
Dmitry Dolgopyat and Omri Sarig

Local limit theorems for
inhomogeneous Markov chains





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Additive functionals on Markov arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1 The basic setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 Inhomogeneous Markov chains . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.2 Inhomogeneous Markov arrays . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.3 Additive functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Uniform ellipticity and its consequences . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.1 The definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.2 Contraction estimates and exponential mixing . . . . . . . . . . . . 21
1.2.3 Hitting probabilities and bridge probabilities . . . . . . . . . . . . . 26

1.3 Structure constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.1 Hexagons, balance, and structure constants . . . . . . . . . . . . . . . 28
1.3.2 The ladder process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.3 A weakening of part (c) in the ellipticity condition . . . . . . . . 33

1.4 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Variance growth, center-tightness, and the central limit theorem . . . . 35
2.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1 The Gradient Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.2 The estimate for Var(SN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.3 Characterization of center-tight additive functionals . . . . . . . 44
2.2.4 McLeish’s martingale central limit theorem . . . . . . . . . . . . . . 44
2.2.5 Proof of Dobrushin’s central limit theorem . . . . . . . . . . . . . . . 48
2.2.6 Almost sure convergence for sums of functionals with

summable variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.7 Convergence of moments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1



2 Contents

3 The essential range and irreducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1 Definitions and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Results for Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.2 Results for Markov arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.3 Hereditary arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.1 Reduction lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.2 The possible values of the co-range . . . . . . . . . . . . . . . . . . . . . 75
3.3.3 Calculation of the essential range . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.4 Existence of irreducible reductions . . . . . . . . . . . . . . . . . . . . . 78
3.3.5 Proofs of results on hereditary arrays . . . . . . . . . . . . . . . . . . . . 78

3.4 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 The local limit theorem in the irreducible case . . . . . . . . . . . . . . . . . . . . . 83
4.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Local limit theorems for Markov chains . . . . . . . . . . . . . . . . . 83
4.1.2 Local limit theorems for Markov arrays . . . . . . . . . . . . . . . . . . 84
4.1.3 Mixing local limit theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.1 Characteristic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.2 The LLT in the irreducible non-lattice case . . . . . . . . . . . . . . . 91
4.2.3 The LLT for the irreducible lattice case . . . . . . . . . . . . . . . . . . 94
4.2.4 The mixing LLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 The local limit theorem in the reducible case . . . . . . . . . . . . . . . . . . . . . . 99
5.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.1 Heuristics and warm up examples . . . . . . . . . . . . . . . . . . . . . . 99
5.1.2 The LLT in the reducible case . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.1.3 Irreducibility as a necessary condition for the mixing LLT . 103
5.1.4 Universal bounds for P[SN− zN ∈ (a,b)] . . . . . . . . . . . . . . . . . 104

5.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.1 Characteristic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.2 Proof of the LLT in the reducible case . . . . . . . . . . . . . . . . . . . 113
5.2.3 Neccessity of the irreducibility assumption . . . . . . . . . . . . . . . 119
5.2.4 Universal bounds for Markov chains . . . . . . . . . . . . . . . . . . . . 123
5.2.5 Universal bounds for Markov arrays . . . . . . . . . . . . . . . . . . . . 126

5.3 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Local limit theorems for large and moderate deviations . . . . . . . . . . . . . 131
6.1 The moderate deviations and large deviations regimes . . . . . . . . . . . . 131
6.2 Local limit theorems for large deviations . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.1 The log moment generating functions . . . . . . . . . . . . . . . . . . . 133
6.2.2 The rate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



Contents 3

6.2.3 The LLT for moderate deviations. . . . . . . . . . . . . . . . . . . . . . . 135
6.2.4 The LLT for large deviations. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3.1 Strategy of proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3.2 A parametrized family of changes of measure . . . . . . . . . . . . 140
6.3.3 Choosing the parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
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Preface

In this chapter we give an overview of our results, with some historical notes.

Setup and aim

This work provides asymptotic formulas for probabilities P[SN−zN ∈ (a,b)], where

SN =
N

∑
n=1

fn(Xn,Xn+1), Xn is a Markov chain, and zN are real numbers not too far

from E(SN). Such results are called local limit theorems (LLT).1
For an account of the history of the LLT, see the end of the preface. The novelty

of this work is that we allow the Markov chain to be inhomogeneous. This means
that we allow the set of states, the transition probabilities, and the summands fn to
depend on n.

We will always assume that fn are uniformly bounded real-valued functions, and
that {Xn} is uniformly elliptic, a technical condition which will be stated in chapter
1, and which implies uniform exponential mixing.

These assumptions place us in the Gaussian domain of attraction. The analogy
with classical results for sums of independent identically distributed (iid) random
variables suggests that in the best of all situations, we should expect the following
(in what follows VN = Var(SN) and AN ∼ BN ⇔ AN/BN −−−→

N→∞
1):

(1) Local deviations: If
zN−E(SN)√

VN
→ z, then

P[SN− zN ∈ (a,b)]∼ e−z2/2
√

2πVN
|a−b|.

1 Notice the difference between a local limit theorem and a central limit theorem: The LLT treats
P[SN − zN ∈ (a,b)], and the CLT treats P[SN − zN ∈ (a

√
Var(SN),b

√
Var(SN))].

5
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(2) Moderate deviations: If
zN−E(SN)

VN
→ 0, then

P[SN− zN ∈ (a,b)]∼ e
− 1+o(1)

2

(
zN−E(SN )√

VN

)2

√
2πVN

|a−b|.

(3) Large deviations: If
∣∣ zN−E(SN)

VN

∣∣ is sufficiently small, then

P[SN− zN ∈ (a,b)]∼ e−VNIN(
zN
VN

)

√
2πVN

|a−b|×ΨN
(
a,b, zN−E(SN)

VN

)
,

where IN(·) are the Legendre transforms of the log moment generating functions
1

VN
logE(etSN ), and the error terms EN are such that for fixed (a,b), ΨN(a,b, ·) are

uniformly bounded away from 0,∞, and ΨN(a,b,η)−−−→
η→0

1 uniformly in N.

While (1)–(3) are true in some cases, they do not hold for all cases, even for
sums of iid’s. Our aim is to identify a complete set of obstructions to (1)–(3), and to
analyze what happens when some of these obstructions happen.

The obstructions to the local limit theorem

The algebraic range is the smallest closed additive subgroup G≤R for which there
are cn ∈ R so that fn(Xn,Xn+1)− cn ∈ G almost surely for all n. We show that the
following list is a complete set of obstructions to (1)–(3):

(I) The lattice obstruction: The algebraic range is tZ with t ∈ R.

(II) The center-tight obstruction: Var(SN) does not tend to infinity. In chapter 2
we will see that in this case Var(SN) must be bounded.

(III) The reducibility obstruction: fn(Xn,Xn+1) = gn(Xn,Xn+1) + cn(Xn,Xn+1)
where {cn(Xn,Xn+1)} is center-tight, and the algebraic range of {gn(Xn,Xn+1)}
is strictly smaller than the algebraic range of { fn(Xn,Xn+1)}.

One of our main results is that (1)–(3) hold whenever (I), (II), (III) fail.

How to show that the obstructions do not occur

While it is usually easy to rule out the lattice obstruction (I), it is often not clear how
to rule out (II) and (III). What is needed is a tool that determines from the data of fn
and Xn whether { fn(Xn,Xn+1)} is center-tight or reducible.

In chapter 1, we introduce numerical constants dn(ξ ) (n ≥ 3,ξ ∈ R) which are
defined purely in terms of the transition probabilities πn,n+1(x,E) := P(Xn+1 ∈
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E|Xn = x) and the functions fn(x,y), and which can be used to determine which
obstructions occur and which vanish:

◦ If ∑d2
n(ξ ) = ∞ for all ξ 6= 0, then the obstructions (I),(II),(III) do not occur, and

the asymptotic expansions (1)–(3) hold.

◦ If ∑d2
n(ξ )< ∞ for all ξ 6= 0, then Var(SN) is bounded (obstruction II).

◦ If ∑d2
n(ξ ) = ∞ for some but not all ξ 6= 0, then Var(SN)→ ∞ but we are either

lattice or reducible: (II) fails, but at least one of (I),(III) occurs.

We call dn(ξ ) the structure constants of X= {Xn} and f = { fn}.

What happens when the obstructions do occur

(I) The lattice case

The lattice obstruction (I) already happens for sums of iid’s, and the classical ap-
proach how to adjust (1)–(3) to this setup extends without much difficulty to the
inhomogeneous Markov case.

Suppose the algebraic range is tZ with t 6= 0, i.e. there are constants cn such that
fn(Xn,Xn+1)−cn ∈ tZ almost surely for all n. Assume further that tZ is the smallest
group with this property. In this case

SN ∈ γN + tZ a.s. for all N,

where γN = ∑
N
i=1 ci mod tZ. Instead of analyzing P[SN − zN ∈ (a,b)], which might

be equal to zero, we study P[SN− zN = kt], with k ∈ Z fixed and zN ∈ γN + tZ.
We show that in case (I), if the algebraic range is tZ, and obstructions (II) and

(III) do not occur, then (as in the case of iid’s):

(1’) If
zN−E(SN)√

VN
→ z, zN ∈ γN + tZ and k ∈ Z, then P[SN− zN = kt]∼ e−z2/2

√
2πVN
|t|.

(2’) If
zN−E(SN)

VN
→ 0, zN ∈ γN + tZ and k ∈ Z, then

P[SN− zN = kt]∼ 1√
2πVN

e
− 1+o(1)

2

(
zN−E(SN )√

VN

)2

|t|.

(3’) If
∣∣ zN−E(SN)

VN

∣∣ is sufficiently small, zN ∈ γN + tZ and k ∈ Z, then

P[SN− zN = kt]∼ e−VNIN(
zN
VN

)

√
2πVN

|t|×ΦN
(
a, zN−E(SN)

VN

)
,

where IN(·) are as before, and ΦN are error terms so that for fixed k, ΦN(k, ·) are
uniformly bounded away from 0,∞, and ΦN(k,η)−−−→

η→0
1 uniformly in N.
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The previous results hold whenever (I) holds and (II),(III) fails. Here is an equiv-
alent condition in terms of the data of Xn and fn: ∃t 6= 0 s.t. ∑d2

n(ξ ) < ∞ exactly
when ξ ∈ 2π

t Z. Under this condition, (1’)–(3’) hold with parameter |t|.

(II) The center-tight case

We show that obstruction (II) happens iff fn(Xn,Xn+1) can be put in the form

fn(Xn,Xn+1) = an+1(Xn+1)−an(Xn)+hn(Xn,Xn+1)+ cn (∗)

where an(Xn) are uniformly bounded, cn are constants, hn(Xn,Xn+1) have mean zero,
and ∑Var[hn(Xn,Xn+1)]< ∞.

The freedom in choosing an(Xn) is too great to allow general statements on the
asymptotic behavior of P[SN − zN ∈ (a,b)], see Example 2.1.2 But as we shall we
see in chapter 2, (∗) does provide us with some almost sure control:

SN = aN+1(XN+1)−a1(X1)+
N

∑
n=1

hn(Xn,Xn+1)+ γN ,

where γN = ∑
N
i=1 ci, and

∞

∑
n=1

hn(Xn,Xn+1) converges almost surely. This means that

in the center-tight scenario, SN −E(SN) can be decomposed into the sum of two
terms: A bounded oscillatory term which only depends on X1,XN+1, and a term
whicn depends on the entire past X1, . . . ,XN+1 and which converges almost surely.

(III) The reducible case

In the reducible case, we can decompose

fn(Xn,Xn+1) = gn(Xn,Xn+1)+ cn(Xn,Xn+1) (∗∗)

where {cn(Xn,Xn+1)} is center-tight, and the algebraic range of {gn(Xn,Xn+1)} is
strictly smaller than the algebraic range of { fn(Xn,Xn+1)}.

In principle, it is possible that {gn(Xn,Xn+1)} is reducible too, but in chapter 5 we
show that one can find an “optimal” decomposition (∗∗) where {gn(Xn,Xn+1)} is not
reducible, and cannot be decomposed further. The algebraic range of the “optimal”
{gn(Xn,Xn+1)} is the “infimum” of all possible reduced ranges:

2 Throught this work, Example X.Y is example number Y in chapter X. Similarly for Theorems,
Propositions etc.
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Gess :=
⋂{

G :
G is the algebraic range of some {gn(Xn,Xn+1)}
which satisfies (∗∗) with {cn(Xn,Xn+1)} center-tight

}
.

We call Gess the essential range of { fn}. It can be calculated explicitly from the data
of fn and Xn in terms of the structure constants, see Theorem 3.2.

It follows from the definitions that Gess is a proper closed subgroup of R, so
Gess = {0} or tZ or R. In the reducible case, Gess = {0} or tZ, because if Gess = R,
then the algebraic range (which contains Gess) is also equal to R.

If Gess = {0}, then the optimal {gn} has algebraic range {0}, and gn are con-
stant functions. In this case fn is center-tight, and we are in the scenario which we
discussed in the previous section.

If Gess = tZ with t 6= 0, then {gn(Xn,Xn+1)} is lattice, non-center-tight, and irre-
ducible. Therefore

SN =
N

∑
n=1

gn(Xn,Xn+1)︸ ︷︷ ︸
SN(g)

+
N

∑
n=1

cn(Xn,Xn+1)︸ ︷︷ ︸
Sn(c)

(†)

where Sn(g) satisfies the lattice local limit theorems (1’)–(3’) with parameter t,
and Var[SN(c)] = O(1). Trading constants between g and c, we can also arrange
E(SN(c)) = O(1).

Unfortunately even though Var[Sn( f )]→ ∞ and Var[SN(c)] = O(1), examples
show that SN(c) is still powerful enough to disrupt the local limit theorem for SN ,
lattice or non-lattice (example 5.1). Heuristically, what happens is that the mass of
SN(g) concentrates on cosets of tZ according to (1’)–(3’), but SN(c) smudges this
mass to a neighborhood of the lattice in a non-universal manner.

This suggests that (1)–(3) should be approximately true for intervals (a,b) of
length |a− b| � |t|, but false for intervals of length |a− b| � |t|. In chapter 5 we
prove results in this direction.

For intervals with size |a− b| > 2|t|, we show that for all zN ∈ R such that
zN−E(SN)√

VN
→ z, for all N large enough

1
3

(
e−z2/2|a−b|√

2πVN

)
≤ P[SN− zN ∈ (a,b)]≤ 3

(
e−z2/2|a−b|√

2πVN

)
.

If |a−b|> L > |t|, we can replace 3 by a constant C(L) such that C(L)−−−−−→
L/|t|→∞

1.

For general intervals, possibly with length less than |t|, we show the following:
There are uniformly bounded random variables bN(X1,XN+1) and a random variable
H=H(X1,X2,X3, . . .) so that for every zN ∈ tZ s.t. zN−E(SN)√

VN
→ z, for every φ :R→R

continuous with compact support,

lim
N→∞

√
VNE[φ(SN− zN−bN)] =

e−z2/2|t|√
2π

∑
m∈Z

E[φ(mt +H)]. (‡)
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For φ ≈ 1[a,b] with |a−b| � |t|, the right-hand-side of (‡) is approximately equal

to e−z2/2|a−b|√
2π

, in accordance with (1), see Lemma 5.4. But for |a−b| � |t|, the right-
hand-side depends on the essential range tZ and on the details of {cn(Xn,Xn+1)}
through t, bN(X1,XN+1) and H.

What are bN(XN ,XN+1) and H? Recall that the term cn(Xn,Xn+1) on the right-
hand-side of (†) is center-tight. As such, it can be put in the form

cn(Xn,Xn+1) = an+1(Xn+1)−an(Xn)+hn(Xn,Xn+1)+ c∗n,

where supn(ess sup |an|)< ∞, c∗n are constants, E(hn(Xn,Xn+1)) = 0, and ∑hn con-
verges almost surely. Let γN := ∑

N
n=1 c∗n = E(SN(c))+O(1) = O(1). The proof of

(‡) shows that

◦ bN = aN+1(XN+1)−a1(X1)+{γN}tZ, where {x}tZ = |t|{x/|t|}= x mod tZ;
◦ H= ∑

∞
n=1 hn(Xn,Xn+1).3

This works as follows. Let z∗N := zN − [γN ]tZ, where [x]tZ := x−{x}tZ ∈ tZ. Then
z∗N ∈ tZ, z∗N−E(SN)

VN
= zN−E(SN)+O(1)

VN
→ z, and

SN−bN− zN = [SN(g)− z∗N ]+SN(h).

By subtracting bN from SN , we are shifting the distribution of SN to the distribu-
tion of the sum of two terms: The first, SN(g), is an irreducible tZ-valued additive
functional; and the second, SN(h), converges almost surely to H.

Suppose for the sake of discussion that SN(g),SN(h) were independent, then the
lattice LLT for SN(g) and the definition of H would imply that

lim
N→∞

√
VNE[φ(SN−bN− zN)] =

∫
R

φ(x)m(dx),

where m := e−z2/2
√

2π
mtZ ∗mH, and mH(E) := P[H ∈ E], mtZ := |t|·counting measure

of tZ. Calculating, we find that
∫
R φdm =right-hand-side of (‡).

In general, SN(g) and SN(h) are not independent, and the problem of proving (‡)
reduces to the problem of proving that SN(g) and SN(h) are asymptotically indepen-
dent. This is done in chapter 5.

For further consequences of (‡), including an interpretation in terms of the
asymptotic distributional behavior of SN modulo tZ, see chapter 5.

3 It is possible to replace H by a different random variable F which is bounded, see chapter 5.
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Final words on the setup of this work

Before we end the preface, we would like to comment on a choice we made when
we wrote this work, specifically, our focus on additive functionals of the form fn =
fn(Xn,Xn+1).

This choice is somewhat unorthodox: The theory of Markov processes is mostly
concerned with the case fn = fn(Xn) (see e.g. [38, 96, 125]), and the theory of
stochastic processes is mostly concerned with the case fn = fn(Xn,Xn+1, . . .), under
assumptions of weak dependence on Xk when |k− n| � 1 (see e.g. [65, 117]). We
decided to study fn = fn(Xn,Xn+1) for the following reasons:

◦ The case fn = fn(Xn,Xn+1) is richer than the case fn = fn(Xn) because it contains
gradients an+1(Xn+1)− an(Xn). Two additive functionals which differ by a gra-
dient with sup(ess sup |an|) < ∞ will have the same CLT behavior, but they may
have different LLT behavior, because their algebraic ranges can be different. This
leads to an interesting reduction theory which we would have missed had we only
considered the case fn = fn(Xn).

◦ The case fn(Xn, . . . ,Xn+m) with m > 1 can be deduced from the case fn(Xn,Xn+1),
and does not require new ideas, see Example 1.3 and the discussion in §1.3.3. We
decided to keep m = 1 and leave the extension to m > 1 to the reader.

◦ The case fn = fn(Xn,Xn+1, . . .) is of great interest, and we hope to address it in the
future, but at the moment it is still open. We do not know if (1)–(3) constitute a
complete set of obstructions to the local limit theorem, and we do not know what
happens when these obstructions occur.

We hope that this work will stimulate research into the local limit theorem of addi-
tive functionals of general non-stationary stochastic processes with mixing condi-
tions. Such work will have applications outside the theory of stochastic processes,
for example in the theory of dynamical systems, and it is definitely worth pursuing.
Our aim in this work was to make a step in this direction.

Notes and references

Local limit theorems for sums of iid’s. The first local limit theorem is due to de
Moivre, who in his 1738 book The doctrine of chances [30], gave approximations for
P[a≤ Sn ≤ b] when Sn =X1+ · · ·+Xn, and Xi are iid, equal to zero or one with equal
probabilities. Laplace’s 1819 book [78, 79] contains an extension of de Moivre’s
results to the case when Xi are equal to zero or one with non-equal probabilities. In
1921, Pólya [108] gave a LLT for the vector valued iid which generate the simple
random walk on Zd , and used it to determine its recurrence properties.

The next historical landmark is Gnedenko’s 1948 work [51, 52] which initiated
the study of the LLT for sums of iid with general lattice distributions. He asked for
the weakest possible assumptions on the distribution of iid’s Xi which lead to a LLT
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with Gaussian or stable limit. Khinchin popularized the problem by emphasizing
its importance to the foundations of quantum statistical physics [68], and it was
studied intensively by the Russian school, with important contributions by Linnik,
Ibragimov, Prohorov, Richter, Saulis and others. We will comment on some of these
contributions in later chapters. For the moment, we refer the reader to the excellent
books [53],[65],[104] and the many references they contain.

The early works on the local limit theorem all focused on the lattice case. The
Gnedenko–Kolmogorov book [53] contains the first result we are aware of which
could be considered to be a non-lattice local limit theorem. The authors assume
that each of the iid’s Xi have a probability density function p(x) ∈ Lr with finite
variance σ2, and show that the density function pn(x) of X1 + · · ·+Xn satisfies

σ
√

npn(σ
√

nx)−−−→
n→∞

1√
2π

e−x2/2.

There could be non-lattice iid’s without density functions, for example the iid’s
Xi equal to (−1), 0, or

√
2 with equal probabilities (the algebraic range isR, because

the group generated by (−1) and
√

2 is dense). Shepp [127] was the first to consider
non-lattice LLT in such cases. His approach was to provide asymptotic formulas for
P[a≤ Sn−E(SN)≤ b] for arbitrary intervals [a,b], or for√

2πVar(SN)E[φ(SN−E(SN))]

for all test functions φ : R→ R which are continuous with compact support. In this
monograph, we use a slight modification of Shepp’s formulation of the LLT. Instead
of working with SN −E(SN), we work with SN − zN subject to the assumptions that
zN is “not too far” from E(SN), and that SN− zN ∈ algebraic range.

Stone proved non-lattice LLT in Shepp’s sense for sums of vector valued iid in
[133], extending earlier work of Rvačeva [119] who treated the lattice case. These
works are important not only because of the intrinsic interest in the vector valued
case, but also because of technical innovations which became tools of the trade, see
e.g. [17].

Local limit theorems for stationary stochastic processes. The earliest local limit
theorem for non-iid sequences {Xi} is due to Kolmogorov [72]. He considered sta-
tionary homogeneous Markov chains {Xi}with a finite set of states S= {a1, . . . ,an},
and proved a local limit theorem for the occupation times

SN =
N

∑
i=1

→
f (Xi), where

→
f (x) = (1a1(x), . . . ,1an(x)).

Following further developments for finite state Markov chains by Sirazhdinov
[128], Nagaev [96] was able to obtain a very general local limit theorems for
SN = ∑

N
i=1 f (Xi) for a large class of stationary homogeneous countable Markov

chains {Xi} and for a variety of unbounded functions f , both in the gaussian and
stable cases.
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Nagaev’s paper introduced the method of characteristic function operators, which
is also applicable outside the context of Markov chains. This opened the way for
proving LLT for other weakly dependent stationary stochastic processes, and in par-
ticular to time series of probability preserving dynamical systems. Rosseau-Egele
[114], proved gaussian LLT for Birkhoff sums SN = ∑

N
i=1 f (T ix), where T : X → X

is a piecewise expanding interval map possessing an absolutely continuous invari-
ant measure, X = [0,1], and f ∈ BV . Guivarc’h & Hardy [56] proved such results
for Anosov diffeomorphisms T : X → X with an invariant Gibbs measure, and f
is Hölder continuous. Aaronson & Denker [4] gave general LLT for stationary
processes generated by Gibbs-Markov maps both in the gaussian and in the non-
gaussian domain of attraction. These results have found many applications in infi-
nite ergodic theory, dynamical systems and hyperbolic geometry, see for example
[1], [3], [5]. The influence of Nagaev’s method can also be recognized in other works
on other asymptotic problems in dynamics and geometry, see for example [9], [10],
[60], [67], [76], [77], [80], [81],[106],[107], [126].

Local limit theorems for non-stationary stochastic processes. The interest in
limit theorems for sums of non-identically distributed, independent, random vari-
ables goes back to the works of Chebyshev [134], Lyapunov [88] , and Lindeberg
[84] who considered the central limit theorem for such sums.

The study of LLT for sums of non-identically distributed random variables started
later, in the works of Prohorov [109] and Rozanov [115]. A common theme in these
works and those that followed them is to assume an asymptotic for P[a≤ SN−AN

BN
≤ b]

for suitable normalizing constants AN ,BN , and then ask what extra conditions imply
an asymptotic for P[a≤ SN−AN ≤ b].

An important counterexample by Gamerklidze [50] pointed the way towards the
phenomenon that the distribution of SN may lie close to a proper sub-group of its
algebraic range without actually charging it, and a variety of sufficient conditions
which rule this out were developed over the years. We mention especially Rozanov’s
condition in the lattice case [115] (see the end of chapter 3), the Mineka-Silverman
condition in the non-lattice case [93], and Statulevicius’s condition [132]. For a
unified discussion of these conditions, see [95].

Dolgopyat proved a LLT for sums of non-identically distributed, independent
random variables which also applies to the reducible case [42].

Dobrushin proved a general central limit theorem for inhomogeneous Markov
chains in [38] (see chapter 2). Local limit theorems for inhomogeneous Markov
chains are considered in [131]. Peligrad proved local limit theorems for sums
∑

N
i=1 fi(Xi) where {Xi} is a ψ-mixing inhomogeneous Markov chain, under the ir-

reducibility condition of Mineka & Silverman [101]. Hafouta obtained local limit
theorems for a class of inhomogeneous Markov chains in [58]. In a different direc-
tion, central limit theorems for time-series of inhomogeneous sequences of Anosov
diffeomorphisms are proved in [12] and [25].

An important source of examples of inhomogeneous Markov chains is a Markov
chain in random environment, when considered for a specific (“quenched”) realiza-
tions of the environment (see chapter 7). Hafouta & Kifer proved local limit theo-
rems for non-conventional ergodic sums in [59], and local limit theorems for ran-
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dom dynamical systems including Markov chains in random environment in [60].
Demers, Péne & Zhang [33] prove a LLT for a integer valued observable for a ran-
dom dynamical system.

Comparing the theory of inhomogeneous Markov chains to theory of Markov
chains in random environment studied in [60], we note the following differences:

(a) The theory of inhomogeneous Markov chains applies to fixed realizations of
noise and not just to almost every realization of noise;

(b) In the random environment setup, a center–tight additive functional must be
a coboundary, while in the general case it can also have a component with
summable variances;

(c) In the non center-tight random environment setup, the variance grows linearly
for a.e. realization of noise. But for a general inhomogeneous Markov chain it
can grow arbitrarily slowly.

The contribution of this work. The novelty of this work is in providing optimal
sufficient conditions for the classical asymptotic formulas for P[SN − zN ∈ (a,b)],
and in the analysis of P[SN− zN ∈ (a,b)] when these conditions fail.

In particular, we derive a new asymptotic formula for P[SN − zN ∈ (a,b)] in the
reducible case, subject to assumption that VN :=Var(SN)→∞, and we prove a struc-
ture theorem for SN in case VN 6→ ∞.

Unlike previous works, our analysis does not require any assumptions on the rate
of growth of VN , beyond convergence to infinity.

Acknowledgements: The work on this monograph was partially supported by the
BSF grant 201610. The authors thank the staff of Weizmann Institute for excellent
working conditions. O.S. was also partially supported by ISF grant 1149/18. D.D.
was also partially supported by NSF grant DMS 1665046.



Chapter 1
Additive functionals on Markov arrays

This chapter discusses the setup and standing assumptions used in this work.

1.1 The basic setup

1.1.1 Inhomogeneous Markov chains

A Markov chain is given by the following data:

◦ State spaces: Borel spaces (Sn,B(Sn)) (n ≥ 1), where Sn is a complete sepa-
rable metric space, and B(Sn) is the Borel σ -algebra of Sn. Sn is the set of “the
possible states of the Markov chain at time n.”

◦ Transition probabilities: Borel probability measures π
(N)
n,n+1(x,dy) on Sn+1 (x ∈

Sn,n ≥ 1), so that for every Borel E ⊂ Sn+1, the function x 7→ π
(N)
n,n+1(x,E) is

measurable. The measure πn(x,E) is “the probability of event E at time n+ 1,
given that the state at time n was x.”

◦ Initial distribution: π(dx), a Borel probability measure on S1.

π(E) is “the probability that the state x at time 1 satisfies x ∈ E.”

The Markov chain associated with this data is the Markov process X := {Xn}n≥1
such that Xn ∈Sn for all n, so that for all Borel Ei ⊂Si

P(X1 ∈ E1) = π(E1) , P(Xn+1 ∈ En+1|Xn = xn) = πn,n+1(xn,En+1).

X is uniquely defined, with joint distribution

P(X1 ∈ E1, · · · ,Xn ∈ En) := (1.1.1)∫
En−1

∫
En−2

· · ·
∫

E1

πn−1,n(xn−1,En)π(dx1)π1,2(x1,dx2) · · ·πn−2,n−1(xn−2,dxn−1).

15
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X satisfies the following important Markov property:

P(Xn+1 ∈ E|Xn,Xn−1, . . . ,X1) = P(Xn+1 ∈ E|Xn) = πn,n+1(Xn,E). (1.1.2)

See, for instance, [17, Ch. 7].
In what follows P,E and Var denote the probability, expectation, and variance

calculated using this joint distribution. In the special case when π is the point mass
at x, we write Px,Ex and Varx.

If the state spaces and the transition probabilities do not depend on n, i.e., Sn =
S and πn,n+1(x,dy) = π(x,dy) for all n, then we call X a homogeneous Markov
chain. Otherwise, X is called an inhomogeneous Markov chain. In this work, we
are mainly interested in the inhomogeneous case.

Example 1.1. (Markov chain with finite state spaces). These are Markov chains
X with state spaces Sn = {1, . . . ,dn} , B(Sn) = { subsets of Sn}.

In this case the transition probabilities are completely characterized by the rect-
angular stochastic matrices with entries

π
n
xy := πn,n+1(x,{y}) (x = 1, . . . ,dn ; y = 1, . . . ,dn+1),

and the initial distribution is completely characterized by the probability vector

πx := π({x}) (x = 1, . . . ,dn).

The joint distribution of {Xn} is determined by the identity

P(X1 = x1, · · · ,Xn = xn) = πx1π
1
x1x2

π
2
x2x3
· · ·πn−1

xn−1xn ,

which leads to the following discrete version of (1.1.1):

P(X1 ∈ E1, · · · ,Xn ∈ En) = ∑
xn−1∈En−1

∑
xn−2∈En−2

· · · ∑
x1∈E1

πx1π
1
x1x2

π
2
x2x3
· · ·πn−1

xn−1xn .

Example 1.2. (Markov chains in random environment). Let X denote a homoge-
neous Markov chain with state space S, transition probability π(x,dy), and initial
distribution concentrated at a point x1. It is possible to view X as a model for the
motion of a particle on S as follows. At time 1, the particle is located at x1, and a
particle at position x will jump after one time step to a random location y, distributed
like π(x,dy): P(y ∈ E) = π(x,E). With this interpretation,

Xn = the position of the particle at time n.

The homogeneity of X is reflected in the fact that the law of motion which governs
the jumps does not change in time.

Let us now refine the model by adding a dependence of the transition proba-
bilities on an external parameter ω , which we think of as “the environment.” For
example, ω can represent a external force field which affects the likelihood of vari-
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ous movements, and which can be modified by God or some other experimentalist.
The transition probabilities become π(x,ω,dy).

Suppose the environment ω changes in time according to some deterministic
rule. This is modeled by a map T : Ω →Ω , where Ω is the collection of all possible
states of the environment, and T is a deterministic law of motion which says that an
environment at state ω will evolve after one unit of time to the state T (ω). Iterating
we see that if the initial state of the environment at time zero was ω , then its state at
time n will be ωn = T n−1(ω) = (T ◦ · · · ◦T )(ω).

Returning to our particle, we see that if the initial condition of the environment
at time one is ω , then the transition probabilities at time n are

π
ω
n,n+1(x,dy) = π(x,T n−1(ω),dy).

Thus each ω ∈ Ω gives rise to an inhomogeneous Markov chain Xω , which de-
scribes the Markovian dynamics of a particle, coupled to a changing environment,
and corresponding to the initial condition that at time one, the particle is at position
x1 and the environment is at state ω .

If T (ω)=ω , the environment stays fixed, and the Markov chain is homogeneous,
otherwise the Markov chain is inhomogeneous. We will return to Markov chains in
random environment in chapter 8.

Example 1.3. (Markov chains with finite memory). We can weaken the Markov
property (1.1.2) by specifying that for some fixed k0 ≥ 1, for all E ∈B(Sn+1),

P(Xn+1 ∈ E|Xn, . . . ,X1) =

{
P(Xn+1 ∈ E|Xn, . . . ,Xn−k0+1) n > k0;
P(Xn+1 ∈ E|Xn, . . . ,X1) n≤ k0.

Stochastic processes like that are called “Markov chains with finite memory” (of
length k0). Markov chains with memory of length 1 are ordinary Markov chains.
Markov chains with memory of length k0 > 1 can be recast as ordinary Markov
chains by considering the stochastic process X̃ = {(Xn, . . . ,Xn+k0−1)}n≥1 with its
natural state spaces, initial distribution, and transition kernels.

Example 1.4. (A non-example). Every inhomogeneous Markov chain X can be re-
cast as a homogeneous Markov chain Y by suitable relabelling of states, as follows.
Let Si denote the state spaces of X. These are complete separable metric spaces,
and therefore they are Borel isomorphic to R, or to Z, or to a finite set (see e.g.
[129], §3). So we can construct Borel bi-measurable injections ϕi : Si ↪→ R. Let

Yn = (ϕn(Xn),n).

We claim that Y = {Yn}n≥1 is a homogeneous Markov chain. Let δξ denote the
Dirac measure at ξ , defined by δξ (E) := 1 when E 3 ξ and δξ (E) := 0 otherwise.
Let Sn,πn,n+1 and π denote the states spaces, transition probabilities, and initial
distribution of X. Define a homogeneous Markov chain Z with

◦ state space S := R×N
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◦ initial distribution π̂ := (π ◦ϕ
−1
1 )×δ1, a measure on S1×{1}

◦ transition probabilities

π̂
(
(x,n),A×B

)
:=

{
πn,n+1

(
ϕ−1

n (x),ϕ−1
n+1(A)

)
δn+1(B) x ∈ ϕn(Sn)

δ0(A)δ1(B) otherwise.

A direct calculation shows that the joint distribution Z is equal to the joint distribu-
tion of Y = {(ϕn(Xn),n)}n≥1. So Y is a homogeneous Markov chain.

Such representations will not be useful to us, because they destroy useful struc-
tures such as the uniform ellipticity property (section 1.2 below), which is essential
for the work on the local limit theorem.

1.1.2 Inhomogeneous Markov arrays

For technical reasons that we will explain below, it is useful to consider a general-
ization of a Markov chain, called a Markov array. To define a Markov array, we
need the following data:

◦ Row lengths: kN +1 where kN ≥ 1 and (kN)N≥1 is strictly increasing.

◦ State spaces: (S(N)
n ,B(S

(N)
n )), (1≤ n≤ kN +1), where S(N)

n is a complete sepa-
rable metric space with more than one point, and B(S

(N)
n ) is its Borel σ -algebra.

◦ Transition probabilities: {π(N)
n,n+1(x,dy)}

x∈S(N)
n

(1≤ n≤ kN) where π
(N)
n,n+1(x,dy)

are Borel probability measures on S
(N)
n+1, so that for every Borel E ⊂ S

(N)
n+1, the

function x 7→ π
(N)
n,n+1(x,E) is measurable, and for all x, and πn,n+1(x, ·) is not car-

ried by a single atom.

◦ Initial distributions: Borel probability measures π(N)(dx) on S
(N)
1 .

This data determines for each N ≥ 1 a finite Markov chain of length kN +1
X(N) = (X (N)

1 ,X (N)
2 , . . . ,X (N)

kN+1), called the N-th row of the array. We will continue
to denote the joint probability distribution, expectation, and variance of X(N) by
P,E, and Var. Certainly, these objects depend on N, but the index N will always be
obvious from the context, and can be suppressed. As always, in cases when we wish
to condition on the initial state X (N)

1 = x, we will write Px and Ex.
The rows X(N) = (X (N)

1 ,X (N)
2 , . . . ,X (N)

kN+1) can be arranged in an array of random
variables

X=


X (1)

1 , . . . ,X (1)
k1+1

X (2)
1 , . . . ,X (2)

k1+1, . . . ,X
(2)
k2+1

X (3)
1 , . . . ,X (3)

k1+1, . . . ,X
(3)
k2+1, . . . ,X

(3)
k3+1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·



1.1 The basic setup 19

Each horizontal row X(N) = (X (N)
1 ,X (N)

2 , . . . ,X (N)
kN+1) comes equipped with a joint

distribution, which depends on N. But no joint distribution on elements of different
rows is specified.

Example 1.5. (Markov chains as Markov arrays). Every Markov chain {Xn}
gives rise to a Markov array with row lengths kN = N + 1 and rows X(N) =

(X1, . . . ,XN+1). In this case S
(N)
n =Sn, π

(N)
n,n+1 = πn,n+1, and π(N) = π .

Conversely, any Markov array so that S(N)
n =Sn, π

(N)
n,n+1 = πn,n+1, and π(N) = π

determines a Markov chain with state spaces Sn, transition probabilities π
(N)
n,n+1 =

πn,n+1, and initial distributions π(N) = π .

Example 1.6. (Change of measure). Suppose {Xn}n≥1 is a Markov chain with data
Sn,πn,n+1,π , and let ϕ

(N)
n (x,y) be a family of positive measurable functions on

Sn×Sn+1. Define new transition probabilities by

π
(N)
n,n+1(x,dy) :=

ϕ
(N)
n,n+1(x,y)∫

ϕ
(N)
n,n+1(x,y)πn,n+1(x,dy)

π
(N)
n,n+1(x,dy).

Then the data kN = N +1, S(N)
n :=Sn, π(N) := π and π

(N)
n,n+1 determines a Markov

array called the change of measure of {Xn} with weights ϕ
(N)
n .

Why study Markov arrays? There are several reasons, and the one most relevant
to this work is the following: The theory of large deviations for Markov chains,
relies on a change of measure which results in Markov arrays. Thus, readers who
are only interested in local limit theorems for Markov chains in the local regime
zN−E(SN)√

Var(SN)
→ z, may ignore the theory of arrays and limit their attention to Markov

chains. But those who are also interested in the large deviations regime where
| zN−E(SN)

Var(SN)
| is of order 1 will need the theory for Markov arrays.

1.1.3 Additive functionals

An additive functional of a Markov chain is a sequence f = { fn}n≥1 of measurable
functions fn : Sn×Sn+1→R, where Sn are the states spaces of the Markov chain.
The pair X= {Xn}, f = { fn} determines a stochastic process

SN = f1(X1,X2)+ f2(X2,X3)+ · · ·+ fN(Xn,XN+1) (N ≥ 1).

We will often abuse terminology and call (X, f) and {SN}N≥1 “additive functionals.”
An additive functional of a Markov array X with row lengths kN + 1 and state

spaces S(N)
n is an array of measurable functions f (N)

n : S(N)
n ×S

(N)
n+1→ R with row

lengths kN :
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f =


f (1)1 , . . . , f (1)k1

f (2)1 , . . . , f (2)k1
, . . . , f (2)k2

f (3)1 , . . . , f (3)k1
, . . . , f (3)k2

, . . . , f (3)k3
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Again, this determines a sequence of random variables

SN = f (N)
1 (X (N)

1 ,X (N)
2 )+ f (N)

2 (X (N)
2 ,X (N)

3 )+ · · ·+ f (N)
kN

(X (N)
kN

,X (N)
kN+1) (N ≥ 1),

which we also refer to as “additive functional.” But be careful! This is not a stochas-
tic process, because no joint distribution of S1,S2, . . . is specified.

Suppose f,g are two additive functionals on X. If X is a Markov chain,

f+g := { fn +gn}, cf := {c fn}, |f| := sup
n

(
sup
x,y
| fn(x,y)|

)
and ess sup |f| := sup

n
(ess sup | fn(Xn,Xn+1)|).

Similarly, if X is a Markov array with row lengths kN +1, then

f+g := { f (N)
n +g(N)

n }, cf := {c f (N)
n }, |f| := sup

N
sup

1≤n≤kN

(
sup
x,y
| f (N)

n (x,y)|
)
,

and
ess sup |f| := sup

N
sup

1≤n≤kN

(ess sup | fn(Xn,Xn+1)|) .

The notation |f| ≤K a.s. will mean that ess sup | f | ≤K ( “a.s.” stands for “almost
surely”). An additive functional is called uniformly bounded if there is a constant
K such that |f| ≤ K, and uniformly bounded a.s. if ∃K such that |f| ≤ K a.s.

1.2 Uniform ellipticity and its consequences

1.2.1 The definition

A Markov chain X with state spaces Sn and transition probabilities πn,n+1(x,dy)
is called uniformly elliptic, if there exists a Borel probability measure µn on Sn,
Borel measurable functions pn : Sn×Sn+1 → [0,∞), and a constant 0 < ε0 < 1
called the ellipticity constant such that for all n≥ 1,

(a) πn,n+1(x,dy) = pn(x,y)µn+1(dy);
(b) 0≤ pn ≤ 1/ε0;
(c)

∫
Sn+1

pn(x,y)pn+1(y,z)µn+1(dy)> ε0.

See §1.3.3 for a discussion of a possible weakening of (c).



1.2 Uniform ellipticity and its consequences 21

We will see in Proposition 1.2 below that one can always assume without loss of
generality that µn are the measures µn(E) = P(Xn ∈ E).

Example 1.7. Suppose X has finite state spaces Sn s.t |Sn| ≤M < ∞ for all n, and
πn

xy := πn,n+1(x,{y}) satisfy

(1) ∃ε ′0 > 0 s.t. for all n≥ 1 and (x,y) ∈Sn×Sn+1, either πn
xy = 0 or πn

xy > ε ′0;
(2) for all n, for all (x,z)∈Sn×Sn+2, there exists y ∈Sn+1 such that πn

xyπn+1
yz > 0.

Then X is uniformly elliptic: Take µn to be the uniform measure on Sn and
pn(x,y) := πn

xy/|Sn+1|. Then (a) is clear, (b) holds with any ε0 < 1/K, and (c) holds
with ε0 := (ε ′0/K)2.

We call such chains Doeblin chains, in honor of Doeblin who studied homoge-
neous countable Markov chains satisfying similar conditions.

Here is the formulation of the uniform ellipticity conditions for Markov arrays.
A Markov array X with state spaces S(N)

n , transition probabilities π
(N)
n,n+1(x,dy), and

row lengths kN +1 is called uniformly elliptic, if there exist Borel probability mea-
sures µ

(N)
n on S

(N)
n , Borel measurable functions p(N)

n : S(N)
n ×S

(N)
n+1→ [0,∞), and a

constant 0 < ε0 < 1 as follows: For all N ≥ 1 and 1≤ n≤ kN ,

(a) π
(N)
n,n+1(x,dy) = p(N)

n (x,y)µ(N)
n+1(dy);

(b) 0≤ p(N)
n ≤ 1/ε0;

(c)
∫
Sn+1

p(N)
n (x,y)p(N)

n+1(y,z)µ
(N)
n+1(dy)> ε0.

Example 1.8. Suppose X is a uniformly elliptic Markov chain and suppose Y is a
Markov array obtained from X by the change of measure construction described
in Example 1.6. If the weights ϕ

(N)
n (x,y) of the change of measure are uniformly

bounded away from zero and infinity, then Y is uniformly elliptic.

1.2.2 Contraction estimates and exponential mixing

Suppose X,Y are complete and separable metric spaces. A transition kernel from
X to Y is a family {π(x,dy)}x∈X of Borel probability measures on Y so that
x 7→ π(x,E) is measurable for all E ⊂ X Borel. A transition kernel {π(x,dy)}x∈X
determines two Markov operators, one acting on measures and the other acting on
functions. The action on measures takes a probability measure µ on X and maps it
to a probability measure on Y via

π(µ)(E) :=
∫
X

π(x,E)µ(dx).

The action on functions takes a bounded Borel function u : Y→ R and maps it to a
bounded Borel function on X via
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π(u)(x) =
∫
Y

u(y)π(x,dy).

The two operators are dual:
∫

u(y)π(µ)(dy) =
∫

π(u)(x)µ(dx).
These operators are contractions in the following sense. Define the oscillation of

a function u : Y→ R to be

Osc(u) := sup
y1,y2∈Y

|u(y1)−u(y2)|.

Define the contraction coefficient of {π(x,dy)}x∈X to be

δ (π) := sup{|π(x1,E)−π(x2,E)| : x1,x2 ∈ X,E ∈B(Y)}.

The total variation distance1 between two probability measures µ1,µ2 on X is

‖µ1−µ2‖Var := sup{|µ1(A)−µ2(A)| : A⊂ X is measurable}

≡ 1
2

sup
{∫

w(x)(µ1−µ2)(dx)
∣∣w : X→ [−1,1] is measurable

}
Lemma 1.1 ([125]). Suppose X,Y are complete and separable metric spaces, and
{π(x,dy)}x∈X is a transition kernel from X to X.

(a) 0≤ δ (π)≤ 1.
(b) δ (π) = sup{Osc[π(u)]|u : Y→ R measurable, and Osc(u)≤ 1}.
(c) δ (π1 ◦π2)≤ δ (π1)δ (π2) provided π1 ◦π2 is well defined.
(d) Osc[π(u)]≤ δ (π)Osc(u) for every u : Y→ R bounded and measurable.
(e) ‖π(µ1)− π(µ2)‖Var ≤ δ (π)‖µ1 − µ2‖Var for all Borel probability measures

µ1,µ2 on X.
(f) Suppose λ is a probability measure on X×Y with marginals µX, µY, and tran-

sition kernel {π(x,dy)}, i.e. λ (E×Y) = µX(E), λ (X×E) = µY(E), and

λ (dx,dy) =
∫
X

π(x,dy)µX(dx).

Let f ∈ L2(µX),g ∈ L2(µY) be two elements with zero integral. Then∣∣∣∣∫
X×Y

f (x)g(y)λ (dx,dy)
∣∣∣∣≤√δ (π)‖ f‖L2(µX)‖g‖L2(µY).

Proof. (a) is trivial.
The inequality ≤ in (b) is because for every E ∈ B(Y), u := 1E satisfies

Osc(u) ≤ 1. To see ≥, fix some u : Y→ R measurable such that Osc(u) ≤ 1. Sup-
pose first that u is a simple function (a measurable function with finitely many val-
ues), then we can write u = c+∑

m
i=1 αi1Ai where c ∈ R, |αi| ≤ 1

2 Osc(u), and Ai
measurable and pairwise disjoint. For every pair of points x1,x2 ∈ X,

1 Caution! ‖µ1− µ2‖Var is actually one half the total variation of µ1− µ2, because it is equal to
(µ1−µ2)

+(X) and to (µ1−µ2)
−(X), but not to |µ|(X) = (µ1−µ2)

+(X)+(µ1−µ2)
−(X).
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|π(u)(x1)−π(u)(x2)|=

∣∣∣∣∣ m

∑
i=1

αi[π(x1,Ai)−π(x2,Ai)]

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
π(x1,Ai)>π(x2,Ai)

αi[π(x1,Ai)−π(x2,Ai)]

∣∣∣∣∣+
∣∣∣∣∣ ∑
π(x1,Ai)<π(x2,Ai)

αi[π(x1,Ai)−π(x2,Ai)]

∣∣∣∣∣
≤ 1

2
Osc(u)δ (π)+

1
2

Osc(u)δ (π) = δ (π)Osc(u) = δ (π).

So Osc[π(u)] ≤ δ (π) for all simple functions u with Osc(u) ≤ 1. A standard ap-
proximation argument now shows that Osc[π(u)] ≤ δ (π) for all measurable u s.t.
Osc(u)≤ 1. This proves (b). Part (c) and (d) are immediate consequences of (b).

To see (e), let µ := µ1−µ2, then for every measurable function w : Y→ [−1,1],

1
2

∫
Y

w(y)π(µ)(dy) =
1
2

∫
Y

w(y1)π(µ1)(dy1)−
∫
Y

w(y2)π(µ2)(dy2)

=
1
2

∫
X

π(w)(x1)µ1(dx1)−
∫
X

π(w)(x2)µ2(dx2)

=
1
2

∫
X

∫
X
[π(w)(x1)−π(w)(x2)]µ1(dx1)µ2(dx2)≤

1
2

Osc(π(w))

≤ 1
2

δ (π)Osc(w)≤ δ (π),by (b) and because Osc(w)≤ 2‖w‖∞ ≤ 2.

Passing to the supremum over all w(y) gives part (e).
Part (f) is the content of Lemma 4.1 in [125, Lemma 4.1], and we reproduce the

proof given there. Consider the σ -algebra G := {X×E : E ⊂ Y is measurable},
which represents the information on the Y–coordinate of (x,y) ∈ X×Y.

Let π̃y be a measurable family of conditional probabilities given G , i.e. π̃y is
a probability measure on X×{y}, y 7→

∫
f dπ̃y is Borel for every Borel function

f : X×Y→ [0,1], λ =
∫
X×Y π̃ydλ , and for every λ–absolutely integrable f (x,y),

Eλ ( f (x,y)|G )(y) =
∫
X

f dπ̃y λ -a.e.

We may identify π̃y with a probability measure π̂(y,dx) on X defined by

π̂(y,E) = π̃y(E×{y}) (E ⊂ X Borel).

It is useful to think of π̂(y,dx) as the transition kernel “which goes the opposite
way” to π(x,dy). Indeed, if π(x,dy) is the transition probability of a Markov chain
{Xn} from n to n+ 1, and λ is the joint distribution of (Xn,Xn+1), then π̂(y,dx) is
the transition probability from n+1 to n, i.e. π̂(y,E) = P(Xn ∈ E|Xn+1 = y).

The operators π : L2(µY)→ L2(µX) and π̂ : L2(µX)→ L2(µY) are dual to one
another, because

∫
X f (x)π(g)(x)dµX(x) and

∫
Y π̂( f )(y)g(y)dµY(y) are both equal

to
∫

f (x)g(y)λ (dx,dy).
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CLAIM: Q := π ◦ π̂ : L2(µX)→ L2(µX) is self-adjoint, Q preserves the linear sub-
space L2

0(µX) := { f ∈ L2(µX) :
∫

f dµX = 0}, and the spectral radius of Q : L2
0→ L2

0
is at most δ (Q).

Proof of the claim: Q is self adjoint, because Q∗ = (ππ̂)∗ = π̂∗π∗ = ππ̂ .
It is useful to notice that Q is given by (Q f )(x)=

∫
X f (x′)Q(x,dx′) where Q(x,E)

is the probability measure on X given by Q(x,E) =
∫

π̂(y,E)π(x,dy). Q(x,dx′) is a
transition probability from X to X. Notice that Q(µX) = µX:

(QµX)(E) =
∫
X

Q(x,E)µX(dx) =
∫
X

∫
Y

µX(dx)π(x,dy)π̃y(E×{y})

=
∫
X×Y

π̃y(E×{y})λ (dx,dy) =
∫
X×Y

π̃y(E×Y)dλ = λ (E×Y) = µX(E).

Thus, for all f ∈ L2(µX),
∫

Q f dµX =
∫

f d(QµX) =
∫

f dµX. It follows that Q :
L2(µX)→ L2(µX) preserves the linear space L2

0.
For every ϕ ∈ L2

0∩L∞, ‖ϕ‖∞ ≤ Osc(ϕ). Since Q preserves L2
0∩L∞, for every f

in this space, we have by parts (c) and (d) that

‖Qn f‖2 ≤ ‖Qn f‖∞ ≤ Osc(Qn f )≤ δ (Q)n Osc( f ). (1.2.1)

This implies that the spectral radius of Q : L2
0→ L2

0 is less than or equal to δ (Q).
Otherwise there is an L2

0-function, part of whose spectral decomposition corresponds
to the part of the spectrum outside {λ ∈R : |λ | ≤ δ (Q)+ ε} (self-adjoint operators
have real spectrum). Any sufficiently close L2

0 ∩ L∞–function would have compo-
nents with similar properties; but the existence of such components is inconsistent
with (1.2.1). The proof of the claim is complete.

We are ready for the proof of (f). Since Q : L2
0→ L2

0 has spectral radius at most
δ and Q is self-adjoint, for every f ∈ L2

0(µX),

‖π̂( f )‖2
L2

0(µY)
= 〈π̂( f ), π̂( f )〉L2

0(µY) = 〈Q( f ), f 〉L2
0(µX) ≤ δ (Q)‖ f‖2

L2
0(µX)

.

It follows that for every f ∈ L2
0(µX),g ∈ L2

0(µY)∣∣∣∣∫
X×Y

f (x)g(y)λ (dx,dy)
∣∣∣∣= ∣∣∣∣∫

Y
µY(dy)

∫
X

π̂(y,dx) f (x)g(y)
∣∣∣∣= 〈π̂( f ),g〉L2(µY)

≤ ‖π̂( f )‖2‖g‖2 ≤
√

δ (Q)‖ f‖2‖g‖2, as required. �

We now return to the setup of Markov arrays X= {X (N)
n : 1≤ n≤ kN +1,N ≥ 1}

and consider the following two-step transition probabilities

π
(N)
n,n+2(x,E) :=

∫
π
(N)
n+1,n+2(y,E)π

(N)
n,n+1(x,dy)
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defined for 1 ≤ n < N < ∞, x ∈ S
(N)
n , and E ∈B(S

(N)
n+2). The uniform ellipticity

condition gives the following uniform bound for δ (π
(N)
n,n+2):

Lemma 1.2. Let X be a uniformly elliptic Markov array with ellipticity coefficient
ε0. Then sup

N
sup

1≤n<kN

δ (π
(N)
n,n+2)≤ 1− ε0. Similarly for Markov chains.

Proof. We fix N and drop the superscripts (N).
Uniform ellipticity implies that πn,n+2(x,E) has density with respect to µn+2 and

this density is bounded from below by ε0. This allows us to write

πn(x,dy) = ε0µn+2(dy)+(1− ε0)π̂n,n+2(x,dy). (1.2.2)

Note that the first term does not depend on x.
Let u : Sn+2→ R be a measurable function with Osc(u)≤ 1, then we can write

u(·) = c+w(·) where c is a constant and ‖w‖∞ < 1
2 . A direct calculation shows that∣∣∣∣∫

Sn

u(z)πn,n+2(x1,dz)−
∫
Sn

u(z)πn,n+2(x2,dz)
∣∣∣∣

=

∣∣∣∣∫
Sn

w(z)πn,n+2(x1,dz)−
∫
Sn

w(z)πn,n+2(x2,dz)
∣∣∣∣

= (1− ε0)

∣∣∣∣∫
Sn

w(z)π̂n,n+2(x1,dz)−
∫
Sn

w(z)π̂n,n+2(x2,dz)
∣∣∣∣

≤ (1− ε0)‖w‖∞ [πn,n+2(x1,Sn+2)+πn,n+2(x2,Sn+2)]≤ 1− ε0,

where the last inequality holds since ‖w‖∞ ≤ 1
2 . �

Proposition 1.1. If X is uniformly elliptic, then there exist θ ∈ (0,1) and Cmix > 0
which only depend on the ellipticity constant ε0 as follows. Suppose h(N)

n (x,y) are
measurable functions on S

(N)
n ×S

(N)
n+1, and let h(N)

n := h(N)
n (X (N)

n ,X (N)
n+1), then

(1) If h(N)
n is bounded and E(h(N)

n ) = 0, then for all 1≤ m < n≤ kN

‖E
(
h(N)

n |X (N)
m
)
‖∞ ≤Cmixθ

n−m‖h(N)
n ‖∞ (1.2.3)

(2) If Var(h(N)
n ),Var(h(N)

m )<∞ andE(h(N)
n ),E(h(N)

m )= 0, then for all 1≤m< n≤ kN

‖E(h(N)
n |X (N)

m )‖2 ≤Cmixθ
n−m‖h(N)

n ‖2 (1.2.4)

|E(h(N)
m h(N)

n )| ≤Cmixθ
n−m‖h(N)

m ‖2‖h(N)
n ‖2 (1.2.5)

The analogous statements hold for Markov chains.

Proof. We fix N and let πn,n+1 := π
(N)
n,n+1, Xn = X (N)

n , hn := h(N)
n . Define for k ≤ n

wn,k(Xk) := E(hn|Xk),
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then wn,n(Xn) := E(hn|Xn) =
∫

hn(Xn,y)πn,n+1(Xn,dy) = πn,n+1[hn(Xn, ·)]. By the
Markov property, wn,n(Xn) = E(hn|Xn,Xn−1, . . . ,X1), and this allows us to write
πn−1,n(wn,n)(Xn−1)≡E(wn,n(Xn)|Xn−1)=E(E(hn|Xn, . . . ,X1)|Xn−1))=E(hn|Xn−1).
So πn−1,n(wn,n)(Xn−1) = wn,n−1(Xn−1).

Applying the Markov operator πn−2,n on both sides gives in a similar way
(πn−2,n−1 ◦πn−1,n)(wn,n)(Xn−2) = wn,n−2(Xn−2).

Continuing in this way we arrive eventually to the identity

wn,m(Xm) := E(hn|Xm) = (πm,m+1 ◦ · · · ◦πn−1,n)(wn,n)(Xm).

By the previous lemmas Osc[wn,m]≤ (1− ε0)
b n−m

2 cOsc[wn,n].
Notice that for every bounded measurable function v, ‖v‖∞ ≤ |E(v)|+Osc(v).

Since by assumption E(wn,m(Xm)) = E(hn) = 0,

‖wn,m(Xm)‖∞ ≤ (1− ε0)
b n−m

2 cOsc[wn,n].

Osc[wn,n]≤ 2‖wn,n‖∞ ≤ 2‖hn‖∞, and part 1 follows.
Part 2 is proved in a similar way, using Lemma 1.1(f). �

1.2.3 Hitting probabilities and bridge probabilities

Throughout this section, let X be an inhomogeneous Markov array with row lengths
kN , and data S

(N)
n , π

(N)
n,n+1, π(N). Suppose X is uniformly elliptic:

π
(N)
n,n+1(x,dy) = p(N)

n (x,y)µn+1(dy)

where 0≤ p(N)
n < 1/ε0 and

∫
Sn+1

p(N)
n (x,y)p(N)

n+1(y,z)µn+1(dy)> ε0.

The following proposition estimates to P(X (N)
n ∈ E) in terms of the µ

(N)
n :

Proposition 1.2. Under the above assumptions, for every 3 ≤ n ≤ kN + 1 < ∞ and

every Borel set E ⊂S
(N)
N , ε0 ≤ P(X(N)

n ∈E)

µ
(N)
n (E)

≤ ε
−1
0 . Similarly for Markov chains.

Proof. We fix a row N, and drop the superscripts (N). Define a probability mea-
sure on Sn by Pn(E) = P(Xn ∈ E), then for every 1 ≤ n < N, for every bounded
measurable ϕ : Sn+2→ R,
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ϕdPn+2 = E(ϕ(Xn+2)) = E

(
E
(
E
(
ϕ(Xn+2)

∣∣Xn+1,Xn
)∣∣∣∣Xn

))
= E

(
E
(
E
(
ϕ(Xn+2)

∣∣Xn+1
)∣∣Xn

))
(∵Markov property)

=
∫ ∫ ∫

ϕ(z)πn+1,n+2(y,dz)πn,n+1(x,dy)Pn(dx)

=
∫ ∫ ∫

ϕ(z) pn+1(y,z)pn(x,y)µn+2(dz)µn+1(dy)Pn(dx)

=
∫

ϕ(z)
[∫(∫

pn+1(y,z)pn(x,y)µn+1(dy)
)

Pn(dx)
]

µn+2(dz)

The quantity in the square brackets is bounded below by ε0 and bounded above by
ε
−1
0 . So the measures Pn+2,µn+2 are equivalent, and ε0 ≤ dPn+2

dµn+2
≤ ε

−1
0 . �

Notice that in checking the uniform ellipticity condition, we are free to modify
µ
(N)
n by a density bounded away form zero and infinity. Proposition 1.2 allows us to

assume without loss of continuity that µ
(N)
n (E) = P(X (N)

n ∈ E) for 3≤ n≤ kN .

Another important application of the ellipticity condition is the following canon-
ical definition of the distribution of X (N)

n+1 given that X (N)
n = x and X (N)

n+2 = z. Note

first that the ellipticity property implies that for all x ∈S
(N)
n ,z ∈S

(N)
n+2,

Z(N)
n (x,z) :=

∫
Sn+1

p(N)
n (x,y)p(N)

n+1(y,z)µ
(N)
n+1(dy) 6= 0.

The bridge distribution of X (N)
n+1 given that X (N)

n = x and X (N)
n+2 = z is defined to be

the measure on S
(N)
n+1 which assigns to a Borel set E ⊂S

(N)
n+1 the probability

P

(
E
∣∣∣∣X (N)

n = x
X (N)

n+2 = z

)
:=

1

Z(N)
n (x,z)

∫
E

p(N)
n (x,y)p(N)

n+1(y,z)µ
(N)
n+1(dy). (1.2.6)

The definition makes sense because Z(N)
n (x,z) 6= 0. The following lemma explains

why the formula (1.2.6) is reasonable:

Lemma 1.3. Let ψE(x,z) :=right hand side of (1.2.6), then

ψE(X
(N)
n ,X (N)

n+2) = P
(

X (N)
n+1 ∈ E

∣∣∣∣X (N)
n ,X (N)

n+2

)
P-almost everywhere.

We omit the proof, which is routine. The lemma does not “prove” (1.2.6): Condi-
tional probabilities are only defined almost everywhere, and are by their very nature
non–canonical. But (1.2.6) makes sense everywhere. It is a definition, not a theorem.
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1.3 Structure constants

Throughout this section we assume that f is an additive functional on a uniformly
elliptic Markov array X with row lengths kN + 1, state spaces S

(N)
n , and transition

probabilities as in the ellipticity condition: π
(N)
n,n+1(x,dy) = pn(x,y)µn(dy), where

µ
(N)
n (E) = P(X (N)

n ∈ E). See §1.2.3 why we may assume this on µ
(N)
n .

