" of some genuine initial condition.

The Space get

The construction shows that $\{p: T_A(p) \in \mathbb{R}_{\times_k}(k \ge 0)\}$ is an s-fibre. Therefore, the one-sided functions are exactly the functions which are constant on μ -fibres.