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Preface

In this chapter we give an overview of our results, with some historical notes.

Setup and aim

This work provides asymptotic formulas for probabilities P[Sy — zy € (a,b)], where
N

Sy = Z Ja(Xu, Xnt1), Xi is @ Markov chain, and zy are real numbers not too far
n=1
from E(Sy). Such results are called local limit theorems (LLT).!

For an account of the history of the LLT, see the end of the preface. The novelty
of this work is that we allow the Markov chain to be inhomogeneous. This means
that we allow the set of states, the transition probabilities, and the summands f;, to
depend on n.

We will always assume that f;, are uniformly bounded real-valued functions, and
that {X,,} is uniformly elliptic, a technical condition which will be stated in chapter
1, and which implies uniform exponential mixing.

These assumptions place us in the Gaussian domain of attraction. The analogy
with classical results for sums of independent identically distributed (iid) random
variables suggests that in the best of all situations, we should expect the following
(in what follows Vyy = Var(Sy) and Ay ~ By < Ax/By N_)—(; 1):

—E(S
(1) Local deviations: If u — z, then
ALY
6—22/2
P[Sy —zv € (a,b)] ~ —b|.
[Sn —zv € (a,b)] TTVNV’ |

! Notice the difference between a local limit theorem and a central limit theorem: The LLT treats
P[Sy —zn € (a,b)], and the CLT treats P[Sy —zy € (a+/Var(Sy),b+/Var(Sy))].
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v —E(Sy)

— 0, then
%

(2) Moderate deviations: If

_14o() (zN—IE<sN> )2
2 N

ZEVN

P[Sy — 2w € (a,b)] ~ ja—b|.

w—E(S

(3) Large deviations: If | V) | is sufficiently small, then

N
VI (R
\/27'L'VN

where #y(-) are the Legendre transforms of the log moment generating functions
% logE(e"5V), and the error terms Ey are such that for fixed (a,b), ¥y(a,b,-) are

uniformly bounded away from 0, o, and ¥y (a,b,n) —0> 1 uniformly in N.
n—

PlSy —z € (,b)] ~ la— b] x By (a, b, 22N,

N

While (1)—(3) are true in some cases, they do not hold for all cases, even for
sums of iid’s. Our aim is to identify a complete set of obstructions to (1)—(3), and to
analyze what happens when some of these obstructions happen.

The obstructions to the local limit theorem

The algebraic range is the smallest closed additive subgroup G < R for which there
are ¢, € R so that f,(X,,,X,+1) — ¢, € G almost surely for all n. We show that the
following list is a complete set of obstructions to (1)—(3):

() The lattice obstruction: The algebraic range is tZ with t € R.

(II) The center-tight obstruction: Var(Sy) does not tend to infinity. In chapter 2
we will see that in this case Var(Sy) must be bounded.

(1) The reducibility obstruction: f,(X,,X,+1) = g0 (X, Xut1) + cn(Xns Xnt1)
where {c, (X, X,+1)} is center-tight, and the algebraic range of {g,, (X, X,+1)}
is strictly smaller than the algebraic range of { f,, (X, Xu+1)}-

One of our main results is that (1)—(3) hold whenever (I), (II), (III) fail.

How to show that the obstructions do not occur

While it is usually easy to rule out the lattice obstruction (I), it is often not clear how
to rule out (II) and (IIT). What is needed is a tool that determines from the data of f,
and X,, whether {f,,(X,,X,+1)} is center-tight or reducible.

In chapter 1, we introduce numerical constants d,(§) (n > 3,& € R) which are
defined purely in terms of the transition probabilities 7, ,+1(x,E) := P(Xy41 €
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E|X, = x) and the functions f,(x,y), and which can be used to determine which
obstructions occur and which vanish:

o If Zd,zl(é) = oo for all & # 0, then the obstructions (I),(II),(IIT) do not occur, and
the asymptotic expansions (1)—(3) hold.

o If Y d?(&) < oo for all & # 0, then Var(Sy) is bounded (obstruction IT).

o If Yd?(&) = o for some but not all & # 0, then Var(Sy) — o but we are either
lattice or reducible: (II) fails, but at least one of (I),(III) occurs.

We call d,,(&) the structure constants of X ={X, } and f = {f; }.

What happens when the obstructions do occur

(I) The lattice case

The lattice obstruction (I) already happens for sums of iid’s, and the classical ap-
proach how to adjust (1)—(3) to this setup extends without much difficulty to the
inhomogeneous Markov case.

Suppose the algebraic range is tZ with t = 0, i.e. there are constants ¢, such that
Jn(Xn, Xu11) — ¢n € tZ almost surely for all n. Assume further that ¢7Z is the smallest
group with this property. In this case

Sy € Ww+tZ as. forall N,

where v = Y | ¢; mod ¢Z. Instead of analyzing P[Sy — zy € (a,b)], which might
be equal to zero, we study P[Sy —zy = kt], with k € Z fixed and zy € Yy +1Z.

We show that in case (I), if the algebraic range is ¢Z, and obstructions (II) and
(IIT) do not occur, then (as in the case of iid’s):

N —E(S, 2
1) Ifm\/‘T(’\') — 2,2v € W+1Z and k € Z, then P[Sy — zy = kt] ~ %M
N
—E(S,
(2%) IfM — 0,7y € W+tZ and k € Z, then
N
1 _ 1+g(1) (ZN:)EEN)>2
P[Sy — 2y = kt] ~ .
[Sn — znv = kt] me lt]

—E(S
3) If }W’ is sufficiently small, zy € v +Z and k € Z, then

e*VNfN(xZT%)
P[Sy —zn = kt] ~

AV 27[VN

where .9y (-) are as before, and Py are error terms so that for fixed k, ®y(k,-) are
uniformly bounded away from 0,0, and @y (k,n) — 1 uniformly in N.
n—

o] x oy (a, L),
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The previous results hold whenever (I) holds and (I),(III) fails. Here is an equiv-
alent condition in terms of the data of X, and f,: 3t # 0 s.t. Y¥.d2(&) < oo exactly
when & € zt—”Z. Under this condition, (1°)—(3") hold with parameter |¢|.

(II) The center-tight case

We show that obstruction (II) happens iff f,, (X, X,+1) can be put in the form
fn(XnaXnJrl ) = dp+1 (XnJrl ) - an(Xn) + hn(XanJrl ) +cy (*)

where a, (X,) are uniformly bounded, ¢, are constants, /,(X,, X,+1) have mean zero,
and Y. Var([h, (X, Xy 41)] < .

The freedom in choosing a,(X,) is too great to allow general statements on the
asymptotic behavior of P[Sy — zy € (a,b)], see Example 2.1.% But as we shall we
see in chapter 2, (x) does provide us with some almost sure control:

N
Sn = ani1(Xny1) —ar (X)) + Y ha(X, Xot1) + W,

n=1

where yv = 25\7:1 ¢i, and Z Iy (X, Xnt1) converges almost surely. This means that
n=1

in the center-tight scenario, Sy — E(Sy) can be decomposed into the sum of two

terms: A bounded oscillatory term which only depends on X;,Xy+1, and a term

whicn depends on the entire past Xi, ..., Xy and which converges almost surely.

(II1) The reducible case

In the reducible case, we can decompose
fn(Xn7Xn+l):gn(XnaXn+l)+Cn(Xn7Xn+l) (%)

where {c, (X, Xn+1)} is center-tight, and the algebraic range of {g,(X,,X+1)} is
strictly smaller than the algebraic range of {f,(X,,X,+1)}.

In principle, it is possible that { g, (X,, X,+1)} is reducible too, but in chapter 5 we
show that one can find an “optimal” decomposition (xx) where {g,(X,, X,,41)} is not
reducible, and cannot be decomposed further. The algebraic range of the “optimal”
{gn(Xn,Xp+1)} is the “infimum” of all possible reduced ranges:

2 Throught this work, Example X.Y is example number Y in chapter X. Similarly for Theorems,
Propositions etc.
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G ﬂ G- G is the algebraic range of some {g, (X, Xn+1)}
s " which satisfies (xx) with {c,(X,,X,+1)} center-tight [

We call Gy, the essential range of { f,, }. It can be calculated explicitly from the data
of f,, and X}, in terms of the structure constants, see Theorem 3.2.

It follows from the definitions that G, is a proper closed subgroup of R, so
Gess = {0} or tZ or R. In the reducible case, G5 = {0} or tZ, because if Gogs = R,
then the algebraic range (which contains G,g;) is also equal to R.

If G55 = {0}, then the optimal {g,} has algebraic range {0}, and g, are con-
stant functions. In this case f, is center-tight, and we are in the scenario which we
discussed in the previous section.

If Gess = t7Z with t # 0, then {g,,(X,,,X,41)} is lattice, non-center-tight, and irre-
ducible. Therefore

N N
Sv =Y &n(Xn, Xus1) + Y cn(Xn, Xor1) (1)
n=1 n=1

Swn(g) Sn(c)

where S, (g) satisfies the lattice local limit theorems (1°)—(3") with parameter 7,
and Var[Sy(c)] = O(1). Trading constants between g and ¢, we can also arrange
E(sx(c)) = O(1).

Unfortunately even though Var[S,(f)] — o and Var[Sy(c)] = O(1), examples
show that Sy(c) is still powerful enough to disrupt the local limit theorem for Sy,
lattice or non-lattice (example 5.1). Heuristically, what happens is that the mass of
Sn(g) concentrates on cosets of tZ according to (1”)—(3"), but Sy(c) smudges this
mass to a neighborhood of the lattice in a non-universal manner.

This suggests that (1)-(3) should be approximately true for intervals (a,b) of
length |a — b| > [¢|, but false for intervals of length |a — b| < |¢|. In chapter 5 we
prove results in this direction.

For intervals with size |a — b| > 2|t|, we show that for all zy € R such that

ZN—]E(SN)
v et for all N large enough
) 2

1 (e %2 |a—b| e “la—b|

Sl R I N O N ] e id i

3( sy ) SESv-ave(ab)]< 2nVy
If |a — b| > L > ||, we can replace 3 by a constant C(L) such that C(L) —>/|\ 1.

L/|t|—oo

For general intervals, possibly with length less than |¢|, we show the following:
There are uniformly bounded random variables by (X1, Xy+1) and a random variable

H=9H(X1,X2,X3,...)sothat forevery zy €1Z s.t. % —z,forevery ¢ : R — R

continuous with compact support,

—2/2
lim TRE9(Sy —2 — by)] = & m'" L gm0l
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For ¢ ~ 1(, ;) with |[a —b| > [t|, the right-hand-side of () is approximately equal

e’zz/z\a—b\
ez
hand-side depends on the essential range +Z and on the details of {c,(X,,X,+1)}

through t, by (X1, Xn+1) and 9.
What are by (Xy,Xn+1) and $? Recall that the term ¢,(X,,X,+1) on the right-
hand-side of () is center-tight. As such, it can be put in the form

to , in accordance with (1), see Lemma 5.4. But for |a — b| < |¢|, the right-

Cn(Xn;XnJrl) = anJrI(thLl) - an(Xn) +hn(Xn7Xn+l) + C;;:

where sup,,(ess sup |a,|) < e, ¢} are constants, E(/,(X,,X,+1)) =0, and Y/, con-
verges almost surely. Let yy := Y\, ¢ = E(Sy(c)) +O(1) = O(1). The proof of
(}) shows that

o by = aN+1(XN+1) 7al(X1) + {’}/N}tz, where {x}tZ = |t|{x/|t|} =x modtZ;
o f) - Z::zl hn(Xn,Xn+1).3

This works as follows. Let zy := zy — [W]iz, where [x];z := x — {x};z € tZ. Then

L—E(S, —
2 €1z, N VN( N) _ E(%HO(I)

Sn = by —zv = [Sn(8) — ] + S (h).

— z, and

By subtracting by from Sy, we are shifting the distribution of Sy to the distribu-
tion of the sum of two terms: The first, Sy(g), is an irreducible tZ-valued additive
functional; and the second, Sy (%), converges almost surely to £).

Suppose for the sake of discussion that Sy(g), Sy (k) were independent, then the
lattice LLT for Sy (g) and the definition of $) would imply that

Jim AEL0(Sw—by—zv)) = [ o(om(d),

where m := %m,z *mg, and mg (E) 1= P[$) € E], myz := |t|-counting measure
of tZ. Calculating, we find that [ ¢dm =right-hand-side of (%).

In general, Sy(g) and Sy (k) are not independent, and the problem of proving (%)
reduces to the problem of proving that Sy (g) and Sy(h) are asymptotically indepen-
dent. This is done in chapter 5.

For further consequences of (%), including an interpretation in terms of the

asymptotic distributional behavior of Sy modulo #Z, see chapter 5.

3 It is possible to replace $) by a different random variable § which is bounded, see chapter 5.
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Final words on the setup of this work

Before we end the preface, we would like to comment on a choice we made when
we wrote this work, specifically, our focus on additive functionals of the form f,, =
fn(Xn7X)1+])-

This choice is somewhat unorthodox: The theory of Markov processes is mostly
concerned with the case f, = f,(X,) (see e.g. [38, 96, 125]), and the theory of
stochastic processes is mostly concerned with the case f; = f,,(Xy, Xp+1,-..), under
assumptions of weak dependence on X; when |k —n| > 1 (see e.g. [65, 117]). We
decided to study f;, = f, (X, X,+1) for the following reasons:

o The case f,, = f,(Xy,Xn+1) is richer than the case f,, = f,(X,) because it contains
gradients a1 (Xpt+1) — an(X,). Two additive functionals which differ by a gra-
dient with sup(ess sup|a,|) < e will have the same CLT behavior, but they may
have different LLT behavior, because their algebraic ranges can be different. This
leads to an interesting reduction theory which we would have missed had we only
considered the case f, = f,,(X,).

o The case f,,(Xy,- .., Xnt+m) with m > 1 can be deduced from the case f, (X, X,+1),
and does not require new ideas, see Example 1.3 and the discussion in §1.3.3. We
decided to keep m = 1 and leave the extension to m > 1 to the reader.

o The case f,; = fu(Xy,Xn+1,...) is of great interest, and we hope to address it in the
future, but at the moment it is still open. We do not know if (1)—(3) constitute a
complete set of obstructions to the local limit theorem, and we do not know what
happens when these obstructions occur.

We hope that this work will stimulate research into the local limit theorem of addi-
tive functionals of general non-stationary stochastic processes with mixing condi-
tions. Such work will have applications outside the theory of stochastic processes,
for example in the theory of dynamical systems, and it is definitely worth pursuing.
Our aim in this work was to make a step in this direction.

Notes and references

Local limit theorems for sums of iid’s. The first local limit theorem is due to de
Moivre, who in his 1738 book The doctrine of chances [30], gave approximations for
Pla < S, <b]when S, =X;+---+X,, and X; are iid, equal to zero or one with equal
probabilities. Laplace’s 1819 book [78, 79] contains an extension of de Moivre’s
results to the case when X; are equal to zero or one with non-equal probabilities. In
1921, Pélya [108] gave a LLT for the vector valued iid which generate the simple
random walk on Z¢, and used it to determine its recurrence properties.

The next historical landmark is Gnedenko’s 1948 work [51, 52] which initiated
the study of the LLT for sums of iid with general lattice distributions. He asked for
the weakest possible assumptions on the distribution of iid’s X; which lead to a LLT
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with Gaussian or stable limit. Khinchin popularized the problem by emphasizing
its importance to the foundations of quantum statistical physics [68], and it was
studied intensively by the Russian school, with important contributions by Linnik,
Ibragimov, Prohorov, Richter, Saulis and others. We will comment on some of these
contributions in later chapters. For the moment, we refer the reader to the excellent
books [53],[65],[104] and the many references they contain.

The early works on the local limit theorem all focused on the lattice case. The
Gnedenko—Kolmogorov book [53] contains the first result we are aware of which
could be considered to be a non-lattice local limit theorem. The authors assume
that each of the iid’s X; have a probability density function p(x) € L" with finite
variance 62, and show that the density function p,(x) of Xj -+ - -+ X,, satisfies

1 2
ovnp,(oynx) — e /2,
fpn( ) N—soo m

There could be non-lattice iid’s without density functions, for example the iid’s
X; equal to (—1), 0, or /2 with equal probabilities (the algebraic range is R, because
the group generated by (—1) and /2 is dense). Shepp [127] was the first to consider
non-lattice LLT in such cases. His approach was to provide asymptotic formulas for
Pla < S, —E(Sy) < b] for arbitrary intervals [a,b], or for

27 Var(Sy)E[¢ (Sy —E(Sy))]

for all test functions ¢ : R — R which are continuous with compact support. In this
monograph, we use a slight modification of Shepp’s formulation of the LLT. Instead
of working with Sy —E(Sy), we work with Sy — zy subject to the assumptions that
zn is “not too far” from E(Sy ), and that Sy — zy € algebraic range.

Stone proved non-lattice LLT in Shepp’s sense for sums of vector valued iid in
[133], extending earlier work of Rvaceva [119] who treated the lattice case. These
works are important not only because of the intrinsic interest in the vector valued
case, but also because of technical innovations which became tools of the trade, see
e.g. [17].

Local limit theorems for stationary stochastic processes. The earliest local limit
theorem for non-iid sequences {X;} is due to Kolmogorov [72]. He considered sta-
tionary homogeneous Markov chains {X;} with a finite set of states & = {ay, ..., a,},
and proved a local limit theorem for the occupation times

Sy =Y F(X;), where £(x) = (o, (x), ..., 1y (x)).

=

1

Following further developments for finite state Markov chains by Sirazhdinov
[128], Nagaev [96] was able to obtain a very general local limit theorems for
Sy = Z;L f(X;) for a large class of stationary homogeneous countable Markov
chains {X;} and for a variety of unbounded functions f, both in the gaussian and
stable cases.
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Nagaev’s paper introduced the method of characteristic function operators, which
is also applicable outside the context of Markov chains. This opened the way for
proving LLT for other weakly dependent stationary stochastic processes, and in par-
ticular to time series of probability preserving dynamical systems. Rosseau-Egele
[114], proved gaussian LLT for Birkhoff sums Sy = Zfil f(T'x), where T : X — X
is a piecewise expanding interval map possessing an absolutely continuous invari-
ant measure, X = [0, 1], and f € BV. Guivarc’h & Hardy [56] proved such results
for Anosov diffeomorphisms 7 : X — X with an invariant Gibbs measure, and f
is Holder continuous. Aaronson & Denker [4] gave general LLT for stationary
processes generated by Gibbs-Markov maps both in the gaussian and in the non-
gaussian domain of attraction. These results have found many applications in infi-
nite ergodic theory, dynamical systems and hyperbolic geometry, see for example
[1], [3], [5]. The influence of Nagaev’s method can also be recognized in other works
on other asymptotic problems in dynamics and geometry, see for example [9], [10],
[60], [67], [76], [77], [80], [81],[106],[107], [126].

Local limit theorems for non-stationary stochastic processes. The interest in
limit theorems for sums of non-identically distributed, independent, random vari-
ables goes back to the works of Chebyshev [134], Lyapunov [88] , and Lindeberg
[84] who considered the central limit theorem for such sums.

The study of LLT for sums of non-identically distributed random variables started
later, in the works of Prohorov [109] and Rozanov [115]. A common theme in these
works and those that followed them is to assume an asymptotic for Pla < % <b]
for suitable normalizing constants Ay, By, and then ask what extra conditions imply
an asymptotic for Pla < Sy —Ay < b].

An important counterexample by Gamerklidze [50] pointed the way towards the
phenomenon that the distribution of Sy may lie close to a proper sub-group of its
algebraic range without actually charging it, and a variety of sufficient conditions
which rule this out were developed over the years. We mention especially Rozanov’s
condition in the lattice case [115] (see the end of chapter 3), the Mineka-Silverman
condition in the non-lattice case [93], and Statulevicius’s condition [132]. For a
unified discussion of these conditions, see [95].

Dolgopyat proved a LLT for sums of non-identically distributed, independent
random variables which also applies to the reducible case [42].

Dobrushin proved a general central limit theorem for inhomogeneous Markov
chains in [38] (see chapter 2). Local limit theorems for inhomogeneous Markov
chains are considered in [131]. Peligrad proved local limit theorems for sums

N | fi(X;) where {X;} is a y-mixing inhomogeneous Markov chain, under the ir-
reducibility condition of Mineka & Silverman [101]. Hafouta obtained local limit
theorems for a class of inhomogeneous Markov chains in [58]. In a different direc-
tion, central limit theorems for time-series of inhomogeneous sequences of Anosov
diffeomorphisms are proved in [12] and [25].

An important source of examples of inhomogeneous Markov chains is a Markov
chain in random environment, when considered for a specific (“quenched”) realiza-
tions of the environment (see chapter 7). Hafouta & Kifer proved local limit theo-
rems for non-conventional ergodic sums in [59], and local limit theorems for ran-
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dom dynamical systems including Markov chains in random environment in [60].
Demers, Péne & Zhang [33] prove a LLT for a integer valued observable for a ran-
dom dynamical system.

Comparing the theory of inhomogeneous Markov chains to theory of Markov
chains in random environment studied in [60], we note the following differences:

(a) The theory of inhomogeneous Markov chains applies to fixed realizations of
noise and not just to almost every realization of noise;

(b) In the random environment setup, a center—tight additive functional must be
a coboundary, while in the general case it can also have a component with
summable variances;

(c) In the non center-tight random environment setup, the variance grows linearly
for a.e. realization of noise. But for a general inhomogeneous Markov chain it
can grow arbitrarily slowly.

The contribution of this work. The novelty of this work is in providing optimal
sufficient conditions for the classical asymptotic formulas for P[Sy — zy € (a,b)],
and in the analysis of P[Sy —zy € (a,b)] when these conditions fail.

In particular, we derive a new asymptotic formula for P[Sy —zy € (a,b)] in the
reducible case, subject to assumption that Vyy := Var(Sy) — oo, and we prove a struc-
ture theorem for Sy in case Vy + .

Unlike previous works, our analysis does not require any assumptions on the rate
of growth of Vy, beyond convergence to infinity.

Acknowledgements: The work on this monograph was partially supported by the
BSF grant 201610. The authors thank the staff of Weizmann Institute for excellent
working conditions. O.S. was also partially supported by ISF grant 1149/18. D.D.
was also partially supported by NSF grant DMS 1665046.



Chapter 1
Additive functionals on Markov arrays

This chapter discusses the setup and standing assumptions used in this work.

1.1 The basic setup

1.1.1 Inhomogeneous Markov chains

A Markov chain is given by the following data:

o

State spaces: Borel spaces (6,,%(6,)) (n > 1), where &, is a complete sepa-
rable metric space, and Z(S,,) is the Borel o-algebra of &,,. G, is the set of “the
possible states of the Markov chain at time n.”

Transition probabilities: Borel probability measures ny(li/lz_l (x,dy)on &1 (x€

&,,n > 1), so that for every Borel E C 6,41, the function x — ”r(zl\r]z>+1(va) is

measurable. The measure 7,(x,E) is “the probability of event E at time n+ 1,
given that the state at time n was x.”

Initial distribution: 7(dx), a Borel probability measure on &;.

n(E) is “the probability that the state x at time 1 satisfies x € E.”

The Markov chain associated with this data is the Markov process X := {X,, },>1
such that X,, € &,, for all n, so that for all Borel E; C &;

P(X| € E1) =n(E1) , P(Xut1 € Ent1]Xn = X0) = Tt 1 (X0, Eng1).

X is uniquely defined, with joint distribution

P(X; €Ey, - X, € Ey) := (1.1.1)

(
/ / Ton—10(Xn—1,En) w(dx1)m 2(x1,dX2) -~ T2 p—1 (Xn—2,dXp—1).
Ey1 JE,—» E)

15
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X satisfies the following important Markov property:
P(Xyt1 € E|Xp, Xn—1,---,X1) =P(Xpt1 € E|X) = Typt1(Xp, E). (1.1.2)

See, for instance, [17, Ch. 7].

In what follows P, [E and Var denote the probability, expectation, and variance
calculated using this joint distribution. In the special case when 7 is the point mass
at x, we write P, [E, and Var,.

If the state spaces and the transition probabilities do not depend on n, i.e., S, =
S and @, 11 (x,dy) = w(x,dy) for all n, then we call X a homogeneous Markov
chain. Otherwise, X is called an inhomogeneous Markov chain. In this work, we
are mainly interested in the inhomogeneous case.

Example 1.1. (Markov chain with finite state spaces). These are Markov chains
X with state spaces &, = {1,...,d,} , B(S,) = { subsets of G, }.

In this case the transition probabilities are completely characterized by the rect-
angular stochastic matrices with entries

n

Ty = Tuni1 (5 {y}) (x=1,....dnsy=1,...,dn11),

and the initial distribution is completely characterized by the probability vector

meo=n({x}) (x=1,...,d,).
The joint distribution of {X,,} is determined by the identity

— _ _ 1 2 n—1
]P(Xl =X, X = xfl) = Ty Ty oy Ty x0

which leads to the following discrete version of (1.1.1):

P(Xi €E1,--- , Xa €E)) = ) Y )Y ﬂxlﬂ;1x2”32x3“'7r?:1xn-

Xn—1€Ey_1xp2€E,_»  x|€EE]

Example 1.2. (Markov chains in random environment). Let X denote a homoge-
neous Markov chain with state space &, transition probability 7(x,dy), and initial
distribution concentrated at a point x;. It is possible to view X as a model for the
motion of a particle on G as follows. At time 1, the particle is located at x|, and a
particle at position x will jump after one time step to a random location y, distributed
like 7(x,dy): P(y € E) = m(x, E). With this interpretation,

X,, = the position of the particle at time n.

The homogeneity of X is reflected in the fact that the law of motion which governs
the jumps does not change in time.

Let us now refine the model by adding a dependence of the transition proba-
bilities on an external parameter @, which we think of as “the environment.” For
example, @ can represent a external force field which affects the likelihood of vari-
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ous movements, and which can be modified by God or some other experimentalist.
The transition probabilities become 7 (x, ®,dy).

Suppose the environment @ changes in time according to some deterministic
rule. This is modeled by amap T : 2 — 2, where Q is the collection of all possible
states of the environment, and 7 is a deterministic law of motion which says that an
environment at state @ will evolve after one unit of time to the state 7'(®). Iterating
we see that if the initial state of the environment at time zero was @, then its state at
time n will be @, = T" (@) = (T o---oT)(®).

Returning to our particle, we see that if the initial condition of the environment
at time one is , then the transition probabilities at time » are

Tni1 (%,dy) = 26, 7" (@), dy).
Thus each @ € Q gives rise to an inhomogeneous Markov chain X®, which de-
scribes the Markovian dynamics of a particle, coupled to a changing environment,
and corresponding to the initial condition that at time one, the particle is at position
x1 and the environment is at state .

If T (@) = w, the environment stays fixed, and the Markov chain is homogeneous,
otherwise the Markov chain is inhomogeneous. We will return to Markov chains in
random environment in chapter 8.

Example 1.3. (Markov chains with finite memory). We can weaken the Markov
property (1.1.2) by specifying that for some fixed ko > 1, for all E € B(Sp41),

P(Xn+l e E|Xn, o ,X]) — {]P(Xn+1 € E|Xn7 s aXn—ko-‘rl) n > ko;

P(Xy+1 € E| Xy, .-, X1) n < k.
Stochastic processes like that are called “Markov chains with finite memory” (of
length ko). Markov chains with memory of length 1 are ordinary Markov chains.
Markov chains with memory of length kp > 1 can be recast as ordinary Markov
chains by considering the stochastic process X = {(Xs - Xngkg—1) Jn>1 with its
natural state spaces, initial distribution, and transition kernels.

Example 1.4. (A non-example). Every inhomogeneous Markov chain X can be re-
cast as a homogeneous Markov chain Y by suitable relabelling of states, as follows.
Let G; denote the state spaces of X. These are complete separable metric spaces,
and therefore they are Borel isomorphic to R, or to Z, or to a finite set (see e.g.
[129], §3). So we can construct Borel bi-measurable injections ¢; : &; — R. Let

Yy = (@u(Xn),n).

We claim that Y = {Y,,},>1 is a homogeneous Markov chain. Let ¢ denote the
Dirac measure at §, defined by 8 (E) := 1 when E > & and & (E) := 0 otherwise.
Let G, 7, ,+1 and 7 denote the states spaces, transition probabilities, and initial
distribution of X. Define a homogeneous Markov chain Z with

o state space & ;=R x N
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o initial distribution 7 := (7o o ]) x 61, ameasure on & x {1}
o transition probabilities

7/'[\(()6 l’l) A x B) . Tnn+1 ((Pn_l(x)7(p;-i,-11 (A))SVHH(B) X € (PH(GH)
Y " 1 8(A)8(B) otherwise.

A direct calculation shows that the joint distribution Z is equal to the joint distribu-
tion of Y = {(@,(X,,),n) }n>1. So Y is a homogeneous Markov chain.

Such representations will not be useful to us, because they destroy useful struc-
tures such as the uniform ellipticity property (section 1.2 below), which is essential
for the work on the local limit theorem.

1.1.2 Inhomogeneous Markov arrays

For technical reasons that we will explain below, it is useful to consider a general-
ization of a Markov chain, called a Markov array. To define a Markov array, we
need the following data:

o Row lengths: ky + 1 where ky > 1 and (ky)n>; 18 strictly increasing.

o State spaces: (6,(1N) , %’(GELN))), (1<n<ky+1),where 6,(1N> is a complete sepa-

rable metric space with more than one point, and # (GS,N)) is its Borel o-algebra.

o Transition probabilities: {n,(f&l (x, dy)}xeG(N) (1 <n<ky)where n,(lﬁlrl (x,dy)

(v) )

n+1° n+1°
. N . .
function x — 77:,5’"11 (x,E) is measurable, and for all x, and 7, ,+1(x, ) is not car-

ried by a single atom.

are Borel probability measures on G so that for every Borel E C & the

o Initial distributions: Borel probability measures 7(*) (dx) on 6(1N).

This data determines for each N > 1 a finite Markov chain of length ky + 1

XN = (x ](N),XQ(N) yeee ,Xlgyil), called the N-th row of the array. We will continue

to denote the joint probability distribution, expectation, and variance of XN) by
P,[E, and Var. Certainly, these objects depend on N, but the index N will always be

obvious from the context, and can be suppressed. As always, in cases when we wish
(N)

to condition on the initial state X;"’ = x, we will write P, and [E,.
The rows X&) = (XI(N),Xz(N), . ,X,E}CIJ)FI) can be arranged in an array of random
variables
-
_ X2, X0 X
XXX XD
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Each horizontal row X(V) = (Xl(N),Xz(M, .. ,X,Ei/vll) comes equipped with a joint
distribution, which depends on N. But no joint distribution on elements of different
rows is specified.

Example 1.5. (Markov chains as Markov arrays). Every Markov chain {X,}

gives rise to a Markov array with row lengths ky = N 4+ 1 and rows XWN) =
N) (N)

(X1,...,Xn+1)- In this case 651 =G, T,/ | = Tunt1, and W™ =g.
Conversely, any Markov array so that GEN) =G6,, H,ENHL] = Ty nt1, and ™ =gz

determines a Markov chain with state spaces &, transition probabilities ”ﬂ)ﬁ =
N) '

Tount1, and initial distributions 7(V) = 7.

Example 1.6. (Change of measure). Suppose {X, },>1 is a Markov chain with data

S, Typnt1, 7, and let (p,EN) (x,y) be a family of positive measurable functions on
&, X G,41. Define new transition probabilities by

(P,(,f\,/,lq (x,) (N)

" B T, y +1(x7dy)~
J ‘P;E,Nn)ﬂ (V) Tyni1 (x,dy) "

r<l1:”l>+1 (x,dy) :

Then the data ky =N+ 1, GS,M =6, aW) .= 7 and EAN

() determines a Markov

array called the change of measure of {X, } with weights (p,(,m.

Why study Markov arrays? There are several reasons, and the one most relevant
to this work is the following: The theory of large deviations for Markov chains,
relies on a change of measure which results in Markov arrays. Thus, readers who
are only interested in local limit theorems for Markov chains in the local regime
wv—E(Sy)

Var(Sy)
chains. But those who are also interested in the large deviations regime where

| w—E(Sy)
Var(Sy)

— z, may ignore the theory of arrays and limit their attention to Markov

| is of order 1 will need the theory for Markov arrays.

1.1.3 Additive functionals

An additive functional of a Markov chain is a sequence f = {f;, },>1 of measurable
functions f,, : 6, X G,,+1 — R, where &, are the states spaces of the Markov chain.
The pair X = {X, },f = {f,,} determines a stochastic process

Sy = filX1,X2) + fo(X2,X3) + -+ fn (X, Xng1) (N >1).

We will often abuse terminology and call (X, f) and {Sy }y>; “additive functionals.”
An additive functional of a Markov array X with row lengths ky + 1 and state
spaces GS,N) is an array of measurable functions f,EN) : 6,(1N) X G(N)

nt1 — R with row
lengths ky:
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F g0
f: f](Z),"'af]SIZ)a"'v.fk(Z)
3) 3) 3) (3)
fl 7"'7fk| v"'?sz AR RS

Again, this determines a sequence of random variables

x®

kN+1) (NZ 1)7

sv=fV ™M ")+ 2V M) e N x

ky

which we also refer to as “additive functional.” But be careful! This is not a stochas-
tic process, because no joint distribution of S1,5,, ... is specified.
Suppose f, g are two additive functionals on X. If X is a Markov chain,

frg:={fatsen}, cf:={cfi}, Ht=sup<wpvﬂxmﬂ)
n X,y

and ess sup [f| := sup (ess sup |/ (X, Xnt-1)|)-
n
Similarly, if X is a Markov array with row lengths ky + 1, then

frgm M g™y cfim {ef™), [fl:=sup sup (Supfn(N)(x,yH),
N 1<n<ky X,y
and

ess sup [f| := sgp1<su<pk (ess sup | fu(Xn, Xnt+1)|) -
<n<ky

The notation |f| < K a.s. will mean that ess sup | f| < K ( “a.s.” stands for “almost
surely”). An additive functional is called uniformly bounded if there is a constant
K such that |f| < K, and uniformly bounded a.s. if 3K such that |f| < K a.s.

1.2 Uniform ellipticity and its consequences

1.2.1 The definition

A Markov chain X with state spaces &,, and transition probabilities 7, ,,1 1 (x,dy)
is called uniformly elliptic, if there exists a Borel probability measure u, on S,
Borel measurable functions p, : &, x &, — [0,%), and a constant 0 < & < 1
called the ellipticity constant such that for all n > 1,

(a) nn,rH»] (-xady) = Pn(xa)’).Lln+l(dY);
() 0< p, < 1/e0;
© Js,., Pn(%,3)Pns1(3,2) Hns1 (dy) > €.

See §1.3.3 for a discussion of a possible weakening of (c).
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We will see in Proposition 1.2 below that one can always assume without loss of
generality that , are the measures u,(E) =P(X, € E).

Example 1.7. Suppose X has finite state spaces S, s.t |S,| <M < oo for all n, and
Ty, = T 1 (X, {y}) satisfy

(1) 3¢y > 0 s.t. forall n > 1 and (x,y) € &, x &1, either 7y, = 0 or 7)), > &);

(2) for all n, for all (x,z) € &, X &,,47, there exists y € S, such that n)’gynf;rl > 0.

Then X is uniformly elliptic: Take u, to be the uniform measure on &, and
Pn(x,y) := 7 /|Sp 41| Then (a) is clear, (b) holds with any & < 1/K, and (c) holds
with & := (&)/K)?.

We call such chains Doeblin chains, in honor of Doeblin who studied homoge-
neous countable Markov chains satisfying similar conditions.

Here is the formulation of the uniform ellipticity conditions for Markov arrays.

A Markov array X with state spaces GS,N), transition probabilities ﬂ,(ll\,]lzrl (x,dy), and

row lengths ky + 1 is called uniformly elliptic, if there exist Borel probability mea-
sures /.L,SN) on GEN), Borel measurable functions pﬁ,m : GE,N) X Gﬂ)l — [0,00), and a
constant 0 < & < 1 as follows: Forall N > 1 and 1 <n <ky,

N N N
@ 7 (xdy) = pi () (dy):

® 0<pi” <1/a;

N N N
© S, . 24 )P 02, (dy) > eo.
Example 1.8. Suppose X is a uniformly elliptic Markov chain and suppose Y is a
Markov array obtained from X by the change of measure construction described
in Example 1.6. If the weights (p,(,N) (x,y) of the change of measure are uniformly
bounded away from zero and infinity, then Y is uniformly elliptic.

1.2.2 Contraction estimates and exponential mixing

Suppose X,2) are complete and separable metric spaces. A transition kernel from
X to Q is a family {7(x,dy)}rex of Borel probability measures on ) so that
x — 7(x,E) is measurable for all E C X Borel. A transition kernel {7 (x,dy)}icx
determines two Markov operators, one acting on measures and the other acting on
functions. The action on measures takes a probability measure tt on X and maps it
to a probability measure on g) via

w0 (E) = [ x(nE)u(d)

The action on functions takes a bounded Borel function « : ) — R and maps it to a
bounded Borel function on X via
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H@)) = [ w0)asdy)

The two operators are dual: [u(y)m(u)(dy) = [7(u)(x) u(dx).
These operators are contractions in the following sense. Define the oscillation of
afunctionu : ) — R to be

Osc(u) := sup |u(y) —u(y2)|-
Y1,y2€9)

Define the contraction coefficient of {7(x,dy)} cx to be
O(m) :=sup{|n(x1,E) — w(x2,E)| : x1,%2 € X,E € B(D)}.
The total variation distance' between two probability measures iy, i on X is
|t — ta||var := sup{|u1 (A) — ua(A)| : A C X is measurable}

= ;sup{/w(x)(ul — t2)(dx)|w: X — [—1,1] is measurable}

Lemma 1.1 ([125]). Suppose X,9) are complete and separable metric spaces, and
{m(x,dy)}rex is a transition kernel from X 1o X.

(a) 0<d(m) <1

(b) 6(m) = sup{Osc[m(u)]|u : Y — R measurable, and Osc(u) < 1}.

(c) 8(myom) < 8(m)0(m) provided m o m, is well defined.

(d) Osc[m(u)] < 6(m) Osc(u) for every u : ) — R bounded and measurable.

(e) |m(ur) — w(2)||var < 0(m)||1 — U2 ||var for all Borel probability measures
Ui, lo on X.

(f) Suppose A is a probability measure on X x Q) with marginals Uz, Uy, and tran-
sition kernel {7t(x,dy)}, i.e. A(E x9Q)) = ux(E), A(X X E) = ug (E), and

A(dx,dy) = /x 7(x, )z (dx).

Let f € L*(ix),g € L*(lug) be two elements with zero integral. Then

/. X@f()f)g(y)l(dx,dy)‘ <N 18112y

Proof. (a) is trivial.

The inequality < in (b) is because for every E € HB(2), u := 1g satisfies
Osc(u) < 1. To see >, fix some u : Y — R measurable such that Osc(u) < 1. Sup-
pose first that u is a simple function (a measurable function with finitely many val-
ues), then we can write u = c+ Y., ot;14, where ¢ € R, |o;| < %Osc(u), and A;
measurable and pairwise disjoint. For every pair of points x1,x; € X,

! Caution! ||{t; — Uz ||var is actually one half the total variation of t; — L, because it is equal to

(b1 — p2)™ (%) and to (1 — p2) ™ (X), but not to [w|(X) = (1 — )" (X) + (11 — p2) ™ (X).
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m

Y ailm(xi,A) = m(x2,A7)]

i=1

|70 (u) (x1) — () (x2) | =

< o[ (x1,A;) — w(x2,A:)]

T(x,Ai)>7(x2,4;)

1
< 3 Osc(u)d(m) +

+ (Xi[ﬂ(thj)—ﬂ(xZaAiﬂ

T(x,Ai)<m(x2,4;)

2 0sc(u)3() = 8(x) Osc(u) = ().

So Osc[n(u)] < §(m) for all simple functions u# with Osc(u) < 1. A standard ap-

proximation argument now shows that Osc[n(«)] < §(x) for all measurable u s.t.

Osc(u) < 1. This proves (b). Part (c) and (d) are immediate consequences of (b).
To see (e), let pt := p; — Uy, then for every measurable function w: ) — [—1,1],

3 v = 3 [, o)) - [ wor(w) )
=3 / ) ) = [ () (x2)pa(dx)
E 3 [ L mn) = 706) )l (@ ) < 5 OselmOw)

< 55(717) Osc(w) < §(m),by (b) and because Osc(w) < 2||wle < 2.

Passing to the supremum over all w(y) gives part (e).

Part (f) is the content of Lemma 4.1 in [125, Lemma 4.1], and we reproduce the
proof given there. Consider the c-algebra &4 := {X X E : E C Q) is measurable},
which represents the information on the )—coordinate of (x,y) € X x 2).

Let 7, be a measurable family of conditional probabilities given ¢, i.e. 7, is
a probability measure on X x {y}, y — [ fdm, is Borel for every Borel function
[XxY = [0,1, 2 = [3.q Tyd A, and for every A—absolutely integrable f(x,y),

Ey (£ (x,)|9)(y /fdﬂ:y/lae
We may identify 7, with a probability measure 7(y,dx) on X defined by

n(y.E) =my,(E x {y}) (E C X Borel).

It is useful to think of 7(y,dx) as the transition kernel “which goes the opposite
way” to 7(x,dy). Indeed, if 7(x,dy) is the transition probability of a Markov chain
{X,} from n to n+ 1, and A is the joint distribution of (X, X, 1), then 7(y,dx) is
the transition probability from n+ 1 to n, i.e. T(y,E) = P(X, € E|Xp11 = ).

The operators 7 : L?(lig)) — L*(ux ) and 7 : L*(ux ) — L?(liy) are dual to one
another, because [y f(x)7(g)(x)dux (x) and [y 7(f)(y)g(y)dusg (y) are both equal
© [ £(x)g(r)(dx,d).
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CLAIM: Q := o7 : L*(ux) — L*(ux) is self-adjoint, Q preserves the linear sub-
space L3 (1x ) :={f € L*(ux) : [ fdux =0}, and the spectral radius of Q : L — L}
is at most 8(Q).

Proof of the claim: Q is self adjoint, because Q* = (77)* = T*n* = 77.

It is useful to notice that Q is given by (Qf)(x) = [5 f(x')Q(x,dx’) where Q(x,E)
is the probability measure on X given by Q(x,E) = [ T(y,E)w(x,dy). O(x,dx') is a
transition probability from X to X. Notice that Q(ux) = Ux:

(0ux)(E) = [ 0 Eyp(an) = [ [ pe(as)m(ea) (e x (3))
o BEX DDA = [ F(E D)k = AE D) = pa(E).

Thus, for all f € L?(ux), [ Qfdux = [ fd(Qux) = [ fdux. It follows that Q :
L*(px) — L*(ux) preserves the linear space L3.

For every ¢ € L3NL”, ||@|| < Osc(¢). Since Q preserves L3N L™, for every f
in this space, we have by parts (c) and (d) that

1Q"fll2 < [|Q" | < Osc(Q"f) < 6(Q)" Osc(). (1.2.1)

This implies that the spectral radius of Q : L3 — L3 is less than or equal to 5(Q).
Otherwise there is an L(z)—function, part of whose spectral decomposition corresponds
to the part of the spectrum outside {A € R: |A| < 6(Q) + €} (self-adjoint operators
have real spectrum). Any sufficiently close L% N L”—function would have compo-
nents with similar properties; but the existence of such components is inconsistent
with (1.2.1). The proof of the claim is complete.

We are ready for the proof of (f). Since Q : L(z) — L% has spectral radius at most
6 and Q is self-adjoint, for every f € Lﬁ(yx),

~

123 ) = FELEO gy = QU 30) < @IS sy

It follows that for every f € L3(ux),g € L3(Uy)

[ S0 = [ (@) [ ) 700 | = R0y
< IZDlalgle < V3@ lelgll as required. 0

We now return to the setup of Markov arrays X = {X,EM 1<n<ky+1,N>1}
and consider the following two-step transition probabilities

Tt E) = [ A 0BT ()
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defined for 1 <n < N < oo, x € &\, and E € #(&.\)). The uniform ellipticity
condition gives the following uniform bound for & (ﬂr(l]\,/llz)

Lemma 1.2. Let X be a uniformly elliptic Markov array with ellipticity coefficient

€. Then sup sup 5(7r,<11>’l)+2) < 1— &. Similarly for Markov chains.
N 1<n<ky ’

Proof. We fix N and drop the superscripts ™),
Uniform ellipticity implies that 7, 42 (x, E') has density with respect to 1,4» and
this density is bounded from below by &y. This allows us to write

En(X, dy) = Solin+2(d)’) + (1 - 80)7/r\n,n+2(xady)' (122)

Note that the first term does not depend on x.
Let u : 6,42 — R be a measurable function with Osc(u) < 1, then we can write
u(-) = c+w(-) where c is a constant and ||w||. < 3. A direct calculation shows that

[ w0 ia,d) = [ @ ialin, )

| W@ Tniad2) = [ w@ (i)

n Sn

= (1—80)

/C W(Z)ﬁn,n-&-Z(xladZ) _/ W(Z)ﬁn,n+2(x2adz)
J&,

n

< (1= &) [[Wl[oo [T nr2(x1, Sny2) + T g2 (22, 6,12)] < 1—&,
where the last inequality holds since ||w||.. < 1. O

Proposition 1.1. If X is uniformly elliptic, then there exist 6 € (0,1) and Cix > 0
(N)

which only depend on the ellipticity constant & as follows. Suppose hy, ' (x,y) are
measurable functions on GEN) X 65:_\?1, and let hS,N) = hﬁ,N) (X,EN) ,X’g)l ), then
(1) 1f 1Y) is bounded and E(h{™) = 0, then for all 1 < m < n < ky

IER1X0) o < Contc0” [V (12.3)

(2) ifVar(hiM), Var (") < oo and E(nM), E(hY)) = 0, then for all 1 <m < n < ky

IEEN XYY 2 < Coic6” 11512 (1.2.4)
ER R < Ci0 ™ [HY 1812 (1.2.5)

The analogous statements hold for Markov chains.

Proof. We fix N and let 7, ;41 := E(N) X, = X,EN), h, = h,gN). Define for k <n

n,n+1° 0

Wn k (Xk) = E(hn |Xk) y
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then Wn,n(Xn) = ]E(hn‘xn) = fhn(Xnvy)nn,nJrl(dey) = Tlnn+1 [hn(Xm)] By the
Markov property, wy,(X,) = E(hy|Xn,Xn—1,...,X1), and this allows us to write
nnfl,n(wn,n)(xnfl) = E(Wn,n(Xn) |Xn71) = E(E(hnp(na X1 ) |Xn71)) = E(hn |Xn71)~
So Th—1,n (Wn,n) (Xn—l) = Wnn—1 (Xn—1)~

Applying the Markov operator m,_>, on both sides gives in a similar way
(ﬂ:n72,n71 o nnfl,n)(wn,n)(xnfﬁ = Wn,n72(X1172)-

Continuing in this way we arrive eventually to the identity

Wmm(xm) = E(hnp(m) = (n—m?m+1 O---0 ”n—l,n)(wn,n)(xm)-
By the previous lemmas Osc[w, ] < (1 — &)L 2" 1 Osc[w,.,].
Notice that for every bounded measurable function v, ||v||e« < [E(v)| + Osc(v).
Since by assumption E(wy, (X)) = E(h,) =0,

Hwn,m(xm>||°° S (1 _'g())t%J OSC[Wn,n]-

Osc[Wnn] < 2||[Wnnlleo < 2|7 ]|oe, and part 1 follows.
Part 2 is proved in a similar way, using Lemma 1.1(f). (]

1.2.3 Hitting probabilities and bridge probabilities

Throughout this section, let X be an inhomogeneous Markov array with row lengths

ky, and data GEN), 7r<N>

1 n™). Suppose X is uniformly elliptic:

TCV(lIX)Jrl (xa dy) = pglN) (xy)’).unJrl (dy)
where 0 < pi™ < 1/eg and [, P (6,) PV (0.2 thns1(dy) > 0.

The following proposition estimates to ]P’(X,EN) € E) in terms of the ,u,(,N):
Proposition 1.2. Under the above assumptions, for every 3 <n < ky+1 < o and

) PV eE)
N

every Borel set E C &), & < T < go—l. Similarly for Markov chains.

Proof. We fix a row N, and drop the superscripts V). Define a probability mea-
sure on &, by P,(E) = P(X, € E), then for every 1 < n < N, for every bounded
measurable ¢ : G0 — R,
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[ o2 = E(ot12) =B (E(B(p(Xyi2) o1 1)
=E(E(E(@(Xy12)|Xn+1)|X)) (.- Markov property)

= [[] 00 Tt 10120:2) B .y P

= [ 0@ puss (221 pule )t s2(d2) st ()Pl

= [ [ / ( [ P23 <dy>> Pn<dx>} tnsa(d2)

The quantity in the square brackets is bounded below by & and bounded above by

dPn+2 < —1
p T <g . O

g I So the measures P12, W2 are equivalent, and & <

Notice that in checking the uniform ellipticity condition, we are free to modify

(N)

Un ’ by a density bounded away form zero and infinity. Proposition 1.2 allows us to

assume without loss of continuity that ,LL,(,N) (E)= IP’(X,EN) €E)for3 <n<ky.

Another important application of the ellipticity condition is the following canon-

ical definition of the distribution of X' +)] given that X, ™) — x and X,E +)2 = z. Note

first that the ellipticity property implies that for all x € 65,(1 ),Z € GEL +)2,

ZM (x,2) == /6 PSLN)(x,y)Pfﬁ)l (y,Z)#ﬁ)l (dy) #0.
n+1

The bridge distribution of X ( +>1 given that X,g ) = =xand X ( & = z is defined to be
(N) (N)

the measure on &, |/, which assigns to a Borel set E C G, | the probability

(N)
Xn =X 1 (N) (N) (N)
Pl E = 7/ n (%, : dy). 1.2.6
< ‘X(N)Z Z) Z}SN) Y.z Ep ()C y)p,H_l(y Z)l’l'n-H( y) ( )

(N)(

The definition makes sense because Z,
why the formula (1.2.6) is reasonable:

x,z) # 0. The following lemma explains
Lemma 1.3. Let yg(x,z) :=right hand side of (1.2.6), then

n+2

w2 -2 (5

xWN) xW )) P-almost everywhere.

We omit the proof, which is routine. The lemma does not “prove” (1.2.6): Condi-
tional probabilities are only defined almost everywhere, and are by their very nature
non—canonical. But (1.2.6) makes sense everywhere. It is a definition, not a theorem.
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1.3 Structure constants

Throughout this section we assume that f is an additive functional on a uniformly

(N)

elliptic Markov array X with row lengths ky + 1, state spaces &,, ’, and transition

probabilities as in the ellipticity condition: ) (x,dy) = pn(x,y)tun(dy), where

n,n+1
[,L,(,N) (E)= IE”(X,EN) € E). See §1.2.3 why we may assume this on [,L,(,N).

1.3.1 Hexagons, balance, and structure constants

A Level N hexagon at position 3 < n < ky is a configuration

PN = (g
" "2 Yn—1 Yn Int1

™) A hexagon is called admissible if

where x;,y; € 6;
pszé(x”*Z’xﬂfl)p(Na (xnflvxn)pﬁlN) (xnvyn+l) 7’é 0
pfl >2(xn 2, Vn— 1)p< >(yn 1) P Gns Y1) # 0

Admissible hexagons exist because of uniform ellipticity.

The space of level N admissible hexagons at position n will be denoted by
Hex(N,n).

One can put a natural probability measure on Hex(N,n) by taking {Yn(N)} to be
an independent copy of {X,EN) }, and looking at the distribution of

(N) (V) (N) (N)
N X, X L ... X, ,=Y 5

X o et Y conditioned on "
( "2 Yﬂ y ) X,Eﬁ)l = Ynf}

Writing the measure explicitly is possible, but cuambersome. It is better to think of it

as the result of the following sampling procedure for (xn 2 y" L, 'y ,y,,H) :
n—1 n

o (Xp—2,%,—1) is sampled from the distribution of (X,EN)Z, )
o (Y, Yn+1) is sampled from the distribution of (¥, ),Yn(
(xn yXn+1 ))s

o x, and y,—1 are conditionally independent given the previous choices, and are

sampled using the bridge distributions

1) (so it is independent of

(N)
P(xn € E|xn—17yn+1) =P (X,SN) c E’ rz;})l xnl)
+1 = Yn+1
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Xn—2
Yn

We call the resulting measure the hexagon measure on Hex (N, n).

The balance of a hexagon P,S )= (xnz, An=1, An ynH) is

(N)
IP>(yn—1 € E|xn—27yn) =P (Yn(Nz ek Yn %

Yn—1"Yn
F(Pn ) fYEN%(xanaxnfl)+f,§1j)1(xnflvxn)+frEN)(xn7yn+l) (13.1)
fN)z(erZaYnfl)_frgliq(}%flvyn)_erN)(yrzvyn+l)

Definition 1.1. The structure constants of f = { fn<N>} are

£
2
|

S

=

—~
—+

—
|

E((I (P,EN))z) 1/ 2(expectation on Hex (N, n))

dN &):= d,(,N)(é,f) = ]E(|ei5F(P'SN)) — 11*)/2(expectation on Hex(N, n))
k

N ky
Uy :=Uy(f) := Z(MISN))z s Dn(8) = Z "
n=3 (13.2)

If X is a Markov chain, we write u,, = uE,N), d,(&) = ,(lN) (&).

The significance of the structure constants will become clear in later chapters. At
this point we can only hint and say that the behavior of Uy determines if Var(Sy) —
oo, and the behavior of Dy (&) determines “how close” f is to an additive functional
whose values all belong to the lattice (27/§)Z.

Lemma 1.4. Suppose f,g are two additive functionals of on a uniformly elliptic
Markov array X, then

(a)d M (E+n,f2<8(d <N><c§ £)2+d (1,6)2);
(b)d Ve frg? <s@ (€ +al (E,8)%);
(c) d} ;@ £) < [Eu" (F);

(@) " (F+8)* < 20" ()2 + " (8%,
Proof. For any z,w € C such that |z|,|w| < 2, we have ?
2w +z4+w[* < 8(|z)* + |w]?).
So if P is a level N hexagon P at position n, and {p := EI'(P), np := NI (P), then
'GP _ 12 = |(%P — 1) (P — 1) + (/5 — 1) + (/P — 1)]?
< 8([efr — 12 +|eMr —1]2) (1.3.3)

2 (awHz+w)? = 2w+ 2w £ 2(Pwzw? +zw), and |22w?] < 4lzw| < 20z 2|2, 22w <
20z, 2[aw| < [z + WP, [aw?| < 2|w]*.
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Part (a) follows by integrating over all P € Hex(n,N). Part (b) has a similar proof
which we omit. Part (c) is follows from the inequality |¢’® — 1]* = 4sinzg <16/
Part (d) follows from Minkowski’s inequality and |ab| < 1 (a®+?). O

Example 1.9 (Gradients). Suppose f,(x,y) = an+1(y) — an(x) + ¢, for all n, then
the balance of each hexagon is zero and uy,,d, (&) are all zero. For a converse state-
ment, see §2.2.1. Suppose f,,(x,y) = ap+1(y) —an(x) + ¢, mod %”Z for all n. Then

eST(P) = 1 for all hexagons P, and d,,(£) are all zero. For a converse statement, see
83.3.1.