1.3.1 Hexagons, balance, and structure constants

A Level N hexagon at position 3≤ n≤ kN is a configuration

P(N)
n :=

(
xn−2;

xn−1
yn−1

;
xn
yn

;yn+1

)
where xi,yi ∈S

(N)
i . A hexagon is called admissible if

p(N)
n−2(xn−2,xn−1)p(N)

n−1(xn−1,xn)p(N)
n (xn,yn+1) 6= 0

p(N)
n−2(xn−2,yn−1)p(N)

n−1(yn−1,yn)p(N)
n (yn,yn+1) 6= 0

Admissible hexagons exist because of uniform ellipticity.
The space of level N admissible hexagons at position n will be denoted by

Hex(N,n).
One can put a natural probability measure on Hex(N,n) by taking {Y (N)

n } to be
an independent copy of {X (N)

n }, and looking at the distribution of(
X (N)

n−2;
X (N)

n−1

Y (N)
n−1

;
X (N)

n

Y (N)
n

;Y (N)
n+1

)
conditioned on

X (N)
n−2 = Y (N)

n−2

X (N)
n+1 = Y (N)

n+1.

Writing the measure explicitly is possible, but cumbersome. It is better to think of it

as the result of the following sampling procedure for
(

xn−2;
xn−1
yn−1

;
xn
yn

;yn+1

)
:

◦ (xn−2,xn−1) is sampled from the distribution of (X (N)
n−2,X

(N)
n−1);

◦ (yn,yn+1) is sampled from the distribution of (Y (N)
n ,Y (N)

n+1) (so it is independent of
(xn,xn+1));

◦ xn and yn−1 are conditionally independent given the previous choices, and are
sampled using the bridge distributions

P(xn ∈ E|xn−1,yn+1) = P

(
X (N)

n ∈ E
∣∣∣∣X (N)

n−1 = xn−1

X (N)
n+1 = yn+1

)
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P(yn−1 ∈ E|xn−2,yn) = P

(
Y (N)

n−1 ∈ E
∣∣∣∣Y (N)

n−2 = xn−2

Y (N)
n = yn

)
.

We call the resulting measure the hexagon measure on Hex(N,n).

The balance of a hexagon P(N)
n :=

(
xn−2;

xn−1
yn−1

;
xn
yn

;yn+1

)
is

Γ (P(N)
n ) := f (N)

n−2(xn−2,xn−1)+ f (N)
n−1(xn−1,xn)+ f (N)

n (xn,yn+1)

− f (N)
n−2(xn−2,yn−1)− f (N)

n−1(yn−1,yn)− f (N)
n (yn,yn+1)

(1.3.1)

Definition 1.1. The structure constants of f = { f (N)
n } are

u(N)
n := u(N)

n (f) := E
(
(Γ (P(N)

n )2)1/2(expectation on Hex(N,n))

d(N)
n (ξ ) := d(N)

n (ξ , f) := E(|eiξΓ (P(N)
n )−1|2)1/2(expectation on Hex(N,n))

UN :=UN(f) :=
kN

∑
n=3

(u(N)
n )2 , DN(ξ ) :=

kN

∑
n=3

d(N)
n (ξ )2.

(1.3.2)

If X is a Markov chain, we write un = u(N)
n , dn(ξ ) = d(N)

n (ξ ).
The significance of the structure constants will become clear in later chapters. At

this point we can only hint and say that the behavior of UN determines if Var(SN)→
∞, and the behavior of DN(ξ ) determines “how close” f is to an additive functional
whose values all belong to the lattice (2π/ξ )Z.

Lemma 1.4. Suppose f,g are two additive functionals of on a uniformly elliptic
Markov array X, then

(a) d(N)
n (ξ +η , f)2 ≤ 8(d(N)

n (ξ , f)2 +d(N)
n (η , f)2);

(b) d(N)
n (ξ , f+g)2 ≤ 8(d(N)

n (ξ , f)2 +d(N)
n (ξ ,g)2);

(c) d(N)
n (ξ , f)≤ |ξ |u(N)

n (f);
(d) u(N)

n (f+g)2 ≤ 2[u(N)
n (f)2 +u(N)

n (g)2].

Proof. For any z,w ∈ C such that |z|, |w| ≤ 2, we have 2

|zw+ z+w|2 ≤ 8(|z|2 + |w|2).

So if P is a level N hexagon P at position n, and ξP := ξΓ (P), ηP := ηΓ (P), then

|ei(ξP+ηP)−1|2 = |(eiξP −1)(eiηP −1)+(eiξP −1)+(eiηP −1)|2

≤ 8
(
|eiξP −1|2 + |eiηP −1|2

)
(1.3.3)

2 (zw+ z+w)2 = z2w2 + z2 +w2 +2(z2w+ zw2 + zw), and |z2w2| ≤ 4|zw| ≤ 2|z|2 +2|w|2, |z2w| ≤
2|z|2, 2|zw| ≤ |z|2 + |w|2, |zw2| ≤ 2|w|2.
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Part (a) follows by integrating over all P ∈ Hex(n,N). Part (b) has a similar proof
which we omit. Part (c) is follows from the inequality |eiθ − 1|2 = 4sin2 θ

2 ≤ |θ |
2.

Part (d) follows from Minkowski’s inequality and |ab| ≤ 1
2 (a

2 +b2). �

Example 1.9 (Gradients). Suppose fn(x,y) = an+1(y)− an(x)+ cn for all n, then
the balance of each hexagon is zero and un,dn(ξ ) are all zero. For a converse state-
ment, see §2.2.1. Suppose fn(x,y) = an+1(y)−an(x)+ cn mod 2π

ξ
Z for all n. Then

eiξΓ (P) = 1 for all hexagons P, and dn(ξ ) are all zero. For a converse statement, see
§3.3.1.

Example 1.10 (Sums of independent random variables). Let SN = X1 + · · ·+XN .
where Xi are independent real valued random variables with non-zero variance. Let
us see what un and dn(ξ ) measure in this case.

Proposition 1.3. u2
n = 2

(
Var(Xn−1)+Var(Xn)

)
,∑N

n=3 u2
n � Var(SN).

Proof. Let {Yn} be an independent copy of {Xn}, and let X∗i := Xi−Yi (the sym-
metrization of Xi). A simple calculation shows that the balance of a position n
hexagon is equal in distribution to X∗n−1 +X∗n . Clearly E[X∗i ] = 0 and E[(X∗i )2] =
2Var(Xi). Consequently,

u2
n(ξ ) = E[(X∗n−1)

2 +(X∗n )
2] = 2Var(Xn−1)+2Var(Xn).

Summing over n we obtain ∑
N
n=3 u2

n � Var(SN). �

Next we relate d2
n(ξ ) to the distance of Xi from a coset of 2π

ξ
Z. The distance of a

random variable X from a coset 2π

ξ
Z is measured by the following quantity:

D(X ,ξ ) := min
θ∈R

E
[

dist2
(

X ,θ +
2π

ξ
Z
)]1/2

.

The minimum exists because the expectation is a periodic continuous function of θ .

Proposition 1.4. For every ξ 6= 0 dn(ξ ) = 0 iff Xi ∈ coset of 2π

ξ
Z a.s. (i = n−1,n),

and there exists C(ξ )> 1 such that if dn(ξ ) 6= 0 then

C(ξ )−1 ≤ d2
n(ξ )

D(Xn−1,ξ )2 +D(Xn,ξ )2 ≤C(ξ ).

Proof. Choose θi ∈ [0, 2π

ξ
] s.t. D(Xi,ξ ) = E[dist2(Xi,θi +

2π

ξ
Z)]. There is no loss of

generality in assuming that θi = 0, because the structure constants of fi(x) = x and
gi(x) = x−θi are the same. Henceforth we assume that

D(Xi,ξ ) = E[dist2(Xi,
2π

ξ
Z)]. (1.3.4)
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As in the proof of the previous proposition, the balance of a position n hexagon
is equal in distribution to X∗n−1+X∗n , where X∗i := Xi−Yi and {Yi} is an independent
copy of {Xi}. So d2

n(ξ ) = E(|ei(X∗n−1+X∗n )−1|2).
We need the following elementary facts:

|ei(x+y)−1|2 = 4sin2 x+y
2 = 4(sin x

2 cos y
2 + sin y

2 cos x
2 )

2 (x,y ∈ R) (1.3.5)
4

π2 dist2(t,πZ)≤ sin2 t ≤ dist2(t,πZ) (t ∈ R) (1.3.6)

P[X∗i ∈ [0, π

2ξ
]+ 2π

ξ
Z]≥ 1

4
(i≥ 1) (1.3.7)

(1.3.5) is trivial; (1.3.6) is because of the inequality 2t/π ≤ sin t ≤ t on [0, π

2 ],
which the reader may verify by drawing the graphs. To see (1.3.7) note that
R =

(
[0, π

2ξ
]+ π

ξ
Z
)
]
(
[0, π

2ξ
]+ π

2ξ
+ π

ξ
Z
)
, and therefore there exists k = 0,1

such that P[Xi ∈ [0, π

2ξ
] + kπ

2ξ
+ π

ξ
Z] ≥ 1

2 . Since Yi is an independent copy of Xi,

P[Xi,Yi ∈ [0, π

2ξ
]+ kπ

2ξ
+ π

ξ
Z]≥ 1

4 . This event is a subset of [0≤ Xi−Yi ≤ π

2ξ
].

Returning to the identity d2
n(ξ ) = E(|ei(X∗n−1+X∗n )−1|2), we see that by (1.3.5)

d2
n(ξ ) = E(|eiξ (X∗n−1+X∗n )−1|2)

= 4E
(

sin2 ξ X∗n−1
2 cos2 ξ X∗n

2 + sin2 ξ X∗n
2 cos2 ξ X∗n−1

2 + 1
2 sin(ξ X∗n−1)sin(ξ X∗n )

)
= 4E

(
sin2 ξ X∗n−1

2

)
E
(

cos2 ξ X∗n
2

)
+4E

(
sin2 ξ X∗n

2

)
E
(

cos2 ξ X∗n−1
2

)
(1.3.8)

where we used the symmetry of the distribution of X∗i to see that E[sin(ξ X∗i )] = 0.

By (1.3.7), E
(

cos2 ξ X∗i
2

)
≥ cos2(π

4 )P[X
∗
i ∈ [0, π

2ξ
]+ 2π

ξ
Z] ≥ 1

8 , and therefore there

exists Cn ∈ [ 1
8 ,4] such that

d2
n(ξ ) =Cn

[
E
(

sin2 ξ X∗n−1
2

)
+E

(
sin2 ξ X∗n

2

)]
. (1.3.9)

It remains to bound E
(

sin2 ξ X∗n−1
2

)
in terms of D(Xi,ξ ).

Recall that X∗i = Xi−Yi where Yi is an independent copy of Xi, and use (1.3.5)
and independence to find that

E
(

sin2 ξ X∗i
2

)
= E

[(
sin

ξ Xi

2
cos

ξYi

2
− sin

ξYi

2
cos

ξ Xi

2

)2
]

= 2E(sin2 ξ Xi
2 )E(cos2 ξ Xi

2 )− 1
2
E(sin(ξ Xi))

2 ≤ 2E(sin2 ξ Xi
2 )

≤ 2E(dist2( ξ Xi
2 ,πZ))≡ ξ 2

2 E(dist2(Xi,
2π

ξ
Z)) =

ξ 2

2
D(Xi,ξ ), by (1.3.4),(1.3.6).

Next by (1.3.6) and the definition of D(Xi,ξ ),
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E
(

sin2 ξ X∗i
2

)
≥ 4

π2E
(

dist2( ξ X∗i
2 ,πZ)

)
=

ξ 2

π2E
(

dist2(Xi−Yi,
2π

ξ
Z)
)

=
ξ 2

π2EYi

[
EXi

(
dist2(Xi,Yi +

2π

ξ
Z)
)]
≥ ξ 2

π2EYi [D(Xi,ξ )] =
ξ 2

π2D(Xi,ξ ).

The proposition follows from (1.3.9). �

1.3.2 The ladder process

The materical of this section is only needed for the proofs of the gradient lemma and
the reduction lemma in chapters 2 and 3.

Suppose X= {X (N)
i } is a uniformly elliptic Markov array with row lengths kN +

1. We would like to define a new Markov array L, called the Ladder process, with
the following structure (figure 1.3.2). Each row has entries

L(N)
n = (Z(N)

n−2,Y
(N)
n−1,X

(N)
n ) (3≤ n≤ kN +1),

so that (a) {Z(N)
i } is an independent copy of X, (b) Y (N)

n−1 ∈ S
(N)
n−1 are independent

given {X (N)
i },{Z

(N)
i }, and (c)

P
(

Y (N)
n−1 ∈ E

∣∣∣∣{X (N)
i }= {xi},{Z(N)

i }= {zi}
)
= P

(
X (N)

n−1 ∈ E
∣∣∣∣X (N)

n−2 = zn−2

X (N)
n = xn

)
,

see the discussion of bridge probabilities above.

Lemma 1.5. L exists, is Markov, and is uniformly elliptic with ellipticity constant
ε3

0 , where ε0 is the ellipticity constant of X. For every N,

(1) {X (N)
n }kN+1

n=3 , {Z(N)
n }kN−1

n=1 are independent, and distributed like the correspond-
ing pieces of the N-th rows of X.

(2) Y (N)
n are conditionally independent given {X (N)

i }, {Z
(N)
i }.

(3) P(N)
n :=

(
Z(N)

n−2,
Z(N)

n−1

Y (N)
n−1

Y (N)
n

X (N)
n

,X (N)
n+1

)
is distributed like the level N random hexagon

at position n.

Proof. Let S(N)
n denote the state spaces of X, µ

(N)
n (E) := P(X (N)

n ∈ E), and let

P

(
dyn

∣∣∣∣X (N)
n−1 = zn−1

X (N)
n+1 = xn+1

)
denote the bridge measure on S

(N)
n with boundary condi-

tions X (N)
n−1 = zn−1,X

(N)
n+1 = xn+1. Define the Markov array L with

◦ Rows L(N)
n = (zn−2,yn−1,xn) (3≤ n≤ kN +1, N ≥ 1)

◦ State spaces: S(N)
n :=S

(N)
n−2×S

(N)
n−1×S

(N)
n (3≤ n≤ kN +1).
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Fig. 1.1 The ladder process. {Z(N)
i }, {X

(N)
i } are independent copies. Y (N)

n are conditionally inde-
pendent given {X (N)

i },{Z
(N)
i }.

◦ Initial distribution: π(N)(dz1,dy2,dx3)=
∫

S
(N)
1 ×S

(N)
3

µ
(N)
1 (dz)µ(N)

3 (dx)P

(
dy
∣∣∣∣X (N)

1 = z
X (N)

3 = x

)
◦ Transition probabilities π

(N)
n ((zn−2,yn−1,xn),En−1×En×En+1) =

=
∫

En−1×En×En+1

p(N)
n−2(zn−2,zn−1)p(N)

n (xn,xn+1)P

(
dyn

∣∣∣∣X (N)
n−1 = zn−1

X (N)
n+1 = xn+1

)
.

(We evolve zn−2→ zn−1 and xn→ xn+1 independently according to π
(N)
n−2(zn−2,dz),

π
(N)
n (xn,dx), and then sample yn using the relevant bridge distribution.)

It is routine to check that L has the structure described at the beginning of the
section, and that it satisfies the properties listed in the lemma. �

1.3.3 A weakening of part (c) in the ellipticity condition

Fix some natural number γ . It is natural to consider the following weakening of part
(c) in the ellipticity condition: If n < kN − γ , then for all x ∈S

(N)
n ,z ∈S

(N)
n+γ+1, the

iterated integral∫
S

(N)
n+1

· · ·
∫

S
(N)
n+γ

p(N)
n (x,y1)

γ

∏
i=1

p(N)
n+i(yi,yi+1)p(N)

n+γ(yn+γ ,z)µn+1(dy1) · · ·µn+γ(dyγ)
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is bigger than ε0. The ellipticity condition corresponds to the case γ = 1.
The results of this work could in principle be reproduced under this weaker as-

sumption. To do this, one needs to replace the space of hexagons by the space of

(2γ + 4)-gons
(

xn−γ ;
xn−γ+1
yn−γ+1

· · · xn
yn

;yn+1

)
with its associated structure constants,

and its associated γ-ladder process L(N)
n = (Z(N)

n−γ−1,Y
(N)
n−γ , . . . ,Y

(N)
n−1,X

(N)
n ).

Since no new ideas are needed, and since our notation is already heavy enough
as it is, we will only treat the case γ = 1 in this work.

1.4 Notes and references

For a comprehensive treatment of inhomogeneous Markov chains on general state
spaces, see Doob’s book [44]. The uniform ellipticity condition is one of a plethora
of contraction conditions for Markov operators, which were developed over the
years as sufficient conditions for results such as Propositions 1.1 and 1.2. We men-
tion in particular the works of Markov [89], Doeblin [39, 40], Hajnal [61], Doob
[44], and Dobrushin [38] (see also Seneta [124] and Sethuraman & Varadhan [125]).
For an encyclopedic treatment of mixing conditions for general stochastic processes,
see Bradley [16].

The contraction coefficient mentioned in section 1.2.2 is also called an “ergod-
icity coefficient,” and it plays a major role in Dobrushin’s proof of the CLT for
inhomogeneous Markov chains [38]. Our treatment of contraction coefficients fol-
lows closely [125]. In particular, Lemma 1.1 and the proof of part (f) of that lemma
is taken from there. Proposition 1.2 is similar in spirit to Doeblin’s estimates for the
stationary probability vector of a Markov chain satisfying Doeblin’s condition in
terms of the stochastic matrix of the chain [39, 40]. For a discussion of the “change
of measure” construction see chapter 6. The quantities D(X ,ξ ) were introduced by
Mukhin for the purpose of studying local limit theorem for sums of independent
random variables. See [95] and references therein.



Chapter 2
Variance growth, center-tightness, and the
central limit theorem

In this chapter we analyze the variance of SN = f1(X1,X2)+ · · ·+ fN(XN ,XN+1) as
N→∞, characterize the additive functionals for which Var(SN) 6→∞, and show that
if VN → ∞ then the central limit theorem holds.

2.1 Main results

Let X be a Markov array with row lengths kN +1, let f an additive functional on X,
and define SN = ∑

kN
i=1 f (N)

i (X (N)
i ,X (N)

i+1 ).

Definition 2.1. f is called center-tight if there are constants mN s.t. for every ε > 0,
there exists M s.t. P[|SN−mN |> M]< ε for all N.

We are interested in center-tightness, because it is an obstruction to the local limit
theorem. We shall see below (Theorem 2.2) that f is center-tight iff Var(SN) 6→ ∞.

Obviously, in such a situation the right hand side in P[SN− zN ∈ (a,b)]
?∼ e−z2/2|a−b|√

2πVN
can be made bigger than one by choosing |a−b| sufficiently big, and the asymptotic
relation fails. One could hope for a different universal asymptotic behavior, but as
the following class of examples shows, this is hopeless:

Example 2.1. (Non-universality in the LLT for center-tight functionals): Let
X= {Xn}n≥1 be a sequence of identically distributed independent random variables
with uniform distribution on [0,1]. Choose an arbitrary sequence of random vari-
ables {Zn}n≥1 taking values in [0,1]. By the isomorphism theorem for Lebesgue
spaces, there are measurable functions gn : [0,1]→ [0,1] such that

g0 ≡ 0 , gn(Xk) = Zk in distribution.

Let f = { fn}n≥1 with fn(Xn,Xn+1) := gn+1(Xn+1)− gn(Xn). Then SN = ZN+1 in
distribution, whence P(SN ∈ (a,b)) = P(ZN+1 ∈ (a,b)) is completely arbitrary.

35
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Every Markov array admits center-tight additive functionals. Here are three con-
structions which lead to such examples (in the uniformly bounded, uniformly elliptic
case, all center-tight additive functional arise this way, see Theorem 2.2 below):

Example 2.2. (Gradients): In the case of Markov chains, gradients are additive
functionals of the form

fn(x,y) := an+1(y)−an(x).

where an : Sn→ R is measurable, and a= {an} is a.s. uniformly bounded.
Gradients on Markov arrays are defined similarly by the formula f (N)

n (x,y) :=
a(N)

n+1(y)− a(N)
n (x). where a(N)

n : S(N)
n → R is measurable, and a = {a(N)

n } is a.s.
uniformly bounded. We write f = ∇a, and say that f is the gradient of a and a is the
potential of f.1

The gradient of an a.s. uniformly bounded potential is center-tight because if
|a| ≤ K, then |SN |= |a(N)

kN+1(XN+1)−a(N)
1 (X1)| ≤ 2K. �

Example 2.3. (Summable variance): We say that an additive functional f on a
Markov chain X has summable variance if it is a.s. uniformly bounded, and

V∞ :=
∞

∑
n=1

Var[ fn(Xn,Xn+1)]< ∞.

The definition of summable variance for additive functionals on arrays is similar,

except that now V∞ is defined by V∞ := sup
N

kN

∑
n=1

Var[ f (N)
n (X (N)

n ,X (N)
n+1)]< ∞.

If X is uniformly elliptic and |f| ≤K a.s., then summable variance implies center-
tightness. This follows from Chebyshev’s inequality and the following lemma:

Lemma 2.1. Let f be uniformly bounded functional of the uniformly elliptic Markov
array. Then VN ≤ V N

(
1+ 2Cmix

1−θ

)
where V N := ∑

kN
n=1 Var( f (N)

n (X (N)
n ,X (N)

n+1)), and
Cmix and 0 < θ < 1 are as in Prop. 1.1.

Proof. We give the proof for Markov chains (the proof for arrays is identical):

Var(SN) =
N

∑
n=1

Var( fn)+2
N−1

∑
n=1

N

∑
m=n+1

Cov( fn, fm)

≤V N +2Cmix

N−1

∑
n=1

N

∑
m=n+1

θ
m−n
√

Var( fn)Var( fm), with Cmix,θ as in (1.2.5)

≤V N +2Cmix

N−1

∑
j=1

θ
j

N− j

∑
n=1

√
Var( fn)Var( fn+ j)<V N +

2CmixV N

1−θ

by the Cauchy-Schwarz inequality. �

1 In the ergodic theoretic literature, f is called a coboundary and a is called a transfer function.
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Example 2.4. Example 4: Suppose X is uniformly elliptic. Then every additive
functional of the form f = g+ h where g is a gradient and h has summable vari-
ance is center-tight.

We will now state the main results of this chapter. We assume throughout that

(E) X = {X (N)
n } is a uniformly elliptic inhomogeneous Markov array with row

lengths kN +1, state spaces S(N)
n , transition probabilities π

(N)
n,n+1, initial distribu-

tions π(N), and ellipticity constant ε0.

(B) f = { f (N)
n } is an a.s. uniformly bounded additive functional on X, satisfying

the bound |f| ≤ K almost surely.

Let VN := Var(SN), and UN :=
kN

∑
n=3

(u(N)
n )2 where u(N)

n are as in (1.3.2).

Theorem 2.1. There are constants C1,C2 > 0 which only depend on ε0,K s.t. for ev-
ery uniformly elliptic array with ellipticity constant ε0 and every additive functional
f on X s.t. |f| ≤ K a.s.,

C−1
1 UN−C2 ≤ Var(SN)≤C1UN +C2 for all N.

Corollary 2.1. Suppose X is a Markov chain. Either Var(SN)→ ∞ or Var(SN) =

O(1). Moreover, Var(SN)�
N
∑

n=3
u2

n where un are the structure constants from (1.3.2).

(The corollary is clearly false for arrays.)

Theorem 2.2. Var(SN) is bounded iff f is center-tight iff f = ∇a+ h where a is a
uniformly bounded potential, and h has summable variance.

Corollary 2.2. f is center-tight iff sup
N

UN < ∞.

Theorem 2.1 is a statement on the localization of cancellations. In general, if the
variance of an additive functional of a stochastic process does not tend to infinity,
then there must be some strong cancellations in SN . Apriori, these cancellations
may involve summands far apart. Theorem 2.1 says that strong cancellations must
already occur among three consecutive terms f (N)

n−2 + f (N)
n−1 + f (N)

n : This is what UN
measures.

If f depends only on one variable fn(x,y) = fn(x), and we have one step elliptic-
ity condition pN(x,y)≥ ε0 one can define the ladder process using quadrilaterals

QN
n =

(
XN

n−1
XN

n
Y N

n
Y N

n+1

)
instead of hexagons. As a result un is replaced by

(u(N)
n )2 �

∫∫
| f (N)

n (y1)− f (N)
n (y2)|2dµn(y1)dµn(y2) = 2Var( fn). (2.1.1)
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Repeating the arguments from the proof of Theorem 2.1 we obtain that there are
constants Ĉ1,Ĉ2 such that

Ĉ−1
1 ∑

n
Var( fn(Xn))−Ĉ2 ≤VN ≤ Ĉ1

(
∑
n

Var( fn(Xn))

)
+Ĉ2.

This estimate has been previously obtained in [38, 125] under weaker ellipticity
assumptions. A similar estimate does not hold in case f (N)

n depends on two variables.
Indeed if f (N)

n is a gradient, then VN is bounded while ∑
N
n=1 Var( fn(Xn,Xn+1)) can

be arbitrarily large.

We end the chapter with the reproduction of the proofs of the following two
known results.

Theorem 2.3 (Dobrushin). Let f be an a.s. uniformly bounded additive functional
on a uniformly elliptic Markov array X. If Var(SN)→ ∞, then for every interval,

P

[
SN−E(SN)√

Var(SN)
∈ (a,b)

]
−−−→
N→∞

1√
2π

∫ b

a
e−t2/2dt.

The proof we give, which is due to Sethuraman & Varadhan, is based on McLeish’s
martingale central limit theorem. For the convenience of the reader we prove the
martingale CLT in section 2.2.4.

The next result reduces in the case of identically distributed independent random
variables to Khintchin-Kolmogorov’s Two-Series Theorem. The result is stated for
Markov chains, and not Markov arrays, because it relates to the properties of SN as
a stochastic process.

Theorem 2.4. Let f = { fn} be an a.e. uniformly bounded additive functional of a

uniformly elliptic inhomogeneous Markov chain X = {Xn}. If
∞

∑
n=1

Var[ fn(Xn,Xn+1)]

is finite, then
∞

∑
n=1

fn(Xn,Xn+1)−E( fn(Xn,Xn+1)) converges almost surely.

2.2 Proofs

2.2.1 The Gradient Lemma

Lemma 2.2 (Gradient Lemma). Suppose f is an additive functional on a uniformly
elliptic Markov array X, and assume |f| ≤ K almost surely. Then we can write

f = f̃+∇a+ c,

where f̃,a,c are additive functionals on X with the following properties:
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(a) |a| ≤ 2K and a(N)
n (x) are measurable functions on S

(N)
n .

(b) |c| ≤ K and c(N)
n are constant functions.

(c) |̃f| ≤ 6K and f̃ (N)
n (x,y) satisfy ‖ f̃ (N)

n ‖2 ≤ u(N)
n for all 3≤ n≤ kN +1.

If X is a Markov chain, we can choose f (N)
n = fn, a(N)

n = an, c(N)
n = cn.

Proof for Doeblin chains: Before proving the lemma in full generality, we consider
the important special case of Doeblin chains (Example 1.7), for which the proof is
particularly simple.

Recall that a Doeblin chain is a Markov chain X with finite state spaces Sn
of uniformly bounded cardinality, and whose associated transition matrices πn

xy :=
πn,n+1(x,{y}) satisfy the following properties:

(E1) ∃ε ′0 > 0 s.t. for all n≥ 1 and (x,y) ∈Sn×Sn+1, either πn
xy = 0 or πn

xy > ε ′0;
(E2) for all n, for all (x,z) ∈Sn×Sn+2, ∃y ∈Sn+1 such that πn

xyπn+1
yz > 0.

We saw in example 1.7 that X is uniformly elliptic.
We re-label the states in Sn so that Sn = {1, . . . ,dn} where dn ≤ d, and in such

a way that πn
11 > 0 for all n. Assumption (E2) guarantees that for every n ≥ 3 and

every x ∈Sn there exists a state ξn−1(x) ∈Sn−1 s.t. π
n−2
1,ξn−1(x)

π
n−1
ξn−1(x),x

> 0. Let

a0 ≡ 0, a1 ≡ 0, and an(x) := fn−2(1,ξn−1(x))+ fn−1(ξn−1(x),x) for n≥ 3
c0 := 0, c1 := 0, and cn := fn−2(1,1) for n≥ 3

f̃ := f−∇a− c.

We claim that f̃,a,c satisfy our requirements.
To explain why and to motivate the construction, consider the special case un = 0.

In this ‖̃f‖2 = 0 and the lemma reduces to constructing functions bn : Sn → R s.t.
f = ∇b+ c. We first try to solve f = ∇b with c= 0. Any solution must satisfy

fn(x,y) = bn+1(y)−bn(x). (2.2.1)

Necessarily, bn(y) = b2(x2)+ f2(x2,x3)+ · · ·+ fn−2(xn−2,xn−1)+ fn−1(xn−1,y) for
all paths (x2, . . . ,xn−1,y) with positive probability. The path x2 = · · · = xn−2 = 1,
xn−1 = ξn−1(y) suggests to define

b2 ≡ 0 , bn(y) :=
n−3

∑
k=2

fk(1,1)+ fn−2(1,ξn−1(y))+ fn−1(ξn−1(y),y)

This works: for every n≥ 3, if πn
xy > 0 then

bn+1(y)−bn(x) = [ fn−2(1,1)+ fn−1(1,ξn(y))+ fn(ξn(y),y)

− fn−2(1,ξn−1(x))− fn−1(ξn−1(x),x)− fn(x,y)]+ fn(x,y)

= Γn

(
1

1
ξn−1(x)

ξn(y)
x y

)
+ fn(x,y)

!
= fn(x,y). (2.2.2)
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Here is the justification of !
=. In the setup we consider, the natural measure on the

level n hexagons is atomic, and every admissible hexagon has positive mass. So
un = 0 implies that Γn(P) = 0 for every admissible hexagon, and !

= follows.
We proved (2.2.1), but we are not yet done because b is not necessarily uniformly

bounded. To fix this decompose bn(y) = an(y)+∑
n−3
k=2 fk(1,1). Then |a| ≤ 2K, and

a direct calculation shows that fn(x,y) = an+1(y)−an(x)+ fn−2(1,1), whence f =
∇a+ c as we claimed.

This proves the lemma in case un = 0. The general case un ≥ 0 is done in exactly
the same way, except that now the identity (2.2.2) gives for f̃ := f−∇a− c

f̃n(x,y) = fn(x,y)− (an+1(y)−an(x))− cn =−Γn

(
1

1
ξn−1(x)

ξn(y)
x y

)
.

If |f| ≤ K, then |Γn| ≤ 6K, whence |̃f| ≤ 6K. Next,

‖ f̃n‖2
2 ≤ E

[
Γn

(
1

1
ξn−1(Xn)

ξn(Xn+1)
Xn

Xn+1

)2
]
.

In the scenario we consider the space of admissible hexagons has a finite number of
elements, and each has probability uniformly bounded below. So there is a global
constant C which only depends on sup |Sn| and on ε ′0 in (E2) such that

E

[
Γn

(
1

1
ξn−1(Xn)

ξn(Xn+1)
Xn

Xn+1

)2
]
≤CE[Γ (P)2],

where the last expectation is over all position n hexagons. So ‖̃f‖2 ≤
√

C ·u2
n.

(The gradient lemma says that we can choose a and c so that C = 1. The argument
we gave does not quite give this, but the value of the constant is not important for
the applications we have in mind.)

The proof of the gradient lemma in the general case: Recall the ladder process
L= {L(N)

n }, L(N)
n = (Z(N)

n−2,Y
(N)
n−1,X

(N)
n ) from §1.3.2. Since the profusion of the super-

scripts (N) sometimes impedes legibility, we will omit them on the right hand side
of identities. Define

F(N)
n (L(N)

n ) := Fn(Ln) = fn−2(Zn−2,Yn−1)+ fn−1(Yn−1,Xn)

Γ
(N)

n (L(N)
n ,L(N)

n+1) := Γn(Ln,Ln+1) = Γ

(
Zn−2

Zn−1
Yn−1

Yn
Xn

Xn+1

)
, see (1.3.1).

Then we have the following identity:

f (N)
n (Xn,Xn+1) = Fn+1(Ln+1)−Fn(Ln)+ fn−2(Zn−2,Zn−1)−Γn(Ln,Ln+1). (2.2.3)

Next define a(N)
n : S(N)

n → R and c(N)
n ∈ R by
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a(N)
n (ξ ) := E

(
E(F(N)

n (Ln)|Xn = ξ
))

(3≤ n≤ kN) (2.2.4)

c(N)
n := E[ f (N)

n−2(Zn−2,Zn−1)]. (2.2.5)

We will show that the lemma holds with a,c and f̃ := f−∇a− c.
Since |f| ≤ K by assumption, it is clear that |a| ≤ 2K and |c| ≤ K. It remains to

bound f̃ in L∞ and L2.

CLAIM: For every (ξ ,η) ∈Sn×Sn+1,

c(N)
n = E

[
E
(

f (N)
n−2(Zn−2,Zn−1)

∣∣∣∣Xn+1 = η

Xn = ξ

)]
,

a(N)
n (ξ ) = E

(
F(N)

n (Ln)

∣∣∣∣Xn+1 = η

Xn = ξ

)
a(N)

n+1(η) = E
(

F(N)
n+1(Ln+1)

∣∣∣∣Xn+1 = η

Xn = ξ

)

Proof of the claim. The proof is based on Lemma 1.5. The first identity is because
{Zn} is independent from {Xn}. The second identity is because conditioned on Xn,
Ln is independent of Xn+1. The third identity is because conditioned on Xn+1, Ln+1
is independent of Xn.

With the claim proved, we can proceed to bound f̃. Taking the conditional expec-
tion E( · |X (N)

n+1 = η , X (N)
n = ξ ) on both sides of (2.2.3), we find that

f (N)
n (ξ ,η) = an+1(η)−an(ξ )+ cn−E

(
Γn(Ln,Ln+1)

∣∣∣∣Xn+1 = η

Xn = ξ

)
,

whence f̃n(ξ ,η) :=−E
(

Γn(Ln,Ln+1)

∣∣∣∣Xn+1 = η

Xn = ξ

)
.

Clearly |̃f| ≤ 6K. To bound the L2 norm we recall that the marginal distribution
of {Xn} with respect to the distribution of the ladder process is precisely the distri-
bution of our original array. Therefore

‖ f̃ (N)
n ‖2

2≡E
[

f̃ (N)
n (Xn,Xn+1)

2
]
=E

[
E
(

Γn(Ln,Ln+1)

∣∣∣∣Xn+1Xn

)2
]
≤E

[
E
(
Γn(Ln,Ln+1)

2)]
because conditional expectations are L2-contractions.

Next we use Lemma 1.5(3) to see that Γ
(N)

n (Ln,Ln+1) is equal in distribution to
the balance of a random level N hexagon at position n, whence E(Γ 2

n ) = (u(N)
n )2.�

The gradient lemma allows to split an additive functional into gradient part and
the part with the small variance. The next lemma allows to control the covariances
between the two parts.
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Lemma 2.3. Suppose f is uniformly bounded functional of the uniformly elliptic
Markov array. There is a constant C s.t. if and h(N)

`N
are uniformly bounded measur-

able functions on S
(N)
`N
×S

(N)
`N+1

, and ess sup | f (N)
n | ≤ K, ess sup |h(N)

`N
| ≤ L, then

Cov
(

SN ,h
(N)
`N

(X (N)
`N

,X (N)
`N+1

)
)
≤CKL.

Proof. This follows from the decomposition Cov(SN ,h
(N)
`N

) =
kN

∑
n=1

Cov( f (N)
n ,h(N)

`N
)

and the exponential mixing of X (Proposition 1.1). �

2.2.2 The estimate for Var(SN)

We prove Theorem 2.1. Let f = { f (N)
n } be an a.s. uniformly bounded additive func-

tional on a uniformly elliptic Markov array X = {X (N)
n } with row lengths kN + 1.

Our aim is to bound Var(SN) above and below by affine functions of the structure
constants UN = ∑

kN
n=3(u

(N)
n )2. Assume |f| ≤ K almost surely.

Throughout the proof, we fix N and drop the suprescripts (N). So X (N)
n = Xn,

f (N)
n = fn, u(N)

n = un etc.

Lower bound for the variance. Assume first that kN is divisible by 3: kN = 3M.

Split UN = ∑
j=0,1,2

(
M
∑

k=1
u2

3k+ j

)
. We will work in the case when

M

∑
k=1

u2
3k ≥max

{
M

∑
k=1

u2
3k+1,

M

∑
k=1

u2
3k+2

}
.

The other two cases are handled in the same way.
Let FN be the σ -algebra generated by X3k for 1≤ k ≤M. Let

Fk := f3k−2 + f3k−1 + f3k

where f j = f j(X j,X j+1). Conditioned on FN , Fk are independent. Therefore the
variance of the sum of the N-th row satisfies

Var(SN |FN) =
M

∑
k=1

Var(Fk|FN) =
M

∑
k=1

Var(Fk|X3k−3,X3k).

It is a general fact that Var(S3N)≥E(Var(S3N |FN)). So taking the expectation gives

Var(SN)≥
M

∑
k=1
E
(

Var(Fk|X3k−3,X3k)

)
.
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To estimate E
(
Var(Fk|X3k−3,X3k)

)
we recall the general fact that for every ran-

dom variable W , Var(W ) = 1
2E[(W

′ −W ′′)2] where W ′,W ′′ are two independent
copies of W . In particular,

Var(Fk|X3k−3,X3k) =
1
2
E
[

Γ

(
X3k−3

X3k−2
Y3k−2

X3k−1
Y3k−1

Y3k

)2 ∣∣∣∣X3k−3 = Y3k−3
X3k = Y3k

]
,

whence E
(
Var(Fk|X3k−3,X3k)

)
≡ E(Γ (P)2) ≡ (u(N)

3k−1)
2 where Γ (P) is the balance

of a random hexagon P ∈ Hex(N,3k−1). In summary

Var(SN)≥
1
2

M

∑
k=1

(u(N)
3k−1)

2 ≥ 1
6

UN .

This gives us the lower bound we seek for SN when the length of the N-th row is
divisible by 3. To bound the variance from below when kN ≡ 1 mod 3, we let

S′ :=
kN−1

∑
k=1

fk(Xk,Xk+1) and V ′ := Var(S′)

As before V ′ ≥ 1
6 ∑

kN−1
k=3 (u(N)

k )2, whence V ′ ≥ 1
6UN−36K2.

Let f ∗j := f j−E( f j). By (1.2.5), there are mixing constants θ ∈ (0,1) and Cmix >
0 which only depend on the ellipticity constant of X so that

Var(SN) =V ′+Var( fkN )+2Cov( fkN ,S
′)

≥ 1
6

UN−36K2−2Cmix

kN−1

∑
j=1
‖ f ∗kN
‖2‖ f ∗j ‖2θ

kN−k

≥ 1
6

UN−36K2− 4CmixK
1−θ

.

Similarly, Var(S3N+2)≥ 1
6U3N+2− const.

In all cases, Var(SN) is bounded below by an affine function of UN , whose coef-
ficients only depend on the ellipticity constant ε0 and the bound K for |f|.

Upper bound for the variance. Write f = f̃+∇a+ c as in the gradient lemma. In
particular, Var( f̃n(Xn−1,Xn))≤ u2

n. Then

Var

(
kN

∑
n=1

fn

)
= Var

(
kN

∑
n=1

f̃n

)
+Var(aN+1−a1)+2Cov

(
kN

∑
n=1

f̃n,aN+1−a1

)
.

The first term is smaller than C1UN +C′2 due to gradient Lemma and Lemma 2.1 the
second term is smaller than C′′2 due to Lemma 2.3. �
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2.2.3 Characterization of center-tight additive functionals

We prove theorem 2.2. Suppose f is an a.s. uniformly bounded functional on a uni-
formly elliptic array X. We will show that the following conditions are equivalent:

(a) Var(SN) = O(1);
(b) f is the sum of a gradient and an additive functional with summable variance;
(c) f is center tight.

(a)⇒(b): Write using the reduction lemma f = ∇a+(̃f+c), where a(N)
n (x) are mea-

surable functions on S
(N)
n with uniformly bounded L∞ norm, c(N)

n are uniformly

bounded constants, and ‖̃fn‖2 ≤ u(N)
n . By Theorem 2.1, sup

N

kN

∑
n=3

(u(N)
n )2 < ∞, so f̃+ c

has summable variance, proving (b).

(b)⇒(c): We already saw that gradients and functionals with summable variance are
center-tight. Since the sum of center-tight functionals is center-tight, (c) is proved.

(c)⇒(a): Assume by way of contradiction that ∃Ni ↑ ∞ such that VNi = Var(SNi)→

∞. By Dobrushin’s CLT (see [38], [125] and §2.2.5),
SNi −E(SNi)√

VNi

converges in dis-

tribution to a standard Gaussian distribution. But center-tightness implies that there
are constants µ ′N s.t. SN−µ ′N√

VN
converges in distribution to the deterministic random

variable W ≡ 0, and both statements cannot be true simultaneously. �

2.2.4 McLeish’s martingale central limit theorem

A martingale difference array with row lengths kN is a (possibly non-Markov)
array ∆ of random variables

∆ = {∆ (N)
j : N ≥ 1,1≤ j ≤ kN}

together with an array of σ -algebras {F (N)
j : N ≥ 1,1≤ j ≤ kN}, so that:

(1) For each N, ∆
(N)
1 , . . . ,∆

(N)
kN

are random variables on the same probability space
(SN ,FN ,µN).

(2) F
(N)
1 ⊂F

(N)
2 ⊂F

(N)
3 ⊂ ·· · ⊂F

(N)
kN

are sub σ -algebras of FN .

(3) ∆
(N)
j is F

(N)
j –measurable, E(|∆ (N)

j |)< ∞, and E(∆ (N)
j+1|F

(N)
j ) = 0.

We say that ∆ has finite variance, if every ∆
(N)
j has finite variance. Notice that

E(∆ (N)
j ) = 0 for all j = 2, . . . ,kN+1. If in addition E(∆ (N)

1 ) = 0 for all N, then we
say that ∆ has zero mean.



2.2 Proofs 45

Example 2.5. Suppose {Sn} is a martingale relative to {Fn}, then

∆
(N)
1 := S1 , ∆

(N)
j := S j−S j−1 , F

(N)
j := F j , j = 1, . . . ,N

is a martingale difference array.

The following basic observation on martingale difference arrays is a key to many
of their properties:

Lemma 2.4. Suppose ∆ is a martingale difference array with finite variance, then
for each N ∆

(N)
1 , . . . ,∆

(N)
kN

are uncorrelated, and if ∆ has zero mean, then

Var(
kN

∑
n=1

∆
(N)
n ) =

kN

∑
n=1
E[(∆ (N)

n )2].

Proof. Fix N and write ∆
(N)
j = ∆ j, F

(N)
j = F j.

If i < j, then E(∆ j∆i) = E[E(∆ j∆i|F j−1)] = E[E(∆iE(∆ j|F j−1))] = E(∆i ·0) =
0. The identity for the variance immediately follows. �

Theorem 2.5 (McLeish’s Martingale Central Limit Theorem). Let ∆ = {∆ (N)
j }

be a martingale difference array with row lengths kN , zero mean, and finite variance,
and let VN := ∑

kN
j=1E[(∆

(N)
j )2]. If

(1) E

 max
1≤ j≤kN

|∆ (N)
j |√
VN

−−−→
n→∞

0, and

(2) 1
VN

∑
kN
n=1(∆

(N)
n )2 −−−→

N→∞
1 in probability,

then for all intervals (a,b), P
[

1√
VN

∑
kN
j=1 ∆

(N)
j ∈ (a,b)

]
−−−→
N→∞

1√
2π

∫ b
a e−t2/2dt.

We prepare the ground for the proof.
A sequence of random variables {Yn} on (Ω ,F ,µ) is called uniformly inte-

grable if for every ε , ∃K s.t. E(|Yn|1[|Yn|>K]) < ε for all n. This is strictly stronger
than tightness (there are tight non-integrable random variables).

Example 2.6. If Mp := sup‖Yn‖p < ∞ for some p ≥ 1, then {Yn} is uniformly in-
tegrable, because µ[|Yn| > K] ≤ 1

K p Mp
p by Chebyshev’s inequality, and therefore

E(|Yn|1[|Yn|>K])≤Mpµ[|Yn|> K]1/q = O(K−p/q) by Hölder’s inequality.

Lemma 2.5. Suppose Yn,Y ∈ L1(Ω ,F ,µ), then Yn
L1
−−−→
n→∞

Y iff {Yn} are uniformly

integrable and Yn −−−→
n→∞

Y in probability. In this case E(Yn)−−−→
n→∞

E(Y ).

Proof. (⇒) Suppose ‖Yn−Y‖1 → 0, then sup‖Yn‖1 < ∞. As in the previous ex-
ample, this implies uniform integrability. Convergence in probability also follows,
because by Markov’s inequality, µ[|Yn−Y |> ε]≤ ε−1‖Yn−Y‖1.
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Proof of (⇐): Given a random variable Z, let ZK := Z1[|Z|≤K]. Since {Yn} is
uniformly integrable, for every ε there is a K > 1 s.t. ‖Y K

n −Yn‖1 < ε for all n.
Similarly, ‖Y K−Y‖1 < ε for all K large enough. Thus for all n,

‖Yn−Y‖1 ≤ ‖Y K
n −Y K‖1 +2ε ≤ εµ[|Y K

n −Y K | ≤ ε]+2Kµ[|Y K
n −Y K |> ε]+2ε

≤ 3ε +2K
(

µ[|Yn−Y |> ε]+µ[|Yn|> K]+µ[|Y |> K]

)
≤ 3ε +2Kµ[|Yn−Y |> ε]+2E(|Yn|1[|Yn|>K])+2E(|Y |1|Y |>K)

∴ limsup
n→∞

‖Yn−Y‖1 ≤ 3ε +2sup
n
E(|Yn|1[|Yn|>K])+2E(|Y |1|Y |>K),

where we have used the assumption that Yn→ Y in probability. The last expression
can be made arbitrarily small, by choosing ε sufficiently small, K sufficiently large,
and appealing to the uniform integrability of Yn. �

Lemma 2.6 (McLeish). Let {W (N)
j : 1 ≤ j ≤ kN} be a triangular array of random

variables2, where W (N)
1 , . . . ,W (N)

kN
are defined on the same probability space. Fix

t ∈ R and let TN(t) := ∏
kN
j=1(1+ itW (N)

j ). Suppose

(1) {TN(t)} is uniformly integrable and E(TN)−−−→
N→∞

1,

(2) ∑
kN
j=1(W

(N)
j )2 −−−→

N→∞
1 in probability,

(3) max
1≤ j≤kN

|W (N)
j | −−−→N→∞

0 in probability.

Then E(eit(W (N)
1 +···+W (N)

kN
)
)−−−→

N→∞
e−

1
2 t2

.

Proof. Define a function r(x) on [−1,1] by the identity eix = (1+ ix)e−
1
2 x2+r(x), then

r(x) =− log(1+ ix)+ ix+ 1
2 x2 = O(|x|3). Fix C s.t. |r(x)| ≤C|x|3 for |x|< 1.

Substituting SN := W (N)
1 + · · ·+W (N)

kN
in eix = (1+ ix)e−

1
2 x2+r(x) gives (in what

follows we drop the superscripts (N)):

E(eitSN ) = E(
kN

∏
j=1

eitW j) = E(TNe−
1
2 ∑

kN
j=1 t2W 2

j +r(tW j))

= E(TNUN), where UN := exp

[
−1

2

kN

∑
j=1

t2(W (N)
j )2 + r(tW (N)

j )

]
.

TN and UN have the following properties:

(a) E(TN)−−−→
N→∞

1, by assumption.

(b) {TN} is uniformly integrable by assumption, and |TNUN |= |eitSN |= 1.

2 Not necessarily a martingale difference array or a Markov array.
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(c) UN
prob−−−→

N→∞
exp(− 1

2 t2), because

◦ ∑
kN
j=1(W

(N)
j )2 prob−−−→

N→∞
1, by assumption,

◦ max
1≤ j≤kN

|W (N)
j |

prob−−−→
n→∞

0 by assumption, so with asymptotic probability one,

∣∣∣∣∣ kN

∑
i=1

r(tW (N)
j )

∣∣∣∣∣≤C|t|3 max
1≤ j≤kN

|W (N)
j |

kN

∑
j=1

(W (N)
j )2 prob−−−→

N→∞
0.

We claim that this implies that E(eitSN ) = E(TNUN)−−−→
N→∞

e−
1
2 t2

. Let L := e−
1
2 t2

.

Since |E(TNUN)−L| ≤ |E(TN(UN−L))|+L|E(TN)−1|, (a) tells us that

|E(TNUN)−L| ≤ |E(TN(UN−L))|+o(1). (2.2.6)

Next, for every K,ε , µ[|TN(UN − L)| > ε] ≤ µ[|TN | > K] + µ[|UN − L| > ε/K].
Therefore by (b) and (c),

TN(UN−L)−−−→
N→∞

0 in probability. (2.2.7)

Finally, |TN(UN−L)| ≤ 1+L|TN |, so TN(UN−L) is uniformly integrable by (b). By
Lemma 2.5, E(TN(UN−L))→ 0, and by (2.2.6), E(eitSN ) = E(TNUN)→ e−

1
2 t2

. �

Proof of the Martingale CLT [92]: Let ∆ = {∆ (N)
j } be a martingale difference

array with row lengths kN , which satisfies the assumptions of Theorem 2.5, and let

SN :=
kN

∑
j=1

∆
(N)
j and VN := Var(SN)≡

kN

∑
j=1
E[(∆ (N)

j )2] (see Lemma 2.4).

It is tempting to apply McLeish’s Lemma to the normalized array ∆
(N)
j /
√

VN , but

to do this we need to check the uniform integrability of ∏
n
j=1(1+ it∆ (N)

j /
√

VN) and
this is difficult. It is easier to work with the following array of truncations:

W (N)
1 := 1√

VN
∆
(N)
1 , W (N)

n := 1√
VN

∆
(N)
n 1

[∑n−1
k=1(∆

(N)
k )2≤2VN ]

.

It is easy to check that {W (N)
n } is a martingale difference array relative to F

(N)
n .

The row sums S∗N := ∑
kN
n=1 W (N)

n are close to SN/
√

VN in probability:

µ[S∗N 6=
SN√
VN

]≤ µ

[
∃1≤ j≤ kN s.t.

j−1

∑
k=1

(∆
(N)
k )2 > 2VN

]
≤ µ

[ kN

∑
j=1

(∆
(N)
k )2 > 2VN

]
−−−→
N→∞

0
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because 1
VN

kN

∑
j=1

(
∆
(N)
j

)2 prob−−−→
N→∞

0 by assumption.

Thus to prove the theorem, it is enough to show that S∗N converges in distribution
to the standard Gaussian distribution. To do this, we check that {W (N)

n } satisfies the
conditions of McLeish’s Lemma.

The array {W (N)
n } has zero mean, finite variance, and it clearly satisfies assump-

tions (2) and (3) in McLeish’s Lemma. We show that it also satisfies assumption (1)
in this lemma. Fix t ∈ R, and let

TN = TN(t) :=
kN

∏
j=1

(1+ itW (N)
j ).

Successive conditioning shows that E(TN) = 1+ itE(∆ (N)
1 ) = 1. It remains to show

that {TN(t)}N≥1 is uniformly integrable for each t.
Define for this purpose JN := max{2≤ j ≤ kN : ∑

j−1
k=1(∆

(N)
n )2 ≤ 2VN} (or JN = 1

if the maximum is over the empty set). Writing Wj =W (N)
j and ∆ j =∆

(N)
j , we obtain

|TN |=
kN

∏
j=1

(1+ t2W 2
j )

1/2 =
JN

∏
j=1

(
1+

t2∆ 2
j

VN

)1/2

=

(
JN−1

∏
j=1

(
1+

t2∆ 2
j

VN

))1/2

·
(

1+
t2∆ 2

JN

VN

)1/2

, where
0

∏
j=1

(· · ·) := 1

≤ exp
(

t2

2VN

JN−1

∑
j=0

∆
2
j

)(
1+

t2

VN
∆

2
JN

)1/2

≤ et2
(

1+ |t| max
1≤ j≤kN

∣∣∣∣∆ (N)
j√
VN

∣∣∣∣).
Thus ‖TN‖1 ≤ et2

(1+ |t|E( max
1≤ j≤kN

|
∆
(N)
j√
VN
|)). By the assumptions of the theorem, the

last quantity is uniformly bounded for each t, so {TN(t)}N≥1 is uniformly integrable
for each t, and the conditions of McLeish’s Lemma are verified.

The lemma says that E(eitS∗N )→ e−
1
2 t2

for all t ∈ R, and this implies by Lévy’s

continuity theorem that S∗N
dist−−−→

N→∞
N(0,1). As explained above, this implies that

SN√
VN

dist−−−→
N→∞

N(0,1). �

2.2.5 Proof of Dobrushin’s central limit theorem

Let X = {X (N)
n } be a uniformly elliptic Markov array with row lengths kN +1, and

let f = { f (N)
n } be an a.s. uniformly bounded additive functional on X. Define as
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before SN =
kN

∑
n=1

f (N)
n (X (N)

n ,X (N)
n+1) , VN := Var(SN). Without loss of generality,

E[ f (N)
n (X (N)

n ,X (N)
n+1)] = 0 and | f (N)

n | ≤ K for all n,N.

Define F
(N)
n :=σ(X (N)

1 , . . . ,X (N)
n+1) for n≥ 1, and F

(N)
0 :=trivial σ -algebra. Fix N

and write fk = f (N)
k (X (N)

k ,X (N)
k+1) and Fk = F

(N)
k , then E( fk|Fk) = fk, E( fk|F0) =

E( fk) = 0, and therefore

SN =
kN

∑
k=1

fk =
kN

∑
k=1

(
E( fk|Fk)−E( fk|F0)

)
=

kN

∑
k=1

k

∑
n=1

(
E( fk|Fn)−E( fk|Fn−1)

)
=

kN

∑
n=1

kN

∑
k=n

(
E( fk|Fn)−E( fk|Fn−1)

)
=

kN

∑
n=1

∆
(N)
n , where ∆

(N)
n :=

kN

∑
k=n

(
E( f (N)

k |F
(N)
n )−E( f (N)

k |F
(N)
n−1)

)
.

The array {∆ (N)
n : 1 ≤ n ≤ kN ;N ≥ 1} is a martingale difference array relative to

the filtrations F
(N)
n , with zero mean and finite variances. To prove the theorem, it

suffices to check that {∆ (N)
n } satisfies the conditions of the martingale CLT.

STEP 1: E
(

max
1≤ j≤kN

|∆ (N)
j |√
VN

)
−−−→
N→∞

0.

Proof. The proof is based on the exponential mixing of uniformly elliptic Markov
arrays (Proposition 1.1): Let K := ess sup |f|, then there are constants Cmix > 1 and
0 < θ < 1 such that for all k ≥ n,

E( f (N)
k |F

(N)
n )≤CmixKθ

k−n−1.

It follows that |∆ (N)
j | < 2CmixK ∑

∞
`=−1 θ ` = 2CmixKθ−2

1−θ
. The step follows from the

assumption that VN → ∞.

STEP 2:
1

VN

kN

∑
n=1

(∆
(N)
n )2 −−−→

N→∞
1 in probability.

Proof. We follow [125] closely.

Let Y (N)
i := (∆

(N)
i )2/VN . We will show that

∥∥∥∑
kN
i=1 Y (N)

i −1
∥∥∥2

2
−−−→
N→∞

0, and use

the general fact that L2-convergence implies convergence in probability (by Cheby-
shev’s inequality).

Notice that E(∑kN
i=1 Y (N)

i ) = 1, because by lemma 2.4, this expectation equals
1

VN
×Var(∑kN

n=1 ∆
(N)
n ) = 1

VN
Var(SN) = 1. So
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∥∥ kN

∑
i=1

Y (N)
i −1

∥∥2
2 = E

[( kN

∑
i=1

Y (N)
i

)2
]
−2E

[ kN

∑
i=1

Y (N)
i

]
+1

= E
[ kN

∑
i=1

(
Y (N)

i

)2
]
+2E

[ kN

∑
i< j

Y (N)
i Y (N)

j

]
−2+1

= O( max
1≤`≤kN

‖Y (N)
` ‖∞) ·E

[ kN

∑
`=1

Y (N)
i

]
+2E

[
∑
i< j

Y (N)
i Y (N)

j

]
−1.

We saw in the proof of step 1 that ‖∆ (N)
j ‖∞ are uniformly bounded. It follows that

max
1≤`≤kN

‖Y (N)
` ‖∞ = O(1/VN), so

∥∥∑
kN
i=1 Y (N)

i − 1
∥∥2

2 = 2E
[
∑i< j Y

(N)
i Y (N)

j

]
− 1+ o(1).

It remains to show that

2E
[
∑
i< j

Y (N)
i Y (N)

j

]
−−−→
N→∞

1. (2.2.8)

The proof of (2.2.8) is based on the following fact:

Osc(N) := max
1≤i≤kN

Osc

(
E
( kN

∑
j=i+1

Y (N)
j

∣∣∣∣F (N)
i

))
−−−→
N→∞

0. (2.2.9)

Here Osc is the oscillation, which was defined in §1.2.1. Before proving this, we
explain why (2.2.9) implies (2.2.8). Write x = y± ε whenever y− ε ≤ x ≤ y+ ε .
Every integrable function ϕ satisfies ϕ = E(ϕ)±Osc(ϕ). So

2E
[
∑
i< j

Y (N)
i Y (N)

j

]
= 2E

[ kN

∑
i=1

Y (N)
i

kN

∑
j=i+1

Y (N)
j

]
= 2E

[ kN

∑
i=1

Y (N)
i E

( kN

∑
j=i+1

Y (N)
j

∣∣F (N)
n
)]

= 2E
[ kN

∑
i=1

Y (N)
i E

( kN

∑
j=i+1

Y (N)
j

)]
±2E

[ kN

∑
i=1

Y (N)
i

]
Osc(N)

= 2
kN

∑
i=1
E(Y (N)

i )
kN

∑
j=i+1

E(Y (N)
j )±2Osc(N) (∵

kN

∑
i=1
E(Y (N)

i ) = 1)

=

(
kN

∑
i=1
E(Y (N)

i )

)2

−
kN

∑
i=1
E(Y (N)

i )2±2Osc(N) = 1+O
(

max
1≤i≤kN

‖Y (N)
i ‖∞

)
+Osc(N).

This tends to one by (2.2.9) and because (as we saw before) the maximum is
O(1/VN). So (2.2.9) implies (2.2.8), and with it the step.

We turn to the proof of (2.2.9). Henceforth we fix N and drop all the (N) super-
scripts. First we note that a routine modification of the proof of Lemma 2.4 shows
that for all j,k > i, E(∆ j∆k|Fi) = 0. It follows that
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E
( kN

∑
j=i+1

Yj

∣∣∣∣Fi

)
≡ 1

VN
E
( kN

∑
j=i+1

∆
2
j

∣∣∣∣Fi

)
=

1
VN
E
(( kN

∑
n=i+1

∆n
)2
∣∣∣∣Fi

)
=

≡ 1
VN
E
(( kN

∑
n=i+1

kN

∑
k=n
E( fk|Fn)−E( fk|Fn−1)

)2
∣∣∣∣Fi

)

=
1

VN
E
(( kN

∑
k=i+1

k

∑
n=i+1

E( fk|Fn)−E( fk|Fn−1)

)2∣∣∣∣Fi

)

=
1

VN
E
(( kN

∑
k=i+1

fk−E( fk|Fi)

)2∣∣∣∣Fi

)

=
1

VN

kN

∑
k,`=i+1

E
[(

fk−E( fk|Fi)
)(

f`−E( f`|Fi)
)∣∣∣∣Fi

]

=
1

VN

kN

∑
k,`=i+1

E
[

fk f`+E( fk|Fi)E( f`|Fi)− fkE( f`|Fi)− f`E( fk|Fi)

∣∣∣∣Fi

]

=
1

VN

kN

∑
k,`=i+1

E
[

fk f`|Fi
]
−E( f`|Fi)E( fk|Fi) (2.2.10)

The oscillation of the summands can be estimated as follows. We saw in §1.2.1, that

Osc
(
E
(
u(X (N)

j+2,X
(N)
j+3)

∣∣X (N)
j

))
≤ δ (π

(N)
j, j+2)Osc(u),

where δ (π
(N)
j, j+2) is the contraction coefficient of the two-step Markov operator

π
(N)
j, j+2. We also saw there that in the uniformly elliptic case, δ (π

(N)
j, j+2) ≤ 1− ε0,

where ε0 > 0 is the ellipticity constant of X. Arguing as in the proof of Proposition
1.1, it is not difficult to deduce that there exists C0 > 0 and 0 < θ < 1 such that for
all k > i+1, and for every bounded function u : S(N)

k ×S
(N)
k+1→ R,

Osc
(
E
(
u(X (N)

k ,X (N)
k+1)

∣∣F (N)
i

))
≤C0θ

k−iOsc(u).

This, (1.2.3), and the inequalities | f j| ≤ K, Osc(u) ≤ 2‖u‖∞ and Osc(uv) ≤
‖u‖∞Osc(v)+ ‖v‖∞Osc(u) imply the existence of constants C1 > 0 and 0 < θ < 1
such that for every N ≥ 1 and i+2≤ k ≤ `≤ kN

Osc
(
E( f`|Fi)E( fk|Fi)

)
≤ Osc(E( f`|Fi))‖E( fk|Fi)‖∞ +‖E( f`|Fi)‖∞Osc(E( fk|Fi))≤C1θ

k−i
θ
`−i
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Osc
(
E
[

fk f`|Fi
])

= Osc
(
E
[

fkE( f`|Fk)|Fi
])

≤C0θ
k−iOsc( fkE( f`|Fk))≤C0θ

k−i[K ·Osc(E( f`|Fk))+Osc( fk)‖E( f`|Fk)‖∞]

≤C1θ
k−i

θ
`−k.

We have stated these bounds for k, `≥ i+2, but in fact they remain valid for k = i+2
or `= i+2, if we increase C1 to guarantee that C1θ 2 > 2K2.

Substituting these bounds in (2.2.10), we find that

Osc(N)≤ 2C1

VN

∞

∑
k,`=i+1

θ
k−i

θ
`−k ≤ 2C1

VN

(
θ

1−θ

)2

−−−→
N→∞

0.

This proves (2.2.9), and completes the proof of step 2.

Steps 1 and 2 verify the conditions of the martingale CLT. So 1√
VN

∑
kN
n=1 ∆

(N)
n

converges in distribution to the standard Gaussian distribution. By construction,
1√
VN

SN ≡ 1√
VN

∑
kN
n=1 ∆

(N)
n , and the theorem is proved. �

2.2.6 Almost sure convergence for sums of functionals with
summable variance

We prove Proposition 2.4. Let f ∗0 := 0, f ∗n := fn(Xn,Xn+1)− E fn(Xn,Xn+1), let
F0 denote the trivial σ -algebra, and let Fn denote the σ -algebra generated by
X1, . . . ,Xn, then f ∗k is Fk+1-measurable, so

f ∗k = E( f ∗k |Fk+1)−E( f ∗k |F0) =
k

∑
n=0
E( f ∗k |Fn+1)−E( f ∗k |Fn).

Therefore (numbered equalities are justified below):

N

∑
k=1

f ∗k =
N

∑
k=1

k

∑
n=0
E( f ∗k |Fn+1)−E( f ∗k |Fn) =

N

∑
n=0

N

∑
k=n
E( f ∗k |Fn+1)−E( f ∗k |Fn)

(1)
=

N

∑
n=0

∞

∑
k=n

(E( f ∗k |Fn+1)−E( f ∗k |Fn))−
N

∑
n=0

∞

∑
k=N+1

(E( f ∗k |Fn+1)−E( f ∗k |Fn))

(2)
=

N

∑
n=0

∞

∑
k=n

(E( f ∗k |Fn+1)−E( f ∗k |Fn))−
∞

∑
k=N+1

N

∑
n=0

(E( f ∗k |Fn+1)−E( f ∗k |Fn))

(3)
=

N

∑
n=0

∞

∑
k=n

(E( f ∗k |Fn+1)−E( f ∗k |Fn))−
∞

∑
k=N+1

E( f ∗k |FN+1).



2.2 Proofs 53

To justify the numbered inequalities almost surely, we need to establish the con-
vergence of the series which they involve.

By (1.2.4), ‖E( f ∗k |Fn+1)‖2 +‖E( f ∗k |Fn)‖2 ≤ 2Cmix
√

Var( fk)θ
k−n+1, so by the

Cauchy-Schwarz inequality and the assumption ∑Var( fn)< ∞,

N

∑
n=0

∞

∑
k=n
‖E( f ∗k |Fn+1)−E( f ∗k |Fn)‖2 < ∞.

This justifies
(1)
= and

(2)
= .

Next by assumption, |f| ≤K a.s. for some constant K. By (1.2.3), ‖E( f ∗k |F0)‖∞+

‖E( f ∗k |Fn)‖∞ ≤ 4KCmixθ n−k so ∑
∞
k=N+1 |E( f ∗k |FN+1)|< ∞. This justifies

(3)
= .

In summary,
N

∑
k=1

f ∗k =
N

∑
n=0

∆n−ZN , where

∆n :=
∞

∑
k=n

(E( f ∗k |Fn+1)−E( f ∗k |Fn)) , ZN :=
∞

∑
k=N+1

E( f ∗k |FN+1).

To finish the proof, we show that
∞

∑
n=0

∆n and lim
N→∞

ZN exist a.s.

CLAIM 1. MN := ∑
N−1
n=0 ∆n is a martingale relative to {FN}, and sup‖MN‖2 < ∞.

Consequently, limMN exists almost surely.

Proof.E(MN+1−MN |FN)=E(∆N |FN)
!
=∑

∞
k=N E(E( f ∗k |FN+1)|FN)−E(E( f ∗k |FN)|FN)=

0. To justify !
= we note that the series ∆N = ∑

∞
k=N E( f ∗k |Fn+1)−E( f ∗k |Fn) con-

verges in L2, because ‖E( f ∗k |Fn+1)−E( fk|Fn)‖∞ = O(θ k−n), so its conditional
expectation can be calculated term-by-term.

Next we show that ‖MN‖2 is uniformly bounded:

‖MN+1‖2 ≤
∥∥∥∥ N

∑
n=0

∞

∑
k=n
E( f ∗k |Fn+1)−E( f ∗k |Fn)

∥∥∥∥
2

≤
∥∥∥∥ ∞

∑
k=0

k∧N

∑
n=0
E( f ∗k |Fn+1)−E( f ∗k |Fn)

∥∥∥∥
2
=

∥∥∥∥ ∞

∑
k=0
E( f ∗k |F(k∧N)+1)

∥∥∥∥
2

≤
∥∥ N

∑
k=0

f ∗k
∥∥

2 +
∥∥ ∞

∑
k=N+1

E( f ∗k |FN+1)
∥∥

2

≤

√√√√ N

∑
k=0
‖ f ∗k ‖2

2 +2 ∑
0≤k<`≤N

Cov( f ∗k , f ∗` )+
∞

∑
k=N+1

‖E( f ∗k |FN+1)‖∞

≤
√

∞

∑
k=0
‖ f ∗k ‖2

2 +2Cmix ∑
0≤k<`≤∞

θ `−k‖ f ∗k ‖2‖ f ∗` ‖2 +Cmix

∞

∑
k=N+1

‖ f ∗k ‖∞θ
k−N .



54 2 Variance growth, center-tightness, and the central limit theorem

The last expression is uniformly bounded, because ∑Var( fk)< ∞ and

∑
0≤k<`<∞

θ
`−k‖ f ∗k ‖2‖ f ∗` ‖2 ≤

∞

∑
r=1

θ
r

∞

∑
k=0
‖ f ∗k ‖2‖ f ∗k+r‖2 ≤

1
1−θ

∞

∑
k=0
‖ f ∗k ‖2

2

∞

∑
k=N+1

‖ f ∗k ‖∞θ
k−N =

1
1−θ

sup
k
‖ f ∗k ‖∞.

CLAIM 2. ZN −−−→
N→∞

0 almost surely.

Proof. It is enough to prove that ∑‖ZN‖2
2 < ∞, because this implies using Cheby-

shev’s inequality that

∑P[|ZN |> ε]≤ 1
ε2 ∑‖ZN‖2

2 < ∞ for all ε > 0,

whence, by the Borel-Cantelli Lemma, limsup |ZN | ≤ ε a.s. for all ε . Equivlently,
limZN = 0 a.s.

Here is the proof that ∑‖ZN‖2
2 < ∞:

∞

∑
N=1
‖ZN‖2

2 =
∞

∑
N=1

∑
k2≥k1>N

E
[
E( f ∗k1

|FN+1)E( f ∗k2
|FN+1)

]
=

∞

∑
N=1

∑
k2≥k1>N

E
[

f ∗k2
E( f ∗k1

|FN+1)

]
≤Cmix

∞

∑
N=1

∑
k2≥k1>N

θ
k2−N+1‖ f ∗k2

‖2‖E( f ∗k1
|FN+1)‖2 by (1.2.5)

≤C2
mix

∞

∑
N=1

∑
k2≥k1>N

θ
k2−N+1‖ f ∗k2

‖2 ·θ k1−N+1‖ f ∗k1
‖2 by (1.2.4)

=C2
mix ∑

j≥0
θ

j
∑
k>0

θ
2k

∞

∑
N=1
‖ f ∗k+N+ j‖2‖ f ∗k+N‖2

(after changing indices j = k2− k1, k = k1−N +1)

≤C2
mix ∑

j≥0
θ

j
∑
k>0

θ
2k

√
∞

∑
N=1
‖ f ∗k+N+ j‖2

2

∞

∑
N=1
‖ f ∗k+N‖2

2

≤ C2
mix

1−θ
∑
k>0

θ
2k

∞

∑
N=k
‖ f ∗N‖2

2 =
C2

mix
1−θ

∞

∑
N=1
‖ f ∗N‖2

2

N

∑
k=1

θ
2k < ∞,

because 0 < θ < 1 and ∑‖ f ∗k ‖2
2 < ∞. �
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2.2.7 Convergence of moments.

Dobrushin’s CLT (Theorem 2.3) shows that if VN → ∞ then for any bounded con-
tinuous function φ : R→ R we have

lim
N→∞

E
[

φ

(
SN−E(SN)√

VN

)]
=

1√
2π

∫
∞

−∞

φ(z)e−z2/2dz. (2.2.11)

In applications, one often need to have convergence of expectations for unbounded
functions, such as polynomials. This problem is addressed in the present section.

Lemma 2.7. Let f be a centered bounded additive functional of a uniformly elliptic
Markov chain such that VN → ∞. Then for each r ∈ N there is a constant Cr such
that for all N,

|E [Sr
N ]| ≤CrV

br/2c
N .

Corollary 2.3. Under the assumptions of Lemma 2.7

lim
N→∞

E[Sr
N ]

V r/2
N

=

{
0 r is odd,

(r−1)!! = ∏
(r/2)−1
k=0 (r−2k−1) r is even.

The corollary follows from Dobrushin’s CLT (Theorem 2.3), using the fact that by
Lemma 2.7 and the de la Vallée-Poussin Lemma, (SN/

√
VN)

r is uniformly integrable
for all r > 1 even, and therefore limE[(SN/

√
VN)

r] = E[Nr], where N is a Gaussian
random variable with mean zero and variance one.

The proof of Lemma 2.7 proceeds by expanding Sr
N into a sum of r-tuples

fn1 · · · fnr (n1 ≤ ·· · ≤ nr), and by estimating the expectation of each tuple. (Here
and throughout, fn = fn(Xn,Xn+1).) In view of the gradient lemma it is sufficient to
prove Lemma 2.7 under the assumption that there is some constant C > 0 such that
ũn := ‖ fn‖L2 satisfy ∑

n
ũ2

n ≤CVN .

Consider an r tuple fn1 · · · fnr where n1 ≤ n2 ≤ ·· · ≤ nr. Segments of the form
[n j,n j+1] will be called edges. The vertices belonging to an edge are called bound,
the other vertices are called free.

A marking is a non-empty collection of edges satisfying the following two con-
ditions. Firstly, each vertex n j belongs to at most one edge. Secondly, for every free
vertex nl , either

(i) there exists a minimal f (l)> l such that n f (l) is bound, and for all l ≤ i < f (l),
ni+1−ni ≤ n f (l)+1−n f (l); or

(ii) there exists a maximal p(l)< l such that np(l) is bound, and for all p(l)< i≤ l,
ni−ni−1 ≤ np(l)−np(l)−1.

If (i) holds we will say that nl is associated to the edge [n f (l),n f (l)+1] otherwise it is
associated to [np(l)−1,np(l)].

Lemma 2.8. There are constants L(r)> 0 and 0 < θ < 1 such that
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[

r

∏
i=1

fni

]∣∣∣∣∣≤ L ∑
markings

∏
[n j ,n j+1] is an edge

(
θ
(n j+1−n j) ũn j ũn j+1

)
.

Proof. If r = 1 then the result holds since E[ fn] = 0 (in this case there are no mark-
ings, and we let the empty sum be equal to zero).

If r = 2 then the lemma says that

|E [ fn1 fn2 ]| ≤ Kθ
n2−n1‖ fn1‖L2‖ fn2‖L2

which is true due to Proposition 1.1(2).
For r ≥ 3 we use induction. Take j such that n j+1−n j is the largest. Then

E

[
r

∏
i=1

fni

]
= E

[
j

∏
i=1

fni

]
E

[
r

∏
i= j+1

fni

]
+O

(
θ
(n j+1−n j)

∥∥∥∥∥ j

∏
i=1

fni

∥∥∥∥∥
L2

∥∥∥∥∥ r

∏
i= j+1

fni

∥∥∥∥∥
L2

)
.

Let K := ess sup |f|, then the second term is smaller than θ
(n j+1−n j)ũn j ũn j+1Kr−2.

Thus this term is controlled by the marking with only one marked edge [n j,n j+1].
Applying the inductive assumption to each factor in the first term we obtain the
result. �

Lemma 2.9. There exists Cr > 0 s.t. for every set C of r tuples 1≤ n1≤ ·· ·≤ nr ≤N,

ΓC := ∑
(n1,...,nr)∈C

∣∣∣∣∣E
[

r

∏
i=1

fni

]∣∣∣∣∣≤CrV
br/2c
N .

Lemma 2.9 implies Lemma 2.7 since

E [Sr
N ] =

r

∑
s=1

∑
k1+···+ks=r

r!
k1! · · ·ks!

∑
1≤n1<···<ns≤N

E

[
s

∏
j=1

f
k j
n j

]
.

Therefore it suffices to prove Lemma 2.9.

Proof. By Lemma 2.8

ΓC ≤ L ∑
(n1,...,nr)∈C

∑
markings (e1, . . . ,es)

of (n1, . . . ,nr)

s

∏
j=1

(
ũe−j

ũe+j
θ
(e+j −e−j )

)

where the marked edges are e j = [e−j ,e
+
j ], j = 1, . . . ,s. Collecting all terms with a

fixed set of marked edges (e1, . . . ,es) we obtain

ΓC ≤C(r)∑
s

∑
(e1,...,es)

s

∏
j=1

(
ũe−j

ũe+j
θ
(e+j −e−j )(e+j − e−j )

r−2
)

(2.2.12)
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where C(r)∏
j
(e+j − e−j )

r accounts for all tuples which admit a marking (e1, . . .es):

Note that for an edge e = [e−,e+] there are at most 0≤ j≤ r−2 vertices which may
be associated to e and the positions of those vertices are located inside[

e−− (r−2)(e+− e−),e−
)
∪
(
e+,e++(r−2)(e+− e−)

]
.

It follows that there are at most 2(r− 2)(e+ − e−) choices to place each vertex
associated to a given edge. This gives

∏
e

(
r−2

∑
j=0

[
2(r−2)(e+− e−)

] j

)
≤C(r)∏

e
(e+− e−)r−2

possibilities for tuples with marking (e1, . . . ,es).
The sum over (e1, . . .es) in (2.2.12) can be estimated by(

N−1

∑
n=1

N−n

∑
m=1

ũnũn+mθ
mmr−2

)s

.

Next for each m, ∑
n

ũnũn+m = O(VN) due to the Cauchy-Schwartz inequality and the

assumption that ∑
N
n=1 ũ2

n ≤ CVN . Summing over m we find that ΓC ≤ const ∑
2s≤r

V s
N

where the condition 2s≤ r appears because each edge involves two distinct vertices,
and no vertex belongs to more than one edge. The result follows. ut

2.3 Notes and references

The connection between the non-growth of variance and representation in terms of
gradients is well-known for stationary stochastic processes. The first result in this
direction we are aware of is Leonov’s Theorem [83]. He showed that the asymptotic
variance of a homogeneous additive functional of a stationary homogeneous Markov
chain is zero iff the additive functional is the sum of a gradient and a constant.
Rousseau-Egele [114] and Guivarc’h & Hardy [56] extended this to the context
of dynamical systems preserving an invariant Gibbs measure. Kifer [69], Conze &
Raugi [26], Dragičević,Froyland & González-Tokman [45] have proved versions of
Leonov’s theorem for random and/or sequential dynamical systems.

The connection between center-tightness and gradients is a central feature of the
theory of cocycles over ergodic transformations. Suppose T : X → X is an ergodic
probability preserving transformation on a non-atomic probability space. For every
measurable f : X → R, { f ◦T n} is a stationary stochastic process, and

SN = f + f ◦T + · · ·+ f ◦T N−1
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are called the “ergodic sums of the cocycle f .” A “coboundary” is a function of the
form f = g−g◦T with g measurable. Schmidt characterized cocycles with center-
tight SN as those arising from coboundaries [123, page 181]. These results extend
to cocycles taking values in locally compact groups, see Moore & Schmidt [94] and
Aaronson & Weiss [7]. For more on this, see Aaronson [2, chapter 8], and Bradley
[16, chapters 8,19].

Notice that inhomogeneous theory is different from the stationary theory in that
there is another cause for center-tightness: Having summable variance. This cannot
happen in the stationary homogeneous world (unless all fi are constant).

Theorem 2.3 is a special case of a more general result due to Dobrushin, which
can be found in [38]. The conditions for Dobrushin’s full result are more general
than uniform boundeness or uniform ellipticity. Our proof follows the paper of
Sethuraman & Varadhan [125], except for some changes we needed to make to
deal with additive functionals of the form fk(Xk,Xk+1), and not just fk(Xk) as in
[125]. McLeish’s Lemma, the martingale CLT, and their proofs are due to McLeish
[92]. We refer the reader to Hall & Heyde [62] for the history of this result, further
extensions, and references.

Theorem 2.4 is extends the Kolmogorov-Khintchin “Two-Series Theorem” [73].
There are other extensions to sums of dependent random variables. We mention
for example a version for martingales (Hall & Heyde [62, chapter 2]), for sums
of negatively dependent random variables (Matuła, [90]) and for expanding maps
([26]).

The proofs of theorems 2.3 and 2.4 uses Gordin’s “martingale-coboundary de-
composition” [54], see also [62],[75].



Chapter 3
The essential range and irreducibility

In this chapter we discuss the following question: How small can we make the range
of an additive functional, by subtracting from it a center-tight functional?

3.1 Definitions and motivation

Let f = { fn} be an additive functional of a Markov chain X := {Xn}. The algebraic
range of (X, f) is the intersection Galg(X, f) of all closed groups G s.t. ,

∃cn ∈ R s.t. P[ fn(Xn,Xn+1)− cn ∈ G] = 1 for all n≥ 1.

This is a closed subgroup of R (the intersection of closed groups is a closed group).

Example 3.1. (The simple random walk). Suppose {Xn} are independent random
variables such that P(Xn =±1) = 1

2 , and let fn(x,y) = x. Then Sn = X1 + · · ·+Xn is
the simple random walk on Z. The algebraic range in this case is 2Z.

Proof : Galg ⊂ 2Z, because we can take cn := −1. Assume by contradiction that
Galg ( 2Z, then Galg = tZ for t ≥ 4, and the supports of Sn are cosets of tZ. But
this is false, because ∃a1,a2 s.t. |a1− a2| < t and P(Sn = ai) 6= 0: For n even take
ai = (−1)i, and for n odd take ai = 1+(−1)i. �

The lattice case is the case when Galg(X, f) = tZ for some t ≥ 0. The non-lattice
case is the case when Galg(X, f) = R. The distinction is important for the following
reason. If Galg(X, f) = tZ and γN := c1 + · · ·+ cN , then

P(SN ∈ γN + tZ) = 1 for all N.

In this case it is not true that P(SN− zN ∈ (a,b))∼ e−z2/2|a−b|√
2πVN

whenever zN−E(SN)√
VN

→
z, because P(SN − zN ∈ (a,b)) = 0 whenever |a−b|< t and zN +(a,b) falls inside
the gaps of γN + tZ. The is the lattice obstruction to the local limit theorem.

59
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There is a related, but more subtle, obstruction. An additive functional f is called
reducible on X, if there is another additive functional g on X such that f − g is
center-tight, and

Galg(X,g)( Galg(X, f).

In this case we say that g is a reduction of f, and call the algebraic range of g a
reduced range of f.

Example 3.2. (Simple random walk with continuous first step): Suppose {Xn}n≥1
are independent real valued random variables such that X1 has continuous non-
uniform distribution F with compact support, and X2,X3, . . . are equal to ±1 with
equal probabilities. Let fn(x,y) = x, then Sn = X1 +X2 + · · ·+Xn.

Because of continuously distributed first step, Galg(f) = R. But if we subtract
from f the center-tight functional c with components

cn(x,y) = x when n = 1 and cn(x,y)≡ 0 when n > 1,

then the result g := f− c has algebraic range 2Z. So f is reducible.
The reduction g satisfies the lattice local limit theorem (see the preface), because

it generates the (delayed) simple random walk. But by the assumptions on F, the
original functional f = g+c does not satisfy the LLT, lattice or non-lattice. This can
be seen by direct calculation from the observation that the distribution of Sn is the
convolution of F and the centered binomial distribution. See chapter 5 for details.

Here we see an instance of the reducibility obstruction to the local limit theo-
rem: A situation when the LLT fails because the additive functional is a sum of a
lattice term which satisfies the lattice LLT and a non-lattice center-tight term which
spoils it. The reducibility obstruction to the LLT raises the following questions:

1. Given an additive functional f, how small can we make its algebraic range by
subtracting from it a center-tight term?

2. Is there an “optimal” center-tight functional c such that the algebraic range of
f− c cannot be reduced further?

Motivated by these questions, we introduce the following definitions. The essen-
tial range of f is

Gess(X, f) :=
⋂{

Galg(X,g) : f−g is center tight
}
.

This is a closed sub-group of Galg(X, f).
An additive functional without reductions is called irreducible. Equivalently, f

is irreducible iff Gess(X, f) = Galg(X, f).
In this terminology questions 1 and 2 call for the calculation of Gess(X, f) and

ask for an irreducible reduction of f.
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3.2 Main results

3.2.1 Results for Markov chains

The questions raised at the end of the last section can be answered using the structure
constants dn(ξ ) introduced in (1.3.2). Define the co-range of f to be the set

H(X, f) := {ξ ∈ R :
∞

∑
n=3

dn(ξ )
2 < ∞}.

Theorem 3.1. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X. If f is center-tight then H(X, f) = R, and if not then either
H(X, f) = {0}, or H(X, f) = tZ for some t ≥ π/(6ess sup | f |).

Theorem 3.2. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X, then

(a) If H(X, f) = 0, then Gess(X, f) = R.
(b) If H(X, f) = tZ with t 6= 0, then Gess(X, f) =

2π

t Z.
(c) If H(X, f) = R, then Gess(X, f) = {0}.

Theorem 3.3. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X. Then there exists an irreducible uniformly bounded additive
functional g such that f−g is center-tight, and

Galg(X,g) = Gess(X,g) = Gess(X, f).

Corollary 3.1. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X. If Gess(X, f) = tZ with t 6= 0, then |t| ≤ 12ess sup |f|.

The corollary follows directly from Theorems 3.1 and 3.2(b).

3.2.2 Results for Markov arrays

The previous discussion applies to Markov arrays. Let f be an additive functional on
a Markov array X with row lengths kN +1:

(1) The algebraic range Galg(X, f) is the intersection of all closed subgroups G of
R such that for all 1≤ k ≤ kN ,N ≥ 1

∃c(N)
n ∈ R s.t. P[ f (N)

k (X (N)
k ,X (N)

k+1)− c(N)
n ∈ G] = 1.

(2) The essential range Gess(X, f) is the intersection of the algebraic ranges of all
additive functionals of the form f−h where h is center-tight.
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(3) The co-range is H(X, f) := {ξ ∈ R : sup
N

kN
∑

k=3
d(N)

k (ξ )2 < ∞}.

(4) An additive functional f is called irreducible if Gess(X, f) = Galg(X, f).

This is consistent with the definitions for Markov chains, see Corollary 3.2 below.

Theorem 3.4. The results of Theorems 3.1, 3.2 and 3.3 hold for all a.s. uniformly
bounded additive functionals on uniformly elliptic Markov arrays.

Corollary 3.2. Suppose f = { fn} is an a.s. uniformly bounded additive functional
on a uniformly elliptic Markov chain X= {Xn}. Let f̃ = { f (N)

n } be an additive func-
tional on a Markov array X̃= {X (N)

n } s.t. f (N)
n = fn and X (N)

n = Xn. Then

Galg(X̃, f̃) = Galg(X, f) , Gess(X̃, f̃) = Gess(X, f) , H(X̃, f̃) = H(X, f).

Proof. The equality of the algebraic ranges and co-ranges is trivial, but the equality
of the essential ranges requires justification, because some center-tight functionals
of {X (N)

n } are not of the form h(N)
n = hn.

However, since the co-ranges agree, the essential ranges must also agree, by the
version of Theorem 3.2 for arrays. �

3.2.3 Hereditary arrays

Some results for Markov chains do not extend to general Markov arrays. Of partic-
ular importance is the following fact, which we need for the proof of the LLT (see
the proof of Theorem 4.1, claim 2). Recall the definition of DN(ξ ) from (1.3.2).

Theorem 3.5. Suppose f is an a.s. uniformly bounded additive functional on a uni-
formly elliptic Markov chain X, then

DN(ξ )−−−→
N→∞

∞ uniformly on compact subsets of R\H(X, f). (3.2.1)

Proof. Suppose ξ ∈ R\H(X, f), then sup
N

DN(ξ ) = ∞, whence

DN(ξ ) =
N

∑
k=3

d(N)
k (ξ )2 −−−→

N→∞

∞

∑
k=3

d(N)
k (ξ )2 ≡ sup

N
DN(ξ ) = ∞.

Since DN(ξ ) is non-decreasing and ξ 7→ DN(ξ ) are continuous, the convergence is
uniform on compact subsets of R\H(X, f). �

The following two examples show that Theorem 3.5 fails for some arrays:

Example 3.3. Let Xn be a sequence of independent uniform random variables with
zero mean and variance equal to one. Form an array by setting
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X (N)
k =

{
Xk 1≤ k ≤ N +1,N odd
0 1≤ k ≤ N +1,N even

(k = 1, . . . ,N)

and let f (N)
k (x,y) := x. Then for every 0 6= ξ ∈ R\H(X, f), DN(ξ ) 6→ ∞.

Proof. We claim that sup
N

D2N+1(ξ ) = ∞ for every ξ 6= 0.

To see this, suppose P =

(
Xn−2

Xn−1
Yn−1

Xn
Yn

,Yn+1

)
is a random level 2N + 1

hexagon at position n, then Γ (P) = Xn−1 +Xn−Yn−1−Yn where Xi,Yj are inde-
pendent random variables each having uniform distribution with mean zero and
unit variance. So Γ (P) is a non lattice random variable and for every ξ 6= 0,
d(2N+1)

n (ξ )2 = E(|eiξΓ (P)−1|2) = c(ξ ), where c(ξ ) is a positive constant indepen-
dent of n. So

D2N+1(ξ ) = (2N−1)c(ξ )−−−→
N→∞

∞.

Thus H(X, f) = {0}. But DN(ξ ) 6→ ∞ for ξ 6= 0, because D2N(ξ ) = 0. �

Example 3.4. Suppose Xn are a sequence of independent identically distributed ran-
dom variables, equal to±1 with probability 1

2 . Form an array with row lengths N+1

by setting X (N)
n = Xn, and let

f (N)
n (Xn,Xn+1) :=

1
2

(
1+

1
3
√

N

)
Xn (1≤ n≤ N +1).

Then DN(ξ )→∞ for all ξ 6∈H(X, f), but the convergence is not uniform on compact
subsets of R\H( f ).

Proof. Hex(N,n) consists of 26 hexagons, each obtained with equal probability. At

least one of these hexagons,
(
+1

+1
+1

+1
−1 +1

)
, has balance 1+N−1/3. So

d(N)
n (ξ )≥ 2−6|eiξ (1+N−1/3)−1|2 = 1

16
sin2 ξ (1+N−1/3)

2

DN(ξ )≥
N−2

16
sin2 ξ (1+N−1/3)

2
∼

{
16−1N sin2 ξ

2 ξ 6∈ 2πZ
16−1 3

√
N ξ ∈ 2πZ.

We see that DN(ξ )→ ∞ for all ξ 6= 0, whence H(X, f) = {0}, and DN(ξ )→ ∞ for
all ξ 6∈ H( f ). But the convergence is not uniform on any compact neighborhood of
2πk, k 6= 0, because DN(ξN)≡ 0 for ξN = 2πk(1+N−1/3)−1→ 2πk. �

Because of the importance of property (3.2.1) to the proof of the LLT, we would
like to characterize the additive functionals on Markov arrays which satisfy it. Ex-
amples 1 and 2 point the way.

Let X be a Markov array with row lengths kN . A sub-array of X is an array X′ of
the form {X (N`)

k : 1≤ k ≤ kN`
+1, `≥ 1} where N` ↑ ∞. The restriction of f to X′ is
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f|X′ = { f (N`)
k : 1≤ k ≤ kN`

, `≥ 1}.

(X, f) is called hereditary, if Gess(X
′, f|X′) = Gess(X, f) for all sub-arrays X′, and

stably hereditary if (X,g) is hereditary whenever g= {(1+εN) f (N)
k } with εN→ 0.

Theorem 3.6. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov array X, then the following conditions are equivalent:

(1) f is hereditary;

(2) for all ξ , liminf
N→∞

kN
∑

k=3
d(N)

k (ξ )2 < ∞⇒ limsup
N→∞

kN
∑

k=3
d(N)

k (ξ )2 < ∞;

(3) for all ξ 6∈ H(X, f), DN(ξ )−−−→
N→∞

∞;

(4) H(X′, f |X′) = H( f ) for every sub-array X′ of X.

In addition, f is stably hereditary iff the convergence in (3) is uniform on compact
subsets of R\H(X, f).

Example 3.5. (Markov chains): Suppose f is an a.s. uniformly bounded additive
functional on a uniformly elliptic Markov array X. If f (N)

n = fn and X (N)
n = Xn, then

f is stably hereditary.

Proof. This follows from Theorems 3.5 and 3.6. �

Example 3.6. (“Change of measure”): Let Y be an array obtained from a Markov
chain X using the change of measure construction (example 1.6). Let ϕ

(N)
n denote

the weights of the change of measure. If ∃C > 0 s.t.

C−1 < ϕ
(N)
n <C for all n,N,

then for every a.s. uniformly bounded additive functional f on X, the additive func-
tional f (N)

n := fn is stably hereditary on Y .

Proof. If dn(ξ ,X) are the structure constants of f on X, and d(N)
n (ξ ,Y) are the

structure constants of f on Y, then C−6dn(ξ ,X) ≤ d(N)
n (ξ ,Y) ≤ C6dn(ξ ,X). So

H(Y, f) = H(X, f).
By Theorem 3.5, DN(ξ ,X)→ ∞ uniformly on compact subsets of R \H(X, f).

Since DN(ξ ,Y) ≥ C−6DN(ξ ,X), DN(ξ ,X)→ ∞ uniformly on compact subsets of
R\H(Y, f). �

Sometimes (though not always, see example 3.4), every hereditary functional is
stably hereditary:

Theorem 3.7. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov array X.

(a) Suppose Gess(X, f) = tZ or {0}. If f is hereditary then f is stably hereditary.
(b) Suppose f is integer valued and not center-tight, and |f| ≤ K, then Gess(X, f) =

k
2π
Z for some 0 < k ≤ 12K, and if f is hereditary then f is stably hereditary.
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3.3 Proofs

3.3.1 Reduction lemmas

The engine of the proofs is the following result:

Lemma 3.1 (Reduction Lemma). Let f be an a.s. uniformly bounded additive

functional on a uniformly elliptic Markov array X. If ξ 6= 0 and sup
N

kN

∑
k=3

d(N)
k (ξ )2 <

∞, then there exists a uniformly bounded additive functional g on X s.t.

f−g is center-tight, and Galg(g)⊂
2π

ξ
Z.

If X (N)
n = Xn and f (N)

n = fn (as in the case additive functionals of Markov chains),
then we can take g such that g(N)

n = gn.

Proof for Doeblin chains: As in the case of the gradient lemma, the reduction
lemma has a particularly simple proof in the important special case of Doeblin
Markov chains (Example 1.7).

Recall that Doeblin chains have finite state spaces Sn. Let πn
xy := πn,n+1(x,{y}),

and relabel the states Sn = {1, . . . ,dn} in such a way that πn
11 = πn,n1(1,{1}) 6= 0

for all n. The Doeblin condition guarantees that for every x ∈Sn, there exists a state
ξn(x) ∈Sn+1 such that π

n−1
1,ξn(x)

πn
ξn(x),1

> 0.
Define as in the proof of the gradient lemma,

a0 ≡ 0, a1 ≡ 0, and an(x) := fn−2(1,ξn−1(x))+ fn−1(ξn−1(x),x) for n≥ 3
c0 := 0, c1 := 0, and cn := fn−2(1,1) for n≥ 3

f̃ := f−∇a− c.

Then f̃n(x,y)= fn(x,y)−(an+1(y)−an(x))−cn =−Γn

(
1

1
ξn−1(x)

ξn(y)
x y

)
, where

Γn denotes the balance of a hexagon, see (1.3.1).
For Doeblin chains, there are finitely many admissible hexagons at position n,

and the hexagon measure assigns each of them a mass which is uniformly bounded
from below. Let C−1 be a uniform lower bound for this mass, then

|eiξ f̃n(x,y)−1|2 ≤CE(|eiξΓn −1|2) =Cd2
n(ξ ).

Decompose f̃n(x,y)= gn(x,y)+hn(x,y) where gn(x,y)∈ 2π

ξ
Z and hn(x,y)∈ [−π

ξ
, π

ξ
).

Clearly |g| ≤ |f|+ |∇a|+ |c| ≤ 6|f|, and Galg(X,h) ⊂ 2π

ξ
Z. We claim that f − g is

center tight.
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The proof is based on the following elementary inequality:1

4x2

π2 ≤ |e
ix−1|2 ≤ x2 for all |x| ≤ π. (3.3.1)

By (3.3.1), |hn(x,y)|2 ≤ π2

4 |e
iξ hn(x,y)−1|2 = π2

4 |e
iξ f̃n(x,y)−1|2 ≤C π2

4 d2
n(ξ ), whence

∞

∑
n=3

Var(hn(Xn,Xn+1)+ cn) =
∞

∑
n=3

Var(hn(Xn,Xn+1))≤
Cπ2

4

∞

∑
n=3

d2
n(ξ )< ∞. So h+ c

has summable variance. Therefore f−g = ∇a+(h+ c) is center tight. �

Preparations for the proof in the general case.

Lemma 3.2. Suppose E1, . . . ,EN are measurable events, and let W denote the ran-
dom variable which counts how many of Ei occur simultaneously, then

P(W ≥ t)≤ 1
t

N

∑
k=1
P(Ek).

Proof. Apply Markov’s inequality to W = ∑1Ek . �

Suppose W is a real-valued random variable. A circular mean of W is a real
number θ ∈ [−π,π) which minimizes the quantity E(|ei(W−θ)−1|2). Such numbers
always exist, because θ 7→ E(|ei(W−θ) − 1|2) is continuous and 2π-periodic. But
circular means are not unique. Suppose, for example, that W is uniformly distributed
on [−π,π], then every θ ∈ [−π,π) is a minimizer.

The circular variance of a real random variable W is defined to be

CVar(W ) := min
µ∈[−π,π)

E(|ei(W−θ)−1|2)≡ min
θ∈[−π,π)

4E
(
sin2 W−θ

2

)
.

For every x ∈ R, let

〈x〉 := unique element of [−π,π) s.t. x−〈x〉 ∈ 2πZ. (3.3.2)

It is not difficult to see, using (3.3.1), that for every circular mean θ

4
π2 Var〈W −θ〉 ≤ CVar(W )≤ Var(W ). (3.3.3)

Lemma 3.3. For every real-valued random variable W, we can write W =W1 +W2

where W1 ∈ Z almost surely, and Var(W2)≤ π2

4 CVar(W ).

Proof. W1 := (W −θ)−〈W −θ〉, W2 := 〈W −θ〉+θ , θ := a circular mean. �

1 Proof of (3.3.1): Since y = sinx is concave on [0, π

2 ], its graph lies above the chord y = 2x/π and
below the tangent y = x. So 2x/π ≤ sinx≤ x on [0, π

2 ]. Now use the identity

|eix−1|2 = 2(1− cosx) = 4sin2 x
2
.
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Proof of the Reduction Lemma in the general case: Suppose f is an a.s. uni-
formly bounded additive functional on a uniformly elliptic Markov array X, with
row lengths kN , and fix ξ 6= 0 such that

sup
N

kN

∑
n=3

d(N)
n (ξ )2 < ∞.

Let L denote the ladder process associated to X (see section 1.3.2). We remind
the reader that this is a Markov array with entries L(N)

n = (Z(N)
n−2,Y

(N)
n−1,X

(N)
n ) (3 ≤

n≤ kN), and for every N: (a) {X (N)
n }, {Z(N)

n } are two independent copies of X(N); (b)
Y (N)

n are conditionally independent given {X (N)
i } and {Z(N)

i }; and (c) the conditional
distribution of Y (N)

n given {Z(N)
i } and {X (N)

i } is given by

P

(
Y N

n−1 ∈ E
∣∣∣∣{Z(N)

i }= {ζ
(N)
i }

{X (N)
i }= {ξ

(N)
i }

)
=

bridge probability for X that X (N)
n−1 ∈ E

given that X (N)
n−2 = ζ

(N)
n−2 and X (N)

n = ξ
(N)
n .

(see §1.2.3).

Let F,H be the additive functionals on L with entries

F(N)(Ln) := f (N)
n−2(Z

(N)
n−2,Y

(N)
n−1)+ f (N)

n−1(Y
(N)
n−1,X

(N)
n )

H(N)
n (L(N)

n ,L(N)
n+1) :=

〈
ξΓ

(
Z(N)

n−2
Z(N)

n−1

Y (N)
n−1

Y (N)
n

X (N)
n

X (N)
n+1

)〉
(3≤ n≤ kN , N ≥ 1)

(see (1.3.1) and (3.3.2)). Clearly ess sup |F| ≤ 2ess sup |f| and |H| ≤ π .

STEP 1: |E(H(N)
n )| ≤ π

4 d(N)
n (ξ )2, E[(H(N)

n )2]≤ π2

4 d(N)
n (ξ )2, and

sup
N
E[(H(N)

3 + · · ·+H(N)
kN

)2]< ∞.

PROOF OF STEP 1. We fix N and drop the superscripts (N).

The map ı :
(

Zn−2
Zn−1
Yn−1

Yn
Xn

,Xn+1

)
7→
(

Zn−2
Yn−1
Zn−1

Xn
Yn

,Xn+1

)
preserves the

natural measure on the space of hexagons, and is an involution: ı2 = id. Clearly

Γ ◦ ı =−Γ .

Using the partial symmetry 〈−x〉=−〈x〉 for all x 6∈ −π +2πZ, we find that Hn ◦ ı =
−Hn on [Hn 6=−π]. So E(Hn1[Hn 6=−π]) = 0, and therefore

|E(Hn)|= πP(Hn =−π)≤ π

4
E(|eiHn −1|2) = π

4
E(|eiξΓ −1|2) = π

4
dn(ξ )

2,

which is the first statement we needed to show.
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Next we observe from (3.3.1) that E(H2
n ) ≤ π2

4 E(|e
iξΓ − 1|2) = π2

4 d(N)
n (ξ )2,

which is the second statement we had to prove.
The two statements already proven and the boundedness of dn show that there

is a constant C s. t. Var(Hn) ≤ Cd2
n(ξ )

2. Now the third statement follows from
Lemma 2.1. The proof of step 1 is complete.

From now on, fix a constant D such that

sup
N

kN

∑
n=3

d(N)
n (ξ )2 + sup

N
E

( kN

∑
n=3

H(N)
n

)2
< D.

STEP 2: For every N ≥ 1 there exists ζ
(N) = (ζ

(N)
1 , . . . ,ζ

(N)
kN+1) ∈∏

kN+1
i=1 S

(N)
i s.t.

kN

∑
n=3
E
(

H(N)
n (L(N)

n ,L(N)
n+1)

2
∣∣∣∣{Z(N)

i }= ζ
(N)

)
< π

2D

E

( kN

∑
n=3

H(N)
n (L(N)

n ,L(N)
n+1)

)2 ∣∣∣∣{Z(N)
i }= ζ

(N)

< π
2D

EX

[
kN

∑
n=3

CVar
(

ξ F(N)
n (L(N)

n )

∣∣∣∣{Z(N)
i }= ζ

(N),X (N)
n

)]
< π

2D

| f (N)
n (ζ

(N)
n ,ζ

(N)
n+1)| ≤ ess sup | f | for all 3≤ n≤ kN .

Here and throughout Ln =(Z(N)
n−2,Y

(N)
n−1,X

(N)
n ), andEX indicates averaging on {X (N)

i }.

PROOF OF STEP 2. We fix N and drop the (N) superscripts.
Let Ω1 :=

{
ζ : ∑

kN
n=3E(H

2
n |{Zn}= ζ )≤ π2D

}
. By step 1,

EZ

[
E

(
kN

∑
n=3

H2
n

∣∣∣∣{Zi}= ζ

)]
=

kN

∑
n=3
E(H2

n )<
π2

4

kN

∑
n=3

d(N)
n (ξ )2 ≤ π2

4
D,

where EZ = intergration over ζ with respect to the distribution of {Z(N)
i } (recall that

{Z(N)
i }

dist
= {X (N)

i }). By Markov’s inequality, P[{Z(N)
i } ∈Ω1]>

3
4 .

Let Ω2 := {ζ :E
[(

∑
kN
n=3 Hn(Ln,Ln+1)

)2∣∣{Zi}= ζ
]
< π2D}. As before, by Markov’s

inequality, P[{Z(N)
i } ∈Ω2]≥ 1− 1

π2 .

Let Ω3 :=
{

ζ : EX

[
kN
∑

n=3
CVar

(
ξ F(Ln+1)

∣∣{Zi}= ζ ,Xn+1
)]

< π2D
}

,

θ
∗(Ln,Xn+1,Zn−1) :=−ξ fn−2(Zn−2,Zn−1)+ξ F(Ln)+ξ fn(Xn,Xn+1).

Then exp[iHn(Ln,Ln+1)] = exp[iξ F(Ln+1)− iθ ∗(Ln+1,Xn+1,Zn−2)].
Given Xn+1 and {Zi}, Ln+1 is conditionally independent from Ln, {Xi}i 6=n+1. So
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EZ,X

(
CVar

(
ξ F(Ln+1)

∣∣{Zi},Xn+1

))
= E

(
CVar

(
ξ F(Ln+1)

∣∣Ln,{Zi},{Xi}
))

!
≤ E

(
E
(
|eiξ F(Ln+1)−iθ∗(Ln,Xn+1,Zn−1)−1|2

∣∣Ln,{Xi},{Zi}
))

= E(|ei(ξ F(Ln+1)−θ∗)−1|2)≡ E(|eiHn −1|2) = E(|eiξΓ −1|2) = dn(ξ )
2,

where
!
≤ is because θ ∗ is conditionally constant. So

EZ
[
EX
( kN

∑
n=3

CVar
(
ξ F(Ln+1)

∣∣{Zi},Xn+1
))]

< D.

By Markov’s inequality, P({Z(N)
i } ∈Ω3)≥ 1− 1

π2 .

Finally, let Ω4 := {ζ : | fn(ζn,ζn+1)| ≤ ess sup |f|}, then P({Z(N)
i } ∈Ω4) = 1.

In summary P

[ ⋃
1≤i≤4

Ω
c
i

]
≤ 2

π2 +
1
4
< 1. Necessarily Ω1∩Ω2∩Ω3∩Ω4 6= ∅.

Any ζ = ζ
(N) in the intersection satisfies the requirements of step 2.

STEP 3: There exist measurable functions θ
(N)
n : S(N)

n → [−π,π) s.t.

kN

∑
n=3
E
(
|eiξ F(N)

n (L(N)
n )−iθ (N)

n (Xn)−1|2
∣∣∣∣{Z(N)

i }= ζ
(N)

)
< 2π

2D.

Proof. We fix N and drop the (N) superscripts.
Clearly, θ 7→ E(|ei(W−θ)− 1|2) is continuous for every random variable W . So

CVar(W ) = infq∈QE(|ei(W−q) − 1|2), an infimum over a countable set, whence
CVar(ξ Fn|{Zi}= ζ ,Xn) = infq∈QE(|eiξ F(Ln)−iq−1|2|{Zi}= ζ ,Xn = ξn).

The expectation can be expressed explicitly using integrals with respect to the
bridge distributions, and this expression shows that

ξ 7→ CVar(ξ Fn|{Zi}= ζ ,Xn = ξ )

is measurable on S
(N)
n .

Fix N and ζ = ζ
(N), and consider the following property of q ∈ R,ξ ∈S

(N)
n :

E(|eiξ Fn(Ln)−iq−1|2|{Zn}= ζ ,Xn = ξ )

≤ CVar(ξ Fn(Ln)|{Zn}= ζ ,Xn = ξ )+
D
n2

(Pn(ξ ,q))

By the previous paragraph, {ξ : Pn(ξ ,q) holds} is measurable, and for every ξ there
exists q ∈Q∩ (−π,π) such that Pn(ξ ,q) holds. Let

θn(ξ ) = θ
(N)
n (ξ ) := inf{q : q ∈Q∩ (−π,π) s.t. Pn(ξ ,q) holds} .
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Again, this is a measurable function, and since for fixed ξ , Pn(ξ ,q) is a closed
property of q, θ

(N)
n (ξ ) itself satisfies property Pn(ξ ,θ

(N)
n (ξ )). So

EX

[
kN

∑
n=3
E(|eiξ Fn(Ln)−iθ (N)

n (Xn)−1|2|{Zn}= ζ ,Xn

]

≤ EX

[
kN

∑
n=3

CVar
(

ξ Fn(Ln)

∣∣∣∣{Zn}= ζ ,Xn

)]
+

π2

6
D

< 2π
2D, by choice of ζ .

STEP 4 (THE REDUCTION). Let ζ = ζ
(N), θn = θ

(N)
n , fn = f (N)

n , Fn = F(N)
n , Xn =

X (N)
n , Zn = Z(N)

n . Define

c(N)
n := fn(ζn−2,ζn−1)

a(N)
n (x) :=

1
ξ

[
θn(Xn)+E

(
〈ξ Fn(Ln)−θn(Xn)〉

∣∣{Zi}= ζ ,Xn = x
)]

(x ∈S
(N)
n )

f̃ :=
1
ξ

〈
ξ
(
f−∇a− c

)〉
g := f−∇a− c− f̃.

Then a,c, f̃,g are uniformly bounded, and Galg(g)⊂ 2π

ξ
Z.

Proof. By choice of ζ
(N), |c| ≤ ess sup |f|, and by the definition of θ (N) and 〈·〉,

|a| ≤ 2π/|ξ | and |̃f| ≤ π/|ξ |. It follows that |g| ≤ 2ess sup |f|+3π/|ξ |. Next,

g ≡ 1
ξ

(
ξ (f−∇a− c)−〈ξ (f−∇a− c)〉

)
.

The term in the brackets belongs to 2πZ by the definition of 〈·〉, so Galg(g)⊂ 2π

ξ
Z,

and the proof of step 4 is complete.

Notice that f−g=∇a+c+ f̃. Gradients and constant functionals are center tight.
So to complete the proof of the reduction lemma, it suffices to show:

STEP 5: f̃ is center-tight.

Proof. We fix N and drop the (N) superscripts.
We begin with a few identities. Suppose {Z(N)

i } = {ζ
(N)
i }, and consider the

hexagon Pn :=
(

Zn−2
Zn−1
Yn−1

Yn
Xn

Xn+1

)
=

(
ζn−2

ζn−1
Yn−1

Yn
Xn

Xn+1

)
, then

−Γ (Pn) =− fn−2(Zn−2,Zn−1)−Fn+1(Ln−1)+Fn(Ln)+ fn(Xn,Xn+1),

whence
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ξ f̃n(Xn,Xn+1) =

〈
ξ
(
−Γ (Pn)+an(Xn)−F(Ln)+F(Ln+1)−an+1(Xn+1)

)〉
=

〈
−Hn(Ln,Ln+1)+ξ

(
an(Xn)−F(Ln)

)
+ξ
(
F(Ln+1)−an+1(Xn+1)

)〉
.

Define a new functional W of the ladder process {Ln} with entries

W (Ln) := 〈ξ F(Ln)−θn(Xn)〉−E
(
〈ξ F(Ln)−θn(Xn)〉

∣∣{Zi}= ζ
(N),Xn

)
.

Notice that W (Ln) = ξ (F(Ln)−an(Xn)) mod 2πZ. Therefore

ξ f̃n(Xn,Xn+1) =

〈
W (Ln+1)−W (Ln)−Hn(Ln,Ln+1)

〉
. (3.3.4)

CLAIM. Given δ > 0, let Tδ = 11π2

δ
. Then there exists a measurable set ΩX of {Xi}

such that P(ΩX )> 1−δ and such that for all ξ ∈ΩX ,

(1) ∑
kN
n=3P

(
|W (Ln)|> π

3

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
< Tδ ,

(2) ∑
kN
n=3P

(
|Hn(Ln,Ln+1)|> π

3

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
< Tδ ,

(3) E
(∣∣∑kN

n=3 Hn(Ln,Ln+1)
∣∣∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
< Tδ .

Proof of the claim. Ln is conditionally independent of {Xi}i6=n given {Zi},Xn. So

kN

∑
n=3
P
(
|W (Ln)| ≥

π

4

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)

=
kN

∑
n=3
P
(
|W (Ln)| ≥

π

4

∣∣∣∣{Zi}= ζ ,Xn = ξn

)
.

Since E(W (Ln)|{Zi} = ζ ,Xn) = 0, we can use the Chebyshev inequality to bound
the sum of probabilities from above by

≤ 16
π2

kN

∑
n=3

Var
(
〈ξ F(Ln)−θn(Xn)〉|{Zi}= ζ ,Xn

)
≤ 4

kN

∑
n=3
E
(
|eiξ F(Ln)−iθn(Xn)−1|2

∣∣{Zi}= ζ ,Xn
)
, see (3.3.1).

Integrating over {Xi} we have by the choice of θ
(N)
n (Xn) (step 3) that

EX

[
kN

∑
n=3
P
(
|W (Ln)| ≥

π

4

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)]
≤ 8π

2D.
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By Markov’s inequality, the set

Ω
1
X (T ) :=

{
ξ :

kN

∑
n=3
P
(
|W (Ln)|>

π

3

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
≤ T

}

has probability P[Ω 1
X (T )]≥ 1−8π2D/T .

Similarly, by Markov’s inequality

P
(
|Hn| ≥

π

4

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
≤ 16

π2E
(

H2
n

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
.

By the choice of ζ , EX

[
∑

kN
n=3P

(
|Hn| ≥ π

4

∣∣∣∣{Zi}= ζ ,{Xi}
)]
≤ 16D. So the set

Ω
2
X (T ) :=

{
ξ :

kN

∑
n=3
P
(
|Hn(Ln,Ln+1)|>

π

3

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
≤ T

}

has probability P[Ω 2
X (T )]≥ 1−16D/T > 1−2π2D/T .

Finally, since conditional expectations contract L2-norms,

EX

[
E
(∣∣ kN

∑
n=3

Hn(Ln,Ln+1)
∣∣∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)2]

≤ E
[( kN

∑
n=3

Hn(Ln,Ln+1)

)2∣∣∣∣{Zi}= ζ

]
≤ π

2D.

So Ω 3
X (T ) :=

{
ξ : E

(∣∣∑kN
n=3 Hn(Ln,Ln+1)

∣∣∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
≤ T

}
has proba-

bility P[Ω 3
X (T )]> 1−π2D/T 2.

Clearly, for T > 1, P[Ω 1
X (T )∩Ω 2

X (T )∩Ω 3
X (T )] > 1− 11π2

T . The claim follows.
�

We can now complete the proof of the step 5 (and the reduction lemma) and show
that f̃ is center-tight.

Fix δ > 0 and ΩX , Tδ as in the claim. Fix N and define the random set

AN({L(N)
n }) := {3≤ n≤ kN : |W (Ln)| ≥

π

3
or |Hn(Ln,Ln+1)| ≥

π

3
}.

For all ξ ∈ΩX , we have the following bound (Lemma 3.2):

P
(
|AN |> 4Tδ

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
<

1
2
.

Similarly, for all ξ ∈ΩX ,
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P
(∣∣ kN

∑
n=3

Hn
∣∣> 4Tδ

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
≤ 1

4
.

Since the probabilities of these events add up to less than one, the intersection of
their complements is non-empty. So for every ξ ∈ ΩX we can find {Y (N)

i (ξ )}kN−1
i=2

such that L∗n := L∗n(ξ ) = (ζ
(N)
n−2,Y

(N)
n−1(ξ ),ξn) has the following two properties:∣∣∣∣∣ kN

∑
n=3

Hn(L∗n,L
∗
n+1)

∣∣∣∣∣≤ 4Tδ , and

M := #
{

3≤ n≤ kN : |W (L∗n)| ≥
π

3
or |Hn(L∗n,L

∗
n+1)| ≥

π

3

}
≤ 4Tδ .

Let n1 < · · · < nM be an enumeration of the indices n where |W (L∗n)| ≥ π

3 or
|Hn(L∗n,L

∗
n+1)| ≥

π

3 . By (3.3.4), if ni < n < ni+1−1,

ξ f̃n(ξn,ξn+1) =W (L∗n+1)−W (L∗n)−Hn(L∗n,L
∗
n+1),

because 〈x+ y+ z〉= x+ y+ z whenever |x|, |y|, |z|< π

3 .
So ∑

ni+1−1
n=ni f̃n(ξn,ξn+1) ≤ ∑

ni+1−1
n=ni+1 Hn(L∗n,L

∗
n+1) + 6π , where we have used the

bounds |W| ≤ 2π and |Hni | ≤ π . Summing over i we find that for every ξ ∈ΩX ,∣∣∣∣∣ kN

∑
n=3

f̃n(ξn,ξn+1)

∣∣∣∣∣≤
∣∣∣∣∣ kN

∑
n=3

Hn(L∗n,L
∗
n+1)

∣∣∣∣∣+10Mπ ≤ 4Tδ +40Tδ π < 42πTδ .

Setting Cδ := 42πTδ , we find that P(
∣∣∑kN

n=3 f̃ (N)
n
∣∣ ≥ Cδ ) < δ for all N, whence the

(center-)tightness of f̃. �

In chapter 5 we will need the following variant of the reduction lemma for integer
valued f.

Lemma 3.4 (Integer Reduction Lemma). Let X be a uniformly elliptic Markov
chain, and f an integer valued additive functional on X s.t. | f | ≤ K a.s. For every N,
fn(x,y) = g(N)

n (x,y)+a(N)
n (x)−a(N)

n+1(y)+ c(N)
n (n = 1, . . . ,N) where

(1) c(N)
n are integers such that |c(N)

n | ≤ K,

(2) a(N)
n are measurable integer valued functions on Sn s.t. |a(N)

n | ≤ 2K,

(3) g(N)
n are measurable, integer valued, and

N

∑
n=3
E[g(N)

n (Xn,XN+1)
2]≤ 103K4

N

∑
n=3

u2
n,

with un the structure constants of f.

Proof. Let
(

Zn−2
Zn−1 Yn
Yn−1 Xn

Xn+1

)
be a random hexagon. By the definition of the

structure constants,
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E

[
N

∑
n=3
E

(
Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)2 ∣∣∣∣Zn−2,Zn−1

)]
=

N

∑
n=3

u2
n.

Therefore, for every N there exists zn = zn(N) ∈Sn (n = 1, . . . ,N−2) such that

N

∑
n=3
E

[
E

(
Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)2 ∣∣∣∣Zn−2 = zn−2,Zn−1 = zn−1

)]
≤

N

∑
n=3

u2
n.

We emphasize that zn depends on N.
Let c(N)

n := fn−2(zn−2,zn−1), and let a(N)
n (xn) be the (smallest) most likely value

of fn−2(zn−2,Y )+ fn−1(Y,xn), where Y has the bridge distribution of Xn−1 condi-
tioned on Xn−2 = zn−2 and Xn = xn. The most likely value exists, and has probability
bigger than δK := 1

5K , because fn−2(zn−2,Y )+ fn−1(Y,xn) ∈ [−2K,2K]∩Z.

Set g(N)
n (xn,xn+1) := fn(xn,xn+1) + a(N)

n (xn)− a(N)
n+1(xn+1)− c(N)

n . Equivalently,

g(N)
n (xn,xn+1)=−Γ

(
zn−2

zn−1 yn
yn−1 xn

xn+1

)
for the yk which maximize the likelihood

of the value fk−1(zk−1,Y ) + fk(Y,xk+1) when Y has the bridge distribution of Xk
given Xk−1 = zk−1,Xk+1 = xk+1.

Our task is to estimate ∑
N
n=3E[g

(N)
n (Xn,Xn+1)

2]. Define for this purpose the func-
tions h(N)

n : Sn×Sn+1→ R,

h(N)
n (xn,xn+1) := E

(
Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)2 ∣∣∣∣Zn−2 = zn−2 Zn−1 = zn−1
Xn = xn Xn+1 = xn+1

)1/2

,

Our plan is to show the following:

(a)
N

∑
n=3
E(h(N)

n (Xn,Xn+1)
2)≤

N

∑
n=3

u2
n

(b) If h(N)
n (xn,xn+1)< δK , then g(N)

n (xn,xn+1) = 0.
(c) E(g(N)

n (Xn,Xn+1)
2)≤ (6K)2P[h(K)

n ≥ δk]≤ 36K2δ
−2
K E[h(N)

n (Xn,Xn+1)
2].

Part (a) is because of the choice of zn. To see part (b), note that since f is in-
teger valued, either the balance of a hexagon is zero, or it has absolute value ≥ 1.
Therefore, if h(N)

n (Xn,Xn+1)< δK , then necessarily

P
[

Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)
6= 0
∣∣∣∣Zn−2 = zn−2 Zn−1 = zn−1
Xn = xn Xn+1 = xn+1

]
≤ E

[
Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)2 ∣∣∣∣Zn−2 = zn−2 Zn−1 = zn−1
Xn = xn Xn+1 = xn+1

]
= h(N)

n (Xn,Xn+1)
2 < δ

2
K ,

whence P
[

Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)
= 0
∣∣∣∣Zn−2 = zn−2 Zn−1 = zn−1
Xn = xn Xn+1 = xn+1

]
> 1−δ 2

K .
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At the same time, by the structure of the distribution of random hexagons,

Ωn :=

{(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)
:

fn−1(Zn−1,Yn)+ fn(Yn,Xn+1) = a(N)
n+1(Xn+1)

fn−2(Zn−2,Yn−1)+ fn−1(Yn−1,Xn) = a(N)
n (Xn)

}

satisfies P
[

Ωn

∣∣∣∣Zn−2 = zn−2 Zn−1 = zn−1
Xn = xn Xn+1 = xn+1

]
> δ 2

K ,

If the sum of the probabilities of two events is bigger than one, then they must
intersect. It follows that there exist yn−1,yn such that

◦ a(N)
n (Xn) = fn−2(zn−2,yn−1)+ fn−1(yn−1,Xn)

◦ a(N)
n+1(Xn+1) = fn−1(zn−1,yn)+ fn(yn,Xn+1)

◦ Γ

(
zn−2

zn−1 yn
yn−1 Xn

Xn+1

)
= 0

By the definition of g(N)
n , this implies that g(N)

n (Xn,Xn+1) = 0, which proves part (b).
Part (c) follows from part (b), Chebyshev’s inequality, and the estimate ‖g(N)

n ‖∞≤
6K (as is true for the balance of every hexagon). �

Combining Lemmas 3.1 and 3.4 we obtain the following result

Corollary 3.3. (Joint Reduction) There is a constant L = L(ε,K) such that under
the conditions of the Reduction Lemma we can arrange, in addition to the other
conclusions of Lemma 3.1, that ∑

kN
n=3 ‖g

(N)
n ‖2

2 ≤ LUN .

Proof. Apply Lemmas 3.1 and then apply 3.4 to the resulting integer valued additive
functional. Notice that the reduction in this corollary depends on N even if f is an
additive functional of a Markov chain. �

Corollary 3.3 says the following. Suppose we have an additive functional f such
that both UN is small and DN(ξ ) is small for some ξ (but DN(ξ ) can be much
smaller than UN). Then we can adjust f such that at time N, the resulting functional
will have a small norm as prescribed by UN and small distance to 2π

ξ
Z as prescribed

by DN at the same time.

3.3.2 The possible values of the co-range

We prove theorem 3.1 in its version for Markov arrays: The co-range of an a.s.
uniformly bounded additive functional on a uniformly elliptic Markov array X is
equal to R when f is center tight, and to {0} or tZ (t > 0) otherwise.

Recall that the co-range is defined by

H := H(X, f) = {ξ ∈ R : sup
N

DN(ξ )< ∞}, where DN(ξ ) =
kN

∑
n=3

d(N)
n (ξ )2.
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STEP 1. H is a subgroup of R.

Proof. H = −H, because d(N)
n (−ξ ) = d(N)

n (ξ ). H 3 0, because d(N)
n (0) = 0. H is

closed under addition, because if ξ ,η ∈ H, then by Lemma 1.4,

sup
N

kN

∑
n=3

d(N)
n (ξ +η)2 ≤ 8

[
sup

N

kN

∑
n=3

d(N)
n (ξ )2 + sup

N

kN

∑
n=3

d(N)
n (η)2

]
< ∞.

STEP 2. If f is center-tight, then H = R.

Proof. Suppose f is center-tight. By corollary 2.2 and the center-tightness of f,

sup
N

kN
∑

k=3
(u(N)

k )2 < ∞. By Lemma 1.4(c), sup
N

kN
∑

k=3
d(N)

n (ξ )2 < ∞ for all ξ ∈ R.

STEP 3. If f is not center-tight, then ∃t0 s.t.

H ∩ (−t0, t0) = {0}. (3.3.5)

Proof. Let K := ess sup |f|, then |Γ (P)| ≤ 6K for a.e. hexagon P.
Fix τ0 > 0 such that |eit−1|2 ≥ 1

2 t2 for all |t|< τ0, and let t0 := τ0(6K)−1. Then
then for all |ξ |< t0, |eiξΓ (P)−1|2 ≥ 1

2 ξ 2Γ (P)2 for all hexagons P.
Taking the expectation over P ∈ Hex(N,n), we obtain that

d(N)
n (ξ )2 ≥ 1

2
ξ

2(u(N)
n )2 for all |ξ |< t0,1≤ n≤ kN ,N ≥ 1. (3.3.6)

Now assume by way of contradiction that there is 0 6= ξ ∈ H ∩ (−t0, t0), then

sup
N

kN
∑

n=3
(u(N)

n )2≤ 2
ξ 2 sup

N

kN
∑

n=3
d(N)

n (ξ )2 <∞. By Corollary 2.2, f is center-tight, in con-

tradiction to our assumption.