Example 1.10 (Sums of independent random variables). Let Sy = X| +--- + Xy .
where X; are independent real valued random variables with non-zero variance. Let
us see what u,, and d,,(§) measure in this case.

Proposition 1.3. u2 = 2(Var(X,_) + Var(X,)) , XN _;u? < Var(Sy).

Proof. Let {Y¥,} be an independent copy of {X,}, and let X;* := X; —¥; (the sym-
metrization of X;). A simple calculation shows that the balance of a position n
hexagon is equal in distribution to X* | + X, . Clearly E[X;] = 0 and E[(X;")?] =
2Var(X;). Consequently,

u2(E) =E[(X* )*+ (X)?] = 2Var(X,_1) 4+ 2Var(X,,).

n n—1
Summing over n we obtain Y¥_, u? < Var(Sy). O

Next we relate d2 () to the distance of X; from a coset of %”Z. The distance of a

random variable X from a coset %’”Z is measured by the following quantity:

. ) 21 1/2
Q(Xaé)-:glel]gE[dlSt <X76+§Z>} .

The minimum exists because the expectation is a periodic continuous function of 8.
Proposition 1.4. For every & #0d, (&) =0 iff X; € coset of %”Z as. (i=n—1,n),
and there exists C(&) > 1 such that if d,(§) # 0 then

) 2(E)
O = mm e om.er S @)

Proof. Choose 6; € [0, %”] s.t. D(X;, &) = E[dist*(X;, 6; + %’TZ)] There is no loss of

generality in assuming that 8; = 0, because the structure constants of f;(x) = x and
gi(x) = x— 6; are the same. Henceforth we assume that

2
D(X;, &) = Eldis(X;, X

: 7). (1.3.4)
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As in the proof of the previous proposition, the balance of a position n hexagon
is equal in distribution to X* | +X,, where X;* := X; —Y; and {Y;} is an independent
copy of {X;}. So d2(&) = (|e X K) —11%).

We need the following elementary facts:

&Y 12 = 4in? DY = 4(sinfcos} +sinycos)? (x,yER) (1.3.5)
Sdist*(1,wZ) < sin’t < dist*(1,7Z) (1 € R) (1.3.6)

PIX € [0, £+ %2> (> 1) (13.7)

(1.3.5) is trivial; (1.3.6) is because of the inequality 2t/ < sint <t on [0, 7],

which the reader may verify by drawing the graphs. To see (1.3.7) note that

([0, 2’2] gZ) W ([ ,25}4— ¢ + gZ), and therefore there exists k = 0,1

such that P[X; € [0, 2”5] + £ 25 + g Z) > %. Since ¥; is an independent copy of X;,
PX;,Y; €0 ,25] + ég + gZ] > 1. This event is a subset of [0 < X; —¥; < 5]

Returning to the identity d,%(é) E(|e/®a-1+%1) — 1]2), we see that by (1.3.5)

d; (&) = E(le= P10 — 1)
=4E (sin2 5%’10052 X +sin? 3 X5 cos? 2=l 4 Lsin(EX;_ ) sin(EX;; ))
=4E (sin2 %) E (cos2 2.8 ) +4E (sm2 5}2(" ) E (cos2 §X+,1> (1.3.8)

where we used the symmetry of the distribution of X;* to see that E[sin({X;)] = 0.

By (1.3.7), E <0052 5%’*) > cos?(Z)P[X; € [0, 2’2] %”Z] > 1, and therefore there

exists C, € [4,4] such that
d2(E) =Gy [E (sinz%) +E (sin? )] (13.9)

It remains to bound E (sin2 éX’T”‘> in terms of D(X;, &).

Recall that X;* = X; —Y; where Y; is an independent copy of X;, and use (1.3.5)
and independence to find that

E<Sinz§§;):El<.é‘2 ézY §2Y Sé;(i)z

= 2E(sin® é;x )E(cos? .5;( )— %]E(sin(éXi))2 < 2[E(sin’ %)
2
< 2E(dist? (5, n7)) = %E(distz(xi, ¥1) = 5 D(X;, &), by (1.3.4),(1.3.6).

Next by (1.3.6) and the definition of D (X;, &),
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E(smz": ) >4 (dlst (X nZ)) - %E (digt%X,--Y,-,?Z))

D(X;, ).

The proposition follows from (1.3.9). (]

1.3.2 The ladder process

The materical of this section is only needed for the proofs of the gradient lemma and
the reduction lemma in chapters 2 and 3.

Suppose X = {Xi(m} is a uniformly elliptic Markov array with row lengths ky +
1. We would like to define a new Markov array L, called the Ladder process, with
the following structure (figure 1.3.2). Each row has entries

LY =M y™M xMy B<n<ky+1),

(N)

so that (a) {Z(N } 1s an independent copy of X, (b) Y 1 € 6, are independent

]

given {Xi(m}, {Z. } and (c)

)
_ in—
¥ <Yn<fi € E‘{Xi(N)} = {xi}’{zi(m} - {Zi}> =F <XISIX>1 GE’X?N%:)C 2) ’

see the discussion of bridge probabilities above.

Lemma 1.5. L exists, is Markov, and is uniformly elliptic with ellipticity constant
83, where g is the ellipticity constant of X. For every N,

(1) {X,Em}ﬁ’i ng , {Z }ki ! are independent, and distributed like the correspond-
ing pieces of the N-th rows of X.
(2) Y,,(N) are conditionally independent given {Xi(m}, {Zl-(N)}.

o 20
(3) pN ANS Y’(’X,)' Xn(N) X, | is distributed like the level N random hexagon
n—1 “n

at position n.

Proof. Let &Y denote the state spaces of X, ,u,gm (E) = IP(X,SM € E), and let

d X, (N> =Zn—1 . (N) . .
Yl v ) denote the bridge measure on &, ’ with boundary condi-
Xn+1 = Xn+1

tions X, W )1 Zn—1 ,erlpl = X,+1. Define the Markov array L with

o Rows L) = (zy_2,yn_1,40) G <n <ky+1,N> 1)
o State spaces: QSN) = 6( )2>< 6( )1 X 6( ) B<n<ky+1).
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Fig. 1.1 The ladder process. {Z;N)}, {Xi<N)} are independent copies. Yn(N) are conditionally inde-

pendent given {X, [.(N ) 1 Zl.(N ) 1.

W) _
o Tnitial distribution: ™) (dzy,dyy,dxs) = [ p™(dz)ul™ (dx)P dy‘ X{N) -
™y s™ X, X
1 %63
o Transition probabilities ﬂ,(,N)( (Zn—2,Yn—15%n)s En—1 X Ey X Ey1) =

v

n—)l = Zn-1
N .
Xy5+)1 = Xn+1
(We evolve z,,_» — z,—1 and x,, — x,,+1 independently according to 7 ]X)z (zn—2,dz),
(N)

7, (x,,dx), and then sample y, using the relevant bridge distribution.)
It is routine to check that L has the structure described at the beginning of the
section, and that it satisfies the properties listed in the lemma. U

= / pfﬁ)z (Zn—27Zn—1)pl<1N> (X, Xng1)P <dyn
E, 1 xEyxE;

—

=

1.3.3 A weakening of part (c) in the ellipticity condition

Fix some natural number 7. It is natural to consider the following weakening of part
(c) in the ellipticity condition: If n < ky — 7, then for all x € GEZN) ,Z € 65,11)7 - the

iterated integral

Y
[ o) TTpsn e )Py i) B (dy) -ty (dyy)
i=1

™) v
S (‘5£1+)7
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is bigger than &j. The ellipticity condition corresponds to the case y = 1.
The results of this work could in principle be reproduced under this weaker as-
sumption. To do this, one needs to replace the space of hexagons by the space of

(2y+ 4)-gons Xn—y Yyl ;Vn+1 | with its associated structure constants,
Yn—y+1 Yn
and its associated y-ladder process Q(,N) = (Zfﬁ)y_l , Y,fi\% . ,Yn(l_vi ,X,SN)).

Since no new ideas are needed, and since our notation is already heavy enough
as it is, we will only treat the case Y = 1 in this work.

1.4 Notes and references

For a comprehensive treatment of inhomogeneous Markov chains on general state
spaces, see Doob’s book [44]. The uniform ellipticity condition is one of a plethora
of contraction conditions for Markov operators, which were developed over the
years as sufficient conditions for results such as Propositions 1.1 and 1.2. We men-
tion in particular the works of Markov [89], Doeblin [39, 40], Hajnal [61], Doob
[44], and Dobrushin [38] (see also Seneta [124] and Sethuraman & Varadhan [125]).
For an encyclopedic treatment of mixing conditions for general stochastic processes,
see Bradley [16].

The contraction coefficient mentioned in section 1.2.2 is also called an “ergod-
icity coefficient,” and it plays a major role in Dobrushin’s proof of the CLT for
inhomogeneous Markov chains [38]. Our treatment of contraction coefficients fol-
lows closely [125]. In particular, Lemma 1.1 and the proof of part (f) of that lemma
is taken from there. Proposition 1.2 is similar in spirit to Doeblin’s estimates for the
stationary probability vector of a Markov chain satisfying Doeblin’s condition in
terms of the stochastic matrix of the chain [39, 40]. For a discussion of the “change
of measure” construction see chapter 6. The quantities D (X, &) were introduced by
Mukhin for the purpose of studying local limit theorem for sums of independent
random variables. See [95] and references therein.



Chapter 2

Variance growth, center-tightness, and the
central limit theorem

In this chapter we analyze the variance of Sy = f1(X1,X2) + -+ + fn(Xn,Xn+1) as
N — oo, characterize the additive functionals for which Var(Sy) + oo, and show that
if Vy — oo then the central limit theorem holds.

2.1 Main results

Let X be a Markov array with row lengths ky + 1, let f an additive functional on X,

and define Sy = Z;‘ﬁ 1 f,-(N) (Xl.(N) 7Xi(+Nl))'

Definition 2.1. f is called center-tight if there are constants my s.t. for every € > 0,
there exists M s.t. P[|Sy —my| > M] < € for all N.

We are interested in center-tightness, because it is an obstruction to the local limit

theorem. We shall see below (Theorem 2.2) that f is center-tight iff Var(Sy) /4 eo.
2

e/ 2|a7h\

V21Vy
can be made bigger than one by choosing |a — b| sufficiently big, and the asymptotic

relation fails. One could hope for a different universal asymptotic behavior, but as
the following class of examples shows, this is hopeless:

Obviously, in such a situation the right hand side in P[Sy — zy € (a,b)] 2

Example 2.1. (Non-universality in the LLT for center-tight functionals): Let
X = {X,}n>1 be a sequence of identically distributed independent random variables
with uniform distribution on [0, 1]. Choose an arbitrary sequence of random vari-
ables {Z,},>1 taking values in [0, 1]. By the isomorphism theorem for Lebesgue
spaces, there are measurable functions g, : [0, 1] — [0, 1] such that

80 =0, g,(Xk) = Z in distribution.

Let f = {f"}nZl with f;z(Xan-H) = gn+l(Xn+l) _gn(Xn)- Then Sy = Zy41 in
distribution, whence P(Sy € (a,b)) = P(Zy+1 € (a,b)) is completely arbitrary.

35
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Every Markov array admits center-tight additive functionals. Here are three con-
structions which lead to such examples (in the uniformly bounded, uniformly elliptic
case, all center-tight additive functional arise this way, see Theorem 2.2 below):

Example 2.2. (Gradients): In the case of Markov chains, gradients are additive
functionals of the form

fn(x»))) = an+1(y) _an(x)'

where a, : 6, — R is measurable, and a = {a, } is a.s. uniformly bounded.
Gradients on Markov arrays are defined similarly by the formula f,EN) (x,y) ==
afﬁl () — aV (x). where a" : &Y 5 R is measurable, and a = {a,(fv)} is a.s.
uniformly bounded. We write f = Va, and say that f is the gradient of a and a is the
potential of f.!
The gradient of an a.s. uniformly bounded potential is center-tight because if

lal < K. then [Sy| = [a{), | (Xi+1) —ai" (X1)] < 2K. O

Example 2.3. (Summable variance): We say that an additive functional f on a
Markov chain X has summable variance if it is a.s. uniformly bounded, and

Voo 1= Z Var[f, (Xn, Xnt1)] <
n=1
The definition of summable variance for additive functionals on arrays is similar,
kN
except that now V., is defined by V.. := sup Z Var| f,EN) (x,£N> X}E +>1)] < oo,
N p=1

If X is uniformly elliptic and |f| <K a.s., then summable variance implies center-
tightness. This follows from Chebyshev’s inequality and the following lemma:

Lemma 2.1. Let f be uniformly bounded functional of the uniformly elliptic Markov
array. Then Vy < Vy (1 + %) where Vy := YV Var(fV (xV), x™Y), and

n+1
Chix and 0 < 0 < 1 are as in Prop. 1.1.

Proof. We give the proof for Markov chains (the proof for arrays is identical):

N _
Var (Sy) = ZVar fa)+2 Z Z Cov(fu, fin)

n=1 m=n+1
N7

VN +2Cmix Y, Z 0™ "/ Var(f, ) Var(f,,), with Cpiy, 0 as in (1.2.5)

n=1 m=n+1
2Cmi)cVN

< VN +2Cuix Z 6/ Z Var(f,)Var(ftj) <Vn+ —o

by the Cauchy-Schwarz inequality. U

!'In the ergodic theoretic literature, f is called a coboundary and a is called a transfer function.
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Example 2.4. Example 4: Suppose X is uniformly elliptic. Then every additive
functional of the form f = g+ h where g is a gradient and h has summable vari-
ance is center-tight.

We will now state the main results of this chapter. We assume throughout that

(E) X= {X,SM} is a uniformly elliptic inhomogeneous Markov array with row

lengths ky + 1, state spaces GELN), transition probabilities 7@5{\&1, initial distribu-
tions 7(™), and ellipticity constant &.

B) f={ f,gN)} is an a.s. uniformly bounded additive functional on X, satisfying
the bound |f| < K almost surely.

kn
Let Viy := Var(Sy), and Uy := Z (uE,N))2 where u,(lN) are as in (1.3.2).

n=3

Theorem 2.1. There are constants C1,Cy > 0 which only depend on €y, K s.t. for ev-
ery uniformly elliptic array with ellipticity constant &) and every additive functional
fonXs.t|f| <Ka.s.,

C;'Uy —Cy < Var(Sy) < CUy+Cy forall N.

Corollary 2.1. Suppose X is a Markov chain. Either Var(Sy) — oo or Var(Sy) =

N
O(1). Moreover, Var(Sy) < Y. u? where u, are the structure constants from (1.3.2).
n=3

(The corollary is clearly false for arrays.)

Theorem 2.2. Var(Sy) is bounded iff f is center-tight iff f = Va+h where a is a
uniformly bounded potential, and h has summable variance.

Corollary 2.2. f is center-tight iff supUy < oo.
N

Theorem 2.1 is a statement on the localization of cancellations. In general, if the
variance of an additive functional of a stochastic process does not tend to infinity,
then there must be some strong cancellations in Sy. Apriori, these cancellations
may involve summands far apart. Theorem 2.1 says that strong cancellations must
already occur among three consecutive terms félj)z + fﬁ)l + f,EN): This is what Uy
measures.

If f depends only on one variable f,(x,y) = f,(x), and we have one step elliptic-
ity condition py(x,y) > & one can define the ladder process using quadrilaterals

N _ xN Xé\/ YN
Qn - n—1 YN n+1
n

instead of hexagons. As a result u,, is replaced by

@02 [[ 17700 =45 02) Pt ) dpaly2) = 2Var(h). - @.L1)



38 2 Variance growth, center-tightness, and the central limit theorem

Repeating the arguments from the proof of Theorem 2.1 we obtain that there are
constants Cy,C; such that

Cr'Y Var(fu(X,)) — G < Wy < Gy (ZVar(fn(X,,))) +Go.

This estimate has been previously obtained in [38, 125] under weaker ellipticity
assumptions. A similar estimate does not hold in case f,EN) depends on two variables.
Indeed if f,SN) is a gradient, then Vy is bounded while ):2’:1 Var(f,(X,,X,+1)) can
be arbitrarily large.

We end the chapter with the reproduction of the proofs of the following two
known results.

Theorem 2.3 (Dobrushin). Let f be an a.s. uniformly bounded additive functional
on a uniformly elliptic Markov array X. If Var(Sy) — oo, then for every interval,

_ b
Sv —E(Sw) € (a,b)| — L / e s,
Var(SN) N—eo \/2T Ja

The proof we give, which is due to Sethuraman & Varadhan, is based on McLeish’s
martingale central limit theorem. For the convenience of the reader we prove the
martingale CLT in section 2.2.4.

The next result reduces in the case of identically distributed independent random
variables to Khintchin-Kolmogorov’s Two-Series Theorem. The result is stated for
Markov chains, and not Markov arrays, because it relates to the properties of Sy as
a stochastic process.

Theorem 2.4. Let f = {f,,} be an a.e. uniformly bounded additive functional of a
uniformly elliptic inhomogeneous Markov chain X = {X,,}. If Y. Var[f,(X,, X, +1)]
n=1

is finite, then Y. f(Xn, Xn+1) —E(fu(Xn, Xnt1)) converges almost surely.
n=1

2.2 Proofs

2.2.1 The Gradient Lemma

Lemma 2.2 (Gradient Lemma). Suppose f is an additive functional on a uniformly
elliptic Markov array X, and assume |f| < K almost surely. Then we can write

1‘:f—|—Va+c7

where ?7 a, c are additive functionals on X with the following properties:
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(a) |a] <2K and aslm (x) are measurable functions on GS,N).
(N)

(b) |c| <K and ¢y, ’ are constant functions.
(c) |f| < 6K and ﬂN) (x,y) satisfy ||ﬂN) Il < uS,N) forall3<n<ky+1.

If X'is a Markov chain, we can choose f,EN) = fu aSLN) =ay, CS,N) =cp.

Proof for Doeblin chains: Before proving the lemma in full generality, we consider
the important special case of Doeblin chains (Example 1.7), for which the proof is
particularly simple.

Recall that a Doeblin chain is a Markov chain X with finite state spaces G,
of uniformly bounded cardinality, and whose associated transition matrices 7y, :=
Tunt1(x, {y}) satisfy the following properties:

(E1) Jg5 > 0s.t. foralln > 1and (x,y) € &, x 6,41, either 7y, = 0 or 7, > £);

(E2) for all n, for all (x,z) € &, X &,42, Iy € S,41 such that Lt > 0.

We saw in example 1.7 that X is uniformly elliptic.

We re-label the states in &, so that S, = {1,...,d,} where d, < d, and in such
a way that 7f'; > O for all n. Assumption (E2) guarantees that for every n > 3 and
every x € G, there exists a state &,_1(x) € G, s.t. ni’g}il ) ng;ll (> 0. Let
ap=0, a1 =0, anda,(x):= f—2(1,&—1(x)) + fu—1(En—1(x),x) forn >3
co:=0, ¢;:=0, andc,:= f2(1,1) forn >3

fi=f-Va—c.

We claim that ?, a, ¢ satisfy our requirements.

To explain why and to motivate the construction, consider the special case u, = 0.
In this ||f]}, = 0 and the lemma reduces to constructing functions b, : &, — R s.t.
f = Vb+c. We first try to solve f = Vb with ¢ = 0. Any solution must satisfy

Ja(%,) = buy1(y) = bn(x). 2.2.1)
Necessarily, by, (y) = ba(x2) + fo(x2,x3) + -+ fr2(Xn_2,%0_1) + fu_1(xp_1,y) for
all paths (xp,...,x,—1,y) with positive probability. The path x, = --- = x,_» = 1,

Xn—1 = &,—1(y) suggests to define

n—3
by =0, b(y):= Y fill,1)+ fu2(1, &0 1(3) + fu1(8u1(),y)
k=2
This works: for every n > 3, if 717;') > (0 then

b1 (¥) = bn(x) = [fu2(1, 1) + o1 (1,60 () + fu(En(3),)
— fa2(1, 80 1(x) = 1 (Gn1(x), %) = fu ()] + S (x,)

=, (1 o =) y) +u(y) = fulxy): (222)

En1 (x
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Here is the justification of =. In the setup we consider, the natural measure on the
level n hexagons is atomic, and every admissible hexagon has positive mass. So
u, = 0 implies that I,(P) = 0 for every admissible hexagon, and < follows.

We proved (2.2.1), but we are not yet done because b is not necessarily uniformly
bounded. To fix this decompose b,(y) = a,(y) + X3 fi(1,1). Then |a| < 2K, and
a direct calculation shows that f;,(x,y) = @y 1(y) — @n(x) + fo_2(1,1), whence f =
Va+c as we claimed.

This proves the lemma in case u, = 0. The general case u, > 0 is done in exactly
the same way, except that now the identity (2.2.2) gives forf:=f—Va—c

Fa6y) = fux,3) = (@ni1 () — an(x)) —cn = T, <1 én—ll(x) éniy) y> '

If |f| < K, then |I;| < 6K, whence |?| < 6K. Next,

I &(Xuer) ?
Fn (l énfl(Xn) Xn+1 Xn+1> ‘|

In the scenario we consider the space of admissible hexagons has a finite number of
elements, and each has probability uniformly bounded below. So there is a global
constant C which only depends on sup |S,| and on &) in (E2) such that

1’;[ < 1 én (Xn+l ) X,

Ifal3 <E

E < CE[['(P)?],

2
! én—l(Xn) Xn n+1)

where the last expectation is over all position n hexagons. So |[f|j, < v/C - u?.

(The gradient lemma says that we can choose a and c so that C = 1. The argument
we gave does not quite give this, but the value of the constant is not important for
the applications we have in mind.)

The proof of the gradient lemma in the general case: Recall the ladder process

L= {Q(,N) 1, Iﬁ<,N> = (Zr(ﬁ)27 Yn(f{ ,X,EN)) from §1.3.2. Since the profusion of the super-
scripts V) sometimes impedes legibility, we will omit them on the right hand side

of identities. Define

F”(N)(L<N)) = Fn(Ln) = fn72(Zn727Yn71) +fn71(Yn71»Xn)
LY L) = Gl L) =T (22! Y X ) see 130

Then we have the following identity:

(N

Jn )(Xn7Xn+l):Fn+1(l:n+1)_Fn(l:n)+fn—2(zn—2»zn—l)_E(Q7Ln+l)~ (2.2.3)

Next define a,SN> : 6,(1N) — R and cﬁlm € R by
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a£N><¢>:E(E<F,$N)<Ln>|X é)) (B<n<hy) 224
V=Bl (Zy 2,20 1)) (2.2.5)

We will show that the lemma holds with a, c and f:=f—Va—c.
Since |f| < K by assumption, it is clear that |a| < 2K and |c| < K. It remains to

bound f in L= and L2.
CLAIM: For every (&,1) € G, X &1,

Xnt+1 =
4 sfo( iz 2]
az(1N)(§> — E(Fn(N) (L,) §Z+:l : n)
Xnr1 =
al¥\(m) = E(Fn‘fi L) 5,2 g n)

Proof of the claim. The proof is based on Lemma 1.5. The first identity is because
{Z,} is independent from {X,}. The second identity is because conditioned on X,
L, is independent of X,,; 1. The third identity is because conditioned on X,,11, L,
is independent of Xj,.

With the claim proved, we can proceed to bound f, Taking the conditional expec-

tion E(- [X) =1, X" = &) on both sides of (2.2.3), we find that

SN E ) = s (M) — (&) + e —E (MLWL,,H)

Xn+1:n
X, =¢& ’

whence f, (G, 1) == — <171(Ln,5+1) A )
Xl‘l - g
Clearly |?| < 6K. To bound the L?> norm we recall that the marginal distribution
of {X,} with respect to the distribution of the ladder process is precisely the distri-
bution of our original array. Therefore

17" B=E |75 (% X1 ?| =E <E[E (L Ly )?)]

2
E (Ei(l’an+l ) ‘ XnJran)

because conditional expectations are L2-contractions.

Next we use Lemma 1.5(3) to see that F,L(N) (L,,L,) is equal in distribution to
the balance of a random level N hexagon at position n, whence E(I}?) = (uELN))Z. O

The gradient lemma allows to split an additive functional into gradient part and
the part with the small variance. The next lemma allows to control the covariances
between the two parts.
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Lemma 2.3. Suppose f is uniformly bounded functional of the uniformly elliptic
(N)

Markov array. There is a constant C s.t. if and h&v are uniformly bounded measur-

able functions on 62];]’) X 6%&, and ess sup | f,im\ < K, ess sup |h%) | <L then

Cov (SN,h‘ Jx™ x™) )) < CKL.

Iy g

Proof. This follows from the decomposition Cov( SNahéN Z Cov(f, [N))

and the exponential mixing of X (Proposition 1.1). (]

2.2.2 The estimate for Var(Sy)

We prove Theorem 2.1. Let f = { f,SN)} be an a.s. uniformly bounded additive func-

tional on a uniformly elliptic Markov array X = {X,EN)} with row lengths ky + 1.
Our aim is to bound Var(Sy) above and below by affine functions of the structure
constants Uy = ):ﬁ” 3(14,(,]\7))2. Assume |f| < K almost surely.
Throughout the proof, we fix N and drop the suprescripts (V). So X, W) = = X,
(N) _ (N) _
o' = fuoun = uy etc.
Lower bound for the variance. Assume first that ky is divisible by 3: ky = 3M.

SplitUy =} ( Yy ”3k+,) . We will work in the case when
j=0,1,2 \k=1

M M M

p P P
Y Wi >max< Y ug g, Y uin -
=1 =1 =1

The other two cases are handled in the same way.
Let .%y be the o-algebra generated by X3; for 1 <k < M. Let

Fi:= fak—2+ f3k—1 + far
where f; = f;(X;,X;+1). Conditioned on .#y, Fj are independent. Therefore the
variance of the sum of the N-th row satisfies
M M
Var(SN\ffN) = Z Var(Fk\ﬁN) = Z Var(Fk\X3k_3,X3k).
k=1 k=1
Itis a general fact that Var(S3y) > E(Var(Ssy|.-Zn)). So taking the expectation gives

M
Var(Sy) > ) E(Vaf(Fk|X3k—3,X3k)> .
=1
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To estimate IE(Var(Fk|X3k,3,X3k)) we recall the general fact that for every ran-
dom variable W, Var(W) = 1E[(W' — W")?] where W/,W” are two independent
copies of W. In particular,

2
X3k—2 X3r—1 Y. >

1
Var (Fi|X3c—3,X31) = EE {F <X3k3 Yse s Yai

whence E(Var(Fy|X3_3,X3¢)) = E(I'(P)?) = (ug,:’)_l)z where I"(P) is the balance

of a random hexagon P € Hex (N, 3k — 1). In summary

1 N 1
5 (”gk)a)z > —Un.

Var(Sy) > G

™=

This gives us the lower bound we seek for Sy when the length of the N-th row is
divisible by 3. To bound the variance from below when ky =1 mod 3, we let

ky—1

= Z fk(Xk7Xk+1) and V/ = Var(S’)
k=1

As before V! > ¢ Zk"’ 1( ] )) whence V' > UN 36K2.
Let fj = fj— (f]) By (1.2.5), there are mixing constants 6 € (0, 1) and C,;, >
0 which only depend on the ellipticity constant of X so that

Var(Sy) = V' + Var(fi, ) +2Cov(fiy,S')
| ky—1
> cUn - 36K” —2Cnix Z L N2l 5 11269
j=1
1 4C,i K
> —Uy —36K> —
6 1—-6

Similarly, Var(S3y42) > tUsy2 — const.
In all cases, Var(Sy) is bounded below by an affine function of Uy, whose coef-
ficients only depend on the ellipticity constant & and the bound K for |f|.

Upper bound for the variance. Write f = f+Va+cas in the gradient lemma. In
particular, Var(f,(X,_1,X,)) < u2. Then

n=1 n=1

kn kn _ kn _
ar <Z fn> = Var (Z fn> + Var (ay+1 —ay) +2Cov <Z fu,an+1 a1> .
n=1

The first term is smaller than C,Uy + C} due to gradient Lemma and Lemma 2.1 the
second term is smaller than C/ due to Lemma 2.3. U
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2.2.3 Characterization of center-tight additive functionals

We prove theorem 2.2. Suppose f is an a.s. uniformly bounded functional on a uni-
formly elliptic array X. We will show that the following conditions are equivalent:

(a) Var(Sy) =0(1);
(b) f is the sum of a gradient and an additive functional with summable variance;
(c) fis center tight.

(a)=>(b): Write using the reduction lemma f = Va+ (?—&- c), where a,(qN) (x) are mea-

surable functions on GELN) with uniformly bounded L™ norm, cE,N) are uniformly

- ky ~
bounded constants, and ||f, || < V. By Theorem 2.1, sup Z (uﬁ,m)2 <o, s0f+cC

N pn=3
has summable variance, proving (b).

(b)=-(c): We already saw that gradients and functionals with summable variance are
center-tight. Since the sum of center-tight functionals is center-tight, (c) is proved.

(c)=(a): Assume by way of contradiction that 3N; 1 o such that Vy, = Var(Sy,) —
Sy, —E(Sn:
o0, By Dobrushin’s CLT (see [38], [125] and §2.2.5), Niv(’” converges in dis-

tribution to a standard Gaussian distribution. But center-tightness implies that there

Sn—Ha s .
are constants [y s.t. %’V converges in distribution to the deterministic random

variable W = 0, and both statements cannot be true simultaneously. O

2.2.4 McLeish’s martingale central limit theorem

A martingale difference array with row lengths ky is a (possibly non-Markov)
array A of random variables

A={AM N> 1,1< ) <ky}

together with an array of c-algebras { & j(N) :N>1,1<j<ky},so that:

(1) For each N, AI(N), cee ,A,E:IJ) are random variables on the same probability space
(GNv <g\N7 ,LlN) .

2) ffl(N) C ﬁéN) C ﬁ}(N) cC--C ﬁ,éi}v) are sub o-algebras of Zy.

3) 4V is 7Y -measurable, E(]4"]) < oo, and E(4Y}|7 V) = 0.

)

J

E(A™M) =0 forall j=2,... ky1. If in addition E(A{")) = 0 for all N, then we

say that A has zero mean.

We say that A has finite variance, if every A"’ has finite variance. Notice that
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Example 2.5. Suppose {S, } is a martingale relative to {.%, }, then

A ::Sl’Aj(.N)::Sj—Sj,I’ﬂj(N)::ng,jzl’,,,,N

is a martingale difference array.

The following basic observation on martingale difference arrays is a key to many
of their properties:

Lemma 2.4. Suppose A is a martingale difference array with finite variance, then

for each N AI(N), . ,A,g:/) are uncorrelated, and if A has zero mean, then

Var<kﬁl Ay = kZNllE[(AﬁN’f]-

Proof. Fix N and write AJ(»N) =Aj, ﬁ}m =4,
Ifi< j, then ]E(AJ'Ai) = E[E(Ainngj,])] = E[E(AiE(Aj‘ﬁj,1 ))] = E(A, . 0) =
0. The identity for the variance immediately follows. (|

Theorem 2.5 (McLeish’s Martingale Central Limit Theorem). Ler A = {AJ(N)}
be a martingale difference array with row lengths ky, zero mean, and finite variance,

and let Vy == Y E[(AM)?]. 1y

43|
J
(]) E lglji)l(w \/‘TN H—w> 0, and

1 vk (N) . .
(2) 7y Loty (A )? = 1 in probability,

. k N _ 42
then for all intervals (a,b), P {ﬁ Il AJ(. ) ¢ (a,b) T \/% [P e 2y,
We prepare the ground for the proof.
A sequence of random variables {Y¥,} on (2,.%,u) is called uniformly inte-
grable if for every &, 3K s.t. E(|Y,|1))y,~x)) < € for all n. This is strictly stronger

than tightness (there are tight non-integrable random variables).

Example 2.6. If M), := sup||Y,||, < oo for some p > 1, then {¥,} is uniformly in-
tegrable, because U[|Y,| > K] < %Mﬁ by Chebyshev’s inequality, and therefore
E(Y |1y, k) < Mpu[|Ya| > K]'/7 = O(K~"/7) by Holder’s inequality.

1
Lemma 2.5. Suppose Y,,Y € L'(Q,.7 1), then Y, Ly iff {Y,} are uniformly
n—yoo
integrable and Y, —— Y in probability. In this case E(Y,) —— E(Y).
n—soo n—soo

Proof. (=) Suppose ||Y, —Y||1 — 0, then sup||¥,]|1 < . As in the previous ex-
ample, this implies uniform integrability. Convergence in probability also follows,
because by Markov’s inequality, u[|¥, — Y| > €] < e ||V, = Y|.
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Proof of (<=): Given a random variable Z, let ZX := Z1(z/<x)- Since {Y,} is
uniformly integrable, for every € there is a K > 1 s.t. [|[YX —V,|; < € for all n.
Similarly, [|[YX —Y/||; < & for all K large enough. Thus for all n,

1Y, = Y|l <YK —YX||i +2¢ <eu[|vF —YX| <e]+2ku[|yf — Y| > e]+2¢
<3s+zK(u[|Yn—Y| > €]+ ull%a] > K]+ ullY| >K1)

< 3£+2K[JHY —Y‘ > 8] +2E(|Y |1 \Yn\>K]) +2E(‘Y|1|Y|>K)
llmsup||Y Y”] < 38+28upE(|Y |1 \Yn\>K]) +2]E(|Y|1|Y|>K)

n—oo

where we have used the assumption that ¥,, — Y in probability. The last expression
can be made arbitrarily small, by choosing € sufficiently small, K sufficiently large,
and appealing to the uniform integrability of ¥,. O

Lemma 2.6 (McLeish). Let {Wj(N) 11 < j <ky} be a triangular array of random
variables®, where WI(M, e ,Wk([iv) are defined on the same probability space. Fix
k (N
t € Randlet Ty(t) :=TT}%, (1 +lth< >). Suppose
(1) {Tn(t)} is uniformly integrable and E(Ty) = 1,
oo
(2) ):];NI(W(M)Z = 1 in probability,
(3) max |W( | = 0 in probability.

1<j<kn
Then ]E(eit(wl(NuerWk(}}\y))) — 3
N—soo
Proof. Define a function r(x ) n[—1,1] by the identity ™ = (1 +ix)e™ 3¥4+7(%), then

r(x) = —log(1+ix) +ix+ 1x* = (|x\ ). Fix Cs.t. [r(x)] < C|x|g for |x| < 1.
Substituting Sy := W1< N +W1<(,C]) in e” = (1+ix)e” 3¥4r() gives (in what
follows we drop the superscripts (V)):

1tSN HellW TNe 22 Nlt2W +r(tW; ))
LRS00 )2 )
=E(TyUy), where Uy := exp 3 Y i (W) +r( W)
=1

Ty and Uy have the following properties:
(a) E(Ty) 0 1, by assumption.
—yo0

(b) {Ty} is uniformly integrable by assumption, and |TyUy| = |€"S¥| = 1.

2 Not necessarily a martingale difference array or a Markov array.
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prob 1.2
(c) Uy E) exp(—51°), because

b .
o Zk.’il(W( ))2 P2, 1, by assumption,
J J N—oo
) lmaulgc \W | & 0 by assumption, so with asymptotic probability one,
<Jj<kn
ky N rob
Y W™ < ClefP max [w™) Z )220
i=1 1<j<ky —»oo

We claim that this implies that (V) = E(TyUy) ¢ —3” LetL:=e 2",
Since [E(TyUy) — L| < |E(Ty(Uny — L))| + LIE(Ty) — 1|, (a) tells us that

IE(TyUy) — L| < [E(Ty(Uy — L))| +o(1). (2.2.6)

Next, for every K,&, u[|Ty(Uy — L)| > €] < u[|Ty| > K] + p[|Uy — L| > €/K].
Therefore by (b) and (c),

Tv(Uv —L) = 0 in probability. (2.2.7)
—yo0

Finally, |Tv(Uny — L)| < 1+ L|Ty|, so Tn(Uy — L) is uniformly integrable by (b). By
Lemma 2.5, E(Ty (Uy — L)) — 0, and by (2.2.6), E(e/"V) = E(TyUy) — e~2". O

Proof of the Martingale CLT [92]: Let A = {A}N)} be a martingale difference
array with row lengths ky, which satisfies the assumptions of Theorem 2.5, and let

W) W Ay
Sy = Z A;" and Vy := Var(Sy) = Z’I]E[(Al )°] (see Lemma 2.4).
= j=

It is tempting to apply McLeish’s Lemma to the normalized array A () / vV, but

to do this we need to check the uniform integrability of T]}_; (1 + ltA / v/Vw) and
this is difficult. It is easier to work with the following array of truncatlons

N)._ 1 A(N) (
NAI ’ Wn

Wl( — W N) = INAISN)I

= W [Zn 1( ))2<2VN]

)

It is easy to check that {W,SN)} is a martingale difference array relative to .%,
The row sums Sy := Zﬁ’i 1 Wn(N) are close to Sy /+/Vy in probability:

.f71 kN

uiSy# S <p |31 <j<hy st ];<A£”))2>2VN] SuLZI(A,ENB%zvN] ——0
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kN 2
because % Z (AJ(N)> & 0 by assumption.
j=1

Thus to prove the theorem, it is enough to show that S}, converges in distribution
to the standard Gaussian distribution. To do this, we check that {W,,(N)} satisfies the
conditions of McLeish’s Lemma.

The array {Wn(N)} has zero mean, finite variance, and it clearly satisfies assump-
tions (2) and (3) in McLeish’s Lemma. We show that it also satisfies assumption (1)
in this lemma. Fix ¢t € R, and let

kn N
Tv=Ty(t) = [ [(1+iaw ™).
j=1

= 1. It remains to show

Successive conditioning shows that E(7y) = 1+ itE(AfN))
that {7y (¢) } x> is uniformly integrable for each ¢.
Define for this purpose Jy := max{2 < j <ky : Z ( >) <2Vy}(ordy =1

if the maximum is over the empty set). Writing W; = Wj( ) and A = Aj(- ), we obtain

kN 5 2 1/ J 2A2 1/2
|TN|=I_III—HW /2 = H( f)
i

1 N

Iy—1 2423\ /2 A2\ 12
= l+"> '<l+ N) , where
((+5) I
(N)

7
2JN_A A 4

< i

) i

)

(V)
2 Al :
Thus ||Ty]]; <€ (1+ |t|E(lgi§N\ﬁ|)) By the assumptions of the theorem, the
last quantity is uniformly bounded for each ¢, so {7y (¢) } y>1 is uniformly integrable
for each ¢, and the conditions of McLeish’s Lemma are verified.

QK 1
The lemma says that E(e#Sv) — e~2" forall t € R, and this implies by Lévy’s
continuity theorem that Sy ﬁ) N(0,1). As explained above, this implies that

dist
A oo Vo). =

2.2.5 Proof of Dobrushin’s central limit theorem

Let X = {X,EN)} be a uniformly elliptic Markov array with row lengths ky + 1, and
let f = { f,gN)} be an a.s. uniformly bounded additive functional on X. Define as
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kn
before Sy = Z f,EN) (X,g ) X,E +)1) Vv := Var(Sy). Without loss of generality,
n=1

E[M (xM, xN)) =0 and [£| < K for all n, N.

n+1
Define 7, ") := O'(Xl(N), VE +)1) forn > 1 and J(g ) :=trivial o-algebra. Fix N
and write f; = £V (x\), ,§+}) and 7 = ZN), then (i Ze) = fio B(fi Fo) =
E(fx) =0, and therefore
kn kn k
Sy = ka Y (Bl F) —E(filZ0) = Y. Y (E(fil-Z) — E(fil Fu-1))
k=1 k=1 k=1n=1
kv ky
=Y Y (Bl Z0) —E(fi| Fu-1))
n=1k=n
oW %) _ N (g ()] ) )] &)
:ZA,, , where A, ::Z(E(fk |Z0 ) —E(f, [ Z,21))-
n=1 k=n

The array {A,EN) :1 <n<ky;N > 1} is a martingale difference array relative to
the filtrations ﬁ,SN), with zero mean and finite variances. To prove the theorem, it
suffices to check that {A,SN)} satisfies the conditions of the martingale CLT.

4"
STEP 1: E ] ——0
(l?ji’;iN N7 ) N e
Proof. The proof is based on the exponential mixing of uniformly elliptic Markov

arrays (Proposition 1.1): Let K := ess sup|f|, then there are constants Cy,;; > 1 and
0 < 0 < 1 such that for all k£ > n,

E(f™M.ZM) < Gk 8571

It follows that \AJ(-N)\ <2Cuix K'Yy ol = 2c,,,1,¢ The step follows from the
assumption that Vy — oo,

1 &
STEP 2: W};(A,EN))Z = 1 in probability.

Proof. We follow [125] closely.

Let Yi(N) = (Ai(N))z/VN. We will show that HZZI Yi<N) - le = 0, and use
the general fact that L>-convergence implies convergence in probabil_i;y (by Cheby-
shev’s inequality).

Notice that E(ng 1Yi(N)) = 1, because by lemma 2.4, this expectation equals
ﬁ X Var(Y A,SN)) = %Var(SN) =1.So

n=1
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kn ky
D 3 [ e R AR
i=1 i=1
N
—E [Z (Y,.(N))z} +2E [Z Yi(N)YJ.(N)} ~2+1
i=1

i<j

kn
_ , () Ny | _
fo(]g% ||Y )]EL:ZlY’ }+2E{ZYZ Y; } 1.

i<j

We saw in the proof of step 1 that ||A(N) Hm are uniformly bounded. It follows that
k 2 N)y (N

max 1Ml = 0(1/V). s0 |22, ¥ 1)) = 2B[L; YY) — 14 0(1),

It remains to show that

D [Z y My )} — . 2.2.8)

i<j N—eo

The proof of (2.2.8) is based on the following fact:

kn
- N | g (N)
Osc(N) := lg}gNOSC (E( Z Y;

j=itl

>> ——0. (2.2.9)

Here Osc is the oscillation, which was defined in §1.2.1. Before proving this, we
explain why (2.2.9) implies (2.2.8). Write x = y £+ € whenever y— € <x < y-+E€.
Every integrable function ¢ satisfies ¢ = E(¢) 4= Osc(¢). So

k k
26| L <2 3 Y}”]—H[ZY (3 yMiZ)
i=1

i<j j=itl j=itl

kn kn kn
—2E [ZY}’”E( y Yj(N))] iZE[ZYiW)}OSC(N)

j*i—&-l i=1
kn kn W

=2Y E( Z E(r™)+20sc(N) (Y E¥™M)=1)
i=1 Jj=i+1 i=1

= (iE(ﬂ(N))> _iE(Yi(N>)2iZOSC( )=1+0( max HY H ) +Osc(N).

1<i<

This tends to one by (2.2.9) and because (as we saw before) the maximum is
O(1/Vy). So (2.2.9) implies (2.2.8), and with it the step.

We turn to the proof of (2.2.9). Henceforth we fix N and drop all the ™) super-
scripts. First we note that a routine modification of the proof of Lemma 2.4 shows
that for all j,k > i, E(A;A|.%;) = 0. It follows that
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(8 017) =522 7)o X, o] -

J=itl

kn
= ( Y ZE il F) —E(fl Fur))?| 7 )
n=i+1k=n
1 kv k 2
=7 E(( Y ) E(fkw—E(fkl%_l)) ﬁ)
N k=i+1n=i+1
2
<< Y fi—E fk|3z> %)
k=i+1
1 A&
i X (- B2 (- BUE) | 7]
Nk i=it1
ky
— 5 X B[+ B(RIZIBUIS) - ABULF) - S5 ]
Nk =i+l
ky
= Y E[flF] -EGIFIRGLF) (2.2.10)
N kt=i+1

The oscillation of the summands can be estimated as follows. We saw in §1.2.1, that
(N)
Osc (E(u(Xj+2, i |X )> <é(m ]+2)Osc(u),

where 6(7 1 112) is the contraction coefficient of the two-step Markov operator
)

T o We also saw there that in the uniformly elliptic case, & (nj(ljlz) <1-g,
where & > 0 is the ellipticity constant of X. Arguing as in the proof of Proposition
1.1, it is not difficult to deduce that there exists Cy > 0 and 0 < 8 < 1 such that for

all k > i+ 1, and for every bounded function u : G,iN) X 6,((11)1 — R,

Osc<]E(u(Xk(N) XSMJ( >)> < Cp6*Osc(u).

This, (1.2.3), and the inequalities |fj| < K, Osc(u) < 2||ull. and Osc(uv) <
|lu||«Osc(v) + ||v]|«Osc(u) imply the existence of constants C; >0and 0 < 6 < 1
such that forevery N > land i+2 <k </ <ky

Osc(E(fi| 7)E(fil 7))
< Osc(E(fol ) E(fel Zi) [l + | E(fe] i) lOsc (E(fil 7)) < €16*10"
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0se (B (117 ) = Ose (B[ B 117017

< Co0*'Osc(fE(fil Fi)) < Co0* 'K - Osc(E(fi] Zi)) + Osc(fi) IE(fo| Fi) || ]
< Cl ek—ieé—k'

We have stated these bounds for &, ¢ > i+ 2, but in fact they remain valid for k =i+2
or =i+ 2, if we increase C; to guarantee that C| 0% > 2K2.
Substituting these bounds in (2.2.10), we find that

(=<} 2
@ Z ekfieffk < @ 0 0
Vv k=1 ~ W \1-06 N—poo

This proves (2.2.9), and completes the proof of step 2.

Osc(N) <

Steps 1 and 2 verify the conditions of the martingale CLT. So r): An M)
converges in dlstrlbutlon to the standard Gaussian distribution. By construction,

\/W Sy = \/W): Ap ™) and the theorem is proved. U

2.2.6 Almost sure convergence for sums of functionals with
summable variance

We prove Proposition 2.4. Let f; := 0, fy := fu(Xu, Xut1) — Efu(Xn, Xng1), let
% denote the trivial c-algebra, and let .%, denote the c-algebra generated by
Xi,..., Xy, then f{ is Fr+1-measurable, so

k
i =B Pn) —E(f 1 F0) = Y B[ Fui) —E(fE| ).

n=0

Therefore (numbered equalities are justified below):

M=
=

I
M=
™=

N N
E(fi|Zur1) —E(fE 1) = Y Y B | Furt) —E(f | F0)
n=0k=n

=

~
Il
Il
3
Il
o

=
M=
NN
M=

B[ F 1) =B Fn) = (E(fe [Fni1) = E(f | F0)

k=N+1

N
Y B Fur1) —E(f | F))

1n=0

3
Il
o
T
3
Il
o

n

IS
™=
s

(E(fe[Fnir) —E(f [ F0)) —

k

3
Il
o
T

3

1=
M=
s
Nk LMS

(E(fe [ Fnit) —E(f [ F0)) — E(fi | ns1)-

=
I
[=)
2
i
=

k=N+1
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To justify the numbered inequalities almost surely, we need to establish the con-
vergence of the series which they involve.

By (1.2.4), [E(f %) o + [E(£: 1) |2 < 2Cuir/Var(f) 051, s0 by the
Cauchy-Schwarz inequality and the assumption " Var(f;,) < eo,

N o
Y Y B Furt) =B Pl < oo
n=0k=n

This justifies @ and @
Next by assumption, |f| < K a.s. for some constant K. By (1.2.3), ||E(f|-%0) |-+

L 3
IE(fE-Zn) oo < 4KCnix0" % s0 Loy 1 [E(fi'|:Fn-1)| < oo. This justifies &

N N
In summary, Z fi= Z A, —Zy, where
k=1 n=0

=

Api= ) (B[ Furt) —E(f1F) s Zvi= ), E(f|Fnn).
k=n k=N+1

o

To finish the proof, we show that Z A, and lim Zy exist a.s.
0 N—roo

CLAIM 1. My := YNV A, is a martingale relative to { Fy}, and sup | My||2 < oo.
Consequently, lim My exists almost surely.

!
Proof. B(My 1 —My|Fn) =E(Ay| Fn) = Ty BE(f [ Fn1) | Fn) —EE(f [ FN) | Fn) =
0. To justify = we note that the series Ay = Yo nE(f|Fni1) — E(f|Fn) con-
verges in L2, because ||E(f;|Zni1) — E(fi|- )|l = O(0F™), so its conditional

expectation can be calculated term-by-term.
Next we show that |[My||» is uniformly bounded:

N oo

Wl < |3 Y B 1200 - EGR120)
n=0k=n 2
o KAN oo
<|IT Y B2 —E(712)| = 2E<f:f<mm>]
k=0n=0 2 k=0 2

N oo
<X AL+ Y B,
k=0 k=N+1

N )
<X IFB+2 Y Cov(fffi)+ Y IEK PNl
k=0

0<k<(<N k=N+1

oo

s\/2||f,:‘||%+2cmix Y 0N A Cie Y 1105
k=0

0<k<l<oo k=N+1
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The last expression is uniformly bounded, because ¥ Var(f;) < e and

Y 0 IR < ZO’Z 1ficll2llfisrll2 < =5 Z (A
0<k<l<oo r=

oo

1
75| 05N = sup || |-
¥ 15104 = s 5|

k=N+1

CLAIM 2. Zy N—> 0 almost surely.
—»00

Proof. 1t is enough to prove that ¥ ||Zy||3 < o, because this implies using Cheby-
shev’s inequality that

1
LP[2Zy] > e] < 5 Y l|Zull3 < o= forall € >0,

whence, by the Borel-Cantelli Lemma, limsup |Zy| < € a.s. for all €. Equivlently,
limZy =0 a.s.
Here is the proof that ¥ || Zy||3 < o

=

Tin-Y ¥ E[E(f,;%vﬂ)xa(fwm)

N=1ky>k; >N

T T B[ F)]

ky>k1>N

8

<G Y, Y 0TV IR NE(S [ Fr)2 by (1.2.5)
N=1ky>k;>N

< G Z Y RN £ |- 68N o by (1.2.4)
=1ky >k >N

=G 3, 07 Y 0% Y 1wl fiwll2

>0 k>0  N=l
(after changing indices j =k, —kj, k=k —N+1)

2 j 2k - -
SCuic 1 07 ) 0 [ X s I3 X a3
N=1 N=1

j=0 k>0

Cc2. o
<17 "”’é Y o* Z Il = Cos Z [FadlEs Z 0% < oo,

k>0

because 0 < 0 < 1 and ¥ || {3 < oo. O
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2.2.7 Convergence of moments.

Dobrushin’s CLT (Theorem 2.3) shows that if Vy — o then for any bounded con-
tinuous function ¢ : R — R we have

. SN—E(SN) . 1 e )2
&TL]E[‘I)( Nor )]—m/w(l)(z)e dz. (2.2.11)

In applications, one often need to have convergence of expectations for unbounded
functions, such as polynomials. This problem is addressed in the present section.

Lemma 2.7. Let f be a centered bounded additive functional of a uniformly elliptic
Markov chain such that Viy — oo. Then for each r € N there is a constant C, such
that for all N,

E[sy]| < Vi

Corollary 2.3. Under the assumptions of Lemma 2.7

.
lim ElSy] _

0 ris odd,
N—yoo VI\'}/Z

(r—DN= H,(::/S)il(r—Zk— 1) riseven.

The corollary follows from Dobrushin’s CLT (Theorem 2.3), using the fact that by
Lemma 2.7 and the de la Vallée-Poussin Lemma, (Sy/+/Vy)" is uniformly integrable
for all r > 1 even, and therefore imE[(Sy/+/Vy)"] = E[N"], where N is a Gaussian
random variable with mean zero and variance one.

The proof of Lemma 2.7 proceeds by expanding S}, into a sum of r-tuples
Suy o fu, (m < --- <mn,), and by estimating the expectation of each tuple. (Here
and throughout, f, = f,(X,,X,+1).) In view of the gradient lemma it is sufficient to
prove Lemma 2.7 under the assumption that there is some constant C > 0 such that
U = || full 2 satisfy Zﬁﬁ < CVy.

Consider an r tuplré: Jny - fu, Where ny <np < --- < n,. Segments of the form
[nj,nj11] will be called edges. The vertices belonging to an edge are called bound,
the other vertices are called free.

A marking is a non-empty collection of edges satisfying the following two con-
ditions. Firstly, each vertex n; belongs to at most one edge. Secondly, for every free
vertex ny, either

(i) there exists a minimal f(I) > such that ny( is bound, and for all 1 <i < f(1),

Mit1 — i STp()1 = Mp(g); OF
(i) there exists a maximal p(/) <[ such that n,,;) is bound, and for all p(1) <i <1,
1 —Ri—1 < Ny — Rp(1)—1-

If (i) holds we will say that n; is associated to the edge [n4(;),7f(;)+1] otherwise it is
associated to [1,,;y_1,1(1)]-

Lemma 2.8. There are constants L(r) > 0 and 0 < 0 < 1 such that
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E lgﬁ“] <L Z H (e(nj+1*nj) ﬁn,ﬁnM) )

markings [nj,n; ] is an edge

Proof. If r = 1 then the result holds since E[f,] = 0 (in this case there are no mark-
ings, and we let the empty sum be equal to zero).
If » = 2 then the lemma says that

|E [fnlfnzH <Kg™™M ||f"1 HL2 ||fn2 HL2

which is true due to Proposition 1.1(2).
For r > 3 we use induction. Take j such that n;, | —n; is the largest. Then

I 7

i=j+1

I 7

i=j+1

E

r J J
E [an,‘| =E an,- an,-
i=1 i=1 i=1

+0 (Q(”j+l"j)

)

Let K := ess sup|f|, then the second term is smaller than 0("-”'7”/‘)17,1].%,1. +1Kr’z.
Thus this term is controlled by the marking with only one marked edge [n;,7;41].
Applying the inductive assumption to each factor in the first term we obtain the
result. (]

12

Lemma 2.9. There exists C, > 0 s.t. for every set € of r tuples 1 <n; <---<n, <N,

Lemma 2.9 implies Lemma 2.7 since

r

r!
ESM=Y L g, » E

s=1 kj+-+ks=r $*1<n)<--<ng<N

Therefore it suffices to prove Lemma 2.9.
Proof. By Lemma 2.8

Rt Y y

N
(n1,...,n)EE  markings (eq,...,e5) Jj=I

(ﬁeT 7,0 ))
J J

of (ny,...,n)
where the marked edges are e; = [e;,e;“], j=1,...,s. Collecting all terms with a
fixed set of marked edges (ey,...,e;) we obtain
N~ ~ (et —e7), & —\r—2
I?gSC(r)Z Z H(ue;uefe 175 ef —e;) ) (2.2.12)

5 (en,me5) J=1
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where C(r) l—I(el+ —e; )" accounts for all tuples which admit a marking (ey, ... e;):
L

Note that for an edge e = [e™, e™] there are at most 0 < j < r— 2 vertices which may
be associated to e and the positions of those vertices are located inside

[ —(r=2)(e" —e),e ) U(et e +(r—2)(e" —e7)].