STEP 4. If f is not center-tight, then H = {0}, or H = tZ with t ≥ π

6ess sup | f | .

Proof. By steps 2 and 3, H is a proper closed subgroup of R. So it must be equal
to {0} or tZ where t > 0. To see that t ≥ π

6ess sup | f | , assume by contradiction that
t = ( π

6ess sup | f | )ρ with 0 < ρ < 1, and let κ := min{|eiu−1|2/|u|2 : |u| ≤ πρ} > 0.
Then |tΓ (P)| ≤ 6tess sup | f |= πρ for every position n hexagon P, whence

d2
n(t) = E(|eitΓ −1|2)≥ κE(Γ 2) = κu2

n.

But this is impossible, because t ∈ H so ∑d2
n(t) < ∞, whereas f is not center-tight

so ∑u2
n = ∞. �
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3.3.3 Calculation of the essential range

We prove Theorem 3.2 in its version for Markov arrays: For every a.s. uniformly
bounded additive functional f on a uniformlly elliptic Markov array X,

Gess(X, f) =


{0} H(X, f) = R
2π

ξ
Z H(X, f) = ξZ

R H(X, f) = {0}.
(3.3.7)

Lemma 3.5. Suppose f,g are two a.s. uniformly bounded additive functionals on
the same uniformly elliptic Markov array. If f−g is center-tight, then f and g have
the same co-range.

Proof. By Corollary 2.2, if h = g− f is center-tight, then sup
N

kN

∑
n=3

u(N)
n (h)2 < ∞. By

Lemma 1.4 (b),(c), sup
N

kN

∑
n=3

d(N)
n (ξ ,g)2 ≤ 8sup

N

kN

∑
n=3

d(N)
n (ξ , f)2+8ξ

2 sup
N

kN

∑
n=3

u(N)
n (h)2.

So the co-range of f is a subset of the co-range of g. By symmetry they are equal.�

Proof of Theorem 3.2: As we saw in the previous section, the possibilities for the
co-range are R, tZ with t 6= 0, and {0}.
CASE 1: The co-range equals R. As we saw above, this can only happen if f is
center-tight, in which case the essential range is {0} because we may subtract f
from itself.

CASE 2.: The co-range equals ξZ with ξ 6= 0. We show that Gess(X, f) =
2π

ξ
Z.

By assumption, ξ is in the co-range: supN ∑
kN
n=3 d(N)

n (ξ )2 < ∞. By the Reduction
Lemma, f differs by a center-tight functional from a functional with algebraic range
⊆ 2π

ξ
Z. So Gess(X, f)⊆ 2π

ξ
Z.

Assume by way of contradiction that Gess(X, f)( 2π

ξ
Z, then there exists a center-

tight h such that the algebraic range of g := f−h is a subset of 2π`
ξ
Z for some integer

` > 1. The structure constants of g must satisfy d(N)
n ( ξ

` ,g)≡ 0, whence ξ

` ∈co-range
of g. By Lemma 3.5, ξ

` ∈ co-range of f, whence ξ

` ∈ ξZ. But this contradics ` > 1.

CASE 3.: The co-range equals {0}. We claim that the essential range is R. Other-
wise, there exists a center-tight h such that the algebraic range of g := f−h equals
tZ with t 6= 0 or {0}. But this is impossible:

(a) If the algebraic range of g is tZ, then d(N)
n ( 2π

t ,g) = 0 for all 3≤ n≤ kN , N ≥ 1,
so the co-range of g contains 2π/t. By Lemma 3.5, the co-range of f contains
2π/t, in contradiction to the assumption that it is {0}.

(b) If the algebraic range of g is {0}, then f ≡ h, and f is center-tight. But by Theo-
rem 3.1, the co-range of a center-tight functional is R, whereas the co-range of
our functional is {0}. �
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3.3.4 Existence of irreducible reductions

We prove Theorem 3.3, in its version for Markov arrays: For every a.s. uniformly
bounded additive functional on a uniformly elliptic Markov array X, there exists an
irreducible functional g such that f−g is center-tight and Galg(X,g) = Gess(X,g) =
Gess(X, f).

Proof. The essential range is a closed subgroup of R, so Gess(X, f ) = {0}, tZ or R.

(a) If Gess(X, f) = {0}, then H(X, f) = R, and f is center-tight. So take g ≡ 0.

(b) If Gess(X, f ) = tZ with t 6= 0, then by Theorem 3.2 the co-range of f is ξZ

with ξ := 2π/t. So sup
N

kN
∑

n=3
d(N)

n (ξ , f )2 < ∞. By the reduction lemma, there ex-

ists an additive functional g such that f − g is center-tight, and Galg(X,g) ⊆
tZ. By Lemma 3.5 Gess(X, f) = Gess(X,g), whence Gess(X, f) = Gess(X,g) ⊆
Galg(X,g)⊆ tZ= Gess(X, f), and Gess(X,g) = Galg(X,g) = Gess(X, f).

(c) If Gess(X, f ) = R, take g := f. �

3.3.5 Proofs of results on hereditary arrays

Proof of Theorem 3.6: Suppose f is an a.s. uniformly bounded additive functional
on a uniformly elliptic Markov array X.

The first part of the theorem asks for the equivalence of the following conditions:

(1) f is hereditary

(2) for all ξ , liminf
N→∞

kN
∑

k=3
d(N)

k (ξ )2 < ∞⇒ limsup
N→∞

kN
∑

k=3
d(N)

k (ξ )2 < ∞

(3) for all ξ 6∈ H(X, f), DN(ξ )−−−→
N→∞

∞

(4) H(X′, f|X′) = H(X, f) for every sub-array X′ of X.

(1)⇒(2): Assume that f is hereditary and Linf(ξ ) := liminfDN(ξ )< ∞. We’ll show
that Lsup(ξ ) := limsupDN(ξ )< ∞. This is obvious for ξ = 0, so suppose ξ 6= 0.

Choose N`,M` ↑ ∞ such that DN`
(ξ )−−−→

`→∞
Linf(ξ ), DM`

(ξ )−−−→
`→∞

Lsup(ξ ). Let

X′ := {X (N`)
k } and X′′ := {X (M`)

k }.

Since Linf(ξ )< ∞, H(X′, f|X′) contains ξ , whence by (3.3.7), Gess(X
′, f |X′)⊆ 2π

ξ
Z.

By the hereditary property, Gess(X
′′, f|X′′) = Gess(X, f) = Gess(X

′, f|X′)⊆ 2π

ξ
Z. This

implies by (3.3.7) that H(X′′, f|X′′) 3 ξ , whence Lsup(ξ )< ∞.

(2)⇒(3): We assume that Linf(ξ )<∞⇒ Lsup(ξ )<∞ and show that DN(ξ )→∞ for
all ξ 6∈H(X, f). If ξ 6∈H(X, f), then sup

N
DN(ξ ) =∞, so Lsup(ξ ) =∞. By assumption,

this forces Linf(ξ ) = ∞, whence DN(ξ )→ ∞.
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(3)⇒(4): We assume that DN(ξ )→ ∞ for all ξ 6∈ H(X, f), and show that H(X, f) =

H(X′, f|X′) for all sub-arrays X′ = {X (N`)
n }. If ξ ∈ H(X, f), then sup

N
DN(ξ ) < ∞,

whence sup
`

DN`
(ξ ) < ∞ and ξ ∈ H(X′, f|X′). If ξ 6∈ H(X, f), then DN(ξ ) → ∞,

whence DN`
(ξ )→ ∞ and ξ 6∈ H(X′, f|X′).

(4)⇒(1): We assume that H(X′, f |X′) = H(X, f) for all sub-arrays X′, and show
that Gess(X

′, f |X′) = Gess(X, f) for all sub-arrays. The inclusion Gess(X
′, f |X′) ⊆

Gess(X, f) is obvious, so we focus on Gess(X
′, f |X′)⊇ Gess(X, f).

If Gess(X
′, f|X′) = R then there is nothing to prove. Suppose Gess(X

′, f|X′) 6= R,
then Gess(X

′, f|X′) = tZ for some t ∈R. Let ξ := 2π/t when t 6= 0 or any real number
otherwise. By (3.3.7),

H(X′, f|X′) 3 ξ .

By assumption (4), this implies that H(X, f) 3 ξ , whence by (3.3.7), Gess( f ) ⊆
2π

ξ
Z= Gess(X

′, f |X′), and the proof of (1) is complete.

This finishes the proof that properties (1)–(4) are equivalent.

The second part of the theorem asks to show that f is stably hereditary iff
DN(ξ )→ ∞ uniformly on compact subsets of R\H(X, f).

Suppose f is stably hereditary, then f is hereditary, whence DN(ξ )→ ∞ for all
ξ 6∈ H(X, f). To show that the convergence is uniform on compacts, we check that

∀ξ 6∈ H(X, f),∀M > 0,∃Nξ ,δξ > 0
(

N > Nξ

|ξ ′−ξ |< δξ

⇒ DN(ξ
′)> M

)
. (3.3.8)

Suppose this were false for some ξ and M, then ∃ξN→ ξ such that DN(ξN)≤M. But
this implies that {(1+ εN) f (N)

k } is not hereditary for εN := ξN
ξ
−1, in contradiction

to our assumptions.
Conversely, if DN(ξ )→ ∞ uniformly on compact subsets of R \H(X, f), and

εN → 0, then {g(N)
k } = {(1 + εN) f (N)

k }) is hereditary, because for all ξ 6∈ H( f ),
DN(ξ ,g)≡ DN((1+ εN)ξ , f)→ ∞, and as we saw above (2)⇒(1). �

Proof of Theorem 3.7: The first part of the theorem assumes that Gess(X, f) = tZ
or {0} and that f is hereditary, and asks to show that f is stably hereditary.

We begin with several reductions. It is sufficient to consider the case Gess(X, f) =
Z: If Gess(X, f) = tZ with t 6= 0 we work with t−1f, and if Gess(X, f) = {0} then
H(X, f) = R and DN(ξ )→ ∞ uniformly on compact subsets of R \H(X, f) (vacu-
ously), so f is stably hereditary by Theorem 3.6.

Next we claim that it is enough to treat the special case Galg(X, f) = Gess(X, f) =
Z. Otherwise we use Theorem 3.3 to write f = g−h where Galg(X,g)=Gess(X,g)=
Gess(X, f) and h is center-tight. By Lemma 3.5, H(X,g) = H(X, f), and by Lemma
1.4 and Corollary 2.2,

DN(ξ , f)≥
1
8

DN(ξ ,g)−
1
8

ξ
2 sup

n

kn+1

∑
k=3

u(n)k (h)2 =
1
8

DN(ξ ,g)−O(1).
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Thus, if DN(ξ ,g)→∞ uniformly on compact subsets ofR\H(X,g), then DN(ξ , f)→
∞ uniformly on compact subsets of R\H(X, f).

By assumption, ess sup | f |< K for some integer K. Then for every hexagon P ∈
Hex(N,n), Γ (P) ∈ Z∩ [−6K,6K].

Let m(N)
n denote the probability measure on the space of hexagons Hex(N,n) and

define for every γ ∈ Z∩ [−6K,6K],

µN({γ}) :=
kN

∑
n=3

m(N)
n {P ∈ Hex(N,n) : Γ (P) = γ}.

Using the identity |eiξ γ −1|2 = 4sin2 ξ γ

2 , we see that

d2
N(ξ ) = 4

6K

∑
γ=−6K

µN(γ)sin2 ξ γ

2
.

Since f is hereditary, DN → ∞ on R \H(X, f), and the expression for d2
N(ξ ) shows

that if DN → ∞ at ξ , then DN → ∞ uniformly on an open neighborhood of ξ .
It follows that DN→∞ uniformly on compact subsets ofR\H(X, f). By Theorem

3.6, f must be stably hereditary. This is the first part of the theorem.

The second part of the theorem says that if f is integer valued and not center-tight,
and if ess sup |f| ≤ K, then Gess(X, f) = kZ for some integer 0 < k ≤ 12K.

To see this recall that Gess(X, f) ⊂ Galg(X, f) ⊂ Z, whence Gess(X, f) = kZ for
some k ∈ Z. Since f is not center-tight, k 6= 0. By (3.3.7), H(X, f) = 2π

k Z.
The inequality | f | ≤ K implies that every hexagon P has balance |Γ (P)| ≤ 6K.

This implies that k ≤ 12K: Otherwise | 2πΓ (P)
k |< 0.95π and (3.3.1) gives

|e(2πi/k)Γ (P)−1|2 ≥ const.Γ (P)2.

But this implies that d(N)
n ( 2π

k )≥ const.u(N)
n , whence

sup
N

kN

∑
n=3

d(N)
n (

2π

k
)2 ≥ sup

N

kN

∑
n=3

(u(N)
n )2 = ∞ by non-center-tightness.

This contradicts 2π

k ∈ H(X, f). Thus 0 < k ≤ 12K.

It follows from the first part of the theorem and from Theorem 3.6, that if f is
integer valued and not center-tight, then the properties of being hereditary and of
being stably hereditary are equivalent. �
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3.4 Notes and references

In the stationary world, a center-tight cocycle is a coboundary (Schmidt [123]) and
the problems discussed in this chapter reduce to the question how small can one
make the range of a cocycle by subtracting from it a coboundary. The question
appears naturally in the ergodic theory of group actions, because of its relation to
the ergodic decomposition of skew-products [2, chapter 8], [123], [27], and to the
structure of locally finite ergodic invariant measures for skew-products [6], [120],
[111]. In the general setup of ergodic theory, minimal reductions such as in Theorem
3.3 are not always possible [82], although they do sometime exist [120],[111].

The relevance of (ir)reducibility to the local limit theorem appears in different
form in the papers of Guivarc’h & Hardy [56], Aaronson & Denker [4], and Dol-
gopyat [42]. There “irreducibility” is expressed in terms of a condition which rules
out non-trivial solutions for certain cohomological equations.

It is more difficult to uncover the irreducibility condition in the probabilistic lit-
erature on the LLT for sums of independent random variables. Rozanov’s paper
[115], for example, proves a LLT for independent Z-valued random variables Xk as-
suming Lindeberg’s condition (which is automatic for bounded random variables),
∑Var(Xk) = ∞, and subject to the assumption that

∞

∏
k=1

(
max

0≤m<t
P(Xk = m mod t)

)
= 0 for all integers t ≥ 2. (3.4.1)

Let X= {Xk} and f = { fk}where fk(x)= x. Clearly, (3.4.1) implies that Galg(X, f)=
Z. We claim that (3.4.1) is equivalent to the irreducibility: Gess(X, f) = Z.

To see why, it is useful first to note that (3.4.1) is equivalent to

∑
k
P[Xk 6= mk mod t] = ∞ (3.4.2)

where mk is the (smallest) most likely residue mod t for Xk.

Irreducibility⇒Rozanov’s condition: Define for x ∈ Z and 2 ≤ t ∈ Z, {x}tZ :=
t{x/t}, [x]tZ := x−{x}tZ, and set

◦ yk(x) := the (smallest) integer in mk + tZ closest to x
◦ zk(x) := x− yk(x)
◦ gk(x) := (yk(x)−mk)+ [x− yk(x)]tZ (gk takes values in tZ)
◦ hk(x) := {x− yk(x)}tZ (hk takes values in Z). Then

Xk = gk(Xk)+hk(Xk)+mk.

The algebraic range of gk is inside tZ, and by the Borel-Cantelli Lemma,

(3.4.2) fails⇔ Xk 6= mk mod tZ finitely often a.s.⇔ hk(Xk) 6= 0 finitely often a.s.
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If (3.4.2) fails, then
∞

∑
k=0

hk(Xk) converges a.s. (since a.s. there are only finitely non-

zero terms). Hence h is center-tight. Since Galg(g)⊂ tZ, we have a contradiction to
irreducibility.

Rozanov’s condition⇒ irreducibility: Fix θ ∈ [0, t) and let m be the closest inte-
ger in [0, t)∩Z to θ . Then |m′−θ | ≥ 1

2 for m′ 6= m, whence

E[dist2(Xn,θ + tZ)]≥ 1
4
P(Xn 6= mmod t)≥ 1

4
[1− max

0≤m<t
P(Xn = m mod t)]

Passing to the infimum over θ , we obtain that

D2(Xn,
2π

t )≥ 1
4
[1− max

0≤m<t
P(Xn = m mod t)]

(See §1.3.) We now obtain from Proposition 1.4 that

∞

∑
n=3

d2
n(

2π

t )≥ const
∞

∑
n=3

(
D2(Xn−1,

2π

t )+D2(Xn,
2π

t )
)

≥ const
∞

∑
n=2

(
1− max

0≤m<t
P(Xk = m mod t)

)
= ∞, by (3.4.2).

We find that the co-range does not contain 2π/t for t = 2,3,4, . . .. We already know
that the co-range does contain 2π (because Xk are integer valued). The only closed
sub-group of R with these properties is 2πZ. So the co-range is 2πZ, and the essen-
tial range is Z=the algebraic range

Other sufficient conditions for the LLT for sums of independent random variables
such as those appearing in [93],[132] and [95] can be analyzed in a similar way.

The reduction lemma was proved for sums of independent random variables in
[42]. A version of Theorem 3.5 for sums of independent random variables appears
in [95].



Chapter 4
The local limit theorem in the irreducible case

In this chapter we prove the local limit theorem for P(SN − zN ∈ (a,b)) when
zN−E(SN)√

Var(SN)
converges to a finite limit and f is irreducible. In this regime, the asymp-

totic behavior of P(SN − zN ∈ (a,b)) does not to depend on the details of X and f
(“universality”).

4.1 Main results

4.1.1 Local limit theorems for Markov chains

In the next two theorems, we assume that f is an a.s. uniformly bounded additive
functional on a uniformly elliptic Markov chain X, and we let X= {Xn}, f = { fn},
SN = f1(X1,X2)+ · · ·+ fN(XN ,XN+1), and VN := Var(SN).

Theorem 4.1. Suppose f is irreducible, with algebraic range R. Then VN → ∞, and
for every interval (a,b) and zN ∈ R s.t. zN−E(SN)√

VN
converges to a finite limit z,

P[SN− zN ∈ (a,b)] = [1+o(1)]
e−z2/2
√

2πVN
(b−a), as N→ ∞. (4.1.1)

Theorem 4.2. Suppose t > 0 and f is irreducible with algebraic range tZ. Then
VN → ∞ and there are constants 0 ≤ γN < t such that for all k ∈ Z, and for all
zN ∈ γN + tZ s.t. zN−E(SN)√

VN
converges to a finite limit z,

P[SN− zN = kt] = [1+o(1)]
e−z2/2t√

2πVN
, as N→ ∞. (4.1.2)

The constants γN are determined by the condition P[SN ∈ γN + tZ] = 1 for all N.

83
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The conditions of the theorems can be checked from the data of X and f using
the structure constants dn(ξ ) from §1.3:

Lemma 4.1. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X. Then

(1) f is non-lattice and irreducible iff ∑d2
n(ξ ) = ∞ for all ξ 6= 0.

(2) f is lattice and irreducible with algebraic range tZ, t > 0, iff ∑d2
n(ξ ) < ∞ for

ξ ∈ (2π/t)Z and ∑d2
n(ξ ) = ∞ for ξ 6∈ (2π/t)Z.

(3) f is lattice and irreducible with algebraic range {0} iff fn(Xn,Xn+1) are a.s.
constant for all n.

Proof. f is non-lattice and irreducible iff Gess(X, f) = Galg(X, f) = R. By theorem
3.1, this happens iff f has co-range {0}, which proves part (1). Part (2) is proved in
a similar way, and part (3) is a triviality. �

4.1.2 Local limit theorems for Markov arrays

In this section, we assume that f is an a.s. uniformly bounded additive functional on
a uniformly elliptic Markov array X with row lengths kN +1, and we let X= {X (N)

n },
f = { f (N)

n }, SN = ∑
kN
i=1 f (N)

i (X (N)
i ,X (N)

i+1 ), and VN := Var(SN).
The LLT for SN may fail due to the possibility that f|X′ may have different essen-

tial range for different sub-arrays X′. To deal with this we need to assume hereditary
behavior, see §3.2.3.

Theorem 4.1’. Suppose f is stably hereditary, non-lattice and irreducible. Then
VN → ∞, and for every interval (a,b) and zN ∈ R s.t. zN−E(SN)√

VN
−−−→
N→∞

z ∈ R,

P[SN− zN ∈ (a,b)] = [1+o(1)]
e−z2/2
√

2πVN
(b−a), as N→ ∞. (4.1.3)

Theorem 4.2’. Suppose t > 0 and f is hereditary, irreducible, and with algebraic
range tZ. Then VN → ∞, and there are 0 ≤ γN < t such that for all k ∈ Z and
zN ∈ γN + tZ s.t. zN−E(SN)√

VN
−−−→
N→∞

z ∈ R,

P[SN− zN = kt] = [1+o(1)]
e−z2/2t√

2πVN
, as N→ ∞. (4.1.4)

The constants γN are determined by the condition P[SN ∈ γN + tZ] = 1 for all N.

Notice that whereas in the non-lattice case we had to assume that f is stably heredi-
tary, in the lattice case it is sufficient to assume that f is hereditary. This is because
in the lattice case the two assumptions are equivalent, see Theorem 3.7.
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Again, it is possible to check the assumptions of the theorems from the data of X
and f using the structure constants:

Lemma 4.1’. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov array X with row lengths kN +1. Let d(N)

n (ξ ) be as §1.3, then

(1) f is stably hereditary, irreducible, and with algebraic range R iff

kN

∑
n=3

d(N)
n (ξ )2 −−−→

N→∞
∞ uniformly on compacts in R\{0}.

(2) Suppose t 6= 0, then f is hereditary and irreducible with algebraic range tZ iff
∑

kN
n=3 d(N)

n (ξ )2 −−−→
N→∞

∞ for all ξ 6∈ 2π

t Z. In this case f is also stably hereditary.

Proof. As in the case of Markov chains, f is non-lattice and irreducible iff its co-
range equals {0}. By Theorem 3.6, f is stably hereditary iff ∑

kN
n=3 d(N)

n (ξ )2 −−−→
N→∞

∞

uniformly on compacts in R\{0}, which proves part (1).
Part (2) is proved in a similar way, with the additional observation that thanks to

Theorem 3.7, in the irreducible lattice case, every hereditary additive functional is
automatically stably hereditary. �

4.1.3 Mixing local limit theorems

Let f be an additive functional on a Markov X with row lengths kN + 1, and state
spaces (S(N)

n ,B(S
(N)
n )). Let SN and VN be as in the previous section.

Theorem 4.3 (Mixing LLT). Suppose X is a uniformly elliptic Markov array, and
f is an additive functional on X which is stably hereditary, a.s. uniformly bounded,
and irreducible. Let AN ⊂S

(N)
kN+1 be measurable events such that P[X (N)

kN+1 ∈ AN ] is

bounded away from zero, and let xN ∈S
(N)
1 . Then for every φ : R→ R continuous

with compact support,

(1) Non-lattice case: Suppose f has algebraic range R. For every zN ∈ R such that
zN−E(SN)√

VN
→ z ∈ R,

lim
N→∞

√
VNE[φ(SN− zN)|X (N)

kN+1 ∈ AN ,X
(N)
1 = xN ] =

e−z2/2
√

2π

∫
∞

−∞

φ(u)du.

(2) Lattice case: Suppose f has algebraic range tZ (t > 0) and P[SN ∈ γN + tZ] = 1
for all N. For every zN ∈ γN + tZ s.t. zN−E(SN)√

VN
→ z ∈ R,

lim
N→∞

√
VNE[φ(SN− zN)|X (N)

kN+1 ∈ AN ,X
(N)
1 = xN ] =

e−z2/2|t|√
2π

∑
u∈Z

φ(tu).
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To understand what this means, think of φ ≈ 1(a,b).

In the next chapter, we will use mixing LLT for irreducible additive functionals
to study the LLT for some reducible additive functionals, as follows. Suppose f =

f̃+∇h, where f is irreducible and h is uniformly bounded. Then

SN(f) = SN (̃f)+h(N)
1 (X (N)

1 )−h(N)
kN+1(X

(N)
kN+1).

To pass from the LLT for SN (̃f) (which we know since f̃ is irreducible) to the LLT
for SN(f) (which we do not know because of the reducibility of f), we need to under-
stand the joint distribution of SN (̃f), h(N)

1 (X (N)
1 ) and h(N)

kN+1(XkN+1). This is the task
achieved by the mixing LLT.

4.2 Proofs

We will provide the proofs in the general context of Markov arrays.

Standing assumptions and notation for the remainder of the chapter:
X = {X (N)

n } is a Markov array with row lengths kN + 1, state spaces S
(N)
n , and

transition probabilities π
(N)
n,n+1(x,dy), and f = { f (N)

n } is an additive functional on X.

As always, d(N)
n (ξ ) are the structure constants of f.

We assume that ess sup | f | < K < ∞, and that X is uniformly elliptic with ellip-
ticity constant ε0. By the uniform ellipticity assumption,

π
(N)
n,n+1(x,dy) = p(N)

n (x,y)µ(N)
n+1(dy)

with 0≤ p(N)
n (x,y)< ε

−1
0 such that

∫
p(N)

n (x,y)p(N)
n+1(y,z)µ

(N)
n+1(dy)> ε0. There is no

loss of generality in assuming that µ
(N)
k (E) = P(X (N)

k ∈ E), see Proposition 1.2 and
the discussion which follows it.

4.2.1 Characteristic functions

The classical approach to limit theorems in probability theory, due to P. Lévy, is to
apply the Fourier transform, and analyze the characteristic functions of the random
variables in the problem. In our case the relevant characteristic functions are:

ΦN(x,ξ ) := Ex

(
eiξ SN

)
≡ E

(
eiξ SN |X (N)

1 = x
)
.

ΦN(x,ξ |A) := Ex

(
eiξ SN |XkN+1 ∈ A

)
≡ E

(
eiξ SN |X (N)

kN+1 ∈ A,X (N)
1 = x

)
.
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Here x ∈S
(N)
1 , A⊂S

(N)
kN+1, ξ ∈ R, and Ex(·) = E( · |X (N)

1 = x).
We write these functions in terms of perturbation operators as in [96]. For

every N ∈ N and 1≤ n≤ kN +1, define L
(N)

n,ξ : L∞(S
(N)
n+1)→ L∞(S

(N)
n ) by

(
L

(N)
n,ξ v

)
(x) :=

∫
S

(N)
n+1

p(N)
n (x,y)eiξ f (N)

n (x,y)v(y)dµ
(N)
n+1(y)

≡ E
(
eiξ f (N)

n (X(N)
n ,X(N)

n+1)v(X (N)
n+1)|X

(N)
n = x

)
.

Lemma 4.2 (Nagaev). Let 1(·)≡ 1, then the following identities hold:

E
(

eiξ SN v(X (N)
kN+1)

∣∣∣∣X (N)
1 = x

)
=
(
L

(N)
1,ξ L

(N)
2,ξ . . .L

(N)
kN ,ξ

v
)
(x), (4.2.1)

ΦN(x,ξ ) =
(
L

(N)
1,ξ L

(N)
2,ξ . . .L

(N)
kN ,ξ

1
)
(x), (4.2.2)

ΦN(x,ξ |A) =

(
L

(N)
1,ξ L

(N)
2,ξ . . .L

(N)
N,ξ

1A
)
(x)

Px[X
(N)
kN+1 ∈ A]

. (4.2.3)

Proof. E(eiξ SN v(X (N)
kN+1)

∣∣X (N)
1 = x) =∫

p(N)
1 (x,y)eiξ f (N)

1 (x,y)E
(
eiξ ∑

N
n=2 f (N)

n v|X (N)
2 = y

)
dµ

(N)
2 (y).

Proceeding by induction, we obtain (4.2.1), and (4.2.1) implies (4.2.2),(4.2.3). �

Lemma 4.3. L
(N)

n,ξ are bounded linear operators, and there is a positive constant ε̃

which only depends on ε0 such that for all N ≥ 1 and 5≤ n≤ kN , ‖L (N)
n,ξ ‖ ≤ 1, and∥∥∥L (N)

n−4,ξ L
(N)

n−3,ξ · · ·L
(N)

n,ξ

∥∥∥≤ e−ε̃d(N)
n (ξ )2

.

Proof. Throughout this proof we fix N and drop the suprescripts (N), and we use the
notation xi,zi etc. to denote points in Si =S

(N)
i .

It is clear that ‖L (N)
n,ξ ‖ ≤ 1. To estimate the norm of

L := Ln−4,ξ Ln−3,ξ · · ·Ln,ξ : L∞(Sn+1)→ L∞(Sn−4),

we represent this operator as an integral operator, and analyze the kernel. Let

◦ p(xk, . . . ,xm) := ∏
m−1
i=k pi(xi,xi+1),

◦ f (xk, . . . ,xm) := ∑
m−1
i=k fi(xi,xi+1),

◦ L(xn−4,zn+1) =

=
∫

Sn−3×···×Sn

p(xn−4,zn−3, . . . ,zn+1)eiξ f (xn−4,zn−3,...,zn+1)µn−3(dzn−3) · · ·µn(dzn).
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Then (L v)(xn−4) =
∫
Sn+1

[
L(xn−4,zn+1)v(zn+1)

]
µn+1(dzn+1), whence

‖L v‖∞ ≤ ‖v‖∞ sup
xn−4∈Sn−4

∫
Sn+1

|L(xn−4,zn+1)|µn+1(dzn+1).

To estimate this integral we change the order of integration:

∫
Sn+1

|L(xn−4,zn+1)|µn+1(dzn+1)≤
∫∫

Sn−2×Sn+1

[
|Kn(zn−2,zn+1)|

∫
Sn−3

p(xn−4,zn−3,zn−2)µn−3(dzn−3)

]
µn−2(dzn−2)µn+1(dzn+1), (4.2.4)

where Kn(zn−2,zn+1) :=∫∫
Sn−1×Sn

p(zn−2,zn−1,zn,zn+1)eiξ f (zn−2,zn−1,zn,zn+1)µn−1(dzn−1)µn(dzn).

CLAIM: Let p(zn−2→ zn+1) := P(Xn+1 = zn+1|Xn−2 = zn−2), then

|Kn(zn−2,zn−1)| ≤ p(zn−2→ zn+1)−

− 1
4

p(zn−2→ zn+1)E
(
|eiξΓ (P)−1|2

∣∣∣∣Xn−2 = Yn−2 = zn−2
Xn+1 = Zn+1 = zn+1

)
.

(4.2.5)

Proof of the claim. Set K̃n(zn−2,zn+1) := Kn(zn−2,zn+1)
p(zn−2→zn+1)

, then

K̃n(zn−2,zn+1) = E
(

eiξ ∑
n
k=n−2 fk(Xk,Xk+1)

∣∣∣∣Xn−2 = zn−2
Xn+1 = zn+1

)
.

Writing |K̃n(zn−2,zn+1)|2 = K̃n(zn−2,zn+1)K̃n(zn−2,zn+1), we find that

|K̃n(zn−2,zn+1)|2 = E
(

eiξΓ

(
Xn−2

Xn−1
Yn−1

Xn
Yn

Xn+1

)∣∣∣∣Xn−2 = Yn−2 = zn−2
Xn+1 = Zn+1 = zn+1

)
,

where {Yn} is an independent copy of {Xn}, and Γ is as in (1.3.1).

The imaginary part is necessarily zero, so writing P =
(
Xn−2

Xn−1
Yn−1

Xn
Yn

Xn+1
)

we

have by the identity 1− cosα = 1
2 |e

iα −1|2 that

|K̃n(zn−2,zn−1)|2 = 1−E
(
1− cos(ξΓ (P))| Xn−2 = Yn−2 = zn−2

Xn+1 = Zn+1 = zn+1

)
≡ 1− 1

2
E
(
|eiξΓ (P)−1|2| Xn−2 = Yn−2 = zn−2

Xn+1 = Zn+1 = zn+1

)
.
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The claim follows, since
√

1− t ≤ 1− t
2 for all 0≤ t ≤ 1.

We now substitute (4.2.5) in (4.2.4). The result is a difference of two terms:

(a) The first term is obtained by replacing Kn(zn−2,zn+1) in (4.2.4) by p(zn−2 →
zn+1). It has the following upper bound:∫∫

Sn−2×Sn+1

∫
Sn−3

p(xn−4,zn−3,zn−2)p(zn−2→ zn+1) = 1.

(b) The second term is obtained by replacing Kn(zn−2,zn+1) in (4.2.4) by

1
4

p(zn−2→ zn+1)E
(
|eiξΓ (P)−1|2| Xn−2 = Yn−2 = zn−2

Xn+1 = Zn+1 = zn+1

)
.

The inner-most integral satisfies∫
Sn−3

p(xn−4,zn−3,zn−2)µn−3(dzn−3)≥ ε0

because of uniform ellipticity. This leads to the following lower bound for the
second term:

1
2

ε
2
0E
(
|eiξΓ (P)−1|2

)
=

1
2

ε
2
0 dn(ξ )

2.

In total we get:
∫
|L(xn−4,zn+1)|µn+1(dzn+1)≤ 1− ε̃dn(ξ )

2, where ε̃ := 1
2 ε2

0 . Since
1− t ≤ e−t , we are done. �

Recall that DN(ξ ) = ∑
kN
n=3 d(N)

n (ξ )2. Write DN =
4

∑
j=0

D j,N where

D j,N(ξ ) = ∑
3≤n≤kN

n≡ j mod 5

d(N)
n (ξ )2.

Applying Lemma 4.3 iteratively we conclude that there is a constant C independent
of N s.t. for all N,

|ΦN(x,ξ )| ≤Ce−ε̃ max(D0,N ,...,D4,N) ≤Ce−
1
5 ε̃DN(ξ ). (4.2.6)

If P(X (N)
kN+1 ∈A)≥ δ then by (4.2.3), |ΦN(x,ξ |A)| ≤ δ

−1‖L (N)
1,ξ L

(N)
2,ξ . . .L

(N)
kN ,ξ

1A‖
whence again

|ΦN(x,ξ |A)| ≤Ce−
1
5 ε̃DN(ξ ). (4.2.7)

The next result shows that if u(N)
n is big, then dN

n (·) cannot be small at two nearby
points. Recall the standing assumption ess sup‖ f (N)

n ‖∞ ≤ K, the definition of the

structure constants u(N)
n and that UN :=

kN

∑
n=3

(u(N)
n )2.
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Lemma 4.4. ∃δ̃ = δ̃ (K)> 0 s.t. if |δ | ≤ δ̃ then for all 3≤ n≤ kN ,

d(N)
n (ξ +δ )2 ≥ 2

3
δ

2
(

u(N)
n

)2
−2|δ |u(N)

n d(N)
n (ξ ). (4.2.8)

Proof. Fix a hexagon P =

(
xn−2

xn−1
yn−1

xn
yn

yn+1

)
∈ Hex(N,n), and let

un := Γ (P) , dn(ξ ) := |eiξun −1|,

then the identity |eiθ −1|2 = 2(1− cosθ) implies

d2
n(ξ +δ ) = |ei(ξ+δ )un −1|2 = 2[1− cos((ξ +δ )un)]

= 2[1− cos(ξun)cos(δun)+ sin(ξun)sin(δun)]

= 2[(1− cos(ξun))cos(δun)+(1− cos(δun))+ sin(ξun)sin(δun)] (4.2.9)

≥ 2
[
(1− cos(δun))−|sin(ξun)sin(δun)|

]
provided |δ̃ |< π

12K
,

because in this case |δun|< π

2 , so cos(δun)≥ 0. Make δ̃ even smaller to guarantee
0≤ |t| ≤ 6Kδ̃ ⇒ 1

3 t2 ≤ 1− cos t ≤ t2, then

d2
n(ξ +δ )≥ 2

( 1
3 δ

2u2
n−|δun|

√
1− cos2(ξun)

)
= 2
(

1
3 δ

2u2
n−|δun|

√
(1− cos(ξun))(1+ cos(ξun))

)
≥ 2
(

1
3 δ

2u2
n−|δun|

√
2(1− cos(ξun))

)
= 2

3 δ
2u2

n−2|δun||eiξun −1|

≥ 2
3 δ

2u2
n−2|δun|dn(ξ ).

Integrating on P ∈ Hex(N,n), and using Cauchy-Schwarz to estimate the second
term we obtain the lower bound for dn(ξ +δ )2. �

Lemma 4.4 and the Cauchy-Schwarz inequality together give

DN(ξ +δ )≥ 2
3

δ
2UN−2|δ |

√
UNDN(ξ ) (4.2.10)

where Un := ∑
kN
k=3(u

(N)
k )2. If VN := Var(SN)→ ∞, then as soon as VN > 2C2 where

C2 is the constant from Theorem 2.1, we have

UN

2C1
≤VN ≤ 2C1UN . (4.2.11)

So there are ε̂1, ĉ1 > 0 s.t. DN(ξ + δ ) ≥ ε̂1δ 2VN − ĉ1|δ |
√

VNDN(ξ ). By (4.2.6),
there are ε̂, ĉ > 0 s.t. for all N so large that VN > 2C2, for all ξ and |δ |< δ̃
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|Φn(x,ξ +δ )| ≤C exp
(
−ε̂VNδ

2 + ĉ|δ |
√

VNDN(ξ )
)
. (4.2.12)

We rephrase (4.2.12) as follows. Given a compact interval I ⊂ R, let

AN(I) :=− log sup
(x,ξ )∈S(N)

1 ×I

∣∣ΦN(x,ξ )
∣∣ (4.2.13)

and choose some pair (x̃N , ξ̃N) ∈S
(N)
1 × I such that

AN(I)≤− log |ΦN(x̃N , ξ̃N)| ≤ AN(I)+ ln2.

So |Φ(x̃N , ξ̃N)| ≥ 1
2 e−AN(I) = 1

2 sup |ΦN(·, ·)| on S
(N)
1 × I.

Corollary 4.1. For each δ there are C̃, ε̂,c > 0 s.t. for every compact interval I s.t.
|I| ≤ δ̃ , for all N for every (x,ξ )∈S(N)

1 × I, for every A⊂S
(N)
kN+1 s.t. µ

(N)
kN+1(A)≥ δ

|ΦN(x,ξ )| ≤ C̃ exp
(
−ε̂VN(ξ − ξ̃N)

2 + c|ξ − ξ̃N |
√

VNAN(I)
)
.

|ΦN(x,ξ |A)| ≤ C̃ exp
(
−ε̂VN(ξ − ξ̃N)

2 + c|ξ − ξ̃N |
√

VNAN(I)
)
.

Proof. We only give the proof in the case VN is large, so that (4.2.12) holds. This
is the case we need. We remark that the result also holds generally, because the
estimate we seek is trivial when VN is small.

Substituting ξ = ξ̃N , δ = ξ − ξ̃N in (4.2.12) gives

|ΦN(x,ξ )| ≤C exp
(
−ε̂VN(ξ − ξ̃N)

2 + ĉ|ξ̃N−ξ |
√

VNDN(ξ̃N)

)
.

By (4.2.6), e−AN(ξ̃N) ≤ 2|ΦN(x̃N , ξ̃N)| ≤ 2Ce−
1
5 ε̃DN(ξ̃N). We conclude that

DN(ξ̃ )≤C1AN(I)+C2

for some global constants C1,C2. The estimate of |ΦN(x,ξ )| follows. The second
estimate is proved in the same way. �

4.2.2 The LLT in the irreducible non-lattice case

We give the proof in the general context of arrays (Theorem 4.1’). Theorem 4.1
on chains follows, because every additive functional on a Markov chain is stably
hereditary (Example 3.5).

We begin by proving that VN −−−→
N→∞

∞. Otherwise liminfVN < ∞, and one can

find N` ↑ ∞ such that Var(SN`
) = O(1). Let X′ denote the sub-array with rows
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X′(`) = X(N`). By Theorem 2.2, f|X′ is center-tight, whence Gess(X
′, f|X′) = {0}.

At the same time, Gess(X, f) = Galg(X, f) = R, because f is irreducible and non-
lattice. So Gess(X

′, f|X′) 6= Gess(X, f), in contradiction to the assumption that f is
stably hereditary.

Next we fix zN ∈ R such that zN−E(SN)√
VN

→ z, and show that for every non-empty
interval (a,b),

P[SN− zN ∈ (a,b)] = [1+o(1)]
e−z2/2
√

2πVN
(b−a), as N→ ∞. (4.2.14)

A well-known approximation argument [133], [17, chapter 10] reduces (4.2.14) to
showing that for all φ ∈ L1(R) whose Fourier transform φ̂(ξ ) :=

∫
R e−iξ uφ(u)du

has compact support,

lim
N→∞

√
VNE

[
φ
(
SN− zN

)]
=

e−z2/2
√

2π

∫
∞

−∞

φ(u)du.

We will prove the stronger statement that for all x(N)
1 ∈S

(N)
1

lim
N→∞

√
VNEx(N)

1

[
φ
(
SN− zN

)]
=

e−z2/2
√

2π

∫
∞

−∞

φ(u)du. (4.2.15)

Fix φ ∈ L1 such that supp(φ̂) ⊆ [−L,L]. By the Fourier inversion formula,

E
x(N)

1
(φ(SN− zN)) =

1
2π

∫ L

−L
φ̂(ξ )ΦN(xN ,ξ )e−iξ zN dξ . So (4.2.15) is equivalent to

lim
N→∞

√
VN ·

1
2π

∫ L

−L
φ̂(ξ )ΦN(x

(N)
1 ,ξ )e−iξ zN dξ =

e−z2/2
√

2π
φ̂(0). (4.2.16)

Below, we give a proof of (4.2.16).
We note for future reference that the proof of (4.2.16) below works under the

milder assumption that φ̂ is bounded, continuous at zero and has compact support,
e.g. φ̂ = 1

2π
1[−π,π] (which is the Fourier transform of φ(u) = sin(πu)

πu 6∈ L1).

Divide [−L,L] into segments I j of length ≤ δ̃ where δ̃ is given by Lemma 4.4,
so that I0 is centered at 0. Let

J j,N :=
1

2π

∫
I j

φ̂(ξ )ΦN(x
(N)
1 ,ξ )e−iξ zN dξ .

CLAIM 1: The contribution of J0,N as N→ ∞ is given by√
VNJ0,N −−−→

N→∞

1√
2π

e−z2/2
φ̂(0). (4.2.17)
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Proof of the claim. Fix R > 0. Corollary 4.1 (with AN = 0) shows that√
VN

∫
{ξ∈I0:|ξ |>R/

√
VN}

φ̂(ξ )ΦN(x
(N)
1 ,ξ )e−iξ zN dξ = oR→∞(1).

Next, a change of variables ξ = s/
√

VN gives

√
VN

∫
[|ξ |≤R/

√
VN ]

φ̂(ξ )ΦN(x
(N)
1 ,ξ )e−iξ zN dξ =

∫
[|s|≤R]

φ̂

(
s√
VN

)
Ex(e

is SN−zN√
VN ) ds.

By Dobrushin’s CLT for inhomogeneous Markov arrays (Theorem 2.3) SN−zN√
VN

converges in distribution w.r.t. P
x(N)

1
to the normal distribution with mean −z and

variance 1. By Lévy’s continuity theorem, this implies that

E
x(N)

1
(e

is SN−zN√
VN )−−−→

N→∞
e−isz−s2/2

uniformly on compacts, and so√
VN

∫
|ξ |≤R/

√
VN

φ̂(ξ )ΦN(x
(N)
1 ,ξ )e−iξ zN dξ = φ̂(0)

∫ R

−R
e−isze−s2/2ds+oN→∞(1).

Since this is true for all R, we can let R→ ∞ sufficiently slow to obtain (4.2.17).

CLAIM 2: The contribution of the other J j,N is negligible, :√
VNJ j,N −−−→

N→∞
0 for j 6= 0.

Proof of the claim. Since f is irreducible with algebraic range R, the co-range of f is
{0} (Theorems 3.1, 3.4). Since f is stably hereditary,

DN(ξ )−−−→
N→∞

∞ uniformly on compacts in R\{0}.

By (4.2.6), ΦN(x
(N)
1 ,ξ )→ 0 uniformly on compacts in R\{0}.

We will use this to show that for any interval I ⊂ R\{0}√
VN

∫
I
|Φ(x(N)

1 ,ξ )|dξ → 0. (4.2.18)

By subdividing I into finitely many subintervals we see that it suffices to prove the
claim for I = I j for some j. Recall that AN(I j)=− logsup |ΦN(·, ·)| on S

(N)
1 ×I j, and

(x̃ j,N , ξ̃ j,N) are points where this supremum is achieved up to factor 2. Set A j,N :=
AN(I j), then A j,N → ∞ as N→ ∞ for each j 6= 0.

Take large R and split I j into two regions
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I′j,N :=

{
ξ ∈ I j : |ξ − ξ̃ j,N | ≤ R

√
A j,N

VN

}
, I′′j,N := I j \ I′j,N .

Split the integral
∫

I j
|Φ(x(N)

1 ,ξ )|dξ into two integrals J′j,N , J′′j,N accordingly.

◦ On I′j,N , |ΦN(x
(N)
1 ,ξ )| ≤ e−A j,N and |I′j,N | ≤ 2R

√
A j,N
VN

, so√
VN |J′j,N | ≤ 2R

√
A j,Ne−A j,N .

◦ On I′′j,N , by Corollary 4.1,

|ΦN(x
(N)
1 ,ξ )| ≤ C̃ exp

(
−ε̂VN |ξ − ξ̃ j,N |R

√
A j,N

VN
+ c|ξ − ξ̃ j,N |

√
VNA j,N

)
≤ C̃ exp

(
− ε̂

2
|ξ − ξ̃ j,N |

√
A j,NVN

)
, provided Rε̂ > c+

ε̂

2
.

Hence
√

VNJ′′j,N ≤
√

VNC̃
∫

∞

−∞

e−
ε̂
2 |s|
√

A j,NVN ds = O(A
− 1

2
j,N ).

Combining these estimates, we obtain√
VN‖Φ(x(N)

1 , ·)‖L1(I j)
≤ 2R

√
A j,N e−A j,N +

C√
A j,N

. (4.2.19)

Since A j,N → ∞ as N→ ∞ (4.2.18) follows.

Since |J j,N | ≤
‖φ̂‖∞ ‖Φ(x(N)

1 , ·)‖L1(I j)

2π
, claim 2 follows from (4.2.18).

The proof of the LLT is complete: Claims 1 and 2 imply (4.2.16), and (4.2.16)
implies (4.2.14) by [17, chapter 10]. �

4.2.3 The LLT for the irreducible lattice case

We give the proof in the context of arrays (Theorem 4.2’): X is a uniformly elliptic
array, and f is an additive functional on X which is a.s. uniformly bounded, heredi-
tary, irreducible, and with algebraic range tZ with t > 0. Without loss of generality,
t = 1, otherwise work with t−1f.

The assumption that Galg(R) = Z says that there are constants c(N)
n such that

f (N)
n (X (N)

n ,X (N)
n+1)− c(N)

n ∈ Z a.s. We may assume without loss of generality that

c(N)
n = 0, otherwise we work with f− c. So

SN ∈ Z a.s. for every N ≥ 1.



4.2 Proofs 95

We will show that for every sequence of numbers zN ∈ Z such that zN−E(SN)√
VN

→ z,

and for every x(N)
1 ∈S

(N)
n

P
x(N)

1
(SN− zN = 0) = [1+o(1)]

e−z2/2
√

2πVN
, as N→ ∞. (4.2.20)

Integrating over (S(N)
1 ,B(S

(N)
1 ),µ

(N)
1 ) gives (4.1.4) with k = 0. For general k, take

z′N := zN + k.

The assumptions on f imply that Var(SN) −−−→
N→∞

∞. The proof is a routine modi-

fication of the argument we used in the non-lattice case, so we omit it.
Observe that 1

2π

∫
π

−π
eimξ dξ is equal to zero when m ∈ Z\{0}, and equal to one

when m = 0. In particular, since SN− zN ∈ Z almost surely, for every x(N)
1 ∈S

(N)
1

P
x(N)

1
(SN− zN = 0) = E

x(N)
1

(
1

2π

∫
π

−π

eiξ (SN−zN)dξ

)
=

1
2π

∫
π

−π

Φ(x(N)
1 ,ξ )e−iξ zN dξ .

Thus to prove (4.2.20) it is sufficient to show that

lim
N→∞

√
VN ·

1
2π

∫
π

−π

ΦN(x
(N)
1 ,ξ )e−iξ zN dξ =

1√
2π

e−z2/2. (4.2.21)

Notice that (4.2.21) is (4.2.16) in the case φ(u) = sin(πu)
πu , φ̂(ξ ) = 1

2π
1[−π,π](ξ ),

and can be proved in almost exactly the same way.
Here is a sketch of the proof. One divides [−π,π] into segments I j of length less

than the δ̃ of Lemma 4.4.
The contribution of the interval which contains zero is asymptotic to 1√

2πVN
e−z2/2.

This is shown as in claim 1 of the preceding proof.
The remaining intervals are bounded away from 2πZ. Their contribution is

o(1/
√

VN). This can be seen as in claim 2 of the preceding proof, using the facts
that since f is irreducible with algebraic range Z, H(X, f) = 2πZ (Theorems 3.1,
3.4), and since f is hereditary and Galg( f ) = Z, f is stably hereditary, whence
DN(ξ )−−−→

N→∞
0 uniformly on compacts in R\2πZ. �

4.2.4 The mixing LLT

The proof is very similar to the proof of the local limit theorem, except that we use
Φ(x,ξ |A) instead of Φ(x,ξ ).

We outline the proof in the non-lattice case, and leave the lattice case to the
reader. Suppose X is a uniformly elliptic Markov array, and that f is a.s. uniformly
bounded, stably hereditary, irreducible and with algebraic range R.
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Let AN ∈ S
(N)
kN+1 be measurable sets s.t. P(X (N)

kN+1 ∈ AN) > δ > 0, and let

xN ∈ S
(N)
1 be points. Suppose zN−E(SN)√

VN
→ z. As before, VN → ∞, and a standard

approximation argument ([17], chapter 10) says that it is enough to show that for
every φ ∈ L1(R) s.t. supp(φ̂)⊂ [−L,L],

lim
N→∞

√
VN ·

1
2π

∫ L

−L
φ̂(ξ )ΦN(xN ,ξ |AN)e−iξ zN dξ =

e−z2/2
√

2π
φ̂(0).

Divide [−L,L] as before into intervals I j of length ≤ δ̃ where δ̃ is given by
Lemma 4.4 and I0 is centered at zero, and let

J j,N :=
1

2π

∫
I j

φ̂(ξ )ΦN(xN ,ξ |AN)e−iξ zN dξ .

CLAIM 1:
√

VNJ0,N −−−→
N→∞

(2π)−
1
2 e−z2/2φ̂(0).

Proof of the claim: Fix R > 0. As before, corollary 4.1 with AN = 0 gives√
VN

∫
{ξ∈I0:|ξ |>R/

√
VN}

φ̂(ξ )Φ(xN ,ξ |AN)e−iξ zN dξ = oR→∞(1).

Next the change of variables ξ = s/
√

VN gives√
VN

∫
{ξ∈I0:|ξ |≤R/

√
VN}

φ̂(ξ )Φ(xN ,ξ |AN)e−iξ zN dξ

=
∫ R

−R
φ̂

(
s√
VN

)
ExN

(
e

is( SN−zN√
VN

)
∣∣∣∣X (N)

kN+1 ∈ AN

)
dξ

=
1

P(X (N)
kN+1 ∈ AN)

∫ R

−R
φ̂

(
s√
VN

)
ExN

(
e

is( SN−zN√
VN

)
1AN (X

(N)
kN+1)

)
dξ . (4.2.22)

We analyze the expectation in the integrand. Take 1≤ rN ≤ kN such that rN →∞

and rN/
√

VN → 0, and let

S∗N :=
kN−rN

∑
j=1

f (N)
j (X (N)

j ,X (N)
j+1)≡ SN−

kN

∑
j=kN−rN+1

f (N)
j (X (N)

j ,X (N)
j+1).

Since ess sup |f|< ∞, |SN−S∗N |= o(
√

VN), and so
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ExN

(
e

is( SN−zN√
VN

)
1AN (X

(N)
kN+1)

)
= ExN

(
e

is(
S∗N−zN√

VN
)
1AN (X

(N)
kN+1)

)
+o(1)

= ExN

(
e

is(
S∗N−zN√

VN
)
E
(

1AN (X
(N)
kN+1)|X

(N)
1 , . . . ,X (N)

kn−rN

))
+o(1)

= ExN

(
e

is(
S∗N−zN√

VN
)
E
(

1AN (X
(N)
kN+1)|X

(N)
kn−rN

))
+o(1) by the Markov property

!
= ExN

(
e

is(
S∗N−zN√

VN
)
[
P(X (N)

kN+1 ∈ AN)+O(θ n)
])

+o(1), where 0 < θ < 1

and !
= uses the exponential mixing estimate (1.2.3). Since P(X (N)

kN+1 ∈ AN) is

bounded below, and S∗N−zN√
VN

converges in distribution to the standard normal dis-
tribution by Dobrushin’s theorem, we may conclude that

ExN

(
e

is( SN−zN√
VN

)
1AN (X

(N)
kN+1)

)
=

1+o(1)√
2π

e−z2/2−izsP
(

X (N)
kN+1 ∈ AN

)
.

Substituting this in (4.2.22) gives the claim.

CLAIM 2:
√

VNJ j,N −−−→
N→∞

0 for j 6= 0.

The claim is proved as in the previous proof, but with (4.2.7) replacing (4.2.6).
Together, claims 1 and 2 imply the theorem. �

4.3 Notes and references

For a brief account of the history of the local limit theorem, see the synopsis.
Many of the techniques we used in this chapter have a long history. The reduction

of the LLT to the asymptotic analysis of the integrals (4.2.16) and (4.2.21) for φ ∈ L1

with Fourier transforms with compact support was already used by Stone [133] for
proving local limit theorems for sums of iid random variables. As mentioned at the
end of the synopsis, the method of characteristic function operators is due to Nagaev
[96], who used it to prove central and local limit theorems for homogeneous Markov
chains, and this method was used extensively in dynamical systems. Hafouta &
Kifer [60], Hafouta [57, 58], and Dragičević, Froyland, & González-Tokman [45],
used this technique to prove the local limit theorem in a non-homogeneous setup.

The terminology “mixing LLT” is due to Rényi [112], who initiated the study of
the stability of limit theorems under conditioning and changes of measure. The rel-
evance of Mixing LLT to the study of reducible case is noted by Guivarc’h & Hardy
[56]. Mixing LLT have numerous other applications including mixing of special
flows [56, 43], homogenization [37] and skew products (see in particular, Theorem
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5.2 in Chapter 5). Mixing LLT for additive functionals of (stationary) Gibbs-Markov
processes were proved by Aaronson & Denker [4].



Chapter 5
The local limit theorem in the reducible case

In this chapter we prove the local limit theorem for P(SN − zN ∈ (a,b)) when
zN−E(SN)√

Var(SN)
converges to a finite limit and f is reducible. In the reducible case, the

asymptotic behavior of P(SN − zN ∈ (a,b)) depends on the details of fn(Xn,Xn+1).
The dependence is strong for small intervals, and weak for large intervals.

5.1 Main results

5.1.1 Heuristics and warm up examples

An additive functional is called reducible if

f = g+ c

where c is center-tight, and the algebraic range of g is strictly smaller than the al-
gebraic range of f. By the results of Chapter 3, if Var(SN(f))→ ∞, X is uniformly
elliptic, and f is a.s. bounded, then we can choose g to be irreducible. In this case

SN(f) = SN(g)+SN(c).

where Var(SN(g)) ∼ Var(SN(f))→ ∞, Var(SN(c)) = O(1), and SN(g) satisfies the
lattice local limit theorem. The contribution of Sn(c) cannot be neglected. In this
chapter we give the corrections to the LLT needed to take Sn(c) into account.

Before stating our results in general, we discuss two simple examples which
demonstrate the possible effects of SN(c).

Example 5.1. (Simple random walk with continuous first step and drift): Sup-
pose {Xn}n≥1 are independent real-valued random variables, where X1 has distribu-
tion F, and Xi (i≥ 2) are equal to 0,1 with equal probabilities.

99
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F could be arbitrary, but we assume that F is continuous (no atoms), F is sup-
ported inside a compact interval [−M,M], and F∗ := {F} ({·} stands for the frac-
tional part) is not uniformly distributed on [0,1].

SN := X1+ · · ·+XN is exactly SN(f), where fn(x,y) := x. Since F is continuous, f
has algebraic range R. The following decomposition shows that f is reducible, with
essential range Z: Let δi j be Kronecker’s delta, then f = g+ c where

gn(x,y) := (1−δ1,n)x, cn(x,y) := δ1,nx,

then g is irreducible with essential range Z, and c is center tight.
We have SN = (X2 + · · ·+XN︸ ︷︷ ︸

SN(g)

) + X1︸︷︷︸
SN(c)

. Clearly, SN(g), SN(c) are independent;

SN(c)∼ F; and SN(g) has the binomial distribution B( 1
2 ,N−1). We deduce that SN

has distribution F∗B( 1
2 ,N−1). This distribution has density pN(x)dx. The follow-

ing holds as N→ ∞:

(A) Non-uniform scaling limit for pN(x)dx: mN := pN(x)dx is a positive functional
on Cc(R) = {continuous functions with compact support}. Fix zN := E(SN) = N/2
and let VN := Var(SN)∼ N/4. Then for every φ ∈Cc(R) and N even,∫

φ(x− zN)pN(x)dx = E[φ(SN− zN)] = E[φ(SN(g)+SN(c)− zN)]

= ∑
m∈Z

E[φ(F+m− zN)]P[Sn(g) = m] =
N−1

∑
m=0

(
N−1

m

)
1

2N−1E[φ(F+m− zN)]

=
1

2N−1

N−1

∑
m=0

(
N−1

m

)
ψ(m− N

2 ), where ψ(m) := E[φ(F+m)]

=
1

2N−1

N/2−1

∑
m=−N/2

(
N−1

m+N/2

)
ψ(m)∼ 1√

2πVN
∑

m∈Z
ψ(m) by Stirling’s formula

∼ 1√
2πVN

∑
m∈Z

E[φ(F+m)], as N→ ∞. This also holds for N odd.

Thus the distribution of SN − zN tends to zero in the vague topology of Radon mea-
sure on R “at a rate of 1/

√
2πN,” and if we inflate it by

√
2πVN then it converges in

the vague topology to F∗(counting measure on Z).
Notice that if F∗ is non-atomic and different from the uniform distribution on

[0,1], then F∗(counting measure on Z is not uniform on a closed subgroup of R. By
contrast, in the irreducible case the scaling limit is the Haar measure on Gess(f).

(B) Non-standard limit for
√

2πVNP[SN−zN ∈ (a,b)]: Fix a,b∈R\Z s.t. |a−b|>
1 and P(F∗ = {a}) = P(F∗ = {b}) = 0. Repeating the previous calculation with
φi ∈Cc(R) such that φ1 ≤ 1(a,b) ≤ φ2 gives for zN = E(SN) that√

2πVNP[SN− zN ∈ (a,b)]−−−→
N→∞

∑
m∈Z

E[1(a,b)(m+F)]. (5.1.1)
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This is different than the limit in the irreducible non-lattice LLT (Theorem 4.1):√
2πVNP[SN− zN ∈ (a,b)]−−−→

N→∞
|a−b|; (5.1.2)

or the limit in the irreducible lattice LLT with range Z (Theorem 4.2):√
2πVNP[SN− zN ∈ (a,b)]−−−→

N→∞
∑

m∈Z
1(a,b)(m). (5.1.3)

(C) Robustness for large intervals: Although different, the limits in (5.1.1),(5.1.3)
and (5.1.2) are nearly the same as |a−b| → ∞.

The ratio between the limits in (5.1.3),(5.1.2) tends to one as |a− b| → ∞. The
ratio between the limits in (5.1.1),(5.1.3) tends to one too, because supp(F) ⊂
[−M,M], so |a−b|−2M ≤ ∑

m∈Z
1(a,b)(m+F)≤ |a−b|+2M a.s., whence

∣∣∣∣∣∣
∑

m∈Z
E[1(a,b)(m+F)]

∑
m∈Z

1(a,b)(m)
−1

∣∣∣∣∣∣≤ 2M
|a−b|

−−−−−→
|a−b|→∞

0.

Example 5.1 is very special in that Sn(g),SN(c) are independent. Nevertheless,
we will see below that (A),(B),(C) are general phenomena, which also happen when
SN(g), SN(h) are strongly correlated. The following simple example demonstrates
another pathology that is quite general:

Example 5.2 (Gradient perturbation of the lazy random walk). Suppose Xn,Yn
independent random variables such that Xn =−1,0,+1 with equal probabilities, and
Yn are uniformly distributed in [0,1]. Let X= {(Xn,Yn)}n≥1.

◦ The additive functional gn((xn,yn);(xn+1,yn+1)) = xn generates the lazy random
walk on Z, SN(g) = X1 + · · ·+XN . It is irreducible, and satisfies the lattice LLT
with range Z.
◦ The additive functional cn((xn,yn),(xn+1,yn+1)) = yn− yn+1 is center-tight, and

SN(c) = YN+1−Y1.
◦ The sum f = g+c is reducible, with algebraic rangeR (because of c) and essential

range Z (because of g). It generates the process

SN(f) = SN(g)+YN+1−Y1.

SN(f) lies in a random coset bN +Z, where bN =YN+1−Y1. Since the distribution
of bN is continuous, P[SN − zN = k] = 0 for all zN ,k ∈ Z, and the standard lattice
LLT fails. To deal with this, we must “shift” SN − zN back to Z. This leads to the
following (correct) statement: For all zN ∈ Z s.t. zN√

VN
→ z, for all k ∈ Z,

P[SN− zN−bN = k]∼ e−z2/2
√

2πVN
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Notice the shift by a random bounded quantity bN .