It follows that there are at most 2(r — 2)(e™ — e ) choices to place each vertex
associated to a given edge. This gives

r—2 )
I1 (Z [2(r=2)(e” —e)}’) <[]t —e )2

e j=0 e

possibilities for tuples with marking (e, ..., e;).
The sum over (ey,...es) in (2.2.12) can be estimated by

N—1N—-n §
(Z ¥ em) |

n=1 m=1
Next for each m, Z Unliy+m = O(Vy) due to the Cauchy-Schwartz inequality and the
n

assumption that Y, #2 < CVy. Summing over m we find that Iy, < const Y Vy
2s<r

where the condition 2s < r appears because each edge involves two distinct vertices,

and no vertex belongs to more than one edge. The result follows. a

2.3 Notes and references

The connection between the non-growth of variance and representation in terms of
gradients is well-known for stationary stochastic processes. The first result in this
direction we are aware of is Leonov’s Theorem [83]. He showed that the asymptotic
variance of a homogeneous additive functional of a stationary homogeneous Markov
chain is zero iff the additive functional is the sum of a gradient and a constant.
Rousseau-Egele [114] and Guivarc’h & Hardy [56] extended this to the context
of dynamical systems preserving an invariant Gibbs measure. Kifer [69], Conze &
Raugi [26], Dragicevi¢,Froyland & Gonzélez-Tokman [45] have proved versions of
Leonov’s theorem for random and/or sequential dynamical systems.

The connection between center-tightness and gradients is a central feature of the
theory of cocycles over ergodic transformations. Suppose 7 : X — X is an ergodic
probability preserving transformation on a non-atomic probability space. For every
measurable f: X — R, {foT"} is a stationary stochastic process, and

Sy=f+foT+ -+ foT!
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are called the “ergodic sums of the cocycle f.” A “coboundary” is a function of the
form f = g — goT with g measurable. Schmidt characterized cocycles with center-
tight Sy as those arising from coboundaries [123, page 181]. These results extend
to cocycles taking values in locally compact groups, see Moore & Schmidt [94] and
Aaronson & Weiss [7]. For more on this, see Aaronson [2, chapter 8], and Bradley
[16, chapters 8,19].

Notice that inhomogeneous theory is different from the stationary theory in that
there is another cause for center-tightness: Having summable variance. This cannot
happen in the stationary homogeneous world (unless all f; are constant).

Theorem 2.3 is a special case of a more general result due to Dobrushin, which
can be found in [38]. The conditions for Dobrushin’s full result are more general
than uniform boundeness or uniform ellipticity. Our proof follows the paper of
Sethuraman & Varadhan [125], except for some changes we needed to make to
deal with additive functionals of the form fi(Xg,Xk+1), and not just f;(Xy) as in
[125]. McLeish’s Lemma, the martingale CLT, and their proofs are due to McLeish
[92]. We refer the reader to Hall & Heyde [62] for the history of this result, further
extensions, and references.

Theorem 2.4 is extends the Kolmogorov-Khintchin “Two-Series Theorem” [73].
There are other extensions to sums of dependent random variables. We mention
for example a version for martingales (Hall & Heyde [62, chapter 2]), for sums
of negatively dependent random variables (Matula, [90]) and for expanding maps
([26)).

The proofs of theorems 2.3 and 2.4 uses Gordin’s “martingale-coboundary de-
composition” [54], see also [62],[75].



Chapter 3
The essential range and irreducibility

In this chapter we discuss the following question: How small can we make the range
of an additive functional, by subtracting from it a center-tight functional?

3.1 Definitions and motivation

Let f = {f,} be an additive functional of a Markov chain X := {X,}. The algebraic
range of (X,f) is the intersection G, (X, ) of all closed groups G s.t. ,

Jep € R s.t. Pfy(Xn, Xpt1) —cn €G] =1 foralln > 1.
This is a closed subgroup of R (the intersection of closed groups is a closed group).

Example 3.1. (The simple random walk). Suppose {X,} are independent random
variables such that P(X,, = £+1) = % and let f,,(x,y) = x. Then S, = Xj + -+ X, is
the simple random walk on Z. The algebraic range in this case is 27Z.

Proof: G, C 27, because we can take ¢, := —1. Assume by contradiction that
Gug C 27Z, then Gy = tZ for t > 4, and the supports of S, are cosets of ¢Z. But
this is false, because Jay,a s.t. |a; —az| <t and P(S,, = a;) # 0: For n even take
a; = (—1)/, and for n odd take @; = 1+ (—1)'. O

The lattice case is the case when G, (X, f) = tZ for some ¢ > 0. The non-lattice
case is the case when G;,(X,f) = R. The distinction is important for the following
reason. If G, (X,f) =tZ and yy := ¢1 +--- +c, then

P(Sy € w+1tZ) =1 forall N.

2
. .. /2 _
In this case it is not true that P(Sy — zy € (a,b)) ~ 62771“2}" whenever % —

z, because P(Sy —zy € (a,b)) = 0 whenever |a — b| < ¢ and zy + (a,b) falls inside
the gaps of Y +¢Z. The is the lattice obstruction to the local limit theorem.

59
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There is a related, but more subtle, obstruction. An additive functional f is called
reducible on X, if there is another additive functional g on X such that f — g is
center-tight, and

Galg(x,g) - Galg(x7f)'

In this case we say that g is a reduction of f, and call the algebraic range of g a
reduced range of f.

Example 3.2. (Simple random walk with continuous first step): Suppose {X,, },>1
are independent real valued random variables such that X; has continuous non-
uniform distribution § with compact support, and X»,X3, ... are equal to +1 with
equal probabilities. Let f,(x,y) = x, then S, = X1 +Xo + -+ + X,,.

Because of continuously distributed first step, G(f) = R. But if we subtract
from f the center-tight functional ¢ with components

¢n(x,y) =xwhenn=1and ¢,(x,y) =0 whenn > 1,

then the result g := f — c has algebraic range 2Z. So f is reducible.

The reduction g satisfies the lattice local limit theorem (see the preface), because
it generates the (delayed) simple random walk. But by the assumptions on §, the
original functional f = g+ c does not satisfy the LLT, lattice or non-lattice. This can
be seen by direct calculation from the observation that the distribution of S, is the
convolution of § and the centered binomial distribution. See chapter 5 for details.

Here we see an instance of the reducibility obstruction to the local limit theo-
rem: A situation when the LLT fails because the additive functional is a sum of a
lattice term which satisfies the lattice LLT and a non-lattice center-tight term which
spoils it. The reducibility obstruction to the LLT raises the following questions:

1. Given an additive functional f, how small can we make its algebraic range by
subtracting from it a center-tight term?

2. Is there an “optimal” center-tight functional c such that the algebraic range of
f — c cannot be reduced further?

Motivated by these questions, we introduce the following definitions. The essen-
tial range of f is

Gess(X,f) :=(){Gug(X.g) : f — g is center tight} .

This is a closed sub-group of G, (X,f).

An additive functional without reductions is called irreducible. Equivalently, f
is irreducible iff Gegs (X, f) = Gug (X, ).

In this terminology questions 1 and 2 call for the calculation of G,s(X,f) and
ask for an irreducible reduction of f.



3.2 Main results 61

3.2 Main results

3.2.1 Results for Markov chains

The questions raised at the end of the last section can be answered using the structure
constants d, (&) introduced in (1.3.2). Define the co-range of f to be the set

HX.H) = {E€R: Y dy(E) < ).
n=3

Theorem 3.1. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X. If f is center-tight then H(X,f) =R, and if not then either
H(X,f) ={0}, or H(X,f) =tZ for some t > n/(6ess sup|f]).

Theorem 3.2. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X, then

(a) If H(X,f) =0, then Geg(X,f) =R,
(b) IfH(X,f) =tZ witht # 0, then Geg(X,f) = 2£Z.
(c) IFH(X,f) =R, then Gz (X,f) = {0}.

Theorem 3.3. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X. Then there exists an irreducible uniformly bounded additive
functional g such that f — g is center-tight, and

Galg(xvg) = Gess(xvg) = Gess(xaf)~

Corollary 3.1. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X. If Gss(X,f) = tZ with t # 0, then |t| < 12ess sup [f].

The corollary follows directly from Theorems 3.1 and 3.2(b).

3.2.2 Results for Markov arrays

The previous discussion applies to Markov arrays. Let f be an additive functional on
a Markov array X with row lengths ky + 1:

(1) The algebraic range G,;,(X,f) is the intersection of all closed subgroups G of
R such that forall 1 <k <ky,N>1

IV eR st PN x™M xM) V) e 6] = 1.

(2) The essential range G, (X,f) is the intersection of the algebraic ranges of all
additive functionals of the form f — h where h is center-tight.
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k
(3) The co-range is H(X,f) :={& e R:sup ):N d,EN)(é)z < oo}
N k=3
(4) An additive functional f is called irreducible if G4 (X,f) = G, (X,f).
This is consistent with the definitions for Markov chains, see Corollary 3.2 below.

Theorem 3.4. The results of Theorems 3.1, 3.2 and 3.3 hold for all a.s. uniformly
bounded additive functionals on uniformly elliptic Markov arrays.

Corollary 3.2. Suppose f = {f,} is an a.s. uniformly bounded additive functional

on a uniformly elliptic Markov chain X = {X,,}. Let f = {fn(N)} be an additive func-

tional on a Markov array X = {X,EN)} s.t. f,EN) = f, and X,SN) = X,,. Then
Gatg(X.F) = Gug(X.F) | Gass(X,F) = Goss (X.f) , H(X,F) = H(X,).

Proof. The equality of the algebraic ranges and co-ranges is trivial, but the equality
of the essential ranges requires justification, because some center-tight functionals
of {X,SM} are not of the form hS,N) = h,.

However, since the co-ranges agree, the essential ranges must also agree, by the
version of Theorem 3.2 for arrays. U

3.2.3 Hereditary arrays

Some results for Markov chains do not extend to general Markov arrays. Of partic-
ular importance is the following fact, which we need for the proof of the LLT (see
the proof of Theorem 4.1, claim 2). Recall the definition of Dy (&) from (1.3.2).

Theorem 3.5. Suppose f is an a.s. uniformly bounded additive functional on a uni-
formly elliptic Markov chain X, then

Dy(&) o uniformly on compact subsets of R\ H(X,f). (3.2.1)
—»00

Proof. Suppose & € R\ H(X,f), then supDy(&) = o, whence
N

N N
Dy(&) = Y d @) S Y™ (£)° =supDu(&) ===
Since Dy (&) is non-decreasing and & — Dy/(&) are continuous, the convergence is
uniform on compact subsets of R\ H(X,f). O
The following two examples show that Theorem 3.5 fails for some arrays:

Example 3.3. Let X,, be a sequence of independent uniform random variables with
zero mean and variance equal to one. Form an array by setting
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k=1,...,N)

™) {Xk 1<k<N+1,Nodd
k

X =
0 1<k<N+1,Neven

and let fk(N> (x,y) := x. Then for every 0 # & € R\ H(X,f), Dn(&) /> oo.
Proof. We claim that sup D41 (&) = oo for every & £ 0.
N

anl Xn

To see this, suppose P = (X,,_QY y ,Yy+1 ) 1s a random level 2N + 1
n—1 In

hexagon at position 7, then I'(P) = X,,_; + X, — Y,_1 — ¥, where X;,Y; are inde-
pendent random variables each having uniform distribution with mean zero and
unit variance. So I'(P) is a non lattice random variable and for every & # 0,
APV ()2 = E([e6T(P) — 12) = ¢(£), where ¢(&) is a positive constant indepen-
dent of n. So

Do 1(8) = (2N = 1)e(€) — e

N—yoo

Thus H(X,f) = {0}. But Dy(&) # oo for & # 0, because Dy (&) = 0. O

Example 3.4. Suppose X, are a sequence of independent identically distributed ran-
dom variables, equal to &1 with probability % Form an array with row lengths N + 1

by setting X,EN) =X, and let

N 1 1
f,ﬁ )(Xn7Xn+l) = 3 (1+\3/1V)X" (1<n<N+1).

Then Dy (&) — oo forall & & H(X, ), but the convergence is not uniform on compact
subsets of R\ H(f).

Proof. Hex(N,n) consists of 2° hexagons, each obtained with equal probability. At

1+l + 1), has balance 1 +N~1/3. So

least one of these hexagons, (+1 11

4 _ -1/3
dr(lN)(g)2276|ez§(l+N 1/3)_1‘2:%sin25(1+év )

_ —1/3 “Iaan2é
N2 54N )N{m Nsin?§ & ¢277

Dr(e) = =5 2 161 /N £ €2nZ.

We see that Dy (&) — o for all & £ 0, whence H(X,f) = {0}, and Dy (&) — oo for
all & & H(f). But the convergence is not uniform on any compact neighborhood of
27k, k # 0, because Dy (Ey) = 0 for Ey = 27k(1+N""3) "1 = 27k. O

Because of the importance of property (3.2.1) to the proof of the LLT, we would
like to characterize the additive functionals on Markov arrays which satisfy it. Ex-
amples 1 and 2 point the way.

Let X be a Markov array with row lengths ky. A sub-array of X is an array X’ of

the form {XIEN”) :1 <k <ky,+1,£> 1} where Ny 1 co. The restriction of f to X' is
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flw = {1 <k <ky, 0> 1},

(X,f) is called hereditary, if Gz (X', f|x/) = Gess(X,f) for all sub-arrays X', and
stably hereditary if (X, g) is hereditary whenever g = {(1+&y) fk(N)} with ey — 0.

Theorem 3.6. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov array X, then the following conditions are equivalent:

(1) f is hereditary;

k k
(2) for all &, liminf Y, d™(£)? < w0 = limsup ¥ d™ (£)2 < oo;
N—beo =3 N—oo k=3
(3) for all § & H(X,f), Dn(§) ——— oo

(4) HX', flx) = H(f) for every sub-array X" of X.

In addition, f is stably hereditary iff the convergence in (3) is uniform on compact
subsets of R\ H(X,f).

Example 3.5. (Markov chains): Suppose f is an a.s. uniformly bounded additive

functional on a uniformly elliptic Markov array X. If f,SN) = f, and X,EN) =X, then

f is stably hereditary.
Proof. This follows from Theorems 3.5 and 3.6. U

Example 3.6. (“Change of measure”): Let Y be an array obtained from a Markov
chain X using the change of measure construction (example 1.6). Let (p,sm denote
the weights of the change of measure. If 3C > 0 s.t.

cl< ¢,<,N) < Cforall n,N,
then for every a.s. uniformly bounded additive functional f on X, the additive func-
tional f,gN) := f, is stably hereditary on Y .

Proof. If d,(&,X) are the structure constants of f on X, and d,(,N)(é,Y) are the

structure constants of f on Y, then C~%4,(&,X) < d,gN)(é,Y) < C%,(&,X). So
H(Y,f) =H(Xf).

By Theorem 3.5, Dy(&,X) — oo uniformly on compact subsets of R\ H(X,f).
Since Dy(&,Y) > C9Dy(&,X), Dy(&,X) — oo uniformly on compact subsets of
R\H(Y,f). O

Sometimes (though not always, see example 3.4), every hereditary functional is
stably hereditary:

Theorem 3.7. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov array X.

(a) Suppose Gs(X,f) =tZ or {0}. If f is hereditary then f is stably hereditary.
(b) Suppose f is integer valued and not center-tight, and |f| < K, then G (X,f) =
%Z for some 0 < k < 12K, and if f is hereditary then f is stably hereditary.
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3.3 Proofs

3.3.1 Reduction lemmas

The engine of the proofs is the following result:

Lemma 3.1 (Reduction Lemma). Let f be an a.s. uniformly bounded additive
functional on a uniformly elliptic Markov array X. If € # 0 and sup Z d 2<
oo, then there exists a uniformly bounded additive functional g on X s t

2
f — g is center-tight, and G4(g) C —Z.

§

If X,EN) =X, and f,$N> = fu (as in the case additive functionals of Markov chains),
then we can take g such that gﬁlN) =gn

Proof for Doeblin chains: As in the case of the gradient lemma, the reduction
lemma has a particularly simple proof in the important special case of Doeblin
Markov chains (Example 1.7).

Recall that Doeblin chains have finite state spaces &,. Let 7y}, := T, 41 (x, {y}),
and relabel the states &, = {1,...,d,} in such a way that 7}, = m, ,, (1,{1}) #0
for all n. The Doeblin condition guarantees that for every x € G,,, there exists a state
&,(x) € &,,11 such that 71:15 ” | >0.

Define as in the proof of the gradlent lemma,

ap=0, a1 =0, anda,(x):= fr_2(1,E—1(x)) + fu—1(En—1(x),x) forn >3
co:=0, ¢;:=0, andc,:= fr_2(1,1) forn >3

fi=f-Va—c.

Thenﬁ(x,y) = fu(%,y) = (@nt1(y) —an(x)) —cn = —I, (1 5n_11 ) én)(cy) y) , where

I, denotes the balance of a hexagon, see (1.3.1).

For Doeblin chains, there are finitely many admissible hexagons at position n,
and the hexagon measure assigns each of them a mass which is uniformly bounded
from below. Let C~! be a uniform lower bound for this mass, then

e8I 12 < CR(|e5 — 117) = Cd2(&).

Decompose f,(x,y) = gx(x, ) +ha(x,y) where g,(x,y) € ZZ and Iy (x,y) € [ £, %)
Clearly |g| < [f| +[Va| +[c| < 6[f], and Gug(X,h) C ZFZ. We claim that f —g is
center tight.
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The proof is based on the following elementary inequality:"

4
ni < e — 12 < ¥*forall |x| < 7. (3.3.1)

By 3.3.1), (, yPE<Z |eléhnxy 1|2=%2|eiéﬁxy _1|2<c”2d2(5),whence
ZVar 2 (X, X1 1) +cn) = ZVar (X, Xn11)) Zd2 <oo.Soh+c

has summable variance. Therefore f—g=Va+(h+ c) is center tight. O

Preparations for the proof in the general case.

Lemma 3.2. Suppose E1,...,Ey are measurable events, and let W denote the ran-
dom variable which counts how many of E; occur simultaneously, then

1

P(W>t) < ? IP’(Ek).

™=

Proof. Apply Markov’s inequality to W =} 1, . ]

Suppose W is a real-valued random variable. A circular mean of W is a real
number 6 € [—x, ©) which minimizes the quantity E(|e/" =) —1|2). Such numbers
always exist, because 8 — E(|e/™~¢) — 1|2) is continuous and 27-periodic. But
circular means are not unique. Suppose, for example, that W is uniformly distributed

n [—7m, 7], then every 6 € [—m, ) is a minimizer.
The circular variance of a real random variable W is defined to be

CVar (W) = ng[nln )E(|e (W-6) _ 1|2) = 96?121)41[*:(811’12 WT_B)

For every x € R, let
(x) := unique element of [— 7, ) s.t. x — (x) € 27Z. (3.3.2)

It is not difficult to see, using (3.3.1), that for every circular mean 6
4
;Var(W —0) < CVar (W) < Var(W). (3.3.3)

Lemma 3.3. For every real-valued random variable W, we can write W = W + W,
where Wy € Z almost surely, and Var(Ws) < ”TZCVar (W).

Proof. Wy :=(W—0)—(W—0),W,:=(W—6)+0, 6 :=acircular mean. [J

! Proof of (3.3.1): Since y = sinx is concave on [0, Z], its graph lies above the chord y = 2x/x and
below the tangent y = x. So 2x/7 < sinx < x on [0, Z]. Now use the identity

e — 17 = 2(1 —cosx) = 4sin” 7.
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Proof of the Reduction Lemma in the general case: Suppose f is an a.s. uni-
formly bounded additive functional on a uniformly elliptic Markov array X, with
row lengths ky, and fix & # 0 such that

kn
sup Z a’,(ZN)(é)2 < oo,
N pn=3

Let L denote the ladder process associated to X (see section 1.3.2). We remind
the reader that this is a Markov array with entries I:,(,M = (Zgg,Yn@i ,X,5N>) 3<
n < ky), and for every N: (a) {X,EN) +, {Z,(lN)} are two independent copies of X(V); (b)
v are conditionally independent given {Xi(m} and {Zi(N) }; and (c) the conditional

distribution of ¥, given {Zi(N)} and {Xl-(N)} is given by

bridge probability for X that Xiglil)l €E
) = given that Xﬁ% = UX; and X,EN) = é,EN).

n

Péw]eE{éﬁ}:{qx}
K=" e s123).

Let F, H be the additive functionals on L with entries

() p() (N)>> B<n<ky, N>1)

(see (1.3.1) and (3.3.2)). Clearly ess sup |F| < 2ess sup|f| and [H| < 7.

2
step 1: [E(HM)| < 2aM ()2, B[(HM)] < ZalN (£)?, and

PB4+ B <o
N

PROOF OF STEP 1. We fix N and drop the superscripts (N).

. anl Yn Ynfl Xn

The map 1 : (Z,,_z Y, | X,,’XnH — | Z,—2 Zo 1 Y, ,Xn+1 | preserves the

natural measure on the space of hexagons, and is an involution: > = id. Clearly
I'oi=-T.

Using the partial symmetry (—x) = —(x) for all x ¢ —w +27Z, we find that H,,01 =
—H, on [H, # —7]. So E(H, 1|y, ._n]) = 0, and therefore

[E(Hy)| = 7P(H, = ) < ZE(e™ 1) = TE(e%T — 1) = Zdu(&)?,

which is the first statement we needed to show.
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Next we observe from (3.3.1) that E(H?) < ”TZE(|ei5F —1P) = yrTzd,(,N)(",‘)z,
which is the second statement we had to prove.

The two statements already proven and the boundedness of d,, show that there
is a constant C s. t. Var(H,) < Cd>(£)*. Now the third statement follows from
Lemma 2.1. The proof of step 1 is complete.

From now on, fix a constant D such that

kn kn 2
supde,N)(f)z—i—sup]E (Z H,EN)> <D.
N -

N p=3

STEP 2: For every N > 1 there exists E(N) = ((;’ quJrl) € HkNJrl ; ) s.t.
N)
¥ m (0. iz
ky 2
N
E <ZH’(Z n+)1)>

n=3
ky

Ex |} CVar (5F,§N) LMz = §<N),X,SN)> <n*D
n=3

|f'$N)( rEN n+1)|<esssup|f‘ forall 3 <n<ky.

Here and throughout L, = (Zﬁé,Yrgi ,X,SN) ), and Ex indicates averaging on {Xi(N) 1.

PROOF OF STEP 2. We fix N and drop the ™) superscripts.
Let Q) := {g YR B(H2{Z,) =) < nZD} By step 1,

kn kn a2 kv W) 2
E, [E (gfﬁ {7} = c)] = YR <y aer< o

where Bz = intergration over { with respect to the distribution of {Z,-(N)} (recall that
{Zi(N 1= Lt {X }). By Markov’s inequality, [{Z () } € Q] >

Let 2 :={{:E[(L, H, (Ln_nJrl ) {z;} =] < =*D}. As before, by Markov’s
inequality, ]P[{Zi(N)} EQ>1- ﬁ.

Let Q3 := {C :Ex LkéCVar (EF (Lyy1){Zi} =C,Xn+1)] < EZD},

9*(Q”Xn+l7z ) :_gfn ( n— 27 n— 1)+€F< )+§fn(xn»Xn+l>

Then explifhy (Ly, Ly 1)) = XplEF (L. 1) — 0 Ly 1, Xt 1,702
Given X,,41 and {Z;}, L, is conditionally independent from L,, {X;}i4y+1. So
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e CVar (87 (L) |12 X001 ) ) =B CVar (7 (L)L (2. ) ) )
< ]E<]E(eiéF(Ln+1)ie*@l,xnﬂ,znn CAPIL,. (X} {Zi}))

= (/¢ L) =0 _112) = (| — 1%) = E(|e" — 12) = du(€)?,
!
where < is because 6* is conditionally constant. So
kn
Ez[Ex () CVar (§F (Ly11)|[{Zi}, Xu11))] < D.
n=3

By Markov’s inequality, ]P’({Zl.(N)} €EQ)>1-— #
Finally, let Q4 := {{ : | fu(&r; Guv1)| < ess sup|fl}, then P({Zi(N)} €y) =1

2 1
In summary P U Q| < o) + — < 1. Necessarily QN QN Q3N Qy # 2.
1<i<4

4

Any {=¢ (M) in the intersection satisfies the requirements of step 2.

STEP 3: There exist measurable functions oM .M [—7,7) s.t.

(N

k;
ZN: E (eiéa(”)(g Do) _ g
n=3

{zMh = §<N)) <27°D.

Proof. We fix N and drop the ) superscripts.

Clearly, 6 — E(|e!"=9) — 1]?) is continuous for every random variable W. So
CVar (W) = inf,cgE(|le/™~9 — 1[?), an infimum over a countable set, whence
CVar (EF[{Zi} = §,X,) = infyeq E(eF )0 — 12[{Z)} = {,X, = &,).

The expectation can be expressed explicitly using integrals with respect to the
bridge distributions, and this expression shows that

& '—)CV&I‘(&FH‘{Z,'} :gaxn = é)

is measurable on GS,M.

Fix Nand { = { ™) and consider the following property of g € R, & € e
(| L)~ — 12{Z,} = {, X, = &)
D (Fa(&,9))
< CVar (8F (L) {Za} = 8. X =8) + 5

By the previous paragraph, {& : P,(€,q) holds} is measurable, and for every & there
exists ¢ € QN (—n,x) such that P,(&,¢) holds. Let

0,(6) = 0N (&) :=inf{q: g€ QN (~7,7) s.t. P,(E,q) holds}.
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Again, this is a measurable function, and since for fixed &, P,(&,q) is a closed
property of g, o) (&) itself satisfies property P, (&, o (&€))-So

ky . A (N)
Ex |} B (| (L) =100 (X0) _ 12 |{Z,} ={.X,
n=3
kn 2
<Ex|) CVar (an(Ln) {Z,} :g,x,,) +D
n=3
< 2m%D, by choice of .
STEP 4 (THE REDUCTION). Let § = Q(N), 6, = oM, fu= fn(m, F, = Y, Xy =

X,EN), Z, = Z,(,N). Define

V= £(Gay Go)

A= [en(xn FE(ER(L) — 6,&)) {2} = X =)| (xe &)

?;:é<z§(f—Va—c)>

g:=f—Va—c—f.

Then a,c,f,g are uniformly bounded, and G 4(g) C %”Z.

c| < ess sup|f|, and by the definition of 8™) and (.),
&|. Tt follows that |g| < 2ess sup |f| +37/|&|. Next,

Proof. By choice of g (N),
la| <27/|€| and [f| < 7/

= (86-va-0- g -va-)).

The term in the brackets belongs to 277 by the definition of (-), so Gue(g) C %”Z,
and the proof of step 4 is complete.

Notice thatf —g =Va+c +f. Gradients and constant functionals are center tight.
So to complete the proof of the reduction lemma, it suffices to show:

STEP 5: f is center-tight.

Proof. We fix N and drop the (V) superscripts.
We begin with a few identities. Suppose {Zi(N)} = {Z_fi(N)}, and consider the

L anl Yn o Cnfl Yn
hexagon P, := (an Y, | X, XH]) = (Z_fnz Y, . X, X,11 |, then

_F(Pn) = _fn72(zn72vznfl) _Fn+l (Lnfl) +F;1(Ln) +fn(Xn7Xn+l)v

whence
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8700 X011) = (ST () 40 (X) = (L) + (L) = s (Ksr) )
= (il L)+ E(00(5) ~ FL) + E (L) = 1K) ).
Define a new functional W of the ladder process {L, } with entries

W(L,) = (EF (L) — (X)) —E ((EF (L,) — 6, (X)) {2} = £V X, ).

Notice that W (L,,) = E(F(L,) —an(X,)) mod 2xZ. Therefore
00 Xi1) = (WlLit) - WL~ Hr(L) ). B34

CLAIM. Given 8 > 0, let Ty = Y22 Then there exists a measurable set Qx of {Xi}

such that P(Qx) > 1 — 8 and such that for all § € Qx,

><Ta,
><T§7

2} = (%) = 5)<T5.

(1) ZﬁN3P(|W( >z

) zﬁm(m( NS

(3) E<|Z m~n+1)’

Proof of the claim. L, is conditionally independent of {X;};., given {Z;},X,. So
¥, p(wiwl> 2z - g.x ¢

—ZBIP’(IW L)I>§|@) =% =2

Since E(W(L,)|{Z} = {,X,) = 0, we can use the Chebyshev inequality to bound
the sum of probabilities from above by

16 &
< L Var((F (L) — 0. (6) {2} = £, %)
P
ky '
<4 Y E(|eSF LX) _12)(Z;} = §,X,), see (3.3.1).
n=3
Integrating over {X;} we have by the choice of o) (X,,) (step 3) that

]Exlip(w ) > = ‘{z} X} = §>]§87r2D.
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By Markov’s inequality, the set

kn
ol(r) = {5: ). 2(wiw)i> Sz - xi—g) < T}

has probability P[Q}(T)] > 1 —8%*D/T.
Similarly, by Markov’s inequality

p(im > 20 = ¢ o0y =¢) < 8 (1] @ = L. x) =)

By the choice of {, Ex [zﬁN 3IP’(|H,,| >

{z}=¢, {X,})] < 16D. So the set

{5 y.? (L) > § (21 = 00 =8 < }

has probability P[QZ(T)] > 1—16D/T > 1 —2x’D/T.
Finally, since conditional expectations contract L?>-norms,

[<|ZH Lo L) |[(2} = £ 13 = é”

[,

o 03(1) = {&: E(|z (L L] [(2) = €06} =) <7 | s proba-
bility P[Q3(T)] > 1 — n?D/T>.
Clearly, for T > 1, PlQUT)NQF(T)N Q2 (T)] > 1— “—” . The claim follows.

{z:} = C] < ’D.

O

We can now complete the proof of the step 5 (and the reduction lemma) and show
that f is center-tight.

Fix 6 > 0 and Qy, Ts as in the claim. Fix N and define the random set

ALY Y) = (3 <n < W (L) > 5 or [Ha(Ly Lyir)| >

}-

W[

For all é € Qy, we have the following bound (Lemma 3.2):

NM—‘

<|AN| > 4Ts

(Z} =L X} = 5)

Similarly, for all § € Qy,
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OZH|>4T5

Since the probabilities of these events add up to less than one, the intersection of

NH

(Z) =gy =) <5

their complements is non-empty. So for every & € Qx we can find {Yl.(N) (& )}]sz_ !

=

such that Ly := Ly (&) = (§ Ul/)z, erﬁ (§),&x) has the following two properties:

n

kn

Y Ha(Ly Lyiy)

n=3

< 4Ts, and

Mi=#{3<n<ky: WL > —or Ha (L, n+l)|z§} < 47,

Let n; < --- < my be an enumeration of the indices n where [W(L;)| > § or
|H, (LZ,LZ+1)| >%.By (334, if n; <n<niy1—1,

Efu(EnsEn1) = W(Lyy) = W(L;) — Ha(Ly Ly ),

because (x+y+2z) = x+y+z whenever |x|,[y|, |z] < %.

So Ytk lf,,(g,,,ﬁnH) < ZZ’*:Z +11 H,(L;,L; . )+ 6m, where we have used the

bounds |W| < 27 and |H,,| < &. Summing over i we find that for every § € Qy,

kn

<|Y HaL Ly )
n=3

+10Mr < 4T5 +40T577.7 < 427'ET5.

kv
(énv §n+l)
=3

Setting Cg := 427Z?T5, we find that P ‘ZkN A(N ] > Cs) < & for all N, whence the
(center-)tightness of 1. [l

In chapter 5 we will need the following variant of the reduction lemma for integer
valued f.

Lemma 3.4 (Integer Reduction Lemma). Let X be a uniformly elliptic Markov
chain, and f an integer valued additive functional on X s.t. |f| < K a.s. For every N,

Fulry) =g ey) +a (@) a0 + Y (n=1,...,N) where

(1) ™ are integers such that |cn | <K,

(2) a,,N are measurable integer valued functions on S, s.t. \aS,N)| < 2K,

N
(3) g,, ) are measurable, integer valued, and Z Elg (Xn,XN+1) ] <10°Kk* Z u?,
n=3 n=3
with u, the structure constants of f.

Zn 1Y, ..
Proof. Let (Z,,_z Y” ! X" X,,H) be a random hexagon. By the definition of the
n—1

n
structure constants,
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Y, 2
[ZE< ( n—2 Yn IX Xn+1) Zn—ZaZn—l>

Therefore, for every N there exists z, = z,(N) € &, (n=1,...,N —2) such that

2
Zn 1Y,

ZE <<n2Yn1”Xn+1>
n—1 n

We emphasize that z,, depends on V.

N

N
2
Zn2=2n-2,Zn1 :Zn—l>‘| < Z Uy.

Let cn = fu—2(2n—2,2n—1), and let a,(,N) (xn) be the (smallest) most likely value

of f_» (Zn_z, )+ fu—1(Y,x,), where Y has the bridge distribution of X,,_; condi-
tioned on X, = z,, 2 and X,, = x,,. The most likely value exists, and has probability
bigger than 6k := =, because f,_2(z4—2,Y) + fu—1(Y,xn) € [-2K,2K]NZ.

51(7
Set gF(’lN) (xn,anrl) = Ja (xnaanrl) + ar(zN) (xn) - a,(ﬁpl (Xn+1) - C£, ) Equivalently,
gﬁ,N) (Xn,Xn41)=—-T" (znz i”_l ic; " x,,H) for the y; which maximize the likelihood
n—1 An

of the value fi_1(zx—1,Y) + fi(Y,xx+1) when Y has the bridge distribution of X;
given X1 = zg—1, Xi1 = Xet1-

Our task is to estimate Y'_, E[g,, W )(Xn,XnH) ]. Define for this purpose the func-
tions hS, ) 16, x 6,11 — R,

2 1/2
Zy2=2n-22Zn-1=2n-1 >
b

(N) L Zn—l Yn
hp (xnvxn+1) =E (F <Z"2 Y,.1 X Xn+l> X, =X, Xn4+1 = Xn41

Our plan is to show the following:

N
(a) Z ]E n Xn7Xn+l ) < Z uyzl
=3 n=3
(b) Ifh (x,,,x,,H) < Ok, then g,(lN) (xn,xn+1) 0.
© E(e™ (X, X,:1)2) < (6K)2P[E) > 8] < 36K25 2B (X, Xpi1)?).

Part (a) is because of the choice of z,. To see part (b), note that since f is in-
teger valued, either the balance of a hexagon is zero, or it has absolute value > 1.

Therefore, if hS,N) (X, Xn+1) < Ok, then necessarily

Zn_1 Y, 2=Zn-22Zp1=2n-1
P|\I(Z,_, ) X, 0 "

—xn Xn1 = Xut1
2
<E Zy Yn X Zn2=2Zn22Zn1=2n-1
Zy > Y n+1 X, = X —
n—1 Xn n = Xn n+1 = Xn+1

= 1Y) (X, Xs1)* < 82,

Zn1 Y, Zn—2=2n-22Zn-1=Zu-1
whence P\ ( Z,_» "7 ' X =0/ 7 nme >1—82.
|: ( n2 Y1 Xn n+1> ‘Xn =Xn X1 = Xnt1 K
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At the same time, by the structure of the distribution of random hexagons,

-2 Yoo1 Xu N)

-Qn — <Zn anl Yn Xn+1) . fnfl(anlaYn)+fn(YnaXn+l) :afllj_)l(}((nJrl)
fn—Z(Zn—2aYn—1) +fn—l(yn—17Xn) =dy (Xn)

. Zyn2=Zn-22n1=2n_
satisfies P |, | "2 — =2 fn=1 = <n—l > 82,
n = Xn Xit1 = Xnt1

If the sum of the probabilities of two events is bigger than one, then they must
intersect. It follows that there exist y,_1,y, such that

o ai(lN) (Xn) - fn72(zn727yn71 ) +fn71 (ynfl aXn)

N
o a’(1+)l (Xn—H) :fn—l(Zn—hYn)+fn()’n7Xn+1)
Zn—1 Yn _
ol (an ' Xn+l> =0

By the definition of gﬁ,N) , this implies that gS,N) (X, Xn+1) = 0, which proves part (b).

Part (c) follows from part (b), Chebyshev’s inequality, and the estimate ||g,<1N) llo <
6K (as is true for the balance of every hexagon). U

Combining Lemmas 3.1 and 3.4 we obtain the following result

Corollary 3.3. (Joint Reduction) There is a constant L = L(€,K) such that under
the conditions of the Reduction Lemma we can arrange, in addition to the other

conclusions of Lemma 3.1, that Zﬁi3 ||g£,N) 13 < LUy.

Proof. Apply Lemmas 3.1 and then apply 3.4 to the resulting integer valued additive
functional. Notice that the reduction in this corollary depends on N even if f is an
additive functional of a Markov chain. O

Corollary 3.3 says the following. Suppose we have an additive functional f such
that both Uy is small and Dy(&) is small for some & (but Dy(&) can be much
smaller than Uy). Then we can adjust f such that at time N, the resulting functional
will have a small norm as prescribed by Uy and small distance to %”Z as prescribed

by Dy at the same time.

3.3.2 The possible values of the co-range

We prove theorem 3.1 in its version for Markov arrays: The co-range of an a.s.
uniformly bounded additive functional on a uniformly elliptic Markov array X is
equal to R when f is center tight, and to {0} or tZ (t > 0) otherwise.

Recall that the co-range is defined by

H:=H(X,f)={& eR: sngN(é) < oo}, where Dy(§) =
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STEP 1. H is a subgroup of R.

Proof. H = —H, because d,gN)(—é) = d,(zN)(é). H > 0, because d,(,N)(O) =0.His
closed under addition, because if £, € H, then by Lemma 1.4,

kn
supzdn (E+n)?<8 supZdn +32P2d;5’v)(n)2 < oo,
n=3

STEP 2. If f is center-tight, then H = R.

Proof. Suppose f is center-tight. By corollary 2.2 and the center-tightness of f,
kn ky

sup Y (u,((N))2 < o0. By Lemma 1.4(c), sup ¥, d\") (€)% < o forall & € R.

N k=3 N k=3

STEP 3. If f is not center-tight, then Jtg s.t.

H N (—tg,10) = {0}. (3.3.5)

Proof. Let K := ess sup|f|, then |["(P)| < 6K for a.e. hexagon P.

Fix 7y > 0 such that |e? — 1|> > 1#2 for all |¢| < 7o, and let fg := To(6K) . Then
then for all |£] < 1o, |¢®T'?) — 1|2 > 1£2I"(P)? for all hexagons P.

Taking the expectation over P € Hex(N,n), we obtain that

4™ (&2 >%z; @MY for all €] < 10,1 <n < ky,N > 1. (3.3.6)

Now assume by way of contradiction that there is 0 % & € H N (—to,f), then

WM W) e : e
sup Y (up )= < £25Up Y dn ' (&)* <eo. By Corollary 2.2, f is center-tight, in con-
N n=3 N n=3

tradiction to our assumption.

STEP 4. If f is not center-tight, then H = {0}, or H = tZ witht > Wup\f\

Proof. By steps 2 and 3, H is a proper closed subgroup of R. So it must be equal

to {0} or ¢Z where t > 0. To see that t > ﬁup\f\’ gssume by contradiction that
= (76653;[)'](‘ )p with 0 < p < 1, and let k := min{|e™ — 1> /|u|? : |u| < wp} > 0.

Then [tI"(P)| < 6tess sup|f| = mp for every position n hexagon P, whence
2(1) = E(|¢'T — 1) > kE(?) = xidd.

But this is impossible, because t € H so ¥ d?(t) < oo, whereas f is not center-tight
S0 Y u2 = oo, ]
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3.3.3 Calculation of the essential range

We prove Theorem 3.2 in its version for Markov arrays: For every a.s. uniformly
bounded additive functional f on a uniformlly elliptic Markov array X,

{0}y HXf)=R
Gess(X,F) = FLZ H(X,f)=EL (3.3.7)
R H(Xf)={0}.

Lemma 3.5. Suppose f,g are two a.s. uniformly bounded additive functionals on
the same uniformly elliptic Markov array. If f — g is center-tight, then f and g have
the same co-range.

kn
Proof. By Corollary 2.2, if h = g —f is center-tight, then sup Z u,(fv)(h)2 < oo, By
N p=3

. . I

Lemma 1.4 (b),(c), sup Z d,g )(ﬁ,g)z < 8sup Z d,<, >(§,f)2—|—8<§2sup Z u,<1 )(h)z.
N p=3 N p=3 N p=3

So the co-range of f is a subset of the co-range of g. By symmetry they are equal.lJ

Proof of Theorem 3.2: As we saw in the previous section, the possibilities for the
co-range are R, tZ with ¢ # 0, and {0}.

CASE 1: The co-range equals R. As we saw above, this can only happen if f is
center-tight, in which case the essential range is {0} because we may subtract f
from itself.

CASE 2.: The co-range equals E7. with & # 0. We show that G (X, f) = 22 Z.

By assumption, & is in the co-range: supy ):I;’i 3 dNn (€)? < . By the Reduction

Lemma, f differs by a center-tight functional from a functional with algebraic range
C %”Z. S0 Gess(X, ) C %ﬂz.

Assume by way of contradiction that G, (X,f) C %”Z, then there exists a center-
tight h such that the algebraic range of g :=f —h is a subset of %’”Z for some integer

£ > 1. The structure constants of g must satisfy d,(,m (%,g) =0, whence % €co-range

of g. By Lemma 3.5, % € co-range of f, whence % € EZ. But this contradics £ > 1.

CASE 3.: The co-range equals {0}. We claim that the essential range is R. Other-
wise, there exists a center-tight h such that the algebraic range of g := f — h equals
tZ with t # 0 or {0}. But this is impossible:

(a) If the algebraic range of g is tZ, then d,gN) (27”7g) =0forall3<n<ky,N>1,
so the co-range of g contains 27 /¢. By Lemma 3.5, the co-range of f contains
27 /t, in contradiction to the assumption that it is {0}.

(b) If the algebraic range of g is {0}, then f = h, and f is center-tight. But by Theo-
rem 3.1, the co-range of a center-tight functional is R, whereas the co-range of
our functional is {0}. O
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3.3.4 Existence of irreducible reductions

We prove Theorem 3.3, in its version for Markov arrays: For every a.s. uniformly
bounded additive functional on a uniformly elliptic Markov array X, there exists an
irreducible functional g such that f — g is center-tight and G,14(X, 8) = Gess(X,g) =
Gess (Xa f)

Proof. The essential range is a closed subgroup of R, so G (X, f) = {0},#Z or R.

(@) If Gegs (X, f) = {0}, then H(X,f) =R, and f is center-tight. So take g = 0.
(b) If Gss(X, f) = tZ with t # 0, then by Theorem 3.2 the co-range of f is £7Z

with & :=2m/r. So sup Z d¥ (é f)? < 0. By the reduction lemma, there ex-

ists an additive funct10na1 g such that f — g is center-tight, and G,(X,g) C
tZ. By Lemma 3.5 G (X,f) = Gegs(X, g), Whence Gogs(X,f) = Gess(X,8) C
Gaig(X,8) C1Z = Gess(X,f), and Gegs (X, 8) = Guig(X,8) = Gegs (X, ).

(©) If Gois(X, f) =R, take g :=f. O

3.3.5 Proofs of results on hereditary arrays

Proof of Theorem 3.6: Suppose f is an a.s. uniformly bounded additive functional
on a uniformly elliptic Markov array X.
The first part of the theorem asks for the equivalence of the following conditions:

(1) fis hereditary

(2) forall &, hmmf ): d (5)2 < oo = limsup I;:V d,gm(é)z < oo

(3) forall & ¢H(X ). Dy (@) e Yo e

4) H(XX [ f|x) = H(X,f) for every sub-array X’ of X.

(1)=-(2): Assume that f is hereditary and Li,s(€) := liminf Dy (&) < eo. We’ll show

that Lgyp (&) :=limsup Dy (&) < eo. This is obvious for & = 0, so suppose & # 0.
Choose Ny, M; 1 oo such that Dy, (&) . Line(§), D, (&) . Lgup(&). Let
—yoo —roo

X = {x} and X" := {xM}.

Since Ligf(€) < oo, H(X',f|xs) contains &, whence by (3.3.7), G (X', f\x/) c? 5
By the heredltary property, Gegs (X" flxr) = Gegs (X, f) = Gogs (X', flxr) C é Z7. This
implies by (3.3.7) that H(X",f|x») 5 &, whence Lgp(&) < oo.

(2)=(3): We assume that Liyf(§) < 00 = Lgyp(&) < o0 and show that Dy (&) — o for
allE Z H(X,f). If & &€ H(X,f), then sxpDN(é) = 09,50 Lgyp(& ) = co. By assumption,

this forces Liyf(&) = oo, whence Dy (&) — oo.
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(3)=-(4): We assume that Dy (&) — oo for all & € H(X,f), and show that H(X,f) =
H(X' f|x) for all sub-arrays X' = {X,EN[)}. If & € H(X,f), then supDy (&) < oo,
N

whence supDy,(§) < e and & € H(X,flx/). If & & H(X,f), then Dy(&) — oo,
¢
whence Dy, (§) — coand & ¢ H(X',f|x/).

(4)=-(1): We assume that H(X', f|x/) = H(X,f) for all sub-arrays X', and show
that Gess(X, flxr) = Gess(X,f) for all sub-arrays. The inclusion G, (X', flx/) C
Gss(X,f) is obvious, so we focus on Gz (X', flxr) 2 Gegs (X, f).

If G,55(X',f|x/) = R then there is nothing to prove. Suppose Gy (X', f|x/) # R,
then G,y (X', f|x) =tZ for some r € R. Let & := 27/t when 1 # 0 or any real number
otherwise. By (3.3.7),

H(X/,ﬂxl) = 5

By assumption (4), this implies that H(X,f) > &, whence by (3.3.7), Geg(f) C

%"Z = G5s(X’, flx/), and the proof of (1) is complete.

This finishes the proof that properties (1)—(4) are equivalent.

The second part of the theorem asks to show that f is stably hereditary iff
Dy (&) — oo uniformly on compact subsets of R\ H(X,f).

Suppose f is stably hereditary, then f is hereditary, whence Dy (&) — oo for all
& ¢ H(X,f). To show that the convergence is uniform on compacts, we check that

N>N§
&' =&l <&

Suppose this were false for some & and M, then 3§y — & such that Dy (Ey) <M. But
this implies that {(1+ &y) fk(N)} is not hereditary for gy := %’V — 1, in contradiction
to our assumptions.

Conversely, if Dy(&) — oo uniformly on compact subsets of R\ H(X,f), and
ey — 0, then {g,ﬁN)} ={(1+ SN)fk(N)}) is hereditary, because for all & & H(f),
Dy(&,8) =Dn((1+&n)E,f) — oo, and as we saw above (2)=-(1). O

V& & H(X,f),VM > 0,3Ng, 6 >0 < = Dy(&') > M> . (339

Proof of Theorem 3.7: The first part of the theorem assumes that G4 (X,f) =tZ
or {0} and that f is hereditary, and asks to show that f is stably hereditary.

We begin with several reductions. It is sufficient to consider the case G (X,f) =
Z: If Gog(X,f) = tZ with t # 0 we work with ¢~!f, and if G,z (X,f) = {0} then
H(X,f) =R and Dy(&) — oo uniformly on compact subsets of R\ H(X,f) (vacu-
ously), so f is stably hereditary by Theorem 3.6.

Next we claim that it is enough to treat the special case Gy, (X, f) = Gegs (X, f) =
Z. Otherwise we use Theorem 3.3 to write f = g —h where G;4(X, g) = Gegs (X, 8) =
Gss(X,f) and h is center-tight. By Lemma 3.5, H(X,g) = H(X,f), and by Lemma
1.4 and Corollary 2.2,

1 Ly S5 gy ]
DU(EN) = §Du(E.8)~ &5 T (0 = gDr(E.8) ~01)
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Thus, if Dy (&,g) — co uniformly on compact subsets of R\ H(X,g), then Dy (&,f) —
oo uniformly on compact subsets of R\ H(X,f).

By assumption, ess sup | f| < K for some integer K. Then for every hexagon P €
Hex(N,n), I'(P) € ZN[—6K,6K].

Let mﬁ, ) denote the probability measure on the space of hexagons Hex(N,n) and
define for every y € ZN[—6K,6K],

kn
uv({r}) ==Y m{P € Hex(N,n) : T(P) = 7}

n=3

Using the identity |e’5? — 1|? = 4sin %7, we see that

Since f is hereditary, Dy — o on R\ H(X,f), and the expression for dZ(&) shows
that if Dy — o at €, then Dy — oo uniformly on an open neighborhood of &.

It follows that Dyy — oo uniformly on compact subsets of R\ H(X,f). By Theorem
3.6, f must be stably hereditary. This is the first part of the theorem.

The second part of the theorem says that if f is integer valued and not center-tight,
and if ess sup|f| < K, then G4 (X, f) = kZ for some integer 0 < k < 12K.

To see this recall that G, (X,f) C Gue(X,f) C Z, whence Gy (X,f) = kZ for
some k € Z. Since f is not center-tight, k # 0. By (3.3.7), H(X,f) = 2”Z

The inequality |f| < K implies that every hexagon P has balance |F (P)| < 6K.

This implies that k£ < 12K: Otherwise |2”F | < 0.957 and (3.3.1) gives

|e@Ti/ROT(P) _ 1|2 > const.I"(P)>.

But this implies that d )(T”) > const.ul"), whence

sup Z d 2> sup Z = oo by non-center-tightness.

This contradicts 27” € H(X,f). Thus 0 < k < 12K.

It follows from the first part of the theorem and from Theorem 3.6, that if f is
integer valued and not center-tight, then the properties of being hereditary and of
being stably hereditary are equivalent. U
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3.4 Notes and references

In the stationary world, a center-tight cocycle is a coboundary (Schmidt [123]) and
the problems discussed in this chapter reduce to the question how small can one
make the range of a cocycle by subtracting from it a coboundary. The question
appears naturally in the ergodic theory of group actions, because of its relation to
the ergodic decomposition of skew-products [2, chapter 8], [123], [27], and to the
structure of locally finite ergodic invariant measures for skew-products [6], [120],
[111]. In the general setup of ergodic theory, minimal reductions such as in Theorem
3.3 are not always possible [82], although they do sometime exist [120],[111].

The relevance of (ir)reducibility to the local limit theorem appears in different
form in the papers of Guivarc’h & Hardy [56], Aaronson & Denker [4], and Dol-
gopyat [42]. There “irreducibility” is expressed in terms of a condition which rules
out non-trivial solutions for certain cohomological equations.

It is more difficult to uncover the irreducibility condition in the probabilistic lit-
erature on the LLT for sums of independent random variables. Rozanov’s paper
[115], for example, proves a LLT for independent Z-valued random variables X as-
suming Lindeberg’s condition (which is automatic for bounded random variables),
Y Var(X;) = oo, and subject to the assumption that

I1 ( max P(X; = m mod t)) = 0 for all integers ¢ > 2. (3.4.1)
=1 0<m<t
Let X = {X;} and f = { fi } where fi(x) = x. Clearly, (3.4.1) implies that G, (X,f) =
Z. We claim that (3.4.1) is equivalent to the irreducibility: G (X,f) = Z.

To see why, it is useful first to note that (3.4.1) is equivalent to

Y P[X # my mod 1] = e (3.4.2)
k

where my, is the (smallest) most likely residue mod ¢ for X;.

Irreducibility=-Rozanov’s condition: Define for x € Z and 2 <t € Z, {x},7 :=
t{x/t}, [x|;z := x— {x};z, and set

Yi(x) := the (smallest) integer in my, + ¢Z closest to x

)= x— ) |

8rk(x) == (i (%) — mg) + [x — yr(x)]sz (gx takes values in ¢Z)

hi(x) := {x —yr(x) }sz (hy takes values in Z). Then

O O O O

X = g (X) + i (Xie) + my..

The algebraic range of g is inside ¢Z, and by the Borel-Cantelli Lemma,

(3.4.2) fails < X; # my, mod tZ finitely often a.s. < hy(X;) # O finitely often a.s.
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If (3.4.2) fails, then Z hi(X;) converges a.s. (since a.s. there are only finitely non-
k=0

zero terms). Hence h is center-tight. Since G4(g) C 17, we have a contradiction to

irreducibility.

Rozanov’s condition = irreducibility: Fix 6 € [0,7) and let m be the closest inte-
gerin [0,£)NZ to 6. Then |m' — 0| > 1 for m’ # m, whence

1
2P X

—_—

E[dist*(X,,, 0 +1Z)] > #mmodz?) > —[1 — max P(X, =m mod?1)]

4 0<m<t

Passing to the infimum over 8, we obtain that

D (Xn,zt”) %[17 max P(X, =m mod ¢)]

0<m<t

(See §1.3.) We now obtain from Proposition 1.4 that

Zdz (%) >constz X1, ) + D% (X,, 22))
n=3

> t 1— P(X, dt) | = oo, by (3.4.2).
cons Z ( Jmax P(X; =mmo )) , by (34.2)
We find that the co-range does not contain 27/t for t =2,3,4,. ... We already know
that the co-range does contain 27 (because X; are integer valued). The only closed
sub-group of R with these properties is 2xZ. So the co-range is 27Z, and the essen-
tial range is Z =the algebraic range

Other sufficient conditions for the LLT for sums of independent random variables
such as those appearing in [93],[132] and [95] can be analyzed in a similar way.

The reduction lemma was proved for sums of independent random variables in
[42]. A version of Theorem 3.5 for sums of independent random variables appears
in [95].



Chapter 4
The local limit theorem in the irreducible case

In this chapter we prove the local limit theorem for P(Sy —zn € (a,b)) when
wv—E(Sn)

Var(Sy)
totic behavior of P(Sy — zy € (a,b)) does not to depend on the details of X and f
(“universality”).

converges to a finite limit and f is irreducible. In this regime, the asymp-

4.1 Main results

4.1.1 Local limit theorems for Markov chains

In the next two theorems, we assume that f is an a.s. uniformly bounded additive
functional on a uniformly elliptic Markov chain X, and we let X = {X,,}, f = {f,},
Sy = fi (X] 7Xz) + .- +fN(XN,XN+l ), and Vy := Var(SN).

Theorem 4.1. Suppose f is irreducible, with algebraic range R. Then Vyy — oo, and
w—E(Sn)

for every interval (a,b) and zy € R s.. N

converges to a finite limit z,

6—12/2
V21 Vy

Theorem 4.2. Suppose t > 0 and f is irreducible with algebraic range tZ. Then
VN — oo and there are constants 0 < Yy <t such that for all k € 7Z, and for all

P[Sy —zwn € (a,b)] = [1 +0(1)] (b—a), as N — oo. (4.1.1)

N € W +HIZ s.t. % converges to a finite limit z,
e’zz/zt
PlSy —zv =kt] =1 1 , N — oo, 4.1.2
[Sn —2n = ki [+0()]\/W as 4.1.2)

The constants Yy are determined by the condition P[Sy € yy +tZ] = 1 for all N.

83
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The conditions of the theorems can be checked from the data of X and f using
the structure constants d,,(&) from §1.3:

Lemma 4.1. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X. Then

(1) f is non-lattice and irreducible iff Y. d> (&) = oo for all & # 0.

(2) f is lattice and irreducible with algebraic range tZ, t > 0, iff ¥.d>(&) < oo for
Ecr/t)Z and Y.d2(E) = o for & & (21 /t)Z.

(3) f is lattice and irreducible with algebraic range {0} iff fu(Xn,Xn+1) are a.s.
constant for all n.

Proof. f is non-lattice and irreducible iff G, (X,f) = Gue(X,f) = R. By theorem
3.1, this happens iff f has co-range {0}, which proves part (1). Part (2) is proved in
a similar way, and part (3) is a triviality. (]

4.1.2 Local limit theorems for Markov arrays

In this section, we assume that f is an a.s. uniformly bounded additive functional on
auniformly elliptic Markov array X with row lengths ky + 1, and we let X = {X,EN) 1

N N N N
= (A} sy =AY ™ x). and Vy == Var(Sy).
The LLT for Sy may fail due to the possibility that f|y, may have different essen-
tial range for different sub-arrays X’. To deal with this we need to assume hereditary

behavior, see §3.2.3.

Theorem 4.1°. Suppose f is stably hereditary, non-lattice and irreducible. Then

Vn — oo, and for every interval (a,b) and zy € R s.t. w=ESy) T cE R,
—o0
6—12/2
P[Sy —zw € (a,b)] = [L+o(1)] (b—a), as N — oo, (4.1.3)

\V21tVy

Theorem 4.2°. Suppose t > 0 and f is hereditary, irreducible, and with algebraic
range tZ. Then Vi — oo, and there are 0 < Yy < t such that for all k € 7Z and

wv—E(Sn)
ZN€7N+IZS.[. TN N_>—°O>Z€]R,
e‘zz/zt
P[Sy —zv = kt] = [1 +o(1)] T as N —oo. (4.1.4)

The constants Yy are determined by the condition P[Sy € Yy +tZ] = 1 for all N.

Notice that whereas in the non-lattice case we had to assume that f is stably heredi-
tary, in the lattice case it is sufficient to assume that f is hereditary. This is because
in the lattice case the two assumptions are equivalent, see Theorem 3.7.



4.1 Main results 85

Again, it is possible to check the assumptions of the theorems from the data of X
and f using the structure constants:

Lemma 4.1°. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov array X with row lengths ky + 1. Let d,(lN) (&) be as §1.3, then

(1) f is stably hereditary, irreducible, and with algebraic range R iff
S )
E dn ' (E)? o uniformly on compacts in R\ {0}.
—yo0

(2) Suppose t # 0, then f is hereditary and irreducible with algebraic range t7 iff
Zn 3 dv >(§) —— oo forall§ & 27”2. In this case f is also stably hereditary.
N—oo

Proof. As in the case of Markov chains, f is non-lattice and irreducible iff its co-
range equals {0}. By Theorem 3.6, f is stably hereditary iff Z’;fi 3 a’,gN) (&)? =
—>00

uniformly on compacts in R\ {0}, which proves part (1).

Part (2) is proved in a similar way, with the additional observation that thanks to
Theorem 3.7, in the irreducible lattice case, every hereditary additive functional is
automatically stably hereditary. U

4.1.3 Mixing local limit theorems

Let f be an additive functional on a Markov X with row lengths ky + 1, and state
spaces (6,(1N) , %’(SS,N))). Let Sy and Vy be as in the previous section.

Theorem 4.3 (Mixing LLT). Suppose X is a uniformly elliptic Markov array, and
f is an additive functional on X which is stably hereditary, a.s. uniformly bounded,

and irreducible. Let Ay C 6,((]]:,21 be measurable events such that P[kal € Ay is

(V)

bounded away from zero, and let xy € &
with compact support,

. Then for every ¢ : R — R continuous

(1) Non-lattice case: Suppose f has algebraic range R. For every zy € R such that

w—E(Sn)
T L€ R,
(N) 6712/2
hm VWE[o(Sy —zn \Xk 11 EANX =] = A o (u)du.

(2) Lattice case: Suppose f has algebraic range tZ (t > 0) and P[Sy € yw+1Z] =1
for all N. For every zy € Y +1tZ s.t. w S zER,

Jlim /VVE[Q (S — ) X4 L, € 2w, X)) =] =
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To understand what this means, think of ¢ ~ 1, ;).

In the next chapter, we will use mixing LLT for irreducible additive functionals
to study the LLT for some reducible additive functionals, as follows. Suppose f =
f + Vh, where f is irreducible and h is uniformly bounded. Then

Sy () = Sw(®) + AN (x M) = p™) o

kn+1 (
To pass from the LLT for Sy (?) (which we know since f is irreducible) to the LLT
for Sy (f) (which we do not know because of the reducibility of f), we need to under-
stand the joint distribution of Sy (), A" (X{"') and ¥\, (X, 11). This is the task
achieved by the mixing LLT.

4.2 Proofs

We will provide the proofs in the general context of Markov arrays.

Standing assumptions and notation for the remainder of the chapter:

X = {X,EN)} is a Markov array with row lengths ky + 1, state spaces G;N), and

transition probabilities n,(xl] (x,dy), and f ={ f,§N>} is an additive functional on X.

As always, d,SN) (&) are the structure constants of f.

We assume that ess sup |f]| < K < oo, and that X is uniformly elliptic with ellip-
ticity constant &. By the uniform ellipticity assumption,

N N N
T (6, dy) = pi (e, )l (dy)
with 0 < p,(fv> (x,y) <& !'such that [ pf,N) (x,y) P;Aﬁl (y, z),lvtr(ﬁ)l (dy) > €. There is no

loss of generality in assuming that H;EM (E)= ]P’(Xk(N) € E), see Proposition 1.2 and

the discussion which follows it.

4.2.1 Characteristic functions

The classical approach to limit theorems in probability theory, due to P. Lévy, is to
apply the Fourier transform, and analyze the characteristic functions of the random
variables in the problem. In our case the relevant characteristic functions are:

Dy (x, &) :=E, (ei‘gsN) =E (eiéSN |X1(N) = x) .

Py (x,E|A) :=E, (eigSN | Xiy+1 € 2[) =E (eigSN |Xk(,1\:/ll € QL,XI(M :x) .
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Herexe 61", 2 c &Y, | & e R and E((-) = E(- X" = ).
We write these functlons in terms of perturbation operators as in [96]. For

every N € Nand 1 <n < ky + 1. define 27 : L2(&,)) — L(&,")) by

o
(Zﬁﬂwrfwﬁ%yw%<mwwﬂw

n+1

x™
( zéf Xn ; ,,IXI)V(X’EIJ\:)IHXVSN) :x).

Lemma 4.2 (Nagaev). Let 1(-) = 1, then the following identities hold:

E (Eiéwx,gg;l) x ) (LW 2N 0, @
Dy (x,E) = (gfg)g;fg) L) 1) (x), 4.2.2)
WM M) (x)
1L,E %2, ;
QDN(x,<§|Q[):( : 5(N) NS ) . 4.2.3)
IP’X[X,(N 41 €2

Proof. IE(e"gst(X,g\:/il)|X1<N> =x)=

N e o (N) ey N o(N) N N
/ P ()BT IR (B Ee by Y = y)au™ ().
Proceeding by induction, we obtain (4.2.1), and (4.2.1) implies (4.2.2),(4.2.3). O
Lemma 4.3. . (1%/) are bounded linear operators, and there is a positive constant €
which only depends on &y such that for all N > 1 and 5 < n < ky, ||$ H <1, and

N) (V) ) —&aM (&)
’Zn_%fn_%mfng H <e .

Proof. Throughout this proof we fix N and drop the suprescripts V), and we use the
).

notation x;, z; etc. to denote points in &; = &;
It is clear that ||$ || < 1. To estimate the norm of

L=L 4Ly 38 Lng L7 (Gnt1) = L7(6p-a),

we represent this operator as an integral operator, and analyze the kernel. Let

o p(Xpy-ooyXm) 1= H,m; Ppi(xi,xit1),
o f(xka"'vxm) = m_ ﬁ(xhxl-‘rl)
© L(xn—47zﬂ+1) =

= /p(xn74’zn73’...7Zn+1)e’5f<xn—4azn—3;mxzn+l)lun73(dzn73)...un(dzn).
S, 3xxS,
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Then (£v)(xy_s) = /6 {L(x,,4,z,,+1)v(z,,+1)]unﬂ(dznﬂ) whence
n+1

[ZV[|lee <[PVl sup

Xn-4€S, 4 S

|L(xn7472n+l ) |.un+l (dZn+l )

n+1

To estimate this integral we change the order of integration

n+1

/G |L(xn 432n+1)“‘ln+1 dZnJrl //

‘K in— 27Zn+1)|

S, 2xS,41

/6 P(xn—47Zn—37Zn—2)lJ—n—3 (dZn—3):| .urn—Z(dZn—Z)“n—&-l (erH-l) 4.2.4)
n—3

where K, (z4—2,2n+41) :=

// (22, 2t 2y 2y 1) Gn2n 18020 ) (1) ()

Sn—l xSy

CLAIM: Let p(zp—2 = zZnt1) := P(Xp1 = Zur11Xn—2 = 20—2), then

|Kn(zn—2:2n—1)| < p(zn—2 = Zn41)—

1
-~ 4plana -z B (18T -1

Xpo=Yr2=2,02 4.2.5)
Xot1 =Zny1 =241 )

Proof of the claim. Set gﬂ(Zn 2,Zn41) i= %a then

Xn—2 =212
Xnt1 = Znt1

Writing |K,(z0-2,2001)|? = Kn(zn-2,2n41)Kn(2n—2,2011), we find that

Ro(zn2.2ns1) = E (eié K2 e Xi)

~ —1 Xn
|Kn(ZnZaZn+1)|2:E( lér( " 2y —1 Xnﬂ)

Xn—2=Yr2=22
Xnv1 = Zns1 = Zut1
where {Y,} is an independent copy of {X, }, and I is as in (1.3.1).

. . . . . X1 X
The imaginary part is necessarily zero, so writing P = (X ) Y" : Y" X+ 1)

n—1
have by the identity 1 —cos a = §|e* — 1|? that

Kn(zn—2,20-1)* = 1 —E(1 —cos(EL(P))|

2 =Yy =2
1

Xn+l:Zn+l:z’)ll+21)
=1-— 5IE(‘eia‘,:F(P) . 1|2 X,

2 =Yp2 =2 )
X1 =Zp1 =241 ) °
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The claim follows, since /1 —# < 1— % forall0 <r < 1.
We now substitute (4.2.5) in (4.2.4). The result is a difference of two terms:

(a) The first term is obtained by replacing K,(zy,—2,2x+1) in (4.2.4) by p(zp—2 —
Zn+1)- It has the following upper bound:

// / P(xn74a2r173’zn—2)17(2n—2 — Zn+l) =1.
6)172><6}'H~1 6}173

(b) The second term is obtained by replacing K,(z,—2,zn+1) in (4.2.4) by

1 - SR
—p(zn2 — zn+1)]E(|e’5F(P) o (i §

4 1 = Znt1 = Znp)
The inner-most integral satisfies
/(:5 P(xn74,Zn73,anz)IJn73 (dZn73) > &
n—3
because of uniform ellipticity. This leads to the following lower bound for the

second term: , ’
SEOE(|eT ) —11) = Segda(£)*.

2
In total we get: [|L(Xy—4,2n+1)|Mnr1(dzns1) < 1 —€d,(E)?, where € := %8&. Since
1—t<e™’, we are done. O
k N 4
Recall that Dy(&) =Y, 5 dl )(5)2. Write Dy = Z Djn where
j=0
N
Din@ = Y aV©>
3§n§kN
n=j mod 5

Applying Lemma 4.3 iteratively we conclude that there is a constant C independent
of N s.t. for all NV,

@y (x, &) < CeEmax(DonDan) < Co=5EDN(E), 4.2.6)
IFP(X") | € 2A) > then by (4.2.3), [y (x, £[2)] §3‘1||$1<g>ozﬂ;g>...ozﬂkﬁa}; Lo

whence again
| By (x, E|2A)| < Ce5EPN(E), (4.2.7)

The next result shows that if uS,N) is big, then d”' (-) cannot be small at two nearby

points. Recall the standing assumption ess sup || f,EN)Hm < K, the definition of the
kn

structure constants u."’ and that Uy = Z (uS,N))z.
n=3
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Lemma 4.4. 35 — g(K) >0s.t if |6] < ] then for all 3 <n < ky,

2 2
a (& +87 > 587 (u")) —208luM (&), (42.8)
Proof. Fix a hexagon P = (xnz ;nfi in Yn+1> € Hex(N,n), and let

=L (P), 0(§) = [ 1],
then the identity |¢?® — 1|> =2(1 —cos 0) implies

02(& +8) = [/ E T _ 12 = 2[1 — cos((& + 8)u)]

=2[1 —cos(&u,) cos(Su,) + sin(&uy,) sin(Suy,)]

=2[(1 —cos(&uy))cos(du,) + (1 —cos(du,)) +sin(Eu,) sin(Su,)]  (4.2.9)
> 2[(1—cos(8uy)) — | sin(&w,) sin(Su,)|| provided |5| < &,

because in this case |Ou,| < F, so cos(8u,) > 0. Make & even smaller to guarantee
0<|t]| <6Kd6 = %tz < 1—cost <2, then

Z(E+6) > 2(%62 2 |8u,)/1 —cos?(&uy))

2467~ 6] /(1= os(Eun )1+ cos(Eu) |

> 2<;62u,3 — |8u,|/2(1 —cos(gun))) = 2512 — 2|8, [t — 1|
s

21— 2|8un[0a(8)-

Integrating on P € Hex(N,n), and using Cauchy-Schwarz to estimate the second
term we obtain the lower bound for d,,(& + &)2. O

Lemma 4.4 and the Cauchy-Schwarz inequality together give

Dy (§ +8) > 562Uy —218]/UnD (&) (4.2.10)

where U, := ):11223(14,((1\’))2. If Viy := Var(Sy) — oo, then as soon as Vy > 2C, where
(5 is the constant from Theorem 2.1, we have

Un
— < Vy <2C1Uy. 4.2.11
ac; =V =20Uy ( )

So there are 1,0 > 0 s.t. Dy(E +8) > € 8%Vy — ¢1|8|/VwDn(&). By (4.2.6),
there are €,¢ > 0 s.t. for all N so large that Vy > 2C,, for all £ and |§| < &
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| B, (x, & +8)| < Cexp (—é\vNaz + E]6|\/VNDN(§)) . 4.2.12)
We rephrase (4.2.12) as follows. Given a compact interval I C R, let
An(I):=—log  sup |Py(x,&)] (4.2.13)
x&)eaMxi

and choose some pair (Xy, EN) € GSN) x I such that

An(I) < —log| Dy Gy, E)| < An(I) +1n2.
So \‘I’(foNﬂ > Le=() = Lsup|dy(-,-)| on GEN) x 1.

Corollary 4.1. For each § there are c ,€,¢ > 0 s.t. for every compact interval I s.t.

7 < 8, for all N for every (x,&) e GgN) x I, for every 2 C Ggll s.t. /,llgﬁl(ﬂ) >5

@y (x,8)] < Cexp (~&Vx (& — &) +2l& — EvIVVndn(D))
[ @, E120)| < Coxp V(& — &) +2lé — Evlv/Wwan (D))

Proof. We only give the proof in the case Vy is large, so that (4.2.12) holds. This
is the case we need. We remark that the result also holds generally, because the
estimate we seek is trivial when Vy is small.

Substituting & = &y, 6 = & — &y in (4.2.12) gives

By (x.€)| < Cexp (—EVN@ _E By -] VNDN<EN>) .

~ ~ 1~ ~
By (4.2.6), e V(&) < 2|dy (v, En)| < 2Ce™ 5PV (Y) We conclude that

DN(é) < ClAN(I) +C

for some global constants Cj,C,. The estimate of |®y(x, )| follows. The second
estimate is proved in the same way. O

4.2.2 The LLT in the irreducible non-lattice case

We give the proof in the general context of arrays (Theorem 4.1°). Theorem 4.1
on chains follows, because every additive functional on a Markov chain is stably
hereditary (Example 3.5).

We begin by proving that Vy N—> oo. Otherwise liminfVy < oo, and one can
—3yoo

find Ny T e such that Var(Sy,) = O(1). Let X' denote the sub-array with rows
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X' = XNo)| By Theorem 2.2, f|y is center-tight, whence Geg(X',f|x) = {0}
At the same time, G (X,f) = Gy, (X,f) =R, because f is irreducible and non-
lattice. SO Ggs(X',flxr) # Goss(X,f), in contradiction to the assumption that f is
stably hereditary.

Next we fix zy € R such that

interval (a,b),

w\/v%sm — z, and show that for every non-empty
efzz /2
21tV

A well-known approximation argument [133], [17, chapter 10] reduces (4.2.14) to
showing that for all ¢ € L'(R) whose Fourier transform ¢ (&) := [ e 66 (u)du
has compact support,

P[Sy —zn € (a,b)] = [1 +0(1)] (b—a), as N — co. 4.2.14)

e ? 2/2
Tim \/VRE[§ (S~ zv)] m/ 9 (u

We will prove the stronger statement that for all x(lN) € GEN)
. 7Z /2
]31330 \ /VNIEXSN) [0(Sv—2zn)] = n / o(u (4.2.15)

Fix ¢ € L' such that supp((]?) C [-L,L]. By the Fourier inversion formula,
| RPN ;
E w(¢(Sy —zn)) = o / O (&) Dy (xy,E)e SN dE . So (4.2.15) is equivalent to
~L

X

tim Vo [ ()@, e Evag = P50, we
Noe Y NV g N Var -

Below, we give a proof of (4.2.16).
We note for future reference that the proof of (4.2.16) below works under the
milder assumption that ¢ is bounded, continuous at zero and has compact support,

eg. d==1 . ] (Which is the Fourier transform of ¢ (u ) = W g LY.

D1V1de [fL,L] into segments /; of length < § where & is given by Lemma 4.4,
so that [ is centered at 0. Let

1 ~ 4
T = 5= [ $E@Y, £)e v,

CLAIM 1: The contribution of Jon as N — o is given by

1

L PRy
T3¢ %00, 4.2.17)

\/WJO,N o
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Proof of the claim. Fix R > 0. Corollary 4.1 (with Ay = 0) shows that

\/W/{éelo:\ébR/\/W} $(€)¢N(x<11v>,¢)e—imd§ = 0r_seo(1).

Next, a change of variables & = s//Vy gives

i SN—IN
5 (V) £y, g — / A( s > S
V / Py (x; 7,6 )e dé = E,(e ds.
N ”5|SR/VVN]¢(§) N(l 6) é [|s\§R]¢ \/W ( )

By Dobrushin’s CLT for inhomogeneous Markov arrays (Theorem 2.3) S’\V/i’v

converges in distribution w.r.t. IP’ ) to the normal distribution with mean —z and

variance 1. By Lévy’s continuity theorem this implies that

is SN 2N 2
E( )(e VN ) iz /2
X N—c0

uniformly on compacts, and so
~ . —~ R
VW / P&y &) ENaE = §(0) / e 5%~ 25 + oyyen(1).
IEI<R/v/VN -R
Since this is true for all R, we can let R — o sufficiently slow to obtain (4.2.17).

CLAIM 2: The contribution of the other J; y is negligible, :
VwJjn — 0 for j #0.
N—soo

Proof of the claim. Since f is irreducible with algebraic range R, the co-range of f is
{0} (Theorems 3.1, 3.4). Since f is stably hereditary,

Dy(&) Y uniformly on compacts in R \ {0}.
3o

By (4.2.6), On(x (N>, &) — 0 uniformly on compacts in R\ {0}.
We will use this to show that for any interval I C R\ {0}

\/W/@ E)dE — 0. (4.2.18)

By subdividing / into finitely many subintervals we see that it suffices to prove the
claim for / = I; for some j. Recall that Ay (I;) = —logsup |®y(-,-)| on 6§N> x 1, and
(XjNs Ej ~) are points where this supremum is achieved up to factor 2. Set A; y :=
An(Ij), then Aj y — oo as N — oo for each j # 0.

Take large R and split /; into two regions
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= Ajn
Iy = {5 €l |E—¢&n| gR,/‘gV}, Ily=I\Iy

Split the integral [, |® x(N>, d€ into two integrals J”. ,,, J” , accordingly.
p g i 1 g iN: YN gly.
o Only, |Pn( ) &) <e iV and | y| < 2R Ay

JN> PN s e N and |1 y| < Vy * SO

VWi <2R\/Aj e Miv.

o On I}”N, by Corollary 4.1,

_ R - A -
oy (™, &) < CeXp<—sVN|€ ~ EilRy | T el - 5,~,NWA,~,N)

€

~ € ~ .
<Cexp (—2|§ —§j1N|\/Aj7NVN>, provided Re > ¢+ —.

[\

~ [ 2 -1
Hence VNJ}:N < \/WC/ e 2SINAINWN gg — O(A“f,).

y

Combining these estimates, we obtain

A c
VWG )y < 2RV AN €AY+ ——. (4.2.19)

VAjn
Since Ajy — o0 as N — o0 (4.2.18) follows.
-~ N
191 120, )1z,

Since |/ | < , claim 2 follows from (4.2.18).

2
The proof of the LLT is complete: Claims 1 and 2 imply (4.2.16), and (4.2.16)
implies (4.2.14) by [17, chapter 10]. (]

4.2.3 The LLT for the irreducible lattice case

We give the proof in the context of arrays (Theorem 4.2”): X is a uniformly elliptic
array, and f is an additive functional on X which is a.s. uniformly bounded, heredi-
tary, irreducible, and with algebraic range ¢Z with ¢t > 0. Without loss of generality,
t = 1, otherwise work with ¢~ !f.

The assumption that G,;,(R) = Z says that there are constants c,gN) such that

f,SN) (X,§N),xn<ﬂ) — cS,N) € Z a.s. We may assume without loss of generality that
(N)

¢, ' =0, otherwise we work with f —c. So

Sy € Z a.s. for every N > 1.
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w—E(Sn)

We will show that for every sequence of numbers zy € Z such that N
and for every xEN) ceV
e—zz/Z
PwmSy—zv=0)=[140(1)]—=, as N — oo. 4.2.20
Sy —ay =0) =] 0()]m ( )

Integrating over (6§N),%(6§N)), ,qu)) gives (4.1.4) with k = 0. For general k, take

7y =2tk
The assumptions on f imply that Var(Sy) Jraa The proof is a routine modi-
—o0

fication of the argument we used in the non-lattice case, so we omit it.

Observe that 5- [ ¢S dé& is equal to zero when m € 7\ {0}, and equal to one

when m = 0. In particular, since Sy — zy € Z almost surely, for every x<1N) S GEN)

| 1/ ,
P —n=0)=FE o [ — [ eS6n-mge) = / DN Ee-iEwgE
K (Sy—zv =0) V) <2” /_ﬂe d& o (x;,€)e dé

Thus to prove (4.2.20) it is sufficient to show that

lim /VN. i/” (pN(x(N) g)e*leNdé — Le*ZZ/Z (4 2 21)
N—oo 2w )z ro V2T ’ -

Notice that (4.2.21) is (4.2.16) in the case ¢ (u) = Singw L0(E) = =1z (&),
and can be proved in almost exactly the same way.
Here is a sketch of the proof. One divides [—, 7] into segments /; of length less

than the § of Lemma 4.4.

The contribution of the interval which contains zero is asymptotic to
This is shown as in claim 1 of the preceding proof.

The remaining intervals are bounded away from 27x7Z. Their contribution is
0(1/+/Viy). This can be seen as in claim 2 of the preceding proof, using the facts
that since f is irreducible with algebraic range Z, H(X,f) = 227 (Theorems 3.1,
3.4), and since f is hereditary and Galg( f) =1Z, f is stably hereditary, whence
Dy(€) = 0 uniformly on compacts in R \ 27Z. O

1

2/2
V21V :

e*z

4.2.4 The mixing LLT

The proof is very similar to the proof of the local limit theorem, except that we use
P(x,E|A) instead of P(x,&).

We outline the proof in the non-lattice case, and leave the lattice case to the
reader. Suppose X is a uniformly elliptic Markov array, and that f is a.s. uniformly
bounded, stably hereditary, irreducible and with algebraic range R.
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x ™)
ky+

— z. As before, Vy — o, and a standard

Let 2y € ™) be measurable sets s.t. P(X

ky+1
Xy € 6(1 ) be points. Suppose W

approximation argument ([17], chapter 10) says that it is enough to show that for
every ¢ € L'(R) s.t. supp(¢) C [-L,L],

, €”/An) > 6 >0, and let

-2/2
¢(0).

L .
Jim V- % / (&) Py (v, &y )e oV = ‘

Divide [—L,L] as before into intervals /; of length < 5 where § is given by
Lemma 4.4 and I is centered at zero, and let

Tin = % /1 . 0 (&) Dy (xy, E|RAy)e SN dE.

CLAIM 1: /WyJon = (2m)~2e</26/(0).
—yo0

Proof of the claim: Fix R > 0. As before, corollary 4.1 with Ay = 0 gives

V/ 0 cDx,Qle*iész = opu(1).
N {c‘éelo:\ébR/\/W}q)(g) (v, & [Aw) E = 0pe(1)

Next the change of variables & = s/1/Vy gives

Vi 0 E|Ay)e g
/{5610 \5\<R/¢W}¢(§) (v S [Aw)e =24

L () (1

kN+1 € Q[N) dé

1 / is(SN_ )
= ¢< )IEX (e VI 1 (X )) dé. (4.2.22)
PO € ) Srm AW iy

We analyze the expectation in the integrand. Take 1 < ry < ky such that ry — oo
and ry/+/Vy — 0, and let

Sy = Zf<N< XM x ) = sy - z AV x.

Jj=1 Jj=kny—ry+1

Since ess sup|f| < oo, |Sy — S| = o(v/Vn), and so
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S5z
is(S Ny
=E,, <e N E(l%(x,f;"llﬂxfm,...,X,f:’_)m» +o(1)

. S1*V’ZN
=E,, <ets( VN )E <1Q[N (X/E,Iﬂlﬂxk(y)m)) +o(1) by the Markov property

3

| is( SNy N
LE, (e [P(X,fle emN)+0(9")} +o(1), where 0 < 6 < 1

and = uses the exponential mixing estimate (1.2.3). Since ]P(X,E}C?rl € Ay) is

S?V—ZN . . . . .
converges in distribution to the standard normal dis-
Sy g

tribution by Dobrushin’s theorem, we may conclude that

bounded below, and

is(SN ) N 1+o(1) _2/p s N
Esy, (e VI 1Q[N(X,ENL)> = J2-i ]P’(X,fNil € 2lN>.

Substituting this in (4.2.22) gives the claim.
CLAIM 2: VnJ; N N—> 0 for j # 0.
N o

The claim is proved as in the previous proof, but with (4.2.7) replacing (4.2.6).
Together, claims 1 and 2 imply the theorem. (]

4.3 Notes and references

For a brief account of the history of the local limit theorem, see the synopsis.

Many of the techniques we used in this chapter have a long history. The reduction
of the LLT to the asymptotic analysis of the integrals (4.2.16) and (4.2.21) for ¢ € L!
with Fourier transforms with compact support was already used by Stone [133] for
proving local limit theorems for sums of iid random variables. As mentioned at the
end of the synopsis, the method of characteristic function operators is due to Nagaev
[96], who used it to prove central and local limit theorems for homogeneous Markov
chains, and this method was used extensively in dynamical systems. Hafouta &
Kifer [60], Hafouta [57, 58], and Dragicevié, Froyland, & Gonzéilez-Tokman [45],
used this technique to prove the local limit theorem in a non-homogeneous setup.

The terminology “mixing LLT” is due to Rényi [112], who initiated the study of
the stability of limit theorems under conditioning and changes of measure. The rel-
evance of Mixing LLT to the study of reducible case is noted by Guivarc’h & Hardy
[56]. Mixing LLT have numerous other applications including mixing of special
flows [56, 43], homogenization [37] and skew products (see in particular, Theorem
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5.2 in Chapter 5). Mixing LLT for additive functionals of (stationary) Gibbs-Markov
processes were proved by Aaronson & Denker [4].



Chapter 5
The local limit theorem in the reducible case

In this chapter we prove the local limit theorem for P(Sy —zn € (a,b)) when
wv—E(Sn)

Var(Sy)
asymptotic behavior of P(Sy — zy € (a,b)) depends on the details of f,(Xn, Xn+1)-
The dependence is strong for small intervals, and weak for large intervals.

converges to a finite limit and f is reducible. In the reducible case, the

5.1 Main results

5.1.1 Heuristics and warm up examples

An additive functional is called reducible if
f=g+c

where c is center-tight, and the algebraic range of g is strictly smaller than the al-
gebraic range of f. By the results of Chapter 3, if Var(Sy(f)) — oo, X is uniformly
elliptic, and f is a.s. bounded, then we can choose g to be irreducible. In this case

Sn(f) =Sn(g) +Sn(c).

where Var(Sy(g)) ~ Var(Sy(f)) — oo, Var(Sy(c)) = O(1), and Sy(g) satisfies the
lattice local limit theorem. The contribution of S,(c) cannot be neglected. In this
chapter we give the corrections to the LLT needed to take S,(c) into account.

Before stating our results in general, we discuss two simple examples which
demonstrate the possible effects of Sy(c).

Example 5.1. (Simple random walk with continuous first step and drift): Sup-
pose {X, },>1 are independent real-valued random variables, where X; has distribu-
tion §, and X; (i > 2) are equal to 0, 1 with equal probabilities.

99
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§ could be arbitrary, but we assume that § is continuous (no atoms), § is sup-
ported inside a compact interval [—M,M], and §* := {F} ({-} stands for the frac-
tional part) is not uniformly distributed on [0, 1].

Sy := X1+ -+ Xy is exactly Sy (f), where f,(x,y) := x. Since § is continuous, f
has algebraic range R. The following decomposition shows that f is reducible, with
essential range 7Z: Let §; ; be Kronecker’s delta, then f = g +c where

gn(xay) = (1 - 51,n)x7 Cn(x7y> = 61,"-)‘:7

then g is irreducible with essential range Z, and c is center tight.
We have Sy = (Xp+---+Xy) + X; . Clearly, Sy(g), Sv(c) are independent;
———
Sn(g) Sn(c)
Sy(c) ~ §; and Sy(g) has the binomial distribution B(1,N — 1). We deduce that Sy

has distribution § * B(,N — 1). This distribution has density py(x)dx. The follow-
ing holds as N — oo:

(A) Non-uniform scaling limit for py (x)dx: my := py(x)dx is a positive functional
on C;(R) = {continuous functions with compact support}. Fix zy := E(Sy) = N/2
and let Vi := Var(Sy) ~ N/4. Then for every ¢ € C.(R) and N even,

[ 9= an)px () = B[ (Sy —zn)) = El9 (S (g) + Sv(c) ~2v)]

mez m= m

N-1 /n
— L Elo( - anlPls,e) =l = ¥ (V1) S0 o)
0

N—1 _
= % Z (N 1) y(m— %), where y(m) :=E[¢(F+m)]

m=0 m

1 MZU/N—1 o
ToN-T :g (m+N/2> y(m) ~ m Z y(m) by Stirling’s formula

meZz

Z E[¢(F +m)], as N — co. This also holds for N odd.

Thus the distribution of Sy — z tends to zero in the vague topology of Radon mea-
sure on R “at a rate of 1/v/27N,” and if we inflate it by 1/27Vy then it converges in
the vague topology to §*(counting measure on Z).

Notice that if F* is non-atomic and different from the uniform distribution on
[0,1], then §+(counting measure on Z is not uniform on a closed subgroup of R. By
contrast, in the irreducible case the scaling limit is the Haar measure on G(f).

(B) Non-standard limit for /2nVyP[Sy —zy € (a,b)]: Fixa,b e R\ Zs.t. |a—b| >

1 and P(§* = {a}) = P(F* = {b}) = 0. Repeating the previous calculation with
i € Co(R) such that ¢; < 1(,4) < ¢ gives for zy = E(Sy) that

\V27VNP[Sy — 2 € (a,b)] = Z E[1(p) (m+3F)]. (5.1.1)

N—o0
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This is different than the limit in the irreducible non-lattice LLT (Theorem 4.1):

V2EWPISy — 2 € (a,b)] —— [a—b]; (5.12)
or the limit in the irreducible lattice LLT with range Z (Theorem 4.2):

V2IVNP[Sy — 2w € (a,b)] —— Y 1(4p)(m). (5.1.3)

Nyeo mez

(C) Robustness for large intervals: Although different, the limits in (5.1.1),(5.1.3)
and (5.1.2) are nearly the same as |a — b| — .

The ratio between the limits in (5.1.3),(5.1.2) tends to one as |a — b| — . The
ratio between the limits in (5.1.1),(5.1.3) tends to one too, because supp(F) C
[—-M,M], so |a—b|—2M < Z Liapy(m+3) < |a—b[+2M as., whence

meZ

r IE[l(u.b) (m +S)}

mez

B | N )
Y Ly (m) la—b| |a—b|-e
meZ

Example 5.1 is very special in that S,(g),Sy(c) are independent. Nevertheless,
we will see below that (A),(B),(C) are general phenomena, which also happen when
Sn(g), Sn(h) are strongly correlated. The following simple example demonstrates
another pathology that is quite general:

Example 5.2 (Gradient perturbation of the lazy random walk). Suppose X,,, Y,
independent random variables such that X;, = —1,0, 4-1 with equal probabilities, and
Y, are uniformly distributed in [0, 1]. Let X = {(X,,,¥,,) }n>1-

o The additive functional g,((xs,¥n); (Xu+1,Yn+1)) = X, generates the lazy random
walk on Z, Sy(g) = X; + - - + Xy. It is irreducible, and satisfies the lattice LLT
with range Z.

o The additive functional ¢, ((X,,Yn), (Xn+1,Yn+1)) = Yn — Yn+1 is center-tight, and
Sn(c)=Yyr1—T11.

o The sum f = g+ c is reducible, with algebraic range R (because of c) and essential
range Z (because of g). It generates the process

Sn(f) = Sn(g) +Yn+1 —T1.

Sn(f) lies in a random coset by + Z, where by = Yy 1 — Y. Since the distribution
of by is continuous, P[Sy —zy = k] = 0 for all zy,k € Z, and the standard lattice
LLT fails. To deal with this, we must “shift” Sy — zy back to Z. This leads to the

3 . Z
following (correct) statement: For all zy € Z s.t. \/7% —z,forallk € Z,

8712/2
P[SN—ZN_bN:k] ~ \/77‘/1\,
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Notice the shift by a random bounded quantity by.

5.1.2 The LLT in the reducible case

Theorem 5.1. Let X = {X,,} be a uniformly elliptic Markov chain, and let f be a
reducible a.s. uniformly bounded additive functional with essential range §(f)Z,
where 8(f) # 0. Then there are random variables by = by(X1,Xn+1) and § =
5(X1,X,,...) with the following properties:

(1) For every zy € 8(f)Z such that % — z, for every ¢ € C.(R),

Jim /VNE[9(Sy —av —by)] = Z E[¢p(md(f) +73)].

V2 meZ

(2) For every Ay 41 C Sy measurable such that P[Xy 41 € An+1] is bounded be-
low, and for every x € &

5f -2
lim \/VyE, [0(Sn —2v — bn) [Xng1 € Any1] = Je

N—boo

Z N ) +3)].

mez
(3) byl < 95(F), and 3 € [0, 6(F)).

The statement may seem at first sight different from the previous LLT we dis-
cussed, so we’d like to spend some time on clarifying what it is saying.

o E[¢(Sy —zv —bn)], when viewed as a positive functional on C.(R), represents
the measure on R, my(E) = P[Sy — zy — bn(X1,Xn+1) € E]. This is the distri-
bution of Sy, after a shift by zy + by (X1,Xny+1). The deterministic shift by zy
cancels the drift of Sy (notice that zy = E(Sy)). The random shift by is needed
to force Sy to stay inside 6(f)Z, see Example 5.2.

o The linear functional

() Y E[o f)+3)] (5.1.4)

meZ
defines the element of C.(R)* which represents the measure § *mgs), where
mg ) = 6(f) x counting measure on 6 (f)Z.
So part (1) of Theorem 5.1 says that my — 0 in C.(R)* at rate 1/+/Vy, and gives
the scaling limit v/27Vymy NZ—*: § *mgs(s) when z = 0. See Example 5.1.
o Asin Example 5.1, part (1) implies the following: For all a < b s.t. § has no atoms

in {a,b} + 6(f)Z, and for all zy € 6(f)Z s.t. % -7
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efzz /2

\/m 'M(l(a,b))v and

P[Sy —zv — by € (a,b)] = [1+0(1)]

|a— b as la—b| — oo

A len)~ {m € (ab)] for (a.b) C 0.5(F).

Viewed from this perspective, A(1(4p)) is a “correction” to the term |a — b| in
classical LLT (4.1.1), which is needed for intervals with length of order §(f).

These observations should be sufficient to understand the content of part (1).
Part (2) is a “mixing” version of part (1), in the sense of §4.1.3. Such results are
particularly useful in the reducible setup for the following reason. The random shift
bn(X1,Xy-1) is sometimes a nuisance, and it is tempting to turn it into a determin-
istic quantity by conditioning on Xj,Xy+1. We would have liked to say that part
(1) survives such conditioning, but we cannot. The best we can say in general is
that part (1) remains valid under conditioning of the form X; = x1,Xy+1 € An+1
provided P(Xyy1 € An+1) is bounded below. This the content of part (2). For an
example how to use such a statement, see §5.2.3.

In the following sections, we explore some of the consequences of Theorem 5.1.

5.1.3 Irreducibility as a necessary condition for the mixing LLT

Theorem 5.1 exposes the pathologies that could happen in the reducible case. But is
irreducibility a necessary condition for the non-lattice LLT? No!

Example 5.3. Take example 5.1 with § =uniform distribution on [0, 1]. In this case,

0(f) = 1, F*ms(s) =Lebesgue’s measure, A(1(,)) = |a —b|, and
2
ZN*E(SN) e ¢ /2
———— = 7=>P[Sy—zv € (a,b)] ~ —b|,
Ty z [Sv — 2w € (a,b)] AV ja—b|

even though f is reducible, with essential range Z. Of course, such behavior is im-
mediately destroyed if we modify X.

In this section we show that irreducibility is a necessry condition for the mixing
LLT, provided we impose the mixing LLT not just for (X,f), but also for all (X', ")
obtained from (X, f) by changing finitely many terms.

Let f be an additive functional on a Markov chain X. Denote the state spaces of
X by &, and write X = {X,,},>1, f = {fi}n>1. A sequence of events 2; C &y is
called regular if 2(; are measurable, and P(X,, € 2,,) is bounded away from zero.

o We say that (X,f) satisfies the mixing non-lattice local limit theorem if Vy :=
Var(Sy) — oo, and for every regular sequence of events 2, € S, x € &, for all

zv € R such that w‘/@\’) — z, and for each non-empty interval (a,b),
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—22/2

27'EVN

P, (SN_ZN S (a,b)|XN+1 S Q[N+1> = [1 +0(1)] ¢ \a—b| as N — oo,

o Fix t > 0. We say that (X,f) satisfies the mixing uniform distribution mod ¢
property , if for every regular sequence of events 2, C &, x € Sy,

|a—b|

Px(SN S (a,b)-l—tZ\XNH GQLN+1) ]\L}—w> ;

Theorem 5.2. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain. Given m, let (X, Tp) := ({Xu bnzm, {fna }n>m). The following
are equivalent:

(1) f is irreducible with algebraic range R;
(2) (KX, Tm) satisfy the mixing non-lattice local limit theorem for all m;
(3) (K, Tm) satisfy the mixing uniform distribution mod t for all m andt > 0.

5.1.4 Universal bounds for P[Sy — zn € (a,b)]

So far we have considered the problem of finding P[Sy — zy € (a,b)] up to asymp-
totic equivalence. We now consider the problem of finding P[Sy — zx € (a,b)] up to
bounded multiplicative error, assuming only that Vi — oo.

We already saw that the predictions of the LLT for large intervals (a,b) are nearly
the same both in the reducible and irreducible, lattice and non-lattice cases. There-
fore we expect universal lower and upper bounds, for all sufficiently large intervals
without further assumptions on irreducibility or on the arithmetic structure of the
range. The question is how large is “sufficiently large.”

We certainly cannot expect universal lower and upper bounds for intervals
smaller than the graininess constant of (X,f):

t Gess(X,f) =1tZ,t >0
0(f):==<0 Geu(X,f)=R
R Gess(xaf) = {O}a

because intervals with length less than 0(f) may fall in the gaps of the support of
Sy — zy. Theorem 5.1 can be used to see that universal bounds do apply as soon as
|a—b] > o(f):

Theorem 5.3. Suppose f is an a.s. uniformly bounded additive functional on a uni-
Sformly elliptic Markov chain X. Then for every interval (a,b) of length L > 5(f), for

all zy € R such that % — 7, for all € > 0, for all N large enough,
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—2/2|,_

P(Sy —zw € (a,b)) < ¢ \/MLVNM (1 + 21(Z(f) +e> (5.1.5)
—2/2|,_

P(Sy —zv € (a,b)) > & \/MLVN“ (1 - 5(Lf) —s) (5.1.6)

In addition, if 0 < §(f) < ccand k& (f) S L (k+1)8(f), k €N, then

e—z2/2
( m) k3(f) SP(Sw—2v € (@h)) S ( m) (k+1)3(f)-

Here Ay < By means that limsup(Ay/By) < 1.
N—yoo

We note that both upper and lower bound become asymptotic to the Gaussian
density as L — oo. Notice also that the theorem makes no assumptions on the irre-
ducibility of f.

Theorem 5.3 is an easy corollary of Theorem 5.1, see §5.2.4, but this is an
overkill. At the end of the chapter we will supply a proof of universal bounds for
intervals of length L > 26(f), which does not require the full force of Theorem 5.1,
and which also applies to arrays.

5.2 Proofs

5.2.1 Characteristic functions

Setup: Throughout this section we assume that X = {X,,} is a uniformly elliptic
Markov chain with state spaces &,, marginals u,(E) = P(X, € E), and transition
probabilities 7, ,+1(x,dy) = pn(x,¥)Uns+1(dy) which satisfy the uniform ellipticity
condition with ellipticity constant &.

For every bounded measurable function ¢ : G, X G, ;1 — R, we let

E(¢) :=E[@(Xy,Xut1)], 0(9) := /Var(@(Xy, Xu+1))-

Next we assume that K > 0, € € (0,1) and f = {f,EN) :1 <n <N <} isan

)

array of measurable functions f,SN : 6, X 6,41 — R which satisfy the following

assumptions for all N:
@ E(f,gN)) =0 and ess sup|f| < K.
N
(II) Let Sy := Z f,EN) (X, Xn+1) and Vy := Var(Sy), then there exists C > 0 s.t.
n=1

N
Viy — oo and VLZcz(f,Sm)gc. (5.2.1)
N p=1



106 5 The local limit theorem in the reducible case

) f =F+h+c, where

() F= {IE‘,(ZN)} are measurable functions such that
esssup [F| < K, Guo(X,F) C Z.

(b) h= {hﬁ,N)} are measurable functions such that

N
I['E(h,(fv)):o7 ess sup |h| < K, ZGZ(hE,N))SS.

n=1

(©) c= {CELN)} are constants. Necessarily |c£,N)| < 3K and c,(fv) = —IE(IB‘ELN)).

Let ¢V) := nleEIN).

We are not assuming that E(]F,SM) =0: Fg,N) are integer valued, and we do not wish

to destroy this by subtracting the mean.

Lemma 5.1. Under the above assumptions, for every K >0, m € Z, there are
C,N > 0 s.t. for every N> N, |s| <K, x € &y, and vy : Gny1 — R with
Vvl <1

i(2mm+—=)S ;
E, (el( g +\/W) NVN+1(XN+1)> =l E(vn41(Xn+1)) + v (x)

(N)

_ 12
where E(|n]) < C[ ZV:] o?(hy )}

<Cye.

Proof. In this proof we fix the value of N, and drop the superscripts N for the ease
of notation (for example ™ =¢).

We develop a perturbation theory of transfer operators similar to [12]. Recall the
operators .2, ¢ : L*(&,41) — L*(&,) given by

(Zag)® = [ palry)e S u(r) s (a).

Let £ =&(m,s) :=2mm+ L. Since [, is integer valued,

SV

: . s . . ime i( 2 (]FnJFCn)Jrghn)
& = exp[2mimPF, + \/—VTVIF,, +iEcp+iEhy,)] = 2TMmene \ VN _

We now split e 27" L) - = L, & +.i/”;§ —hé’;g where
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o= eI

u(y)tns1(dy),
. Gn+l

(Zuge) @)= [ ol y)nCe)u(0) s (4),
(Zrgu) )

ié hy+ is (]Fn (x,y)+c,1) is (]Fn (x,y)+c,1) .
[ e [ el ()| ) ).
Ontl1

We claim that there exists C; (K, m) > 0 such that for |s| < K, n > 1

[Zell <1, (5.2.2)

el e < CHE m), (5.2.3)

[ Zaell <1, (5.2.4)

Hi/’”\mé o S C1Em)O (), (5.2.5)
7 = 2 0 (hn)o (fn)

an,é e SC1Km) [6 () + =752 } (5.2.6)

To see this, we represent these operators as integral operators, and estimate their
kernels. For example, .7, - is an integral operator whose kernel has absolute value

i P, ) (5, 9)] < &5 €| (x,¥)]. So
1% el pr < &'V Am2m2 + B ||yl < g5 '\ 42m2 + K |[ha | 2,

and (5.2.5) follows from the identity ||//,]/;2 = o (hy,). Similarly, -:?Zg has kernel
with absolute value

iE hy+is Fp(x.y)+cn is Fn(x.y)+en is Fpn(x,y)+en )
pn(x,y)|e VIV —e VW —iEhy(x,y)] §861|e 4 (elgh" —1)—i&hy|

. Fn(xy)+en - Fn(xy)+en

—gy'|e" VN (ilhy+O(E2D)) —ilha| =5 |e” VW —1||Eh|+ O (RD)

—0 (\/% | (Fs +cn)|) +0 (hy)

where the implicit constants in O(-) are uniform on compact sets of &. It follows
that uniformly on compact sets of &,
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1% el =10 = Oy P YE(n(F + ) ) + Ol 3)
= Oy ") llall2IFw+ cull2 + O n )

= Oy ) lall2 (1 — hall2) + Ol 13)

= O(Vy )l 2 (| full2 + [1enl|2) + O 13)

_ o hali2 ] fall2 2\ _ o[ O)o(fn) | -
_o <\/W + ||h,,||2) —0 (\/W t+o (hn>> ,

as claimed in (5.2.6).

Recall Nagaev’s identity (4.2.1): Ey[e ’5SNVN+1(XN+1)] (AeLrgLnevnir)(x).
The decomposition e~ %" £, £= Z, &t Z &t f & implies that

B (551 (Xvi1) ) = 7 (B (,6) + By (,6) + Bu(x.6))  (527)
where ¢ = ¢®™) = c1+---+cy, and
Dy(x,&):=(Z1g... Lngvns) (%),
(5N(x,§) _ 1;1€2ﬂim(61+m+6k1) (iﬂlé ...ﬁ71’5ﬂ5§k+175 ...§N7§VN+1) (x),

N—-1

Dy (x,E) = Z g 2Fim(c1+Fce-1) (‘,2”17‘: "'%71,§£§§k+1,§ --~§N,§VN+I> (x).
k=1

We will analyze each of these summands.

| Pn(x,.6) - e_sz/z]Ex(VNH(XNH))’ o O uniformly
oo
inson{seR:|s| <K}, x€ Sy, w1 € {vEL”(Snt1): ||| <1}

PROOF: @y (x,&) =E, (exp (zs%) VN4 (XN+1)>, where E(Zivzl F,)=—c

Fix 1 <r < N. Using the decomposition f = F + h + ¢, we find that

\/lva(Ii]FHc) - L}v[]jz_lrfk+\/%(0(r)]ihk>.

By assumption III(b), the L? norm of the second summand is O(1/+/Vy). Therefore
the second term converges to 0 in probability as N — oo, and

Dy (x,&) =E, (6‘/%SNYVN+1(XN+1)> +o(1), (5.2.8)

where we have abused notation and wrote Sy_, = fl(N) +e flsﬁ)r.
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The rate of convergence to 0 depends on r and m, but is uniform when |s| < K

and ||[vy+1]l < 1. At the same time, by exponential mixing (see (1.2.3)), there is
0 < 6 < 1 such that

-
E, <6‘/W N VN+1(XN+1)>

_is_ g _,
=E, [e\/W N EX(VN+1(XN+1)|X17---aXN—r):|

SN

=E, [e WTER, (vN+1(XN+1)|XN_,)} (Markov property)

=E, (e VN [Ex(vy+1(Xn41) + O(Gr)]> (exponential mixing)
=BV VIW)E, (vt (K1) +O(6") (52.9)

where the O(0") is uniform in ||y ]|c-
A similar mixing argument shows that

Ex(SNfr) = E(SN,r|X1 = x) = E(SN) +0(1) = 0(1)

uniformly in x € &;. By Dobrushin’s CLT,

i Sy —Ex(Sy)

B, (eB5-/VW) = [1 +o(1)|Eg(e” V™ ) =[1+0(1)]e*"/? as N — oo.

The claim follows from this, (5.2.8), and (5.2.9).

CLAIM 2. There exists Co(K,m) s.t. for all |s| < K and |[vy41]le < 1,
| @n(x,8)|,1 < Ca(K.m)Ve.
PROOF: || By (v, )11 < L ¢l [|[ L]l [Zvell
N N — JE—
L (1 ell - | L reZie]| |2l 1 Znell)
Suppose |s| < K, then (5.2.3), (5.2.4) and (5.2.6) tell us that

12l [P [ gl < &) o+ <’“>“<f'>] ,

N

| 1eZae]) < 11l e [, < om? [otmy?+ RO,
’ Sl = o L =L [l — VN

Therefore ||y (x,&)||; < C (K.m)?Ly!|o [ (hg)? ‘Z] } By Cauchy-Schwarz,
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N—-1 G(hk)G(fk) N—1 N—1 1 N—1
k;l o ()’ + V. < kg,l o (i)’ + 1; o2 (hy)- VW k;l o*(fi)

<e+V 68, by assumptions II and ITI(b). The claim follows.

CLAIM 3. There exists C3(K,m) s.t. for all |s| <K,
1Pn (x,8) 1 < C3(K,m)V/E.

PROOF. Fix N, vy+1 € L”(Gn1) such that |[vy41 ||« < 1, and define §; € L= (&),
N € R so that

VN1l < 1 and x € &y,

()= (Lrg--Lng)vni = G() +m
where n; :=E [(?k_g . ~§N7§)VN+1 (Xk)] ,and E[(X;)] = 0. Then

N —
[en(x )|, < Y 14e - Lior.e e (G- (5.2.10)
k=1

By (5.2.4), || < 1. We will now work towards a control of {:

SUB-CLAIM. We can decompose (i = §| + ' so that for all |s| < K, there exist
Co,Ko>0and0< 6y <1s.t. forallk=1,...,N—2

161 < 31142l + Koll Geiall1, (5.2.11)

(5.2.12)

Hg}é/”w < 60 <G(fk) + G(fk+1) + G(hk) + G(hk+l)) )

VVy
Proof. In what follows, %} = %} o. Write
M+ =0 = (LreLrvie) Oz = (LreLiire) Mgz + Gis2)

= (LLer1) M2+ (GLir1) G2+ (ZLre L1 — LeLirr) Oesa-
Observe that 1 = 1, 50 (Z-Z+1) Mk+2 = Nik+2- This leads to the decomposition

G = (LLir1) Geaa+ (Lre L1 e —LLis) Qo+ M2 — M

C]i 1"
k

We use this decomposion to define ¢/, §’. This gives the following recursion:

8= (GL1) Gaa + (LGZ1) §lias

pE (5.2.13)
iy = (ZLreLisr e — LeLinr) Qe+ M2 — Mk

Notice that {/, {; both have zero means. This is because in our setup, i;(E) =
P(X; € E) and (Zu)(x) = E(u(Xi41)| Xk = x), whence
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/deﬂk E(Gi(Xk) = E[E(E(Ger2(Xar2)1Xis 1)1 Xe)] = E(Ger2(Xar2)) =0,

and E(¢/) = E() ~E(4) = 0-0=0,

To prove the estimates on ||{/||., we first make the following general obser-
vations. If Yyyo € L*(Sk12), then (LiLhy1 Wit2) (x) = [ plx,2)t+2(dz), where
plx,z) = kaH Pk (X, ) Pr+1(3: 2) i1 (dy). By uniform ellipticity, p > & so we can
decompose py = & + (1 — &)g where gy is a probability density. Hence if W
has zero mean then

(ZLir1 Vi) (x) = & / Vir2d o + (1 — & / Gk (X, Y) W2 (v) a2 (dy)
= (1 —60)/ﬁk(x’y)Wk+2(Y)ﬂk+2(dY)~

Thus [|-Z4 L1 Wier2leo < (1= €0) [ Wici2[[oo-
We apply this to C}érz = (L) Gyo + (LeLir) C]Zrz:
16l < (1 —€0) 16l + |- Lk Zhr1 & 2 o
< (1= &)1 Glloe + | Zillr oo | L 2 166 [
< (1) |Gl + &5 21 a1

The last step is because 0 < p,(x,y) < 861. This proves (5.2.11).
Next we analyze 18 [|ee- Since &’ has zero mean and 742 — 1y is constant, we

can write §{ = ” E(A,é’ ) with E,ﬁ’ = (ZreLri1e — %Lir1) Prgn. Observe that
the kernel of (ﬁkéﬁkﬂé — ﬁ(.ka) is bounded by

const

\/‘TN/ Fr(x,2) + Fry1(2,5) + ek + i) 1 (d2).

By assumptions IT and III, the L'-norm of the kernel is bounded by

0(\}%) <||fk—hk||1 +||fk+1—hk+1||1)
:0( /5] )(||fk|1+|hk||1+||fk+1||1_|_||hk+l||l>

VW

<0 (o) (Il + -+ Uil + D )
Thlslmpllesthat” oo = O(Jﬂ) fi)+ 6 (fir1)+0 () + 0 (hitr)), whence
18711 <2118/l = 0 ( )(G(fk +06(fir1) +0 () + 0 (hesr)). (5.2.12) and the

sub-claim are proved.

We return to the proof of Claim 3. Iterating the estimate in the sub-claim we
conclude that for some constant C
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N—k
2

I agr(g(fk+2r)+G(fk+2r+l)+G(hk+2r)+6(hk+2r+l))
1 v

oY+ Z ( fk+r)+6(hk+r))]'

Since . ¢ are contractions and ||,§;5 |1 < Ci(K,m)o(hy), this implies that

oisk) |
lg<c etz +

r=

~
r

<C

ZHfL: L e L (G|

ZQOZO_ fk+r\/—|‘—T:(hk+r) Zo'(hk)a(])vk] .

k

Km

As in the proof of Claim 2, it follows from the Cauchy Schwartz inequality, (5.2.1),
and assumption III(b) that the sum over k is O(v/€). Hence

Y| Fe e, = owe). (5.2.14)
k

Next we claim that
Y| e G e iG], = 0V, (5.2.15)
k

The proof is similar to the proof of (5.2.14), except that now we use (5.2.13) to see
that as in the proofs of (5.2.5),(5.2.6) and (5.2.12),

”21,5 "'%—1,525 (é]@rl)HLl < C4(F,m)0'(hk) G(fk+l) + G(fk+2) + O-<hk+1) + o-(hk+2)

VW

for some constant C4(K,m).
(5.2.14) and (5.2.15) give us an O(1/€) bound for contribution of §; ;| to (5.2.10).
It remains to estimate the contribution of 1 to (5.2.10).