5.1.2 The LLT in the reducible case

Theorem 5.1. Let X = {Xn} be a uniformly elliptic Markov chain, and let f be a
reducible a.s. uniformly bounded additive functional with essential range δ (f)Z,
where δ (f) 6= 0. Then there are random variables bN = bN(X1,XN+1) and F =
F(X1,X2, . . .) with the following properties:

(1) For every zN ∈ δ (f)Z such that zN−E(SN)√
VN

→ z, for every φ ∈Cc(R),

lim
N→∞

√
VNE [φ(SN− zN−bN)] =

δ (f)e−z2/2
√

2π
∑

m∈Z
E[φ(mδ (f)+F)].

(2) For every AN+1 ⊂SN+1 measurable such that P[XN+1 ∈ AN+1] is bounded be-
low, and for every x ∈S1

lim
N→∞

√
VNEx

[
φ(SN− zN−bN)

∣∣XN+1 ∈ AN+1
]
=

δ (f)e−z2/2
√

2π
∑

m∈Z
Ex[φ(mδ (f)+F)].

(3) ‖bN‖∞ ≤ 9δ (f), and F ∈ [0,δ (f)).

The statement may seem at first sight different from the previous LLT we dis-
cussed, so we’d like to spend some time on clarifying what it is saying.

◦ E [φ(SN− zN−bN)] , when viewed as a positive functional on Cc(R), represents
the measure on R, mN(E) = P[SN − zN − bN(X1,XN+1) ∈ E]. This is the distri-
bution of SN , after a shift by zN + bN(X1,XN+1). The deterministic shift by zN
cancels the drift of SN (notice that zN ≈ E(SN)). The random shift bN is needed
to force SN to stay inside δ (f)Z, see Example 5.2.
◦ The linear functional

A (φ) := δ (f) ∑
m∈Z

E[φ(mδ (f)+F)] (5.1.4)

defines the element of Cc(R)∗ which represents the measure F∗mδ (f), where

mδ (f) := δ (f)× counting measure on δ (f)Z.

So part (1) of Theorem 5.1 says that mN → 0 in Cc(R)∗ at rate 1/
√

VN , and gives

the scaling limit
√

2πVNmN
w∗−−−→

N→∞
F∗mδ (f) when z = 0. See Example 5.1.

◦ As in Example 5.1, part (1) implies the following: For all a< b s.t. F has no atoms
in {a,b}+δ (f)Z, and for all zN ∈ δ (f)Z s.t. zN−E(SN)√

VN
→ z,
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P[SN− zN−bN ∈ (a,b)] = [1+o(1)]
e−z2/2
√

2πVN
·A (1(a,b)), and

A (1(a,b))∼

{
|a−b| as |a−b| → ∞

P[F ∈ (a,b)] for (a,b)⊂ [0,δ (f)].

Viewed from this perspective, A(1(a,b)) is a “correction” to the term |a− b| in
classical LLT (4.1.1), which is needed for intervals with length of order δ (f).

These observations should be sufficient to understand the content of part (1).
Part (2) is a “mixing” version of part (1), in the sense of §4.1.3. Such results are
particularly useful in the reducible setup for the following reason. The random shift
bN(X1,XN+1) is sometimes a nuisance, and it is tempting to turn it into a determin-
istic quantity by conditioning on X1,XN+1. We would have liked to say that part
(1) survives such conditioning, but we cannot. The best we can say in general is
that part (1) remains valid under conditioning of the form X1 = x1,XN+1 ∈ AN+1
provided P(XN+1 ∈ AN+1) is bounded below. This the content of part (2). For an
example how to use such a statement, see §5.2.3.

In the following sections, we explore some of the consequences of Theorem 5.1.

5.1.3 Irreducibility as a necessary condition for the mixing LLT

Theorem 5.1 exposes the pathologies that could happen in the reducible case. But is
irreducibility a necessary condition for the non-lattice LLT? No!

Example 5.3. Take example 5.1 with F=uniform distribution on [0,1]. In this case,
δ (f) = 1, F∗mδ (f) =Lebesgue’s measure, A(1(a,b)) = |a−b|, and

zN−E(SN)√
VN

→ z⇒ P[SN− zN ∈ (a,b)]∼ e−z2/2
√

2πVN
|a−b|,

even though f is reducible, with essential range Z. Of course, such behavior is im-
mediately destroyed if we modify X1.

In this section we show that irreducibility is a necessry condition for the mixing
LLT, provided we impose the mixing LLT not just for (X, f), but also for all (X′, f ′)
obtained from (X, f) by changing finitely many terms.

Let f be an additive functional on a Markov chain X. Denote the state spaces of
X by Sn, and write X = {Xn}n≥1, f = { fn}n≥1. A sequence of events Ak ⊂ Sk is
called regular if Ak are measurable, and P(Xn ∈ An) is bounded away from zero.

◦ We say that (X, f) satisfies the mixing non-lattice local limit theorem if VN :=
Var(SN)→ ∞, and for every regular sequence of events An ∈Sn, x ∈S1, for all
zN ∈ R such that zN−E(SN)√

VN
→ z, and for each non-empty interval (a,b),



104 5 The local limit theorem in the reducible case

Px

(
SN− zN ∈ (a,b)

∣∣XN+1 ∈ AN+1

)
= [1+o(1)]

e−z2/2
√

2πVN
|a−b| as N→ ∞.

◦ Fix t > 0. We say that (X, f) satisfies the mixing uniform distribution mod t
property , if for every regular sequence of events An ⊂Sn, x ∈S1,

Px
(
SN ∈ (a,b)+ tZ|XN+1 ∈ AN+1

)
−−−→
N→∞

|a−b|
t

.

Theorem 5.2. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain. Given m, let (Xm, fm) := ({Xn}n≥m,{ fn}n≥m). The following
are equivalent:

(1) f is irreducible with algebraic range R;
(2) (Xm, fm) satisfy the mixing non-lattice local limit theorem for all m;
(3) (Xm, fm) satisfy the mixing uniform distribution mod t for all m and t > 0.

5.1.4 Universal bounds for P[SN− zN ∈ (a,b)]

So far we have considered the problem of finding P[SN − zN ∈ (a,b)] up to asymp-
totic equivalence. We now consider the problem of finding P[SN− zN ∈ (a,b)] up to
bounded multiplicative error, assuming only that VN → ∞.

We already saw that the predictions of the LLT for large intervals (a,b) are nearly
the same both in the reducible and irreducible, lattice and non-lattice cases. There-
fore we expect universal lower and upper bounds, for all sufficiently large intervals
without further assumptions on irreducibility or on the arithmetic structure of the
range. The question is how large is “sufficiently large.”

We certainly cannot expect universal lower and upper bounds for intervals
smaller than the graininess constant of (X, f):

δ (f) :=


t Gess(X, f) = tZ, t > 0
0 Gess(X, f) = R
∞ Gess(X, f) = {0},

because intervals with length less than δ (f) may fall in the gaps of the support of
SN − zN . Theorem 5.1 can be used to see that universal bounds do apply as soon as
|a−b|> δ (f):

Theorem 5.3. Suppose f is an a.s. uniformly bounded additive functional on a uni-
formly elliptic Markov chain X. Then for every interval (a,b) of length L > δ (f), for
all zN ∈ R such that zN−E(SN)√

VN
→ z, for all ε > 0, for all N large enough,
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P(SN− zN ∈ (a,b))≤ e−z2/2|a−b|√
2πVN

(
1+

21δ (f)

L
+ ε

)
(5.1.5)

P(SN− zN ∈ (a,b))≥ e−z2/2|a−b|√
2πVN

(
1− δ (f)

L
− ε

)
(5.1.6)

In addition, if 0 < δ (f)< ∞ and kδ ( f )� L� (k+1)δ ( f ), k ∈ N, then(
e−z2/2
√

2πVN

)
kδ ( f ). P(SN− zN ∈ (a,b)).

(
e−z2/2
√

2πVN

)
(k+1)δ ( f ).

Here AN . BN means that limsup
N→∞

(AN/BN)≤ 1.

We note that both upper and lower bound become asymptotic to the Gaussian
density as L→ ∞. Notice also that the theorem makes no assumptions on the irre-
ducibility of f.

Theorem 5.3 is an easy corollary of Theorem 5.1, see §5.2.4, but this is an
overkill. At the end of the chapter we will supply a proof of universal bounds for
intervals of length L > 2δ (f), which does not require the full force of Theorem 5.1,
and which also applies to arrays.

5.2 Proofs

5.2.1 Characteristic functions

Setup: Throughout this section we assume that X = {Xn} is a uniformly elliptic
Markov chain with state spaces Sn, marginals µn(E) = P(Xn ∈ E), and transition
probabilities πn,n+1(x,dy) = pn(x,y)µn+1(dy) which satisfy the uniform ellipticity
condition with ellipticity constant ε0.

For every bounded measurable function ϕ : Sn×Sn+1→ R, we let

E(ϕ) := E[ϕ(Xn,Xn+1)] , σ(ϕ) :=
√

Var(ϕ(Xn,Xn+1)).

Next we assume that K > 0, ε ∈ (0,1) and f = { f (N)
n : 1 ≤ n ≤ N < ∞} is an

array of measurable functions f (N)
n : Sn×Sn+1 → R which satisfy the following

assumptions for all N:

(I) E( f (N)
n ) = 0 and ess sup |f|< K.

(II) Let SN :=
N

∑
n=1

f (N)
n (Xn,Xn+1) and VN := Var(SN), then there exists Ĉ > 0 s.t.

VN → ∞ and
1

VN

N

∑
n=1

σ
2( f (N)

n )≤ Ĉ. (5.2.1)
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(III) f = F+h+ c, where

(a) F= {F(N)
n } are measurable functions such that

ess sup |F| ≤ K , Galg(X,F)⊂ Z.

(b) h= {h(N)
n } are measurable functions such that

E(h(N)
n ) = 0, ess sup |h|< K,

N

∑
n=1

σ
2(h(N)

n )≤ ε.

(c) c = {c(N)
n } are constants. Necessarily |c(N)

n | ≤ 3K and c(N)
n = −E(F(N)

n ).
Let c(N) := ∑

N
n=1 c(N)

n .

We are not assuming that E(F(N)
n ) = 0: F(N)

n are integer valued, and we do not wish
to destroy this by subtracting the mean.

Lemma 5.1. Under the above assumptions, for every K > 0, m ∈ Z, there are
C,N > 0 s.t. for every N > N, |s| ≤ K, x ∈ S1, and vN+1 : SN+1 → R with
‖vN+1‖∞ ≤ 1

Ex

(
e

i
(

2πm+ s√
VN

)
SN

vN+1(XN+1)

)
= e2πimc(N)

e−s2/2 E(vN+1(XN+1))+ηN(x)

where E(|η |)≤C
[
∑

N
n=1 σ2(h(N)

n )
]1/2
≤C
√

ε .

Proof. In this proof we fix the value of N, and drop the superscripts N for the ease
of notation (for example c(N) = c).

We develop a perturbation theory of transfer operators similar to [12]. Recall the
operators Ln,ξ : L∞(Sn+1)→ L∞(Sn) given by

(Ln,ξ u)(x) =
∫
Sn+1

pn(x,y)eiξ fn(x,y)u(y)µn+1(dy).

Let ξ = ξ (m,s) := 2πm+
s√
VN

. Since Fn is integer valued,

eiξ fn = exp[2πimFn +
is√
VN
Fn + iξ cn + iξ hn)] = e2πimcne

i
(

s√
VN

(Fn+cn)+ξ hn

)
.

We now split e−2πimcnLn,ξ = L n,ξ + L̂n,ξ + L̃n,ξ where
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L n,ξ u

)
(x) =

∫
Sn+1

pn(x,y)e
is√
VN

(Fn(x,y)+cn)
u(y)µn+1(dy),(

L̂n,ξ u
)
(x) = iξ

∫
Sn+1

pn(x,y)hn(x,y)u(y)µn+1(dy),(
L̃n,ξ u

)
(x)

=
∫
Sn+1

pn(x,y)
[

e
iξ hn+

is√
VN

(Fn(x,y)+cn)− e
is√
VN

(Fn(x,y)+cn)− iξ hn(x,y)
]

u(y)µn+1(dy).

We claim that there exists C1(K,m)> 0 such that for |s| ≤ K, n≥ 1

∥∥Ln,ξ
∥∥≤ 1, (5.2.2)∥∥Ln,ξ
∥∥

L1→L∞ ≤C1(K,m), (5.2.3)∥∥L n,ξ
∥∥≤ 1, (5.2.4)∥∥∥L̂n,ξ

∥∥∥
L∞→L1

≤C1(K,m)σ(hn), (5.2.5)∥∥∥L̃n,ξ

∥∥∥
L∞→L1

≤C1(K,m)

[
σ

2(hn)+
σ(hn)σ( fn)√

VN

]
. (5.2.6)

To see this, we represent these operators as integral operators, and estimate their
kernels. For example, L̂n,ξ is an integral operator whose kernel has absolute value
|iξ pn(x,y)hn(x,y)| ≤ ε

−1
0 |ξ ||hn(x,y)|. So

‖L̂n,ξ‖L∞→L1 ≤ ε
−1
0

√
4π2m2 +K2‖hn‖L1 ≤ ε

−1
0

√
4π2m2 +K2‖hn‖L2 ,

and (5.2.5) follows from the identity ‖hn‖L2 ≡ σ(hn). Similarly, L̃n,ξ has kernel
with absolute value

pn(x,y)
∣∣eiξ hn+is Fn(x,y)+cn√

VN −e
is Fn(x,y)+cn√

VN −iξ hn(x,y)
∣∣≤ ε

−1
0

∣∣eis Fn(x,y)+cn√
VN

(
eiξ hn−1

)
−iξ hn

∣∣
= ε

−1
0

∣∣eis Fn(x,y)+cn√
VN

(
iξ hn +O(ξ 2h2

n)
)
− iξ hn

∣∣= ε
−1
0

∣∣eis Fn(x,y)+cn√
VN −1

∣∣|ξ hn|+O
(
h2

n
)

= O
(

1√
VN
|hn(Fn + cn)|

)
+O

(
h2

n
)

where the implicit constants in O(·) are uniform on compact sets of ξ . It follows
that uniformly on compact sets of ξ ,
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‖L̃n,ξ‖L∞→L1 = O(V−1/2
N )E(|hn(Fn + cn)|)+O(‖hn‖2

2)

= O(V−1/2
N )‖hn‖2‖Fn + cn‖2 +O(‖hn‖2

2)

= O(V−1/2
N )‖hn‖2(‖ fn−hn‖2)+O(‖hn‖2

2)

= O(V−1/2
N )‖hn‖2(‖ fn‖2 +‖hn‖2)+O(‖hn‖2

2)

= O
(
‖hn‖2‖ fn‖2√

VN
+‖hn‖2

2

)
= O

(
σ(hn)σ( fn)√

VN
+σ

2(hn)

)
,

as claimed in (5.2.6).

Recall Nagaev’s identity (4.2.1):Ex[eiξ SN vN+1(XN+1)]= (L1,ξ L2,ξ · · ·LN,ξ vN+1)(x).
The decomposition e−2πimcnLn,ξ = L n,ξ + L̂n,ξ + L̃n,ξ implies that

Ex

(
eiξ SN vN+1(XN+1)

)
= e2πimc

(
ΦN(x,ξ )+ Φ̂N(x,ξ )+ Φ̃N(x,ξ )

)
(5.2.7)

where c = c(N) = c1 + · · ·+ cN , and

ΦN(x,ξ ) :=
(
L 1,ξ . . .L N,ξ vN+1

)
(x),

Φ̃N(x,ξ ) :=
N−1

∑
k=1

e−2πim(c1+···+ck−1)
(
L1,ξ · · ·Lk−1,ξ L̃k,ξ L k+1,ξ . . .L N,ξ vN+1

)
(x),

Φ̂N(x,ξ ) :=
N−1

∑
k=1

e−2πim(c1+···+ck−1)
(
L1,ξ . . .Lk−1,ξ L̂k,ξ L k+1,ξ . . .L N,ξ vN+1

)
(x).

We will analyze each of these summands.

CLAIM 1:For every m ∈ Z,
∣∣∣ΦN(x,ξ )− e−s2/2Ex(vN+1(XN+1))

∣∣∣ −−−→
N→∞

0 uniformly

in s on {s ∈ R : |s| ≤ K}, x ∈S1, vN+1 ∈ {v ∈ L∞(SN+1) : ‖v‖ ≤ 1}.

PROOF: ΦN(x,ξ ) = Ex

(
exp
(

is ∑
N
k=1Fk+c√

VN

)
vN+1(XN+1)

)
, where E(∑N

k=1Fn) =−c.
Fix 1≤ r ≤ N. Using the decomposition f = F+h+ c, we find that

1√
VN

( N

∑
k=1
Fk + c

)
=

1√
VN

N−r

∑
k=1

fk +
1√
VN

(
O(r)−

N

∑
k=1

hk

)
.

By assumption III(b), the L2 norm of the second summand is O(1/
√

VN). Therefore
the second term converges to 0 in probability as N→ ∞, and

ΦN(x,ξ ) = Ex

(
e

is√
VN

SN−r
vN+1(XN+1)

)
+o(1), (5.2.8)

where we have abused notation and wrote SN−r = f (N)
1 + · · ·+ f (N)

N−r.



5.2 Proofs 109

The rate of convergence to 0 depends on r and m, but is uniform when |s| ≤ K
and ‖vN+1‖∞ ≤ 1. At the same time, by exponential mixing (see (1.2.3)), there is
0 < θ < 1 such that

Ex

(
e

is√
VN

SN−r
vN+1(XN+1)

)
= Ex

[
e

is√
VN

SN−rEx
(
vN+1(XN+1)

∣∣X1, . . . ,XN−r
)]

= Ex

[
e

is√
VN

SN−rEx
(
vN+1(XN+1)

∣∣XN−r
)]

(Markov property)

= Ex

(
e

is√
VN

SN−r
[Ex(vN+1(XN+1)+O(θ r)]

)
(exponential mixing)

= Ex(eisSN−r/
√

VN )Ex(vN+1(XN+1))+O(θ r) (5.2.9)

where the O(θ r) is uniform in ‖vN+1‖∞.
A similar mixing argument shows that

Ex(SN−r) = E(SN−r|X1 = x) = E(SN)+O(1) = O(1)

uniformly in x ∈S1. By Dobrushin’s CLT,

Ex(eisSN−r/
√

VN ) = [1+o(1)]Ex(e
is SN−Ex(SN )√

VN ) = [1+o(1)]e−s2/2 as N→ ∞.

The claim follows from this, (5.2.8), and (5.2.9).

CLAIM 2. There exists C2(K,m) s.t. for all |s| ≤ K and ‖vN+1‖∞ ≤ 1,∥∥Φ̃N(x,ξ )
∥∥

L1 ≤C2(K,m)
√

ε.

PROOF: ‖Φ̃N(x,ξ )‖1 ≤ ‖L̃1,ξ‖L∞→L1

∥∥L 2,ξ
∥∥ · · ·∥∥L N,ξ

∥∥
+

N

∑
k=2

(∥∥L1,ξ
∥∥ · · ·∥∥∥Lk−1,ξ L̃k,ξ

∥∥∥∥∥L k+1,ξ
∥∥ · · ·∥∥L N,ξ

∥∥)
Suppose |s| ≤ K, then (5.2.3), (5.2.4) and (5.2.6) tell us that

‖L̃1,ξ‖L∞→L1

∥∥L 2,ξ
∥∥ · · ·∥∥L N,ξ

∥∥≤C1(K,m)

[
σ(h1)

2 +
σ(h1)σ( f1)√

VN

]
,∥∥∥Lk−1,ξ L̃k,ξ

∥∥∥≤ ∥∥Lk−1,ξ
∥∥

L1→L∞

∥∥∥L̃k,ξ

∥∥∥
L∞→L1

≤C1(K,m)2
[

σ(hk)
2 +

σ(hk)σ( fk)√
VN

]
.

Therefore ‖Φ̃N(x,ξ )‖1≤C1(K,m)2
∑

N−1
k=1

[
σ(hk)

2 + σ(hk)σ( fk)√
VN

]
. By Cauchy-Schwarz,
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N−1

∑
k=1

σ(hk)
2 +

σ(hk)σ( fk)√
VN

≤
N−1

∑
k=1

σ(hk)
2 +

√√√√N−1

∑
k=1

σ2(hk) ·
1

VN

N−1

∑
k=1

σ2( fk)

≤ ε +
√

Ĉε, by assumptions II and III(b). The claim follows.

CLAIM 3. There exists C3(K,m) s.t. for all |s| ≤ K, ‖vN+1‖∞ ≤ 1 and x ∈ S1,
‖Φ̂N(x,ξ )‖1 ≤C3(K,m)

√
ε .

PROOF. Fix N, vN+1 ∈ L∞(SN+1) such that ‖vN+1‖∞ ≤ 1, and define ζk ∈ L∞(Sk),
ηk ∈ R so that

φk(·) := (L k,ξ . . .L N,ξ )vN+1 = ζk(·)+ηk

where ηk := E
[
(L k,ξ · · ·L N,ξ )vN+1(Xk)

]
, and E[ζk(Xk)] = 0. Then

∥∥Φ̂N(x,ξ )
∥∥

1 ≤
N

∑
k=1
‖L1,ξ · · ·Lk−1,ξ L̂k,ξ (ζk +ηk1)‖1. (5.2.10)

By (5.2.4), |ηk| ≤ 1. We will now work towards a control of ζk:

SUB-CLAIM. We can decompose ζk = ζ ′k + ζ ′′k so that for all |s| ≤ K, there exist
Ĉ0, K̂0 > 0 and 0 < θ̂0 < 1 s.t. for all k = 1, . . . ,N−2

‖ζ ′k‖∞ ≤ θ̂
2
0 ‖ζ ′k+2‖∞ + K̂0‖ζ ′′k+2‖1, (5.2.11)

‖ζ ′′k ‖∞ ≤ Ĉ0

(
σ( fk)+σ( fk+1)+σ(hk)+σ(hk+1)√

VN

)
. (5.2.12)

Proof. In what follows, Lk = Lk,0. Write

ηk +ζk = φk =
(
L k,ξ L k+1,ξ

)
φk+2 =

(
L k,ξ L k+1,ξ

)
(ηk+2 +ζk+2)

= (LkLk+1)ηk+2 +(LkLk+1)ζk+2 +
(
L k,ξ L k+1,ξ −LkLk+1

)
φk+2.

Observe that Lk1 = 1, so (LkLk+1)ηk+2 = ηk+2. This leads to the decomposition

ζk = (LkLk+1)ζk+2︸ ︷︷ ︸
ζ ′k

+
(
L k,ξ L k+1,ξ −LkLk+1

)
φk+2 +ηk+2−ηk︸ ︷︷ ︸

ζ ′′k

We use this decomposion to define ζ ′k,ζ
′′
k . This gives the following recursion:

ζ
′
k = (LkLk+1)ζ

′
k+2 +(LkLk+1)ζ

′′
k+2,

ζ
′′
k =

(
L k,ξ L k+1,ξ −LkLk+1

)
φk+2 +ηk+2−ηk.

(5.2.13)

Notice that ζ ′k,ζ
′′
k both have zero means. This is because in our setup, µ j(E) =

P(X j ∈ E) and (Lku)(x) = E(u(Xk+1)|Xk = x), whence
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ζ
′
kdµk = E(ζ ′k(Xk)) = E[E(E(ζk+2(Xk+2)|Xk+1)|Xk)] = E(ζk+2(Xk+2)) = 0,

and E(ζ ′′k ) = E(ζk)−E(ζ ′k) = 0−0 = 0.
To prove the estimates on ‖ζ ′k‖∞, we first make the following general obser-

vations. If ψk+2 ∈ L∞(Sk+2), then (LkLk+1ψk+2)(x) =
∫

p̃(x,z)µk+2(dz), where
p̃(x,z) =

∫
Sk+1

pk(x,y)pk+1(y,z)µk+1(dy). By uniform ellipticity, p̃≥ ε0 so we can
decompose p̃k = ε0 +(1− ε0)q̃k where q̃k is a probability density. Hence if ψk+2
has zero mean then

(LkLk+1ψk+2)(x) = ε0

∫
ψk+2dµk+2 +(1− ε0)

∫
q̃k(x,y)ψk+2(y)µk+2(dy)

= (1− ε0)
∫

q̃k(x,y)ψk+2(y)µk+2(dy).

Thus ‖LkLk+1ψk+2‖∞
≤ (1− ε0)‖ψk+2‖∞.

We apply this to ζ ′k+2 = (LkLk+1)ζ ′k+2 +(LkLk+1)ζ ′′k+2:

‖ζ ′k‖∞ ≤ (1− ε0)‖ζ ′k‖∞ +‖LkLk+1ζ
′′
k+2‖∞

≤ (1− ε0)‖ζ ′k‖∞ +‖Lk‖L1→L∞‖Lk+1‖L1→L1‖ζ ′′k+2‖1

≤ (1− ε0)‖ζ ′k‖∞ + ε
−2
0 ‖ζ

′′
k+2‖1.

The last step is because 0≤ pn(x,y)≤ ε
−1
0 . This proves (5.2.11).

Next we analyze ‖ζ ′′k ‖∞. Since ζ ′′k has zero mean and ηk+2−ηk is constant, we
can write ζ ′′k = ζ̂ ′′k −E(ζ̂ ′′k ) with ζ̂ ′′k :=

(
L k,ξ L k+1,ξ −LkLk+1

)
φk+2. Observe that

the kernel of
(
L k,ξ L k+1,ξ −LkLk+1

)
is bounded by

const
|s|√
VN

∫ (
Fk(x,z)+Fk+1(z,y)+ ck + ck+1

)
µk+1(dz).

By assumptions II and III, the L1-norm of the kernel is bounded by

O
(
|s|√
VN

)(
‖ fk−hk‖1 +‖ fk+1−hk+1‖1

)
= O

(
|s|√
VN

)(
‖ fk‖1 +‖hk‖1 +‖ fk+1‖1 +‖hk+1‖1

)
≤ O

(
|s|√
VN

)(
‖ fk‖2 +‖hk‖2 +‖ fk+1‖2 +‖hk+1‖2

)
.

This implies that ‖ζ̂ ′′k ‖∞ = O
(
|s|√
VN

)(
σ( fk)+σ( fk+1)+σ(hk)+σ(hk+1)

)
, whence

‖ζ ′′k ‖∞ ≤ 2‖ζ̂ ′′k ‖=O
(
|s|√
VN

)(
σ( fk)+σ( fk+1)+σ(hk)+σ(hk+1)

)
. (5.2.12) and the

sub-claim are proved.

We return to the proof of Claim 3. Iterating the estimate in the sub-claim we
conclude that for some constant C
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‖ζ ′k‖≤C

θ̂
2bN−k

2 c
0 +

bN−k
2 c−1

∑
r=1

θ̂ 2r
0 (σ( fk+2r)+σ( fk+2r+1)+σ(hk+2r)+σ(hk+2r+1))√

VN


≤Cθ̂

−1
0

[
θ̂

N−k
0 +

N−k

∑
r=1

θ̂ r
0√
VN

(
σ( fk+r)+σ(hk+r)

)]
.

Since L j,ξ are contractions and ‖L̂k,ξ‖L∞→L1 ≤C1(K,m)σ(hk), this implies that

∑
k

∥∥L1,ξ . . .Lk−1,ξ L̂k,ξ (ζ
′
k+1)

∥∥
L1

≤CC1(K,m)

[
∑
r

θ̂
r
0 ∑

k
σ(hk)

σ( fk+r)+σ(hk+r)√
VN

+∑
k

σ(hk)θ̂
N−k
0

]
.

As in the proof of Claim 2, it follows from the Cauchy Schwartz inequality, (5.2.1),
and assumption III(b) that the sum over k is O(

√
ε). Hence

∑
k

∥∥∥L1,ξ . . .Lk−1,ξ L̂k,ξ (ζ
′
k+1)

∥∥∥
L1

= O(
√

ε). (5.2.14)

Next we claim that

∑
k

∥∥∥L1,ξ . . .Lk−1,ξ L̂k,ξ (ζ
′′
k+1)

∥∥∥
L1

= O(
√

ε). (5.2.15)

The proof is similar to the proof of (5.2.14), except that now we use (5.2.13) to see
that as in the proofs of (5.2.5),(5.2.6) and (5.2.12),

‖L1,ξ . . .Lk−1,ξ L̂k,ξ (ζ
′′
k+1)‖L1 ≤C4(K,m)σ(hk)

σ( fk+1)+σ( fk+2)+σ(hk+1)+σ(hk+2)√
VN

for some constant C4(K,m).
(5.2.14) and (5.2.15) give us an O(

√
ε) bound for contribution of ζk+1 to (5.2.10).

It remains to estimate the contribution of ηk+1 to (5.2.10).

Split Ln,ξ = e2πimcnLn +L ′
n,ξ . As before,

L1,ξ · · ·Lk−1,ξ L̂k,ξ (1) = e2πim(c1+···+ck−1)L1 · · ·Lk−1L̂k,ξ (1)

+∑
j

e2πim(c j+1+···+ck−1)L1,ξ · · ·L j−1,ξ L ′
j,ξ L j+1 · · ·Lk−1L̂k,ξ (1).

(5.2.16)

Since E(hk) = 0, E[(L̂k,ξ 1)(Xk)] = 0. Thus by exponential mixing and (5.2.5), the
first term on the RHS of (5.2.16) is bounded by

Cmixθ
k−1‖L̂k,ξ 1‖∞ ≤ Ĉ3σ(hk)θ

k
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for some constant Ĉ3 = Ĉ3(K,m) and 0 < θ < 1. Similarly each summand in the
second term on the RHS of (5.2.16) has norm less than

‖L ′
j,ξ‖Ĉ3σ(hk)θ

k− j ≤ Ĉ4σ(hk)θ
k− j
∥∥∥∥ s√

VN
(F j + c j)+ξ h j

∥∥∥∥
2

≤ Ĉ4σ(hk)θ
k− j
(

σ( f j)√
VN

+σ(h j)

)
,

for Ĉ4 = Ĉ4(K,m). So the second term on the RHS of (5.2.16) has norm less than

Ĉ5σ(hk)
k

∑
j=1

θ
k− j
(

σ( f j)√
VN

+σ(h j)

)
(5.2.17)

for some constant Ĉ5.
It follows that ∑

k

∥∥∥L1,ξ . . .Lk−1,ξ L̂k,ξ (1)
∥∥∥

1
is bounded by

N

∑
k=1

(
Ĉ3σ(hk)θ

k +Ĉ5σ(hk)
k

∑
j=1

θ
k− j
(

σ( f j)√
VN

+σ(h j)

))

≤ Ĉ3

√
N

∑
k=1

σ2(hk)

√
N

∑
k=1

θ 2k +Ĉ5

N−1

∑
r=0

θ
r

N

∑
j=1

(
σ( f j)√

VN
+σ(h j)

)
σ(h j+r)

≤ Ĉ3
√

ε√
1−θ 2

+Ĉ5

N−1

∑
r=0

θ
r

√√√√ N

∑
j=1

σ2( f j)

VN
+

√√√√ N

∑
j=1

σ2(h j)

√√√√ N

∑
j=1

σ2(h j+r)

 .
By assumptions II and III, there is a constant Ĉ6 = Ĉ6(K,m) such that

∑
k

∥∥∥L1,ξ . . .Lk−1,ξ L̂k,ξ (1)
∥∥∥

1
≤ Ĉ6

√
ε. (5.2.18)

Claim 3 now follows from (5.2.10), (5.2.14), (5.2.15), and (5.2.18).

Lemma 5.1 now follows from Claims 1–3 and (5.2.7). �

5.2.2 Proof of the LLT in the reducible case

Setup and reductions. Let f = { fn} be an a.s. uniformly bounded additive func-
tional on a Markov chain X = {Xn} with state spaces Sn and marginals µn(E) =
P(Xn ∈ E). We assume that f is not center-tight, and that f is reducible. In this case
Gess(X, f) = δ (f)Z with some δ (f)> 0. Without loss of generality,

δ (f) = 1 , Gess(f) = Z , E( fn) := E[ fn(Xn,Xn+1)] = 0 for all n,
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otherwise we center and rescale f.
By the reduction lemma (Lemma 3.1), f = F+∇a+h+ c, where

Galg(X,F) = Gess(X,F) = Z,

h has summable variances and E(hn) := E(hn(Xn,Xn+1)) = 0, c = {cn} are con-
stants, and F,a,h,c are a.s. uniformly bounded. There is no loss of generality in
assuming that a ≡ 0, because Theorem 5.1 holds for f with bN iff Theorem 5.1
holds for f−∇a with b′N(X1,XN+1) := bN(X1,XN+1)+aN+1(XN+1)−a1(X1).

Henceforth we assume f = F+h+ c, and E( fn) = E(hn) = 0. So cn =−E(Fn).
Let

c(N) :=−
N

∑
k=1
E[Fk(Xk,Xk+1)]. (5.2.19)

By Theorem 2.4, the following sum converges a.s.:

H(X1,X2, . . .) :=
∞

∑
n=1

hn(Xn,Xn+1).

Lemma 5.2. Under the previous assumptions, for every sequence of positive func-
tions vN+1 ∈ L∞(SN+1) s.t. ‖vN+1‖∞ 6= 0 and for some δ > 0∫

SN+1

vN+1dµN+1 ≥ δ ||vN+1||∞, (5.2.20)

for all m ∈ Z, s ∈ R, x ∈S1

Ex

(
e

i(2πm+ s√
VN

)SN
vN+1(XN+1)

)
E(vN+1(XN+1))

= e2πimc(N)−s2/2Ex

(
e2πmiH

)
+oN→∞(1).

(5.2.21)
where o(·) term converges to 0 uniformly when |m + is| are bounded, vN+1 are
bounded, and (5.2.20) holds.

Proof. Since the LHS of (5.2.21) remains unchanged upon multiplying vN+1 by a
constant, we may assume that ‖vN+1‖∞ = 1.

Fix ε > 0 small and r so large that ∑
∞
k=r Var(hk)< ε . Fix N. Applying the Integer

Reduction Lemma (Lemma 3.4) to {Fn}N
n=r, we obtain a decomposition

Fn(xn,xn+1) = a
(N)
n+1(xn+1)−a

(N)
n (xn)+ c

(N)
n + f̃ (N)

n (xn,xn+1)

where c
(N)
n are bounded integers, and a

(N)
n (·), f̃ (N)

n (·, ·) are uniformly bounded mea-
surable integer valued functions such that

N

∑
n=r
‖ f̃ (N)

n ‖2
2 = O

(
N

∑
n=r

u2
n(F)

)
.
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There is no loss of generality in assuming that a
(N)
N+1 = a

(N)
r = 0, otherwise re-

place f̃ (N)
r (x,y) by f̃ (N)

r (x,y)−a
(N)
r (x), and f̃ (N)

N (x,y) by f̃ (N)
N (x,y)+a

(N)
N+1(y). Then

N

∑
n=r
Fn =

N

∑
n=r

(c
(N)
n + f̃ (N)

n ), whence

SN−Sr−1 =
N

∑
n=r

fn =
N

∑
n=r

c
(N)
n + f̃ (N)

n +hn + cn =
N

∑
n=r

f̃ (N)
n +hn−E( f̃ (N)

n +hn).

(5.2.22)
(The last equality is because E(SN−Sr−1) = 0.)

Let g denote the array with rows g(N)
n := f̃ (N)

n +hn−E( f̃ (N)
n +hn) (n = r, . . . ,N),

N > r. We claim that g satisfies assumptions (I)–(III) of Lemma 5.1. (I) is clear, and
(III) holds by choice of r and because f̃ (N)

n is integer valued. To see (II), note that

N

∑
n=1

σ
2(g(N)

n ) =
N

∑
n=1

σ
2( f̃ (N)

n +hn) =
N

∑
n=1

σ
2( f̃ (N)

n )+σ
2(hn)+2Cov( f̃ (N)

n ,hn)

≤
N

∑
n=1

σ
2( f̃ (N)

n )+σ
2(hn)+2σ( f̃ (N)

n )σ(hn)≤ 2
N

∑
n=1

σ
2( f̃ (N)

n )+σ
2(hn) (∵ 2ab≤ a2 +b2)

= O
( N

∑
n=r

u2
n(F)

)
+O(1), by choice of f̃ and h.

Since f = F+h+c, u2
n(F) = u2

n(f+h)≤ 2[u2
n(f)+u2

n(h)], see Lemma 1.4(4). Thus
by Theorem 2.1 and the assumption that h has summable variances,

N

∑
n=r

u2
n(F)≤ 2

N

∑
n=r

u2
n( f )+u2

n(h) = O
(
VN
)
+O(1) = O(VN).

Assumption (II) is checked.
We now apply Lemma 5.1 to g, and deduce that for every K > 0 and m ∈ Z there

are C,N > 0 such that for all N > N + r, |s| ≤ K, and vN+1 in the unit ball of L∞

E
(

e
i(2πm+ s√

VN
)(SN−Sr−1)vN+1(XN+1)

∣∣∣∣Xr

)
= e2πimc(N) · e−s2/2E(vN+1(XN+1))+ηN−r(Xr),

where c(N) := −∑
N
n=rE( f̃ (N)

n ) and ‖ηN−r‖1 ≤ C
√

ε . Since ‖vN+1‖∞ = 1, we also
have the trivial bound ‖ηN−r‖∞ ≤ 2.

We are ready to prove the lemma. The left-hand-side of (5.2.21) equals
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Ex

(
e

i(2πm+ s√
VN

)SN
vN+1(XN+1)

)
E(vN+1(XN+1))

=

= Ex

e
i(2πm+ s√

VN
)Sr−1

E
(

ei(2πm+ s√
Vn

)(SN−Sr−1)vN+1(XN+1)
∣∣Xr

)
E(vN+1(XN+1))


= Ex

(
e

i(2πm+ s√
VN

)Sr−1 e2πimc(N)−s2/2 +
ηN−r(Xr)

E(vN+1(XN+1))

)
= e2πimc(N)−s2/2Ex(e2πimSr−1+o(1))︸ ︷︷ ︸

A

+O(δ
−1
)Ex(ηN−r(Xr))︸ ︷︷ ︸

B

, as N→ ∞.

We examine A and B. Let ĉ(r−1) := ∑
r−1
k=1 ck =−E(∑r−1

k=1Fk(Xk,Xk+1)) and recall
that c(N) =−∑

N
k=1E(Fk). Then

c(N) =−
r−1

∑
k=1
E(Fk)−

N

∑
k=r

(E( f̃ (N)
n )+ c

(N)
n ) because

N

∑
n=r
Fn =

N

∑
n=r

(c
(N)
n + f̃ (N)

n )

≡ ĉ(r−1)+ c(N) mod Z, because c
(N)
n ∈ Z.

By assumption, f = F+h+ c with F integer valued. Necessarily,

exp(2πimSr−1) = exp(2πimHr)+2πimĉ(r−1)) (5.2.23)

where Hr :=
r−1

∑
k=1

hk(Xk,Xk+1). By choice of r and Lemma 2.1,

∣∣Ex(eiξH)−Ex(eiξHr)
∣∣≤ |ξ |Ex (|H−Hr|)≤ |ξ |Var

(
∞

∑
k=r

hk(Xk,Xk+1)

)1/2

=O
(√

ε
)

uniformly when ξ varies in a compact domain. Substituting (5.2.23) in A, we obtain

A = [1+o(1)]e2πimc(N)− s2
2 Ex

(
e2πimH+O(

√
ε)
)
.

Next, the exponential mixing of X implies that for all N large enough,

B := Ex(ηN−r(Xr)) = E(ηN−r(Xr))+o(1) = O(
√

ε).

Thus the left-hand-side of (5.2.21) equals e2πimc(N)−s2/2Ex(e2πimH+o(1))+O(
√

ε).
The lemma follows, because ε was arbitrary. �

Proof of Theorem 5.1. Suppose f is an a.s. uniformly bounded additive functional
on a uniformly elliptic Markov chain X, and assume Gess(f) = δ (f)Z with δ (f) 6= 0.

We begin with some reductions. By Theorem 3.3, f has an optimal reduction,
and we can write f = F+ F where F has algebraic range δ (f)Z and F is a.s.
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uniformly bounded and center-tight. There is no loss of generality in assuming
that ess sup |F| ≤ δ (f), since this can always be arranged by replacing Fn by Fn
mod δ (f). Next by the gradient lemma (Lemma 2.2), we decompose

F= ∇a+ f̃+ c̃

where ess sup |a| ≤ 2ess sup |F|, f̃ has summable variances, and c̃n are constants.

It is convenient to introduce f ∗n :=
1

δ (f)
[ fn −∇an − E( fn −∇an)]. Note that

Gess(X, f
∗) = Z, and

f∗ =
1

δ (f)
F+h+ c, (5.2.24)

where hn := 1
δ (f) [ f̃n−E( f̃n)] is a centered additive functional with summable vari-

ances, and cn := 1
δ (f) [c̃n +E( f̃n)−E( fn−∇an)].

We first prove the theorem in the special case when

δ (f) = 1, E( fn) = 0 for all n, and a≡ 0. (5.2.25)

In this case f = f∗ and (5.2.24) places us in the setup of Lemma 5.2. Given this
lemma, the proof is very similar to the proof of the local limit theorem in the irre-
ducible non-lattice case, but we reproduce it for completeness. We focus on parts
(2) and (3) of the theorem, because part (1) follows from them.

Define as in (5.2.19), c(N) :=− 1
δ (f)

N

∑
k=1
E[Fk(Xk,Xk+1)], and let

H :=
∞

∑
n=1

hn(Xn,Xn+1), bN := {c(N)}.

Fix φ ∈ L1(R) such that supp(φ̂) ⊂ [−L,L], and let vN+1 denote the indicator
function of AN+1. By the Fourier inversion formula

Ex(φ(SN−bN− zN)|XN+1∈ AN+1)

=
1

2π

∫ L

−L
φ̂(ξ )

Ex

(
eiξ (SN−bN−zN)vN+1(XN+1)

)
E(vN+1(XN+1))

dξ (5.2.26)

and the task is to find the asymptotic behavior of (5.2.26) in case zN ∈ Z, zN√
VN
→ z.

Let K := ess sup |f| and recall the constant δ̃ = δ̃ (K) from Lemma 4.4. Split
[−L,L] into a finite collection of subintervals I j of length less than min{δ̃ ,π}, in
such a way that every I j is either bounded away from 2πZ, or intersects it an unique
point 2πm exactly at its center.

If I j ∩ 2πZ = ∅, then ∑d2
n(ξ ) = ∞ uniformly on I j (Theorem 3.5). Thus by

(4.2.7), ΦN(x,ξ )→ 0 uniformly on I j. In this case can argue as in the proof of
(4.2.18) and show that the contribution of I j to the integral (5.2.26) is o

(
V−1/2

N

)
.
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If I j∩2πZ 6=∅, then the center of I j equals 2πm for some m∈Z. Fix some large
R. Let J′j,N be the contribution to the integral from the set {ξ ∈ I j : |ξ − 2πm| ≤
RV−1/2

N }, and let J′′j,N be the integral over {ξ ∈ I j : |ξ −2πm|> RV−1/2
N }.

The main contribution comes from J′j,N , because one can show as in Claim 2

in §4.2.2 that |J′′j,N | ≤ C
∫
|u|>RV−1/2

N

e−cVN u2
du ≤ C

e−cR2

R
√

VN
, which is negligible for

R� 1.
To estimate J′j,N , we make the change of variables ξ = 2πm+ s√

VN
. Since zN ∈ Z

and bn = {c(N)}, we have

ξ (SN−bN− zN) = ξ SN−2πmc(N)− s√
VN

(zN +{c(N)}) mod 2π.

So

J′j,N =
1

2π
√

VN

∫
|s|<R

φ̂(2πm+
s√
VN

)
e−2πimc(N)Ex

(
eiξ SN vN+1(XN+1)

)
E(vN+1(XN+1))

e
−is zN+O(1)√

VN ds

 .
Fixing R and letting N→ ∞, we see by Lemma 5.2 that

√
VNJ′j,N =

φ̂(2πm)

2π
Ex

(
e2πimH

)∫
|s|<R

e−isz−s2/2ds+oN→∞(1)

=
φ̂(2πm)√

2π
Ex

(
e2πimH

)
e−z2/2 +oR→∞(1)+oN→∞(1).

Combining the estimates for J j,N we obtain that

lim
N→∞

√
VNJ j,N =

e−z2/2
√

2π
Ex

(
e2πimH

)
φ̂(2πm),

if I j intersects 2πZ, and this limit is zero otherwise. Hence

lim
n→∞

√
VNEx(φ(SN−bN− zN)|XN+1 ∈ AN+1)

=
e−z2/2
√

2π
∑

m∈Z∩[−L,L]
Ex

(
e2πimH

)
φ̂(2πm) =

e−z2/2
√

2π
∑

m∈Z
Ex

(
e2πimH

)
φ̂(2πm)

≡ e−z2/2
√

2π
∑

m∈Z
Ex

(
e2πimF

)
φ̂(2πm), where F ∈ [0,1), F := H mod Z
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=
e−z2/2
√

2π
∑

m∈Z
(̂Cxφ)(2πm), where (Cxφ)(t) := Ex[φ(t +F)]

=
e−z2/2
√

2π
∑

m∈Z
(Cxφ)(m)≡ e−z2/2

√
2π

∑
m∈Z

Ex[φ(m+F)],

by the Poisson summation formula.
This proves part (2) of the theorem in the special case (5.2.25), and in particular

for the additive functional f∗ defined above. Now consider the general case:

SN(f)−E[SN(f)]≡ δ (f)SN(f
∗)+aN+1(XN+1)−a1(X1)+E[a1(X1)−aN+1(XN+1)]

Since part (2) of the theorem holds for f∗ with F= {∑hn} ∈ [0,1) and bN = {c(N)},
it must hold for f with δ (f)F and

bN(X1,XN+1) := δ (f){c(N)}+aN+1(XN+1)−a1(X1)+E[a1(X1)−aN+1(XN+1)].

Clearly |bN | ≤ δ (f)+4ess sup |a|. Recalling that ess sup |a| ≤ 2ess sup |F| ≤ 2δ (f),
we find that ess sup |bN | ≤ 9δ (f), proving part (3) as well. �

5.2.3 Neccessity of the irreducibility assumption

Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. Recall that fr = { fn}n≥r and Xr = {Xn}n≥r. In this section we
prove Theorem 5.2, which asserts the equivalence of the following three conditions:

(a) f is irreducible with algebraic range R.
(b) (Xr, fr) satisfies the mixing non-lattice local limit theorem, for all r.
(c) (Xr, fr) satisfies the mixing uniform distribution mod t for all r and t > 0.

(a)⇒(b): To see this recall that additive functionals on uniformly elliptic Markov
chains are special cases of stably hereditary additive functionals on uniformly ellip-
tic Markov arrays, and apply Theorem 4.3(1) to φ continuous with compact support
which approximate indicators of intervals in L1(R).

(b)⇒(a): Assume f satisfies the “mixing non-lattice LLT” property. By definition,
VN → ∞, and therefore f is not center-tight.

Also, Galg(X, f) = R, otherwise Px(SN − zN ∈ (a,b)|XN+1 ∈ AN+1) = 0 for zN
and (a,b) such that zN +(a,b)⊂ R\Galg(X, f).

If Gess(X, f) =R then f is irreducible and we are done. Assume by way of contra-
diction that Gess(X, f) 6= R, then Gess(X, f) = tZ for some t > 0 (t = 0 is impossible
because f is not center-tight). There is no loss of generality in assuming that

Gess(X, f) = Z.

There is also no loss of generality in assuming that
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E( fn(Xn,Xn+1)) = 0 for all n.

Let S(r)N := fr(Xr,Xr+1)+ · · ·+ fN(XN ,XN+1) and V (r)
N := Var(S(r)N ). By the expo-

nential mixing of X (Proposition 1.1),

|VN−V (r)
N |= |Vr−1 +2Cov(S(r)N ,Sr−1)| ≤Vr +2

r−1

∑
j=1

∞

∑
k=r

Cov( f j, fk) = O(1).

Therefore, for fixed r, VN/V (r)
N −−−→

N→∞
1.

Since Galg(X,R) = R and Gess(X, f) = Z, f is reducible, and we can write

f = F+∇a+h+ c,

where F is irreducible with algebraic range Z, an(x) are uniformly bounded (say by
K), h has summable variances, E(hn) = 0, and c are constants. Let

b(r)N (Xr,XN+1) := aN+1(XN+1)−ar(Xr)+

{
−

N

∑
k=r
E(Fk(Xk,Xk+1))

}
,

F :=
∞

∑
n=1

hn(Xn,Xn+1) ,

Fr :=
∞

∑
n=r

hn(Xn,Xn+1).

By Theorem 2.4, these sums converge almost surely and in L2.

As we saw in the proof of Theorem 5.1, if zN−E(S
(r)
N )√

V (r)
N

→ 0 and P(Xn ∈ An) is

bounded below, then for all φ ∈Cc(R) and xr ∈Sr,

lim
N→∞

√
2πVNExr [φ(S

(r)
N −b(r)N − zN)] = ∑

m∈Z
E[φ(m+Fr)]. (5.2.27)

We are going to choose r,xr,zN ,AN and φ in such a way that (5.2.27) is inconsistent
with (b). Here are the choices:

◦ Choice of r: Since Fr is the tail of a convergent series, Fr −−−→
r→∞

0 a.s., whence in

probability. Choose r s.t. P(|Fr| ≥ 0.2)< 10−3.
◦ Choice of xr: P(|Fr| ≥ 0.2) =

∫
Px(|Fr| ≥ 0.2)]µr(dx). So there exist xr ∈Sr s.t.

Pxr(|Fr|> 0.2)< 10−3.

◦ Choice of AN : By construction, ess sup |b(r)N | ≤ 2K+1. Divide [−2K−1,2K+1]
into equal intervals of length less than 10−2. At least one such interval, call it JN ,
satisfies P(b(r)N ∈ JN)≥ 10−2(4K +2)−1 and |JN | ≤ 10−2. Let
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A
(r)
N+1 := [b(r)N ∈ JN ].

◦ zN :=−center of JN , then zN = O(1) and zN−E(S
(r)
N )√

V (r)
N

→ 0.

◦ Choose a sequence Nk→ ∞ such that zNk → a. Let I :=−a+[0.4,0.6].
◦ Choose φ ∈Cc(R) s.t. 0≤ φ ≤ 1, φ |[0.3,0.7] ≡ 1 and φ |R\[0.2,0.8] ≡ 0.

With these choices,

liminf
N→∞

√
2πV (r)

N Pxr

(
S(r)N − zN ∈ I

∣∣XN+1 ∈ A
(r)
N+1

)
≤ lim

k→∞

√
2πVNkPxr

(
S(r)Nk
− zNk ∈ I

∣∣b(r)Nk
(Xr,XNk+1) ∈ JNk

) (
because

V (r)
N

VN
→ 1

)
≤ lim

k→∞

√
2πVNkPxr

(
S(r)Nk
−b(r)Nk

− zNk ∈ [0.3,0.7]
∣∣b(r)Nk

∈ JNk

)
, (because for k� 1

I−bNk ⊂ I− JNk ⊂ I +
(

zNk −
|JNk |

2 ,zNk +
|JNk |

2

)
⊂ I +(a−0.1,a+0.1)⊂ [0.3,0.7])

≤ lim
k→∞

√
2πVNkExr

(
φ(S(r)Nk

−b(r)Nk
− zNk)

∣∣b(r)Nk
∈ JNk+1

)
= ∑

m∈Z
Exr [φ(m+Fr)], by (5.2.27)

≤ ∑
m∈Z

Pxr

(
m+Fr ∈ [0.2,0.8]

)
≤ Pxr

(
|Fr| ≥ 0.2

)
< 10−3 < |I|.

But this contradicts (b).

(a)⇒(c): Suppose (X, f) is non-lattice and irreducible, then (X, f) is non-lattice and
irreducible for all r. Fix t > 0, x1 ∈ S1, and some sequence of measurable events
An ⊂Sn such that P(Xn ∈ An) is bounded below. Let S(r)N := ∑

N
k=r fk(Xk,Xk+1).

We show that for every continuous and periodic φ(x) with period t,

Ex(φ(S
(r)
N )|XN+1 ∈ AN+1)−−−→

N→∞

1
t

∫ t

0
φ(x)dx. (5.2.28)

It is enough to show (5.2.28) for trigonometric polynomials φ(u)=∑|n|<L cne2πinu/t ,
as these are dense in C[0, t]. For such functions,

Ex(φ(S
(r)
N )|XN+1 ∈ AN+1) = ∑

|n|<L
cnEx(e2πinS(r)N /t |XN+1 ∈ AN+1)

= c0 + ∑
0<|n|<L

ΦN
(
x, 2πn

t |AN+1
)
,where ΦN are the characteristic functions of (Xr, fr)

= c0 +o(1), by irreducibility and (4.2.7).

Since c0 =
1
t
∫ t

0 φ(u)du, (5.2.28) follows. Standard approximation arguments show
that (5.2.28) implies that
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Px(S
(r)
N ∈ (a,b)|XN+1 ∈ AN+1)−−−→

N→∞

|a−b|
t

for all intervals (a,b).

(c)⇒(a): We need the following lemma.

Lemma 5.3. Fix a regular sequence of sets AN , x, and t > 0, and suppose that

Px(S
(r)
N ∈ (a,b)+ tZ|XN+1 ∈ AN+1)−−−→

N→∞

|a−b|
t

for all intervals (a,b). Then the convergence is uniform in (a,b).

Proof. We are asked to find for each ε > 0 an N0 such that

|Px(S
(r)
N ∈ (a,b)+ tZ|XN+1 ∈ AN+1)− |a−b|

t |< ε for all N > N0 and a < b.

Choose 0 < δ < min{ ε

5 ,1}, and divide [0,1] into finitely many equal disjoint inter-
vals {I j} with length |I j|< δ . Choose N0 so that for all N > N0, for all I j,∣∣Px(S

(r)
N ∈ I j + tZ|XN+1 ∈ AN+1)−

|I j|
t

∣∣< δ |I j|
t

. (5.2.29)

Every interval I := (a,b) can be approximated from within and from outside by
finite (perhaps empty) unions of intervals I j whose total length differs from |a−b|
by no more than 2δ . Summing (5.2.29) over these unions we see that for all n > N,

Px(S
(r)
N ∈ I + tZ|XN+1 ∈ AN+1)≤

|a−b|+2δ

t
+

δ (|a−b|+2δ )

t

Px(S
(r)
N ∈ I + tZ|XN+1 ∈ AN+1)≥

|a−b|−2δ

t
− δ |a−b|

t
.

By choice of δ , |Px(S
(r)
N ∈ I + tZ|XN+1 ∈ AN+1)− |a−b|

t |< ε . �

We can now prove that (c) ⇒ (a). Suppose (Xr, fr) has the “mixing uniform
distribution mod t” property for all r and t. This property is invariant under cen-
tering, because of Lemma 5.3. So we may assume without loss of generality that
E[ fn(Xn,Xn+1)] = 0 for all n.

First we claim that (X, f) is not center-tight. Otherwise there are constants cN and
M such that P(|SN − cN |> M)< 0.1 for all N. Take t := 5M and Nk→ ∞ such that
cNk −−−→k→∞

c mod tZ, then by the bounded convergence theorem and (c),

0.9≤ lim
k→∞

P
(
SNk ∈ [c−2M,c+2M]

)
≤ lim

N→∞
P
(
SN ∈ [c−2M,c+2M]+ tZ

)
=
∫
S1

lim
N→∞

Px
(
SN ∈ [c−2M,c+2M]+ tZ|XN+1 ∈SN+1

)
µ1(dx) =

4M
t

= 0.8,

a contradiction. Thus (X, f) is not center-tight and VN → ∞.
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Assume by way of contradiction that Gess(X, f) 6= R, then Gess(X, f) = tZ for
some t, and t 6= 0 because VN → ∞. Without loss of generality t = 1, otherwise we
can rescale f. By the reduction lemma, we can write

fn(x,y)+an(x)−an+1(y) = Fn(x,y)+hn(x,y)+ cn

where ak,Fk,hk,ck are uniformly bounded, Fn are integer valued, hn have summable
variances, and E(hn) = 0. Then F := ∑n≥1 hn(Xn,Xn+1) converges a.s., and Fr :=
∑n≥r hn(Xn,Xn+1)−−−→

r→∞
0 almost surely.

Working as in the proof of (b)⇒ (a), we construct x ∈S1 and r > 1 such that

|Ex(e2πiFr)|> 0.999.

Next we construct a regular sequence of measurable sets AN+1, and intervals
JN with lengths 0.0001 and centers zN = O(1) such that aN+1(XN+1)− a1(X1) ∈
JN , whenever XN+1 ∈ AN+1,X1 = x.

By Lemma 5.2 with s = 0, m = 1, and vN+1 ≡ 1, there are c(r,N) ∈ R s.t.

Ex
(
e2πi(S(r)N +a(X1)−a(XN+1)−zN)|XN+1 ∈ AN+1

)
= e2πi(c(r,N)−zN)Ex(e2πiFr)+o(1),

as N → ∞. Since ‖e2πi(S(r)N +a(X1)−a(XN+1)−zN)− e2πi(S(r)N )1[XN+1∈AN+1,X1=x]‖∞ < 0.1,

we find that for all N large enough, |Ex
(
e2πi(S(r)N )|XN+1 ∈ AN+1

)
|> 1

2 .
But this is a contradiction, since (c) implies that

Ex
(
e2πiS(r)N |XN+1 ∈ AN+1

)
−−−→
N→∞

1
2π

∫ 2π

0
eiudu = 0.

So Gess(X, f) = R and (a) is proved. �

5.2.4 Universal bounds for Markov chains

Lemma 5.4. Suppose F is a real random variable such that 0≤F< δ almost surely.
Then for every interval (a,b) of length L > δ ,(

1− δ

L

)
|a−b|< δ ∑

m∈Z
E[1(a,b)(mδ +F)]<

(
1+

δ

L

)
|a−b|.

Proof. Fix k large, and divide [0,δ ) into k intervals I j := jδ
k +[0, δ

k ). For each j,
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δ ∑
m∈Z

E[1(a,b)(mδ +F)|F ∈ I j]≤ δ ∑
m∈Z

E[1
(a+ ( j−1)δ

k ,b+ ( j+1)δ
k )

(mδ )|F ∈ I j]

= δ ∑
m∈Z

1
(a+ ( j−1)δ

k ,b+ ( j+1)δ
k )

(mδ )≤ |a−b|+1+
2δ

k
−−−→
k→∞

|a−b|+1.

Multiplying by P[F ∈ I j] and summing over j = 0, . . . ,k − 1 gives the bound
δ ∑m∈ZE[1(a,b)(mδ +F)]≤ |a−b|+δ . Similarly, δ ∑m∈ZE[1(a,b)(mδ +F)]≥ |a−
b|−δ . The lemma follows. �

Proof of Theorem 5.3: If δ (f) = ∞ then there is nothing to prove, and if δ (f) =
0 then (X, f) is non-lattice and irreducible, and the universal bounds follow from
Theorem 4.1. So assume δ (f) is finite and positive.

Suppose zN−E(SN)√
VN

→ z. Let F and bN(X1,XN) be as in Theorem 5.1.

Upper bound (5.1.5): Let δ := δ (f) and auppose (a,b) is an interval of length
L > δ . We may assume without loss of generality that a− 10δ ,b+ 10δ are not
atoms of F (otherwise change a,b a little).

Suppose zN−E(SN)√
VN

→ z, and write zN = zN +ζN , zN ∈ δZ , |ζN | ≤ δ . Recall that
by Theorem 5.1, |bN | ≤ 9δ . Therefore

SN− zN ∈ (a,b)⇒ SN− zN−bN ∈ (a−10δ ,b+10δ )

So

limsup
N→∞

√
2πVNPx[SN− zN ∈ (a,b)]

≤ limsup
N→∞

√
2πVNPx[SN− zN−bN ∈ (a−10δ ,b+10δ )]

= e−z2/2
δ ∑

m∈Z
E[1(a−10δ ,b+10δ )(mδ +F)] by Theorem 5.1

≤
(

1+
δ

|a−b|+20δ

)
e−z2/2(|a−b|+20δ ) by Lemma 5.4

≤ (|a−b|+21δ )e−z2/2 ≤
(

1+
21δ

L

)
e−z2/2|a−b|.

Lower bound (5.1.6): Fix an interval (a,b) with length bigger than some L > δ (f).
Recall that |bN | are uniformly bounded. Choose some K so that P[|bN | ≤K] = 1 and
fix x ∈S1 s.t. Px[sup |bN | ≤ K] = 1.

Next, divide [−K,K] into k disjoint intervals I j,N of equal length 2K
k , with k large.

For each N,

∑
Px[bN∈I j,N ]≥k−2

Px[bN ∈ I j,N ]≥ 1− 1
k
,

because to complete the left-hand-side to one we need to add the probabilities of
[bN ∈ I j,N ] for the j s.t. Px[bN ∈ I j,N ]< k−2, and there are at most k such events.
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Therefore, we can divide {I j,N} into two groups of size at most k: The first con-
tains the I j,N with Px[bN ∈ I j,N ] ≥ k−2, and the second corresponds to events with
total probability less than 1

k (conditioned on X1 = x).
Re-index the intervals in the first group (perhaps with repetitions) in such a way

that it takes the form I j,N ( j = 1, . . . ,k) for all N. Then for each j, A j,N := [bN ∈
I j,N ,X1 = x] is a regular sequence of events.

Let β j,N := center of I j,N and set z j,N := zN −β j,N . Every sequence has a sub-
sequence s.t. z j,N converges mod δ (f). We will henceforth assume that z j,N =
z j,N +ζ0 +ζ j,N where z j,N ∈ δ (f)Z and |ζ j,N |< K

k , and |ζ0|< δ (f) is fixed.
Recall that |I j,N | = 2K

k . Conditioned on A j,N , bN = β j,N ± 2K
k , therefore z j,N +

ζ0 +bN = zN± 3K
k , whence

SN− z j,N−bN ∈
(

a−ζ0 +
3K
k
,b−ζ0−

3K
k

)
⇒ SN− zN ∈ (a,b).