Split ., ¢ = e*™men 4, + L) ¢- As before,

D‘E,ﬂllg 9%715925(1) :eZEim(Cl+-..+Ck,1)Dzﬂ ﬁcflag?lzé(l)

+Z€2nim(€j+l+m+ck71)9%1’5 "'ngfl 59% ngrl ﬁ(_125(1) (5216)
J

Since E(/) =0, E[(.,?;g 1)(Xx)] = 0. Thus by exponential mixing and (5.2.5), the
first term on the RHS of (5.2.16) is bounded by

G0 || L ]| < C30 (i) 6
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for some constant 63 = 63 (K,m) and 0 < 6 < 1. Similarly each summand in the
second term on the RHS of (5.2.16) has norm less than

1] ¢ | Cs0 (i) 0"~/ < Cao ()04~ (F;+c;)+&h;

s
vV VN

2

< Cyo () 0+ (f(ﬁéj) + G(hj)) :

N

for Cy = Cy (K,m). So the second term on the RHS of (5.2.16) has norm less than

i (OUD | oin
Cso(hy )j:Zle j(\/W-i-O'(hj)) (5.2.17)

for some constant 65.
1t follows that Hg 77 1H is bounded b
ollows tha ; 1€ —1,6Zre(1) | 1s bounded by

i <C3G hk +65G Z ok j< ) G(h)))
=1 AN /
N N
_C3\/kz’162(hk \/Z 92k + Cs Zerz(cf/(‘%) G(hj)>6(hj+r)

r=0 j=1

=

C3\[ N
< +C 0"
< A sz X

20 F.
GV(A{] + Zcﬂ(hj) ZO' jr)

=1

By assumptions II and III, there is a constant Cf, C6 (K,m) such that
Y| e Zien)|| <Cove. (5.2.18)
k

Claim 3 now follows from (5.2.10), (5.2.14), (5.2.15), and (5.2.18).
Lemma 5.1 now follows from Claims 1-3 and (5.2.7). O

5.2.2 Proof of the LLT in the reducible case

Setup and reductions. Let f = {f,,} be an a.s. uniformly bounded additive func-
tional on a Markov chain X = {X,} with state spaces &, and marginals u,(E) =
P(X, € E). We assume that f is not center-tight, and that f is reducible. In this case
Goss(X,f) = O(f)Z with some §(f) > 0. Without loss of generality,

S(F) =1, Ges(F) = Z , E(f,) 1= E[fu(X, Xus1)] = 0 for all n,
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otherwise we center and rescale f.
By the reduction lemma (Lemma 3.1), f = F+ Va4 h 4 c, where

Gug(X,F) = Gy (X, F) =Z
h has summable variances and E(h,) := E(h,(X,,X,+1)) = 0, c = {c,} are con-
stants, and I, a,h,c are a.s. uniformly bounded. There is no loss of generality in
assuming that a = 0, because Theorem 5.1 holds for f with by iff Theorem 5.1
holds for f — Va with b;v(Xl ,XN+]) = bN(X1 s XN+1 ) +an+1 (XN+]) —aj (X])

Henceforth we assume f = F +h+c, and E(f,) = E(h,) =0. So ¢, = —E(F,).
Let

N
¢(N) ==Y E[F(Xi, Xit1)]- (5.2.19)
By Theorem 2.4, the following sum converges a.s.:

HX1,X2,...) Z (X, Xn+1)-

Lemma 5.2. Under the previous assumptions, for every sequence of positive func-
tions vn41 € L (Gn41) s.t. ||vn+1]| # O and for some & > 0

[ owerdie = 8lweallo, (52.20)
Sn+1
forallmeZ,seR, xe &

i(2mm+—=)Sn
E, (e W N1 (XN ))

IE(VN+1 (XN-H))

_ ezm'mC(N)—Sz/zEx <627rmif3> + ON—yo0 ( 1 )

(5.2.21)
where o(-) term converges to 0 uniformly when |m+ is| are bounded, vy are
bounded, and (5.2.20) holds.

Proof. Since the LHS of (5.2.21) remains unchanged upon multiplying vy by a
constant, we may assume that ||[vy41]je = 1.

Fix € > 0 small and r so large that }';>  Var(h;) < €. Fix N. Applying the Integer
Reduction Lemma (Lemma 3.4) to {FF,,}'_,, we obtain a decomposition

Fn(xnvxn+1) :ag-)l(xn+l)_al(z )(xn)+cn +fn (xn;anrl)

where ¢ are bounded integers, and ay) ), i) (+,-) are uniformly bounded mea-

surable integer valued functions such that
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There is no loss of generality in assuming that al(\l,vﬁl = a$N> = 0, otherwise re-
(N)
(y). Then

place 7 (3) by 7N (@, y) —a™ (x), and 7 (x,y) by 7 (x,y) + a0,

Z F, = Z (N) —1—];;,(1\])), whence

=r

Sy —S,— I—an—zcn +h +Cn—z +h _E(ﬁN)'i_hn)'
" (52.22)

(The last equality is because E(Sy —S,—1) =0.)
Let g denote the array with rows gE,N) = A;N) +h, — (N(N) +h,) (n=r,...,N),
N > r. We claim that g satisfies assumptions (I)—(III) of Lemma 5.1. (I) is clear, and

(II) holds by choice of r and because ﬂN) is integer valued. To see (I), note that

i 2/ (N)
G(gn =

2 (FM) + 62 (hy) + 20 (FY)

N
(M + 1) = Y (V) + 0% () +2Cov (f) 1y
=1

1=

N
<2) 2 (fM)+ 62 (hy) (--2ab < &+ b?)

AT
1t

= <Z u, ) ), by choice of f and h.

Since f = F+h+c, u2(F) = u2(f+h) <2[u2(f) +u’(h)], see Lemma 1.4(4). Thus

by Theorem 2.1 and the assumption that h has summable variances,
& 2 - 2 2
Y un(F) <2Y uz(f) +up(h) = O(V) +O(1) = O(Vy).

Assumption (II) is checked.
We now apply Lemma 5.1 to g, and deduce that for every K > 0 and m € Z there

are C,N > 0 such that for all N > N +r, |s| < K, and vy, in the unit ball of L™

3

= (N) 2
_ p2mime™) | —s /ZE(VN-H (Xn+1)) +v—r(X),

E(@ (@t ) (S =S I)VN—H(XN—H)

where ¢V) := —yN_ ( W ) and ||ny—,||1 < Cy/e. Since |[vy11]l = 1, we also
have the trivial bound IMv—r|le < 2.
We are ready to prove the lemma. The left-hand-side of (5.2.21) equals
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irm+——=
E, (e( i +\/W>SNVN+1(XN+1))

E(vy+1(Xn+1))
i2am+—— -8,
5 E (e( T *‘rm)(SN N I)VN+1(XN+1)‘X7-)

_g, [

E(vn+1(Xn+1))
i2Tm+—72=)Sr-1 2 1ime®™) _2 nv—r(Xr)
—E N7 2rimce /2 4 UN—-r\Ar)
' (e ¢ * E(vn+1(Xn+1))
_ e2m’mc(N) —SZ/Z]Ex(eZﬂierfl'*‘O(l)) + 0(371 VE (My—r(X;)), as N — oo,
—
A B

We examine A and B. Let ¢~V ;= Z,’(;ll = —E():,’;ll Fr(Xi,Xi+1)) and recall
that ¢(N) = — Y E(F}). Then
v " 7Ny (V) - (V) )
c(N)=—=) E(Fy)— Z(E(f,l )+¢; ') because Z F, = Z(cn +fn)
k=1 k=r n=r n=r

=¢lr=1 + ™ mod 7., because c,gN) cZ.

By assumption, f = IF + h + ¢ with [F integer valued. Necessarily,
exp(2mimS,_ 1) = exp(2mim$),) + 2ximc" 1)) (5.2.23)
r—1

where §), := Z Iy (X, Xi+1)- By choice of r and Lemma 2.1,
k=1

‘Ex(e’fﬁ) —Ex(eiéf”)

<IEIE: (19— H:[) <18 |Val‘<ki hk(Xk»Xk-H)) " =0(Ve)

uniformly when & varies in a compact domain. Substituting (5.2.23) in A, we obtain
A=l +0(1)]ezm'mc(1v)—%EX <627rim.6+0(\/5)> .

Next, the exponential mixing of X implies that for all N large enough,

B:=E(ny-(X:)) = E(ny-r(X:)) +o(1) = O(Ve).

Thus the left-hand-side of (5.2.21) equals e2%mc(N)=*/2 (2mim$)+0(1)) 4 O(,/g).
The lemma follows, because € was arbitrary. O

Proof of Theorem 5.1. Suppose f is an a.s. uniformly bounded additive functional
on a uniformly elliptic Markov chain X, and assume G (f) = 8(f)Z with 6(f) # 0.

We begin with some reductions. By Theorem 3.3, f has an optimal reduction,
and we can write f = F + F where F has algebraic range 6(f)Z and F is as.
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uniformly bounded and center-tight. There is no loss of generality in assuming
that ess sup |F| < &(f), since this can always be arranged by replacing F, by F,
mod &(f). Next by the gradient lemma (Lemma 2.2), we decompose

F=Va+f+¢
where ess sup [a| < 2ess sup |F|, f has summable variances, and ¢, are constants.
1
It is convenient to introduce f; := %[fn —Va, — E(f, — Va,)]. Note that
Gess(X,f*) =2Z, and
1

f*=—F+h 5.2.24
5(F) +h+c, ( )
where h, := ﬁ [f E(f,)] is a centered additive functional with summable vari-

ances, and ¢, := 5(f) [ +E(fn) —E(fu — Va,)]-
We first prove the theorem in the special case when

6(f)=1,E(f,) =0foralln,and a=0. (5.2.25)

In this case f = f* and (5.2.24) places us in the setup of Lemma 5.2. Given this
lemma, the proof is very similar to the proof of the local limit theorem in the irre-
ducible non-lattice case, but we reproduce it for completeness. We focus on parts
(2) and (3) of the theorem, because part (1) follows from them.

1
Z E[Fy (Xk, Xi41)], and let

Define as in (5.2.19), ¢(N) := —%
k=1

i KXo Xos1)s by = {e(N)}-

Fix ¢ € L'(R) such that supp(¢) C [~L,L], and let vy denote the indicator
function of Ay 1. By the Fourier inversion formula

EX(¢(SN —by _ZN)|XN+1€ Q(NH)

1 L~ E (eig(s,v ~bw—aw )VN+1(XN+1))
/ : E(vv+1(Xn+1))

=5/ déE (5.2.26)

and the task is to find the asymptotic behavior of (5.2.26) in case zy € Z, f —Z.

Let K := ess sup|f| and recall the constant §=65(K (K) from Lemma 4.4. Split
[-L,L] into a finite collection of subintervals /; of length less than min{J,x}, in
such a way that every /; is either bounded away from 277Z, or intersects it an unique
point 27m exactly at its center.

If I;N27Z = @, then Y.d?(§) = oo uniformly on I; (Theorem 3.5). Thus by
(4.2.7), ®y(x,&) — 0 uniformly on I;. In this case can argue as in the proof of

(4.2.18) and show that the contribution of /; to the integral (5.2.26) is o (V) v 2).



118 5 The local limit theorem in the reducible case

If I; N277Z # @, then the center of I; equals 27m for some m € Z. Fix some large
R. Let J; y be the contribution to the integral from the set {§ € /; : |§ —27m| <

RVIQI/Z} and let J/ be the integral over {§ € I; : |§ —27wm| > RVA?I/Z}.
The main contrlbutlon comes from J’ N> because one can show as in Claim 2
—cR?

in §4.2.2 that |J}y| < C e W gy < C which is negligible for

lu \>RV"/2 RV
R>1.

To estimate J', ;N> we make the change of variables E=2am+ F
and b, = {¢( )} we have

E(Sy—by—zv) = ESy —2mmc(N) — —(zv + {c(N)}) mod 2.

s
AYY,
So

e 2mimc(N) g (e"gsNVNH(XNH)) _isnrol)
) ‘X e is \/W ds )
E(vv+1(Xn+1))

!

1 -
Jy=— 2wm+
IN T 2V [ |.;\<R¢(

S
VVn

Fixing R and letting N — oo, we see by Lemma 5.2 that

50 ' .
Wl = LT g, (pmns) [ e s oo ()
- 2r [s|<R

—~ ) '
= ¢(\/%n)Ex <82mmfj> E_Z2/2+0Raoc(1) +0N~>oo(l)~

Combining the estimates for J; 5 we obtain that

6—12/2
V21

if I; intersects 277Z, and this limit is zero otherwise. Hence

lim /ViJy = E, (ez’”m"’) ¢ (2mm),
N—yoo ’

lim \/VNE (¢ (Sy — by — z2v) | Xn+1 € An+1)

n—eo
—2)2 ) —2)2
_ e\/ﬁ Z§ y E, (emefj) ¢(27rm ;ZE ( mef_)) (27rm)
me —L, m
e 212

E, (¥ ) ¢(27mm), where § € [0,1),F:=$ mod Z
var LE(e™)
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8712/2 .
= \/ﬁ ”;Z (6:0)(2nm), where (6,0)(t) := Ey [0 (1 +T)]
-z (g E m 8:
\/ﬁ HE’Z ¢ mEZ *

by the Poisson summation formula.
This proves part (2) of the theorem in the special case (5.2.25), and in particular
for the additive functional f* defined above. Now consider the general case:

Sn(f) —E[Sy(f)] = 0(F)Sn(f*) + any1(Xn+1) — a1 (X1) +Ela1 (X1) — ay+1(Xn11)]

Since part (2) of the theorem holds for f* with § = {Y h,} € [0,1) and by = {c(N)},
it must hold for f with &(f)F and

by (X1, Xn+1) == 8(F){c(N)} +an1(Xn+1) — a1 (X1) + Efar (X1) — a1 (Xv+1)]-

Clearly |by| < 6(f) +4ess sup |a|. Recalling that ess sup |a|] < 2ess sup [F| < 25(f),
we find that ess sup |by| < 98(f), proving part (3) as well. O

5.2.3 Neccessity of the irreducibility assumption

Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. Recall that f, = {f, },>, and X, = {X, },>,. In this section we
prove Theorem 5.2, which asserts the equivalence of the following three conditions:

(a) fis irreducible with algebraic range R.
(b) (X,,f,) satisfies the mixing non-lattice local limit theorem, for all r.
(c) (X,,f,) satisfies the mixing uniform distribution mod 7 for all r and 7 > 0.

(a)=(b): To see this recall that additive functionals on uniformly elliptic Markov
chains are special cases of stably hereditary additive functionals on uniformly ellip-
tic Markov arrays, and apply Theorem 4.3(1) to ¢ continuous with compact support
which approximate indicators of intervals in L' (R).

(b)=>(a): Assume f satisfies the “mixing non-lattice LLT” property. By definition,
Vn — o, and therefore f is not center-tight.

Also, Gue(X,f) =R, otherwise Py(Sy —zn € (a,b)[Xy+1 € Uny1) = 0 for zy
and (a,b) such that zy + (a,b) C R\ Gug(X, ).

If Gogs (X, f) =R then f is irreducible and we are done. Assume by way of contra-
diction that Gg(X,f) # R, then G,y (X, f) = ¢Z for some ¢t > 0 (r = 0 is impossible
because f is not center-tight). There is no loss of generality in assuming that

Gs(X, ) =Z

There is also no loss of generality in assuming that
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E(fu(X,Xn41)) = 0 for all n.

Let S(r = (X, Xp41) + -+ fv(Xn,Xn+1) and V1\</ ") .= Var(Sl(\;)). By the expo-
nential mixing of X (Proposition 1.1),

r—1 oo
V=V | = [Veei +2Cov(SY),S,-1)| < Ve +2 Y Y Cov(fy, fi) = O(1).
j=lk=r
Therefore, for fixed r, Viy/ V —> L.
Since G,(X,R) =R and Gess(X f) =Z, f is reducible, and we can write
f=F+Va+h+c,

where F is irreducible with algebraic range Z, a,(x) are uniformly bounded (say by
K), h has summable variances, E(%,) = 0, and c are constants. Let

N
Y (X, Xns1) = an1(Xys1) — ar(X,) + {— y E(Fk<xk7xk+1>>} :
k=r

'S = Z hl’l(Xn’XnJr]) 5
=1
Sr = Z hn(XnaXn+l)~

By Theorem 2.4, these sums converge almost surely and in L.

s
&i))—)OandP(X €Ay, is
VN

bounded below, then for all ¢ € C.(R) and x, € &,,

As we saw in the proof of Theorem 5.1, if

lim \/22VE,, [6(SY) — by — )] = Y E[p(m+3,)). (5.2.27)

N—eo meZ
We are going to choose r,x,, zy, 2y and ¢ in such a way that (5.2.27) is inconsistent
with (b). Here are the choices:

o Choice of r: Since §, is the tail of a convergent series, 3§, — 0 a.s., whence in

F—yoo
probability. Choose 7 s.t. P(|g,| > 0.2) < 1073.
o Choice of x,: P(|F,| > 0.2) = [Pr(|F/| = 0.2)]u,(dx). So there exist x, € &, s.t.

P, (|3, >0.2) < 107°.

o Choice of 2y: By construction, ess sup |b1(\;)| <2K+1.Divide [-2K — 1,2K + 1]
into equal intervals of length less than 10~ 2. At least one such interval, call it Jy,

satisfies P(b € Jy) > 1072(4K +2)~! and |Jy| < 1072, Let
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Ay = by € Jn).

_m(s)
o zy := —center of Jy, then zy = O(1) and W — 0.
vy
o Choose a sequence Ny — oo such that zy, — a. Let I := —a+[0.4,0.6].

o Choose ¢ € Cc(R)s.t. 0< 9 <1, 9ljg307 =1 and @ g\ 02,08 =0
With these choices,

I%n_ggf 277:VA(, )IP’ (S](\;) —2IN € I|XN+1 € 2[1(\21)
(r)

\%
< hm \/ZEVN,(PX,( —2N, € I|ka Xr,XNAH) S JNk) (because VLN — 1)

< lim /27Vy, Py, (vaz by —zw, €[0.3,0.7] |6y € Jy,). (because for k > 1
—%00

(U

I—by, CI=dy I+ (2, — ,sz+“”k‘) CI+(a—0.1,a+0.1) C[0.3,0.7))
< lim 2TV Es, (9(SY, —bY) —2n) | b, € T+1)

= Z Ey, [0 (m+3,)], by (5.2.27)

mez

< Y P (m+3,€[02,0.8]) <Py (I3, >0.2) <107 < 1.

mez
But this contradicts (b).

(a)=-(c): Suppose (X, f) is non-lattice and irreducible, then (X, f) is non-lattice and
irreducible for all r. Fix t > 0, x; € &1, and some sequence of measurable events

A, C &, such that P(X,, € 2,,) is bounded below. Let SN : ):k i (X, Xier 1)
We show that for every continuous and periodic ¢ (x) with period ¢,

, 1
Ev(9(SY )X i1 € Anar) — /0 0 (x)dx. (5.2.28)

It is enough to show (5.2.28) for trigonometric polynomials ¢ (u) = Yinj<L cpe2minult
as these are dense in C[0,?]. For such functions,

. olr)
Ex(¢(51(\f))|XN+1 €Ani1) = Z aB (€PN /| Xy sy € Anyr)

|n|<L

=co+ Z Dy (x, ztﬂ |QlN+1) ,where @y are the characteristic functions of (X,,f;)
0<|n|<L

= co+o0(1), by irreducibility and (4.2.7).

Since ¢y = % Jo ¢ (u)du, (5.2.28) follows. Standard approximation arguments show
that (5.2.28) implies that
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|a—b|
t

P.(SY) € (a,b)|Xy41 € Ans1) — for all intervals (a,b).
—o0

(c)=-(a): We need the following lemma.
Lemma 5.3. Fix a regular sequence of sets 2y, x, and t > 0, and suppose that

r a—>b
PX(SI(V) S (a,b) +IZ|XN+1 S QlN.H) m |t7|
Jor all intervals (a,b). Then the convergence is uniform in (a,b).
Proof. We are asked to find for each € > 0 an Ny such that
IPL(SY) € (a,b) +1Z|Xn11 € Ay11) — 2| < g forall N > Ny and a < b.

Choose 0 < § < min{%,1}, and divide [0, 1] into finitely many equal disjoint inter-
vals {/;} with length |/;| < 8. Choose Ny so that for all N > Ny, for all /;,

Every interval I := (a,b) can be approximated from within and from outside by
finite (perhaps empty) unions of intervals I; whose total length differs from |a — b
by no more than 28. Summing (5.2.29) over these unions we see that for all n > N,

|1/ 5|1/\

LSy € 1 +1Z[Xn11 € Ay1) (5.2.29)

la— b\+28 O(la—b|+26)

P (S( e I+17Z)|Xny1 € Ang1) <

t t
b|—25 Sla—b
P (S( ’) EI+IZ|XN+1 EQ[NJr]) |a l‘ — ‘at |
By choice of &, [Py (S\)) € I+1Z|Xy11 € Ays1) — 8| <e. O

We can now prove that (¢) = (a). Suppose (X,,f,) has the “mixing uniform
distribution mod #” property for all r and ¢. This property is invariant under cen-
tering, because of Lemma 5.3. So we may assume without loss of generality that
E[fu(Xn,Xn41)] = 0 for all n.

First we claim that (X, f) is not center-tight. Otherwise there are constants ¢y and
M such that P(|Sy — cy| > M) < 0.1 for all N. Take ¢ := 5M and Ny — oo such that
CcN, H—m> ¢ mod tZ, then by the bounded convergence theorem and (c),

0.9 < I}EILP(SNk € [c—2M,c+2M)) SHLP(SN € [c—2M,c+2M]+17Z)

aM
= ]&gn P, (SN €lc—2M,c+2M|+tZ|Xn+1 € 6N+1)y1 (dx) = - =0.8,
S had

a contradiction. Thus (X, f) is not center-tight and Viy — oo.
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Assume by way of contradiction that G (X,f) # R, then Gy (X,f) = tZ for
some ¢, and ¢ # 0 because Viy — oo. Without loss of generality r = 1, otherwise we
can rescale f. By the reduction lemma, we can write

Jn(x,Y) +an(x) = ani1(y) = Fu(x,y) + ha(x,y) +cn

where ay, Fg, hg, ¢ are uniformly bounded, [, are integer valued, 4, have summable
variances, and E(h,) = 0. Then § := Y~ h,(Xn, X,41) converges a.s., and §, :=
Yo r M (X Xnr1) — 0 almost surely.

= r—so0

Working as in the proof of (b) = (a), we construct x € & and r > 1 such that
|E,(e2™57)| > 0.999.

Next we construct a regular sequence of measurable sets 2y, and intervals
Jy with lengths 0.0001 and centers zy = O(1) such that ay+1(Xy+1) —ai(X;) €
Jn, whenever Xy11 € JAn+1,X1 = x.

By Lemma 5.2 with s =0, m = 1, and vy = 1, there are ¢(r,N) € R s.t.

E, (2SN +al)=alve) =) Xy | € Ay ) = RN, (2780) 4 o(1),

as N — oo. Since | 2SN +a(X)) ~a(Xy1)-2) _ ezm(sjv"))l[

XN1€AN+1.X1=2] |- < 0.1,

()
we find that for all N large enough, |E, (ezm(SN X1 € Ay )| > 1.
But this is a contradiction, since (c) implies that

st 12
Ex (7N Xy 11 € Ay11) — 5= / “du = 0.
(T o € ) o 5 [

S0 G55(X,f) =R and (a) is proved. O

5.2.4 Universal bounds for Markov chains

Lemma 5.4. Suppose § is a real random variable such that 0 < § < & almost surely.
Then for every interval (a,b) of length L > §,

<1i) la—b| <8 Y E[l(,;)(mé+3F)] < <1+i) la—b].

meZ

Proof. Fix k large, and divide [0, §) into k intervals /; := % +10, %) For each j,
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8 Y Ell(ap)(mé+3)F )] <5ZE LU0 4 D3 5\ (md)[F € 1]

meZ meZ

—521 )5 5. (mé) <la— b|+1—|—§—>|a bl +1.
= (’1) b+(j+l k

Multiplying by P[§ € I;] and summing over j = 0,...,k — 1 gives the bound
O Ymez B[l (ap)(md +§)] < |a—b[+ 6. Similarly, §Y,ez E[1(qp) (m8 +)] > |a -
b| — 6. The lemma follows. O

Proof of Theorem 5.3: If (f) = oo then there is nothing to prove, and if §(f) =
0 then (X,f) is non-lattice and irreducible, and the universal bounds follow from
Theorem 4.1. So assume 6 (f) is finite and positive.

Suppose w — z. Let § and by (X1, Xy) be as in Theorem 5.1.

Upper bound (5.1.5): Let § := o(f) and auppose (a,b) is an interval of length
L > 8. We may assume without loss of generality that a — 106,b + 105 are not
atoms of § (otherwise change a, b a little).

Suppose w — z, and write zy =Zy + v, Zv € 6Z ,|Cy| < &. Recall that
by Theorem 5.1, |by| < 98. Therefore

Sy —zn € (a,b) =Sv—2Zy—by € (Cl— 105719-1- 105)

So
limsup \/27Vy P, [Sy — zv € (a,b)]
N—soo
< limsup ZEVN]P)X[SN —Zy—by € (a—106,b+ 105)]
Nesoo
=e%/28 ¥ Ell(4 105 5+105)(m8 +3)] by Theorem 5.1
meZ

1) >
<(14+——" ) e %/2(la—b|+208) by L 5.4
( +|a—b|+205) e (la—b| +208) by Lemma

<(la—b|+218)e </ < (1 + 225) e Pla—b|.

Lower bound (5.1.6): Fix an interval (a,b) with length bigger than some L > &(f).
Recall that |by/| are uniformly bounded. Choose some K so that P[|by| < K] = 1 and
fix x € &y s.t. Py[sup|by| < K| = 1.

Next, divide [—K, K] into k disjoint intervals /; y of equal lengt
For each N,

h % with k large.

1
P, [bNEijN]Zl—f

Pybyelj y]>k2 k

because to complete the left-hand-side to one we need to add the probabilities of
[by € I; v for the j s.t. Py[by € I; §] < k2, and there are at most k such events.
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Therefore, we can divide {/; v} into two groups of size at most k: The first con-
tains the /; y with P [by €1 j7N] > k=2, and the second corresponds to events with
total probability less than % (conditioned on X| = x).

Re-index the intervals in the first group (perhaps with repetitions) in such a way
that it takes the form /; y (j = 1,...,k) for all N. Then for each j, 2,y := [by €
I; N, X1 = x] is a regular sequence of events.

Let B, v := center of ;v and set z; vy := zy — Bj n. Every sequence has a sub-
sequence s.t. zjy converges mod &(f). We will henceforth assume that z; y =
Zjn+ o+ Ejv whereZ;y € 8(f)Z and |§jn| < X, and || < 8(f) is fixed.

Recall that |I; x| = % Conditioned on Ay, by = Bjn £ 2K therefore Zin+
Lo+by=zv=E 371(, whence

SN—ZjNn—bn € (a— 50-1-37[(,19— Co— 3}5{) = Sy —zn € (a,b).
There is no loss of generality in assuming that the endpoints of this interval are not
atoms of §, otherwise perturb K a little. Since 2; y is a regular sequence, we have
by Theorem 5.1 part (2) and the lemma that

liAr/ninf V2IVNP(Sy — 2y € (a,b)|A; )
nin :

> li]\r]ninf ZHVN]P(SN —ZjN —by € (Cl— CQ—I— %J)— go — %NQ[/}N)
—yo0

72
=5(fle /7Y E“(m{ﬁ%b*&r%)(ma(f)+g)]

me
> <1 - 6) (Ja—b|— @)6722/2.

We now multiply these bounds by P [2; ] and sum over j. This gives

k
. 5 =\ 2
liminf \/27Vy/ P ([SN—ZN € (a,0)] U%w) > (1 —L) (|a—b\ —6TK)e 2/2 (1

Jj=1

Passing to the limit k — oo, we obtain

5
lil\rlninf\/ZnVNPx([SN—zN € (a,b)]) > (1 - L) 6712/2|(1—b|,
—yo0

and the lower bound is proved.

To prove the last statement of the theorem let 2/ be the positive functional on
C.(R) defined by (5.1.4), and let p., be the Radon measure on R s.t. y(¢) =
@] for ¢ € C.(R). Clearly u is invariant under the translation by 6(f), and the

0,L 1
estimates (5.1.5)—(5.1.6) which we proved above show that lim m = —.
L—o L /27T
It follows that for each a, U [a,a+ 8(f)) = % whence
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Vk €N py(ja,a+8(kF))) = ’“S\/;Q. (5.2.30)

Given an interval (a,b) of length L with k6(f) < L < (k+ 1)d(f) take two intervals
I=,I" such that

" C(a,b)CI™, uy QI )=py(d17)=0, [I"|=k8(f), [IT|=(k+1)5(f).
Next let ¢, ¢ be continuous functions with compact support such that
11— < (P_ < l[a,b] < ¢+ < 11+.

Then for large N, /VwP(Sy — zv € (a,b)) is sandwiched between <7 (¢~ ) and
7 (¢T) which in turn is sandwiched between

_ ko(f) (k+1)56(f)
Har ) V21 Her(I7) V2rm
where the equalities rely on (5.2.30). The proof of the theorem is complete. O

5.2.5 Universal bounds for Markov arrays

Next, we give a different proof of universal lower and upper bounds, which does not
rely on Theorem 5.1, and which also applies to arrays.

Theorem 5.4. Let X be a uniformly elliptic Markov array, and f an a.s. uniformly
bounded additive functional which is stably hereditary and not center tight. For

every € > 0 there is N > 0 as follows. Suppose wEGN) e R, and |a—b| >
\/W N—oo

26(f) + &, then for all N > N,

2 2
1 [e/?la—b] e /2|a—b|
(eSO Cprsy— b)) <3| &40
3( o) SESv—ave (@) V2V

Recall that by our conventions, the Fourier transform of an L' functiony: R — R
is ¥(x) = |7 e ™y(t)dt. Fix some b > 0, and define the Fourier pair

V(1) = 1 0) W) = o (Sin(bx)> |

X

Lemma 5.5. 1 <, (x) < 5 for x| < £ and |y, (x)| < 1 for |x| > 7.

Proof. The function Y, (x) is even, with zeroes at z, = wn/b, n € Z\ {0}. The crit-
ical points are ¢o = 0 and +c, where n > 1 and

T
¢y = the unique solution of tan(bc,) = bc, in (zn,z,, + Z)
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It is easy to see that ¢, = z, + 35, — (1) as n — oo, and that

senlFi(en)] = (1) [Filew)| < 5. Falew) ~ 5

as n — oo,

So Y, attains global maximum ¥ (0) = Z at co, and | (t)| < 5 everywhere on

[wn/b,m(n+1)/b].

In particular, |y, ()| < 1/2 for |t| > 7/b. On (0,7/b) the function is decreasing
from its global maximum ﬁ/\b( ) =5 to ¥,(%) =0, passing through ¥, () = 1. It
follows that 1 < ¥, (7) < % on (0, 2’2) and |y,(1)| < 1 fort > 7. The lemma follows,
because Wy (—1) = Yy (2). O

Lemma 5.6. There exist two continuous functions 1 (x), v (x) s.t. supp(y;) C [-2,2];

1(0) > 1 1(0) < 3 and () < 1 g (x) < Bolx) (x€ R)

Proof. Throughout this proof, y** := yx---x ¥ (n times), where * denotes the

convolution. Let y; (¢) := l[l//*f“(t) —yi%(t)]. Then 7 (x) = %[VA/% (x)*— I/A/% (x)?]. By
2

Lemma 5.5, 1 < ll/l Z on [ 7, 7] and |1T/%| < 1 outside [—7, 7. So

maxi(o) < max 00— = 1 [(5) = (5)] <1

L4 2
ma < ma — =0.
max Y(x) < max g 0" =y)

S0 71 (x) < 1j_g 4(x) forall x € R.

It is obvious from the definition of the convolution that supp(y;) = {x+y+z+w:

x,,2,wE [~ 5, %]} = [—2,2]. Here is the calculation showing that % (0) > :

. n? n?
(v () = @(H—b,b} 1 _pp))(t) = @1[721;,217] (t)(2b— [t])

(Wi (0) = (v v;%)(0)
e
= 5650 /,m 1(op 20 () (2D — [t]) 1 pp) (—1) (26— | — t])dt
T4 2 5 T 2 5
= /_2b(2bf|t|) di = 7128174/0 (2b—1)2dt
_ o ()
S 128p% 3 48b°
x4 _ *2 _ 1w b5
So Wl 0) =72 Wl (0)=7,and % (0) = 3(3 —F) > 3
2
Next we set}/z( ) (l//| *Y1 )(#) =TG- 1_ 1y (t)(1—¢]). Then supp(y2) = [~ 1, 1]
and (0) = T < 3. Finally, % > 1[_z z(x), because by Lemma 5.5,

o H(t) = (ﬁ/%)z(x) > 1 forall |x| < i = 7, and
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~

° Yz(t)Z(A%)z(x)zOforall x| > 7. O

Proof of Theorem 5.4. There is no loss of generality in assuming that G (X,f) =
Z, otherwise we scale f. In this case |/| > 2. Notice that we can always center / by
modifying zy by a constant. So we may take

I =[—a,d], witha > 1.

Let ¥(¢) be the functions constructed in Lemma 5.6, then

() zum=n(D).

a
Therefore

P.(Sy —zv €1) = Ex[1;(Sy —zv)] > E, [?1 (W)]

—E, [ [ ey, (z)dt} — [ B F Oy o).

Recalling that supp(y;) C [—2,2], and substituting ¢ = a& /7, we obtain

|I| 21 /a

_ > —iE(SN=IN) Yy (95 Vg E
P(Sy—awv €1) > 5 _M/aEx(e m(Z)ds
Similarly, we have
1| e —iE(Sy— ag
_ < i€(Sn—zwn) a5 .
P(Sy—av €1) < 5 72n/aEx(e )1(F)dE

Thus to complete the proof of the theorem it sufficient to show that under the as-
sumptions of Theorem 5.4,

_ an—E(Sy)
Lemma 5.7. If G.s(f) = Z and N s R, then for every a > 1

21/a

V'V / E(e’i‘g(sN’ZN))n(%)dé —— Vare 17 3(0)
. —oo
—2r/a

and the convergence is uniform in a on compact subsets of R\ [—1,1].

Proof. In what follows we fix i € {1,2} and let y(§) := ,(%) Divide [—2%, 27]
into segments /; of length at most 0, where 8 is given by Lemma 5.2, making sure
that Iy is centered at zero. Let

S = [ Bale B0 E)e.
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CLAIM 1. /VyJon = 21e</2y(0).

Proof. The proof is similar to the proof of (4.2.17). N
Applying corollary 5.3 to the interval I, and noting that Ay (Ip) = 0 and Ey =0
we find that _ B
[Ey(e = ON=N))| < Cexp(—€&2Vy).
. B a2 ..
So for every R > 1, vV VN[&EIO‘€‘>\/LV7N Ex(e lé(SN ZN))’)/(&)dé = O(e €R )' Simi-

larly, for all N large enough

3

y R v
\/V>N/5€Io:él<\/LE(e Fn(E)dE = / B(e "V )Y(A=)dn

‘ SN ]ESN)) in(zN—]E(SN))
_/ Ee VW e VI (4 )dn

7\/Vn
L / e 31 +”’Z}/(O)a’n + 0N— (1) uniformly on compact sets of a

=27 77 Y(0) + 0 o0 (1) + 0N (1),

1. .
where = is a consequence of Dobrushin’s CLT and the bounded convergence theo-
rem. In summary,

_ 1.2
\/VNJ(),N: 2me” 2° ’)/(0)+0RH°<,(1)+0NH°0(1).

Fixing R, we see that limsup v/VyJo v and liminf+/VyJo v are both equal to
1
V21e” 3 7(0) + opses(1).

. . . S . 12
Passing to the limit R — oo gives us that the limit exists and is equal to v/2e™ 2% ¥(0).
It is not difficult to see that the convergence is uniform on compact subsets of a.

CLAIM 2. /WNJ, N = 0 for every j # 0.
—3o0
Proof. Since G (f) = 7Z, the co-range is H(f) = 2nZ. So

I; C [~ 2,27\ int(ly) C acompact subset of R\ H(f).

a’ a

This implies by the stable hereditary property of f that

Dy (&) —— co uniformly on [},
N—yo0

whence by (5.6), |E, (e~ Mv=w)))| = 0 uniformly on /.
—yo0

Let Ay := —log{sup [Eg(e =S| : (x,&) € &) x I}, then A} JYEd

and this divergence is uniform for a ranging over compact subsets of R\ [—1,1].
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From this point onward, the proof is identical to the proof of (4.2.18). We omit
the details.

The Lemma follows by summing over all subintervals /; in [— 27”, 27”], and noting
that the number of these intervals is uniformly bounded (by 1+ %”) . ]

5.3 Notes and references

Dolgopyat proved a version of Theorem 5.1 for sums of independent random vari-
ables. The connection between the LLT and uniform distribution modulo ¢ was
considered for sums of independent random variables by Prohorov [109], Rozanov
[115], and Gamkrelidze [50].

The question of estimating P[Sy — zy € (a,b)] is related to the study of the rate
of convergence in the CLT. In particular, a Berry-Esseen type result on the rate of
convergence in the CLT would certainly imply that 3M s.t. for all |a — b| > M, if

2

W — z, then for all N large enough, P[Sy — zy € (a,b)] equals *\/ﬂ‘i‘“]f‘ u
to bounded multiplicative error. Such results were shown to us by Y. Hafouta. The
Berry-Esseen approach has the advantage of gives information on the time N when
the universal estimates kick in, but has the disadvantage that it only applies to very
large intervals (how large depends on the growth of the third moment of Sy). By
contrast, the results of this chapter apply to intervals of length > &(f), which is
optimal, but do not say on how large N should be for the estimates to work.



Chapter 6
Local limit theorems for large and moderate
deviations

In this chapter we prove the local limit theorem in the regimes of moderate and
large deviations. In these cases the asymptotic behavior of P(Sy — zy € (a,b)) is
determined by the log-moment generating functions of Sy, through their Legendre
transforms, the “rate functions.”

6.1 The moderate deviations and large deviations regimes

Suppose f is an irreducible, a.s. uniformly bounded, additive functional on a uni-
formly elliptic Markov chain X, with algebraic range R or tZ with ¢ > 0. Let

Sy = filX1,X2) + -+ fy(Xn,Xny1) , Vv = Var(Sy).

In the previous chapters, we analyzed P(Sy —zy € (a,b)) as N — oo, in the

regime of local deviations, zy —E(Sy) ~ const+/Var(Sy). In this chapter we ask
av—E(Sy)
Var(SN)

(1) Moderate deviations: zy — E(Sy) = o(Var(Sy)),
(2) Large deviations: |zy — E(Sy)| > €Var(Sy) for some € > 0 and all N.

what happens when — oo, We consider two cases:

It is instructive to compare the regime of large deviations to the regime of the
LLT from the point of view of universality. The asymptotic behavior of P[Sy —
zv € (a,b)] in the regime of local deviations does not depend on the details of the
distributions of f;,(X,,Xu+1)- It depends only on rough features such as Var(Sy),
the algebraic range, and (in case the algebraic range is ¢Z) on the constants cy
s.t. Sy € cy +tZ almost surely. By contrast, in the regime of large deviations the
asymptotic behavior of P[Sy — zy € (a,b)] depends on the entire distribution of Sy.
The dependence is through the Legendre transform of log E(e’¥ )—a function which
encodes the entire distribution of Sy, and not only its rough features.

We will consider two partial remedies to the lack of universality:

131
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(a) Conditioning: The conditional distributions of Sy — z,, given that Sy —zy > a
has a universal scaling limit, see Corollary 6.2.

(b) Moderate deviations: If |zy — E(Sy)| = o(Var(Sy)), then P[Sy —zy € (a,b)]
have universal lower and upper bounds (Theorems 6.3, 6.4).

Before we continue to present our results, we need to discuss a subtle but impor-

tant point related to the definition of the regime of large deviations.

E(Sn)

Our definition allows —-= E(Sy)

to grow arbitrarily fast. But if Z"’*T grows too

fast, e.g. when % 732(5"’ ) 5 2ess i};vp‘s”’ L, then the probabilities P[Sy — zy € (0,0)] are
all equal to zero, and the problem we are studying is vacuous.

A related issue arises when w falls at the boundary of the domain of the

Legendre transforms of ¢ +— % log E(¢(Sv—E(S¥))) . Why this matters will be clear
once we explain the strategy of our proofs (see the end of §6.3.1 and §6.4). At this
point we can only present an example which shows that in this case the behavior of

P[Sy — zv € (a,b)] may depend not just on lim w but also on zy itself:

Example 6.1. Consider the case Sy = Xj + --- + Xy where X; are iid’s equal to
—1,0, 1 with equal probabilities.

Here E(Sy) = 0, Vy = 2N/3, the Legendre transforms of the log-moment gen-
erating functions have domains (— %, %), and the classical theory of large deviations
says that if f —z € (—3,3), then lim ﬁlogIP’[SN — zy > 0] is finite. But no such
conclusion holds when ‘Z,ﬂ — %:

N
o If zy = N, then [Sy — zy > 0] = @ and y-logP[Sy —zy > 0] = —o;
o If zy = N —1, then [Sy —zy > 0] = [Sy = N, and ﬁlogP[SN —zy >0 =—3;

olIf zy =N —2, then %logP[SN —zy > 0] ~ %logN.
So the behavior of Sy — zy when f,—’}‘\’, — % depends on zy.

For general additive functionals on inhomogeneous Markov chains, we do not
know how to determine the asymptotic behavior of P[Sy —zy € (a,b)] when £ is
close to the boundary of

1
Cy := domain of the Legendre transform of Ve logE(e (Sn—E(Sn)) ).

For this reason, we will only consider the regime of large deviations in the case

when 22 s well inside int(Cy) for all N.
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6.2 Local limit theorems for large deviations

6.2.1 The log moment generating functions

Suppose |f| < K almost surely. For every N such that Viy # 0, we define the normal-
ized log moment generating function of Sy to be

Fn(E) = ViNlogE(eﬁN) (€ €R).

The a.s. uniform boundedness of f guarantees the finiteness of the expectation, and
the real analyticity of #y(€) on R.

N

Example 6.2. Suppose that Sy = Z X, where X,, where Xy are i.i.d. bounded ran-
n=1

dom variables with non-zero variance. Let X denote the common law of X,,. Then

Fn(E) = Fx(E) =

Var(X) logE(¢%¥) is independent of .

(i) Fx (&) is strictly convex, by Holder’s inequality and because X # const a.s. Since
Fx (&) is smooth, its second derivative must be strictly bigger than zero on com-
pacts. So Zy (&) are uniformly strictly convex on compacts.

(ii)élim F5(€) = essinf(X)/Var(X), élim F4 (&) = ess sup(X)/Var(X). To see
oo oo

this, use convexity to see that lim.7} (&) are the slopes of the asymptotes of
Fx(&), or equivalently lim %QN(.‘,‘) The last limits can be easily found to be

equal to ess sup(X)/Var(X) as & — oo, and ess inf(X)/Var(X) as & — —co.

Properties (i) and (ii) play a key role in the study of large deviations for sums of i.i.d.
random variables. A significant part of the effort in this chapter is to understand to
which extent similar results holds in the setting of bounded additive functionals of
uniformly elliptic Markov chains. We start with the following facts.

Theorem 6.1. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X, and assume Vy # 0 for all N > Ny, then

(1) For all N > No, Zy(0) =0, F(0) = 522 7i(0) = 1.

(2) For every N > Ny, Fn(&) is strictly convex on R.

(3) The convexity is uniform on compacts: For every R > 0 there is C = C(R) positive
s.t. forall N > No, C~1 < Z{(E) < Con [-R,R].

(4) Suppose Vy — oo. For every € > 0 there are §,Ng > 0 s.t. for all || < 6, N > Ng,
we have e~ ¢ < F(§) < ¢f, and

6_8% (éE(SN)>2 <ﬁN(§)*ESVN)€ Ses% <§E€VN)>2.
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This is very similar to what happens for iid’s, but there is one important difference:
In our setting Vy may be much smaller than N.
For the proof of this theorem see §6.3.5. Here is an immediate corollary:

Corollary 6.1. Suppose f is an a.s. uniformly bounded additive functional on a uni-
Sformly elliptic Markov chain X. If Vi := Var(Sy) — oo, then for all 0 < a < % and

K>O,U‘W~KV§“0¢SN—)OO, then

Proof. There is no loss of generality in assuming that E(Sy) = 0 for all N. Let
a, :=V)=2% b, :=V* W, :=S,/b,. Then a, — o, whence by Theorem 6.1(4),

1 & 1
e i EWny — 1 20 (5 y_ 12
F(8): Jim logE(e>™) = lim V, JN(Vna) 56
We may now use the Girtner-Ellis Theorem see e.g. [47, Thm I1.6.1]) and af—’én — K
to deduce that gﬂélogp[sn — 7, >0 = r}ijgeainlogp[‘;v—: > af—'l’)n] = _%KZ, O

6.2.2 The rate functions

Suppose Vy # 0. The rate functions .#y(7n) are the Legendre transforms of
Fn(&). Specifically, let ay := inf.%}; and by := sup.Zy; then Iy : (an,by) — R is
In(n) :=En — Fy(€) for the unique € s.t. 75, (E) = 1.

The existence and uniqueness of £ is because of the smoothness and strict convexity
of .Zx on R. We call (ay,by) the domain of %y, and denote it by

dom(#y) := (an,bn).

Equivalently, dom(.%y) = (F'(—o0), #'(+0)), where .#'(+e0) := lim .F#'(t).

t—>too
Later we will also need the sets (af,b%) C dom(.%y), where R > 0 and

a® == F4(~R), bR :=.F4(R). (6.2.1)

The functions .#y and their domains depend on N. The following theorem iden-
tifies certain uniformity and universality in their behavior.

Theorem 6.2. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X, and assume Vy # 0 for all N large enough, then

(1) 3¢,N1,R > 0 s.t. for all N > Ny, for all N > Ny,



6.2 Local limit theorems for large deviations 135

dom(#y) D [af,bR] D [E%N) —c, EEZVN) +c} .

(2) For each R there exists p = p(R) and Ny s.t. p~' < 7Y < p on [al,bR].
(3) Suppose Vy — oo. For every € > 0 there exists 8 > 0 and N¢ such that for all
ne 52 ( ) SESN + 6] and N > N,

ot (- BV < <t (- BOY

(4) Suppose Vy — o and w — 0, then
oy, 1+o(l) (zv —E(Sy) 2
WIN| = | = N — .
N N(VN> 2 VN as —

The proof of the theorem will be given in §6.3.6.
The significance of part (4) will become apparent in §6.2.3.

6.2.3 The LLT for moderate deviations.

Recall that the state spaces of X are denoted by &; (i > 1), and that P, denotes the
conditional probability given X| = x.

Theorem 6.3. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X. Suppose f is irreducible with algebraic range R. If zy € R

satisfy M — 0, then for every non-empty (a,b) and x € &,

Py[Sy —zv € (a,b)] = [1+0(1)] %exp (-vNyN (%)) ,

2
IPX[SN—zNe(a,b)]:[1+0(1)]%ex _1+20(1) (ZN;I%SN)) ]

as N — oo,

Theorem 6.4. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X. Assume f is irreducible with algebraic range 7, and Sy €

¢y + Z almost surely. If zy € cy + Z satisfy M — 0, then for every x € Sy,

Py[Sy =zv] = weXP <—VNfN <ZN)> ,

2nVy Vi
o [I+e()] 14+0(1) (zv —E(Sy)\°
]P’x[SN—ZN]—W — ) ( \/VTV ) ‘|



136 6 Local limit theorems for large and moderate deviations
as N — oo,

We will obtain these results as special cases of a more complicated and general
asymptotic relation which we will state in the next section.

The two asymptotic relations in Theorems 6.3 and 6.4 complement each other.
The first is a precise asymptotic, but it is not universal, because it is expressed
in terms of the rate functions, which depend on the fine details of the distribu-
tions of Sy. The second is universal, but it is not an asymptotic equivalence be-

cause the right-hand-side is only determined up to a multiplicative error of size

explo( 2722,

6.2.4 The LLT for large deviations.

Recall the definition of the subsets (a¥,bR) := (Z(—R), Z}(R)) C dom(SFy)
from (6.2.1). It is convenient to define

7 E(Sn) E(Sy)
~R 7R R R

,by| = — by —

[ay . by] {aN w N Vi

Theorem 6.5. Let f be an a.s. uniformly bounded, irreducible, additive functional
on a uniformly elliptic Markov chain X. For every R large enough there are functions

pn: 61 % {ﬁf;,,/l;ﬂ — R, &y : [5§,,/l;§] — R as follows:

(1) 3¢ > 0 such that [Zif,,gllf,] D [—c,c] for all N large enough.

(2) Non Lattice case: Suppose G14(X,f) =R, then for every sequence of zy € R
s.t. %N(SN) € [&f,,gﬁ], for all finite non-empty intervals (a,b), and for every
X € G4, we have the following asymptotic as N — oo:

(s [ (),

Vv

—VNJN(‘ZT%)

Py[Sy—zn € (a,b)] =[1+0(1)]: 2Vy

(3) Lattice case: Suppose Gu4(X,f) = Z and Sy € cy +Z a.s., then for every se-

quence of zy € cy + 7 s.t. W

(a,b) and x € &, the following asymptotic holds when N — o:

€ [&\f,j)\ﬁ], for all finite non-empty intervals

*VN'ﬁN(%) 7t§N<ZN*E(SN)>
PX[SN—ZNG (a7b)] — [1+0(1)]. ow (=, w=E@SN) \ | Z e Vv
V2TVy ( & ) 1€(a.b)NZ

(4) Properties of the error terms:

(a) pn(x,n) are bounded away from 0,00 on &1 X [Zif(,,gﬁ] uniformly in N, and
pn(x,1) - 1 uniformly in N and x.
n—
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(b) There exists C > 0 such that for all € [&f;,@ﬁ] and N, C~'n| < |E&v(n)| <
Cln| and sgn(&(n)) = sgn(n).

The proof of this result will occupy is in §§6.3.1-6.3.7.
Theorem 6.5 above assumes irreducibility. Without this assumption we have a
following weaker bound.

Theorem 6.6. Suppose Viy — oo. For each €, R there is D(g,R) and Ny such that for
all zy € [F},(€),bR] and N > Ny

s VVNP(SN > zv)

D
()

<D.

To assist the reader in digesting the statement of Theorem 6.5, we now explain
how to use it to obtain Theorems 6.3, 6.4 on moderate deviations, as well as other
consequences.

Proof of Theorems 6.3 and 6.4: By Theorem 6.5(1), 9R > 0 s.t. if W — 0,
then W € [a®,bR] for all N large enough, and

b w—E(Sy)
oyl 2ROy gy (B g /[‘W W dt— 1.

N—roo VN b—a

Suppose G, (X, f) = R, then theorem 6.5(a) implies that

la—b|
PlSy — 2y € (a,b)] ~ V(v /VN).
[Sn —zn € (a,b)] \/WCXP( NN (v /Vn))
Next, by Theorem 6.2(a), if w — 0, then
w1 [z—E@Sy)\’
vy ()~ L (2N )
N N(VN> 2< VA%,

whence P[Sy —zy € (a,b)] ~ \‘/% exp(— Hg(l) (Z”T}E‘,(T;SN) )?). This proves Theorem

6.3. The proof of Theorem 6.4 is similar, and we leave it to the reader. O

Here are some other consequences of Theorem 6.5.

Corollary 6.2. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain. Suppose f is irreducible, with algebraic range R.

(1) If W — 0 then for any finite non empty interval (a,b) the distribution of
Sy — zw conditioned on Sy — zy € (a,b) is asymptotically uniform on (a,b).

(2) If liminfw > 0 and there exists R s.1. w € [&5‘;,,2’;] for all suffi-
ciently large N, then the distribution of
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—E(S
En <ZNVN(N)> -(Sy — zw) conditioned on Sy > zy
is asymptotically exponential with parameter 1.

Remark. The condition in (2) is satisfied whenever liminf ZN%
iN— IE(SN)

is positive, and

E(Sn)
N

limsup > 0 is small enough, see Theorem 6.5(1).

Proof. To see part (1), note first that if %= E(SN) — 0, then &y = éN(W) —
0, whence B_—a fa —1&N dy = 1 for every non-empty interval (o, ). Thus by
—o0

Theorem 6.5, for every interval [¢,d] C [a, D],

lim IEDX[SN_ZN S (Cvd)] _ |C_d|
VLB Sy—ew e @b)]  la—bl

(the prefactors py are identical, and they cancel out).
To see part (2), note first that our assumptions on zy guarantee that &y =

En W) is bounded from away from zero and infinity, and that all its limit

points are strictly positive.
Suppose &y, — &. Then arguing as in part (1) it is not difficult to see that for all
(a,b) C (0,00) and r > 0,

lim ]P)x[gNk (SNk —ZNk) € (Cl + r’b+ r)‘SNk > ZNk] —e '
k= P [EN, (Sn, —2nv,) € (a,b)|SN, > zn] :

Since this is true for all convergent {&y, }, and since any subsequence of {&y} has a
convergent subsequence,

. PEv(Sy—zw) € (a+rnb+r) Sy > ],
liminf =e
N—veo P.[En(Sy —zn) € (a,D)|Sy > zn]
limsup TSN (SN —zw) € (@t rb+ Sy >an] _
Noeo  Pu[En(Sy —2n) € (a,0)|Sn > 2]

and so lim Py[Ev(Sy —zn) € (a+rb+7)|Sy > zv]

N—ew  P[En(Sy —2zn) € (a,b)|Sy > zv]
Zv, Ev(Sy — zwv) is asymptotically exponential with parameter 1. U

= e~ ". So conditioned on Sy >

Corollary 6.3. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain. Suppose f is irreducible, with algebraic range Z. Let zy be a
sequence of integers.

(1) If %N(SN) — 0 then for any a < b in 7 the distribution of Sy — zy conditioned
on Sy — zy € [a,b] is asymptotically uniform on [a,b].
(2) IfliminfM > 0 and there exists R s.1. w [aR, bR] Sfor all suffi-

ciently large N, Ex (M) — &, then
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(Sy — zw) conditioned on Sy > zy
is asymptotically geometric with parameter e%.

The proof is similar to the proof in the non-lattice case, so we omit it.

It worthwhile to note the following consequence of this result. In the follow-
ing statement, “local distribution” means a functional on C.(R) and “vague con-
vergence” means convergence on all continuous functions with compact support.

Corollary 6.4. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain. Let 7y be a sequence s.t. for some R W € [Zif;,,gﬁ for
large N. Let Cy be the local distribution of Sy around 7y, that is Ey (@) =E (¢ (Sy —
zn)). Let € be a vague limit of {gnCn} for some sequence gy > 0. If f is irreducible
then § has density c1e?' with respect to the Haar measure on the algebraic range
of f for some ¢c; € Ry, cy € R.

It is likely that if the restriction %N(SN) € [ﬁﬁ,,gﬁ] is dropped then { is either a

measure described above or an atomic measure with one atom, but our methods are
insufficient for proving this.

6.3 Proofs

We prove Theorems 6.1, 6.2 and 6.5. (Theorems 6.3 and 6.4 are direct consequences,
and were proved in §6.2.4.)

We assume throughout that {X,} is a uniformly elliptic Markov chain with
state spaces &, transition probabilities 7, ,41(x,dy), and stationary distributions
U (E) :=P(Xy € E). Let f = {f,} be an a.s. uniformly bounded additive functional
on X. Let & denote the ellipticity constant of X, and K = ess sup[f|.

6.3.1 Strategy of proof

The proof can be briefly described as an implementation of “change of measure”
technique (aka “Cramér’s transform”).

We explain the idea. Suppose f is an a.s. uniformly bounded additive functional
on a uniformly elliptic Markov chain X, and let zyy be as in Theorem 6.5. We will
modify the transition probabilities of X = {X,} to generate a Markov array X =

{)?,EM} whose row sums Sy = fi ()ZI(N),)?Z(N)) +--- +fN()?1£,N),)?IE,?1) satisfy

w—ESy) =0 <\/Var(§N)). 6.3.1)
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(6.3.1) places us in the regime of local deviations which we have analyzed in Chap-
ter 4. The results of that chapter provide asymptotics for P(Sy —zy € (a,b)), and
these can be translated into asymptotics for P(Sy —zy € (a,b)).

The array X is constructed from (X,f) as follows: Let &, and 7, ,,11 (x,dy) denote
the state spaces and transition probabilities of the original Markov chain X, then we
take f,gN) = fu, 6§,N> =&, and we let X be the Markov array with state spaces GS,N)
and transition probabilities

~(N) (.x, dy) = e5N~ﬂl(x%Y) M

T P& Iy (x,En) Topns1(x,dy).

n,n+1

Here &y is a parameter that is calibrated to get (6.3.1), and p,, Ay, h,+ 1 are chosen

to guarantee that ﬁiﬁll

a “change of measure.”

(x,dy) has total mass equal to one. This technique is called

wv—E(Sy)
%
know that % belong to a sets where .#y are strictly convex, uniformly in N. This

The value of &y depends on . To construct £y and to control it, we must

is the reason why we need to assume that 3R s.t. Z’V*‘],E& S [ﬁf,,z;ﬁ] for all N, a
N

|%<SN)\ < ¢ with ¢ small enough.'
N

We remark that the dependence of £y on N means that {)?,EN)} is an array, not a
chain. The fact that the change of measure produces arrays from chains is the reason
we insisted on working with arrays in the first part of this work.

condition we can check as soon as

6.3.2 A parametrized family of changes of measure

In this section we construct, for an arbitrary given sequence of constants &y € R,
transition probabilities of the form

~ vy) 1 (),
2, (x,dy) = vl gpn@;)l }(, (iNé)N) 1 (x,dy), (63.2)

where p,(Ey) are real numbers and hf” () = h (-, EN) are positive functions on &y

%(N )

which are chosen to guarantee that 7, "

(x,dy) has total mass equal to one.

We treat the sequence of parameters &y as arbitrary. In the next section we will
explain how to choose a particular {€x} to guarantee (6.3.1).

Lemma 6.1. Given £ € R and a, € R, there are unique numbers p,(§) € R,
and unique non-negative hy(-,&) € L*(6,, B(6,), ) st [g, hn(x,E)n(dx) =
exp(a,&) for all n, and for a.e. x

! Other situations where the condition %N(SN) € [@®,bR] can be checked are discussed in §6.4.
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y i (1,8)
Efalay) 1 OhG) dy) = 1. 6.3.3
‘/6n+le el hy,(x, &) Tt (1:7) ©33

Remark.: Notice that if {h,(-,&)}, {p,(€)} satisfy the Lemma with a, = 0, then the

unique solution with general {a,} is given by

hn(7§) = eanéﬁn("é) ) pn(é) ::ﬁn(é> _ang +an+1§- (6.3.4)

Evidently, s, p, give rise to the same probability kernel (6.3.2) as do hn, D,,- We call
{h,} and {p,} the fundamental solution.

Proof. Tt is enough to prove the existence and uniqueness of the fundamental solu-
tion, so henceforth we assume a,, = 0. We may also assume without loss of gener-
ality that |§| < 1, else scale f.

SetV, :=L*(&,,%(6,), U,), and define operators LS :Var1 — Vi by

L) = [ D)1 (5. 63.5)
S

n+1

The operators LS are linear, bounded, and positive.

For (6.3.3) to hold, it is necessary and sufficient that ht (+) := hy(+, &) be positive
a.e., and LEth = e”"(é)hé for some p, (&) € R.

Positivity everywhere may be replaced by the weaker property that hs e L=\ {0}
are all non-negative a.e., because for such functions, since |f| < K a.s. and X is
uniformly elliptic with ellipticity constant &,

B (x) = e P& Put©) (L85 1

- n+2)(x) > efpn(é)fﬁn+1(é)f2K80||h

f+2||1-

Thus to prove the lemma it is enough to find a sequence numbers p,(&§) € R and

non-negative hy e L” \ {0} such that L hf = P& hs for some pn(&) eR.
The existence and uniqueness of such “generalized eigenvectors” can be proved
as in [48],[15],[70] using Hilbert’s projective metrics. We recall what these are.

LetC,:={h€V,:h>0a.e. }. These are closed cones and LS (Cut1) C C,. Define

M(h|g)
m(h|g)
where M = M(f|g),m =m(f|g) are the best constants in the estimate mh < f < Mh.

This is a pseudo-metric on the interior of C,, and d(h,g) = 0 < h, g are proportional.
Also, for all h,g € C, \ {0},

dn(hg) :=log( ) € (0.5, (hgeCy).

< ehhg) 1. (6.3.6)

I 7

1
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Birkhoff’s theorem [13] says that any linear map 7 : C,,.» — C, such that the d,—
diameter of T(C,+2) in C,, is less than some A > 0, contracts the Hilbert’s projetive
metric at least by a factor 6 := tanh(A/4) € (0,1).

We will apply Birkhoff’s theorem to the linear transformations

TS = L1815, : Cuia — G

One checks using the standing assumptions and || < 1 that
e HKey|h| < (Tfh)(x) < e2K£0_2||hH1 (h € Cpya), (6.3.7)

whence dn(Tnéh, 1) < 4K +3log(1/&p). So the diameter of T¢ (Cuy2) in Gy is less
than A := 8K + 6log(1/&). Hence by Birkhoff’s Theorem mentioned above,

dn(Tni]h,Yng) < 9dn+2(hag) (h7g € Cn+2)' (638)

where 0 := tanh(2K + 3 log(1/¢)) € (0,1).

It follows that for every n, {Ls Lf e

quence with respect to d,,. By (6.3.6),

-.L}§+k7116n+k}k2] C G, is a Cauchy se-

&ré g
Ly Ln+1 B 'Ln+k71 16n+k
&8 ¢
||LﬂLn+1 e S 16;1+k||1

is a Cauchy sequence in L!.
The limiting function hé has integral one, and is positive and bounded, because
of (6.3.7). Clearly, L,‘%hf+l = ep'lhﬁ for some p,, € R. So {h,‘%}7 {pn} exist.

Moreover, the proof shows that diam (ﬂkzl L---L® (C,,+k)) = 0. It follows

‘n+k—1

that h,‘g, is unique up to multiplicative constant, whence by the normalization condi-
tion, unique. The lemma is proved. U

The proof has the following consequence, which we mention for future reference:
For every R > 0, there exists Cp > 0 and 6 € (0,1) (depending on R) such that for
every |E| <R

dy (L - Ljh s 15+ L31) < Co8™ o (1)) (6.3.9)

The case when N is even follows directly from (6.3.8) and does not require the
constant Cp. The case of odd N is obtained from the even case by using the expo-
nential contraction of t Lg e Lzév and the fact that one additional application of L‘]g (or

any other positive linear operator) does not increase the Hilbert norm. This implies
(6.3.9) with Co := 671/2,

Lemma 6.2. Let I (-)=h(-,&) be as in Lemma 6.1. If a, is bounded, then for every
R >0 thereisC=C(R) s.t. foralln > 1, a.e. x € S, and |E| <R,
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C ' < hn(x,E)|<C and C ' <em® <.

Proof. Tt is enough to consider the fundamental solution (a, = 0, [h, = 1); the
general case follows from (6.3.4). It is also sufficient to consider the case |£| < 1;
the general case follows by scaling f.

Let {hﬁ} be the fundamental solution, then in the notation of the previous proof,
TEhS = P& tpn@)ps | whence by (6.3.7),

672[(80 S epn(§)+p)1+l(5)h§+2 g e2K8(;2.

Integrating, and recalling that [ hS 1o = exp(a,2§) = 0, we obtain

€_2K£0 < ePn(é)"’PnH(g) < 62K80_2-

So e’4K£§ < hs() < e4K8(;4.
Observe that e = [ L; hSJr]d,un-H =K | hf 14t 1. SO e is also uniformly
bounded away from zero and infinity. O

In the next section we will choose &y to guarantee (6.3.1), and as it turns out, the

2
choice involves a condition on aa 5” . Later, we will also require information on aa 5”2” .

In preparation for this, we will now study the differentiability of
&> hE and & - pa(&).

The map & — hg takes values in the Banach space L™. To analyze it, we will use the
theory of real-analytic maps into Banach spaces [36].

Let us briefly review this theory. Suppose X,%2) are Banach spaces. Let a, : X" —
2 be a multilinear map. The norm of a, is ||a,|| := sup{||an(x1,...,x:)|| : x; €
X, |Jxi]] <1 for all i}. A multilinear map is called symmetric if it is invariant under
the permutation of its coordinates. Given x € X, we denote

apx" := ap(x,...,x).

A power series is a formal expression ).~ a,x" where a,, : X" — %) are multilinear
and symmetric.

A function ¢ : X — 9) is called real analytic at x if there is some » > 0 and a
power series Y. a,x" (called the Taylor series at xo) such that ¥ ||a,||"" < e and

9(x) = ¢(x0) + Y, an(x —x0)"

n>1
whenever ||x —xp|| < r. One can check that if this happens, then

d

cee — X0+ ) tixi). 6.3.10
R IS T

t,=0 i=1

1 d
An(X1y. .. xn) = o d—tl
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Conversely, if Y a, (x —xo)" has positive radius of convergence with a,, as in (6.3.10),
then ¢ is real-analytic, and equal to its Taylor series ¢(xp) + Y a,(x —xp)" on a
neighborhood of xj.

Example 6.3. Let ¢ : X x X x R — X be the map ¢(x,y,z) := x—y/z. Then ¢ is
real-analytic at every (xo,y0,20) such that zo # 0, with Taylor series

¢(x,y,2) = 9(x0,50,20) + Y, an(x—X0,y—y0,2—20)",

n=1

where [la,|| = O(|lyol/|zo"*") + O(n/|zo]"*1).

Proof. If |z—zo| < |z0|, thenx—y/z=x— %Zkzo(—l)k%(z—z())k. For eachn > 1,
Xp = (XOaYOaZO)’ X = ('xiayiazi) (1 <i< n)’ and (tlr . 7t'l) eR",

k
n n < (] k—+1 n n
¢ (xo+ ZT tix;) = X0+ ZT tix; + sz) (ZkOJ)rl ()’0 + Z fiYi) <ZT liZi>
1= = — — =

i=1

converges in norm whenever (1,...,1,) € A, := [| L/, tizi| < |20]]. In particular,
on A,, this series is real-analytic in each #;, and can be differentiated term-by-term
infinitely many times.

To find a,(x,...,x,) we observe that the differential (6.3.10) is equal to the
coefficient of ¢, - - - t,, in the previous series. So for n > 2,

-1 n+1y0 1) 2 N
an(llw“a&n):%'Zl"‘ln+( ,,) Y viziezieza
) 0 =1

where the hat above z; indicates that the i-th term should be omitted. It follows that
llanll = O(lyoll/|zo["*") + O(n/|z0]").- O

Lemma 6.3. The functions & — e ,n(&) are real-analytic. If a,, is bounded, then
Jor every R > 0 there is C(R) > 0 s.1. for every |E| <Randn > 1,

H;*Sh”("&) <C(R), H;;hn(~,é)

<C(R).

oo oo

Proof. The proof is based on §3.3 in [46], although it is somewhat simpler because
our setup is more elementary than in that paper.

It is enough to consider the special case R = 1 and a,, = 0. In particular, [ hg =1

Fix ] <1 and let T, := T, hn(+) = hy(-, &) be as in the proof of Lemma 6.1.
Define two Banach spaces:

X:= {(Sn)neN :

Y i={(@n)nen : @0 € L7 (6n12) , [|@]] := sup || @yl < o0}

Sp 1 L7 (6,42) — L7(6,,) are bounded linear
operators, and ||S|| := sup,, [|Sx|| < e
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Using (6.3.7), it is not difficult to see that T := (T},) belongs to X. By Lemma 6.2,
h:= (hy)nen belongs to Y.

STEP 1. There exists 0 < § < 1 s.t. for every (S,9) € X XY, for all |§| <1, if
IS—T| < & and ||@ —h| < &, then inf| [(S,@uy2)| > 6.

Proof. By (6.3.7), ||T,|| < M where M := eZKS(;Z, and by Lemma 6.2, there is a
constant & > 0 so that forall n and |§] < 1

&1 < (Tuhnia)(x) < g .
Soif ||S—T| < & and || @ —h|| < &, then

‘Sn(Pn+2| > |Tnhn+2‘ - |(Tn _Sn)hn+2| - ‘Sn(hn+2 - (Pn+2)|
2 & —||T =S|l = (IS =T+ [T [DIIh— @l
> g —O||h|| —(6+M)0.
Let C be a uniform upper bound for ||| which holds for all |§| < 1. If0 < & <
(%)/\ ], then ‘Sn(Pn-Q—Zl > 6

Henceforth we fix § as in step 1. Let Bg(T) :={S€ X : ||S—T| < 8} and
Bs(h):={@ €Y :|@—h| <}, and define

SnPrv2
Y :Bs(T)xBg(h) =Y, Y(S,0):= ((p,, - f(Sn‘»"nJrZ)dNnH)neN'
This is well-defined by the choice of 8, and Y'(T,h) = 0.
STEP 2. Y is real-analytic on Bg(T) x Bg(h).
Proof. First we write T = ®&(T(), Y@ 10)) with

YO X xy -y, YW(S 9)=0

YO XxY =Y, YOS 0) = (Sy0n12)nen

O xxY — %, T<3)(S, (p) = (I(Sn¢n+2)dun+2)neN-
D {(p,y,&) €Y XY x £~ :inf|&| >0} =Y,

O O O O

P((9.v,8)i=1) = (@i =& Wit
5
Bystep 1, Y := (Y, ¥® 1)) maps B5(T) x Bs(h) into
U:={(o,y,8) €Y xY xL7:|lo| <C+8,[lyl| <M+, inf|5]| > 5/2},

whence into the domain of ®.

We claim that for each of the functions Y'¥), some high enough derivative of T'¢)
is identically zero. Let D be the derivative, and let D; be the partial derivative with
respect to the i-th variable, then

(1) YW is linear, so (DY) (S, @) is constant, and D*11) = 0.
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Q@) YO :XxY =Y, YOS, 0) = (S,0n2)nen. Here

(DIY®)(S,9)(S') = (SyPus2)ncz (DITP)(S,0) =0
(D21 P)(S,9)(9) = (Si@r2)nez (DIT)(S,0) =0
(D1D2Y))(S,9)(S',9') = (51} 2)nez
We see that DY () does not depend on (S, @), so D°Y =0

B) Y X xY ==, YO(S,0) = ([(Sy@ni2)dtni2)nen. As before, the third
derivative is zero.

Consequently, ') are real-analytic on its domain (with finite Taylor series at
every point). Next we show that @ is real-analytic on U. To do this we recall that by

Example 6.3, x — % =Y an(x0,y0,20) (x — X0,y — 0,2 — 20)" Where a,(x0,y0,20) :

n=0
(R3)" — R are symmetric multilinear functions depending on (xo,yo,zo), such that

llan (x0,0,20) || = O(Iy0l /20" 1) + O(n/]z0]"). So

=

(o, y,8) = D(00 Yy EO) 1 Y 4,(p— 0Oy -y & Oy (63.11)

n=1

where A, : (Y x T x £°)" — Y, has entries

An((@W, w0 EM) L (), y) £y () 1=
an (07 (), 97 (), &) (0 (), WV (), &) (0 (), w (1), E))

A, inherits multilinearity and symmetry from a,, and by construction,

0
0. w00 <500 { anr0.30:0) ] <ol ool < €+ + 8, ol > 5 |
=0(2"n/8").

So the right-hand-side of (6.3.11) has positive radius of convergence, proving the
analyticity of @: U — Y.

The step follows from the well-known result that the composition of real-analytic
functions is real-analytic, see [36].

CLAIM 4. (DY)(T,h) : Y — Y, the partial derivative of Y at (T, h) with respect to
the second variable, has bounded inverse.

Proof. A direct calculation shows that (DY) (T,h)(¢) = ¢ — A, where

Tn(PnJrZ _ (f(Tn(PrHZ)d.un) h.
S (Tohn2)duy J (T 2)dp, "

To prove the claim, we show that A has spectral radius < 1.

(A(p)n =

Let T,fk) =Ty T2 Thyo(k—1), then we claim that
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Tn(k> Pnt2k . f(T (Pn+2k)d“" (6.3.12)
® © " B
J (T bk )d J (T o) d it

To see this we first note, using T/iyi2 o< by and [ hyd i, = 1, that

(Af), =

J @ Ohn)dtn = [ Tanaditn [tz

With this identity in mind, the formula for A* follows by induction.
We now explain why (6.3.12) implies that the spectral radius of A is less than
one. Fix ¢ € Y. Recall that C~1 < h, < C forall n, and let

V= +2C|¢|h.
Then y € Y, Aky = A¥¢ for all k (because Ah = 0), and for all n
Cllollhn < wu < 3C[|@| (6.3.13)

In particular, if C, is the cone from the proof of Lemma 6.1, and d,, is its projective
Hilbert metric, then y, € C, and d,(y,,h,) < log3. Since T,, contracts the Hilbert
projective norm by a factor 6 € (0,1),

k k
Ap (T W2 T M) < 0¥ log 3.

This implies by the definition of d, that for a.e. x € G,

(%" wn+2k><x>/f<T<"> Vaiz)
(120 () S (1 B 20)

The denominator simplifies to 4,. So

< max{39k -1,1—- 3_9k} =: &.

T Wn+2k)

[
J(Tn llfn+2k)

< glnl. (6.3.14)

oo

Next we use the positivity of T,l(k) and (6.3.13) to note that

CloI T huyon < T Wor < 3C1 @I T

Using [ (T,fk) huiok) = 1, we deduce that

f(Tn(k) Wit 2k)
3

Clloll <
J 7,0 2k

<3C|gl. (6.3.15)

By (6.3.12), (6.3.14) and (6.3.15),
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T o J T Yo "
) ) o

T T ok [T hygok

S/ e Wit 2k

f7;1(k>hn+2k

1A%l = Ay = sup

n

k
T o _h

< sup
S e Witk

n

<3Ce]|h[l- ],

=

-sup
n

whence p(A) < lim /g =0 < 1.

COMPLETION OF THE PROOF OF THE LEMMA. We constructed a real-analytic
function ¥ : X x ¥ — Y such that Y'(T,h) = 0 and (D,Y)(T,h) : Y — Y has a
bounded inverse. By the implicit function theorem for real-analytic functions on
Banach spaces [137], T has a neighborhood W C X where one can define a real-
analytic function A : W — Y so that Y'(S,A(S)) = 0.

Recall that 7 = T¢ := {T,{: ben and b = {h,(-, &) },>1. By the uniqueness part of
Lemma 6.1, h(T) = h(-, ). Itis easy to see using ess sup|f| < oo that & — T is real-
analytic (even holomorphic). So & h(Té) is real-analytic, whence continuously
differentiable infinitely many times.

It follow that & — hy,(+, &) is real-analytic for all n, and

ok d
{aa”‘"<"5>}n>1 = JEh(T) <Y

for all k. By the definition of ¥, sup sup||%hn(~,§)\|w = ||%h(T)|| < oo and
El<1n=1

92 92
sup sup ha(5,6) ]| = h(T)|| < oe. O
E|<1nz] ||3§2 n( ‘5)” “352 ( )H

6.3.3 Choosing the parameters

Given § € R and {a,} C R bounded, let {Xv,f }n>1 denote the Markov chain with the
initial distribution and state spaces of X, but with transition probabilities

= _ Ehty) P (06)
Tane (oY) = € e gy T (o),
where p,(&) and hf (-) = hy(-,&) are as in Lemma 6.1. (This chain does not depend
on the choice of {a, }, see the remark after the statement of Lemma 6.1.) Denote the
expectation and variance operators of this chain by ES, V.

In this section we show that if Viy := Var(Sy) — e and W

small, then it is possible to choose &y and a,, bounded s.t.

is sufficiently

vy —E (Sn)
Vav(Sy)

N—roo

0 and Y p(0) = E(Sx).

n=1
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Indeed, we will find &y so that ES¥ (Sy) = zy + O(1). The construction will show
that if 2=25% — 0, then &y — 0.

Let ﬁf = hp(-,&) : &, = (0,%0) and p,(&) € R be the fundamental solution:
L3R, = eP OF: and [T, (x, E)in(dx) = 1. Then iy = e~ h, (-, &) and 7, (E) =
pn(§) +and —ani 1€ so

7 (x,dy) = 5 /(=) fl’“r( X6

5)
n,n+1 PO ( é)n’n,nJrl(xady)-

Let Py (&) :=P1 (&) +---+Dn(&).

Lemma 6.4. £ — Py (&) is real analytic, and for every R > 0 there is a constant
C(R) such that for all |&] <R and N € N,

(1) [Px(8) —ES(Sn)| < C(R): )
(2) Suppose Viy — . Then C(R)™' < V&(Sy)/Vy < C(R) for all N and |E| < R,
and Py (E)/VE(S) ~ 1 uniformly in |E| < R.

Proof. We have the identity ¢"¥(8) = [ (Lf - -L,%E}g\, +1)(x) 1 (dx). Since & — A and
& LS are real-analytic, & — Py(&) is real-analytic.
Given x € G (the state space of X|), define two measures on Hﬁ.\’: JEI &; so that for
every E; € Z(6;) 1 <i<N-+1),
T(Ex X -~ X Eny1) :=P(Xa € E,..., Xy11 € Env1]|X1 = x1)

S (Esx - X Eny1) = PS(XF € Ea,... Xs, | € Ens1]XP = x1)

Let Sy (x,y) == f(x,y1) + X fi(yiyis1). then

~€ -
dTCX Xy _P h )
dﬂx (yz,...,)’NH):egSN( ’2)6’ PN(é) <N+l(yN+l §)> .

El (x,é)

By Lemma 6.3, & — d”* = (

d [dﬂﬁ} - {SN(X,X)—PN@) g _ d (hN“ Ont1:6) )] dz . We write this as

¥2,---,YN+1) is real-analytic. Differentiating, gives

dg Ldm, 1 Ow1,€) dE 7 (x,8)
~& =~
d [azf] . 47
& idﬂ'xi = {SN(X,X)—PN(§)+8N(X7)’N+17§)} dTrx’ (6.3.16)
where &y (x,yn41,6) = ENfil(yNiié jé (h“}:l((y”g)"‘:)). By Lemmas 6.2 and 6.3,

ey(x,yn+1,§) is uniformly bounded in N, x,y, and || <R.
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3
By the intermediate value theorem and the uniform boundedness of & — 7 5 [d”‘ }

I R
on compact subsets of £ € R, 1 [d’:f”x — ‘é’% } is uniformly bounded for 0 < || < 1.

So by the bounded convergence theorem
/lim1 dﬁ“§+5 — d%){? dm, = lim
5»0h | dm, dm. | 5-0 h

% [‘“‘x}dnx—o whence by (6.3.16), 0 = E3(Sy) — Ply(£) + O(1), where
| 5

1 [ az
dm, dm,

] dm, =0.

= x). Integrating with respect to x we obtain that

/

Py(&) =ES(Sy) +0(1)

uniformly in [|§| <R, N — oo,
Differentiating (6.3.16) again we obtain

2 =& ~&
dd?z [iﬁj di; [272 (SN(xvY)—P;v(é)+€N(x’yN+1,€))]

32 {(SN(X y) F;V(é)+8N(x,yN+17§))2 _

By Lemmas 6.2 and 6.3, d.ﬁ is uniformly bounded in x,yy1,N and || < R. As

before, [ L 3 dm, IE: diit “dm, = 0, whence

& an
0= | (v~ Ph(&) + o)’ | ~Phtg) + o0
— 8| (sv B (5w) + o)) | - Ph(&)+ o) (6:3.17)
= V(s - Phi)+0 (/75w

where the O(1) terms are uniformly bounded in N when |&| < R.
If || <R, then fn +1(x,dy) are uniformly elliptic with & replaced by &/ (C*e¥)
for the C in Lemma 6.2. Therefore by Theorem 2.1, V& (Sy) = YV, u2(€) where

up (&) are the structure constants of ~{X,',5 }. Clearly, u, (&) =< uy Where up = up(0) are

the structure constants of {X,,}. So V& (Sy) =< Viy — oo where the multiplicative error

bounds is uniform in N and || < R. By (6.3.17), Py (&)/V5(Sy) ! O
o0

The choice of ay: Lemma 6.4(1) with & = 0 says that Py (0) = E(Sy) 4+ O(1). The
error term is a nuisance, and we will choose a, to get rid of it. Given N, let



6.3 Proofs 151

=/

an =E(Sy_1) =P, ,(0), a;:=0 (6.3.18)

This is a bounded sequence, because of Lemma 6.4(1). The choice of {a,} leads to
the following objects:

I () = ha(x,€) 1= exp(an ) (x,€),

_ (6.3.19)
Pn(&) = Du(8) + (ant1 —an)$.

The transition kernel ﬁf_n 41 is left unchanged, because the differences between hy,
and %, and between p,, and p, cancel out. But now,

Py(&) :=p1(§) + -+ pn(§) = Pn(§) + (E(Sn) — Py(0))E, (6.3.20)
satisfies Py (0) = E(Sw).

Properties of Py(&): These functions turn out to be closely related to the distribu-
tional properties of X and its change of measure XE.

Recall that Fy (&) := %logE(e";‘SN), and that V¢ is the variance of Sy with

respect to the change of measure X% Then:
Lemma 6.5. Suppose Viy — oo then & — Py(&) is real analytic, and
(1) Py(0) = E(Sy)
(2) For every R > 0, there exists C(R) > 0 s..
[PV (8) ~E*(Sw)| < C(R) forall || <R.N€EN.
(3) For every R > 0, there exists C(R) > 0 s.t.
C(R)™" <V5(Sy)/Vw <C(R) forall |E| <R, N €N.

(4) PL(E) VS (Sy) o 1 uniformly on compact subsets of £.
o0
(5) Bu(E)/Vy = Fn(E) +0(Vy ') uniformly on compact subsets of &, as N — co.

Specifically, let Ay(R) := sup Vy ‘QN(?j) - P"’V—ff)‘ . Then sup Ay (R) < oo for all
IEI<R N
R >0, and supAy(R) —— 0.
N R—0T

(6) PL(E)/Vy = FH(E) +O(Vy") uniformly on compact subsets of &, as N — co.

Specifically, let Ay(R) := sup Vy ‘9,(,(5) - Pl/}',(é) . Then sup Ay(R) < co.
E|<R N N>No

Proof. The real analyticity of Py(&) and parts (1)—~(4) follow directly from Lemma
6.4, the identity Py (&) = Py(€) + (an+1 — a1 )&, and the boundness of a,,.

The proof of part (5) uses the operators Ls: L*(6py1) — L7(6,) from (6.3.5),
(Lﬁh) (x) = fenﬂ eéfn(x.,y)h(y),rnﬂle (x,dy) = Ey[es XD p(X, 1 1)].
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Let hg = hy(-,€) € L*(6,) be the unique positive functions constructed so
that Lshf+1 = el’"(é)hs, where p1 (&) + -+ pn(&) = Py(&). (To construct hs, ap-
ply Lemma 6.1 with a,, as in (6.3.19).) In particular, 2% = 1 and

E, (e‘gSNhNH(XNH)) = PV (). (6.3.21)

By Lemma 6.2, there exists C; = C;(R) > 1 such that Cl_1 < hfv
|E| < Rand N > 1. Thus by (6.3.21),

< C; for all

Ci(R) 2N <E (eésN) < CI (RN,

Taking logarithms, we deduce that |y (&) — Py (&) /Vn| <2Ci(R)/Vy forall N > 1
and |€| < R. Equivalently, supy Ay (R) < 2C;.

Next, by Lemma 6.3 and the identity 10 = 1, thév — 1| o 0 uniformly on
300

compact subsets of &. Returning to the definition of C;(R) we find that we may
choose Ci(R) —— 1. As before, this implies that supy An(R) P Y 0.
R—0 —

Here is the proof of part (6). Fix R > 0 and let E$ denote the expectation operator
with respect to the change of measure X&, then

s en E(SyeSSv) K (SN(hf /hzév+1))
VNyN(‘S) = E(ef:SN) - EE (hel;—/hlg\’jtl) ’ (6:3.22)

We have already remarked that XS are uniformly elliptic, and that their uniform
ellipticity constants are bounded away from zero for £ ranging on a compact set.
This gives us the mixing bounds in Proposition 1.1 with the same Cp,;, > 0,0 < 6 < 1
for all |§| <R. So

:

o (HESy s e N

S (héN> — B (hF)ES (1/hlév+1)E5(SN)+0(1)asN—><x>7
N+1

¢
~ h ~ ~
B (};) = BE(h5)ES (1/15,,) +0(8Y), as N = o
N+1

where the big oh’s are uniform for |£| < R. Plugging this into (6.3.22) gives
VnZ4(E) =ES (Sy) +O(1) as N — oo, uniformly for |&] < R.

Part (6) follows from this from part (2) of the lemma. O

The choice of &y: We choose &y so that Py (Ey) = zv , ESV(Sy) = zy + O(1). The
following lemma give sufficient conditions for the existence of such &y.
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Lemma 6.6. Suppose Vy — oo, R > 0, and

E%N) L FN(R)+ E%N)} :

a5 = [%(—R) -

(1) For each R there is C(R), N(R) s.t. if%}\l(s"’) € [sz,,g[’f,], and N > N(R) then

(a) Ny € [~(R+1), (R+1)] s.t. Py(En) =2,
(b) C(R)™ |2 | < [y < C(R) |2
(c) sgn(éy) = sng)
(d) ‘EéN Sn) _ZN‘ <C(R

>

(2) For every R > 1 there exists ¢(R) > 0 such that for all N large enough,

v —E(Sw)
%5

—E(S ~
if Z’VVJ < ¢(R), then e [ak . bR] (6.3.23)
N

Consequently, if | M| < ¢(R), then there exists a unique Ey with (a)—(d) above.

Proof. Let [aX,bR] = Pa( Ri/ E(Sn) ’ PN(R)V E(Sn)
N N

CLAIM: For all R > 0, for all N large enough,

@R, bR) c [ak ! bf* < @kt ek

Proof of the claim: By parts (3) and (4) of Lemma 6.5, there exists § > 0 such that
Py(&)/Vy > 6 on [ (R+2),(R+2)]. Thus by the mean value theorem,

Z§+2 2’5§+1 18, ’l;§+1 > b +8, ~1R+2 <a ~R+1 -, 5§+1 < a}%_&

Next by part (6) of Lemma 6.5, \Zﬁl —bF| = O(Vy!') and a® —a®| = O(Vy!) for
all R < R+ 2. For all N large enough [O(Vy )| < §, and

/\R+2 < ~R+1

aftt <l < bR < bR < bR

which proves the claim.

Py (§) —&Py(0)

We can now prove part (1) of the lemma. Let @y (&) := v
N

. By
Lemma 6.5, @y (&) is strictly convex, smooth, and

v — Py (0)

Py(éy)=zv iff @y(éy) = Ve

Fix R > 0. By the claim, for all N large enough, if %N(SN) € [Zl\f;,,gff,], then

ZN*;\’]/V(O) = ZN*%SN) e [a®*! bR = f [~ (R+1), (R+1)]. Since @}, is continu-
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ous and strictly increasing, there 3!Ey € [—(R+ 1),(R+ 1)] such that @y (Ey) =
W. Equivalently, there exists a unique |§y| < R+ 1 such that P (Ey) = zn.

This argument shows that for every N sufficiently large, for every n € [Zl\ﬁ,,/l;]l\e[]
there exists a unique & = &(n) € [-(R+1),(R+ 1)] such that

en(E(m) =

n
By Lemma 6.5, 35(R) > 0 so that §(R) < ¢}y < §(R)~! on [-(R+1),(R
b). By

1)].Son+—&(n)is m-bl Lipschitz on [aX, b construction, @y,(0) = 0. So

£(0) = 0, whence by the bi-Lipschitz property

SR)n| <|&m)| < 8(R)""n| on [aF,bE].

Since @y is real-analytic and strictly convex, @y, is smooth and strictly increasing.
By the inverse mapping theorem, 1 — &(n) is smooth and strictly increasing. So

sgn(&(n)) = sgn(n) on [aX, bY].
w—E(Sn)
Vv

Specializing to the case 1 = , gives properties (a)—(c) of Ey.
Property (d) is because of by Lemma 6.5, which says that

ov = By (Gn) = E%(Sn) +0(1).
Notice that the big oh is uniform because |Ey| < R+ 1. This completes the proof of
part (1).
Here is the proof of part (2): For every R > 1, for all N large enough
[ﬁf;,@%] D [sz,_l,fl;f,_l] on[—(R—1),(R— )] (.- claim, @} is increasing)
D[=8(R-1)(R—1),6(R—1)(R—1)] (- ¢y(0) =0,0y > (R+1)).
So [aR,bR] o [—c, ] for R > 2 where ¢ := 8(1). O

(Sw)

Corollary 6.5. Suppose Vy — « and % — 0, then for all N large enough,

there exists a unique &y such that Py (Ey) = zy. Furthermore, &y — 0.

6.3.4 The asymptotic behavior of V" (Sy)

Let %5 denote the variance of Sy with respect to the change of measure X5. We
compare ‘715 to V.

Lemma 6.7. Suppose Vi —) oo, and define Ey as in Lemma 6.6.

(1) Suppose R > 0 and M [aN,bR]for all N, then VA‘EN =< VyasN — o,
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(Z)Uw —0, then\~/NN ~Vyas N — oo,
(3) st ~ Vy as N — oo uniformly on compact subsets of &: For every € > 0 there
are &* > 0 and Ny > 1, so that %?/VN € e €, ef] forall |E| < E*,N > N.

Proof. Part (1) is because of Lemma 6.5(3) and the bound |Ey| < R+ 1 from Lemma
6.5. Part (2) follows from part (3) and Corollary 6.5. It remains to prove part (3).

To do this we decompose Sy into weakly correlated large blocks of roughly the
same X-variance, and check that the X& -variance of the i-th block converges uni-
formly in i to its X-variance.

Let {X,} and {)?,i’: } denote the Markov chains with transition kernels {7, ,+1(x,dy)},

{ﬁfﬂ +1(x,dy)} and initial distribution p; (dx). Given natural numbers n > m, let

Sn,m ::Xn +- "+Xm71
S i=XE 4 Xo
Pam(8) = pa(&) +- -+ pm1(8).

Notice that for all R > 0, n < m, and |§| <R,
Pam(0) =0, p)u(0) =E(Sum), [Phm(§) —E*(S5,) <CR).  (63.24)

The first identity is because £, (-,0) = 1, p,(0) = 1 by the uniqueness of the funda-
mental solution. The second identity is because

Pum(0) =By 1(0) = Py (0) = E(Sp—1) —E(Su-1)

by choice of {a,}. The inequality can be proved by applying Lemma 6.5 to the
shifted Markov chain {Xj }r>n.

Let V(Sym) := Var(Sy,»). The application of Lemma 6.5 to the shifted Markov
chain {Xj };>n also gives a constant M s.t. for all |§| <R,

C(R) ™ < VE(S2)/V (Snm) < C(R)

U 6.3.25
271 <l () VE S5 <2, (63.25)

V(Sn,m) > My = {

M is independent of n: It is a function of R, K, &, and the uniform bounds on
hu(-, &) and its derivatives.

STEP | (UNIFORM EXPONENTIAL MIXING). There are C};. = Cpix(R) >0, n =
N(R) € (0,1) such that for every |E| < R, for all n < m,

|C0V(ﬁn(§;§zv§n€+l)afn(§r§ vj(vfﬂ)) | <Cuixn™ .

Proof: If |&| < R, then the Markov chain fné is uniformly elliptic with ellipticity
constant & (R) > 0. The step follows from Proposition 1.1.
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STEP 2 (BLOCK DECOMPOSITION). For every € > 0 small enough, for every R > 1,
there exists M > 1 and integers n; 1 o such that:

(]) M S V(Sn,-,n,-ﬂ) S 2M;
(2) ‘COV(:ST,%”I.H ,:S'VSI.,,ZJ.H )| < leixn”/’*"iﬂ forall |&]| <R and i < j, where the con-

stant C*. _is independent of M.,i, j;
(3) Forall |E| <R, foralli> 3, foralln € [n;,nit1],

. VE(SS )
et < — : <ef. (6.3.26)
Y V(s )V,

;M4
k=1

(4) M*:=sup sup sup |ply ,(§)] <o

i n€ninit1]§|<R

Proof. We write V,, , 1=V (Sp,») and Gn;,m =V (§5m) and fix
Chix | 4CuiC(R)
I-n/) e '(1-n)

Construct n; = n;(M) € N by induction as follows: n; := 1, and

M>max{2 <K2+

i1 i=min{n > n; : Vy, ., > M}

There does indeed exist n > n; with Vj,,, > M, because Vy, , — oo, as can be
n—soo

Mit1
seen from the following calculation:

o ﬁ V17n = VlJli + Vni,n +2COV(S1,ni7Sn,-,n)

n,-fl o
=Vyn+Vip +0 ( Z Z |COV(XM7Xni+k)|>

m=1 k=0
= Vyn+0(1), by step 1 with & =0.

By construction, V,, > M, and

iMi+1
V”li~ni+1 < Vni:niJrl_l + |Vnnni+1 - V”i~ni+1_1|
<M+ |v"i7”i+l -
SM+ V(f”i+] *2(Xni+]*27X”I+1*1 )
+2|C0V(f"i+1_2(X”i+1_27X”i+1_1)7S"i+1_1)I

Viini1—1| by the minimality of n;,

*

C*.
§M+2(K2+]m”‘) <2M by the choice of M.

SoM <V, n;., <2M, and {n;} satisfies part (1).
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5 "t+1 1nJ+| 1 ,
o & & Ik
If i < j, then |COV(Sn,-7n,~+17 n,,n,H Z Z Cricn
k=n; (l=n;
ey n”f L K R K
mix - _ _ 2
= l-n & (I-m)

Part (2) follows with C¥. :=C?. /(1—-n)>.

Part (3) follows from parts (1),(2). Namely, fix n € [n;,n,4+1], then

Vé Sé Z N nk+l nlan

<2 Y ICOV(S e Sim 2 Y (COV(SE S

1<k<(<i-1 1<k<i—1
<2 ¥ GuntTt+2 ¥ GuntTer <2y Guntt
1<k<t<i—1 1<k<i—1 1<k<(t<i
i—1 # i *
2, 2,
—k=1 ~ mix? mix*
nt1 < -
mlle[%l 1_,,,' (1_1.')
_Mi-1)
By (6.3.25), Z sy > W.sO
2C .\ »
VESE ) 1l < ((1717)3)’ < L 2GuCR) i _e i
Zz lvﬂél\nk+1+‘/”§i;” “CR)"M(i—1) (1—n)} i-172 i-1

where the last inequality is by the choice of M. If i > 3, the last bound is less than
%8, and (6.3.26) follows for all € sufficiently small.

Part (4) is a uniform bound on |p;, ,(&)| fori € N, n € [n;,n], || < R. By con-
struction, V., < 2M. By Theorem 2.1, this implies a uniform upper bound on

e ,1, u?. The structure constants of {X, } and {X; 5} are equal up to a bounded mul-

tiplicative error. So the same theorem, applied to the Markov chain {X Yisn;» gives

a uniform upper bound for Vf ;> Whence sup; sup,,c (.. .. 1 SUP|¢| <R V,,C; < oo,
A routine modification of the argument we used to show (6.3.17) shows that

~. [/~ ~ 2
Pum(E) — ES {(S,i_yn — K¢ (Si.yn) + 0(1)) ] ’ < const. The expectation term is uni-

formly bounded because of the bound on 17,5,1 and the Minkowski inequality, so part
(4) follows.

STEP 3 (BLOCK EXPECTATION). For every € > 0 there exists £* > 0 such that for
all |Gl < &7,
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ES (S5 ) —E(Sy.)| <eforallic Nand n; <n <ny,.

(8l

Proof. By Lemma 6.2 Iy (-,&) is uniformly bounded away from zero and infinity
when |§| < R. By Lemma 6.3, & +— h(-,§) is uniformly Lipschitz on [—R,R]. It
follows that

]’l,H»](y,é) . .
il 5) o uniformly for i € N, 1 € [ngnivy], (x,7) € Gy X Gpri.
I (,8) 20 uniformly for i n € [ni,nit1], (x,y) i X Sngi
In particular, there is a &' s.t. for all || < &/
h
271 < M <2foralli €N, n € [n;,n], and (x,y) € G, X &,,.

T h(x8)

This has a useful consequence. Since

E eésnhn hn+1(Xn+lvé) -k EXH. eés"i"" hn+l(Xn+lvé) :E(l)zl,
epn,-,n(é)hni (X, €) i epn,-,n@)hni (X, &)

2 IE (eésnz--n) < ePin(®) <2 (eésw-n) whenever €| < &} (6.3.27)

Fix L > 0andlet Ay := [|Sy; n — E(Sp,»)| < L], then:

i@ h, (X, E)
a1 (X1, 6) |
By (X&)

_ Byt (Xng1,€)
_ ESnin—pnin(§)  Int\Ant LG/ o
Jr]Exni ((S"i-” E(thn))e hn,- (Xn”é:) 1AL> .

Expectation of the first summand: M* :=sup ~ sup  sup |p}, ,(&)| < eo. Therefore
i n€lnjni]|E|<R

BS, (55,) ~E(Sua) =E <<s E(Sy,)) 5

= ]EXni ((Sni,n - E(Sni-,n))egsn'.’nipni’n@) ’

by (6.3.24), for all || < R, n € [n,n;41],
Pn;,n(g) = Pn;,n(o) + ép;l,-7n(0) + 0(52) = ﬁE(thn) + 0(‘52)? (6.3.28)
where |O(E2)| < M*E2.
S0 ON ALt ESnn— Py (E)] = €] S~ E(Suy) |+ M*E? < LIE| + ME2, uni-

formly in i,n € [n;,n]. In particular,

5 Snin=Pnin(5) 5—) 1 on Ay, uniformly in i, n € [n;,n].
—0
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Together with the uniform convergence %”“5) —— 1, this implies that the

hni Xn,-v‘:) 5*}0
first summand converges to EX”[_ [(Sn;n —E(Sn;n)) 14, ] uniformly in i, X,,,, and n €
[ni,niy1).

The expectation of the limit satisfies

[E{(Snin = E(Sni.n)) 4]l = [E[(Snin = E(Snn)) 1ag]|
V(Sa) _ 2M
L — L
Thus, for every € > 0, for every L large enough, for all || sufficiently small, for all
i,n € [nj,niy1], the first summand has expectation < £/2.

< E[L_l (SniJl - ]E(Snm))zlAi] <

Expectation of the second summand: Fix 0 < § < §[. Assume L is so large s.t.
lt| < 8¢9 for all [t] > L.

Decompose Af := A WAS, where A =[Sy, n —E(Sy;n) > L] and A :=[S,, n —
E(Sy; n) < —L]. Then

_ g1 (Xng1,
IEXn,- (Sn,u,n - ]E(Sn;,n)|egsni'n Prin(8). W ’ 1Af+>

< 2By, (110~ E(Sun)le®S 2@ 10 ) provided €] < &

< 4Ey, ((s,,,.,n (S5 - 1Ai) JE(57n), by (6.3.27)

=48, (S~ B E00) 1) /(eS8
§ 48EX v(e(‘g""‘s)(sni,n—E(Sn,-‘n)))/E(eg(sn,-,n—ﬂz“n,—‘n)))
< 166 exp (Pn;n(& +6) = pnn(§) — SE(Sn;n)) , provided |§ + 8| < &
(see (6.3.27)). Expanding py, ,(& + 6) into Taylor series around &, and recalling
[P, n(8)] < M* for |E] < R, we find that the term in the exponent is bounded above
by
6‘p;u,n(‘:) - E(Sni,n)l +M*62 = 6|p;z,~,n(§) - p;/u,n(o)l +M*62
<M*(8|&|+6%) < M*(R6 +87),
which can be made as small as we wish by choosing 6 properly.

The conclusion is that for all L large enough, for all || sufficiently small, for all
i,n € [nj,niy1l,

— hn+ (anrl é) £
E{|S,,—E(S, .. és”i‘" P"M(E) Mt 1\ Ant 1,6 ) 1c <
<| ni,n (S iy )|€ lni(>fni,§) A+ =4

Similarly, one can show that for all L large enough, for all |£| sufficiently small, for
all ian € [nivniJrl],
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_ hy (Xn 1 5) €
E on—E(Sn » ‘;:Sn,un Pn,-,n(é) I\ Ant LG ) 1 ac —_
<|S . (Snn)le T (Ko €) A | <

Thus, for every € > 0, for all L sufficiently large, for all |&| sufficiently small,
for all i,n € [n;,n;11], the expectation of the second summand is less than /2 in
absolute value.

~

STEP 4 (BLOCK VARIANCE). For every € > 0 there exists £* > 0 such that for all
E| < E*, |V — Vin| <eforallic Nandm <n<nyi.

Proof. The proof is similar to the proof of step 3. Fix L to be determined later and
let Ay := [|Sn,n —E(Sn; )| < L], then

o . hn1(Xn+1,6)
E(5E \— CE(SE ))2elSna . 1At 1,6)
VE(SE L) E((sni,n E(S5,.0))"e epn,.,n@m,,i(xn,.,é)l“)

- hn 1(Xn+1>§)
VE( (Suym—E(SE )28 Lo\t bS) )
<( on = E(S3 1) i@ (X, €) L

The second summand can be analyzed as in step 3, this time with the inequality

12 < 89V for all |7| large enough. The conclusion is that for every € > 0, for all L
sufficiently large, for all |£| sufficiently small, for all i,n € [n;,n;41],

(6.3.29)

[NSNeY

i hn Xn )
B (S B(5,)eS00n . rtuet8) 1y )
epnl.n hn; (Xl’l,‘ , 5 )

The first summand converges to E((Sy, » — E(Sy; 1))*14,) as & — 0 uniformly in
i,n € [nj,n;y1] because

ESn; Py (Xn-H 7‘5)
® ¢ .
e”"i*”(g)hn,@n,-,é)
of step 3; and

® (Sun _E(Ssi#’l))zlAL Q (Sn;n —E(thn))zlAL uniformly in i,n € [n;,n], be-

la, P 14, uniformly ini € N, n € [n;,n;11], see the proof

cause for some 7 between ]E(:S'VS[,,), E(Sn; 1),

|(Sni~," - E(Sf,,n))z - (Sn[,n - E(thn))2|
= 2|y — HIE(S5, 1) = E(Snin)|
< 2ALA+B(S5, 1) = E(Sun) DIE(S5,0) —E(Snin)| on Ap

§—> 0 uniformly on Ay in i € N,n € [n;,n;11], by step 3.
—0

The limit of the first summand E((S,, , — IE(S,,,.’”))2 1a,) f—+ Vi o uniformly in
—yo0

i,n € [nj,n;y1]. Indeed, applying (6.3.29) with £ =0

€
|Vni,n - E((thn - E(S”i-,n))zlAL)| = ]E((Snm - E(thn))zlA‘L') < D)
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for all L large enough, for all i € N,n € [n;,n;11]. Step 4 follows.

PROOF OF PART (3) OF THE LEMMA. Fix € > 0, and construct the block decompo-
sition as in step 2.
By step 4 there exists £* > 0 s.t. for all |€] < &%, for all k € N,n € [ng,ngv1],

e Vin < 17,;:,“,, < €®Vjy, n. Therefore

e €< Z V"k Mt 1 +Vn§z,n
Z V"k e T Vi

<e€.

By part (3) of step 2, for all n > n3, for all || < £*, e3¢ < Ve [V < €%, O

6.3.5 Asymptotics of the log moment generating functions

We need an elementary observation from probability theory. Let X, Y be two random
variables on the same probability space (2,.%,P). Suppose X has finite non-zero
variance, and Y is positive and bounded Let Var? (X) be the variance of X with
respect to the change of measure E(Y )d]P’ ie.

E(X?Y) [(EXY)\?
var' ()= ") ‘<E<Y>> |

Lemma 6.8. Suppose 0 < Var(X) < oo and C~' <Y < C with C a positive constant,
Var! (X) -

- Var(X) —

Proof. For every random variable W, if W, W, are two independent copies of W

then Var(W) = SE[(W; — W,)?]. In particular, if (X;,Y1), (X2,Y») are two indepen-

dent copies of the random vector (X,Y), then

Var' (X) = ;E[(x& ;fgy 2 Ci‘%]E[(Xl —X5)?] = C**Var(X). 0

then C™*

Proof of Theorem 6.1 on the asymptotic behavior of Zy (&) := ﬁ logE(ESy):
Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X, s.t. Viy := Var(Sy) # 0 for N > Np.

Since IS || < oo, we may differentiate under the expectation and obtain that for

all k, 4 i é L (e55V) = E(Ske5SV). A direct calculation now shows that
1 E(Sye5N) 1 ¢
ar! _ Y,
FHE) = s = B (50)
2
g 1| BSREN)  (Elsnet)) | Var'¥ (Sw)
NI Wy | E(e8SY) E(eS5v) © Var(Sy)



162 6 Local limit theorems for large and moderate deviations

where Y1§ = eSSV,

Part 1: Substituting & = 0 gives Zy (0) = 0, Z(0) = Z&0) zr(0) = 1.

N

3 ¢
Part 2: 7}(£) = 0 < Var'V (Sy) = 0 < Sy = const ]Ejl’;’g)dIF’—a.s. & Sy = const
N

P-a.s. & Var(Sy) = 0. So Zy is strictly convex on R for all N > Np.

v

Ve(s Var?¥ (S ¢

Part 3: VN ((SN)) = \a/ (é 1;) , where Zf, = 55N hl;l’—é“ (the normalization constant
ar(oy ar(dy 1

does not matter). Next, Zf, = Yzé WA‘?, where Wf, = hf, 11 / hf. Lemma 6.2 says that

for every R > 0 there is a constant C = C(R) s.t. C~! < ng <Cforall Nand|&| <R.

Lemma 6.3 and the obvious identity 2% = 1 imply that W]é 5’—» 1 uniformly in N.
—0

So there is no loss of generality in assuming that C(R) W 1.
s

By Lemma 6.8 with the probability measure %d[@ andY = Wjé ,

VE(Sy)  Vari X (sy)
WIRE) vars (Sy)

€[C(R)*CR)*],VIE|<R, N>1.  (63.30)

By Lemma 6.5(3), ‘715 (Sy) = Vi uniformly on compact sets of &, and by Lemma

6.7 for every € there exists 6,Ne >0s.t.e” ¢ < V]S (Sn)/Vn < ef for all N > N; and
|| < 8. It follows that for every R there exists C2(R) > 1 such that C»(R) =0 1
—

and C3(R) ™! < ZU(E) < Cy(R) for all || <R.

Part 4: Suppose € > 0. We saw in part 3 that there exist §,Ng s.t. e € < .Zy (&) < e
forall |§| < O,N > Ng.
Recall that .#y(0) = 0 and .Z,(0) = E(Sn)/Vw. So for all |§] < &,

Fw(E) = Zu(0)+ | 5 (%’v(m + /; o %(a)da) an.

Since .7}, = ¢*€ on [-§,8] and |n| < |E] < 8,
2
)= S gy e (- ZOV Y 0

VN 2 VN

6.3.6 Asymptotics of the rate functions.

The rate functions Zy(n) are the Legendre transforms of #y(§) = ﬁ log E(e55N).
Recall that the Legendre transform of a strictly convex function ¢ : R — R is the
function ¢* : (inf¢’,sup¢’) — R,

¢*(n) = &n — (&) for the unique & s.t. ¢'(§) = 7.
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On its domain, @*(1) = max{&n — @(&)}.

Lemma 6.9. Suppose ¢(&) is strictly convex and twice differentiable on R, and let
@' (Foo) := glim ©'(&). Then the Legendre transform @* is strictly convex, twice
—>too

differentiable on (@' (—o0), @'(4)), and for every & € R,
L
¢"(1)

Proof. Under the assumptions of the lemma, ¢’ is strictly increasing and differ-
entiable. So (¢/)~!: (¢'(—0), ¢’ (o)) — R is well-defined, strictly increasing and
differentiable, and

P (9'(1)) =19'(t) — (1), (9") (¢'(1)) =1, (9")"(¢'(1)) = (6.3.31)

o (m) =n(¢)"'(m) —¢l(e) ' (n)]
The lemma follows by differentiation of right-hand-side. t

Proof of Theorem 6.2 on the asymptotics of the rate functions .7y := .%:

Part 1: Since .Zy is strictly convex and smooth, .7} is strictly increasing and con-
tinuous. So Fy[—1,1] = [F}(—1), F%(1)] = [ak, b)), and for every N € [ak,b)],
there exists a unique & € [—1,1] such that Z4(&) = 1. So dom(.Zy) D [ak,bL].

By Theorem 6.1 there is C > 0 such that C~! < .Z3 < Con[—1,1] forall N > Np.
Since .7, (0) = %{3’) and 5, (p) = F{(0) + [§ FH(E)dE, we have

E(Sy)
Vv

E(Sy)

by =.F(1) > —c

E(S, —1 E(S —
So dom(#y) 2 [ak,bY] 2 [% -C 1,% +C 1} for all N > Ny.
Part 2 follows from Lemma 6.9 and the strict convexity of .#y on [—R,R].