There is no loss of generality in assuming that the endpoints of this interval are not
atoms of F, otherwise perturb K a little. Since A j,N is a regular sequence, we have
by Theorem 5.1 part (2) and the lemma that

liminf
N→∞

√
2πVNP(SN− zN ∈ (a,b)|A j,N)

≥ liminf
N→∞

√
2πVNP(SN− z j,N−bN ∈ (a−ζ0 +

3K
k ,b−ζ0− 3K

k )|A j,N)

= δ (f)e−z2/2
∑

m∈Z
E[1

(a−ζ0+
3K
k ,b−ζ0− 3K

k )
(mδ (f)+F)]

≥
(

1− δ

L

)(
|a−b|− 6K

k

)
e−z2/2.

We now multiply these bounds by Px[A j,N ] and sum over j. This gives

liminf
N→∞

√
2πVNPx

(
[SN− zN ∈ (a,b)]

⋂ k⋃
j=1

A j,N

)
≥
(

1− δ

L

)(
|a−b|− 6K

k

)
e−z2/2

(
1− 1

k

)
.

Passing to the limit k→ ∞, we obtain

liminf
N→∞

√
2πVNPx ([SN− zN ∈ (a,b)])≥

(
1− δ

L

)
e−z2/2|a−b|,

and the lower bound is proved.
To prove the last statement of the theorem let A be the positive functional on

Cc(R) defined by (5.1.4), and let µA be the Radon measure on R s.t. µA (φ) =
A [φ ] for φ ∈Cc(R). Clearly µA is invariant under the translation by δ (f), and the

estimates (5.1.5)–(5.1.6) which we proved above show that lim
L→∞

µA [0,L]
L

=
1√
2π

.

It follows that for each a, µA [a,a+δ (f)) = δ (f)√
2π

, whence



126 5 The local limit theorem in the reducible case

∀k ∈ N µA ([a,a+δ (kf))) =
kδ (f)√

2π
. (5.2.30)

Given an interval (a,b) of length L with kδ (f)< L < (k+1)δ (f) take two intervals
I−, I+ such that

I−⊂ (a,b)⊂ I+, µA (∂ I−)= µA (∂ I+)= 0, |I−|= kδ (f), |I+|=(k+1)δ (f).

Next let φ−,φ+ be continuous functions with compact support such that

1I− < φ
− < 1[a,b] < φ

+ < 1I+ .

Then for large N,
√

VNP(SN − zN ∈ (a,b)) is sandwiched between A (φ−) and
A (φ+) which in turn is sandwiched between

µA (I−) =
kδ (f)√

2π
and µA (I+) =

(k+1)δ (f)√
2π

where the equalities rely on (5.2.30). The proof of the theorem is complete. �

5.2.5 Universal bounds for Markov arrays

Next, we give a different proof of universal lower and upper bounds, which does not
rely on Theorem 5.1, and which also applies to arrays.

Theorem 5.4. Let X be a uniformly elliptic Markov array, and f an a.s. uniformly
bounded additive functional which is stably hereditary and not center tight. For
every ε > 0 there is Nε > 0 as follows. Suppose zN−E(SN)√

VN
−−−→
N→∞

z ∈R, and |a−b|>
2δ (f)+ ε , then for all N > Nε ,

1
3

(
e−z2/2|a−b|√

2πVN

)
≤ P(SN− zN ∈ (a,b))≤ 3

(
e−z2/2|a−b|√

2πVN

)
.

Recall that by our conventions, the Fourier transform of an L1 function γ :R→R
is γ̂(x) =

∫
∞

−∞
e−itxγ(t)dt. Fix some b > 0, and define the Fourier pair

ψb(t) :=
π

4b
1[−b,b](t) , ψ̂b(x) =

π

2b

(
sin(bx)

x

)
.

Lemma 5.5. 1≤ ψ̂b(x)≤ π

2 for |x| ≤ π

2b ; and |ψ̂b(x)|< 1 for |x|> π

2b .

Proof. The function ψ̂b(x) is even, with zeroes at zn = πn/b, n ∈ Z\{0}. The crit-
ical points are c0 = 0 and ±cn where n≥ 1 and

cn := the unique solution of tan(bcn) = bcn in
(

zn,zn +
π

2b

)
.



5.2 Proofs 127

It is easy to see that cn = zn +
π

2b −o(1) as n→ ∞, and that

sgn[ψ̂b(cn)] = (−1)n , |ψ̂b(cn)| ≤
1

2n
, ψ̂b(cn)∼

(−1)n

2n
as n→ ∞.

So ψ̂b attains global maximum ψ̂b(0) = π

2 at c0, and |ψ̂b(t)| ≤ 1
2n everywhere on

[πn/b,π(n+1)/b].
In particular, |ψ̂b(t)|< 1/2 for |t| ≥ π/b. On (0,π/b) the function is decreasing

from its global maximum ψ̂b(0) = π

2 to ψ̂b(
π

b ) = 0, passing through ψ̂b(
π

2b ) = 1. It
follows that 1≤ ψ̂b(t)≤ π

2 on (0, π

2b ) and |ψ̂b(t)|< 1 for t > π

2b . The lemma follows,
because ψ̂b(−t) = ψ̂b(t). �

Lemma 5.6. There exist two continuous functions γ1(x),γ2(x) s.t. supp(γi)⊂ [−2,2];
γ1(0)> 1

3 ; γ2(0)< 3; and γ̂1(x)≤ 1[−π,π](x)≤ γ̂2(x) (x ∈ R).

Proof. Throughout this proof, ψ∗n := ψ ∗ · · · ∗ψ (n times), where ∗ denotes the
convolution. Let γ1(t) := 1

4 [ψ
∗4
1
2
(t)−ψ∗21

2
(t)]. Then γ̂1(x) = 1

4 [ψ̂ 1
2
(x)4− ψ̂ 1

2
(x)2]. By

Lemma 5.5, 1≤ ψ̂ 1
2
≤ π

2 on [−π,π] and |ψ̂ 1
2
|< 1 outside [−π,π]. So

max
|x|≤π

γ̂1(x)≤ max
1≤y≤ π

2

1
4
(y4− y2) =

1
4

[(
π

2

)4
−
(

π

2

)2
]
< 1,

max
|x|≥π

γ̂1(x)≤max
|y|≤1

1
4
(y4− y2) = 0.

So γ̂1(x)≤ 1[−π,π](x) for all x ∈ R.
It is obvious from the definition of the convolution that supp(γ1)= {x+y+z+w :

x,y,z,w ∈ [− 1
2 ,

1
2 ]}= [−2,2]. Here is the calculation showing that γ1(0)> 1

3 :

(ψ∗2b )(t) =
π2

16b2 (1[−b,b] ∗1[−b,b])(t) =
π2

16b2 1[−2b,2b](t)(2b−|t|)

(ψ∗4b )(0) = (ψ∗2b ∗ψ
∗2
b )(0)

=
π4

256b4

∫
∞

−∞

1[−2b,2b](t)(2b−|t|)1[−2b,2b](−t)(2b−|− t|)dt

=
π4

256b4

∫ 2b

−2b
(2b−|t|)2dt =

π4

128b4

∫ 2b

0
(2b− t)2dt

=
π4

128b4 ·
(2b)3

3
=

π4

48b
.

So ψ∗41
2
(0) = π4

24 , ψ∗21
2
(0) = π2

4 , and γ1(0) = 1
4 (

π4

24 −
π2

4 )> 1
3 .

Next we set γ2(t) :=(ψ 1
2
∗ψ 1

2
)(t)≡ π2

4 1[−1,1](t)(1−|t|). Then supp(γ2)= [−1,1]

and γ2(0) = π2

4 < 3. Finally, γ̂2 ≥ 1[−π,π](x), because by Lemma 5.5,

◦ γ̂2(t) = (ψ̂ 1
2
)2(x)≥ 1 for all |x| ≤ π

2· 12
= π , and
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◦ γ̂2(t) = (ψ̂ 1
2
)2(x)≥ 0 for all |x| ≥ π . �

Proof of Theorem 5.4. There is no loss of generality in assuming that Gess(X, f) =
Z, otherwise we scale f. In this case |I| > 2. Notice that we can always center I by
modifying zN by a constant. So we may take

I = [−a,a], with a > 1.

Let γi(t) be the functions constructed in Lemma 5.6, then

γ̂1

(
πt
a

)
≤ 1I(t)≤ γ̂2

(
πt
a

)
.

Therefore

Px(SN− zN ∈ I) = Ex[1I(SN− zN)]≥ Ex

[
γ̂1

(
π(SN− zN)

a

)]
= Ex

[∫
∞

−∞

e−i πt
a (SN−zN)γ1(t)dt

]
=
∫

∞

−∞

Ex(e−i πt
a (SN−zN))γ1(t)dt.

Recalling that supp(γ1)⊂ [−2,2], and substituting t = aξ/π , we obtain

P(SN− zN ∈ I)≥ |I|
2π

∫ 2π/a

−2π/a
Ex(e−iξ (SN−zN))γ1(

aξ

π
)dξ .

Similarly, we have

P(SN− zN ∈ I)≤ |I|
2π

∫ 2π/a

−2π/a
Ex(e−iξ (SN−zN))γ2(

aξ

π
)dξ .

Thus to complete the proof of the theorem it sufficient to show that under the as-
sumptions of Theorem 5.4,

Lemma 5.7. If Gess( f ) = Z and zN−E(SN)√
VN

−−−→
N→∞

z ∈ R, then for every a > 1

√
VN

2π/a∫
−2π/a

E(e−iξ (SN−zN))γi

(
aξ

π

)
dξ −−−→

N→∞

√
2πe−

1
2 z2

γi(0)

and the convergence is uniform in a on compact subsets of R\ [−1,1].

Proof. In what follows we fix i ∈ {1,2} and let γ(ξ ) := γi(
aξ

π
). Divide [− 2π

a , 2π

a ]

into segments I j of length at most δ̃ , where δ̃ is given by Lemma 5.2, making sure
that I0 is centered at zero. Let

J j,N :=
∫

I j

Ex(e−iξ (SN−zN))γ(ξ )dξ .
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CLAIM 1.
√

VNJ0,N −−−→
N→∞

√
2πe−z2/2γ(0).

Proof. The proof is similar to the proof of (4.2.17).
Applying corollary 5.3 to the interval I0, and noting that AN(I0) = 0 and ξ̃N = 0

we find that
|Ex(e−iξ (SN−zN))| ≤ C̃ exp(−ε̂ξ

2VN).

So for every R > 1,
√

VN
∫

ξ∈I0:|ξ |> R√
VN

Ex(e−iξ (SN−zN))γ(ξ )dξ = O(e−ε̂R2
). Simi-

larly, for all N large enough

√
VN

∫
ξ∈I0:|ξ |≤ R√

VN

E(e−iξ (SN−zN))γ(ξ )dξ =
∫ R

−R
E(e

−iη(
SN−zN√

VN
)
)γ( η√

VN
)dη

=
∫ R

−R
E(e

−iη(
SN−E(SN )√

VN
)
)e

iη(
zN−E(SN )√

VN
)
γi(

aη

π
√

VN
)dη

!
=
∫ R

−R
e−

1
2 η2+iηz

γ(0)dη +oN→∞(1) uniformly on compact sets of a

=
√

2πe−
1
2 z2

γ(0)+oR→∞(1)+oN→∞(1),

where !
= is a consequence of Dobrushin’s CLT and the bounded convergence theo-

rem. In summary,√
VNJ0,N =

√
2πe−

1
2 z2

γ(0)+oR→∞(1)+oN→∞(1).

Fixing R, we see that limsup
√

VNJ0,N and liminf
√

VNJ0,N are both equal to

√
2πe−

1
2 z2

γ(0)+oR→∞(1).

Passing to the limit R→∞ gives us that the limit exists and is equal to
√

2πe−
1
2 z2

γ(0).
It is not difficult to see that the convergence is uniform on compact subsets of a.

CLAIM 2.
√

VNJ j,N −−−→
N→∞

0 for every j 6= 0.

Proof. Since Gess(f) = Z, the co-range is H(f) = 2πZ. So

I j ⊂ [− 2π

a , 2π

a ]\ int(I0)⊂ a compact subset of R\H(f).

This implies by the stable hereditary property of f that

DN(ξ )−−−→
N→∞

∞ uniformly on I j,

whence by (5.6), |Ex(e−iη(SN−zN))| −−−→
N→∞

0 uniformly on I j.

Let A j,N :=− log{sup |Ex(e−iξ (SN−zN))| : (x,ξ ) ∈S
(N)
1 × I j}, then A j,N −−−→

N→∞
∞,

and this divergence is uniform for a ranging over compact subsets of R\ [−1,1].
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From this point onward, the proof is identical to the proof of (4.2.18). We omit
the details.

The Lemma follows by summing over all subintervals I j in [− 2π

a , 2π

a ], and noting

that the number of these intervals is uniformly bounded
(

by 1+ 4π

δ̃

)
. �

5.3 Notes and references

Dolgopyat proved a version of Theorem 5.1 for sums of independent random vari-
ables. The connection between the LLT and uniform distribution modulo t was
considered for sums of independent random variables by Prohorov [109], Rozanov
[115], and Gamkrelidze [50].

The question of estimating P[SN − zN ∈ (a,b)] is related to the study of the rate
of convergence in the CLT. In particular, a Berry-Esseen type result on the rate of
convergence in the CLT would certainly imply that ∃M s.t. for all |a− b| > M, if
zN−E(SN)√

VN
→ z, then for all N large enough, P[SN − zN ∈ (a,b)] equals e−z2/2|a−b|√

2πVN
up

to bounded multiplicative error. Such results were shown to us by Y. Hafouta. The
Berry-Esseen approach has the advantage of gives information on the time N when
the universal estimates kick in, but has the disadvantage that it only applies to very
large intervals (how large depends on the growth of the third moment of SN). By
contrast, the results of this chapter apply to intervals of length > δ (f), which is
optimal, but do not say on how large N should be for the estimates to work.



Chapter 6
Local limit theorems for large and moderate
deviations

In this chapter we prove the local limit theorem in the regimes of moderate and
large deviations. In these cases the asymptotic behavior of P(SN − zN ∈ (a,b)) is
determined by the log-moment generating functions of SN , through their Legendre
transforms, the “rate functions.”

6.1 The moderate deviations and large deviations regimes

Suppose f is an irreducible, a.s. uniformly bounded, additive functional on a uni-
formly elliptic Markov chain X, with algebraic range R or tZ with t > 0. Let

SN = f1(X1,X2)+ · · ·+ fN(XN ,XN+1) , VN := Var(SN).

In the previous chapters, we analyzed P(SN − zN ∈ (a,b)) as N → ∞, in the
regime of local deviations, zN−E(SN) ∼ const

√
Var(SN). In this chapter we ask

what happens when zN−E(SN)√
Var(SN)

→ ∞. We consider two cases:

(1) Moderate deviations: zN−E(SN) = o(Var(SN)),

(2) Large deviations: |zN−E(SN)|> εVar(SN) for some ε > 0 and all N.

It is instructive to compare the regime of large deviations to the regime of the
LLT from the point of view of universality. The asymptotic behavior of P[SN −
zN ∈ (a,b)] in the regime of local deviations does not depend on the details of the
distributions of fn(Xn,Xn+1). It depends only on rough features such as Var(SN),
the algebraic range, and (in case the algebraic range is tZ) on the constants cN
s.t. SN ∈ cN + tZ almost surely. By contrast, in the regime of large deviations the
asymptotic behavior of P[SN− zN ∈ (a,b)] depends on the entire distribution of SN .
The dependence is through the Legendre transform of logE(etSN )–a function which
encodes the entire distribution of SN , and not only its rough features.

We will consider two partial remedies to the lack of universality:

131



132 6 Local limit theorems for large and moderate deviations

(a) Conditioning: The conditional distributions of SN − zn given that SN − zN > a
has a universal scaling limit, see Corollary 6.2.

(b) Moderate deviations: If |zN −E(SN)| = o(Var(SN)), then P[SN − zN ∈ (a,b)]
have universal lower and upper bounds (Theorems 6.3, 6.4).

Before we continue to present our results, we need to discuss a subtle but impor-
tant point related to the definition of the regime of large deviations.

Our definition allows zN−E(SN)
VN

to grow arbitrarily fast. But if zN−E(SN)
VN

grows too

fast, e.g. when zN−E(SN)
VN

> 2ess sup |SN |
VN

, then the probabilities P[SN − zN ∈ (0,∞)] are
all equal to zero, and the problem we are studying is vacuous.

A related issue arises when zN−E(SN)
VN

falls at the boundary of the domain of the

Legendre transforms of t 7→ 1
VN

logE(et(SN−E(SN))). Why this matters will be clear
once we explain the strategy of our proofs (see the end of §6.3.1 and §6.4). At this
point we can only present an example which shows that in this case the behavior of
P[SN− zN ∈ (a,b)] may depend not just on lim zN−E(SN)

VN
but also on zN itself:

Example 6.1. Consider the case SN = X1 + · · ·+ XN where Xi are iid’s equal to
−1,0,1 with equal probabilities.

Here E(SN) = 0, VN = 2N/3, the Legendre transforms of the log-moment gen-
erating functions have domains (− 3

2 ,
3
2 ), and the classical theory of large deviations

says that if zN
VN
→ z ∈ (− 3

2 ,
3
2 ), then lim 1

VN
logP[SN − zN > 0] is finite. But no such

conclusion holds when zN
VN
→ 3

2 :

◦ If zN = N, then [SN− zN > 0] =∅ and 1
VN

logP[SN− zN > 0] =−∞;
◦ If zN = N−1, then [SN− zN > 0] = [SN = N], and 1

VN
logP[SN− zN > 0] =− 3

2 ;
◦ If zN = N−2, then 1

VN
logP[SN− zN > 0]∼ 3

2N logN.

So the behavior of SN− zN when zN
VN
→ 3

2 depends on zN .

For general additive functionals on inhomogeneous Markov chains, we do not
know how to determine the asymptotic behavior of P[SN − zN ∈ (a,b)] when zN

VN
is

close to the boundary of

CN := domain of the Legendre transform of
1

VN
logE(et(SN−E(SN))).

For this reason, we will only consider the regime of large deviations in the case
when zN−E(SN)

Var(SN)
is well inside int(CN) for all N.
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6.2 Local limit theorems for large deviations

6.2.1 The log moment generating functions

Suppose |f|< K almost surely. For every N such that VN 6= 0, we define the normal-
ized log moment generating function of SN to be

FN(ξ ) :=
1

VN
logE(eξ SN ) (ξ ∈ R).

The a.s. uniform boundedness of f guarantees the finiteness of the expectation, and
the real analyticity of FN(ξ ) on R.

Example 6.2. Suppose that SN =
N

∑
n=1

Xn where Xn where XN are i.i.d. bounded ran-

dom variables with non-zero variance. Let X denote the common law of Xn. Then

FN(ξ ) = FX (ξ ) :=
1

Var(X)
logE(eξ X ) is independent of n.

(i) FX (ξ ) is strictly convex, by Hölder’s inequality and because X 6= const a.s. Since
FX (ξ ) is smooth, its second derivative must be strictly bigger than zero on com-
pacts. So FN(ξ ) are uniformly strictly convex on compacts.

(ii) lim
ξ→−∞

F ′
N(ξ ) = ess inf(X)/Var(X), lim

ξ→+∞

F ′
N(ξ ) = ess sup(X)/Var(X). To see

this, use convexity to see that limF ′
N(ξ ) are the slopes of the asymptotes of

FX (ξ ), or equivalently lim 1
ξ
FN(ξ ). The last limits can be easily found to be

equal to ess sup(X)/Var(X) as ξ → ∞, and ess inf(X)/Var(X) as ξ →−∞.

Properties (i) and (ii) play a key role in the study of large deviations for sums of i.i.d.
random variables. A significant part of the effort in this chapter is to understand to
which extent similar results holds in the setting of bounded additive functionals of
uniformly elliptic Markov chains. We start with the following facts.

Theorem 6.1. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X, and assume VN 6= 0 for all N ≥ N0, then

(1) For all N ≥ N0, FN(0) = 0 , F ′
N(0) =

E(SN)
VN

, F ′′
N(0) = 1.

(2) For every N ≥ N0, FN(ξ ) is strictly convex on R.

(3) The convexity is uniform on compacts: For every R> 0 there is C =C(R) positive
s.t. for all N ≥ N0, C−1 ≤F ′′

N(ξ )≤C on [−R,R].

(4) Suppose VN→∞. For every ε > 0 there are δ ,Nε > 0 s.t. for all |ξ | ≤ δ , N >Nε ,
we have e−ε ≤F ′′

N(ξ )≤ eε , and

e−ε 1
2

(
ξ − E(SN)

VN

)2

≤FN(ξ )−
E(SN)

VN
ξ ≤ eε 1

2

(
ξ − E(SN)

VN

)2

.
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This is very similar to what happens for iid’s, but there is one important difference:
In our setting VN may be much smaller than N.

For the proof of this theorem see §6.3.5. Here is an immediate corollary:

Corollary 6.1. Suppose f is an a.s. uniformly bounded additive functional on a uni-
formly elliptic Markov chain X. If VN := Var(SN)→ ∞, then for all 0 < α < 1

2 and

κ > 0, if zN−E(SN)
VN

∼ κV−α

N as N→ ∞, then

lim
N→∞

1
V 2α−1

N
logP[SN− zN ≥ 0] =−1

2
κ

2.

Proof. There is no loss of generality in assuming that E(SN) = 0 for all N. Let
an :=V 1−2α

n , bn :=V α
n , Wn := Sn/bn. Then an→ ∞, whence by Theorem 6.1(4),

F (ξ ) := lim
n→∞

1
an

logE(eξWn) = lim
n→∞

V 2α
n FN(

ξ

V α
n
) =

1
2

ξ
2.

We may now use the Gärtner-Ellis Theorem see e.g. [47, Thm II.6.1]) and zn
anbn
→ κ

to deduce that lim
n→∞

1
an

logP[Sn− zn ≥ 0] = lim
n→∞

1
an

logP[Wn
an
≥ zn

anbn
] =− 1

2 κ2. �

6.2.2 The rate functions

Suppose VN 6= 0. The rate functions IN(η) are the Legendre transforms of
FN(ξ ). Specifically, let aN := infF ′

N and bN := supF ′
N ; then IN : (aN ,bN)→R is

IN(η) := ξ η−FN(ξ ) for the unique ξ s.t. F ′
N(ξ ) = η .

The existence and uniqueness of ξ is because of the smoothness and strict convexity
of FN on R. We call (aN ,bN) the domain of IN , and denote it by

dom(IN) := (aN ,bN).

Equivalently, dom(IN) = (F ′(−∞),F ′(+∞)), where F ′(±∞) := lim
t→±∞

F ′(t).

Later we will also need the sets (aR
N ,b

R
N)⊂ dom(IN), where R > 0 and

aR
N := F ′

N(−R), bR
N := F ′

N(R). (6.2.1)

The functions IN and their domains depend on N. The following theorem iden-
tifies certain uniformity and universality in their behavior.

Theorem 6.2. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X, and assume VN 6= 0 for all N large enough, then

(1) ∃c,N1,R > 0 s.t. for all N > N1, for all N > N1,
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dom(IN)⊃ [aR
N ,b

R
N ]⊇

[
E(SN)

VN
− c,

E(SN)

VN
+ c
]
.

(2) For each R there exists ρ = ρ(R) and N1 s.t. ρ−1 ≤I ′′N ≤ ρ on [aR
N ,b

R
N ].

(3) Suppose VN → ∞. For every ε > 0 there exists δ > 0 and Nε such that for all
η ∈ [E(SN)

VN
−δ , E(SN)

VN
+δ ] and N > Nδ ,

e−ε 1
2

(
η− E(SN)

VN

)2

≤IN(η)≤ eε 1
2

(
η− E(SN)

VN

)2

.

(4) Suppose VN → ∞ and zN−E(SN)
VN

→ 0, then

VNIN

(
zN

VN

)
=

1+o(1)
2

(
zN−E(SN)√

VN

)2

as N→ ∞.

The proof of the theorem will be given in §6.3.6.
The significance of part (4) will become apparent in §6.2.3.

6.2.3 The LLT for moderate deviations.

Recall that the state spaces of X are denoted by Si (i ≥ 1), and that Px denotes the
conditional probability given X1 = x.

Theorem 6.3. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X. Suppose f is irreducible with algebraic range R. If zN ∈ R
satisfy zN−E(SN)

VN
→ 0, then for every non-empty (a,b) and x ∈S1,

Px[SN− zN ∈ (a,b)] = [1+o(1)]
|a−b|√

2πVN
exp
(
−VNIN

(
zN

VN

))
,

Px[SN− zN ∈ (a,b)] = [1+o(1)]
|a−b|√

2πVN
exp

[
−1+o(1)

2

(
zN−E(SN)√

VN

)2
]

as N→ ∞.

Theorem 6.4. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X. Assume f is irreducible with algebraic range Z, and SN ∈
cN +Z almost surely. If zN ∈ cN +Z satisfy zN−E(SN)

VN
→ 0, then for every x ∈S1,

Px[SN = zN ] =
[1+o(1)]√

2πVN
exp
(
−VNIN

(
zN

VN

))
,

Px[SN = zN ] =
[1+o(1)]√

2πVN
exp

[
−1+o(1)

2

(
zN−E(SN)√

VN

)2
]
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as N→ ∞.

We will obtain these results as special cases of a more complicated and general
asymptotic relation which we will state in the next section.

The two asymptotic relations in Theorems 6.3 and 6.4 complement each other.
The first is a precise asymptotic, but it is not universal, because it is expressed
in terms of the rate functions, which depend on the fine details of the distribu-
tions of SN . The second is universal, but it is not an asymptotic equivalence be-
cause the right-hand-side is only determined up to a multiplicative error of size
exp[o( zN−E(SN)√

VN
)2].

6.2.4 The LLT for large deviations.

Recall the definition of the subsets (aR
N ,b

R
N) := (F ′

N(−R),F ′
N(R)) ⊂ dom(IN)

from (6.2.1). It is convenient to define

[âR
N , b̂

R
N ] :=

[
aR

N−
E(SN)

VN
,bR

N−
E(SN)

VN

]
.

Theorem 6.5. Let f be an a.s. uniformly bounded, irreducible, additive functional
on a uniformly elliptic Markov chain X. For every R large enough there are functions
ρN : S1×

[
âR

N , b̂
R
N

]
→ R+, ξN : [âR

N , b̂
R
N ]→ R as follows:

(1) ∃c > 0 such that [âR
N , b̂

R
N ]⊃ [−c,c] for all N large enough.

(2) Non Lattice case: Suppose Galg(X, f) = R, then for every sequence of zN ∈ R
s.t. zN−E(SN)

VN
∈ [âR

N , b̂
R
N ], for all finite non-empty intervals (a,b), and for every

x ∈S1, we have the following asymptotic as N→ ∞:

Px[SN−zN ∈ (a,b)]= [1+o(1)]· e
−VNIN(

zN
VN

)

√
2πVN

ρN

(
x, zN−E(SN)

VN

)∫ b

a
e
−tξN

(
zN−E(SN)

VN

)
dt

(3) Lattice case: Suppose Galg(X, f) = Z and SN ∈ cN +Z a.s., then for every se-
quence of zN ∈ cN +Z s.t. zN−E(SN)

VN
∈ [âR

N , b̂
R
N ], for all finite non-empty intervals

(a,b) and x ∈S1, the following asymptotic holds when N→ ∞:

Px[SN−zN ∈ (a,b)]= [1+o(1)]· e
−VNIN(

zN
VN

)

√
2πVN

ρN

(
x, zN−E(SN)

VN

)
· ∑
t∈(a,b)∩Z

e
−tξN

(
zN−E(SN)

VN

)

(4) Properties of the error terms:

(a) ρN(x,η) are bounded away from 0,∞ on S1× [âR
N , b̂

R
N ] uniformly in N, and

ρN(x,η)−−−→
η→0

1 uniformly in N and x.
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(b) There exists C > 0 such that for all η ∈ [âR
N , b̂

R
N ] and N, C−1|η | ≤ |ξN(η)| ≤

C|η | and sgn(ξ (η)) = sgn(η).

The proof of this result will occupy is in §§6.3.1–6.3.7.
Theorem 6.5 above assumes irreducibility. Without this assumption we have a

following weaker bound.

Theorem 6.6. Suppose VN → ∞. For each ε,R there is D(ε,R) and N0 such that for
all zN ∈ [F ′

N(ε),b
R
N ] and N > N0

D−1 ≤
√

VNP(SN ≥ zN)

e−VNIN

(
zN
VN

) ≤ D.

To assist the reader in digesting the statement of Theorem 6.5, we now explain
how to use it to obtain Theorems 6.3, 6.4 on moderate deviations, as well as other
consequences.

Proof of Theorems 6.3 and 6.4: By Theorem 6.5(1), ∃R > 0 s.t. if zN−E(SN)
VN

→ 0,

then zN−E(SN)
VN

∈ [âR
N , b̂

R
N ] for all N large enough, and

ρN(x,
zN−E(SN)

VN
)−−−→

N→∞
1, ξN(

zN−E(SN)
VN

)→ 0,
1

b−a

∫ b

a
e
−tξN(

zN−E(SN)
VN

)
dt→ 1.

Suppose Galg(X, f) = R, then theorem 6.5(a) implies that

P[SN− zN ∈ (a,b)]∼ |a−b|√
2πVN

exp(−VNIN(zN/VN)).

Next, by Theorem 6.2(a), if zn−E(SN)
VN

→ 0, then

VNIN

(
zN

VN

)
∼ 1

2

(
zn−E(SN)√

VN

)2

.

whence P[SN−zN ∈ (a,b)]∼ |a−b|√
2πVN

exp(− 1+o(1)
2 ( zn−E(SN)√

VN
)2). This proves Theorem

6.3. The proof of Theorem 6.4 is similar, and we leave it to the reader. �

Here are some other consequences of Theorem 6.5.

Corollary 6.2. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain. Suppose f is irreducible, with algebraic range R.

(1) If zN−E(SN)
VN

→ 0 then for any finite non empty interval (a,b) the distribution of
SN− zN conditioned on SN− zN ∈ (a,b) is asymptotically uniform on (a,b).

(2) If liminf zN−E(SN)
VN

> 0 and there exists R s.t. zN−E(SN)
VN

∈ [âR
N , b̂

R
N ] for all suffi-

ciently large N, then the distribution of
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ξN

(
zN−E(SN)

VN

)
· (SN− zN) conditioned on SN ≥ zN

is asymptotically exponential with parameter 1.

Remark. The condition in (2) is satisfied whenever liminf zN−E(SN)
VN

is positive, and

limsup zN−E(SN)
VN

> 0 is small enough, see Theorem 6.5(1).

Proof. To see part (1), note first that if zN−E(SN)
VN

→ 0, then ξN = ξN(
zN−E(SN)

VN
)→

0, whence 1
β−α

∫
β

α
e−tξN dt −−−→

N→∞
1 for every non-empty interval (α,β ). Thus by

Theorem 6.5, for every interval [c,d]⊂ [a,b],

lim
N→∞

Px[SN− zN ∈ (c,d)]
Px[SN− zN ∈ (a,b)]

=
|c−d|
|a−b|

.

(the prefactors ρN are identical, and they cancel out).
To see part (2), note first that our assumptions on zN guarantee that ξN =

ξN

(
zN−E(SN)

VN

)
is bounded from away from zero and infinity, and that all its limit

points are strictly positive.
Suppose ξNk → ξ . Then arguing as in part (1) it is not difficult to see that for all

(a,b)⊂ (0,∞) and r > 0,

lim
k→∞

Px[ξNk(SNk − zNk) ∈ (a+ r,b+ r)|SNk > zNk ]

Px[ξNk(SNk − zNk) ∈ (a,b)|SNk > zNk ]
= e−r.

Since this is true for all convergent {ξNk}, and since any subsequence of {ξN} has a
convergent subsequence,

liminf
N→∞

Px[ξN(SN− zN) ∈ (a+ r,b+ r)|SN > zN ]

Px[ξN(SN− zN) ∈ (a,b)|SN > zN ]
= e−r,

limsup
N→∞

Px[ξN(SN− zN) ∈ (a+ r,b+ r)|SN > zN ]

Px[ξN(SN− zN) ∈ (a,b)|SN > zN ]
= e−r,

and so lim
N→∞

Px[ξN(SN− zN) ∈ (a+ r,b+ r)|SN > zN ]

Px[ξN(SN− zN) ∈ (a,b)|SN > zN ]
= e−r. So conditioned on SN >

zN , ξN(SN− zN) is asymptotically exponential with parameter 1. �

Corollary 6.3. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain. Suppose f is irreducible, with algebraic range Z. Let zN be a
sequence of integers.

(1) If zN−E(SN)
VN

→ 0 then for any a < b in Z the distribution of SN − zN conditioned
on SN− zN ∈ [a,b] is asymptotically uniform on [a,b].

(2) If liminf zN−E(SN)
VN

> 0 and there exists R s.t. zN−E(SN)
VN

∈ [âR
N , b̂

R
N ] for all suffi-

ciently large N, ξN

(
zN−E(SN)

VN

)
→ ξ , then
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(SN− zN) conditioned on SN ≥ zN

is asymptotically geometric with parameter e−ξ .

The proof is similar to the proof in the non-lattice case, so we omit it.
It worthwhile to note the following consequence of this result. In the follow-

ing statement, “local distribution” means a functional on Cc(R) and “vague con-
vergence” means convergence on all continuous functions with compact support.

Corollary 6.4. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain. Let zN be a sequence s.t. for some R zN−E(SN)

VN
∈ [âR

N , b̂
R
N ] for

large N. Let ζN be the local distribution of SN around zN , that is ζN(φ) =Ex(φ(SN−
zN)). Let ζ be a vague limit of {qNζN} for some sequence qN > 0. If f is irreducible
then ζ has density c1ec2t with respect to the Haar measure on the algebraic range
of f for some c1 ∈ R+,c2 ∈ R.

It is likely that if the restriction zN−E(SN)
VN

∈ [âR
N , b̂

R
N ] is dropped then ζ is either a

measure described above or an atomic measure with one atom, but our methods are
insufficient for proving this.

6.3 Proofs

We prove Theorems 6.1, 6.2 and 6.5. (Theorems 6.3 and 6.4 are direct consequences,
and were proved in §6.2.4.)

We assume throughout that {Xn} is a uniformly elliptic Markov chain with
state spaces Sn, transition probabilities πn,n+1(x,dy), and stationary distributions
µk(E) := P(Xk ∈ E). Let f = { fn} be an a.s. uniformly bounded additive functional
on X. Let ε0 denote the ellipticity constant of X, and K = ess sup |f|.

6.3.1 Strategy of proof

The proof can be briefly described as an implementation of “change of measure”
technique (aka “Cramér’s transform”).

We explain the idea. Suppose f is an a.s. uniformly bounded additive functional
on a uniformly elliptic Markov chain X, and let zN be as in Theorem 6.5. We will
modify the transition probabilities of X = {Xn} to generate a Markov array X̃ =

{X̃ (N)
n } whose row sums S̃N = f1(X̃

(N)
1 , X̃ (N)

2 )+ · · ·+ fN(X̃
(N)
N , X̃ (N)

N+1) satisfy

zN−E(S̃N) = o
(√

Var(S̃N)

)
. (6.3.1)
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(6.3.1) places us in the regime of local deviations which we have analyzed in Chap-
ter 4. The results of that chapter provide asymptotics for P(S̃N − zN ∈ (a,b)), and
these can be translated into asymptotics for P(SN− zN ∈ (a,b)).

The array X̃ is constructed from (X, f) as follows: Let Sn and πn,n+1(x,dy) denote
the state spaces and transition probabilities of the original Markov chain X, then we
take f (N)

n = fn, S(N)
n =Sn, and we let X̃ be the Markov array with state spaces S(N)

n
and transition probabilities

π̃
(N)
n,n+1(x,dy) := eξN fn(x,y) hn+1(y,ξN)

epn(ξN)hn(x,ξN)
·πn,n+1(x,dy).

Here ξN is a parameter that is calibrated to get (6.3.1), and pn,hn,hn+1 are chosen
to guarantee that π̃

(N)
n,n+1(x,dy) has total mass equal to one. This technique is called

a “change of measure.”
The value of ξN depends on zN−E(SN)

VN
. To construct ξN and to control it, we must

know that zN
VN

belong to a sets where FN are strictly convex, uniformly in N. This

is the reason why we need to assume that ∃R s.t. zN−E(SN)
VN

∈ [âR
N , b̂

R
N ] for all N, a

condition we can check as soon as | zN−E(SN)
VN

|< c with c small enough.1

We remark that the dependence of ξN on N means that {X̃ (N)
n } is an array, not a

chain. The fact that the change of measure produces arrays from chains is the reason
we insisted on working with arrays in the first part of this work.

6.3.2 A parametrized family of changes of measure

In this section we construct, for an arbitrary given sequence of constants ξN ∈ R,
transition probabilities of the form

π̃
(N)
n,n+1(x,dy) := eξN fn(x,y) hn+1(y,ξN)

epn(ξN)hn(x,ξN)
·πn,n+1(x,dy), (6.3.2)

where pn(ξN) are real numbers and hξN
k (·) = hk(·,ξN) are positive functions on Sk

which are chosen to guarantee that π̃
(N)
n,n+1(x,dy) has total mass equal to one.

We treat the sequence of parameters ξN as arbitrary. In the next section we will
explain how to choose a particular {ξN} to guarantee (6.3.1).

Lemma 6.1. Given ξ ∈ R and an ∈ R, there are unique numbers pn(ξ ) ∈ R,
and unique non-negative hn(·,ξ ) ∈ L∞(Sn,B(Sn),µn) s.t.

∫
Sn

hn(x,ξ )µn(dx) =
exp(anξ ) for all n, and for a.e. x

1 Other situations where the condition zN−E(SN )
VN

∈ [âR
N , b̂

R
N ] can be checked are discussed in §6.4.
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Sn+1

eξ fn(x,y) hn+1(y,ξ )
epn(ξ )hn(x,ξ )

πn,n+1(x,dy) = 1. (6.3.3)

Remark.: Notice that if {hn(·,ξ )}, {pn(ξ )} satisfy the Lemma with an = 0, then the

unique solution with general {an} is given by

hn(·,ξ ) := eanξ hn(·,ξ ) , pn(ξ ) := pn(ξ )−anξ +an+1ξ . (6.3.4)

Evidently, hn, pn give rise to the same probability kernel (6.3.2) as do hn, pn. We call
{hn} and {pn} the fundamental solution.

Proof. It is enough to prove the existence and uniqueness of the fundamental solu-
tion, so henceforth we assume an = 0. We may also assume without loss of gener-
ality that |ξ | ≤ 1, else scale f.

Set Vn := L∞(Sn,B(Sn),µn), and define operators Lξ
n : Vn+1→Vn by

(Lξ
n h)(x) =

∫
Sn+1

eξ fn(x,y)h(y)πn,n+1(x,dy). (6.3.5)

The operators Lξ
n are linear, bounded, and positive.

For (6.3.3) to hold, it is necessary and sufficient that hξ
n (·) := hn(·,ξ ) be positive

a.e., and Lξ
n hξ

n+1 = epn(ξ )hξ
n for some pn(ξ ) ∈ R.

Positivity everywhere may be replaced by the weaker property that hξ
n ∈ L∞ \{0}

are all non-negative a.e., because for such functions, since |f| ≤ K a.s. and X is
uniformly elliptic with ellipticity constant ε0,

hξ
n (x) = e−pn(ξ )−pn+1(ξ )(Lξ

n Lξ

n+1hξ

n+2)(x)≥ e−pn(ξ )−pn+1(ξ )−2K
ε0‖hξ

n+2‖1.

Thus to prove the lemma it is enough to find a sequence numbers pn(ξ ) ∈ R and
non-negative hξ

n ∈ L∞ \{0} such that Lξ
n hξ

n+1 = epn(ξ )hξ
n for some pn(ξ ) ∈ R.

The existence and uniqueness of such “generalized eigenvectors” can be proved
as in [48],[15],[70] using Hilbert’s projective metrics. We recall what these are.
Let Cn := {h ∈Vn : h≥ 0 a.e. }. These are closed cones and Lξ

n (Cn+1)⊂Cn. Define

dn(h,g) := log
(

M(h|g)
m(h|g)

)
∈ [0,∞], (h,g ∈Cn),

where M =M( f |g),m=m( f |g) are the best constants in the estimate mh≤ f ≤Mh.
This is a pseudo-metric on the interior of Cn, and d(h,g) = 0⇔ h,g are proportional.
Also, for all h,g ∈Cn \{0},∥∥∥∥ h∫

h
− g∫

g

∥∥∥∥
1
≤ edn(h,g)−1. (6.3.6)
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Birkhoff’s theorem [13] says that any linear map T : Cn+2 → Cn such that the dn–
diameter of T (Cn+2) in Cn is less than some ∆ > 0, contracts the Hilbert’s projetive
metric at least by a factor θ := tanh(∆/4) ∈ (0,1).

We will apply Birkhoff’s theorem to the linear transformations

T ξ
n := Lξ

n Lξ

n+1 : Cn+2→Cn.

One checks using the standing assumptions and |ξ | ≤ 1 that

e−2K
ε0‖h‖1 ≤ (T ξ

n h)(x)≤ e2K
ε
−2
0 ‖h‖1 (h ∈Cn+2), (6.3.7)

whence dn(T
ξ

n h,1) ≤ 4K + 3log(1/ε0). So the diameter of T ξ
n (Cn+2) in Cn is less

than ∆ := 8K +6log(1/ε0). Hence by Birkhoff’s Theorem mentioned above,

dn(T
ξ

n+1h,T ξ

n+1g)≤ θdn+2(h,g) (h,g ∈Cn+2). (6.3.8)

where θ := tanh(2K + 3
2 log(1/ε0)) ∈ (0,1).

It follows that for every n, {Lξ
n Lξ

n+1 · · ·L
ξ

n+k−11Sn+k}k≥1 ⊂ Cn is a Cauchy se-
quence with respect to dn. By (6.3.6),

Lξ
n Lξ

n+1 · · ·L
ξ

n+k−11Sn+k

‖Lξ
n Lξ

n+1 · · ·L
ξ

n+k−11Sn+k‖1

is a Cauchy sequence in L1.
The limiting function hξ

n has integral one, and is positive and bounded, because
of (6.3.7). Clearly, Lξ

n hξ

n+1 = epnhξ
n for some pn ∈ R. So {hξ

n},{pn} exist.

Moreover, the proof shows that diam
(⋂

k≥1 Lξ
n · · ·Lξ

n+k−1(Cn+k)
)
= 0. It follows

that hξ
n is unique up to multiplicative constant, whence by the normalization condi-

tion, unique. The lemma is proved. �

The proof has the following consequence, which we mention for future reference:
For every R > 0, there exists C0 > 0 and θ ∈ (0,1) (depending on R) such that for
every |ξ | ≤ R

d1

(
Lξ

1 · · ·L
ξ

Nhξ

N+1, Lξ

1 · · ·L
ξ

N1
)
≤C0θ

N/2dN+1

(
hξ

N+1,1
)
. (6.3.9)

The case when N is even follows directly from (6.3.8) and does not require the
constant C0. The case of odd N is obtained from the even case by using the expo-
nential contraction of t Lξ

2 · · ·L
ξ

N and the fact that one additional application of Lξ

1 (or
any other positive linear operator) does not increase the Hilbert norm. This implies
(6.3.9) with C0 := θ−1/2.

Lemma 6.2. Let hξ
n (·) = h(·,ξ ) be as in Lemma 6.1. If an is bounded, then for every

R > 0 there is C =C(R) s.t. for all n≥ 1, a.e. x ∈Sn and |ξ | ≤ R,
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C−1 ≤ |hn(x,ξ )| ≤C and C−1 < epn(ξ ) <C.

Proof. It is enough to consider the fundamental solution (an = 0,
∫

hn = 1); the
general case follows from (6.3.4). It is also sufficient to consider the case |ξ | ≤ 1;
the general case follows by scaling f.

Let {hξ
n} be the fundamental solution, then in the notation of the previous proof,

T ξ
n hξ

n+2 = epn(ξ )+pn+1(ξ )hξ
n , whence by (6.3.7),

e−2K
ε0 ≤ epn(ξ )+pn+1(ξ )hξ

n+2 ≤ e2K
ε
−2
0 .

Integrating, and recalling that
∫

hξ

n+2 = exp(an+2ξ ) = 0, we obtain

e−2K
ε0 ≤ epn(ξ )+pn+1(ξ ) ≤ e2K

ε
−2
0 .

So e−4Kε2
0 ≤ hξ

n (·)≤ e4Kε
−4
0 .

Observe that epn =
∫

Lξ
n hξ

n+1dµn+1 = e±K ∫ hξ

n+1dµn+1. So epn is also uniformly
bounded away from zero and infinity. �

In the next section we will choose ξN to guarantee (6.3.1), and as it turns out, the
choice involves a condition on ∂ pn

∂ξ
. Later, we will also require information on ∂ 2 pn

∂ξ 2 .
In preparation for this, we will now study the differentiability of

ξ 7→ hξ
n and ξ 7→ pn(ξ ).

The map ξ 7→ hξ
n takes values in the Banach space L∞. To analyze it, we will use the

theory of real-analytic maps into Banach spaces [36].
Let us briefly review this theory. Suppose X,Y are Banach spaces. Let an : Xn→

Y be a multilinear map. The norm of an is ‖an‖ := sup{‖an(x1, . . . ,xn)‖ : xi ∈
X, ‖xi‖ ≤ 1 for all i}. A multilinear map is called symmetric if it is invariant under
the permutation of its coordinates. Given x ∈ X, we denote

anxn := an(x, . . . ,x).

A power series is a formal expression ∑n≥1 anxn where an : Xn→Y are multilinear
and symmetric.

A function φ : X→Y is called real analytic at x0 if there is some r > 0 and a
power series ∑anxn (called the Taylor series at x0) such that ∑‖an‖rn < ∞ and

φ(x) = φ(x0)+ ∑
n≥1

an(x− x0)
n

whenever ‖x− x0‖< r. One can check that if this happens, then

an(x1, . . . ,xn) =
1
n!

d
dt1

∣∣∣∣
t1=0
· · · d

dtn

∣∣∣∣
tn=0

φ(x0 +
n

∑
i=1

tixi). (6.3.10)
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Conversely, if ∑an(x−x0)
n has positive radius of convergence with an as in (6.3.10),

then φ is real-analytic, and equal to its Taylor series φ(x0) +∑an(x− x0)
n on a

neighborhood of x0.

Example 6.3. Let φ : X×X×R→ X be the map φ(x,y,z) := x− y/z. Then φ is
real-analytic at every (x0,y0,z0) such that z0 6= 0, with Taylor series

φ(x,y,z) = φ(x0,y0,z0)+
∞

∑
n=1

an(x− x0,y− y0,z− z0)
n,

where ‖an‖= O(‖y0‖/|z0|n+1)+O(n/|z0|n+1).

Proof. If |z−z0|< |z0|, then x−y/z = x− y
z0

∑k≥0(−1)k 1
zk
0
(z−z0)

k. For each n≥ 1,

x0 := (x0,y0,z0), xi := (xi,yi,zi) (1≤ i≤ n), and (t1, . . . , tn) ∈ Rn,

φ(x0 +
n

∑
i=1

tixi) = x0 +
n

∑
i=1

tixi +
∞

∑
k=0

(−1)k+1

zk+1
0

(
y0 +

n

∑
i=1

tiyi

)(
n

∑
i=1

tizi

)k

converges in norm whenever (t1, . . . , tn) ∈ An :=
[
|∑n

i=1 tizi| < |z0|
]
. In particular,

on An, this series is real-analytic in each ti, and can be differentiated term-by-term
infinitely many times.

To find an(x1, . . . ,xn) we observe that the differential (6.3.10) is equal to the
coefficient of t1 · · · tn in the previous series. So for n > 2,

an(x1, . . . ,xn) =
(−1)n+1y0

zn+1
0

· z1 · · ·zn +
(−1)n

zn
0

n

∑
i=1

yiz1 · · · ẑi · · ·zn

where the hat above zi indicates that the i-th term should be omitted. It follows that
‖an‖= O(‖y0‖/|z0|n+1)+O(n/|z0|n). �

Lemma 6.3. The functions ξ 7→ hξ
n , pn(ξ ) are real-analytic. If an is bounded, then

for every R > 0 there is C(R)> 0 s.t. for every |ξ | ≤ R and n≥ 1,∥∥∥∥ ∂

∂ξ
hn(·,ξ )

∥∥∥∥
∞

≤C(R),
∥∥∥∥ ∂ 2

∂ξ 2 hn(·,ξ )
∥∥∥∥

∞

≤C(R).

Proof. The proof is based on §3.3 in [46], although it is somewhat simpler because
our setup is more elementary than in that paper.

It is enough to consider the special case R = 1 and an = 0. In particular,
∫

hξ
n = 1.

Fix |ξ | ≤ 1 and let Tn := T ξ
n , hn(·) = hn(·,ξ ) be as in the proof of Lemma 6.1.

Define two Banach spaces:

X :=
{
(Sn)n∈N :

Sn : L∞(Sn+2)→ L∞(Sn) are bounded linear
operators, and ‖S‖ := supn ‖Sn‖< ∞

}
Y := {(ϕn)n∈N : ϕn ∈ L∞(Sn+2) , ‖ϕ‖ := sup‖ϕn‖∞ < ∞}
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Using (6.3.7), it is not difficult to see that T := (Tn) belongs to X . By Lemma 6.2,
h := (hn)n∈N belongs to Y .

STEP 1. There exists 0 < δ < 1 s.t. for every (S,ϕ) ∈ X ×Y , for all |ξ | ≤ 1, if
‖S−T‖< δ and ‖ϕ−h‖< δ , then inf |

∫
(Snϕn+2)|> δ .

Proof. By (6.3.7), ‖Tn‖ ≤ M where M := e2Kε
−2
0 , and by Lemma 6.2, there is a

constant ε1 > 0 so that for all n and |ξ | ≤ 1

ε1 ≤ (Tnhn+2)(x)≤ ε
−1
1 .

So if ‖S−T‖< δ and ‖ϕ−h‖< δ , then

|Snϕn+2| ≥ |Tnhn+2|− |(Tn−Sn)hn+2|− |Sn(hn+2−ϕn+2)|
≥ ε1−‖T −S‖‖h‖− (‖S−T‖+‖T‖)‖h−ϕ‖
≥ ε1−δ‖h‖− (δ +M)δ .

Let C be a uniform upper bound for ‖h‖ which holds for all |ξ | ≤ 1. If 0 < δ <
( ε1

C+M+2 )∧1, then |Snϕn+2|> δ .

Henceforth we fix δ as in step 1. Let Bδ (T ) := {S ∈ X : ‖S− T‖ < δ} and
Bδ (h) := {ϕ ∈ Y : ‖ϕ−h‖< δ}, and define

ϒ : Bδ (T )×Bδ (h)→ Y, ϒ (S,ϕ) :=
(

ϕn−
Snϕn+2∫

(Snϕn+2)dµn+2

)
n∈N

.

This is well-defined by the choice of δ , and ϒ (T,h) = 0.

STEP 2. ϒ is real-analytic on Bδ (T )×Bδ (h).

Proof. First we write ϒ = Φ(ϒ (1),ϒ (2),ϒ (3)) with

◦ ϒ (1) : X×Y → Y , ϒ (1)(S,ϕ) = ϕ

◦ ϒ (2) : X×Y → Y , ϒ (2)(S,ϕ) = (Snϕn+2)n∈N.
◦ ϒ (3) : X×Y → `∞, ϒ (3)(S,ϕ) = (

∫
(Snϕn+2)dµn+2)n∈N.

◦ Φ : {(ϕ,ψ,ξ ) ∈ Y ×Y × `∞ : inf |ξi|> 0}→ Y ,

Φ((ϕ,ψ,ξ )i≥1) = (ϕi−ξ
−1
i ψi)i≥1.

By step 1,
→
ϒ := (ϒ (1),ϒ (2),ϒ (3)) maps Bδ (T )×Bδ (h) into

U := {(ϕ,ψ,ξ ) ∈ Y ×Y × `∞ : ‖ϕ‖<C+δ ,‖ψ‖< M+δ , inf |ξi|> δ/2},

whence into the domain of Φ .
We claim that for each of the functions ϒ (i), some high enough derivative of ϒ (i)

is identically zero. Let D be the derivative, and let Di be the partial derivative with
respect to the i-th variable, then

(1) ϒ (1) is linear, so (Dϒ (1))(S,ϕ) is constant, and D2ϒ (1) = 0.
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(2) ϒ (2) : X×Y → Y , ϒ (2)(S,ϕ) = (Snϕn+2)n∈N. Here

(D1ϒ
(2))(S,ϕ)(S′) = (S′nϕn+2)n∈Z (D2

1ϒ
(2))(S,ϕ) = 0

(D2ϒ
(2))(S,ϕ)(ϕ ′) = (Snϕ ′n+2)n∈Z (D2

2ϒ
(2))(S,ϕ) = 0

(D1D2ϒ
(2))(S,ϕ)(S′,ϕ ′) = (S′nϕ ′n+2)n∈Z

We see that D2ϒ (2) does not depend on (S,ϕ), so D3ϒ = 0

(3) ϒ (3) : X ×Y → `∞, ϒ (3)(S,ϕ) = (
∫
(Snϕn+2)dµn+2)n∈N. As before, the third

derivative is zero.

Consequently, ϒ (i) are real-analytic on its domain (with finite Taylor series at
every point). Next we show that Φ is real-analytic on U . To do this we recall that by

Example 6.3, x− y
z
=

∞

∑
n=0

an(x0,y0,z0)(x− x0,y− y0,z− z0)
n where an(x0,y0,z0) :

(R3)n→ R are symmetric multilinear functions depending on (x0,y0,z0), such that
‖an(x0,y0,z0)‖= O(|y0|/z0|n+1)+O(n/|z0|n). So

Φ(ϕ,ψ,ξ ) = Φ(ϕ(0),ψ(0),ξ (0))+
∞

∑
n=1

An(ϕ−ϕ
(0),ψ−ψ

(0),ξ −ξ
(0))n, (6.3.11)

where An : (Y ×T × `∞)n→ Y , has entries

An((ϕ
(1),ψ(1),ξ (1)), . . . ,(ϕ(n),ψ(n),ξ (n)))i(x) :=

an
(
ϕ
(0)
i (x),ψ(0)

i (x),ξ (0)
i

)
((ϕ

(1)
i (x),ψ(1)

i (x),ξ (1)
i ), . . . ,(ϕ

(n)
i (x),ψ(n)

i (x),ξ (n)
i ))

An inherits multilinearity and symmetry from an, and by construction,

‖An(ϕ
(0),ψ(0),ξ (0)))‖ ≤sup

{
‖an(x0,y0,z0)‖ : |x0|, |y0| ≤C+M+δ , |z0|>

δ

2

}
= O(2nn/δ

n).

So the right-hand-side of (6.3.11) has positive radius of convergence, proving the
analyticity of Φ : U → Y .

The step follows from the well-known result that the composition of real-analytic
functions is real-analytic, see [36].

CLAIM 4. (D2ϒ )(T,h) : Y → Y , the partial derivative of ϒ at (T,h) with respect to
the second variable, has bounded inverse.

Proof. A direct calculation shows that (D2ϒ )(T,h)(ϕ) = ϕ−Λϕ , where

(Λϕ)n =
Tnϕn+2∫

(Tnhn+2)dµn
−
(∫

(Tnϕn+2)dµn∫
(Tnhn+2)dµn

)
hn.

To prove the claim, we show that Λ has spectral radius < 1.
Let T (k)

n := TnTn+2 · · ·Tn+2(k−1), then we claim that
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(Λ k
ϕ)n =

T (k)
n ϕn+2k∫

(T (k)
n hn+2k)dµn

−

(∫
(T (k)

n ϕn+2k)dµn∫
(T (k)

n hn+2k)dµn

)
hn. (6.3.12)

To see this we first note, using Tmhm+2 ∝ hm and
∫

hmdµm = 1, that∫
(T (k+1)

n hn+2(k+1))dµn =
∫
(Tnhn+2)dµn

∫
(T (k)

n+2hn+2(k+1))dµn+2.

With this identity in mind, the formula for Λ k follows by induction.
We now explain why (6.3.12) implies that the spectral radius of Λ is less than

one. Fix ϕ ∈ Y . Recall that C−1 ≤ hn ≤C for all n, and let

ψ := ϕ +2C‖ϕ‖h.

Then ψ ∈ Y , Λ kψ = Λ kϕ for all k (because Λh = 0), and for all n

C‖ϕ‖hn ≤ ψn ≤ 3C‖ϕ‖hn (6.3.13)

In particular, if Cn is the cone from the proof of Lemma 6.1, and dn is its projective
Hilbert metric, then ψn ∈Cn and dn(ψn,hn) ≤ log3. Since Tn contracts the Hilbert
projective norm by a factor θ ∈ (0,1),

dn(T
(k)

n ψn+2k,T
(k)

n hn+2k)≤ θ
k log3.

This implies by the definition of dn that for a.e. x ∈Sn,∣∣∣∣∣ (T (k)
n ψn+2k)(x)/

∫
(T (k)

n ψn+2k)

(T (k)
n hn+2k)(x)/

∫
(T (k)

n hn+2k)
−1

∣∣∣∣∣≤max{3θ k −1,1−3−θ k}=: εk.

The denominator simplifies to hn. So∥∥∥∥∥ (T (k)
n ψn+2k)∫

(T (k)
n ψn+2k)

−hn

∥∥∥∥∥
∞

≤ εk‖h‖. (6.3.14)

Next we use the positivity of T (k)
n and (6.3.13) to note that

C‖ϕ‖T (k)
n hn+2k ≤ T (k)

n ψn+2k ≤ 3C‖ϕ‖T (k)
n hn+2k.

Using
∫
(T (k)

n hn+2k) = 1, we deduce that

C‖ϕ‖ ≤
∫
(T (k)

n ψn+2k)∫
(T (k)

n hn+2k)
≤ 3C‖ϕ‖. (6.3.15)

By (6.3.12), (6.3.14) and (6.3.15),
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‖Λ k
ϕ‖∞ ≡ ‖Λ k

ψ‖= sup
n

∥∥∥∥∥ T (k)
n ψn+2k∫
T (k)

n hn+2k

−
∫

T (k)
n ψn+2k∫

T (k)
n hn+2k

·hn

∥∥∥∥∥
∞

≤ sup
n

∥∥∥∥∥ T (k)
n ψn+2k∫
T (k)

n ψn+2k

−hn

∥∥∥∥∥
∞

· sup
n

∥∥∥∥∥
∫

T (k)
n ψn+2k∫

T (k)
n hn+2k

∥∥∥∥∥
∞

≤ 3Cεk‖h‖ · ‖ϕ‖,

whence ρ(Λ)≤ lim k
√

εk = θ < 1.

COMPLETION OF THE PROOF OF THE LEMMA. We constructed a real-analytic
function ϒ : X ×Y → Y such that ϒ (T,h) = 0 and (D2ϒ )(T,h) : Y → Y has a
bounded inverse. By the implicit function theorem for real-analytic functions on
Banach spaces [137], T has a neighborhood W ⊂ X where one can define a real-
analytic function h : W → Y so that ϒ (S,h(S)) = 0.

Recall that T = T ξ := {T ξ
n }n∈N and h = {hn(·,ξ )}n≥1. By the uniqueness part of

Lemma 6.1, h(T ) = h(·,ξ ). It is easy to see using ess sup |f|<∞ that ξ 7→ T ξ is real-
analytic (even holomorphic). So ξ 7→ h(T ξ ) is real-analytic, whence continuously
differentiable infinitely many times.

It follow that ξ 7→ hn(·,ξ ) is real-analytic for all n, and{
∂ k

∂ξ k hn(·,ξ )
}

n≥1
=

∂

∂ξ k h(T ξ ) ∈ Y

for all k. By the definition of Y , sup
|ξ |≤1

sup
n≥1
‖ ∂

∂ξ
hn(·,ξ )‖∞ = ‖ ∂

∂ξ
h(T )‖ < ∞ and

sup
|ξ |≤1

sup
n≥1
‖ ∂ 2

∂ξ 2 hn(·,ξ )‖∞ = ‖ ∂ 2

∂ξ 2 h(T )‖< ∞. �

6.3.3 Choosing the parameters

Given ξ ∈R and {an} ⊂R bounded, let {X̃ξ
n }n≥1 denote the Markov chain with the

initial distribution and state spaces of X, but with transition probabilities

π̃
ξ

n,n+1(x,dy) = eξ fn(x,y) hn+1(y,ξ )
epn(ξ )hn(x,ξ )

·πn,n+1(x,dy),

where pn(ξ ) and hξ

k (·) = hk(·,ξ ) are as in Lemma 6.1. (This chain does not depend
on the choice of {an}, see the remark after the statement of Lemma 6.1.) Denote the
expectation and variance operators of this chain by Ẽξ , Ṽ ξ .

In this section we show that if VN := Var(SN)→ ∞ and zN−E(SN)
VN

is sufficiently
small, then it is possible to choose ξN and an bounded s.t.

zN− ẼξN (SN)√
Ṽ ξN (SN)

−−−→
N→∞

0 and
N

∑
n=1

p′n(0) = E(SN).
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Indeed, we will find ξN so that ẼξN (SN) = zN +O(1). The construction will show
that if zN−E(SN)

VN
→ 0, then ξN → 0.

Let h
ξ

n := hn(·,ξ ) : Sn → (0,∞) and pn(ξ ) ∈ R be the fundamental solution:

Lξ
n h

ξ

n+1 = epn(ξ )h
ξ

n and
∫

hn(x,ξ )µn(dx) = 1. Then h
ξ

n = e−anξ hn(·,ξ ) and pn(ξ ) =
pn(ξ )+anξ −an+1ξ so

π̃
ξ

n,n+1(x,dy) = eξ fn(x,y) hn+1(x,ξ )
epn(ξ )hn(y,ξ )

πn,n+1(x,dy).

Let PN(ξ ) := p1(ξ )+ · · ·+ pN(ξ ).