Part 3: Let Jy := L(vazv L _c1, %NN) +C~!|. In part 1 we constructed functions
En : Iy — [—1,1] such that .} (Ev(n)) = 1.

Clearly &y (%) = 0. Recalling that C~! < .Z} < C on [—1, 1], we see that

Ev(n) = m € [C~!,C] on Jy. Hence
&v(m)| < Cln — 22| for all p € Jy. N > No.

Fix 0 < € < 1. By Theorem 6.1(4) there are §,Ng > 0s.t. e ¢ < .73 < ¢f on[—6,0]
forall N > Ne. If [ — E22)| < §/C, then |Ey(n)| < 8. and ZJj(En(M)) € %, ¢°].

Since .Zy(0) = 0 and 7},(0) = =X we have by (6.3.31) that 7y (M) =
F4(B) =0 and 7 () = 1/ FY(En(n)) € [, ¢°]. Writing
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n o
() = B+ fasy (m%w Jrsu J%’(ﬁ)dﬁ) da,
Vn %%

we find that Sy () = e*¢1(n — %}:’))2 forall m s.t. |n — %}5"” <d§/C.

. E(S E(S
Part 4: If %N(SN) — 0, then % € {g/NN) — O, % +5N} with 8y — 0. By
2 2
part 3, Av() ~ § (2504 ) whenee Vv (3 ~ § (27552 ) .

Let Hy(n) denote the Legendre tranform of Py (&)/Vy. We will compare Hy (1)
to .#y(n). This is needed to link the change of measure we performed in section
§6.3.3 to the functions %y which appear in the statement of the local limit theorem
for large deviations.

Lemma 6.10. Suppose R > 0 and Vy # 0 for all N large enough. Then

(1) Hy is well-defined and real-analytic on {P’,"‘(,i;m, P](]Viz(f)} for all N large enough.

(2) There exists ¢ > 0 such that Hy(-) is well-defined and real-analytic on

(%]\?’) —c, %NN) + c) for all N large enough.

Proof. Lemma 6.6 and its proof provide real analytic maps

Py(=R) By(R) Py(&n(n))
TR IV R R st S g
v |y s DGy
1
Hence Hy (1) = Ve [Ev(n)Py(E(M)) — Pv(&(n))] is well-defined and real-analytic
N
n [PN‘(/;R) , P"",i]R)]. This proves part (1). Part (2) follows from Lemma 6.6(2). O

Lemma 6.11. Suppose Vi # 0 for all N > Ny, then 3¢ > 0 such that

(1) dom(Zy ) Ndom(Hy) > {%{V) ¢, Hsw) +c} forall N> No.

(2) Recall that [a¥,bR] = [F},(—R), Z}(R)]. For every R > 0 there exists C(R) >0
s.t. for all z € [af,bR] and N > Ny,

VI (i) = VwHN ()| < C(R).

ZESN | — §, then

(3) For every € >0, 30,N; > 0 s.t. if N > N, and 7

|VNjN(%) *VNHN(ﬁ” <e.

Proof. Part (1) is a direct consequence of Lemma 6.10 and Theorem 6.2(1).
To prove the other parts of the lemma, we use the following consequence of
Lemma 6.5(6): For every R > 0, for all N large enough, for every 1 € [af, bR], there

exist <§]£,1>, 5,5,2> € [-(R+1),(R+1)] such that
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1
P
Vn

Arguing as in the proof of part 3 of Theorem 6.2, we can also find a constant C(R)
suchthat\éN | <C(R)|n— VN)"
It is a general fact that the Legendre transform of a convex function ¢ is equal on
its domain to @*(1) = sup{&n — ¢(&)}. Thus for every z € [af, bR],
g

Vy oy (= :VNSUP{éi—JN =W <§N *—fN(ézﬁzz))
Vn e W
0z P&
<Vn| &y W—T + Ay (R+1), see Lemma 6.5(5)
P
<V sup{gvi— W }+A (R+1)= VNHN<V >+AN(R+1)
¢ N N

So Vv In(v5) — VwHn () < An(R+1).
Similarly, one can show that VyHy (W) - VNJN(ﬁ) < Ay(R+1), whence

Vv Iy (vZN) VyHy (VN)‘ < sup Ay(R+1).

sup  sup
N=No ze|fy b N=No
Part (2) now follows from Lemma 6.5(5).
E(S E(S
If instead of taking z € [aX,bR] we take z € < g/N) -9, g/N) +5>, then
N N

|§1£,’)| < C9, and the same argument will show that

sup  sup
N>Np | —E(Sy)
Ty |<8

VNJN< ) VNHN< < )‘ < sup Ay(C9).
Vn

N>Ny

Part (3) follows from Lemma 6.5(5). U

6.3.7 The local limit theorem for large deviations.

Proof of Theorem 6.5. We give the proof in the non-lattice case; the modifications
needed for the lattice case are routine.

Suppose f is an a.s. uniformly bounded additive functional of a uniformly elliptic
Markov chain X. We assume that f is irreducible, and that f has algebraic range R.
In this case f is not center-tight, and Vi := Var(Sy) — oo (Corollary 2.1). There is
no loss of generality in assuming that Viy # 0 for all N. :

E(Sy

Recall that [5N,BN] = [F4(—R) - g,N ) FL(R) — v, ], and suppose
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_E(S o~

v —E(Sv) € [av, bu.

Vi

Let hg() = hy (-, &), pu(&), and Py(&) be as in §§6.3.2, 6.3.3. The assumption on
zw allows us to construct &y € [—(R+ 1), (R+1)] as in Lemma 6.6:

Py(éy) =zvand &y = O (W) .

Define a Markov array X := {)?,EN) 11 <n< N+ 1} with state spaces (&, Z(S,), 1)
(the state spaces of X), and transition probabilities

ﬁ(N) (x,dy) - oSNIn(xy) huy1 (3, EN)

n,n+1 m - ﬂn"n+1 (X,dy),

Letf = {f,SN) :1<n<N+1,N € N} where f,SN) = fu, and set

Svi= AN )+ XXV,

Recall that eV I, h,, and ePn(&N) are uniformly bounded away from zero and in-
finity, by assumption on f, and Lemma 6.2. So ﬁﬁﬁil (x,dy) differ from 7, 41 (x,dy)
by densities which are bounded away from zero and infinity uniformly in N. It fol-
lows that X is uniformly elliptic, fis as. uniformly bounded, and the structure
constants of (X,f) are equal to the structure constants of (X,f) up to a uniformly
bounded multiplicative error. Thus

@) ()~(,?) and (X, f) have the same algebraic ranges, co-ranges, and essential ranges.
In particular, (X, f) is irreducible and non-lattice.

2) ()~(,?) is stably hereditary (see Examples 3.3 and 3.4 in §3.2.3).

(3) Vy = Var(gN) N_)—o: oo (because Vy =< ZHN:3 U2 < Viy — o).

Furthermore, by the choice of &y, E(Sy) = E5V(Sy) = zy +O(1), so

Therefore §N satisfies the local limit theorem (Theorem 4.1):

Py(Sy — 2w € (a,b)) ~ |a—b|/\/27ﬂ715”’

for every x € & and (a,b) # @.

We will translate this into an asymptotic for P(Sy — zn € (a,b)). For all N large
enough, for every x € G,
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PX[SN —2IN € (a,b)] = ePN@N)*é‘NzN %

g (N) 5
% Ex (eéNSN hNI\i&-l(XN—&-l) . th(xl)V -eéN(ZN?SN)l(u h)(SN_ZN)>
eSO (x) A (X)
— ePN(éN)*éNZNth (x)IEx (hf\/ﬂ;l (XIE/AQI )*1 ¢a,b(§N —ZN)) (6.3.32)
where ¢a,b(t) = 1((171,) (t)e’}:’?Nf.
The pre-factor simplifies as follows. By construction ”%—f”’ = % Thus
v Pv(n) Py(&v)  Pv(Ew)
— P = —_——_—— = — .
Evan —Pu(En) =Wy <‘§N Vi Uy Vv (v Va Uy
So )
PV () ~Enay g—VNHN(%>, (6.3.33)

where Hy(n) is the Legendre transform of Py(&)/Vy.
Using the mixing LLT for Markov arrays Theorem (4.3), one can see that

UN+1 (l/hf/}L)

\/ ZnVI\‘;N

as N — oo. To do this approximate ¢, 5 in L'(R) from below and above continuous
functions with compact support, and approximate hf,ﬂl inL! (61(\,1\21 A 6](\,]\21 )s IE,AQI)
from above and below by finite linear combinations of sets with uniformly bounded

measure (here H;i;l\fl is the distribution of Xls,li)l).

Since &y is bounded, Lemma 6.5(4) tells us that ‘7;’;” ~ Py(En) as N — eo. Since
Hy(n) is the Legendre transform of Py (&) /Viy, and Py (én)/Vv = znv/ Vi,

- _ b
Ey (hz%il (X15/}Y21)71¢a,h(SN _ZN)> ~ /a e Vdr,  (63.34)

éN 11/\1,(§N)) Vv
Vo' ~Vy- = ~ as N — oo, 6.3.35
N N < 5 Hz/\;(*{/%) ( )

Substituting (6.3.33), (6.3.34), and (6.3.35) in (6.3.32), we obtain the following:

e*VNﬂN(%) b g
P, Sy —zwy € (a,b)] ~ | ——— A A
x[N N (a )] \/m g e
« eVNﬂN(%)*VNHN(%) HI/\;(ZN‘I/EN(SN))} % |:h‘1:N(X)IJN+1 (h§11v >}
Nt
Py ( zN*‘%SN) ) Py (x, ZN*‘EEN(SN) )
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Let ny := ZN_‘]}EN(SM , then &y = &y (ny) where &y : [cAlN,EN] = [=(R+1),(R+1)]
is defined implicitly by Py (En(1)) = nVy +E(Sy). Lemma 6.6 shows that E(-) is
well-defined.

Notice that there exists a constant L = L(R) such that || < L(R). Indeed,
nw € [a®,bR] and @k |, |bR| < |.Z'(£R) — .F'(0)| <R sup .Z}}, which is uniformly

[~R.R]

bounded by Theorem 6.1(3).
The functions py : [~L,L] — R are defined by

E(Sy) ) _ E(Sy)
[/)\N(TI) — eVNJN(n-F Vy ) VNHN<17+ Vy ) H;\;(n)

Lemma 6.11 and Theorem 6.2 say that there exists C such that
C~ ' <pn(n) <Cforall N and |n| < L.
They also say that for every € > 0 there are §,Ng > 0 s.t.

e £ <pn(n) <efforall N > N, and |n| < 8.

(Sn)

- ular if NEG) -
In particular, if w — 0, then pN(NT) —— 1.

The functions py, : &1 x (—c,c) — R are defined by

pn(x,m) == hi(x,&(N))Un+1 (M) ’

By Lemma 6.2, there exists a constant C such that
C ' <py(x,n) <Cforall N and |n| < L.
By Lemma 6.3 and the obvious identity #,(-,0) = 1, ||h§ — 1| —0> 0 uniformly
in n. Since |£ ()| < C|n|, for every € > 0 there are §, N, > 0 sucﬁ;lat
e f<pylx,n) <efforallx € &, N> Ng, and | < 5.

Setting py := Py - Py We complete the proof of theorem in the non-lattice case. The
modifications needed for the lattice case are routine, and are left to the reader. [

6.3.8 Rough bounds in the reducible case.

Proof of Theorem 6.6: We proceed as in the proof of Theorem 6.5, but using the
rough bounds of Theorem 5.3 instead of the precise LLT to estimate the probabilities
for the change of measure. We get that there is a constant C = C(R) s.t. for each
0 < j <+/Vy, for all N large enough,
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P VVNP(Sy —zw € [hj, h(j+1)])
(i)

<C (6.3.36)

géNj -e

where &y = &y (%) >¢gand h=20(f).

We claim that these bounds hold uniformly, i.e. that there exists Ny such that
(6.3.36) holds for all N > Ny and for all 1 < j < \/VTV;If this were not the case, then
there would have existed for the change of measure Sy a subsequence zy such that
lzv — ]E(SVN)| < m and which violates either (5.1.5) or (5.1.6) for the change of

E(Sn)

measure. Taking a further subsequence we could arrange that ZN_T converges to
N

some z € [—C,C] contradicting Theorem 5.3.

Taking j = 0 in (6.3.36) we obtain the lower bound.

To obtain the upper bound we sum the estimate of (6.3.36) for j =0,.../Vy to
get

~

i < C_ (@)
P(Sy € [znv,av + v/ WN]) < ——e /.

(Sn € ) N

It remains to show that P(Sy > zy + hv/Vy) is of lower order. Indeed let Zy = zy +
h+/Vy. by Markov inequality and Lemma 6.11

P(Sy > zv) < mineSN (&) — o~ VWHNGEN/VN) < Ce WINEN/W)

By strict convexity of .Zy on [aﬁ, bﬁ] we can find a constant cg such that
Vv Iy (Zn Vi) = e WOV v/ V)+erv/iv

This completes the proof of the upper bound. U

6.4 Large deviations threshold

The results of this chapter are all stated for zy s.t. for some R > 0 and all sufficiently

large N, W € [Zz’;,g[’f,]. In this section we will discuss how restrictive is this
assumption.

We say that a sequence {zy} is R-admissible if if there is a constant N s.t. for
N > Np 3éy € [—R,R] such that Py (Ey) = zn- A sequence {zy} is admissible if it
is R-admissible for some R.

A number 7 is called reachable (respectively R-reachable) if the sequence {zVy }
is admissible (respectively R-admissible).

We denote the set of R—reachable points by 4z and the set of reachable points by
% . Since Pj(, is monotone increasing,

int(%) = (c_,c1)



170 6 Local limit theorems for large and moderate deviations

for some ¢y = ¢4 (X).

N

Example 6.4. Let Sy = Z X, where X, are iid random variables having law X with
n=1

expectation zero and variance one. Recall from Example 6.2 that in this case Fy

does not depend on N so by property (ii) of Example 6.2 we obtain

c_ =essinf(X), ¢y =esssup(X). (6.4.1)

Then Sy /N € [c_,c] almost surely for all N, and therefore P[Sy —zN € (a,b)] is
zero when z & [c_, ¢4 ]. Henceforth we refer to such z as “irrelevant.”

Not all relevant z are reachable: z is reachable only when z € (¢_, ¢ ). Our results
do not apply for z = c. Indeed different asymptotic behavior may hold for zy s.t.
‘Z,—’; — ¢, see Example 6.1. Still, the large deviation LLT for P[Sy — zN € (a,b)]
holds for most “relevant” values of z. Our next example shows that this is not always
the case.

Example 6.5. Let X,, = (Y,,,Z,) where {Y,}, {Z,} are two independent sequences
of iid random variables having uniform distribution on [0, 1]. Fix a sequence {p, }
and let

Z, ifY,>p,

2 ifY, < pa.

fn(YmZn) = {

We now discuss two possible choices of {p, }.
Let f’ be defined as above with p, = % Then f;, are iid so by discussion of the
Example 6.4 the results of the present chapter apply to P(Sy € zN + (a, b)) provided

that z € (0,2) while the possible range of SNT(f,) is [0,2].
Let f” be defined as above with p, tending to 0 as n — oo. Since Var(Z,) = 7 it

12
N
follows that Viy = (1+ 0(1))5. We shall show below that in case (b)
=0, cp=12. (6.4.2)

In other words the results of the present chapter apply to P(Sy(f”) € zN + (a,b))

provided that z € (0, 1). On the other hand, the possible range of %{”) is [0,2] since
for each fixed N the distributions of Sy(f’) and Sy(f") are absolutely continuous
with respect to each other. We will see that the reason our results do not apply for

z > 1 is that in that case P(Sy(f") > zN) decays super exponentially.

In this section we discuss methods for computing ¢4 (in particular, proving
(6.4.2)) and provide sufficient conditions for good behavior, when (¢_,cy) covers
“most” relevant z.

Lemma 6.12. VR > 0 Je = €(R) > 0 s.t. if {zy} is R-admissible, and |2y — zy| <
€V, then {2y} is (R + 1)-admissible.

Proof. By the uniform strict convexity of % on [—(R+1),(R+ 1)], there exists
€ > 0 such that P{(R+1) > zy + €Vy and Py (—(R+1)) < zy — €Vy. 0
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Corollary 6.6. (a) € is open, and (b) if E(S,) =0, then € is a non-empty neigh-
borhood of zero.

Proof. Part (a) follows from Lemma 6.12. Part (b) follows from (6.3.23). O

Without the assumption E(Sy) = 0, ¥’ may be empty. Eventhough Theorem 6.2
provides many admissible sequences, the associated ‘% need not converge:

Example 6.6. Let N, = 10%. Consider X,, = a,, + U, where U, are iid having uniform
distribution on [0, 1] and

10 if Nop <n < Nogy1,
a, =
" =10 if Npgy1 < n < Nygyo.

Then with probability one Sy,,., > Nakr1, Sny, < —Nok. The first inequality gives
% N (—o0,0] = @, the second one gives € N[0, +) = &. Hence € = &.

Theorem 6.7. Let f be an a.s. uniformly bounded additive functional on a uniformly

elliptic Markov chain X, with essential range Z or R. The following are equivalent:

(a) {zn} is admissible.

(b) e > 0,1 > 0 s.t. V{zZy} with |2y — zn| < €Viy and Yan,by s.t. lan|,|by| < 10
and by —ay > 1 we have P(Sy € Zy + (ay,by)) > n'V.

(c) 3& >0, > 05.t. P(Sy > zy +€Vy) > 0"V and P(Sy < zv — V) > n'V.

N
Example 6.7. Let Sy = Z X, where X, are iid supported on [ot, 8] and such that X

n=1
has an atom on the right edge: P(X = ) = y > 0. Then
P[Sy > BN] =P[Sy = BN] ="

while P[Sy > BN + 1] = 0. Thus {SN} is not admissible. This example shows that
taking € = 0 in part (c) of Theorem 6.7 gives a condition which is not equivalent to
the conditions (a)—(c) of the theorem.

Proof. (a) = (b): If {zx} is admissible then by Lemma 6.12 3¢ > 0 such that if
|Zv — zv| < €V then {Zy} is admissible. Now (b) follows from formula (6.3.36) in
the proof of Theorem 6.6.

(b) = (c) : The bound P[Sy > zy + V] > 0"V follows from part (b) with Zy =
v+ &V, ay =0, b, = 1.1. The lower bound is similar.

(c) = (a) : Our assumptions on the essential range imply that (X,f) is not center-
tight, and therefore Viy — co. By Lemma 6.5(5) Py(R) — Vy.Zn(R) is eventually
bounded, and therefore for some ¢(R) > 0 and all N > N(R),

eNR) > ¢(R)E (eRSN) >c¢(R)E (eRSN 1[5N21N+3VN]) > C(R)nVNeR<ZN+8VN).

This implies that for all N large enough Py (R) > R(zy + (€/2))Vy.
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Since Py(0) = 0 the Mean Value Theorem tells us that 3&; € [0,R] such that
A%
Py(EN) > v+ TN Likewise we can find &y € [—R,0] such that P (§y) < zy —

%
TN' By the Intermediate Value Theorem 3y € [Ey,Ex] s.t. Py (En) = 2w O

Corollary 6.7. Under the assumptions of the previous theorem, if E(Sy) = 0 then
¢y =sup{z:J(z) < oo}, where

) [logP(Sy € zVy + [—1,1])]
J(z) = limsu .
@ N%oop logVy

Proof. By Theorem 6.7(b),ifz € (c_, ¢4 ), then J(z) <eoo. So ¢ <sup{z:T(z) <oo}.
To see the other inequality, note that ¢, > 0 (by Corollary 6.6), and J(0) < oo (by
(6.3.36)). We will show that

1
3 sup{z:J(z) < e} <7 <sup{z:T(z) < oo} = Z is admissible, (6.4.3)
and deduce that ¢ > sup{z: J(z) < oo}.

Fix 7 as in (6.4.3), then 3¢ > 0 s.t. J(Z+2¢€) < o and 7 — € > 0. Necessarily
3n > 0 s.t. for all N large enough

P[Sy > (z+€)Vn] > P[Sy € (z+2¢e)Vw+[-1,1]] > 0"

1
PlSy < (2—&)Vu] > P[Sy < 0] = - +o(1) > 0"
By Theorem 6.7(c), z is admissible. [l

We say that (X, f) and ()~(,¥) are related by the change of measure if f, = f, and
7, (x,dy) is equivalent to Ty (x,dy) with

T, (x,dy)

<& L
T (x,dy) ~

€<

Lemma 6.13. Suppose f is an a.s. uniformly bounded additive functional on a uni-
Sformly elliptic Markov chain X. If (X,f) and (X,f) are related by the change of
measure and Vy > cN for some ¢ > 0, then {zy} is (X,f)-admissible iff {zn} is
()?f)-admissible.

Proof. Since X is uniformly elliptic, X is uniformly elliptic. The exponential mix-
ing bounds for uniformly elliptic chains imply that Vy := Var[SN()~(,~)} and Vy :=
Var[Sy (X, )] are both O(N). Without loss of generality, cN < Vy < ¢~'Cy.

Under the assumptions of the Lemma, the structure constants of (X,f) are equal
to the structure constants of ()~(,f) up to bounded multiplicative error. By Theo-
rem 2.1, Viy := Var[Sy(X, )] < Viy as N — 0. So 3¢ > 0's.t. N < Vy < & IN.

Let {zn} be (X,f)-admissible. Then there are € > 0,1 > 0 such that
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P[Sy > zv+eVy] > 0", PSy <zv—eWy] > 1.
It follows that
P[Sy(X,f) > oy +&Vy] > 1", PISy(X,f) <zy —eWy] > 7V
where 7] = N and € := cce. Hence {zy} is X-admissible. O

Lemma 6.14. Let f and f be two a.s. uniformly bounded additive functionals on the
same uniformly elliptic Markov chain. Suppose Vi := Var[Sy ()] — oo and

) — Sy ()|
tim WSV = SNl _ (6.44)
N—soo Vn
Then {zy} is f-admissible iff {zy} is f-admissible.

Proof. We write Sy = Sy(f), and Sy = Sn(f). By the assumptions of the lemma,
Vn := Var(Sy) ~ Viy as N — oo,
Let {zy} be f-admissible. By Theorem 6.7(b), there are € > 0,71 > 0 such that

PSy > zv+€eWw] > 0", PlSy <zv—eWy] >1n".
It now follows from (6.4.4) that for large N
=[q £ N B3 £y N
PSNEZN“FEVN}ETI ) P[SNSZN—EVN}ZU .

Hence {zy} is f-admissible. O

We end this section by proving (6.4.2).
Proof of (6.4.2). To show that ¢, < 12 assume by contradiction that int(%) con-
tained some z > 12.

Then Theorem 6.6 would imply that

P[Sy > zVy] < "V for some 1 > 0. (6.4.5)
Note that

log E(e5/n2)) — 1og (pnezé +( —pn)]E(egU[O*l]))

s —1 s —1
=log (png2€ +(1—pn) : — log Z

because p, — 0. So

1 N 12 ¥ &
Fn(E) = W10g1:111[5 (eéfn(yn,zn>) ~ 5 ;logE (eéfn(yn,zn)> — 121og (eé

) |
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The last expression is strictly smaller than 12€ if £ > 1. Therefore for any & we
have for sufficiently large N, E (e‘gSN ) < ¢'?"& Hence by Markov inequality,
P[Sy > zVy] < el1279%e

which is incompatible with (6.4.5) if & is large enough since z > 12. Therefore
Int(%) C (0,12).

Next we show that (0,12) €Int(%). By Theorem 6.7 it suffices to show that
Je,n > 0 such that P[AZ (N)] < n" where

AL (N)=P[Sy > (3+€)V], Ag(N) =P[Sy < (3—¢€)N]

and 3 := 5 € (0,1). We will consider Af (N), A; (N) is similar. We have

P[Sy > (3+€)N] >P[Y, > p, forn<N|P| Y Z, > (3+€)N

-

The first term is greater that C (%)N since p, < % for large N, while the second term

is smaller some 77 by Theorem 6.6. It follows that ¢* = 12. The proof of the fact
that ¢~ = 0 is similar but easier. O

6.5 Notes and references

The reader should note the difference between the LLT for large deviations and the
large deviations principle (LDP): LLT for large deviations give the asymptotics of
P[Sy —zn € (a,b)] or P[Sy > zy]; The LDP gives the asymptotics of the logarithm
of P[Sy > zy], see Dembo & Zeitouni [32] and Varadhan [135].

The interest in precise asymptotics for P[Sy > zx] in the regime of large devi-
ations goes back to the first paper on large deviations, by Cramér [28]. That paper
gave an asymptotic series expansion for P[Sy —E(Sy) > x| for Sy =sums of iid’s.
The first sharp asymptotics for P[Sy —zy € (a,b)] appear to be the work of Richter
[113],[65, chapter 7] and Blackwell & Hodges [14].

These results were refined by many authors, with important contributions by
Petrov [103], Linnik [85], Bahadur & Ranga Rao [11], Statulavicius [130] and
Saulis [121]. We refer the reader to the books of Ibragimov & Linnik [65], Petrov
[104], and of Saulis & Statulevicius [122] for accounts of these and other results,
and also to the survey of Nagaev [97] for a discussion of the case of sums of inde-
pendent random variables which are not necessarily identically distributed.

Plachky and Steinebach [105] and Chaganty & Sethuraman [20, 21] proved LLT
for large deviations for arbitrary sequences of random variables 7;, (e.g. sums of
dependent random variables), subject only to assumptions on the asymptotic behav-
ior of the normalized log-moment generating functions of 7, and their Legendre-
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Fenchel transforms (their rate functions). Our LLT for large deviations are in the
spirit of these results.

We comment on some of the technical devices in the proofs. The “change of
measure” trick discussed in section 6.3.1 goes back to Cramér [28] and is a standard
idea in large deviations. In the classical homogeneous setup, a single parameter
Ey = & works for all times N, but in our inhomogeneous setup, we need to allow the
parameter &y to depend N. For other instances of changes of measure which involve
a time dependent parameter, see Dembo & Zeitouni [31] and references therein.

Birkhoff’s Theorem on the contraction of Hilbert’s projective metric is proved in
[13]. Results similar to Lemma 6.1 on the existence of the generalized eigenfunc-
tion hg were proved by many authors in many different contexts, see for example
[70], [48],[15], [118], [46], [60], [58]. The analytic dependence of the generalized
eigenvalue and eigenvector on the parameter £ was considered in a different context
(the top Lyapunov exponent) by Ruelle [116] and Peres [102]. Our proof of Lemma
6.3 follows closely a proof in [46]. For an account of the theory of real-analyticity
for vector valued functions, see [36] and [137].






Chapter 7
Miscellaneous examples and special cases

In this chapter we consider several special cases where our general results take
stronger form. These include homogeneous Markov chains, asymptotically homoge-
neous additive functionals. We also explain how continuity assumptions can be used
to strengthen the results of the previous chapters.

7.1 Homogenous Markov chains

A Markov chain X = {X,} is called homogeneous if its state spaces and transition
probabilities do not depend on n

G, =6, U, =u, mn,(x,dy)=mn(xdy) foralln,

and X, is stationary.
An additive functional on a homogeneous Markov chain is called homogeneous

iff ={f,} and
Jfa(x,y) = f(x,y) for all n.

The LLT for homogeneous Markov chains is due to Nagaev. The following ver-
sion, which allows continuous spaces, follows from results in [64].

Theorem 7.1. Let f denote an a.s. uniformly bounded homogeneous additive func-
tional on a uniformly elliptic homogeneous Markov chain X.

1
(1) Asymptotic Variance: The limit 6* = Allim N—Var(SN) exists, and 62 = 0 iff we
e

can represent f(X1,X5) = a(Xp) —a(X)) + x a.s. where a: & — R is a bounded
measurable function and K is a constant, equal to E(f(X1,X2)).

(2) CLT: If 62 > 0, then X ?EFI\(/SN ) converges in probability as N — o to the Gaus-
sian distribution with mean zero and variance 2.

(3) LLT: If 6% > 0 then exactly one of the following options holds:

177
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(a) Non-Lattice LLT: If % — z, then for every interval [a,b],

e—22/(20%)

V2no2N

(b) Periodicity: There exist k € R,t > 0 and a bounded measurable function
a:6 — Rsuch that f(X1,X2) +a(X1) —a(X2) +x €tZ a.s.

P[Sy —zn € [a,b]] = [1+0(1)] (b—a), as N — oo,

Proof. Let Vy := Var(Sy) and f; := f(Xi, Xi+1), and assume without loss of gener-
ality that E[f(Xl ,Xz)] =0.

Proof of part (1): By stationarity, E(f,) = 0 for all n, and so

1<m<n=N

iMM=

By stationarity, E(f, fin) = E(fofn—m) and

L =E(@)+2 Y E(ofy) (1—")
N N 0 = 0Jk N .

|E(fofm)| decays exponentially (Prop. 1.1), so ¥ |E(fof)| < oo, whence

1 oo
2.y _ 2
0 := lim —Var(Sy) = E(fp) +2]§1E(fofk). (7.1.1)
(This identity for o2 is called the Green-Kubo formula.)

Let u, denote the structure constants of (X,f). The homogeneity assumptions
implies that u, is independent of n, say u, = u for all n. It follows that Uy = u% +
-+ +u3, = (N —2)u?. Now we have two cases:

(I) u > 0: In this case by Theorem 2.1, Vy =< Uy =< N, whence 6> > 0.

(I1) u = 0: In this case, Var(Sy) = O(1) by Theorem 2.1, whence 6> =0 and f
is center-tight. By the Gradient Lemma, (Lemma 2.2), f(X,X) = a2(X3) —
a; (X)) + x for some aj,a; : & — R bounded and measurable and x € R. In
the homogeneous case, we may take a; = a, see (2.2.4) in the proof of the
Gradient Lemma. So f(X;,Xz) = a(Xz) —a(X;) + x a.s.

Proof of part (2): This follows from part (1) and Dobrushin’s CLT.

Proof of part (3): By homogeneity, the structure constants d,(£) are independent
of n, and they are all equal to d(&) := E(|e’T — 1|2)!/2, where I is the balance of
a random hexagon at position 3. So Dy (&) = Y2 5 d2(E) = (N —3)d>().

If d(&) # 0 for all £ # 0, then Dy (&) — o for all & # 0, f is irreducible by
Theorem 3.2. and the LLT follows from Theorem 4.1.

If d(§) = 0 for some & # 0, then Dy (&) = 0 for all N, € is in the co-range of
(X,f), and our reduction lemma says that there exist ¢, € R and uniformly bounded
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measurable a, : & — R and h,(X,,,X,+1) such that ¥ h,(X,,X,+1) converges a.s.,
and f (X, Xu11) +an(Xn) = a1 K1) + b (X, Xos1) + 160 € FLas.
Let A, (X, Xni1,-..) = an(Xn) + Lisn Mk (Xk, Xi41), then for all n

2
frz(XanJrl) +A,1(Xn,Xn+l 5o ) —A,H,l (Xn+1,Xn+2, .. ) —|— Kn 6 ?Z a.s. . (712)
We need to replace A;(X;, Xj+1,...) by a(X;). This is the purpose of the following
proposition, whose proof will complete the proof of the theorem:

Proposition 7.1. Let X be a uniformly elliptic homogeneous Markov chain with
state space (S, 8,1), and let f : S x & — R be a measurable function such that
ess sup| f(X1,Xa)| < oo. If there exist measurable functions A, : G~ — R and K, € R
satisfying (7.1.2), then there exist kK € R and a measurable a : G — R such that

(X0, Xpt1) +a(Xy) —a(Xy+1) + K € Z as. for all n.

Proof. Throughout this proof, let Q := G, equipped with the ¢-algebra .7 gener-
ated by the cylinder sets

A, A ={xe&N:xcA (i=1,...,n)} (A € B)
and the unique probability measure m on (Q,.%) s.t.
m[Al,...,An] :]P[Xl €AL,..., X GAn]

Let 0 : 2 — Q denote the left-shift map, o[(x;),>1] = (X4+1)n>1. The stationarity
of X translates to the shift invariance of m: moo~! = m.

STEP 1 (Zero-One Law): N~ T7".% = {&,Q} mod m.

Proof. Fix a cylinder A := [Ay,...,A,].

By uniform ellipticity, m(A N o~ "+ B) > gym(A)m(B) for every cylinder B =
[Bi,...,Bn). Specializing to cylinders which begin with a string of k Q’s, we find
that m(AN o~ "R (B, ... B,]) > gom(A)m(B) for all k > 1.

By the monotone class theorem, m(AN 6~ "X E) > gym(A)m(E) for every F—
measurable set £ and k > 1.

Suppose E € (> T "%, and let A be an arbitrary cylinder of length m. By the
assumption on E, E =T "E, with E, € .% and n > m. So

m(ANE)=m(ENT"E,) > ggm(A)m(E,) = gom(A)m(E).

m(ANE)
m(A)

We see that > gym(E) for all cylinders A, whence

E(1g|X1,...,Xm) > gm(E) for all m.

By the martingale convergence theorem, 15 > gym(E) a.e., whence m(E) =0 or 1.

STEP 2: Identify f with a function f : Q — R s.t. f[(x;)i>1] = f(x1,x2). Then there
exist A : Q — R measurable and k € R s.t. f+A —A o0+ k € Z almost surely.
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Proof. The assumptions of the proposition say that there exist A, : 2 — R measur-
able and k;,, € R s.t.

foo"+A,00" —Au1 006" + K, € Z m-a.e. for every n.

. .o n n . —
Let w,, := ¢2™4n_then ¢27if°0 % =1 m-a.s. Since mo o~ ! = m we have
n+l1
e?Mf _Wn__ — 1 a. for all n. This gives the chain of identities

Wn4100

—27i(f+fo0) o 2Ly ook

wp=e "y, joo=e¢ Wpi2002 = = Wnik © OF.

It follows that w,, /W, 41 = (Wp ik /Wniks1) o o for all k. Hence w, /w11 is T ¥ -
measurable for all k. By the zero-one law, wy,/w,4 is constant almost surely. In
particular, there exists a constant ¢ such that A, —A; € ¢+ Z m—a.e., and the step

follows with A := A and K := K; +c.
STEP 3: There exists a : 2 — R constant on cylinders of length one such that f +
a—aoo+KEZm-a.e.

Proof. Let L: L' () — L' () denote the transfer operator of ¢ : Q — Q, which

describes the action of o on mass densities on Q: o,[@du] = Lodu. Formally,

oo ! . .
Lo := dm‘fi mG , where my := @dm. We will need the following (standard) facts:

(a) If ¢ depends only on the first m-coordinates, then L@ depends only on the first
(m —1) V l-coordinates. Specifically, (L@)[(yi)i>1] = P(y1,---,Ym—1) Where

Py, Ym—1) =El@Xi,.... X)) Xi=yi 1 <i<m—1)]
(b) L is characterized by the condition [ WLedm = [woopdmVy € L*(6)
(©) L(pyoo)=yLpVpeLl y€L”

(d L1=1
() Yo €L”, L"¢ — [@dmin L.

Part (b) is standard. Parts (c) and (e) follow from (b) and the o-invariance of m.
Part (a) follows from (b), and the identity

/l[/L(pdm:/l[/qu,oG_l :/q;o cpdm =E[y(X2,X3,...)0(X1,...,Xn)]
|
=E(y(X2,X3,.. )E[@(X1,....Xn)[X2,X3,..]) = E(y(X2,X3,... ) E[@[X2,..., X))
:/l//d)dm
where = is because of the Markov property. To see part (d) note that it is enough to

consider ¢ € L such that [ @dm = 0 (otherwise work with ¢ — [ @dm). For such
functions,
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Il = /Sgn(Ln(P)Ln(Pdm:/sgn(L"(p)oo'”(pdm

= / sen(L") o 6"E(@|T " F) dm < / IE(¢|T~".F)|dm

The integrand is uniformly bounded (by ||@||-), and it converges pointwise to
E(p|Neo™7) =E(e[{2,2}) =E(¢) =0.

Let w := ¢?™4 where A : Q — R is as in step 2, and assume w.l.o.g. that ¥ = 0
(else absorb it into f). Set S, = f+ foo +---+ foo™ !, then e 2™/ = w/wo o,
whence e~ 2% = w /wo 6”. By (c), for all ¢ € L'(Q),

. . 1
wL" (e 251 ) = L (e Snwo 6" ) = L" (we) A:—% /w(pdm.
n—yoo

Since |w| =1 ae., Im > 2 and 3¢ = @(xy,...,x,) bounded measurable so that
Jwedm # 0. For this ¢, we have

~27iS),
w =L lim 7L(e ?)
n—o  [wodm

We claim that the right-hand-side depends only on the first coordinate. This is
because e 2"/ ¢ is function of the first m coordinates, whence by (a), L(e 2%/ ¢)
is a function of the first (m — 1) V 1 coordinates. Applying this argument again we
find that L(e 2"52¢) = L[e=2"/L(e~ "/ @)] is a function of the first (m —2)V 1
coordinates. Continuing by induction, we find that L"(e~2%S1¢) is a function of
(m —n) V 1-coordinates, and eventually of the first coordinate only.

So w™!is an L'-limit of a functions of the first coordinate. Therefore we can write
w((x;)i>1] = exp[2mia(x;)] a.e., where @ : & — R is measurable. By construction
e*lw/woo = 1,50 f(X1,X2) +a(X1) —a(Xa) € Z almost surely. By stationarity,
F (X0, Xnt1) +a(Xy) —a(Xy+1) € Z almost surely for all n. O

We now determine domain of the rate functions for large deviation. We note that
the results of Chapter 6 concern P[Sy > zVy] = P[Sy > z62(1 + o(1))N], while
in large deviation literature it is common to use the normalization P[Sy > zN]. To
simplify the comparison with other results we will assume till the end of this section
that 6> = 1 which can always be achieved by scaling f. Let .”y = ess supSy. Our
ellipticity assumption gives Ay1y < Sy + Su —4K where K = || f||. Hence the
sequence Jy = Sy —4K is subadditive and therefore the limit

. esssupSy .. N .. In
sy = lim ——— = lim — = lim —
N—soo N N—oo N N—oo N
. L - . essinfSy .
exists. Similarly the limit s_ = lélm ————— exists. Recall the notation for large
—o0

deviation tresholds ¢_, ¢ introduced in §6.4.
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Theorem 7.2. Let f be an a.s. uniformly bounded homogenous additive on a uni-
formly elliptic homogeneous Markov chain, and assume f has zero mean and asymp-
totic variance 6> = 1. Then ¢, = s, andc_ =5_.

Proof. We prove the first identity, the second one is similar.

First, for any € > 0, P[Sy > (s;+ + €)N] = 0 for sufficiently large N, whence
o <s54.

Let K := ess sup [f|. For every € > 0, for all sufficiently large M,

6M = ]P)[SM > (5+ —S)M} > 0.

Let 0(X;,...,X;) denote the o-field generated by X;,...,X;. By uniform ellipticity,
ifE € O'(X1 e ,XM+1) and F € CF(XM+37 ce. ,X2M+3), then P[EQF} > SQP(E)IP(F)
(To see this, prove this first for cylindrical events E := ﬂ?i Tl [X; € Aj], F :=

ﬂ?‘:’[ Aﬁr3 [X; € Bj] and then use a monotone class argument.) Consequently,

P[S212) = 2(s4 — €)M — 2K]

M 2M+2
2P [Z X Xip1) > M(sy —€), Y, filXe Xes1) > M(sy —e)]
=1 k=M+3

M M2
> gP [Z Je(X, Xaey1) > M(s4 —8)1 P [ Y S X)) > M(s —8)1 .
=1 k=M +3

Thus by stationarity, P[Sy(yr42) > 2(s+ — €)M —2K| > €87 Applying this argu-
ment repeatedly, we find that for each ¢,

P[Sr2ye > (51— )M —2K)0] > (208%)"

(5+ — £)M —2K

Now Corollary 6.7 tells us that for all sufficiently large M, ¢ > M2

Letting M — oo we obtain ¢y > s, — €. Since € is arbitrary, ¢, > 5.

7.2 Perturbations of homogeneous chains

Let (X,f) be a bounded homogenous additive functional on a uniformly ellip-
tic Markov chain with stationary measure y and transition probability 7(x,dy) =
p(x,y)u(dy). We consider non-homogeneous perturbations (X, f) of the form

Fa(x,y) = F(0,3) +8n(x,y) , Tu(x,dy) = P(x,y)p(dy).

We assume that the strength of the perturbation decays at infinity. Namely for each
€ > 0 there is ng such that for n > ny
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Pn(x,y)

<l+e.
plxy)

llgnlle <€ and 1—€<—"=

Theorem 7.3. If the additive functional g is center tight with respect to the unper-
turbed measure then Geg(f) = Gegs(f). If g is not center tight then G4 (f) = R.

Proof. We note that it suffices to prove the result in the case p, = p. Indeed by our
assumption we have
1 pn (x,y)

2= pley)
if n is sufficiently large. Since discarding a finite number of terms does not change
the essential range (since any functional vanishing for large n is center tight) we
may assume that (7.2.1) holds for all n. Now Example 3.6 shows that the essential
range of the functionals defined via p and via p, are the same. Thus we assume
henceforth that p,, = p for all n. _

If g is center tight then the essential ranges of f and f are the same, so we shall
assume that g is not center tight, and prove that Dy (& f) — oo for every & # 0. Let
0 :=d,(&,f) (the RHS does not depend on 7 by stationarity).

Suppose first that 0 # 0. By Lemma 1.4(2) we have

<2 (7.2.1)

02 = dZ(E,f) <8 |du(E,F) +d,(&,B)

Next, the assumption ||gy ||« — 0 implies that d2(&,g) — 0. Accordingly

22
dy(F,6) > for all n large enough, so that Dy (&, ) — oo as needed.

Next assume 9 = 0. In this case for any hexagon P, we have ST (FF) — 1, where
I'(f,-) denotes the balance for the additive functional f. It follows that I'(f,) =
I'(g,-). Hence

dn(f) = du(g)-

Fix 7 > 0 such that |e” — 1|2 > 1#2 for all |¢| < 7p. If 0 < 1| < To(6ess sup g|) !,
then (3.3.6) tells us that

2
B(E8)> 5

u>(g) for all n large enough.

By assumption, g is not center-tight, so ¥ u2(g) = co. It follows that Dy(1,f) —
oo for all 0 < || < 7p(6ess sup|g|)~!. So the co-range of g equals {0}, and the
essential range of g equals R. t

Next we discuss the large deviation tresholds for f.

Theorem 7.4. (a) If f is not a coboundary then ¢+ (f) = ¢+ (f) = s..(F).
(b) If f is a homogeneous gradient, E(gn) = 0 for all n, and g is not center tight,
then C (f) —|—<><.')7 C_ (f) = —o0,
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Proof. The proof of part (a) is very similar to the proof of Lemma 6.14 so we omit
1t.

In the proof of part (b) we may assume that f = 0 since adding a homogeneous
gradient does not change the large deviation threshold. In particular in the rest of
the proof we will abbreviate Sy = Sy(g), Sn; ., = Sny, (8) = ZZ;: Sie(X, Xp1)s
Vv = Var(Sy(g)). Since g is not center tight, Viy — co.

Assume without loss of generality that ess sup [g| < 1, then Var[gi (Xi, Xi41)] < 1
for all k. Divide the interval [0, N] into blocks

I:I’l17n2:| U{n2+1}U |:I’l3,n4:| y---u |:nk,nk+1:| U{nk+1}U |:nk+2,N:|

where n; is increasing, 1 < Var(S,,j_rnjH) <2for j <k+1,and Var(S,,,,n) < 1.
Since ||gnlleo —> o0, min{njy —nj: € < j < k} e Also, the analysis of
[ —00

86.3.4 shows that
1
W Zv.ar(ks*nj,,,j+1 ) — 1.
J

In particular, the number of blocks By, is between Vi /2 and Vy.
LetM; = max ||&1]|e- Note that M; — 0. Therefore applying Dobrushin CLT

njg 7nj+1
to the array {g,/Mj},,jggnj+1 we conclude that Snj,n,-“/ Var(Snj,,,_Hl) is asymp-

totically normal. In particular, for each z > 0 there exists 11 = 1(z) > 0 such that for
J large enough and all x; € &,

P(S >37) > 1. (7.2.2)

njnji+1 —
A uniform ellipticity similar to the one we used in the proof of Theorem 7.2 gives
P(Sy > Bvz) > cnP

where ¢ incorporates the contribution of blocks (with small j) there (7.2.2) fails.
Now Corollary 6.7 implies that ¢* > z. Since z is arbitrary, ¢t = +oo. A similar
argument shows that ¢_(g) = —oo. O

7.3 Small additive functionals.

The perturbations of f = 0 were analyzed in the previous section, however, since
this case is of independent interest it makes sense to summarize the results obtained
for this particular case.

Theorem 7.5. Let g be a uniformly bounded additive functional of uniformly elliptic
Markov chain. Suppose that E(g,) = 0 and that lim ||g, || = 0. Then
n—soo
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=

either g is center tight in which case Z gn converges almost surely

or g is not center tight in which case SN( ) satisfies non lattice LLT (4.1.1) and
c+(g) = oo

Proof. The non-center tight case was analyzed in §7.2. In the center tight case the
results of Chapter 2 tell us that g can be decomposed as

gn(x,y) = cn+ant1(y) — an(x) +hn(x,y)  where Zvar(hn) <o
n

Changing a,, if necessary we may assume that E(a,) = 0 in which case
E(gn) =0=E(h,+cp).

Therefore the additive functional h = h + c has zero mean and finite variance. Hence

by Theorem 2.4 Z (hy + c,) converges almost surely. In summary Sy(g) —ay +a;
n=1
converges almost surely, and hence Sy(g) — ay converges almost surely. On the
other hand equation (2.2.4) shows that Al/im ay = 0 completing the proof. (|
—So0

The following result which a direct consequence of Theorem 7.5 shows that for
small additive functionals a vague limit of the local distribution of Sy always exists.

Corollary 7.1. Let g satisfy the assumptions of Theorem 7.5. Then either and Sy
converges a.s. to some random variable . in which case for each continuous com-
pactly supported function ¢

lim E(¢(Sy)) =E(¢())

N—oo

or Sy satisfies a non-lattice LL. That is, for each continuous compactly supported

. . . IN .
function ¢ for each sequence zy such that the limit 7 = Al,un ——— exists we have
—r0 N

e /2
lim VyE(o(Sy)) =E(o (7))

friates :ﬁ 3 ¢(S)ds

7.4 Equicontinuous additive functionals

In this section we examine the consequences of topological assumptions on f and
X. Specifically we will say that (X, f) is equicontinuous if

(D) (&,,%,, 1) are complete separable metric spaces, %, are the Borel 5-algebras,
and u, are Borel probability measures;

(S) for every € > 0O there exists 6 > 0 such that for all x, € &, and n > 1,
Un[B(xn,€)] > 8. Here B(x,r) := {y € &, : dist(x,y) < r}.
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(U) for every € > 0 there exists 6 > 0 such that for all n > 1 and x,,y, € G,
diSt(xnvyn) < 6 = |fn(xn) 7fn(yn)| <E&.

7.4.1 Range.

Theorem 7.6. Suppose (X,f) is equicontinuous and a.s. uniformly bounded. Assume
in addition the following:

(a) One-step ellipticity condition: 3g s.z. for every n, m,(x,dy) = pn(x,¥) tu+1(dy)
where € < pp(x,y) < 8(;1.
(b) &, are all connected.

Then f is either irreducible with algebraic range R, or it is center tight.

; 0
Proof. Choose ¢; > 0 such that |e’® — 1|? = 4sin? <2> > ¢16? for all |6] <0.1.
We fix & # 0, and consider the following two cases:

() 3Np such that |EI"(P)| < 0.1 for every position n hexagon P, for each n > Nj.
(IT) 3ny 1 oo and 3 position ny hexagons By, such that |SI"(F,, )| > 0.1.

In case (I), for all n > No, d2(&) = E(|e"*T — 1) > ¢;E(I'?) = c1u?. So either
Y u? = oo and then Y d?(§) = oo for all £ # 0, and f is irreducible with essential
range R; or Y u2 < oo and then f is center-tight by Corollary 2.2.

In case (II), for every k there is a position ny hexagon P, with |EI"(P,, )| > 0.01.
There is also a position n; hexagon P,ik with balance zero (such hexagons always
exist). We would like to apply the intermediate value to deduce the existence of a
position ny hexagon P, such that 0.05 < EI'(P,, ) < 0.1. To do this we note that:

o Because of the one-step ellipticity condition, the space of position n; hexagons is
homeomorphic to G, 2 X G, 1 X G, X Gy, .

o The product of connected topological spaces is connected.

o Real-valued continuous functions on connected topological spaces satisfy the in-
termediate value theorem.

o The balance of hexagon depends continuously on the hexagon.

So Py, exists. Necessarily, ST (Pry) 1> c1§2F2(F,,k) =:cy.
L= . . — _ Xn—1 Xn _ . ..
Write P, in coordinates: P, := | X,,_2; y" 1 ; y" ;¥,+1 |- By the equicontinuity of
n— n

f, 3& > 0 such that [T ") — 1| > L¢, for every hexagon P whose coordinates are in
the e-neighborhood of the coordinates of P,,. By the equicontinuity of u, and the
one-step ellipticity condition, this collection of hexagons P have hexagon measure
> ¢ for some 6 > 0 independent of k. So d,%k(é) > 16,8.

Summing over all k, we find that Zdﬁk (&) = oo. Since & # 0 was arbitrary, (X, f)
has essential range R. (]
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7.4.2 Large deviation treshold.

Lemma 7.1. Suppose that G,, are metric spaces, f, are equicontinuous, and for
each € > 0 there exists 6 > 0 such that if p,(x,y) > 0 then

Tu(x,B(y,€)) > 6. (7.4.1)
Suppose that Vy > cN and that
N N
inf ) fi(xjxj41) sup Y f(xj,xj41)
) X5 XNA41 j=1 L AN =1
lim sup < z < liminf
N—soo Vi N—seo Vi

Thenz €€ .

Note that assumption (7.4.1) is satisfied whenever X satisfies (S) and the one step
ellipticity condition. We also remark that Example 6.5 shows that equicontinuity
assumption on f is essential.

Proof. Fix N. Consider first the case where z > %j\f’). By assumption there is an €

such that for all sufficiently large n there is a sequence X, ...,Xy+1 such that

fi(%),X41) > (z+€)Vy.

=

1

J

By ellipticity for each x € &, there a sequence x1,x; ...Xy+ such that x; = x and

™=

[i(&Xj41) > (z+€)Vy —4K
1

J

(in fact one can take X; = X; for j > 3). By uniform continuity of f; and the fact that
Vi grows linearly, there is r such that if X; € B(x;,r) for j <N+ 1 then

™=

fi(Xj,Xj41) > (z+€/2)Vy —4K.
1

J
By (7.4.1) there is 8 > 0 such that Py(X; € B(X;,r)) > 8" . Hence
P(Sy > (z+¢€/2)N) > &Y.

Now Theorem 6.7 shows that z € %.
The case z < E%N L is analyzed similarly now using the estimate
N
inf ) fi(xj,xj51)
. )C|,...7)CN+]j:1
limsup <z—e. O
N—oo Vn
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Corollary 7.2. Under the assumptions of Lemma 7.1 if

inf Zf, (xj,%j+1)

X1 ’XN+1
3 = lim exists then 3~ =c¢
N—oo \%%

N
sup Y fi(xj,xj41)
X AN+ j=1 .
! exists then 37 =c¢*

37 = lim
N—oo VN

Proof. We will prove the second statement, the first one is similar. 37 < ¢t by
Lemma 7.1. On the other hand if z > 3 then for large N, P (Sy > Vyz) = 0. Hence
o <3t O

We now restate the result of the last corollary in a slightly different way under an
extra assumption. Namely, we suppose that

&, are compact & Vxp, Xp+1 : Pn(Xn,Xnt1) >0 (7.4.2)
Definition 7.1. Let .#) denote the space of sequences x € HG,, such that if y,, =
x, forn > N+ 1 then

2
2

Z (Yn>¥n+1) Z (XnsXn41)-

n=1 n=1

Denote .# = ﬂ My . The elements of .# will be called minimizers.
N=1

The properties of .#y are summarized below.

Lemma 7.2. (a) .#y are closed sets.
(b) If N > M then Mn C My.
(c) A i lS non empty.

(d)Ifo Xn>Xn+1 lanf Ynayn-ﬁ-l)thenXE%N
n=1

(e) If x € My then Zf(xn,xn+1) < il;fo(yn,ynH)JrzK
n=1

n=1
Proof. (a) If .My > x/ — X & .My, then there would exist X such that X,, = x,, for
jreo

n>N+1,and
N

f(invinJrl) < Z f(xnvxll+l)~

1 n=1

M=

n

Let y/ be the sequence such that y,]; = x,’z forn >N+1, y{; =X, for n <N. By
continuity of f
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. . N
FOhYh) < X F6hx040)

1 n=1

M=

n

for large j contradicting, x/ € .Z).
Next let x € .#y and x,, =y, for n > M with N > M. Then

N
Z fn anyn+1 fn Xnaxn+1 fn anYn+1 fn(xnvxn+1)] >0.
n=1 n=1
This proves (b).
Combining (a) and (b) we see that ., are nested compact sets, hence their inter-
section is non-empty.
(d) is clear.
Next, let x be the argmin of Y, f(z,,2,+1) and y € .#y. Let z be such that z, =
X,, forn <n<N—1andz, =y, forn>N. Then

N
Z yn7yn+1 < an Zy,Zni1 < an Xnaxn+1)+2K

n=1 n=
proving (e). (|

Part (e) of the lemma implies that for each x € .# (which is non-empty by part
(©)
- = lim — Zf Xn,XrH»l)

N—oo N

7.5 Notes and references

Theorem 7.1 is well-known, see [96, 64, 114, 56, 99]. We note that in homogeneous
setting the assumptions on f can be significantly weakened. In particular, the as-
sumption that f is bounded can be replaced by the assumption that the distribution
of f is in the domain of attraction of the Gaussian distribution [96], one can allow
f to depend on infinitely many X,,s assuming that the dependence decays exponen-
tially [56], and the ellipticity assumption can be replaced by the assumption that the
generator has a spectral gap [96, 64]. In particular, the LLT holds under the Doeblin
condition saying that 3¢y > 0 and a measure { on & such that

7(x,dy) = €& + (1 — &0)7(x, dy)

where 7 is an arbitrary transition probability (cf. equation (1.2.2) in the proof of
Lemma 1.2). There are also versions of this theorem for f in the domain of attraction
of a stable law, see [4].
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The aforementioned weaker conditions however are not sufficient to get LLT in
the large deviation regime, in fact large deviation probabilities could be polynomi-
ally small for unbounded functions, see [136].

There is a vast literature on the sufficient conditions for the Central Limit Theo-
rem for homogenous chains, see [35, 54, 55, 64, 71, 74, 91] and references wherein,
however, the local limit theorem is much less understood, see notes to Chapter 4.