Lemma 6.4. ξ 7→ PN(ξ ) is real analytic, and for every R > 0 there is a constant
C(R) such that for all |ξ | ≤ R and N ∈ N,

(1) |P′N(ξ )− Ẽξ (SN)| ≤C(R);
(2) Suppose VN → ∞. Then C(R)−1 ≤ Ṽ ξ (SN)/VN ≤ C(R) for all N and |ξ | ≤ R,

and P′′N(ξ )/Ṽ ξ (SN)−−−→
N→∞

1 uniformly in |ξ | ≤ R.

Proof. We have the identity ePN(ξ ) =
∫
(Lξ

1 · · ·L
ξ

Nh
ξ

N+1)(x)µ1(dx). Since ξ 7→ h
ξ

and
ξ 7→ Lξ

n are real-analytic, ξ 7→ PN(ξ ) is real-analytic.
Given x ∈S1 (the state space of X1), define two measures on ∏

N+1
i=2 Si so that for

every Ei ∈B(Si) (1≤ i≤ N +1),

πx(E2×·· ·×EN+1) := P(X2 ∈ E2, . . . ,XN+1 ∈ EN+1|X1 = x1)

π̃
ξ
x (E2×·· ·×EN+1) := P̃ξ (X̃ξ

2 ∈ E2, . . . , X̃
ξ

N+1 ∈ EN+1|X̃ξ

1 = x1)

Let SN(x,y) := f (x,y1)+∑
N
i=1 fi(yi,yi+1), then

dπ̃
ξ
x

dπx
(y2, . . . ,yN+1) = eξ SN(x,y)e−PN(ξ )

(
hN+1(yN+1,ξ )

h1(x,ξ )

)
.

By Lemma 6.3, ξ 7→ dπ̃
ξ
x

dπx
(y2, . . . ,yN+1) is real-analytic. Differentiating, gives

d
dξ

[ dπ̃
ξ
x

dπx

]
=
[
SN(x,y)−P′N(ξ )

h1(x,ξ )
hN+1(yN+1,ξ )

d
dξ

(
hN+1(yN+1,ξ )

h1(x,ξ )

)]
dπ̃

ξ
x

dπx
. We write this as

d
dξ

[
dπ̃

ξ
x

dπx

]
=
[
SN(x,y)−P′N(ξ )+ εN(x,yN+1,ξ )

] dπ̃
ξ
x

dπx
, (6.3.16)

where εN(x,yN+1,ξ ) := h1(x,ξ )
hN+1(yN+1,ξ )

d
dξ

(
hN+1(yN+1,ξ )

h1(x,ξ )

)
. By Lemmas 6.2 and 6.3,

εN(x,yN+1,ξ ) is uniformly bounded in N, x,y, and |ξ | ≤ R.
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By the intermediate value theorem and the uniform boundedness of ξ 7→ d
dξ

[
dπ̃

ξ
x

dπx

]
on compact subsets of ξ ∈R, 1

δ

[
dπ̃

ξ+δ
x

dπx
− dπ̃

ξ
x

dπx

]
is uniformly bounded for 0< |h|< 1.

So by the bounded convergence theorem

∫
lim
δ→0

1
h

[
dπ̃

ξ+δ
x

dπx
− dπ̃

ξ
x

dπx

]
dπx = lim

δ→0

∫ 1
h

[
dπ̃

ξ+δ
x

dπx
− dπ̃

ξ
x

dπx

]
dπx = 0.

So
∫ d

dξ

[
dπ̃

ξ
x

dπx

]
dπx = 0, whence by (6.3.16), 0 = Ẽξ

x (SN)−P′N(ξ ) +O(1), where

Ẽξ
x = Ẽξ (·|X̃ξ

1 = x). Integrating with respect to x we obtain that

P′N(ξ ) = Ẽξ (SN)+O(1)

uniformly in |ξ | ≤ R, N→ ∞.
Differentiating (6.3.16) again we obtain

d2

dξ 2

[
dπ̃

ξ
x

dπx

]
=

d
dξ

[
dπ̃

ξ
x

dπx

(
SN(x,y)−P′N(ξ )+ εN(x,yN+1,ξ )

)]

=
dπ̃x

dπx

[(
SN(x,y)−P′N(ξ )+ εN(x,yN+1,ξ )

)2
−P′′N(ξ )+

dεN

dξ

]
.

By Lemmas 6.2 and 6.3, dεN
dξ

is uniformly bounded in x,yN+1,N and |ξ | ≤ R. As

before,
∫ d2

dξ 2
dπ̃

ξ
x

dπx
dπx =

d2

dξ 2

∫ dπ̃
ξ
x

dπx
dπx = 0, whence

0 = Ẽξ

[(
SN−P′N(ξ )+O(1)

)2
]
−P′′N(ξ )+O(1)

= Ẽξ

[(
SN− Ẽξ (SN)+O(1)

)2
]
−P′′N(ξ )+O(1), (6.3.17)

= Ṽ ξ (SN)−P′′N(ξ )+O
(√

Ṽ ξ (SN)

)
where the O(1) terms are uniformly bounded in N when |ξ | ≤ R.

If |ξ | ≤R, then π̃
ξ

n,n+1(x,dy) are uniformly elliptic with ε0 replaced by ε0/(C2eKR)

for the C in Lemma 6.2. Therefore by Theorem 2.1, Ṽ ξ (SN) � ∑
N
n=3 u2

n(ξ ) where
un(ξ ) are the structure constants of {X̃ξ

n }. Clearly, un(ξ )� un where un = un(0) are
the structure constants of {Xn}. So Ṽ ξ (SN)�VN→∞ where the multiplicative error
bounds is uniform in N and |ξ | ≤ R. By (6.3.17), P′′N(ξ )/Ṽ ξ (SN)−−−→

N→∞
1. �

The choice of aN: Lemma 6.4(1) with ξ = 0 says that P′N(0) = E(SN)+O(1). The
error term is a nuisance, and we will choose an to get rid of it. Given N, let
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an := E(Sn−1)−P′n−1(0) , a1 := 0 (6.3.18)

This is a bounded sequence, because of Lemma 6.4(1). The choice of {an} leads to
the following objects:

hξ
n (x) = hn(x,ξ ) := exp(anξ )hn(x,ξ ),

pn(ξ ) := pn(ξ )+(an+1−an)ξ .
(6.3.19)

The transition kernel π̃
ξ

n,n+1 is left unchanged, because the differences between hn
and hn and between pn and pn cancel out. But now,

PN(ξ ) := p1(ξ )+ · · ·+ pN(ξ )≡ PN(ξ )+
(
E(SN)−P′N(0)

)
ξ , (6.3.20)

satisfies P′N(0) = E(SN).

Properties of PN(ξ ): These functions turn out to be closely related to the distribu-
tional properties of X and its change of measure Xξ .

Recall that FN(ξ ) := 1
VN

logE(eξ SN ), and that Ṽ ξ is the variance of SN with

respect to the change of measure X̃ξ . Then:

Lemma 6.5. Suppose VN → ∞ then ξ 7→ PN(ξ ) is real analytic, and

(1) P′N(0) = E(SN)
(2) For every R > 0, there exists C(R)> 0 s.t.

|P′N(ξ )− Ẽξ (SN)| ≤C(R) for all |ξ | ≤ R,N ∈ N.

(3) For every R > 0, there exists C(R)> 0 s.t.

C(R)−1 ≤ Ṽ ξ (SN)/VN ≤C(R) for all |ξ | ≤ R, N ∈ N.

(4) P′′N(ξ )/Ṽ ξ (SN)−−−→
N→∞

1 uniformly on compact subsets of ξ .

(5) PN(ξ )/VN = FN(ξ )+ o(V−1
N ) uniformly on compact subsets of ξ , as N → ∞.

Specifically, let ∆N(R) := sup
|ξ |≤R

VN

∣∣∣FN(ξ )− PN(ξ )
VN

∣∣∣ . Then sup
N

∆N(R)< ∞ for all

R > 0, and sup
N

∆N(R)−−−→
R→0+

0.

(6) P′N(ξ )/VN = F ′
N(ξ )+O(V−1

N ) uniformly on compact subsets of ξ , as N → ∞.

Specifically, let ∆ N(R) := sup
|ξ |≤R

VN

∣∣∣F ′
N(ξ )−

P′N(ξ )
VN

∣∣∣ . Then sup
N≥N0

∆ N(R)< ∞.

Proof. The real analyticity of PN(ξ ) and parts (1)–(4) follow directly from Lemma
6.4, the identity PN(ξ ) = PN(ξ )+(aN+1−a1)ξ , and the boundness of an.

The proof of part (5) uses the operators Lξ
n : L∞(Sn+1)→ L∞(Sn) from (6.3.5),

(Lξ
n h)(x) :=

∫
Sn+1

eξ fn(x,y)h(y)πn,n+1(x,dy)≡ Ex[eξ fn(x,Xn+1)h(Xn+1)].
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Let hξ
n := hn(·,ξ ) ∈ L∞(Sn) be the unique positive functions constructed so

that Lξ
n hξ

n+1 = epn(ξ )hξ
n , where p1(ξ )+ · · ·+ pN(ξ ) = PN(ξ ). (To construct hξ

n , ap-
ply Lemma 6.1 with an as in (6.3.19).) In particular, h0

n ≡ 1 and

Ex

(
eξ SN hN+1(XN+1)

)
= ePN(ξ )hξ

1 (x). (6.3.21)

By Lemma 6.2, there exists C1 = C1(R) > 1 such that C−1
1 ≤ hξ

N+1 ≤C1 for all
|ξ | ≤ R and N ≥ 1. Thus by (6.3.21),

C1(R)−2ePN(ξ ) ≤ E
(

eξ SN
)
≤C1(R)2ePN(ξ ).

Taking logarithms, we deduce that |FN(ξ )−PN(ξ )/VN | ≤ 2C1(R)/VN for all N ≥ 1
and |ξ | ≤ R. Equivalently, supN ∆N(R)≤ 2C1.

Next, by Lemma 6.3 and the identity h0
n ≡ 1, ‖hξ

N − 1‖∞ −−−→
N→∞

0 uniformly on

compact subsets of ξ . Returning to the definition of C1(R) we find that we may
choose C1(R)−−−→

R→0+
1. As before, this implies that supN ∆N(R)−−−→

R→0
0.

Here is the proof of part (6). Fix R > 0 and let Ẽξ denote the expectation operator
with respect to the change of measure Xξ , then

VNF ′
N(ξ ) =

E(SNeξ SN )

E(eξ SN )
=
Ẽξ (SN(h

ξ

1/hξ

N+1))

Ẽξ (hξ

1/hξ

N+1)
. (6.3.22)

We have already remarked that Xξ are uniformly elliptic, and that their uniform
ellipticity constants are bounded away from zero for ξ ranging on a compact set.
This gives us the mixing bounds in Proposition 1.1 with the same Cmix > 0, 0< θ < 1
for all |ξ | ≤ R. So

Ẽξ

(
hξ

1 SN

hξ

N+1

)
= Ẽξ (hξ

1 )Ẽ
ξ

(
1/hξ

N+1

)
Ẽξ (SN)+O(1) as N→ ∞,

Ẽξ

(
hξ

1

hξ

N+1

)
= Ẽξ (hξ

1 )Ẽ
ξ

(
1/hξ

N+1

)
+O(θ N), as N→ ∞

where the big oh’s are uniform for |ξ | ≤ R. Plugging this into (6.3.22) gives

VNF ′
N(ξ ) = Ẽξ (SN)+O(1) as N→ ∞, uniformly for |ξ | ≤ R.

Part (6) follows from this from part (2) of the lemma. �

The choice of ξN: We choose ξN so that P′N(ξN) = zN , ẼξN (SN) = zN +O(1). The
following lemma give sufficient conditions for the existence of such ξN .
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Lemma 6.6. Suppose VN → ∞, R > 0, and

[âR
N , b̂

R
N ] :=

[
F ′

N(−R)− E(SN)

VN
,F ′

N(R)+
E(SN)

VN

]
.

(1) For each R there is C(R), N(R) s.t. if zN−E(SN)
VN

∈ [âR
N , b̂

R
N ], and N > N(R) then

(a) ∃!ξN ∈ [−(R+1),(R+1)] s.t. P′N(ξN) = zN;

(b) C(R)−1
∣∣∣ zN−E(SN)

VN

∣∣∣≤ |ξN | ≤C(R)
∣∣∣ zN−E(SN)

VN

∣∣∣
(c) sgn(ξN) = sgn( zN−E(SN)

VN
);

(d)
∣∣∣ẼξN (SN)− zN

∣∣∣≤C(R).

(2) For every R > 1 there exists c(R)> 0 such that for all N large enough,

if
∣∣∣∣ zN−E(SN)

VN

∣∣∣∣≤ c(R), then
zN−E(SN)

VN
∈ [âR

N , b̂
R
N ] (6.3.23)

Consequently, if | zN−E(SN)
VN

|< c(R), then there exists a unique ξN with (a)–(d) above.

Proof. Let [ãR
N , b̃

R
N ] :=

[
P′N(−R)−E(SN)

VN
,

P′N(R)−E(SN)

VN

]
.

CLAIM: For all R > 0, for all N large enough,

[âR
N , b̂

R
N ]⊂ [ãR+1

N , b̃R+1
N ]⊂ [âR+2

N , b̂R+2
N ].

Proof of the claim: By parts (3) and (4) of Lemma 6.5, there exists δ > 0 such that
P′′N(ξ )/VN ≥ δ on [−(R+2),(R+2)]. Thus by the mean value theorem,

b̃R+2
N ≥ b̃R+1

N +δ , b̃R+1
N ≥ b̃R

N +δ , ãR+2
N ≤ ãR+1

N −δ , ãR+1
N ≤ ãR

N−δ .

Next by part (6) of Lemma 6.5, |b̂R′
N − b̃R′

N |= O(V−1
N ) and |âR′

N − ãR′
N |= O(V−1

N ) for
all R′ ≤ R+2. For all N large enough |O(V−1

N )|< δ , and

âR+2
N < ãR+1

N < âR
N < b̂R

N < b̃R+1
N < b̂R+2

N ,

which proves the claim.

We can now prove part (1) of the lemma. Let ϕN(ξ ) :=
PN(ξ )−ξ P′N(0)

VN
. By

Lemma 6.5, ϕN(ξ ) is strictly convex, smooth, and

P′N(ξN) = zN iff ϕ
′
N(ξN) =

zN−P′N(0)
VN

.

Fix R > 0. By the claim, for all N large enough, if zN−E(SN)
VN

∈ [âR
N , b̂

R
N ], then

zN−P′N(0)
VN

≡ zN−E(SN)
VN

∈ [ãR+1
N , b̃R+1

N ] ≡ ϕ ′N [−(R+ 1),(R+ 1)]. Since ϕ ′N is continu-
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ous and strictly increasing, there ∃!ξN ∈ [−(R+ 1),(R+ 1)] such that ϕ ′N(ξN) =
zN−P′N(0)

VN
. Equivalently, there exists a unique |ξN | ≤ R+1 such that P′N(ξN) = zN .

This argument shows that for every N sufficiently large, for every η ∈ [âR
N , b̂

R
N ]

there exists a unique ξ = ξ (η) ∈ [−(R+1),(R+1)] such that

ϕ
′
N(ξ (η)) = η .

By Lemma 6.5, ∃δ (R) > 0 so that δ (R) ≤ ϕ ′′N ≤ δ (R)−1 on [−(R + 1),(R +

1)]. So η 7→ ξ (η) is 1
δ (R) -bi-Lipschitz on [âR

N , b̂
R
N ]. By construction, ϕ ′N(0) = 0. So

ξ (0) = 0, whence by the bi-Lipschitz property

δ (R)|η | ≤ |ξ (η)| ≤ δ (R)−1|η | on [âR
N , b̂

R
N ].

Since ϕN is real-analytic and strictly convex, ϕ ′N is smooth and strictly increasing.
By the inverse mapping theorem, η 7→ ξ (η) is smooth and strictly increasing. So

sgn(ξ (η)) = sgn(η) on [âR
N , b̂

R
N ].

Specializing to the case η = zN−E(SN)
VN

, gives properties (a)–(c) of ξN .
Property (d) is because of by Lemma 6.5, which says that

zN = P′N(ξN) = ẼξN (SN)+O(1).

Notice that the big oh is uniform because |ξN | ≤ R+1. This completes the proof of
part (1).

Here is the proof of part (2): For every R > 1, for all N large enough

[âR
N , b̂

R
N ]⊃ [ãR−1

N , b̃R−1
N ]≡ ϕ

′
N [−(R−1),(R−1)] (∵ claim, ϕ

′
N is increasing)

⊃ [−δ (R−1)(R−1),δ (R−1)(R−1)] (∵ ϕ
′
N(0) = 0,ϕ ′′N ≥ δ (R+1)).

So [âR
N , b̂

R
N ]⊃ [−c,c] for R≥ 2 where c := δ (1). �

Corollary 6.5. Suppose VN → ∞ and zN−E(SN)
VN

→ 0, then for all N large enough,
there exists a unique ξN such that P′N(ξN) = zN . Furthermore, ξN → 0.

6.3.4 The asymptotic behavior of Ṽ ξN (SN)

Let Ṽ ξ

N denote the variance of SN with respect to the change of measure Xξ . We
compare Ṽ ξ

N to VN .

Lemma 6.7. Suppose VN −−−→
N→∞

∞, and define ξN as in Lemma 6.6.

(1) Suppose R > 0 and zN−E(SN)
VN

∈ [âR
N , b̂

R
N ] for all N, then Ṽ ξN

N �VN as N→ ∞.
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(2) If zN−E(SN)
VN

→ 0, then Ṽ ξN
N ∼VN as N→ ∞.

(3) Ṽ ξ

N ∼ VN as N → ∞ uniformly on compact subsets of ξ : For every ε > 0 there
are ξ ∗ > 0 and N0 > 1, so that Ṽ ξ

N /VN ∈ [e−ε ,eε ] for all |ξ |< ξ ∗,N > N0.

Proof. Part (1) is because of Lemma 6.5(3) and the bound |ξN | ≤R+1 from Lemma
6.5. Part (2) follows from part (3) and Corollary 6.5. It remains to prove part (3).

To do this we decompose SN into weakly correlated large blocks of roughly the
same X-variance, and check that the Xξ -variance of the i-th block converges uni-
formly in i to its X-variance.

Let {Xn} and {X̃ξ
n } denote the Markov chains with transition kernels {πn,n+1(x,dy)},

{π̃ξ

n,n+1(x,dy)} and initial distribution µ1(dx). Given natural numbers n > m, let

Sn,m := Xn + · · ·+Xm−1

S̃ξ
n,m := X̃ξ

n + · · ·+ X̃ξ

m−1

pn,m(ξ ) := pn(ξ )+ · · ·+ pm−1(ξ ).

Notice that for all R > 0, n < m, and |ξ | ≤ R,

pn,m(0) = 0, p′n,m(0) = E(Sn,m), |p′n,m(ξ )− Ẽξ (S̃ξ
n,m)| ≤C(R). (6.3.24)

The first identity is because hn(·,0)≡ 1, pn(0) = 1 by the uniqueness of the funda-
mental solution. The second identity is because

p′n,m(0) = P′m−1(0)−P′n−1(0) = E(Sm−1)−E(Sn−1)

by choice of {an}. The inequality can be proved by applying Lemma 6.5 to the
shifted Markov chain {Xk}k≥n.

Let V (Sn,m) := Var(Sn,m). The application of Lemma 6.5 to the shifted Markov
chain {Xk}k≥n also gives a constant M0 s.t. for all |ξ | ≤ R,

V (Sn,m)≥M0⇒

{
C(R)−1 ≤ Ṽ ξ (S̃ξ

n,m)/V (Sn,m)≤C(R)

2−1 ≤ p′′n,m(ξ )/Ṽ ξ (S̃ξ
n,m)≤ 2.

(6.3.25)

M0 is independent of n: It is a function of R, K, ε0, and the uniform bounds on
hn(·,ξ ) and its derivatives.

STEP 1 (UNIFORM EXPONENTIAL MIXING). There are C∗mix = Cmix(R) > 0, η =
η(R) ∈ (0,1) such that for every |ξ | ≤ R, for all n < m,∣∣Cov

(
fm(X̃ξ

m , X̃
ξ

m+1), fn(X̃ξ
n , X̃

ξ

n+1)
)∣∣≤C∗mixη

m−n.

Proof: If |ξ | ≤ R, then the Markov chain X̃ξ
n is uniformly elliptic with ellipticity

constant ε0(R)> 0. The step follows from Proposition 1.1.
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STEP 2 (BLOCK DECOMPOSITION). For every ε > 0 small enough, for every R> 1,
there exists M > 1 and integers ni ↑ ∞ such that:

(1) M ≤V (Sni,ni+1)≤ 2M;

(2) |Cov(S̃ξ
ni,ni+1 , S̃

ξ
n j ,n j+1)| ≤C#

mixηn j−ni+1 for all |ξ | ≤ R and i < j, where the con-
stant C#

mix is independent of M, i, j;
(3) For all |ξ | ≤ R, for all i > 3, for all n ∈ [ni,ni+1],

e−ε ≤
Ṽ ξ (S̃ξ

1,n)

i−1

∑
k=1

Ṽ ξ (S̃ξ
nk,nk+1

)+Ṽ ξ
ni,n

≤ eε . (6.3.26)

(4) M∗ := sup
i

sup
n∈[ni,ni+1]

sup
|ξ |≤R

|p′′ni,n(ξ )|< ∞

Proof. We write Vn,m :=V (Sn,m) and Ṽ ξ
n,m := Ṽ ξ (S̃ξ

n,m), and fix

M > max
{

2
(

K2 +
C∗mix
1−η

)
,

4C∗mixC(R)
ε−1(1−η)3

}
.

Construct ni = ni(M) ∈ N by induction as follows: n1 := 1, and

ni+1 := min{n > ni : Vni,ni+1 > M}.

There does indeed exist n > ni with Vni,ni+1 > M, because Vni,n −−−→n→∞
∞, as can be

seen from the following calculation:

∞←−−−
∞← n

V1,n =V1,ni +Vni,n +2Cov(S1,ni ,Sni,n)

=Vni,n +V1,ni +O

(
ni−1

∑
m=1

∞

∑
k=0
|Cov(Xm,Xni+k)|

)
=Vni,n +O(1), by step 1 with ξ = 0.

By construction, Vni,ni+1 > M, and

Vni,ni+1 ≤Vni,ni+1−1 + |Vni,ni+1 −Vni,ni+1−1|
≤M+ |Vni,ni+1 −Vni,ni+1−1| by the minimality of ni+1

≤M+V ( fni+1−2(Xni+1−2,Xni+1−1))

+2|Cov( fni+1−2(Xni+1−2,Xni+1−1),Sni+1−1)|

≤M+2
(

K2 +
C∗mix
1−η

)
≤ 2M by the choice of M.

So M <Vni,ni+1 ≤ 2M, and {ni} satisfies part (1).
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If i < j, then |Cov(S̃ξ
ni,ni+1

, S̃ξ
n j ,n j+1

)| ≤
ni+1−1

∑
k=ni

n j+1−1

∑
`=n j

C∗mixη
`−k

≤C∗mix

ni+1−1

∑
k=ni

ηn j−k

1−η
=

C∗mixηn j−ni+1

1−η

ni+1−1

∑
k=ni

η
ni+1−k =

C∗mixηn j−ni+1

(1−η)2 .

Part (2) follows with C#
mix :=C∗mix/(1−η)2.

Part (3) follows from parts (1),(2). Namely, fix n ∈ [ni,ni+1], then∣∣∣∣∣Ṽ ξ (S̃ξ

1,n)−
i−1

∑
k=1

Ṽ ξ
nk,nk+1

−Ṽ ξ
ni,n

∣∣∣∣∣
≤ 2 ∑

1≤k<`≤i−1
|Cov(S̃ξ

nk,nk+1
, S̃ξ

n`,n`+1
)|+2 ∑

1≤k≤i−1
|Cov(S̃ξ

nk,nk+1
, S̃ξ

ni,n)|

≤ 2 ∑
1≤k<`≤i−1

C#
mixη

n`−nk+1 +2 ∑
1≤k≤i−1

C#
mixη

ni−nk+1 ≤ 2 ∑
1≤k<`≤i

C#
mixη

`−k−1

= 2C#
mix

i−1

∑
k=1

i−1

∑
`=k+1

η
`−k−1 ≤ 2C#

mixi
1−η

=
2C∗mixi
(1−η)3 .

By (6.3.25),
i−1

∑
k=1

Ṽ ξ
nknk+1

≥ M(i−1)
C(R)

. So

∣∣∣∣∣∣ Ṽ ξ (S̃ξ

ni−1)

∑
i−1
k=1 Ṽ ξ

nknk+1 +Ṽ ξ
ni,n
−1

∣∣∣∣∣∣≤
(

2C∗mix
(1−η)3

)
i

C(R)−1M(i−1)
≤ 1

M
· 2C∗mixC(R)

(1−η)3 ·
i

i−1
≤ ε

2
· i

i−1
,

where the last inequality is by the choice of M. If i > 3, the last bound is less than
3
4 ε , and (6.3.26) follows for all ε sufficiently small.

Part (4) is a uniform bound on |p′′ni,n(ξ )| for i ∈ N, n ∈ [ni,n], |ξ | ≤ R. By con-
struction, Vni,n ≤ 2M. By Theorem 2.1, this implies a uniform upper bound on

∑
n−1
k=ni

u2
k . The structure constants of {Xn} and {X̃ξ

n } are equal up to a bounded mul-

tiplicative error. So the same theorem, applied to the Markov chain {X̃ξ

k }k≥ni , gives

a uniform upper bound for Ṽ ξ
ni,n, whence supi supn∈[ni,ni+1]

sup|ξ |≤R Ṽ ξ
ni,n < ∞.

A routine modification of the argument we used to show (6.3.17) shows that∣∣∣∣p′′n,m(ξ )− Ẽξ

[(
S̃ξ

ni,n− Ẽξ (S̃ξ
ni,n)+O(1)

)2
]∣∣∣∣≤ const. The expectation term is uni-

formly bounded because of the bound on Ṽ ξ
ni,n and the Minkowski inequality, so part

(4) follows.

STEP 3 (BLOCK EXPECTATION). For every ε > 0 there exists ξ ∗ > 0 such that for
all |ξ | ≤ ξ ∗,
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ni,n)−E(Sni,n)

∣∣∣≤ ε for all i ∈ N and ni ≤ n≤ ni+1.

Proof. By Lemma 6.2 hk(·,ξ ) is uniformly bounded away from zero and infinity
when |ξ | ≤ R. By Lemma 6.3, ξ 7→ hk(·,ξ ) is uniformly Lipschitz on [−R,R]. It
follows that

hn+1(y,ξ )
hni(x,ξ )

−−−→
ξ→0

1 uniformly for i ∈ N, n ∈ [ni,ni+1], (x,y) ∈Sni ×Sn+1.

In particular, there is a ξ ∗1 s.t. for all |ξ | ≤ ξ ∗1

2−1 ≤ hn+1(y,ξ )
hni(x,ξ )

≤ 2 for all i ∈ N, n ∈ [ni,n], and (x,y) ∈Sni ×Sn.

This has a useful consequence. Since

E

(
eξ Sni ,n

hn+1(Xn+1,ξ )

epni ,n(ξ )hni(Xni ,ξ )

)
=E

(
EXni

(
eξ Sni,n

hn+1(Xn+1,ξ )

epni ,n(ξ )hni(Xni ,ξ )

))
=E(1)= 1,

2−1E
(

eξ Sni ,n
)
≤ epni ,n(ξ ) ≤ 2E

(
eξ Sni ,n

)
whenever |ξ | ≤ ξ

∗
1 . (6.3.27)

Fix L > 0 and let AL := [|Sni,n−E(Sni,n)| ≤ L], then:

Ẽξ

Xni
(S̃ξ

ni,n)−E(Sni,n) = E

(
(Sni,n−E(Sni,n))e

ξ Sni ,n · hn+1(Xn+1,ξ )

epni ,n(ξ )hni(Xni ,ξ )

)

= EXni

(
(Sni,n−E(Sni,n))e

ξ Sni ,n−pni ,n(ξ ) · hn+1(Xn+1,ξ )

hni(Xni ,ξ )
·1AL

)
+EXni

(
(Sni,n−E(Sni,n))e

ξ Sni,n−pni ,n(ξ ) · hn+1(Xn+1,ξ )

hni(Xni ,ξ )
·1Ac

L

)
.

Expectation of the first summand: M∗ := sup
i

sup
n∈[ni,ni+1]

sup
|ξ |≤R

|p′′ni,n(ξ )|<∞. Therefore

by (6.3.24), for all |ξ | ≤ R, n ∈ [ni,ni+1],

pni,n(ξ ) = pni,n(0)+ξ p′ni,n(0)+O(ξ 2) = ξE(Sni,n)+O(ξ 2), (6.3.28)

where |O(ξ 2)| ≤M∗ξ 2.
So on AL, |ξ Sni,n− pni,n(ξ )|= |ξ | · |Sni,n−E(Sni,n)|+M∗ξ 2 ≤ L|ξ |+M∗ξ 2, uni-

formly in i,n ∈ [ni,n]. In particular,

eξ Sni ,n−pni ,n(ξ ) −−−→
ξ→0

1 on AL, uniformly in i, n ∈ [ni,n].
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Together with the uniform convergence hn+1(Xn+1,ξ )
hni (Xni ,ξ )

−−−→
ξ→0

1, this implies that the

first summand converges to EXni
[(Sni,n−E(Sni,n))1AL ] uniformly in i, Xni , and n ∈

[ni,ni+1].
The expectation of the limit satisfies

|E[(Sni,n−E(Sni,n))1AL ]|= |E[(Sni,n−E(Sni,n))1Ac
L
]|

≤ E[L−1(Sni,n−E(Sni,n))
21Ac

L
]≤

V (Sni,n)

L
≤ 2M

L
.

Thus, for every ε > 0, for every L large enough, for all |ξ | sufficiently small, for all
i,n ∈ [ni,ni+1], the first summand has expectation < ε/2.

Expectation of the second summand: Fix 0 < δ � ξ ∗1 . Assume L is so large s.t.
|t|< δeδ |t| for all |t|> L.

Decompose Ac
L := Ac

+]Ac
−, where Ac

+ := [Sni,n−E(Sni,n)> L] and Ac
+ := [Sni,n−

E(Sni,n)<−L]. Then

EXni

(
|Sni,n−E(Sni,n)|e

ξ Sni,n−pni ,n(ξ ) · hn+1(Xn+1,ξ )

hni(Xni ,ξ )
·1Ac

+

)
≤ 2EXni

(
|Sni,n−E(Sni,n)|e

ξ Sni ,n−pni ,n(ξ ) ·1Ac
+

)
, provided |ξ | ≤ ξ

∗
1

≤ 4EXni

(
(Sni,n−E(Sni,n))e

ξ Sni ,n ·1Ac
+

)/
E(eξ Sni,n), by (6.3.27)

= 4EXni

(
(Sni,n−E(Sni,n))e

ξ (Sni ,n−E(Sni ,n)) ·1Ac
+

)/
E(eξ (Sni ,n−E(Sni ,n)))

≤ 4δEXni
(e(ξ+δ )(Sni ,n−E(Sni ,n)))

/
E(eξ (Sni ,n−E(Sni ,n)))

≤ 16δ exp(pni,n(ξ +δ )− pni,n(ξ )−δE(Sni,n)) , provided |ξ +δ |< ξ
∗
1 .

(see (6.3.27)). Expanding pni,n(ξ + δ ) into Taylor series around ξ , and recalling
|p′′ni,n(ξ )| ≤M∗ for |ξ | ≤ R, we find that the term in the exponent is bounded above
by

δ |p′ni,n(ξ )−E(Sni,n)|+M∗δ 2 = δ |p′ni,n(ξ )− p′ni,n(0)|+M∗δ 2

≤M∗(δ |ξ |+δ
2)≤M∗(Rδ +δ

2),

which can be made as small as we wish by choosing δ properly.
The conclusion is that for all L large enough, for all |ξ | sufficiently small, for all

i,n ∈ [ni,ni+1],

E
(
|Sni,n−E(Sni,n)|e

ξ Sni ,n−pni ,n(ξ ) · hn+1(Xn+1,ξ )

hni(Xni ,ξ )
·1Ac

+

)
≤ ε

4
.

Similarly, one can show that for all L large enough, for all |ξ | sufficiently small, for
all i,n ∈ [ni,ni+1],
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E
(
|Sni,n−E(Sni,n)|e

ξ Sni ,n−pni ,n(ξ ) · hn+1(Xn+1,ξ )

hni(Xni ,ξ )
·1Ac

−

)
<

ε

4
.

Thus, for every ε > 0, for all L sufficiently large, for all |ξ | sufficiently small,
for all i,n ∈ [ni,ni+1], the expectation of the second summand is less than ε/2 in
absolute value.

STEP 4 (BLOCK VARIANCE). For every ε > 0 there exists ξ ∗ > 0 such that for all
|ξ | ≤ ξ ∗,

∣∣∣Ṽ ξ
ni,n−Vni,n

∣∣∣≤ ε for all i ∈ N and ni ≤ n≤ ni+1.

Proof. The proof is similar to the proof of step 3. Fix L to be determined later and
let AL := [|Sni,n−E(Sni,n)| ≤ L], then

Ṽ ξ (S̃ξ
ni,n) = E

(
(Sni,n− Ẽ(S̃

ξ
ni,n))

2eξ Sni ,n · hn+1(Xn+1,ξ )

epni ,n(ξ )hni(Xni ,ξ )
1AL

)

+E

(
(Sni,n− Ẽ(S̃

ξ
ni,n))

2eξ Sni ,n · hn+1(Xn+1,ξ )

epni ,n(ξ )hni(Xni ,ξ )
1Ac

L

)
.

The second summand can be analyzed as in step 3, this time with the inequality
t2 < δeδ |t| for all |t| large enough. The conclusion is that for every ε > 0, for all L
sufficiently large, for all |ξ | sufficiently small, for all i,n ∈ [ni,ni+1],

E

(
(Sni,n− Ẽ(S̃

ξ
ni,n))

2eξ Sni ,n · hn+1(Xn+1,ξ )

epni ,n(ξ )hni(Xni ,ξ )
1Ac

L

)
<

ε

2
. (6.3.29)

The first summand converges to E((Sni,n−E(Sni,n))
21AL) as ξ → 0 uniformly in

i,n ∈ [ni,ni+1] because

• eξ Sni ,n · hn+1(Xn+1,ξ )

epni ,n(ξ )hni (Xni ,ξ )
1AL −−−→

ξ→0
1AL uniformly in i∈N,n∈ [ni,ni+1], see the proof

of step 3; and
• (Sni,n− Ẽ(S

ξ
ni,n))

21AL −−−→
ξ→0

(Sni,n−E(Sni,n))
21AL uniformly in i,n ∈ [ni,n], be-

cause for some t between Ẽ(S̃ξ
ni,n), E(Sni,n),∣∣(Sni,n− Ẽ(S

ξ
ni,n))

2− (Sni,n−E(Sni,n))
2∣∣

= 2|Sni,n− t||Ẽ(Sξ
ni,n)−E(Sni,n)|

≤ 2(L+ |Ẽ(Sξ
ni,n)−E(Sni,n)|)|Ẽ(S

ξ
ni,n)−E(Sni,n)| on AL

−−−→
ξ→0

0 uniformly on AL in i ∈ N,n ∈ [ni,ni+1], by step 3.

The limit of the first summand E((Sni,n−E(Sni,n))
21AL)−−−→L→∞

Vni,n uniformly in

i,n ∈ [ni,ni+1]. Indeed, applying (6.3.29) with ξ = 0

|Vni,n−E((Sni,n−E(Sni,n))
21AL)|= E((Sni,n−E(Sni,n))

21Ac
L
)<

ε

2



6.3 Proofs 161

for all L large enough, for all i ∈ N,n ∈ [ni,ni+1]. Step 4 follows.

PROOF OF PART (3) OF THE LEMMA. Fix ε > 0, and construct the block decompo-
sition as in step 2.

By step 4 there exists ξ ∗ > 0 s.t. for all |ξ | < ξ ∗, for all k ∈ N,n ∈ [nk,nk+1],
e−εVnk,n ≤ Ṽ ξ

nk,n ≤ eεVnk,n. Therefore

e−ε ≤ ∑
i−1
k=1 Ṽ ξ

nk,nk+1 +Ṽ ξ
ni,n

∑
i−1
k=1 V ξ

nk,nk+1 +Vni,n

≤ eε .

By part (3) of step 2, for all n > n3, for all |ξ |< ξ ∗, e−3ε ≤ Ṽ ξ
n
/

Vn ≤ e3ε . �

6.3.5 Asymptotics of the log moment generating functions

We need an elementary observation from probability theory. Let X ,Y be two random
variables on the same probability space (Ω ,F ,P). Suppose X has finite non-zero
variance, and Y is positive and bounded. Let VarY (X) be the variance of X with
respect to the change of measure Y

E(Y )dP, i.e.

VarY (X) :=
E(X2Y )
E(Y )

−
(
E(XY )
E(Y )

)2

.

Lemma 6.8. Suppose 0 < Var(X)< ∞ and C−1 ≤Y ≤C with C a positive constant,

then C−4 ≤ VarY (X)

Var(X)
≤C4.

Proof. For every random variable W , if W1,W2 are two independent copies of W
then Var(W ) = 1

2E[(W1−W2)
2]. In particular, if (X1,Y1), (X2,Y2) are two indepen-

dent copies of the random vector (X ,Y ), then

VarY (X) =
1
2
E[(X1−X2)

2Y1Y2]

E(Y1Y2)
=C±4 1

2
E[(X1−X2)

2] =C±4Var(X). �

Proof of Theorem 6.1 on the asymptotic behavior of FN(ξ ) := 1
VN

logE(ξ SN):
Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X , s.t. VN := Var(SN) 6= 0 for N ≥ N0.

Since ‖SN‖∞ < ∞, we may differentiate under the expectation and obtain that for
all k, dk

dξ kE(eξ SN ) = E(Sk
Neξ SN ). A direct calculation now shows that

F ′
N(ξ ) =

1
VN

E(SNeξ SN )

E(eξ SN )
=

1
VN
EY ξ

N (SN),

F ′′
N(ξ ) =

1
VN

E(S2
Neξ SN )

E(eξ SN )
−

(
E(SNeξ SN )

E(eξ SN )

)2
=

VarY ξ

N (SN)

Var(SN)
,
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where Y ξ

N := eξ SN .

Part 1: Substituting ξ = 0 gives FN(0) = 0, F ′
N(0) =

E(SN)
VN

, F ′′
N(0) = 1.

Part 2: F ′′
N(ξ ) = 0 ⇔ VarY ξ

N (SN) = 0 ⇔ SN = const Y ξ

N

E(Y ξ

N )
dP–a.s. ⇔ SN = const

P–a.s.⇔ Var(SN) = 0. So FN is strictly convex on R for all N > N0.

Part 3:
Ṽ ξ

N (SN)

Var(SN)
≡ VarZN (SN)

Var(SN)
, where Zξ

N := eξ SN
hξ

N+1

hξ

1

(the normalization constant

does not matter). Next, Zξ

N ≡ Y ξ

N W ξ

N , where W ξ

N := hξ

N+1/hξ

1 . Lemma 6.2 says that

for every R> 0 there is a constant C =C(R) s.t. C−1≤W ξ

N ≤C for all N and |ξ | ≤R.
Lemma 6.3 and the obvious identity h0

n ≡ 1 imply that W ξ

N −−−→
ξ→0

1 uniformly in N.

So there is no loss of generality in assuming that C(R)−−−→
R→0

1.

By Lemma 6.8 with the probability measure eξ SN

E(eξ SN )
dP and Y =W ξ

N ,

Ṽ ξ

N (SN)

VNF ′′
N(ξ )

=
VarY ξ

N W ξ

N (SN)

VarY ξ

N (SN)
∈
[
C(R)−4,C(R)4] , ∀|ξ | ≤ R, N ≥ 1. (6.3.30)

By Lemma 6.5(3), Ṽ ξ

N (SN)�VN uniformly on compact sets of ξ , and by Lemma
6.7 for every ε there exists δ ,Nε > 0 s.t. e−ε < Ṽ ξ

N (SN)/VN < eε for all N > Nε and
|ξ | ≤ δ . It follows that for every R there exists C2(R) > 1 such that C2(R) −−−→

R→0
1

and C2(R)−1 ≤F ′′
N(ξ )≤C2(R) for all |ξ | ≤ R.

Part 4: Suppose ε > 0. We saw in part 3 that there exist δ ,Nε s.t. e−ε ≤F ′′
N(ξ )≤ eε

for all |ξ | ≤ δ ,N ≥ Nε .
Recall that FN(0) = 0 and F ′

N(0) = E(SN)/VN . So for all |ξ | ≤ δ ,

FN(ξ ) = FN(0)+
∫

ξ

0

(
F ′

N(0)+
∫

η

F ′N(0)
F ′′

N(α)dα

)
dη .

Since F ′′
N = e±ε on [−δ ,δ ] and |η | ≤ |ξ | ≤ δ ,

FN(ξ ) =
E(SN)

VN
ξ +

1
2

e±ε

(
ξ − E(SN)

VN

)2

. �

6.3.6 Asymptotics of the rate functions.

The rate functions IN(η) are the Legendre transforms of FN(ξ ) =
1

VN
logE(eξ SN ).

Recall that the Legendre transform of a strictly convex function ϕ : R→ R is the
function ϕ∗ : (infϕ ′,supϕ ′)→ R,

ϕ
∗(η) = ξ η−ϕ(ξ ) for the unique ξ s.t. ϕ

′(ξ ) = η .
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On its domain, ϕ∗(η) = max{ξ η−ϕ(ξ )}.

Lemma 6.9. Suppose ϕ(ξ ) is strictly convex and twice differentiable on R, and let
ϕ ′(±∞) := lim

ξ→±∞

ϕ ′(ξ ). Then the Legendre transform ϕ∗ is strictly convex, twice

differentiable on (ϕ ′(−∞),ϕ ′(+∞)), and for every ξ ∈ R,

ϕ
∗(ϕ ′(t)) = tϕ ′(t)−ϕ(t), (ϕ∗)′(ϕ ′(t)) = t , (ϕ∗)′′(ϕ ′(t)) =

1
ϕ ′′(t)

(6.3.31)

Proof. Under the assumptions of the lemma, ϕ ′ is strictly increasing and differ-
entiable. So (ϕ ′)−1 : (ϕ ′(−∞),ϕ ′(∞))→ R is well-defined, strictly increasing and
differentiable, and

ϕ
∗(η) = η(ϕ ′)−1(η)−ϕ[(ϕ ′)−1(η)]

The lemma follows by differentiation of right-hand-side. �

Proof of Theorem 6.2 on the asymptotics of the rate functions IN := F ∗
N:

Part 1: Since FN is strictly convex and smooth, F ′
N is strictly increasing and con-

tinuous. So F ′
N [−1,1] = [F ′

N(−1),F ′
N(1)] ≡ [a1

N ,b
1
N ], and for every η ∈ [a1

N ,b
1
N ],

there exists a unique ξ ∈ [−1,1] such that F ′
N(ξ ) = η . So dom(IN)⊃ [a1

N ,b
1
N ].

By Theorem 6.1 there is C > 0 such that C−1≤F ′′
N ≤C on [−1,1] for all N ≥N0.

Since F ′
N(0) =

E(SN)
VN

and F ′
N(ρ) = F ′

N(0)+
∫ ρ

0 F ′′
N(ξ )dξ , we have

b1
N ≡F ′

N(1)≥
E(SN)

VN
+C−1 , a1

N ≡F ′
N(−1)≤ E(SN)

VN
−C−1.

So dom(IN)⊇ [a1
N ,b

1
N ]⊇

[
E(SN)

VN
−C−1, E(SN)

VN
+C−1

]
for all N ≥ N0.

Part 2 follows from Lemma 6.9 and the strict convexity of FN on [−R,R].

Part 3: Let JN :=
[
E(SN)

VN
−C−1, E(SN)

VN
+C−1

]
. In part 1 we constructed functions

ξN : JN → [−1,1] such that F ′
N(ξN(η)) = η .

Clearly ξN

(
E(SN)

VN

)
= 0. Recalling that C−1 ≤F ′′

N ≤ C on [−1,1], we see that

ξ ′N(η) = 1
F ′′N(ξN(η))

∈ [C−1,C] on JN . Hence

|ξN(η)| ≤C|η− E(SN)
VN
| for all η ∈ JN , N ≥ N0.

Fix 0 < ε < 1. By Theorem 6.1(4) there are δ ,Nε > 0 s.t. e−ε ≤F ′′
N ≤ eε on [−δ ,δ ]

for all N > Nε . If |η− E(SN)
VN
|< δ/C, then |ξN(η)|< δ , and F ′′

N(ξN(η)) ∈ [e−ε ,eε ].

Since FN(0) = 0 and F ′
N(0) =

E(SN)
VN

, we have by (6.3.31) that IN(
E(SN)

VN
) =

I ′N(
E(SN)

VN
) = 0 and I ′′N (η) = 1/F ′′

N(ξN(η)) ∈ [e−ε ,eε ]. Writing
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IN(η) = IN(
E(SN)

VN
)+

∫
η

E(SN)
VN

(
I ′N(

E(SN)
VN

)+
∫

α

E(SN)
VN

I ′′N (β )dβ

)
dα,

we find that IN(η) = e±ε 1
2 (η−

E(SN)
VN

)2 for all η s.t. |η− E(SN)
VN
| ≤ δ/C.

Part 4: If zN−E(SN)
VN

→ 0, then
zN

VN
∈
[
E(SN)

VN
−δN ,

E(SN)

VN
+δN

]
with δN → 0. By

part 3, IN(
zN
VN

)∼ 1
2

(
zN−E(SN)

VN

)2
, whence VNIN(

zN
VN

)∼ 1
2

(
zn−E(SN)√

VN

)2
. �

Let HN(η) denote the Legendre tranform of PN(ξ )/VN . We will compare HN(η)
to IN(η). This is needed to link the change of measure we performed in section
§6.3.3 to the functions IN which appear in the statement of the local limit theorem
for large deviations.

Lemma 6.10. Suppose R > 0 and VN 6= 0 for all N large enough. Then

(1) HN is well-defined and real-analytic on
[

P′N(−R)
VN

,
P′N(R)

VN

]
for all N large enough.

(2) There exists c > 0 such that HN(·) is well-defined and real-analytic on(
E(SN)

VN
− c, E(SN)

VN
+ c
)

for all N large enough.

Proof. Lemma 6.6 and its proof provide real analytic maps

ξN :
[

P′N(−R)
VN

,
P′N(R)

VN

]
→ [−R,R] s.t.

P′N(ξN(η))

VN
= η .

Hence HN(η)=
1

VN

[
ξN(η)P′N(ξ (η))−PN(ξ (η))

]
is well-defined and real-analytic

on [
P′N(−R)

VN
,

P′N(R)
VN

]. This proves part (1). Part (2) follows from Lemma 6.6(2). �

Lemma 6.11. Suppose VN 6= 0 for all N ≥ N0, then ∃c > 0 such that

(1) dom(IN)∩dom(HN)⊃
[
E(SN)

VN
− c, E(SN)

VN
+ c
]

for all N ≥ N0.

(2) Recall that [aR
N ,b

R
N ] = [F ′

N(−R),F ′
N(R)]. For every R > 0 there exists C(R)> 0

s.t. for all z ∈ [aR
N ,b

R
N ] and N ≥ N0,∣∣VNIN(

z
VN

)−VNHN(
z

VN
)
∣∣≤C(R).

(3) For every ε > 0, ∃δ ,Nε > 0 s.t. if N ≥ Nε and
∣∣∣ z−E(SN)

VN

∣∣∣< δ , then∣∣VNIN(
z

VN
)−VNHN(

z
VN

)
∣∣≤ ε.

Proof. Part (1) is a direct consequence of Lemma 6.10 and Theorem 6.2(1).
To prove the other parts of the lemma, we use the following consequence of

Lemma 6.5(6): For every R > 0, for all N large enough, for every η ∈ [aR
N ,b

R
N ], there

exist ξ
(1)
N ,ξ

(2)
N ∈ [−(R+1),(R+1)] such that
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P′N(ξ
(1)
N )

VN
= η , F ′

N(ξ
(2)
N ) = η .

Arguing as in the proof of part 3 of Theorem 6.2, we can also find a constant C(R)
such that |ξ (i)

N | ≤C(R)
∣∣η− E(SN)

VN

∣∣.
It is a general fact that the Legendre transform of a convex function ϕ is equal on

its domain to ϕ∗(η) = sup
ξ

{ξ η−ϕ(ξ )}. Thus for every z ∈ [aR
N ,b

R
N ],

VNIN

(
z

VN

)
=VN sup

ξ

{
ξ

z
VN
−FN(ξ )

}
=VN

(
ξ
(2)
N

z
VN
−FN(ξ

(2)
N )

)

≤VN

(
ξ
(2)
N

z
VN
−

PN(ξ
(2)
N )

VN

)
+∆N (R+1) , see Lemma 6.5(5)

≤VN sup
ξ

{
ξ

z
VN
− PN(ξ )

VN

}
+∆N(R+1)≡VNHN

(
z

VN

)
+∆N(R+1).

So VNIN
( z

VN

)
−VNHN

( z
VN

)
≤ ∆N(R+1).

Similarly, one can show that VNHN
( z

VN

)
−VNIN

( z
VN

)
≤ ∆N(R+1), whence

sup
N≥N0

sup
z∈[aR

N ,b
R
N ]

∣∣∣∣VNIN

(
z

VN

)
−VNHN

(
z

VN

)∣∣∣∣≤ sup
N≥N0

∆N(R+1).

Part (2) now follows from Lemma 6.5(5).

If instead of taking z ∈ [aR
N ,b

R
N ] we take z ∈

(
E(SN)

VN
−δ ,

E(SN)

VN
+δ

)
, then

|ξ (i)
N |<Cδ , and the same argument will show that

sup
N≥N0

sup∣∣∣ z−E(SN )
VN

∣∣∣≤δ

∣∣∣∣VNIN

(
z

VN

)
−VNHN

(
z

VN

)∣∣∣∣≤ sup
N≥N0

∆N(Cδ ).

Part (3) follows from Lemma 6.5(5). �

6.3.7 The local limit theorem for large deviations.

Proof of Theorem 6.5. We give the proof in the non-lattice case; the modifications
needed for the lattice case are routine.

Suppose f is an a.s. uniformly bounded additive functional of a uniformly elliptic
Markov chain X. We assume that f is irreducible, and that f has algebraic range R.
In this case f is not center-tight, and VN := Var(SN)→ ∞ (Corollary 2.1). There is
no loss of generality in assuming that VN 6= 0 for all N.

Recall that [âN , b̂N ] = [F ′
N(−R)− E(SN)

VN
,F ′

N(R)−
E(SN)

VN
], and suppose
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zN−E(SN)

VN
∈ [âN , b̂N ].

Let hξ
n (·) := hn(·,ξ ), pn(ξ ), and PN(ξ ) be as in §§6.3.2, 6.3.3. The assumption on

zN allows us to construct ξN ∈ [−(R+1),(R+1)] as in Lemma 6.6:

P′N(ξN) = zN and ξN = O
(

zN−E(SN)
VN

)
.

Define a Markov array X̃ := {X̃ (N)
n : 1≤ n≤N+1}with state spaces (Sn,B(Sn),µn)

(the state spaces of X), and transition probabilities

π̃
(N)
n,n+1(x,dy) := eξN fn(x,y) hn+1(y,ξN)

epn(ξN)hn(x,ξN)
·πn,n+1(x,dy).

Let f̃ = { f (N)
n : 1≤ n≤ N +1,N ∈ N} where f (N)

n := fn, and set

S̃N := f1(X̃
(N)
1 , X̃ (N)

2 )+ · · ·+ fN(X̃
(N)
N , X̃ (N)

N+1).

Recall that eξN fn , hn, and epn(ξN) are uniformly bounded away from zero and in-
finity, by assumption on f, and Lemma 6.2. So π̃

(N)
n,n+1(x,dy) differ from πn,n+1(x,dy)

by densities which are bounded away from zero and infinity uniformly in N. It fol-
lows that X̃ is uniformly elliptic, f̃ is a.s. uniformly bounded, and the structure
constants of (X̃, f̃) are equal to the structure constants of (X, f) up to a uniformly
bounded multiplicative error. Thus

(1) (X̃, f̃) and (X, f) have the same algebraic ranges, co-ranges, and essential ranges.
In particular, (X̃, f̃) is irreducible and non-lattice.

(2) (X̃, f̃) is stably hereditary (see Examples 3.3 and 3.4 in §3.2.3).
(3) ṼN := Var(S̃N)−−−→

N→∞
∞ (because ṼN � ∑

N
n=3 u2

n �VN → ∞).

Furthermore, by the choice of ξN , E(S̃N)≡ ẼξN (SN) = zN +O(1), so

zN−E(S̃N)√
VN

= O
(

1√
VN

)
−−−→
N→∞

0.

Therefore S̃N satisfies the local limit theorem (Theorem 4.1):

Px(S̃N− zN ∈ (a,b))∼ |a−b|
/√

2πṼ ξN
N

for every x ∈S1 and (a,b) 6=∅.

We will translate this into an asymptotic for P(SN − zN ∈ (a,b)). For all N large
enough, for every x ∈S1,
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Px[SN− zN ∈ (a,b)] = ePN(ξN)−ξN zN×

×Ex

(
eξN SN

hξN
N+1(X

(N)
N+1)

ePN(ξN)hξN
1 (x)

·
hξN

1 (x)

hξN
N+1(X

(N)
N+1)

· eξN(zN−SN)1(a,b)(SN− zN)

)
= ePN(ξN)−ξN zN hξN

1 (x)Ẽx

(
hξN

N+1(X̃
(N)
N+1)

−1
φa,b(S̃N− zN)

)
(6.3.32)

where φa,b(t) := 1(a,b)(t)e−ξN t .

The pre-factor simplifies as follows. By construction P′N(ξN)
VN

= zN
VN

. Thus

ξN zN−PN(ξN) =VN

(
ξN

zN

VN
− PN(ξN)

VN

)
=VN

(
ξN

P′N(ξN)

VN
− PN(ξN)

VN

)
.

So

ePN(ξN)−ξN zN = e−VN HN

(
zN
VN

)
, (6.3.33)

where HN(η) is the Legendre transform of PN(ξ )/VN .
Using the mixing LLT for Markov arrays Theorem (4.3), one can see that

Ex

(
hξN

N+1(X̃
(N)
N+1)

−1
φa,b(S̃N− zN)

)
∼

µN+1

(
1/hξN

N+1

)
√

2πṼ ξN
N

∫ b

a
e−ξN tdt, (6.3.34)

as N→ ∞. To do this approximate φa,b in L1(R) from below and above continuous
functions with compact support, and approximate hξN

N+1 in L1(S
(N)
N+1,B(S

(N)
N+1),µ

(N)
N+1)

from above and below by finite linear combinations of sets with uniformly bounded
measure (here µ

(N)
N+1 is the distribution of X (N)

N+1).

Since ξN is bounded, Lemma 6.5(4) tells us that Ṽ ξN
N ∼ P′′N(ξN) as N→ ∞. Since

HN(η) is the Legendre transform of PN(ξ )/VN , and P′N(ξN)/VN = zN/VN ,

Ṽ ξN
N ∼VN ·

(
P′′N(ξN)

VN

)
=

VN

H ′′N(
zN
VN

)
as N→ ∞. (6.3.35)

Substituting (6.3.33), (6.3.34), and (6.3.35) in (6.3.32), we obtain the following:

Px[SN− zN ∈ (a,b)]∼

e−VNIN(
zN
VN

)

√
2πVN

∫ b

a
e−ξN tdt

×
×
[

eVNIN(
zN
VN

)−VN HN(
zN
VN

)
√

H ′′N(
zN−E(SN)

VN
)

]
︸ ︷︷ ︸

ρ̂N

(
zN−E(SN )

VN

)
×
[

hξN
1 (x)µN+1

(
1

h
ξN
N+1

)]
︸ ︷︷ ︸

ρN

(
x, zN−E(SN )

VN

)
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Let ηN := zN−E(SN)
VN

, then ξN = ξN(ηN) where ξN : [âN , b̂N ]→ [−(R+1),(R+1)]
is defined implicitly by P′N(ξN(η)) = ηVN +E(SN). Lemma 6.6 shows that ξN(·) is
well-defined.

Notice that there exists a constant L = L(R) such that |η | ≤ L(R). Indeed,
ηN ∈ [âR

N , b̂
R
N ] and |âR

N |, |b̂R
N | ≤ |F ′(±R)−F ′(0)| ≤ R sup

[−R,R]
F ′′

N , which is uniformly

bounded by Theorem 6.1(3).
The functions ρ̂N : [−L,L]→ R are defined by

ρ̂N(η) := eVNIN

(
η+

E(SN )
VN

)
−VN HN

(
η+

E(SN )
VN

)√
H ′′N(η).

Lemma 6.11 and Theorem 6.2 say that there exists C such that

C−1 ≤ ρ̂N(η)≤C for all N and |η | ≤ L.

They also say that for every ε > 0 there are δ ,Nε > 0 s.t.

e−ε ≤ ρ̂N(η)≤ eε for all N > Nε and |η | ≤ δ .

In particular, if zN−E(SN)
VN

→ 0, then ρ̂N
( zN−E(SN)

VN

)
−−−→
N→∞

1.

The functions ρN : S1× (−c,c)→ R are defined by

ρN(x,η) := h1(x,ξ (η))µN+1

(
1

hN+1(x,ξ (η))

)
,

By Lemma 6.2, there exists a constant C such that

C−1 ≤ ρN(x,η)≤C for all N and |η | ≤ L.

By Lemma 6.3 and the obvious identity hn(·,0) ≡ 1, ‖hξ
n − 1‖∞ −−−→

ξ→0
0 uniformly

in n. Since |ξ (η)| ≤C|η |, for every ε > 0 there are δ ,Nε > 0 such that

e−ε ≤ ρN(x,η)≤ eε for all x ∈S1, N > Nε , and |η | ≤ δ .

Setting ρN := ρ̂N ·ρN we complete the proof of theorem in the non-lattice case. The
modifications needed for the lattice case are routine, and are left to the reader. �

6.3.8 Rough bounds in the reducible case.

Proof of Theorem 6.6: We proceed as in the proof of Theorem 6.5, but using the
rough bounds of Theorem 5.3 instead of the precise LLT to estimate the probabilities
for the change of measure. We get that there is a constant C = C(R) s.t. for each
0≤ j ≤

√
VN , for all N large enough,
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C−1 ≤
√

VNP(SN− zN ∈ [} j,}( j+1)])

eξN j · e−VNIN

(
zN
VN

) ≤C (6.3.36)

where ξN = ξN

(
zN
VN

)
≥ ε and }= 2δ (f).

We claim that these bounds hold uniformly, i.e. that there exists N0 such that
(6.3.36) holds for all N > N0 and for all 1≤ j≤

√
VN . If this were not the case, then

there would have existed for the change of measure S̃N a subsequence zN such that
|zN −E(S̃N)| ≤

√
ṼN and which violates either (5.1.5) or (5.1.6) for the change of

measure. Taking a further subsequence we could arrange that zN−E(S̃N)√
ṼN

converges to

some z ∈ [−C,C] contradicting Theorem 5.3.
Taking j = 0 in (6.3.36) we obtain the lower bound.
To obtain the upper bound we sum the estimate of (6.3.36) for j = 0, . . .

√
VN to

get

P(SN ∈ [zN ,zN +}
√

VN ])≤
Ĉ√
VN

e−VNIN

(
zN
VN

)
.

It remains to show that P(SN ≥ zN +}
√

VN) is of lower order. Indeed let zN = zN +
}
√

VN . by Markov inequality and Lemma 6.11

P(SN ≥ zN)≤min
ξ

eξ zN−PN(ξ ) = e−VN HN(zN/VN) ≤ C̃e−VNIN(zN/VN).

By strict convexity of IN on
[
aR

N ,b
R
N
]

we can find a constant cR such that

VNIN(zN/VN)≥ e−VNIN(zN/VN)+cR
√

VN .

This completes the proof of the upper bound. �

6.4 Large deviations threshold

The results of this chapter are all stated for zN s.t. for some R > 0 and all sufficiently
large N, zN−E(SN)

VN
∈ [âR

N , b̂
R
N ]. In this section we will discuss how restrictive is this

assumption.
We say that a sequence {zN} is R-admissible if if there is a constant N0 s.t. for

N ≥ N0 ∃ξN ∈ [−R,R] such that P′N(ξN) = zN . A sequence {zN} is admissible if it
is R-admissible for some R.

A number z is called reachable (respectively R-reachable) if the sequence {zVN}
is admissible (respectively R-admissible).

We denote the set of R–reachable points by CR and the set of reachable points by
C . Since P′N is monotone increasing,

int(C ) = (c−,c+)
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for some c± = c±(X).

Example 6.4. Let SN =
N

∑
n=1

Xn where Xn are iid random variables having law X with

expectation zero and variance one. Recall from Example 6.2 that in this case FN
does not depend on N so by property (ii) of Example 6.2 we obtain

c− = ess inf(X), c+ = ess sup(X). (6.4.1)

Then SN/N ∈ [c−,c+] almost surely for all N, and therefore P[SN − zN ∈ (a,b)] is
zero when z 6∈ [c−,c+]. Henceforth we refer to such z as “irrelevant.”

Not all relevant z are reachable: z is reachable only when z∈ (c−,c+). Our results
do not apply for z = c±. Indeed different asymptotic behavior may hold for zN s.t.
zN
VN
→ c±, see Example 6.1. Still, the large deviation LLT for P[SN − zN ∈ (a,b)]

holds for most “relevant” values of z. Our next example shows that this is not always
the case.

Example 6.5. Let Xn = (Yn,Zn) where {Yn}, {Zn} are two independent sequences
of iid random variables having uniform distribution on [0,1]. Fix a sequence {pn}
and let

fn(Yn,Zn) =

{
Zn if Yn > pn

2 if Yn ≤ pn.