The characterization of coboundaries in terms of vanishing of the asymptotic
variance 62 is due to Leonov [83]. A large number of papers discuss discuss the
regularity of the gradients in case an additive functional is a gradient, see [19, 29,
66, 86, 87, 100, 99, 138] and the references wherein. Our approach is closest to
[41, 66, 99]. We note that the condition u = 0 which is sufficient for f being a
coboundary, is simpler than the equivalent condition 6> = 0. For example for finite
chains, to compute 6> one needs to compute infinitely many correlations E(fyf;,)
while checking that u = 0 involves checking balance of finitely many hexagons.

The minimizers play important role is statistical mechanics where they are called
ground states. See e.g. [49, 110]. In the case the phase spaces &, are non-compact
and/or the observable f(x,y) is unbounded, the minimizers have an interesting ge-
ometry, see e.g. [24]. For finite states we have the following remarkable result [18]:
for each d there is a constant p(d) such that for any homogeneous Markov chains
with d states for any additive functional we have

1
5y =max - max LfCeryxo) -+ f(xg-1,xg) + f g, x1)] -
This result is false for more general homogenous chains, consider for example the
case S =Nand f(x,y) =1 ify=x+1 and f(x,y) = 0 otherwise.
Corollary 7.1 was proven in [42] for inhomogenous sums of independent ran-
dom variables (in the independent case one does not need the assumption that
Jl_r}r}o |lgnll = O since the gradient obstruction does not appear in the independent

case).



Chapter 8
LLT for Markov chains in random environment

We prove quenched local limits theorems for Markov chains in random environment
with stationary ergodic noise processes.

8.1 Markov chains in random environment

Informally, Markov chains in random environment (MCRE) are Markov chains
whose transition probabilities depend on a noisy parameter ® which varies in time.!
It is customary to model the time evolution of @ by orbits of a dynamical system
called the “noise process.” Here are the formal definitions:

Noise process: This is an ergodic measure preserving invertible Borel transfor-
mation 7 on a standard measure space (Q,.%,m). “Measure preserving” means
that for every E € .%, m(T~'E) = m(E). “Ergodic” means that for every E € .%,
T'E=E = m(E)=0orm(E®) =0.

If m(Q) < oo then we will speak of a finite noise process, and we will always
normalize m so that m(Q) = 1. If m(Q) = oo, then we will speak of an infinite
noise process. The infinite noise processes we consider here will all be defined on
o-finite non-atomic measure spaces. Such processes arise naturally in the study of
noise driven by a null recurrent Markov chain, see Example 8.5 below.

Markov chains in Random Environment (MCRE): A MCRE with noise process
(Q,.7,m,T) is given by the following data:

o State space: A separable complete metric space &, with its Borel o-algebra 4.
o Random transition kernel: A measurable family of Borel probability measures

m(w,x,dy) on (&,4), indexed by (@,x) € Q x &. Measurability means that
(0,x) — [@(y)m(x, w,dy) is measurable for every bounded Borel ¢ : G — R.

I MCRE should not be confused with “random walks in random environment,” see 88.4.

191
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o Initial probability distribution: A measurable family of Borel probability mea-
sures U on (&, %) indexed by @ € Q, Measurability means that for all bounded
Borel ¢ : G — R, @ — [ @(x)Uep(dx) is measurable.

This data gives for each @ an inhomogeneous Markov chain X® = {X} with state
space G, initial distribution L, and transition kernels 7% (x,dy) = n(T" o, x,dy).

Here a some examples. Suppose (&, %, L) is a standard probability space, S is
a finite or countable set, and {m;(x,dy) };cs are transition probabilities on &.

Example 8.1 (Bernoulli noise). Consider the noise process (2,.%,m,T) where

o Q :SZ:{(~~~ ,(1),1,(1.)0,(1)1,"') L GS};

o & is generated by the cylinders i [ay,...,a,] :={® € Q : 0 =a;,k <i<n}

o {pi}ics are non-negative numbers s.t. ¥ p; = 1, and m is the unique measure s.t.
m(lag, . ..,an|) = pa, - - Pa, for all cylinders.

o T :Q — Q is the left shift map, T[(®))icz] = (0i+1)icz

It’s well-known that (Q2,.%,u,T) is an ergodic probability preserving map.

Define ©(w,x,dy) := Ta, (x,dy). Notice that ©(T" ®,x,dy) = %y, (x,dy), and @,
are iid’s taking the values i € S with probabilities p;. Since @, are iid, {X?: 0 € Q}
represent a random Markov chain whose transition probabilities vary randomly and
independently in time.

Example 8.2 (Positive recurrent Markov noise). Suppose (¥,),cz is a stationary
ergodic Markov chain with state space S and a stationary probability vector (py)ses-
In particular, (Y;,),ecz is positive recurrent. Let:

0 Q:={(w) €S’ :PlY) = 0,Y» = 1] # O foralli € Z};

o .% is the o-algebra generated by the cylinders (see above);

o m is the unique (probability) measure such that m(y[ay, . ..,an)) =PYr =ax, ..., Yo, =
ay] for all cylinders;

o T is the left shift map (see above).

Define as before, (@, x,dy) := g, (x,dy). The resulting MCRE represents a Markov
chain whose transition probabilities at time n =1,2,3,... are 7y, | (x,dy).

Example 8.3 (General stationary ergodic noise processes). The previous con-
struction works verbatim with any stationary ergodic stochastic process {¥,} taking
values in S. The assumption that S is countable can be replaced by requiring only
that S be complete, separable, metric space, see e.g. [44].

Example 8.4 (Quasi-periodic noise). Let (Q,.%,m,T) be the circle rotation:
Q={weC:|w|l =1}; .7 is the Borel c-algebra; m is the normalized Lebesgue
measure; and T :  — Q is the rotation by an angle o: T (@) = ¢/*®. T is proba-
bility preserving, and it is well-known that T is ergodic iff o /27 is irrational.

Choose a partition of the unit circle € into disjoint arcs {/;};cs and define ¢ :
Q — Sby ¢(w) =i for ® € I;. For example, if S = {1,2} we can take I}, to be
two equal halves of the circle. Next define
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ﬂ(w,x, dy) = 7r(p(a)) (xvdy)

Now X® are inhomogeneous Markov chains whose transition probabilities vary
quasi-periodically: They are given by Ty ina ) (x,dY).

Example 8.5 (Null recurrent Markov noise). This is an example with infinite
noise process.

Suppose (¥,)nez is an ergodic null recurrent Markov chain with countable state
space S, and stationary positive vector (p;);cs. Here p; > 0 and (by null recurrence)
Y p; = oo. For example, (¥,,),cz could be the simple random walk on Z¢ ford = 1,2,
with the stationary measure which assigns the same mass to each site of Z¢. Let

0 Q= {(a)icz € SZ:P[Y; = 0,Yr = @;41] # O foralli € Z};
o .% is the o-algebra generated by the cyliders;
o m is the unique (infinite) Borel measure which satisfies for each cylinder

m(k[aka" . 7an]) = PakP[Yz =a (k <i< n>|Yk = ak]

oT:Q — Q is the left shift map T[(®;);cz] = 0i41-

Then it is well-known that (Q2,.%,m,T) is an infinite ergodic measure preserving
invertible map, see [2].

Just as in Example 8.2, one can easily construct many MCRE with transition
probabilities 7y, (x,dy) which vary randomly in time according to (¥,),ez. For each
particular realization of @ = (Y;);cz, X® is an ordinary inhomogeneous Markov
chain (on a probability space). But as we shall see below, some features of X® such
as the growth of variance, are different than in the finite noise process case.

Example 8.6 (Transient Markov noise: a non-example). The previous construc-
tion fails for transient Markov chains such as the random walk on Z¢ for d > 3,
because in the transient case, (Q,.%,m,T) is not ergodic, [2].

We could try to work with the ergodic components of m, but this does not yield
a new mathematical object, because of the following general fact [2]: Every ergodic
component of an invertible totally dissipative infinite measure preserving map is
concentrated on a single orbit {7"(®) },cz. MCRE with such noise processes have
just one possible realization of noise up to time shift. Their theory is the same as
the theory of general inhomogeneous Markov chains, and does not merit separate
treatment.

Suppose X is a MCRE with noise space (2,.%,m,T). A Random additive
functional is a measurable function f: Q2 x G x & — R. This induces the additive
functional f® on X?®

) = f(T"o,x,y).
For each w € Q we define
N N
S]((’) = Zfl?(xrfoaxrfil) = Zf(Tn(L)?Xr??Xrg»l)?
n=1 n=1

VY = Var(Sy) w.r.t. the distribution of X®.
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Throughout this chapter, we make the following standing assumptions:

(B) Uniform boundedness: |f| < K where K < oo is a constant;
(E) Uniform ellipticity: There is a constant 0 < & < 1 and a Borel function p :
Q x 6 x 6 — [0,0) such that

(@) m(w,x,dy) = p(®,x,y) 1o (dy);
(b) 0< p<1/ep;
©) Jor(@,x,y)p(To,y,z)ure(dy) > €& for all ,x,z.

(S) Stationarity: For every ¢ : © — R bounded and Borel, for every @ € €2,

/(p Juro(dy) = /(/(p wxdy)>uw(dX)~

(B) and (E) imply that f® is a uniformly bounded additive functional and that X?
is uniformly elliptic for every . (S) is equivalent to saying that if Xy is distributed
according to L, then X, is distributed according to pirnq. for all n > 0. If (B) and
(E) are true, then (S) can always be assumed without loss of generality, because of
Proposition 1.2 and the discussion which follows it.

Some of our results will require the following continuity hypothesis:

(C) The Borel structure of 2 and G is generated by a topologies so that 2 and &
are complete and separable metric spaces, and

(C1) T:Q — Q is a homeomorphism and supp(m) = Q.

(C2) (w,x,y) — p(®,x,y) is continuous, and ® — [ @d L is continuous for
every bounded continuous ¢ : G — R.

(C3) (w,x,y) — f(®,x,y) are continuous.

We do not include (C) in our standing assumptions, and will state it explicitly when-
ever it is used.

8.2 Main results

Let [P denote the measure on Q2 X G x G which represents the joint distribution of
(0,X{,X5"), namely

P(dw, dx, dy) -— /6 /6 /Q m(do) o (dx)T(, x, dy). 8.2.1)

(1) f(@,x,y) is called relatively cohomologous to a constant if there are bounded
measurable functions a: Q x & — R and ¢ : 2 — R such that

flo,x,y) =a(w,x) —a(Tw,y)+c(0) P-ae.
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(2) Fix t #0, then f(®,x,y) is relatively cohomologous to a coset of :Z if there
are measurable functionsa: Q xS — S'and A : Q — §' s.t.

2T/ f(0xy) _ l(w)m P-a.

a(Tw,y)

Theorem 8.1. Assume f is an additive functional on a MCRE with finite noise pro-
cess. Under the standing assumptions (B), (E), (S):

(1) If f is relatively cohomologous to a constant, then |V\?| < C for all N, for a.e.
®, where C = C(&,K) is a constant.

(2) If f is not relatively cohomologous to a constant, then there is a constant 6> > 0
such that for a.e. ®, V\$ ~ No? as N — .

Theorem 8.2. Let f be an additive functional on a MCRE with finite noise process.
Assume the standing assumptions (B), (E),(S) and that

(a) Either || < Ry, or |&| > R and the continuity hypothesis (C) holds.
(b) f is not relatively cohomologous to a coset of tZ for any t # 0.
Then there exists 6> > 0 such that for a.e. @, for every open interval (a,b), and for

w—E?(SY)
every zy,z € R such that N %

1 o7 /20%
P[Sﬁ—zNe(a,b)]Nﬁ VT 7 |a—b| as N — .

Theorem 8.3. Let f be an additive functional on a MCRE with finite noise process.
Assume the standing assumptions (B),(E),(S), and that all the values of f are inte-
gers. If f is not relatively cohomologous to a coset of tZ, with t # 1, then there exists

N—E®(SY
02 > 0 such that for a.e. ®, and for every zy,z € R such that w —z

0 1 e—22/20%
]P[SN:ZN]NW W as N — oo.

Theorem 8.4. Let f be an additive functional on a MCRE with finite noise process
(Q,.%,m,T). Assume the standing assumptions (B),(E),(S). If f is not relatively
cohomologous to a constant, then

(1) There exists a continuously differentiable and strictly convex function F : R —
R such that for a.e. ® € Q, F (&) = Al]im %logE(e‘:le’)for all& eR.
—so0
(2) YE(S) — F(0) for a.e. .

N—roo

(3) Let F'(£oo) := élim F'(&), and let Iy(n, ), I (N) denote the Legendre
—+too

transforms of Fy(E) := %logE(egsfg), F(E). Then for a.e. , for every n €
(F(=0), F'()), I(0) — 7 (n).
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(4) #(n) is strictly convex, has compact level sets, is equal to zero at 1 = F'(0),
and is strictly positive elsewhere.
(5) With probability one

ess inf S©
. =F(~oo) = lim ——N ¢, = F(foo) = lim

N—oo N N—oo

ess sup Sy

Corollary 8.1. Under the conditions of the previous theorem, for a.e. ®, SY /N sat-
isfies the large deviations principle with the rate function % (1):

(1) limsup 1 logP[SY /N € K] < —inf.cx ¥ (2) for all closed sets K C R.
N—oo

(2) limsup % logP[SY /N € G| > —inf,cx S (2) for all open sets G C R.
N—oo

Proof. This is a consequence of the Gértner-Ellis Theorem. (]

So far we have only considered MCRE with finite noise spaces. We will now
discuss the case of infinite noise spaces (2,.%,m, T ). The main new phenomena in
this case are:

(a) Itis possible that VY — oo m-a.e., but that V = o(N) a.e.
(b) Itis possible that Aay s.t. VP ~ ay for m-a.e. m.

Example 8.7. Let X, be iid bounded real random variables with variance one and
distribution p(E) = P[X,, € E]. Let f,(x) = x. Let (£2,.%,m,T) be an infinite noise
process, and fix E € % of finite positive measure. Let

n(w,x,dy) = /'l(dy) ’ f((o,x,y) = IE(CO)X

N
Then Sy = Y 15(T"®)X,, and Vi = Y0 12(T" ).

We now rellpi)eal to the following general results from infinite ergodic theory. Let
(Q,.%,m,T) be an ergodic, invertible, measure preserving map on a non-atomic
o-finite measure space, and let L} := {A € L'(Q,7,m) : A >0, [Adm > 0}. If
m(Q) = o, then
(YN AoT"=cae.

) % N AoT" Y 0 almost everywhere for all A € L!.

(3) Let ay be a sequence of positive real numbers, then one of the following hap-
pens:

(a) liminfy_e ﬁ ZnN:l AoT"=0ae.forall A € L1+;
(b) 3N T oo st o1 Y AoTh=0ae. forall AcLl;
So Aay s.t. YN | A(T"®) ~ ay for a.e. ®, even for asingle A € L! .

These results can all be found in [2]: (1) is a consequence of the Halmos Recurrence
Theorem; (2) follows from the Ratio Ergodic Theorem; and (3) is a theorem of J.
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Aaronson. Specializing to the case A = ¢ we find that V; — e a.e.; Vi = o(N)
a.e. as N — oo; and Aay so that V2 ~ ay fora.e. o € Q. O

Here are our general results on MCRE with infinite noise spaces.

Theorem 8.5. Suppose % is a random additive functional on a MCRE with infinite
noise space on a non-atomic o-finite measure space. Under the standing assump-
tions (B), (E), (S):

(1) If f is relatively cohomologous to a constant, then |V\| < C for all N, for a.e.
, where C = C(&y,K) is a constant.
(2) If f is not relatively cohomologous to a constant then V) — oo a.s.

Theorem 8.6. Suppose t® is a random additive functional on a MCRE with infinite
noise space on a non-atomic O-finite measure space. Assume the standing assump-
tions (B), (E),(S) and that

(a) Either || < Ry, or |S| > X and the continuity hypothesis (C) holds.
(b) f is not relatively cohomologous to a coset of tZ for any t # 0.

Then for a.e. ®, for every open interval (a,b), and for every zy,z € R such that

2v-EO($) 0 e
T — 2% ]P[SN*ZN S (a,b)} ~ \/TTI\C;Ja*b‘ as N — oo,

Theorem 8.7. Suppose f® is a random additive functional on a MCRE with in-
finite noise space on a non-atomic G-finite measure space. Assume the standing
assumptions (B),(E),(S), and that all the values of f are integers. If f is not rela-

tively cohomologous to a coset of tZ with t # 1, then for every zy,z € R such that
w—E°(SY)

VW

— z, fora.e. @, ]P[Sf\," :ZN] ~ £ as N — oo,

V2V

8.3 Proofs

Throughout this section X® is a Markov chain in random environment with sta-
tionary ergodic, possibly infinite, noise process (2, %#,m,T), and f® is a random
additive functional on X®. We assume throughout (B),(E),(S).

8.3.1 The essential range is a.s. constant

The purpose of this section is to prove the following result:

Proposition 8.1. There exist closed subgroups H,G.s; < R s.t. for m—a.e. ®, the
co-range of (X®,f?) equals H , the essential range of (X®,f?) equals G5, and
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R  H={0},
Gess =4 2Z H=1Z, t #0,
{0} H=R.

We call H and G, the a.s. co-range and a.s. essential range.

We begin with a calculation of the structure constants of (X® f®). Fix an element
o in the noise space, and let Hex(®) denote the probability space of position 3
hexagons for X®. Let mg, denote the hexagon measure, as defined in section 1.3.1.
Recall the definition of the balance I'(P) of a hexagon P, and define

u(0) = (L (P))”

d(E.©) = E(|ei5F(P) B 1‘2)1/2 (expectation on P € Hex(®) w.r.t. mg).

Since the space of position n + 3 hexagons for X? is Hex(7T" ), together with the
hexagon measure myn g, it follows that the structure constants of (X%, f?) are

A3 (E,f?) =d(T"0,E) and  uni3(f®) =u(T"®) (n>0),  (83.1)

Lemma 8.1. u(-),d(-,-) are Borel measurable, and for every o, d(-,®) is continu-
ous. Under the continuity hypothesis (C), u(+),d(-,-) are continuous.

Proof. To check this, express the hexagon measure explicitly as a measure on &%
in terms of the transition kernel 7(®,x,y), using the formulas for the bridge distri-
butions of §1.2.3, and write I"(P) explicitly a function on & in terms of f(®,x,y).
We omit the details, which are routine. O

Proof of Proposition 8.1. By the definition of essential range and (8.3.1)
Hy:=H(X?f®)={£eR: Y d(&,T"0)* < }.
n=0

Clearly Hr o = Hg. Our plan is to show that ® — Hy, is measurable, and then invoke
the ergodicity of T to see that Hy, is constant almost surely. The proposition then
follows from Theorems 3.1 and 3.2.

N N-3
Let DN(&,(D) =X dn(évfw)z =) d(anaé)z'
n=3 n=0

STEP 1: U(a,b) :={w € Q : Dy(-,0) ST uniformly on (a,b)} is measurable
—yo0
and T-invariant for all a < b.

Proof. T-invariance is because d> < 4 whence |Dy(&,T®) — Dy (€, )| < 8. Mea-
surability is because of the identity

U(a,b):{we.Q:VMEQEINENS't' }

forall £ € (a,h)NQ, Dy(®,&) >M

The inclusion C is obvious. The inclusion D is because if ® ¢ U(a,b) then for some
M € Q, for all N € N there exists some 1 € (a,b) s.t. Dy(®,mn) < M, whence by the
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continuity of 1 — Dy(®,n) there is some & € (a,b) NQ such that Dy (@,&) < M.
So w ¢ U(a,b) = o ¢ RHS.

STEP 2: The sets Q1 :={w € Q:Hy, ={0}}, Q2 :={w € Q:Hy =R}, and Q3 :=
{w € Q : Hy =tZ for somet # 0} are measurable and T -invariant. Therefore by
ergodicity, for each i, either m(€2;) = 0 or m(Qf) = 0.

Proof. Recall that for Markov chains, Dy — oo uniformly on compact subsets of the
complement of the co-range (Theorem 3.5). So

Q=NUGEn, 2= [\ Ub), 23=02Nn05.

n=1 0<a<b rational

By step 1, ; are T-invariant and measurable. Since T is ergodic, these sets are
either of measure zero or of full measure.

STEP 3: If Q3 has full measure, then there exist t # 0 such that Q3(t) :={w € Q :
Hy =tZ} has full measure.

Proof. For every @ € 3 there exists (@) > 0 such that Hy, = t(®)Z. We can char-
acterize t(w) as follows:

t(w) = sup {t € QN (0,00): Dy(®,-) — oo uniformly } .

" on compact subsets of (0,7)

It is clear from this expression that 7(T @) = ¢(®), and that for every A > 0,

[t(w)>A] = N Ula,b).

0<a<b<A rational

So #(-) is a measurable T-invariant function, whence by ergodicity constant. Let ¢
denote this constant, then H, = t7Z for a.e. @. O

8.3.2 Variance growth

In this section we prove Theorems 8.1 and 8.5 on the behavior of V, as N — oo,

Lemma 8.2. Suppose (2,% ,m,T) is an invertible, ergodic, measure preserving
map of a probability space or of a non-atomic infinite measure space. Let A : 2 — R

be a non-negative measurable function. Either A =0 a.e., or Z AoT" = q.e.
n>0

Proof. The lemma follows from the well-known fact that invertible ergodic measure
preserving maps on non-atomic measure spaces are conservative. We supply the
details, for completeness.

If A is not equal to 0 a.e., then there is € > 0 s.t. E:= {0 € Q : A(w) > £} has
positive measure. We claim that
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Y 15(T" ) = oo (8.3.2)

n>0

almost everywhere on E. Since A > €1 (8.3.2) implies that Z A(T" ) = o almost
n>0

everywhere on E, and, by ergodicity, almost everywhere on €2, proving the lemma.

It remains to prove (8.3.2). Suppose by way of contradiction that it is not true

that ) 1z(T" @) = e almost everywhere on E. Then there exists N s.t.
n>0

W:={w€eE: i 1g(T"w) =N}
n=0

has positive measure. The invertibility and measurability of T implies that 7" (W) is
measurable for all n € Z, and that {T"(W)},cz are pairwise disjoint.

Since (2,.%#,m) is non-atomic, we can break W = W; UW, where W; are mea-
surable, disjoint, and with positive measure. By invertibility, VAVl = U,z T"W,; are
disjoint T-invariant sets with positive measure. But this contradicts ergodicity. [

Part 1: V,? is bounded, or tends to infinite almost surely. Recall that K is a bound
for ess sup| f|, and & is a uniform ellipticity constant for X®. By Theorem 2.1 and
(8.3.1) there are positive constants C; = C;(&,K) (i = 1,2) such that for all N,

N N
'Y w(lo)P -G <V <G Y u(T"0)* +C.
n=3 n=3

If u(w) = 0 m-a.e., then for a.e. w, V < C; for all N. Otherwise, by Lemma 8.2,

N o u(T"w)? JTEA whence V? — oo almost everywhere.
—o0

Part 2: Linear growth of variance when V — « a.e. and m(£) = 1. Suppose
m() =1 and V? — oo almost surely. We claim that

J6? > 0s.t. V? ~ No? as. (8.3.3)

Let 62 := [, u>dm. This is a finite number, because ||u||» < 6K and m(Q) = 1.
This is a positive number, because as we saw in part 1, if u =0 a.e., then V\ = O(1)
N
a.e. contrary to our assumptions. By the pointwise ergodic theorem, Z u(T"a))2 =
n=3
[140(1)]ogN. Hence V¢ > [140(1)]C1(g0,K) "'Nog — oo.

Let F, := f(T" '0,X® ,X? 1) and let E®, Var®, Cov® denote the expectation,

variance and covariance with respect to X, then
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N N N
Vi =Y Var®(F)+2) Y Cov®(F.,Fy)

n=1 n=1m=n+1
N N N—n
=Y Var®(F)+2) Y Cov®(Fy, Fu).
n=1 n=1 k=1

By assumption (S) {fe} are stationary, so {X7"®};>; has the same distri-
bution as {X["};>,. Therefore Var®(F,) = VarTnil“’(Fl) and Cov®(F,,Fyx) =
Cov?"'®(F}, Fi,). Thus

N—1 N N—n—1
W=Y wlo)+2) Y wlo),
n=0 n=1 k=0

where Yy (@) := Var®[f (0, X, X;’)] and

V() = Cov®[f (0, X[ X3), f(T* 0, X8, X2,)].

N
By the ergodic theorem Z\ym % Y w(T"w) = [ yodm. To find the limit of the
0" p=1

normalized double sum we first recall that by the uniform mixing of {X} (a con-
sequence of the ellipticity assumption), | Wi||e < Cix || f]|2 6% With Cppir,0 < 6 < 1
which only depend on & (Proposition 1.1). Therefore for every M

N N—n—1 N M—1

1 1
lim — w(T"®) = lim — wi(T" o) + 0(6M),
N—)mNng’1 kg(’) N—>ooNn§’1 kg(’)

N N—n—1 o
whence by the ergodic theorem A%im % Y Y w(T"o)= Y [widm, with the
= n=1 k=0 k=1

last sum converging exponentially fast. In summary,

1
L ot |
N N—yoo

Yo +2 Z Wk] dm.
k=1

Since as we saw above liminf %VA‘," > C Gg and Gg > (0, it must be the case that
02 >0, and (8.3.3) is proved.

We now relate the following two properties:
(a) f is relatively cohomologous to a constant;

(b) V,? is bounded m-a.e.

Part 3: (a)=-(b): Suppose f is relatively cohomologous to a constant. By Fubini’s
theorem, for m-a.e. w, for every n,

X2 X2 ) =a(T"0,X°) —a(T" M 0,X%,,) +c(T"0) as.
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with respect to the distribution of {X®}.2
Summing over n, we obtain that for a.e. @, for every N

N
58— Y. e(T"0)| = |a(o.X7) ~a(TV0,X{.,)| < 2esssupa-, ).
n=1

In particular, for every ®, V) is bounded. By the first part of the proof, for a.e. ®,
forall N |[V?| < Cr(&,K).

Part 4: (b)=-(a): Next suppose that f is not relatively cohomologous to a constant.
Recall that 0'(% =/ w>dm. We claim that Gg > 0, and deduce from the first part of
the proof that V, — oo a.e.

Assume by way of contradiction that Gg =0, then u(®) = 0 a.e., whence for a.e.
o, for every n, almost every position n hexagon of X® has balance zero. Applying
the gradient lemma to X?, we find bounded functions g and constants ¢ such that

[PXD X50) = g0 (X)) — gnt (X)) +¢p as.

The issue is to show that g2, c? can be given the form g% (x) = a(T"®,x) and

c? = c(T"w) where a(-,-),c(-) are measurable.
This is indeed the case, because the proof of the gradient lemma shows that we
can take
o =EC[f (X 2. X7 )]

n

§0() = E(ﬁ?’z@#’ﬂ%)ﬁ% (X ,.X2)

X,?’:Z>~

c(w) = /62 Hr 20 (X Hr-16(dy)p(T" 2 0,2,9) f(T 2 0.x.).

Soc¢? =c¢(T"®w) and g% (z) = a(T" w,z) for

a(w,z) = /63 B2 (dx) i1 (dY)p(T" 2 0,5,5)p(T ™ 0,,2) %

f(T%0,xy)+ (T 0,y2)
fGZ quza)(dx)lJ‘T’la)(dy) [p(T"—za),x,y)p(T—la),y, Z)] .

These are measurable functions, and our standing assumptions imply that they are
bounded.

We see that f is relatively cohomologous to a constant in contradiction to our
assumption. So Gg > 0, whence by the first part of the proof V¢ tends to infinity. (]

2 Here we use the assumption that (2,.%,m) is o-finite. Fubini’s theorem may be false otherwise.
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8.3.3 The local limit theorem

In this section, we prove Theorems 8.2, 8.3, 8.6 and 8.7 on the local limit theorem
for Markov chains in random environment. We need the following lemmas:

Lemma 8.3. Suppose 2 is a Borel space, S is a separable metric space, and  :
Q x & — Ris a Borel function such that for every @ € Q, y(,-) is continuous on
G and positive somewhere. Then there exists a Borel measurable x : Q — & such
that y(@,x(w)) > 0.

Proof. Fix a countable dense set {x;} C &. Our assumptions on y imply that for
every @ there exists an i such that y(®,x;) > 0. So

i(w) :=min{i e N: y(w,x;) > 0}
is well-defined and Borel measurable. Take x(®) := x;(q)- O

Lemma 8.4. If W, W, are two independent random variables such that for some
a,t € R, W +W, € a+tZ with full probability, then a = a; +ap where W) € a; +1tZ,
Wa € ap +tZ with full probability.

Proof. Without loss of generality a =0, t = 2x. Then
E(™)- [B("™)] = B ) = 1,

whence |E(e™)| =1 (k= 1,2). Choose a; such that E(e!We=@%)) = 1, then
E(cos(Wy —ay)) = 1, whence Wy, — a; € 2n7Z almost surely. Necessarily a; +as €
277, and there is no problem in adjusting a; to get that the sum zero. (]

Proof of Theorems 8.2 and 8.6 on the non-lattice case. Theorems 8.2 and 8.6
provide the LLT for Markov chains in random environment with finite and infinite
noise process, under the assumption that f is not relatively cohomologous to a coset
of tZ with t # 0.

In this case, f is also not relatively cohomologous to a constant, and by Theorems
8.1 and 8.5, V — oo as N — eo. Moreover, if the noise process (2,.%#,m,T) satisfies
m(Q) = 1, then 362 > 0 s.t. V¥ ~ No2.

To prove the theorems it is sufficient to show that for a.e. @, G (X?,f?) =R,
as this will imply the LLT by the general results of Chapter 4.

Assume by way of contradiction that G, (X?,f?®) # R on a set of s of positive
measure. By Proposition 8.1, Ges(X?,f?) = G, a.e. where G,53 = {0} or 27”2 with
t # 0. The first possibility cannot happen, because it implies that f® is center-tight,
whence V) = O(1), whereas V,? — oo. So there exists f 7 0 such that G, (X?,f?) =
(2n/t)Z a.s., and Hy, := H(X?,{?) =tZ a.e.

By the reduction lemma, for every @ s.t. Hyp = tZ there are measurable functions
g% (x), h?(x,y) with ¥, Var[A?] < e, and constants ¢2 such that

exp it (f(x,y) — & (x) + &1 () + 1y (x,y) — )] = 1
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). So ot (F(@xy)+hQ (xy) — @ a7 (x)

. s © vo
a.s. with respect to the distribition of (X, X n a0

n+1
o W
where 1,9 = er’ | q® (x) = 8 ().

But now we run into a problem: Our proof of the reduction lemma does not
provide g% and c? of the form ¢? = ¢(T"®) , a? = a(T"w,x) with c(-),a(-,-)
measurable, and we need to show that 12 = 0.

To this end we use the following additional structure: For a.e. @, Hy = t7Z so
Y d(T"w,1)? < oo -almost everywhere. By the ergodic theorem, this can only hap-
pen if d(®,t) = 0 almost everywhere. Hence

(0) [ ZTC
r (Zf’, gm , ;w X4 ) € ?Z a.e. in Hex(®) for m-a.e. o. (8.3.4)

Recall the ladder process LY = (Z}? 5, Y5, X?) associated with {X”}. Let P®
denote its distribution, and define as in the proof of the reduction lemma,

0}
HP(L® L®, ) : F(Z“’ Zyi X )
s En+1 2 Ya) vXan

ngZsz;wa)-www DO 7O

F<Zl ’Yw’XSvaW»Xs > =H®(L3,Ly) +H"(LY,Ls)
2 A3 A4

The last definition requires justification because the RHS seems at first sight to

depend on Y°. In fact it does not. To see this observe that the last expression is
(O] Ya)

the balance of the octagon obtained by stacking <Z2 ’i“’ X0 D¢ “’> on top of
(O] Zm Y(D (0] 3 (0] (0] w 4 0
A Y“’ , X“’ ,X;? | and removing the common edge (Z3, Y3’ X,”) which “cancels
out.”

CLAIM 1. Let P® denote the distribution of {L®}, then there exists measurable
Sfunctions i (@), 6 (w) € & such that for a.e. ®

o zy =i(0)
r(C( ); %(2 ) C}(;’),)Yéw,xs‘"> 2;"'2 PO - ézigggg ~a.e.
o _

Proof.- By (8.3.4),T € 27”2 with full P®—probability, for a.e. ®. The point it to obtain
this a.s. with respect to the conditional measures.

Suppose first that & is countable, then for fixed w, the P®-distribution of
(LY,L9,LY) is purely atomic, and I" € t =17, for every octagon with positive P®—
probability. So the claim holds for any pair ({;(®), {,(®)) € & such that

Pe((20.27,23) = (§1(0).&(w), & ()] >0

Such pairs exist by the ellipticity assumption. Since & is countable there is no prob-
lem to choose such (&, {;) measurably.
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Now suppose G is uncountable but with the continuity property (C). By Fubini’s
theorem and (8.3.4), for a.e. @ € Q, for a.e. ({;, {, {3) with respect to the distribu-
tion (C17C27C3) ~ (Z]wvzéovzgo)’

. o 28 20 Y e
Epo (‘e(zm/r)r(z, T X ) _1’2

zi’) =4
g ) =0. (8.3.5)

2=g

By the Markov property, this conditional expectation has canonical interpretation
for every (®,81,8,,83) in the set

A={(w,a,b,c): p(w,a,b)p(Tw,b,c) > 0}.

By assumption (C2), A is open. By assumption (C1), every open subset of A has
positive measure with respect to the measure [P?u(d®). By assumption (C2), the
left-hand-side of (8.3.5) depends continuously on (@, §;, &y, &3). Therefore (8.3.5)
is true for all (&1,8,,83) € A.

Thus to prove the claim it remains to construct measurable functions & (®), § (o)
such that (0, §) (@), & (@), 8 (o)) € A for all .

By the ellipticity condition [ p(®,a,8)p(Tw,{,a)ure(d8) > &, so for every
o there are ({1, ;) s.t.

l[/((l), (Cl ’ 52)) = p((x), Cl ) Cz)p(Ta), €27 gl) > 0.

By Lemma 8.3 it is possible to choose measurable &) (®), § (o) like this. Claim 1
is proved.

Given w € Q and a,b € &, construct the bridge distribution P%, (E) = P (Y,° €
E|ZP =a,X{ =b) asin §1.2.3.

CLAIM 2. For a.e. o, for a.e. (&3,64,&5) ~ (X, X, X&), the random variables
W' = f(0,6(0). 1)+ f(To,Y2,8), YL~P? .
2 2
W= f(T?0,61(0),Ya) + f(T?0,Y4,&s5), Ya~PLE

are purely atomic, and belong to some coset of 27”2 with full probability. (These
cosets could be different.)

Proof. By choice of {;(®) and Fubini’s theorem, for a.e. (3,84, &5) ~ (X3°,X°, X&),

r <§1(w), L(0) (o) Y4“’7§5) . ZtlZ po < 328 i%ij)_a,e_

P& & g xb g

w
Notice that I (Cl (), ng(ac)o ) , & 5(3(0) , %‘4 ,§5> is equal to the independent differ-
2

ence of W5® and WSTZ“’, plus a constant which only depends on @. The claim now
follows from Lemma 8.4

CLAIM 3. Given @ and (&3,&4,&s) as in claim 2, let
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the smallest positive atom of W2 if 3 positive atoms,
8(w,&3) == . 2 o
otherwise, the largest non-positive atom of Wy

C((D) = _f(wa Cl ((0), CZ((D)) _f(va CZ(w)v Cl (CO))
These functions are well-defined, measurable, and
2
A(T20,83,860) + F(T7 0,64, &5)] +2(0,83) — &(T?0,&5) + c(w) € —-Z (8.3.6)
for p-a.e. o, for a.e. (&3,84,85) ~ (X?, X?, X2).
Proof. The function g(®,&3) is well-defined for a.e. ® because of claim 2. To see
that it is measurable, we note that (@, &3) — P(W” € (a,b)) are measurable, and

8(@,5) > a] = {(0,&) : PO <W3” <a) =0 ,P(W" > a) #0}  (a>0)
[8(@,85) > a] = {(@,&3) : P(W5® > a) # 0} (a<0)
are measurable. The measurability of ¢(®) is clear.

Equation (8.3.6) holds because the left-hand-side of (8.3.6) is, up to a sign, an
atom of the random variable

. 29 = Gi(0) X0 =&
(o) Gi(o) Y, o joy _po |, o _ N _
r (Cl ((D), YZw ) 53 ) 64 a€5> ) (L'}v ?Ql) ]P) ;?D _ g?gzg i;h) _ g‘;

and we chose ({;(®), {>(®)) so that this random variable takes values in 227 a.s.
Claim 3 gives us measurable functions a(®,x) := exp(—itg(T 2@, x)) and A (@) :=

exp(—itc(T~2w)) such that

A @XPXDTOXP X)) _ 4 () ?((207)(10)()0)
a(T*w, X3

Multiplying both sides of the equation by ¢/ = feT] gives

b(w,XP,X5)

e2itf(a),X1‘”,X2‘")
b(Tw, X X))’

=A(0)

where b(®,x,y) = a(®,x)a(T,y)e"/ (@),
This not quite a relative cohomology to a coset of (/t)Z, because b(®,x,y)

seems to depend not just on x but also on y. In fact there is a bounded measurable
function B (w,x) such that

b(w,X",X5’) = B(w,X{") P— almost everywhere,
where PP is given by (8.2.1). This can be seen as follows. Rearrange terms to see that

b(To.XP XP) = A(@)e XX b(, X XP).
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By the Markov property of X®, for fixed o, the left-hand-side and the right-hand-
side of this equation are conditionally independent given X;°. Two independent ran-
dom variables which are equal, must be constant. So for m-a.e. @,

b(Tw, Xy, X3") =E°(b(Tw, X", X3") |X7").

Setting
Blo.X{) :=E(b(w, X" X7")|X]")

and using stationarity to shift indices where needed, we find that
b(0,X",X5’) = B(0,X{") P—ae., b(Tw,Xy Xy)=PB(Tw,X5’) P—a.e.

Hence . O 30 ﬁ(w Xw)
PHOXIH) = ) () DI

P-a.e..
B(Tw,Xy)

So f is relatively cohomologous to a coset of %Z.

We obtained a contradiction to out assumptions. This contradiction shows that
Gess(X?,f?) = R for a.e. . The local limit theorem now follows from Theorem
4.1, applied to (X®,f®), and from Theorem 8.1 which gives the a.s. asymptotic
V# ~ No? for some 62 > 0 independent of ®. O

Proofs of Theorem 8.3 and 8.7 on the lattice case. Theorems 8.3 and 8.7 provide
the LLT for Markov chains in random environment with finite and infinite noise
processes for integer valued additive functionals, under the assumption that f is not
relatively cohomologous to a coset of 7 with ¢t # 1.

The proof is similar to the proof in the non-lattice case, except that now to check
irreducibility we need to show that Hy, = Z almost surely. Since f is integer valued,
1 € Hy, so if this is not the case then necessarily Hy, = tZ fort = % and n € N. Now
repeat the proof of Theorems 8.2 and 8.6 verbatim. (|

8.3.4 Log-moment generating functions and rate functions

We prove Theorem 8.4 on the a.s. convergence of the log-moment generating func-
tions of (X®,f?) and their Legendre transforms. Suppose f is an essentially bounded
additive functional on a MCRE with a finite noise space (2, %,m, T ). Without loss
of generality, m(Q) = 1.

Part (1): Convergence of log-moment generating functions: We are asked to
show that for a.e. ®, 49 (&) := 1 log E(e?5V) converge pointwise on R. To do this
we recall three facts from chapter 6:

FACT 1: Given § € R, for every @ € Q there are unique numbers p,(§,®) € R
and unique non-negative functions hy(-,&,®) € L(&,B(6), Urn-1,) such that
Je hn(x, &, 0)pn-1,(dx) =1 for alln > 1, and
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Ef(T"w.x,y) h;1+1(y7§ (D) n _
/ PnE0) 7, (x, €, ) n(T"w,x,dy) = 1. (8.3.7)

Furthermore, p,(&,®) = B(&,T" ) for all n, where and (&, ) is measurable.

Proof. The existence and uniqueness of 4, p, follows from Lemma 6.1, applied to
(X® £®) with a, = 0. Writing (8.3.7) first for (n,®) and then for (n — 1,T @), and
then invoking uniqueness, we find that p, (¢, 0) =p,_(§,Tw). So

ﬁn(évw) :ﬁn—l(éva) = :ﬁl(éan_lw) :ﬁ(§7an)a

where p(&, ®) := p;(§,T ' ). The proof of Lemma 6.1 represents h,(x, &, ®) as
a limit of expressions which are measurable in (x,&, @), so (x,&, ®) — hy(x, &, ©)
is measurable. By (8.3.7), (®,&) — p(&, ) is measurable.

FACT 2: Let K := ess sup[f| and let & denote a uniform ellipticity bound for X°.
For every R > 0 there exists a constant C(&y,K,R) such that |p(€,®)| < C(&,K,R)
forall ® € Q and |E| <R.

Proof. See the proof of Lemma 6.2.
FACT 3: Let Py (&, ) := Y D(E, T* @), then for a.e. w € Q,

- (5) (5

1
+0 (V"’)] uniformly on compact subsets of & € R.
N

Proof. 1t is convenient to work with .Z¢ (&) := ilogE(eésw) = (N/VP)92(&).

Let Py(§,0) :==Py(&,0) + (E(S9) — Py(0,0))€. For each @ € Q such
that V? — oo,

dé’é -0

(1) % |5:0F;v(0, o) exists, by Lemma 6.3.

(2) |Pv(é,0)—Py(&, )| = O(1) uniformly on compact subsets of § € R, by Lem-
mas 6.4 and 6.5

3) |ZR (&) —Pv(&E)/VP| = O(1/V\?) uniformly on compact subsets of & € R, by
Lemma 6.5. Fact 3 follows.

We can now prove the a.s. convergence of .%(§). By the assumptions of the
theorem, f is not relatively cohomologous to a constant. Therefore, by Theorem 8.1,
there exists 62 > 0 such that V% ~ 0>N as N — o for a.e. .

Fix a countable dense set {£;,&,,...} C R. For each i, 0 — p(&;, ®) is bounded
and measurable. So for a.e. o,

617 T"w) = lim — p(éh T (D)
= N—oo N =

_ / (&, @)m(d®), by the Birkhoff ergodic theorem.
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This shows that for all i there exists ¢(&;) € R such that Al/im GP (&) =9 (&) for
—yo0

a.e. ®. Let Q' denote the set of full measure of @ where this holds for all i € N.
Fix o € Q’, then the functions & — .Z{ (&) are equicontinuous on compacts,
because if K := ess sup ||, then

[EIE(ISR]e>F)

RN
VOE(e5SV)

vo = 08D

Kﬁﬁﬂﬁhﬁ

Therefore for a.e. @, the functions & — ¥\?(&) are equicontinuous on compacts.

Recall that if a sequence of functions @, (&) which is equicontinuous on compacts
converges on a dense subset of R, then ¢,(&) converges for all & € R. Moreover,
the limit is continuous. So there is a continuous function .# © (&) such that

lim GP(E)=FPE)forallE R, w e Q.
o0

In fact % ® (&) does not depend on @, because by virtue of continuity,
F&) =lim . Z?(&;,) = lim¥(&;,), whenever &, — &;.
k—so0 k—so0 k—roo

We are therefore free to write # (&) = .Z ().

It remains to show that .% (&) is differentiable and strictly convex on R. Fix @ €
Q'. Applying Theorem 6.1 to (X?,f®) we find that for every R > 0 there is a C =
C(R) such that C~! < (F#)"” < C on [-R,R]. This implies that .Z is differentiable
and strictly convex on (—R, R) because of the following general lemma:

Lemma 8.5. Suppose @, : R — R are twice differentiable convex functions such that

C ' < @' <CwithC >0, on (—R,R). If ¢, = @ pointwise on (—R,R), then @
—yoo

is continuously differentiable and strictly convex on (—R,R).

Proof. A pointwise limit of convex functions is convex, and convex functions have
one sided derivatives. Let ¢/ (£) denote the one-sided derivatives of at .

DIFFERENTIABILITY: For all |£| < R,

P& +h)—9&) @E—h)—9() ‘
h

@/ (E) — @ (€)= lim

h—0t h
h—0t n—veo h h
— lim Tim |9}(2) — @)1, for some &, 7 € (& — i, & + )
h—0+ n—se0
< lim lim 2Ch = 0, because |¢, | < C on a neighborhood of .
h—0t n—ree

We find that @', (§) = ¢’ (&), whence ¢ is differentiable at &.
STRICT CONVEXITY: Suppose —R < & <1 <R, then
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. +h) - —h)—
h—0+ h h

h—0+ n—seo h

= lim (M) = ¢,(8) for some &, € [§ —h, ], 1 € [0,1 4]
> lirginfC’lmn —&| >C Y (m—&), because ¢ >C~ ' on (—R,R).

It follows that ¢ is strictly increasing on (—R, R).

THE DERIVATIVE IS CONTINUOUS: The same calculation as before shows that if
—R< & <n <R, then |¢'(n)—¢'(E)] <C|E —n|, whence ¢’ is (Lipschitz) con-
tinuous on (—R, R). O

Part (2): Convergence of E(Sy)/N: We need the following standard fact.

Lemma 8.6. Suppose ¢, (&), (x) are finite, convex, and differentiable on (—R,R).
I @a(§) —— 9(&) on (=R,R), then ¢;,(§) —— ¢'(S) on (=R, R).

Proof. Fix & € (—R,R). By convexity, for every i > 0 sufficiently small,

(Pn(é)f;ll)n(éih) S(pr’l(i)g (Pn(§+h})l*(Pn(<§) (8.3.8)

To see this note that the LHS is at most (¢,)"_ (), the RHS is at least (¢,)’, (§), and
both one-sided derivatives equal @}, (§).
Passing to the limit n — oo in (8.3.8), we find that

PE) =96 —h) ¢E+h)—0(&)
h ’ h

imsup g}(&), iminf ) € |
We now invoke the differentiability of ¢, pass to the limit # — 0™, and discover that
limsup ¢;,(§), liminf @, (§) = ¢'(5). O
Forae. o, (V{/N)Z3 (&) =9n(E, 0) = Z(&). So by the lemma
—o0

(V2 /N) dé‘ ¢,0) — 7/(0).

A calculation shows that the derivative equals E(SY)/Vy’. So E(S9)/N — Z'(0).
Part (3): Convergence of Legendre transforms. Again, the proof is based on a
general property of convex functions.

Lemma 8.7. Suppose @,(E), (&) are finite, strictly convex, continuously differen-
tiable functions on R, s.t. ©,(§) — @(&) for all & € R. Let @' (+o0) := 5liri1 o'(&).
—oo

Let @, @* denote the Legendre transforms of @y, @. For all 1 € (¢'(—o0), @' (+0)),
©;(n) is well-defined for all n sufficiently large, and @;; (1) — ¢*(n).
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Proof. Fix 11 € (¢'(—), ¢’(+)). By assumption, ¢’ is continuous and strictly
increasing. Therefore, there exists & such that ¢’ (1) = &.

Fix € > 0and & < & < & such that |} — & | < e. Then ¢’ (&) <n < ¢'(&). By
Lemma 8.6, ¢, (&) — ¢'(&;), and therefore there exists N such that for all n > N,

0'(&)—1<@,(&) <n<@y(&) <9 (&)+1.

Since 1 € (@,(&1),9,(&)) and @], is continuous and strictly increasing, there
exists a unique &, € (&1,&) so that ¢,(&,) = 1. So @;(n) is well-defined, and

90:(71) = énrl - q’n(én)

Similarly, ¢*(1) = &1 — ¢(&).
We now estimate the distance between @ (1) and @*(n). Recall first that for all

n>N, ¢ (&) —1<¢,(8) <,(&) < 9'(8&)+1. Let
M :=max{|¢'(&1) —1/,]¢"(&) + 1]},

then |@,| <M on (&;,&) for all n > N. Consequently,

[0, (M) — @ (M) <18 =&l N[+ |@a(En) — ()]
<& =Gl Nl +19a(En) = 9u(S) +|0n(S) — @(S)]
<en|+M|G —&l+19.(8) —@(S) < e(M+[n])+o(1), as n — co.

because @,(&) — @(&), £,&, € (§1,&), and |&; — & | < €. Since € is arbitrary, we
have that @ (1) — @*(n). O

Part (4): Properties of .# (). Fix ® such that gy (&) := 1 log E(e5SV) converges
pointwise to .%. By the previous section, @5, converges pointwise to .#. Since @y
is uniformly bounded away from zero and infinity on compacts (see the first part of
the proof), (¢y)” is uniformly bounded away from zero and infinity on compacts.
Hence by Lemma 8.5

& = lim @y, is strictly convex and continuously differentiable.

By Lemma 8.6, (¢3)'(n) ~= #'(n) for all 1 in the interior of the range of ¢,
—yo0
and oy (&) = F'(&) for all £ € R. The convergence is uniform on compacts,
300

because (¢y)”, @y are bounded on compacts.

It is easy to verify that @y is twice differentiable. Therefore by Lemma 6.9, ¢y, is
twice differentiable and (@3,)' (@y(&)) = & for all &. Passing to the limit as N — oo
we obtain the important identity .#'(F#'(£)) = € for all £ € R.

One consequence of the identity .#'(#'(§)) = & is that &' (#'(0)) =0,s0n =
Z'(0) is a critical point of . (+). By strict convexity, .# attains its global minimum
at %’(0). The value there is zero:
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We conclude that .# (1) = 0 when 1 = #’(0), and .# (1) > 0 for 1 # .%#'(0).
Another consequence of the identity .#'(.%#'(£)) = & (and the fact that .#’ is
increasing) is that .#’(&) §—> ~oo, and therefore .# has compact level sets. [
—yFoo

Part (5): Large deviation treshold. We prove the identity for .#’(), the identity
for .F'(—oo) follows by replacing f — —f.

Step I. ¢y > F'(+o0).
Proof. Given 1 € (F'(—c0),.Z (+00)) choose

F(—o) <~ <n <N < F(+oo).

Take £* be s.t. F/(EF) =nT. By Lemma 8.6, Al}gr;ﬁ,’v(éi) = 1. Hence for large
N Z{,(E7) <n < Zy(ET) and so 7 is reachable.

Step II. ¢ < F'(+o0).

Proof. Take 1 > cy. If n € 6r for some R we would have that for some R, for
all N large enough .75 (R) > n (see Lemma 6.5(5)). However by Lemma 8.6,
1\1/1530 Fn(R) = F'(R) < F'(+o0) < 1 contradicting our assumption that 1) is reach-
able.

Step 111. Denote .#y(®) = ess supS$. Then the limit s := lim exists and

N—eo

In(0)
N

is independent of @ with probability one.

Proof. By our ellipticity assumption
yN—&-M(w) < yN(a)) + SM(TN(D) —4K.

Thus the sequence Iy (@) = Sy () —4K is subadditive. Since .y (w) > —KN the

A) _ L (o)

Subadditive Ergodic Theorem implies that the limit lim
N—roo N—oo

exists and is independent of ® with probability one.

Step IV. ¢, < s because for each € > 0 we have that with probability one for large
N,P?(Sy > (st +€)N)=0.
Step V. ¢y > 5T

Proof. Fix € > 0. By Step IlI for each sufficiently large Ny there exists ¥ n, > 0 and
aset Q¢ y, s.t. m(2e n,) > 1 — € and for all ® € ¢ y,, for up-a.e.x € G,

Pw(SNO > (5+ —£)N0|X1 =x)> Ye,No- (8.3.9)

Given M let ji(®) < j2(@) < -+ < iy, () (®) be all the times 1 < j < M when
TN (@) € Qg y,, then

P® (yNOM > I’l}y[(s+ —€&)Ny— (M—nM)NOK) > g,ONA:-

(To see this, estimate conditional probabilities of this event given Xjf’l’, X ;fl’M using
w

(8.3.9), and take expectation over Xj‘;’, X
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By the Ergodic Theorem, for a.e.  there is a limit

B(@) = lim "(®)

i and /B(w)dm:m(Q&NO).

So for large M, and on a set Q, of positive measure, ny /M > 1 —2€ whence
nu(s™ —€)No — (M —ny)NoK > [(1—2¢)(s™ — €) —2eK| NoM.

Now Theorem 6.7(c) shows that on Q, ¢ (@) > (1 —2€)(s™ — &) — 2¢K. Since ¢
actually does not depend® Since ¢ is arbitrary the result follows. O

8.4 Notes and references

Markov chains in random environment (MCRE) should not be confused with “ran-
dom walks in random environment” (RWRE). In the RWRE model, the transi-
tion kernel at time n depends on the position of random walk at time n, i.e.
Ty (x,dy) = w(Sy,x,dy). In a MCRE, the transition kernel at time n depends on the
noise at time n, i.e. m,(x,dy) = n(T"®,x,dy).

Markov chains in random environment were introduced by Cogburn [22]. The
setup is a particular case of a “random dynamical system.” For a fixed realization
of noise, a Markov chain in random environment reduces to an inhomogeneous
Markov chain, and a random dynamical system reduces to a “‘sequential” (aka “time-
dependent” or “non-autonomous’) dynamical system. Various authors considered
probabilistic limit theorems in these contexts. Limit theorems for Markov chains
in random environment are given in Cogburn [23], Kifer [69], and Hafouta & Kifer
[60, chapters 6,7],[59]. Results for random dynamical systems can be found in Kifer
[69], Conze, Le Borgne & Roger [25], Denker & Gordin [34], Aimino, Nicol & Vai-
enti [8], Nicol, Torok & Vaienti [98], and Dragicevié, Froyland & Gonzdlez-Tokman
[45]. For limit theorems for sequential dynamical systems, see Bakhtin [12], Conze
& Raugi [26], Haydn, Nicol & Torok [63], Korepanov, Kosloff & Melbourne [75],
and Hafouta [57, 58].

These LLT in this chapter are random generalizations of the LLT for (homoge-
neous) stationary Markov chains due to Nagaev [96] and Guivarc’h & Hardy [56],
see Theorem 7.1. To get the non-random case take the noise process to equal the
identity map on a singleton.

The results of this chapter are all essentially known in the case T preserves a
finite measure. Theorem 8.1 was proved in the more general setup of random dy-

3 This follows from Steps I and II above. Alternatively it is easy to verify directly, using Theorem
6.7, that ¢* is T-invariant on @ we get that

(@) > (1-2¢)(s™ —¢) —2¢eK.
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namical systems by Kifer [69]. Theorems 8.2 and 8.3 are close to the (earlier) results
of Dragicevié, Froyland & Gonzélez-Tokman [45], and Hafouta & Kifer [60, chap-
ter 7, Theorem 7.1.5]. The main difference is in the irreducibility assumptions. Our
condition of non-relative cohomology to a coset is replaced in [60] by what these
authors call the “lattice” and “non-lattice” cases (this is not the same as our termi-
nology). In the paper [45], the non-cohomology condition is replaced by a condition
on the decay of the norms of certain perturbed characteristic function operators, and
a connection to a non-cohomology condition is made under additional assumptions.
The results for infinite noise processes seem to be new. The reason we can also
treat this case, is that the LLT we provide in this work do not require any assump-
tions on the rate of growth of Vy, and they also work when it grows sub-linearly.
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