We now discuss two possible choices of {pn}.
Let f ′ be defined as above with pn ≡ 1

2 . Then f ′n are iid so by discussion of the
Example 6.4 the results of the present chapter apply to P(S′N ∈ zN+(a,b)) provided
that z ∈ (0,2) while the possible range of SN(f

′)
N is [0,2].

Let f ′′ be defined as above with pn tending to 0 as n→ ∞. Since Var(Zn) =
1
12 it

follows that VN = (1+o(1))
N
12

. We shall show below that in case (b)

c− = 0, c+ = 12. (6.4.2)

In other words the results of the present chapter apply to P(SN(f
′′) ∈ zN +(a,b))

provided that z∈ (0,1). On the other hand, the possible range of SN(f
′′)

N is [0,2] since
for each fixed N the distributions of SN(f

′) and SN(f
′′) are absolutely continuous

with respect to each other. We will see that the reason our results do not apply for
z > 1 is that in that case P(SN(f

′′)≥ zN) decays super exponentially.

In this section we discuss methods for computing c± (in particular, proving
(6.4.2)) and provide sufficient conditions for good behavior, when (c−,c+) covers
“most” relevant z.

Lemma 6.12. ∀R > 0 ∃ε = ε(R) > 0 s.t. if {zN} is R-admissible, and |zN − zN | ≤
εVN , then {zN} is (R+1)-admissible.

Proof. By the uniform strict convexity of PN
VN

on [−(R+ 1),(R+ 1)], there exists
ε > 0 such that P′N(R+1)≥ zN + εVN and P′N(−(R+1))≤ zN− εVN . �
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Corollary 6.6. (a) C is open, and (b) if E(Sn) ≡ 0, then C is a non-empty neigh-
borhood of zero.

Proof. Part (a) follows from Lemma 6.12. Part (b) follows from (6.3.23). �

Without the assumption E(SN) = 0, C may be empty. Eventhough Theorem 6.2
provides many admissible sequences, the associated zN

VN
need not converge:

Example 6.6. Let Nk = 10k. Consider Xn = an+Un where Un are iid having uniform
distribution on [0,1] and

an =

{
10 if N2k ≤ n < N2k+1,

−10 if N2k+1 ≤ n < N2k+2.

Then with probability one SN2k+1 > N2k+1, SN2k < −N2k. The first inequality gives
C ∩ (−∞,0] =∅, the second one gives C ∩ [0,+∞) =∅. Hence C =∅.

Theorem 6.7. Let f be an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X, with essential range Z or R. The following are equivalent:

(a) {zN} is admissible.
(b) ∃ε > 0,η > 0 s.t. ∀{zN} with |zN − zN | ≤ εVN and ∀aN ,bN s.t. |aN |, |bN | ≤ 10

and bN−aN > 1 we have P(SN ∈ zN +(aN ,bN))≥ ηVN .
(c) ∃ε > 0,η > 0 s.t. P(SN ≥ zN + εVN)≥ η

VN and P(SN ≤ zN− εVN)≥ ηVN .

Example 6.7. Let SN =
N

∑
n=1

Xn where Xn are iid supported on [α,β ] and such that X

has an atom on the right edge: P(X = β ) = γ > 0. Then

P[SN ≥ βN] = P[SN = βN] = γ
N

while P[SN ≥ βN +1] = 0. Thus {βN} is not admissible. This example shows that
taking ε = 0 in part (c) of Theorem 6.7 gives a condition which is not equivalent to
the conditions (a)–(c) of the theorem.

Proof. (a)⇒ (b) : If {zN} is admissible then by Lemma 6.12 ∃ε > 0 such that if
|zN − zN | ≤ εVN then {zN} is admissible. Now (b) follows from formula (6.3.36) in
the proof of Theorem 6.6.

(b)⇒ (c) : The bound P[SN ≥ zN + εVN ] ≥ ηVN follows from part (b) with zN =
zN + εVN , aN = 0, bn = 1.1. The lower bound is similar.

(c)⇒ (a) : Our assumptions on the essential range imply that (X, f) is not center-
tight, and therefore VN → ∞. By Lemma 6.5(5) PN(R)−VNFN(R) is eventually
bounded, and therefore for some c(R)> 0 and all N > N(R),

ePN(R) ≥ c(R)E
(
eRSN

)
≥ c(R)E

(
eRSN 1[SN≥zN+εVN ]

)
≥ c(R)ηVN eR(zN+εVN).

This implies that for all N large enough PN(R)≥ R(zN +(ε/2))VN .
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Since PN(0) = 0 the Mean Value Theorem tells us that ∃ξ+
N ∈ [0,R] such that

P′N(ξ
+
N ) ≥ zN +

εVN

2
. Likewise we can find ξ

−
N ∈ [−R,0] such that P′N(ξ

−
N ) ≤ zN −

εVN

2
. By the Intermediate Value Theorem ∃ξN ∈ [ξ−N ,ξ+

N ] s.t. P′N(ξN) = zN . �

Corollary 6.7. Under the assumptions of the previous theorem, if E(SN) ≡ 0 then
c+ = sup{z : I(z)< ∞}, where

I(z) = limsup
N→∞

| logP(SN ∈ zVN +[−1,1])|
logVN

.

Proof. By Theorem 6.7(b), if z∈ (c−,c+), then I(z)<∞. So c+≤ sup{z : I(z)<∞}.
To see the other inequality, note that c+ > 0 (by Corollary 6.6), and I(0)< ∞ (by

(6.3.36)). We will show that

1
2

sup{z : I(z)< ∞}< z < sup{z : I(z)< ∞}⇒ z is admissible, (6.4.3)

and deduce that c+ ≥ sup{z : I(z)< ∞}.
Fix z as in (6.4.3), then ∃ε > 0 s.t. I(z+ 2ε) < ∞ and z− ε > 0. Necessarily

∃η > 0 s.t. for all N large enough

P[SN ≥ (z+ ε)VN ]≥ P[SN ∈ (z+2ε)VN +[−1,1]]≥ η
N

P[SN ≤ (z− ε)VN ]≥ P[SN ≤ 0] =
1
2
+o(1)≥ η

N

By Theorem 6.7(c), z is admissible. �

We say that (X, f) and (X̃, f̃) are related by the change of measure if fn ≡ f̃n and
πn(x,dy) is equivalent to π̃N(x,dy) with

ε ≤ π̃n(x,dy)
πn(x,dy)

≤ ε
−1.

Lemma 6.13. Suppose f is an a.s. uniformly bounded additive functional on a uni-
formly elliptic Markov chain X. If (X, f) and (X̃, f̃) are related by the change of
measure and VN ≥ cN for some c > 0, then {zN} is (X, f)-admissible iff {zN} is
(X̃, f̃)-admissible.

Proof. Since X is uniformly elliptic, X̃ is uniformly elliptic. The exponential mix-
ing bounds for uniformly elliptic chains imply that ṼN := Var[SN(X̃, f̃)] and VN :=
Var[SN(X̃, f̃)] are both O(N). Without loss of generality, cN ≤VN ≤ c−1CN .

Under the assumptions of the Lemma, the structure constants of (X, f) are equal
to the structure constants of (X̃, f̃) up to bounded multiplicative error. By Theo-
rem 2.1, ṼN := Var[SN(X̃, f̃)]�VN as N→ ∞. So ∃c̃ > 0 s.t. c̃N ≤ ṼN ≤ c̃−1N.

Let {zN} be (X, f)-admissible. Then there are ε > 0,η > 0 such that
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P[SN ≥ zN + εVN ]≥ η
N , P[SN ≤ zN− εVN ]≥ η

N .

It follows that

P̃[SN(X̃, f̃)≥ zN + ε̃ṼN ]≥ η̃
N , P̃[SN(X̃, f̃)≤ zN− ε̃ṼN ]≥ η̃

N

where η̃ = ηε and ε̃ := c̃cε . Hence {zN} is X̃-admissible. �

Lemma 6.14. Let f and f̃ be two a.s. uniformly bounded additive functionals on the
same uniformly elliptic Markov chain. Suppose VN := Var[SN(f)]→ ∞ and

lim
N→∞

‖SN (̃f)−SN(f)‖∞

VN
= 0. (6.4.4)

Then {zN} is f-admissible iff {zN} is f̃-admissible.

Proof. We write SN = SN(f), and S̃N = SN(f). By the assumptions of the lemma,
ṼN := Var(S̃N)∼VN as N→ ∞.

Let {zN} be f-admissible. By Theorem 6.7(b), there are ε > 0,η > 0 such that

P[SN ≥ zN + εVN ]≥ η
N , P[SN ≤ zN− εVN ]≥ η

N .

It now follows from (6.4.4) that for large N

P̃
[
S̃N ≥ zN +

ε

2
ṼN

]
≥ η

N , P̃
[
S̃N ≤ zN−

ε

2
ṼN

]
≥ η

N .

Hence {zN} is f̃-admissible. �

We end this section by proving (6.4.2).
Proof of (6.4.2). To show that c+ ≤ 12 assume by contradiction that int(C ) con-
tained some z > 12.

Then Theorem 6.6 would imply that

P[SN ≥ zVN ]≤ η
VN for some η > 0. (6.4.5)

Note that

logE(eξ fn(Yn,Zn)) = log
(

pne2ξ +(1− pn)E(eξU [0,1])
)

= log

(
pne2ξ +(1− pn)

eξ −1
ξ

)
−−−→
n→∞

log
eξ −1

ξ

because pn→ 0. So

FN(ξ )=
1

VN
log

N

∏
n=1
E
(

eξ fn(Yn,Zn)
)
∼ 12

N

N

∑
n=1

logE
(

eξ fn(Yn,Zn)
)
−−−→
N→∞

12log

(
eξ −1

ξ

)
.
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The last expression is strictly smaller than 12ξ if ξ ≥ 1. Therefore for any ξ we
have for sufficiently large N, E

(
eξ SN

)
≤ e12VN ξ . Hence by Markov inequality,

P [SN ≥ zVN ]≤ e(12−z)VN ξ

which is incompatible with (6.4.5) if ξ is large enough since z > 12. Therefore
Int(C )⊂ (0,12).

Next we show that (0,12) ∈Int(C ). By Theorem 6.7 it suffices to show that
∃ε,η > 0 such that P[A±ε (N)]< η

N where

A+
ε (N) = P[SN ≥ (z+ ε)V ], A−ε (N) = P[SN ≤ (z− ε)N]

and z := z
12 ∈ (0,1). We will consider A+

ε (N), A−ε (N) is similar. We have

P[SN ≥ (z+ ε)N]≥ P[Yn ≥ pn for n≤ N]P

[
N

∑
n=1

Zn ≥ (z+ ε)N

]
.

The first term is greater that C
( 1

2

)N
since pn <

1
2 for large N, while the second term

is smaller some η
N by Theorem 6.6. It follows that c+ = 12. The proof of the fact

that c− = 0 is similar but easier. �

6.5 Notes and references

The reader should note the difference between the LLT for large deviations and the
large deviations principle (LDP): LLT for large deviations give the asymptotics of
P[SN − zN ∈ (a,b)] or P[SN > zN ]; The LDP gives the asymptotics of the logarithm
of P[SN > zN ], see Dembo & Zeitouni [32] and Varadhan [135].

The interest in precise asymptotics for P[SN > zN ] in the regime of large devi-
ations goes back to the first paper on large deviations, by Cramér [28]. That paper
gave an asymptotic series expansion for P[SN −E(SN) > x] for SN =sums of iid’s.
The first sharp asymptotics for P[SN − zN ∈ (a,b)] appear to be the work of Richter
[113],[65, chapter 7] and Blackwell & Hodges [14].

These results were refined by many authors, with important contributions by
Petrov [103], Linnik [85], Bahadur & Ranga Rao [11], Statulavicius [130] and
Saulis [121]. We refer the reader to the books of Ibragimov & Linnik [65], Petrov
[104], and of Saulis & Statulevicius [122] for accounts of these and other results,
and also to the survey of Nagaev [97] for a discussion of the case of sums of inde-
pendent random variables which are not necessarily identically distributed.

Plachky and Steinebach [105] and Chaganty & Sethuraman [20, 21] proved LLT
for large deviations for arbitrary sequences of random variables Tn (e.g. sums of
dependent random variables), subject only to assumptions on the asymptotic behav-
ior of the normalized log-moment generating functions of Tn and their Legendre-
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Fenchel transforms (their rate functions). Our LLT for large deviations are in the
spirit of these results.

We comment on some of the technical devices in the proofs. The “change of
measure” trick discussed in section 6.3.1 goes back to Cramér [28] and is a standard
idea in large deviations. In the classical homogeneous setup, a single parameter
ξN = ξ works for all times N, but in our inhomogeneous setup, we need to allow the
parameter ξN to depend N. For other instances of changes of measure which involve
a time dependent parameter, see Dembo & Zeitouni [31] and references therein.

Birkhoff’s Theorem on the contraction of Hilbert’s projective metric is proved in
[13]. Results similar to Lemma 6.1 on the existence of the generalized eigenfunc-
tion hξ

n were proved by many authors in many different contexts, see for example
[70], [48],[15], [118], [46], [60], [58]. The analytic dependence of the generalized
eigenvalue and eigenvector on the parameter ξ was considered in a different context
(the top Lyapunov exponent) by Ruelle [116] and Peres [102]. Our proof of Lemma
6.3 follows closely a proof in [46]. For an account of the theory of real-analyticity
for vector valued functions, see [36] and [137].





Chapter 7
Miscellaneous examples and special cases

In this chapter we consider several special cases where our general results take
stronger form. These include homogeneous Markov chains, asymptotically homoge-
neous additive functionals. We also explain how continuity assumptions can be used
to strengthen the results of the previous chapters.

7.1 Homogenous Markov chains

A Markov chain X = {Xn} is called homogeneous if its state spaces and transition
probabilities do not depend on n

Sn =S, µn = µ, πn(x,dy) = π(x,dy) for all n,

and Xn is stationary.
An additive functional on a homogeneous Markov chain is called homogeneous

if f = { fn} and
fn(x,y) = f (x,y) for all n.

The LLT for homogeneous Markov chains is due to Nagaev. The following ver-
sion, which allows continuous spaces, follows from results in [64].

Theorem 7.1. Let f denote an a.s. uniformly bounded homogeneous additive func-
tional on a uniformly elliptic homogeneous Markov chain X.

(1) Asymptotic Variance: The limit σ
2 = lim

N→∞

1
N

Var(SN) exists, and σ2 = 0 iff we

can represent f (X1,X2) = a(X2)−a(X1)+κ a.s. where a : S→R is a bounded
measurable function and κ is a constant, equal to E( f (X1,X2)).

(2) CLT: If σ2 > 0, then SN−E(SN)√
N

converges in probability as N→ ∞ to the Gaus-

sian distribution with mean zero and variance σ2.

(3) LLT: If σ2 > 0 then exactly one of the following options holds:

177
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(a) Non-Lattice LLT: If zN−E(SN)√
N
→ z, then for every interval [a,b],

P[SN− zN ∈ [a,b]] = [1+o(1)]
e−z2/(2σ2)

√
2πσ2N

(b−a), as N→ ∞;

(b) Periodicity: There exist κ ∈ R, t > 0 and a bounded measurable function
a : S→ R such that f (X1,X2)+a(X1)−a(X2)+κ ∈ tZ a.s.

Proof. Let VN := Var(SN) and fk := f (Xk,Xk+1), and assume without loss of gener-
ality that E[ f (X1,X2)] = 0.

Proof of part (1): By stationarity, E( fn) = 0 for all n, and so

VN = E
(

f 2
n
)
=

N

∑
n=1
E( f 2

n )+2 ∑
1≤m<n=N

E( fn fm).

By stationarity, E( fn fm) = E( f0 fn−m) and

1
N

VN = E( f 2
0 )+2

N−1

∑
k=1
E( f0 fk)

(
1− k

N

)
.

|E( f0 fm)| decays exponentially (Prop. 1.1), so ∑ |E( f0 fk)|< ∞, whence

σ
2 := lim

N→∞

1
N

Var(SN) = E( f 2
0 )+2

∞

∑
k=1
E( f0 fk). (7.1.1)

(This identity for σ2 is called the Green-Kubo formula.)
Let un denote the structure constants of (X, f). The homogeneity assumptions

implies that un is independent of n, say un = u for all n. It follows that UN ≡ u2
3 +

· · ·+u2
N = (N−2)u2. Now we have two cases:

(I) u > 0: In this case by Theorem 2.1, VN �UN � N, whence σ2 > 0.
(II) u = 0: In this case, Var(SN) = O(1) by Theorem 2.1, whence σ2 = 0 and f

is center-tight. By the Gradient Lemma, (Lemma 2.2), f (X1,X2) = a2(X2)−
a1(X1)+κ for some a1,a2 : S→ R bounded and measurable and κ ∈ R. In
the homogeneous case, we may take a1 ≡ a2, see (2.2.4) in the proof of the
Gradient Lemma. So f (X1,X2) = a(X2)−a(X1)+κ a.s.

Proof of part (2): This follows from part (1) and Dobrushin’s CLT.

Proof of part (3): By homogeneity, the structure constants dn(ξ ) are independent
of n, and they are all equal to d(ξ ) := E(|eiξΓ −1|2)1/2, where Γ is the balance of
a random hexagon at position 3. So DN(ξ ) = ∑

N
k=3 d2

k (ξ ) = (N−3)d2(ξ ).
If d(ξ ) 6= 0 for all ξ 6= 0, then DN(ξ )→ ∞ for all ξ 6= 0, f is irreducible by

Theorem 3.2. and the LLT follows from Theorem 4.1.
If d(ξ ) = 0 for some ξ 6= 0, then DN(ξ ) = 0 for all N, ξ is in the co-range of

(X, f), and our reduction lemma says that there exist cn ∈R and uniformly bounded
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measurable an : S→ R and hn(Xn,Xn+1) such that ∑hn(Xn,Xn+1) converges a.s.,
and f (Xn,Xn+1)+an(Xn)−an+1(Xn+1)+hn(Xn,Xn+1)+κn ∈ 2π

ξ
Z a.s.

Let An(Xn,Xn+1, . . .) := an(Xn)+∑k≥n hk(Xk,Xk+1), then for all n

fn(Xn,Xn+1)+An(Xn,Xn+1, . . .)−An+1(Xn+1,Xn+2, . . .)+κn ∈
2π

ξ
Z a.s. . (7.1.2)

We need to replace Ai(Xi,Xi+1, . . .) by a(Xi). This is the purpose of the following
proposition, whose proof will complete the proof of the theorem:

Proposition 7.1. Let X be a uniformly elliptic homogeneous Markov chain with
state space (S,B,µ), and let f : S×S→ R be a measurable function such that
ess sup | f (X1,X2)|< ∞. If there exist measurable functions An : SN→R and κn ∈R
satisfying (7.1.2), then there exist κ ∈ R and a measurable a : S→ R such that

f (Xn,Xn+1)+a(Xn)−a(Xn+1)+κ ∈ Z a.s. for all n.

Proof. Throughout this proof, let Ω :=SN, equipped with the σ -algebra F gener-
ated by the cylinder sets

[A1, . . . ,An] := {x ∈SN : xi ∈ Ai (i = 1, . . . ,n)} (Ai ∈B)

and the unique probability measure m on (Ω ,F ) s.t.

m[A1, . . . ,An] = P[X1 ∈ A1, . . . ,Xn ∈ An]

Let σ : Ω → Ω denote the left-shift map, σ [(xn)n≥1] = (xn+1)n≥1. The stationarity
of X translates to the shift invariance of m: m◦σ−1 = m.
STEP 1 (Zero-One Law):

⋂
n≥1 T−nF = {∅,Ω} mod m.

Proof. Fix a cylinder A := [A1, . . . ,Am].
By uniform ellipticity, m(A∩σ−(m+1)B) ≥ ε0m(A)m(B) for every cylinder B =

[B1, . . . ,Bn]. Specializing to cylinders which begin with a string of k Ω ’s, we find
that m(A∩σ−(m+k)[B1, . . . ,Bn])≥ ε0m(A)m(B) for all k ≥ 1.

By the monotone class theorem, m(A∩σ−(m+k)E)≥ ε0m(A)m(E) for every F–
measurable set E and k ≥ 1.

Suppose E ∈
⋂

k≥1 T−nF , and let A be an arbitrary cylinder of length m. By the
assumption on E, E = T−nEn with En ∈F and n > m. So

m(A∩E) = m(E ∩T−nEn)≥ ε0m(A)m(En) = ε0m(A)m(E).

We see that m(A∩E)
m(A) ≥ ε0m(E) for all cylinders A, whence

E(1E |X1, . . . ,Xm)≥ ε0m(E) for all m.

By the martingale convergence theorem, 1E ≥ ε0m(E) a.e., whence m(E) = 0 or 1.
STEP 2: Identify f with a function f : Ω → R s.t. f [(xi)i≥1] = f (x1,x2). Then there
exist A : Ω → R measurable and κ ∈ R s.t. f +A−A◦σ +κ ∈ Z almost surely.
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Proof. The assumptions of the proposition say that there exist An : Ω → R measur-
able and κn ∈ R s.t.

f ◦σ
n +An ◦σ

n−An+1 ◦σ
n+1 +κn ∈ Z m-a.e. for every n.

Let wn := e2πiAn , then e2πi f◦σn wn◦σn

wn+1◦σn+1 = 1 m-a.s. Since m◦σ−1 = m we have

e2πi f wn
wn+1◦σ = 1 a.s. for all n. This gives the chain of identities

wn = e−2πi f wn+1 ◦σ = e−2πi( f+ f◦σ)wn+2 ◦σ
2 = · · ·= e−2πi∑

k−1
j=0 f◦σk

wn+k ◦σ
k.

It follows that wn/wn+1 = (wn+k/wn+k+1)◦σ k for all k. Hence wn/wn+1 is T−kF–
measurable for all k. By the zero-one law, wn/wn+1 is constant almost surely. In
particular, there exists a constant c such that A2−A1 ∈ c+Z m–a.e., and the step
follows with A := A1 and κ := κ1 + c.
STEP 3: There exists a : Ω → R constant on cylinders of length one such that f +
a−a◦σ +κ ∈ Z m-a.e.

Proof. Let L : L1(Ω)→ L1(Ω) denote the transfer operator of σ : Ω →Ω , which
describes the action of σ on mass densities on Ω : σ∗[ϕdµ] = Lϕdµ. Formally,

Lϕ := dmϕ◦σ−1

dm , where m f := ϕdm. We will need the following (standard) facts:

(a) If ϕ depends only on the first m-coordinates, then Lϕ depends only on the first
(m−1)∨1–coordinates. Specifically, (Lϕ)[(yi)i≥1] = Φ(y1, . . . ,ym−1) where

Φ(y1, . . . ,ym−1) := E[ϕ(X1, . . . ,Xm)|Xi = yi (1≤ i≤ m−1)]

(b) Lϕ is characterized by the condition
∫

ψLϕdm =
∫

ψ ◦σϕdm ∀ψ ∈ L∞(S)
(c) L(ϕψ ◦σ) = ψLϕ ∀ϕ ∈ L1,ψ ∈ L∞

(d) L1 = 1
(e) ∀ϕ ∈ L∞, Lnϕ −−−→

n→∞

∫
ϕdm in L1.

Part (b) is standard. Parts (c) and (e) follow from (b) and the σ -invariance of m.
Part (a) follows from (b), and the identity∫

ψLϕdm =
∫

ψdmϕ ◦σ
−1 =

∫
ψ ◦σϕdm = E[ψ(X2,X3, . . .)ϕ(X1, . . . ,Xm)]

= E
(
ψ(X2,X3, . . .)E[ϕ(X1, . . . ,Xm)|X2,X3, . . .]

) !
= E

(
ψ(X2,X3, . . .)E[ϕ|X2, . . . ,Xm]

)
=
∫

ψΦdm

where !
= is because of the Markov property. To see part (d) note that it is enough to

consider ϕ ∈ L∞ such that
∫

ϕdm = 0 (otherwise work with ϕ −
∫

ϕdm). For such
functions,
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‖Ln
ϕ‖1 =

∫
sgn(Ln

ϕ)Ln
ϕ dm =

∫
sgn(Ln

ϕ)◦σ
n
ϕ dm

=
∫

sgn(Ln
ϕ)◦σ

nE(ϕ|T−nF )dm≤
∫
|E(ϕ|T−nF )|dm

The integrand is uniformly bounded (by ‖ϕ‖∞), and it converges pointwise to
E(ϕ|

⋂
σ−nF ) = E(ϕ|{∅,Ω}) = E(ϕ) = 0.

Let w := e2πiA where A : Ω → R is as in step 2, and assume w.l.o.g. that κ = 0
(else absorb it into f ). Set Sn = f + f ◦σ + · · ·+ f ◦σn−1, then e−2πi f = w/w ◦σ ,
whence e−2πiSn = w/w◦σn. By (c), for all ϕ ∈ L1(Ω),

wLn(e−2πiSnϕ) = Ln(e−2πiSnw◦σ
n
ϕ) = Ln(wϕ)

L1
−−−→
n→∞

∫
wϕdm.

Since |w| = 1 a.e., ∃m ≥ 2 and ∃ϕ = ϕ(x1, . . . ,xm) bounded measurable so that∫
wϕdm 6= 0. For this ϕ , we have

w−1 = L1- lim
n→∞

L(e−2πiSnϕ)∫
wϕdm

.

We claim that the right-hand-side depends only on the first coordinate. This is
because e−2πi f ϕ is function of the first m coordinates, whence by (a), L(e−2πi f ϕ)
is a function of the first (m− 1)∨ 1 coordinates. Applying this argument again we
find that L(e−2πiS2ϕ) = L[e−2πi f L(e−2πi f ϕ)] is a function of the first (m− 2)∨ 1
coordinates. Continuing by induction, we find that Ln(e−2πiSnϕ) is a function of
(m−n)∨1-coordinates, and eventually of the first coordinate only.

So w−1 is an L1-limit of a functions of the first coordinate. Therefore we can write
w[(xi)i≥1] = exp[2πia(x1)] a.e., where a : S→ R is measurable. By construction
e2πi f w/w◦σ = 1, so f (X1,X2)+a(X1)−a(X2) ∈ Z almost surely. By stationarity,
f (Xn,Xn+1)+a(Xn)−a(Xn+1) ∈ Z almost surely for all n. �

We now determine domain of the rate functions for large deviation. We note that
the results of Chapter 6 concern P[SN ≥ zVN ] = P[SN ≥ zσ2(1 + o(1))N], while
in large deviation literature it is common to use the normalization P[SN ≥ zN]. To
simplify the comparison with other results we will assume till the end of this section
that σ2 = 1 which can always be achieved by scaling f . Let SN = ess supSN . Our
ellipticity assumption gives SN+M ≤SN +SM−4K where K = ‖ f‖∞. Hence the
sequence TN = SN−4K is subadditive and therefore the limit

s+ = lim
N→∞

ess supSN

N
= lim

N→∞

SN

N
= lim

N→∞

TN

N

exists. Similarly the limit s− = lim
N→∞

ess infSN

N
exists. Recall the notation for large

deviation tresholds c−,c+ introduced in §6.4.
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Theorem 7.2. Let f be an a.s. uniformly bounded homogenous additive on a uni-
formly elliptic homogeneous Markov chain, and assume f has zero mean and asymp-
totic variance σ2 = 1. Then c+ = s+ and c− = s−.

Proof. We prove the first identity, the second one is similar.
First, for any ε > 0, P[SN ≥ (s+ + ε)N] = 0 for sufficiently large N, whence

c+ ≤ s+.
Let K := ess sup |f|. For every ε > 0, for all sufficiently large M,

δM := P[SM ≥ (s+− ε)M]> 0.

Let σ(Xi, . . . ,X j) denote the σ -field generated by Xi, . . . ,X j. By uniform ellipticity,
if E ∈ σ(X1, . . . ,XM+1) and F ∈ σ(XM+3, . . . ,X2M+3), then P[E∩F ]≥ ε0P(E)P(F).
(To see this, prove this first for cylindrical events E :=

⋂M+1
i=1 [Xi ∈ Ai], F :=⋂2M+3

j=M+3[X j ∈ B j] and then use a monotone class argument.) Consequently,

P[S2(M+2) ≥ 2(s+− ε)M−2K]

≥ P

[
M

∑
k=1

fk(Xk,Xk+1)≥M(s+− ε) ,
2M+2

∑
k=M+3

fk(Xk,Xk+1)≥M(s+− ε)

]

≥ ε0P

[
M

∑
k=1

fk(Xk,Xk+1)≥M(s+− ε)

]
P

[
2M+2

∑
k=M+3

fk(Xk,Xk+1)≥M(s+− ε)

]
.

Thus by stationarity, P[S2(M+2) ≥ 2(s+− ε)M− 2K] ≥ ε0δ 2
M. Applying this argu-

ment repeatedly, we find that for each `,

P[S(M+2)` ≥ ((s+− ε)M−2K)`]≥
(
ε0δ

2
M
)`
.

Now Corollary 6.7 tells us that for all sufficiently large M, c+ ≥
(s+− ε)M−2K

M+2
.

Letting M→ ∞ we obtain c+ ≥ s+− ε. Since ε is arbitrary, c+ ≥ s+. �

7.2 Perturbations of homogeneous chains

Let (X, f) be a bounded homogenous additive functional on a uniformly ellip-
tic Markov chain with stationary measure µ and transition probability π(x,dy) =
p(x,y)µ(dy). We consider non-homogeneous perturbations (X̃, f̃) of the form

f̃n(x,y) = f (x,y)+gn(x,y) , π̃n(x,dy) = p̃n(x,y)µ(dy).

We assume that the strength of the perturbation decays at infinity. Namely for each
ε > 0 there is n0 such that for n≥ n0
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‖gn‖∞ ≤ ε and 1− ε ≤ p̃n(x,y)
p(x,y)

≤ 1+ ε.

Theorem 7.3. If the additive functional g is center tight with respect to the unper-
turbed measure then Gess(̃f) = Gess(f). If g is not center tight then Gess(̃f) = R.

Proof. We note that it suffices to prove the result in the case pn ≡ p. Indeed by our
assumption we have

1
2
≤ p̃n(x,y)

p(x,y)
≤ 2 (7.2.1)

if n is sufficiently large. Since discarding a finite number of terms does not change
the essential range (since any functional vanishing for large n is center tight) we
may assume that (7.2.1) holds for all n. Now Example 3.6 shows that the essential
range of the functionals defined via p and via pn are the same. Thus we assume
henceforth that pn ≡ p for all n.

If g is center tight then the essential ranges of f and f̃ are the same, so we shall
assume that g is not center tight, and prove that DN(ξ , f̃)→ ∞ for every ξ 6= 0. Let
d := dn(ξ , f) (the RHS does not depend on n by stationarity).

Suppose first that d 6= 0. By Lemma 1.4(2) we have

d2 = d2
n(ξ , f)≤ 8

[
dn(ξ , f̃)

2 +dn(ξ , g̃)
2
]
.

Next, the assumption ‖gn‖∞ −−−→
n→∞

0 implies that d2
n(ξ , g̃) −−−→n→∞

0. Accordingly

dn(̃f,ξ )
2 ≥ d2

10
for all n large enough, so that DN(ξ , f̃)→ ∞ as needed.

Next assume d= 0. In this case for any hexagon Pn we have eiξΓ (f,Pn) = 1, where
Γ (f, ·) denotes the balance for the additive functional f. It follows that Γ (̃f, ·) =
Γ (g, ·). Hence

dn(̃f) = dn(g̃).

Fix τ0 > 0 such that |eit −1|2 ≥ 1
2 t2 for all |t|< τ0. If 0 < |η | ≤ τ0(6ess sup |g|)−1,

then (3.3.6) tells us that

d2
n(g,ξ )≥

ξ 2

2
u2

n(g) for all n large enough.

By assumption, g is not center-tight, so ∑u2
n(g) = ∞. It follows that DN(η , f̃)→

∞ for all 0 < |η | ≤ τ0(6ess sup |g|)−1. So the co-range of g equals {0}, and the
essential range of g equals R. �

Next we discuss the large deviation tresholds for f̃.

Theorem 7.4. (a) If f is not a coboundary then c±(̃f) = c±(f) = s±(f).
(b) If f is a homogeneous gradient, E(gn) = 0 for all n, and g is not center tight,

then c+(̃f) = +∞, c−(̃f) =−∞.
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Proof. The proof of part (a) is very similar to the proof of Lemma 6.14 so we omit
it.

In the proof of part (b) we may assume that f = 0 since adding a homogeneous
gradient does not change the large deviation threshold. In particular in the rest of
the proof we will abbreviate SN = SN(g), Sn1,n2 = Sn1,n2(g) = ∑

n2−1
k=n1

fk(Xk,Xk+1),

VN = Var(SN(g)). Since g is not center tight, VN → ∞.
Assume without loss of generality that ess sup |g| ≤ 1

2 , then Var[gk(Xk,Xk+1)]≤ 1
for all k. Divide the interval [0,N] into blocks[

n1,n2

]
∪{n2 +1}∪

[
n3,n4

]
∪·· ·∪

[
nk,nk+1

]
∪{nk+1}∪

[
nk+2,N

]
where ni is increasing, 1≤ Var(Sn j ,n j+1)≤ 2 for j ≤ k+1, and Var(Snk+2,N)≤ 1.

Since ‖gn‖∞ → ∞, min{n j+1 − n j : ` ≤ j ≤ k} −−−→
`→∞

∞. Also, the analysis of

§6.3.4 shows that
1

VN
∑

j
Var(Sn j ,n j+1)→ 1.

In particular, the number of blocks βN , is between VN/2 and VN .
Let M j = max

n j≤l≤n j+1
‖gl‖∞. Note that M j→ 0. Therefore applying Dobrushin CLT

to the array {gl/M j}n j≤l≤n j+1 we conclude that Sn j ,n j+1/
√

Var(Sn j ,n j+1) is asymp-

totically normal. In particular, for each z > 0 there exists η = η(z)> 0 such that for
j large enough and all x j ∈Sn j

P(Sn j ,n j+1 ≥ 3z)≥ η . (7.2.2)

A uniform ellipticity similar to the one we used in the proof of Theorem 7.2 gives

P(SN ≥ βNz)≥ cη
βN

where c incorporates the contribution of blocks (with small j) there (7.2.2) fails.
Now Corollary 6.7 implies that c+ ≥ z. Since z is arbitrary, c+ = +∞. A similar
argument shows that c−(g) =−∞. �

7.3 Small additive functionals.

The perturbations of f ≡ 0 were analyzed in the previous section, however, since
this case is of independent interest it makes sense to summarize the results obtained
for this particular case.

Theorem 7.5. Let g be a uniformly bounded additive functional of uniformly elliptic
Markov chain. Suppose that E(gn) = 0 and that lim

n→∞
‖gn‖∞ = 0. Then
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either g is center tight in which case
∞

∑
n=1

gn converges almost surely

or g is not center tight in which case SN(g) satisfies non lattice LLT (4.1.1) and
c±(g) =±∞.

Proof. The non-center tight case was analyzed in §7.2. In the center tight case the
results of Chapter 2 tell us that g can be decomposed as

gn(x,y) = cn +an+1(y)−an(x)+hn(x,y) where ∑
n

Var(hn)< ∞.

Changing an if necessary we may assume that E(an) = 0 in which case

E(gn) = 0 = E(hn + cn).

Therefore the additive functional h̃= h+c has zero mean and finite variance. Hence

by Theorem 2.4
∞

∑
n=1

(hn + cn) converges almost surely. In summary SN(g)−aN +a1

converges almost surely, and hence SN(g)− aN converges almost surely. On the
other hand equation (2.2.4) shows that lim

N→∞
aN = 0 completing the proof. �

The following result which a direct consequence of Theorem 7.5 shows that for
small additive functionals a vague limit of the local distribution of SN always exists.

Corollary 7.1. Let g satisfy the assumptions of Theorem 7.5. Then either and SN
converges a.s. to some random variable S in which case for each continuous com-
pactly supported function φ

lim
N→∞

E(φ(SN)) = E(φ(S ))

or SN satisfies a non-lattice LL. That is, for each continuous compactly supported
function φ for each sequence zN such that the limit z = lim

N→∞

zN√
VN

exists we have

lim
N→∞

VNE(φ(SN)) = E(φ(S )) =
e−z2/2
√

2π

∫
∞

−∞

φ(s)ds.

7.4 Equicontinuous additive functionals

In this section we examine the consequences of topological assumptions on f and
X. Specifically we will say that (X, f) is equicontinuous if

(T) (Sn,Bn,µn) are complete separable metric spaces, Bn are the Borel σ -algebras,
and µn are Borel probability measures;

(S) for every ε > 0 there exists δ > 0 such that for all xn ∈ Sn and n ≥ 1,
µn[B(xn,ε)]> δ . Here B(x,r) := {y ∈Sn : dist(x,y)< r}.
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(U) for every ε > 0 there exists δ > 0 such that for all n ≥ 1 and xn,yn ∈ Sn,
dist(xn,yn)< δ ⇒ | fn(xn)− fn(yn)|< ε .

7.4.1 Range.

Theorem 7.6. Suppose (X, f) is equicontinuous and a.s. uniformly bounded. Assume
in addition the following:

(a) One-step ellipticity condition: ∃ε0 s.t. for every n, πn(x,dy)= pn(x,y)µn+1(dy)
where ε0 ≤ pn(x,y)≤ ε

−1
0 .

(b) Sn are all connected.

Then f is either irreducible with algebraic range R, or it is center tight.

Proof. Choose c1 > 0 such that |eiθ − 1|2 = 4sin2
(

θ

2

)
≥ c1θ

2 for all |θ | ≤ 0.1.

We fix ξ 6= 0, and consider the following two cases:

(I) ∃N0 such that |ξΓ (P)|< 0.1 for every position n hexagon P, for each n≥ N0.
(II) ∃nk ↑ ∞ and ∃ position nk hexagons Pnk such that |ξΓ (Pnk)| ≥ 0.1.

In case (I), for all n ≥ N0, d2
n(ξ ) = E(|eiξΓ − 1|2) ≥ c1E(Γ 2) ≡ c1u2

n. So either
∑u2

n = ∞ and then ∑d2
n(ξ ) = ∞ for all ξ 6= 0, and f is irreducible with essential

range R; or ∑u2
n < ∞ and then f is center-tight by Corollary 2.2.

In case (II), for every k there is a position nk hexagon Pnk with |ξΓ (Pnk)| ≥ 0.01.
There is also a position nk hexagon P′nk

with balance zero (such hexagons always
exist). We would like to apply the intermediate value to deduce the existence of a
position nk hexagon Pnk such that 0.05 < ξΓ (Pnk)< 0.1. To do this we note that:

◦ Because of the one-step ellipticity condition, the space of position nk hexagons is
homeomorphic to Snk−2×Snk−1×Snk ×Snk .
◦ The product of connected topological spaces is connected.
◦ Real-valued continuous functions on connected topological spaces satisfy the in-

termediate value theorem.
◦ The balance of hexagon depends continuously on the hexagon.

So Pnk exists. Necessarily, |eiξΓ (Pnk )−1| ≥ c1ξ 2Γ 2(Pnk) =: c2.

Write Pn in coordinates: Pn :=
(

xn−2;
xn−1
yn−1

;
xn
yn

;yn+1

)
. By the equicontinuity of

f, ∃ε > 0 such that |eiξΓ (P)−1|> 1
2 c2 for every hexagon P whose coordinates are in

the ε-neighborhood of the coordinates of Pnk . By the equicontinuity of µn and the
one-step ellipticity condition, this collection of hexagons P have hexagon measure
≥ δ for some δ > 0 independent of k. So d2

nk
(ξ )≥ 1

2 c2δ .

Summing over all k, we find that ∑d2
nk
(ξ ) = ∞. Since ξ 6= 0 was arbitrary, (X, f)

has essential range R. �
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7.4.2 Large deviation treshold.

Lemma 7.1. Suppose that Sn are metric spaces, fn are equicontinuous, and for
each ε > 0 there exists δ > 0 such that if pn(x,y)> 0 then

πn(x,B(y,ε))> δ . (7.4.1)

Suppose that VN > cN and that

limsup
N→∞

inf
x1,...,xN+1

N

∑
j=1

f j(x j,x j+1)

VN
< z < liminf

N→∞

sup
x1,...,xN+1

N

∑
j=1

f j(x j,x j+1)

VN
.

Then z ∈ C .

Note that assumption (7.4.1) is satisfied whenever X satisfies (S) and the one step
ellipticity condition. We also remark that Example 6.5 shows that equicontinuity
assumption on f is essential.

Proof. Fix N. Consider first the case where z≥ E(SN)
VN

. By assumption there is an ε

such that for all sufficiently large n there is a sequence x1, . . . ,xN+1 such that

N

∑
j=1

f j(x j,x j+1)≥ (z+ ε)VN .

By ellipticity for each x ∈S1 there a sequence x̃1, x̃2 . . . x̃N+1 such that x̃1 = x and

N

∑
j=1

f j(x̃ j, x̃ j+1)≥ (z+ ε)VN−4K

(in fact one can take x̃ j = x j for j≥ 3). By uniform continuity of f j and the fact that
VN grows linearly, there is r such that if X j ∈ B(x̃ j,r) for j ≤ N +1 then

N

∑
j=1

f j(X j,X j+1)≥ (z+ ε/2)VN−4K.

By (7.4.1) there is δ > 0 such that Px(X j ∈ B(x̃ j,r))≥ δ N . Hence

P(SN ≥ (z+ ε/2)N)≥ δ
N .

Now Theorem 6.7 shows that z ∈ C .
The case z≤ E(SN)

VN
is analyzed similarly now using the estimate

limsup
N→∞

inf
x1,...,xN+1

N

∑
j=1

f j(x j,x j+1)

Vn
≤ z− ε. �
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Corollary 7.2. Under the assumptions of Lemma 7.1 if

z− = lim
N→∞

inf
x1,...,xN+1

N

∑
j=1

f j(x j,x j+1)

VN
exists then z− = c−,

z+ = lim
N→∞

sup
x1,...,xN+1

N

∑
j=1

f j(x j,x j+1)

VN
exists then z+ = c+.

Proof. We will prove the second statement, the first one is similar. z+ ≤ c+ by
Lemma 7.1. On the other hand if z > z+ then for large N, P(SN >VNz) = 0. Hence
c+ ≤ z+. �

We now restate the result of the last corollary in a slightly different way under an
extra assumption. Namely, we suppose that

Sn are compact & ∀xn,xn+1 : pn(xn,xn+1)> 0 (7.4.2)

Definition 7.1. Let MN denote the space of sequences x ∈∏
n
Sn such that if yn =

xn for n≥ N +1 then

N

∑
n=1

f (yn,yn+1)≥
N

∑
n=1

f (xn,xn+1).

Denote M =
∞⋂

N=1

MN . The elements of M will be called minimizers.

The properties of MN are summarized below.

Lemma 7.2. (a) MN are closed sets.
(b) If N ≥M then MN ⊂MM .
(c) M is non empty.

(d) If
N

∑
n=1

f (xn,xn+1) = inf
y

N

∑
n=1

f (yn,yn+1) then x ∈MN .

(e) If x ∈MN then
N

∑
n=1

f (xn,xn+1)≤ inf
y

N

∑
n=1

f (yn,yn+1)+2K.

Proof. (a) If MN 3 x j −−−→
j→∞

x 6∈MN , then there would exist x such that xn = xn for

n≥ N +1, and
N

∑
n=1

f (xn,xn+1)<
N

∑
n=1

f (xn,xn+1).

Let y j be the sequence such that y j
n = x j

n for n ≥ N + 1, y j
n = xn for n ≤ N. By

continuity of f
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N

∑
n=1

f (y j
n,y

j
n+1)<

N

∑
n=1

f (x j
n,x

j
n+1)

for large j contradicting, x j ∈MN .
Next let x ∈MN and xn = yn for n≥M with N > M. Then

M

∑
n=1

[ fn(yn,yn+1)− fn(xn,xn+1)] =
N

∑
n=1

[ fn(yn,yn+1)− fn(xn,xn+1)]≥ 0.

This proves (b).
Combining (a) and (b) we see that Mn are nested compact sets, hence their inter-

section is non-empty.
(d) is clear.
Next, let x be the argmin of ∑n f (zn,zn+1) and y ∈MN . Let z be such that zn =

xn, for n≤ n≤ N−1 and zn = yn for n≥ N. Then

N

∑
n=1

fn(yn,yn+1 ≤
N

∑
n=1

fn(zn,zn+1 ≤
N

∑
n=1

fn(xn,xn+1)+2K

proving (e). �

Part (e) of the lemma implies that for each x ∈M (which is non-empty by part
(c))

c− = lim
N→∞

1
N

N

∑
n=1

f (xn,xn+1).

7.5 Notes and references

Theorem 7.1 is well-known, see [96, 64, 114, 56, 99]. We note that in homogeneous
setting the assumptions on f can be significantly weakened. In particular, the as-
sumption that f is bounded can be replaced by the assumption that the distribution
of f is in the domain of attraction of the Gaussian distribution [96], one can allow
f to depend on infinitely many Xns assuming that the dependence decays exponen-
tially [56], and the ellipticity assumption can be replaced by the assumption that the
generator has a spectral gap [96, 64]. In particular, the LLT holds under the Doeblin
condition saying that ∃ε0 > 0 and a measure ζ on S such that

π(x,dy) = ε0ζ +(1− ε0)π̃(x,dy)

where π̃ is an arbitrary transition probability (cf. equation (1.2.2) in the proof of
Lemma 1.2). There are also versions of this theorem for f in the domain of attraction
of a stable law, see [4].
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The aforementioned weaker conditions however are not sufficient to get LLT in
the large deviation regime, in fact large deviation probabilities could be polynomi-
ally small for unbounded functions, see [136].

There is a vast literature on the sufficient conditions for the Central Limit Theo-
rem for homogenous chains, see [35, 54, 55, 64, 71, 74, 91] and references wherein,
however, the local limit theorem is much less understood, see notes to Chapter 4.

The characterization of coboundaries in terms of vanishing of the asymptotic
variance σ2 is due to Leonov [83]. A large number of papers discuss discuss the
regularity of the gradients in case an additive functional is a gradient, see [19, 29,
66, 86, 87, 100, 99, 138] and the references wherein. Our approach is closest to
[41, 66, 99]. We note that the condition u = 0 which is sufficient for f being a
coboundary, is simpler than the equivalent condition σ2 = 0. For example for finite
chains, to compute σ2 one needs to compute infinitely many correlations E( f0 fn)
while checking that u = 0 involves checking balance of finitely many hexagons.

The minimizers play important role is statistical mechanics where they are called
ground states. See e.g. [49, 110]. In the case the phase spaces Sn are non-compact
and/or the observable f (x,y) is unbounded, the minimizers have an interesting ge-
ometry, see e.g. [24]. For finite states we have the following remarkable result [18]:
for each d there is a constant p(d) such that for any homogeneous Markov chains
with d states for any additive functional we have

s+ = max
q≤p

1
q

max
x1,...xq

[
f (x1,x2)+ · · ·+ f (xq−1,xq)+ f (xq,x1)

]
.

This result is false for more general homogenous chains, consider for example the
case S= N and f (x,y) = 1 if y = x+1 and f (x,y) = 0 otherwise.

Corollary 7.1 was proven in [42] for inhomogenous sums of independent ran-
dom variables (in the independent case one does not need the assumption that
lim
n→∞
‖gn‖∞ = 0 since the gradient obstruction does not appear in the independent

case).



Chapter 8
LLT for Markov chains in random environment

We prove quenched local limits theorems for Markov chains in random environment
with stationary ergodic noise processes.

8.1 Markov chains in random environment

Informally, Markov chains in random environment (MCRE) are Markov chains
whose transition probabilities depend on a noisy parameter ω which varies in time.1

It is customary to model the time evolution of ω by orbits of a dynamical system
called the “noise process.” Here are the formal definitions:

Noise process: This is an ergodic measure preserving invertible Borel transfor-
mation T on a standard measure space (Ω ,F ,m). “Measure preserving” means
that for every E ∈F , m(T−1E) = m(E). “Ergodic” means that for every E ∈F ,
T−1E = E⇒ m(E) = 0 or m(Ec) = 0.

If m(Ω) < ∞ then we will speak of a finite noise process, and we will always
normalize m so that m(Ω) = 1. If m(Ω) = ∞, then we will speak of an infinite
noise process. The infinite noise processes we consider here will all be defined on
σ -finite non-atomic measure spaces. Such processes arise naturally in the study of
noise driven by a null recurrent Markov chain, see Example 8.5 below.

Markov chains in Random Environment (MCRE): A MCRE with noise process
(Ω ,F ,m,T ) is given by the following data:

◦ State space: A separable complete metric space S, with its Borel σ -algebra B.

◦ Random transition kernel: A measurable family of Borel probability measures
π(ω,x,dy) on (S,B), indexed by (ω,x) ∈ Ω ×S. Measurability means that
(ω,x) 7→

∫
ϕ(y)π(x,ω,dy) is measurable for every bounded Borel ϕ : S→ R.

1 MCRE should not be confused with “random walks in random environment,” see §8.4.

191



192 8 LLT for Markov chains in random environment

◦ Initial probability distribution: A measurable family of Borel probability mea-
sures µω on (S,B) indexed by ω ∈Ω , Measurability means that for all bounded
Borel ϕ : S→ R, ω 7→

∫
ϕ(x)µω(dx) is measurable.

This data gives for each ω an inhomogeneous Markov chain Xω = {Xω
n } with state

space S, initial distribution µω , and transition kernels πω
n (x,dy) = π(T nω,x,dy).

Here a some examples. Suppose (S,B,µ0) is a standard probability space, S is
a finite or countable set, and {πi(x,dy)}i∈S are transition probabilities on S.

Example 8.1 (Bernoulli noise). Consider the noise process (Ω ,F ,m,T ) where

◦ Ω = SZ = {(· · · ,ω−1,ω0,ω1, · · ·) : ωi ∈ S};
◦ F is generated by the cylinders k[ak, . . . ,an] := {ω ∈Ω : ωi = ai,k ≤ i≤ n}
◦ {pi}i∈S are non-negative numbers s.t. ∑ pi = 1, and m is the unique measure s.t.

m(k[ak, . . . ,an]) = pak · · · pan for all cylinders.
◦ T : Ω →Ω is the left shift map, T [(ωi)i∈Z] = (ωi+1)i∈Z

It’s well-known that (Ω ,F ,µ,T ) is an ergodic probability preserving map.
Define π(ω,x,dy) := πω0(x,dy). Notice that π(T nω,x,dy) = πωn(x,dy), and ωn

are iid’s taking the values i∈ S with probabilities pi. Since ωn are iid, {Xω : ω ∈Ω}
represent a random Markov chain whose transition probabilities vary randomly and
independently in time.

Example 8.2 (Positive recurrent Markov noise). Suppose (Yn)n∈Z is a stationary
ergodic Markov chain with state space S and a stationary probability vector (ps)s∈S.
In particular, (Yn)n∈Z is positive recurrent. Let:

◦ Ω := {(ωi) ∈ SZ : P[Y1 = ωi,Y2 = ωi+1] 6= 0 for all i ∈ Z};
◦ F is the σ -algebra generated by the cylinders (see above);
◦ m is the unique (probability) measure such that m(k[ak, . . . ,an])=P[Yk = ak, . . . ,Yn =

an] for all cylinders;
◦ T is the left shift map (see above).

Define as before, π(ω,x,dy) := πω0(x,dy). The resulting MCRE represents a Markov
chain whose transition probabilities at time n = 1,2,3, . . . are πYn−1(x,dy).

Example 8.3 (General stationary ergodic noise processes). The previous con-
struction works verbatim with any stationary ergodic stochastic process {Yn} taking
values in S. The assumption that S is countable can be replaced by requiring only
that S be complete, separable, metric space, see e.g. [44].

Example 8.4 (Quasi-periodic noise). Let (Ω ,F ,m,T ) be the circle rotation:
Ω = {ω ∈ C : |ω| = 1}; F is the Borel σ -algebra; m is the normalized Lebesgue
measure; and T : Ω → Ω is the rotation by an angle α: T (ω) = eiα ω . T is proba-
bility preserving, and it is well-known that T is ergodic iff α/2π is irrational.

Choose a partition of the unit circle Ω into disjoint arcs {Ii}i∈S and define ϕ :
Ω → S by ϕ(ω) = i for ω ∈ Ii. For example, if S = {1,2} we can take I1, I2 to be
two equal halves of the circle. Next define
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π(ω,x,dy) = πϕ(ω)(x,dy)

Now Xω are inhomogeneous Markov chains whose transition probabilities vary
quasi-periodically: They are given by πϕ(einα ω)(x,dy).

Example 8.5 (Null recurrent Markov noise). This is an example with infinite
noise process.

Suppose (Yn)n∈Z is an ergodic null recurrent Markov chain with countable state
space S, and stationary positive vector (pi)i∈S. Here pi > 0 and (by null recurrence)
∑ pi = ∞. For example, (Yn)n∈Z could be the simple random walk on Zd for d = 1,2,
with the stationary measure which assigns the same mass to each site of Zd . Let

◦ Ω = {(ωi)i∈Z ∈ SZ : P[Y1 = ωi,Y2 = ωi+1] 6= 0 for all i ∈ Z};
◦ F is the σ -algebra generated by the cyliders;
◦ m is the unique (infinite) Borel measure which satisfies for each cylinder

m(k[ak, . . . ,an]) = pakP[Yi = ai (k ≤ i≤ n)|Yk = ak]

◦ T : Ω →Ω is the left shift map T [(ωi)i∈Z] = ωi+1.

Then it is well-known that (Ω ,F ,m,T ) is an infinite ergodic measure preserving
invertible map, see [2].

Just as in Example 8.2, one can easily construct many MCRE with transition
probabilities πYn(x,dy) which vary randomly in time according to (Yn)n∈Z. For each
particular realization of ω = (Yi)i∈Z, Xω is an ordinary inhomogeneous Markov
chain (on a probability space). But as we shall see below, some features of Xω such
as the growth of variance, are different than in the finite noise process case.

Example 8.6 (Transient Markov noise: a non-example). The previous construc-
tion fails for transient Markov chains such as the random walk on Zd for d ≥ 3,
because in the transient case, (Ω ,F ,m,T ) is not ergodic, [2].

We could try to work with the ergodic components of m, but this does not yield
a new mathematical object, because of the following general fact [2]: Every ergodic
component of an invertible totally dissipative infinite measure preserving map is
concentrated on a single orbit {T n(ω)}n∈Z. MCRE with such noise processes have
just one possible realization of noise up to time shift. Their theory is the same as
the theory of general inhomogeneous Markov chains, and does not merit separate
treatment.

Suppose XΩ is a MCRE with noise space (Ω ,F ,m,T ). A Random additive
functional is a measurable function f : Ω ×S×S→ R. This induces the additive
functional fω on Xω

f ω
n (x,y) = f (T n

ω,x,y).

For each ω ∈Ω we define

Sω
N :=

N

∑
n=1

f ω
n (Xω

n ,Xω
n+1)≡

N

∑
n=1

f (T n
ω,Xω

n ,Xω
n+1),

V ω
N := Var(Sω

N ) w.r.t. the distribution of Xω .
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Throughout this chapter, we make the following standing assumptions:

(B) Uniform boundedness: | f | ≤ K where K < ∞ is a constant;
(E) Uniform ellipticity: There is a constant 0 < ε0 < 1 and a Borel function p :

Ω ×S×S→ [0,∞) such that

(a) π(ω,x,dy) = p(ω,x,y)µω(dy);
(b) 0≤ p≤ 1/ε0;
(c)

∫
S p(ω,x,y)p(T ω,y,z)µT ω(dy)> ε0 for all ω,x,z.

(S) Stationarity: For every ϕ : S→ R bounded and Borel, for every ω ∈Ω ,∫
ϕ(y)µT ω(dy) =

∫
S

(∫
S

ϕ(y)π(ω,x,dy)
)

µω(dx).

(B) and (E) imply that fω is a uniformly bounded additive functional and that Xω

is uniformly elliptic for every ω . (S) is equivalent to saying that if X0 is distributed
according to µω then Xn is distributed according to µT nω . for all n > 0. If (B) and
(E) are true, then (S) can always be assumed without loss of generality, because of
Proposition 1.2 and the discussion which follows it.

Some of our results will require the following continuity hypothesis:

(C) The Borel structure of Ω and S is generated by a topologies so that Ω and S
are complete and separable metric spaces, and

(C1) T : Ω →Ω is a homeomorphism and supp(m) = Ω .
(C2) (ω,x,y) 7→ p(ω,x,y) is continuous, and ω 7→

∫
S ϕdµω is continuous for

every bounded continuous ϕ : S→ R.
(C3) (ω,x,y) 7→ f (ω,x,y) are continuous.

We do not include (C) in our standing assumptions, and will state it explicitly when-
ever it is used.

8.2 Main results

Let P denote the measure on Ω ×S×S which represents the joint distribution of
(ω,Xω

1 ,Xω
2 ), namely

P(dω,dx,dy) :=
∫
S

∫
S

∫
Ω

m(dω)µω(dx)π(ω,x,dy). (8.2.1)

(1) f (ω,x,y) is called relatively cohomologous to a constant if there are bounded
measurable functions a : Ω ×S→ R and c : Ω → R such that

f (ω,x,y) = a(ω,x)−a(T ω,y)+ c(ω) P-a.e.
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(2) Fix t 6= 0, then f (ω,x,y) is relatively cohomologous to a coset of tZ if there
are measurable functions a : Ω ×S→ S1 and λ : Ω → S1 s.t.

e(2πi/t) f (ω,x,y) = λ (ω)
a(ω,x)

a(T ω,y)
P-a.e.

Theorem 8.1. Assume f is an additive functional on a MCRE with finite noise pro-
cess. Under the standing assumptions (B), (E), (S):

(1) If f is relatively cohomologous to a constant, then |V ω
N | ≤C for all N, for a.e.

ω , where C =C(ε0,K) is a constant.
(2) If f is not relatively cohomologous to a constant, then there is a constant σ2 > 0

such that for a.e. ω , V ω
N ∼ Nσ2 as N→ ∞.

Theorem 8.2. Let f be an additive functional on a MCRE with finite noise process.
Assume the standing assumptions (B), (E),(S) and that

(a) Either |S| ≤ℵ0, or |S|> ℵ0 and the continuity hypothesis (C) holds.
(b) f is not relatively cohomologous to a coset of tZ for any t 6= 0.

Then there exists σ2 > 0 such that for a.e. ω , for every open interval (a,b), and for
every zN ,z ∈ R such that zN−Eω (Sω

N )√
N

→ z

P
[
Sω

N − zN ∈ (a,b)
]
∼ 1√

N

(
e−z2/2σ2

√
2πσ2

)
|a−b| as N→ ∞.

Theorem 8.3. Let f be an additive functional on a MCRE with finite noise process.
Assume the standing assumptions (B),(E),(S), and that all the values of f are inte-
gers. If f is not relatively cohomologous to a coset of tZ with t 6= 1, then there exists
σ2 > 0 such that for a.e. ω , and for every zN ,z ∈ R such that zN−Eω (Sω

N )√
N

→ z

P
[
Sω

N = zN
]
∼ 1√

N

(
e−z2/2σ2

√
2πσ2

)
as N→ ∞.

Theorem 8.4. Let f be an additive functional on a MCRE with finite noise process
(Ω ,F ,m,T ). Assume the standing assumptions (B),(E),(S). If f is not relatively
cohomologous to a constant, then

(1) There exists a continuously differentiable and strictly convex function F : R→
R such that for a.e. ω ∈Ω , F (ξ ) = lim

N→∞

1
N logE(eξ Sω

N ) for all ξ ∈ R.

(2) 1
NE(S

ω
N )−−−→N→∞

F ′(0) for a.e. ω .

(3) Let F ′(±∞) := lim
ξ→±∞

F ′(ξ ), and let IN(η ,ω), I (η) denote the Legendre

transforms of FN(ξ ) := 1
N logE(eξ Sω

N ), F (ξ ). Then for a.e. ω , for every η ∈
(F ′(−∞),F ′(∞)), IN(η ,ω)−−−→

N→∞
I (η).
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(4) I (η) is strictly convex, has compact level sets, is equal to zero at η = F ′(0),
and is strictly positive elsewhere.

(5) With probability one

c− = F (−∞) = lim
N→∞

ess infSω
N

N
, c+ = F (+∞) = lim

N→∞

ess supSω
N

N
.

Corollary 8.1. Under the conditions of the previous theorem, for a.e. ω , Sω
N/N sat-

isfies the large deviations principle with the rate function I (η):

(1) limsup
N→∞

1
N logP[Sω

N/N ∈ K]≤− infz∈K I (z) for all closed sets K ⊂ R.

(2) limsup
N→∞

1
N logP[Sω

N/N ∈ G]≥− infz∈K I (z) for all open sets G⊂ R.

Proof. This is a consequence of the Gärtner-Ellis Theorem. �

So far we have only considered MCRE with finite noise spaces. We will now
discuss the case of infinite noise spaces (Ω ,F ,m,T ). The main new phenomena in
this case are:

(a) It is possible that V ω
N → ∞ m-a.e., but that V ω

N = o(N) a.e.
(b) It is possible that 6 ∃aN s.t. V ω

N ∼ aN for m-a.e. ω .

Example 8.7. Let Xn be iid bounded real random variables with variance one and
distribution µ(E) = P[Xn ∈ E]. Let fn(x) = x. Let (Ω ,F ,m,T ) be an infinite noise
process, and fix E ∈F of finite positive measure. Let

π(ω,x,dy) := µ(dy) , f (ω,x,y) := 1E(ω)x

Then Sω
N =

N

∑
n=1

1E(T n
ω)Xn, and V ω

N = ∑
N
n=1 1E(T nω).

We now appeal to the following general results from infinite ergodic theory. Let
(Ω ,F ,m,T ) be an ergodic, invertible, measure preserving map on a non-atomic
σ -finite measure space, and let L1

+ := {A ∈ L1(Ω ,F ,m) : A ≥ 0,
∫

Adm > 0}. If
m(Ω) = ∞, then

(1) ∑
N
n=1 A◦T n = ∞ a.e.

(2) 1
N ∑

N
n=1 A◦T n −−−→

N→∞
0 almost everywhere for all A ∈ L1.

(3) Let aN be a sequence of positive real numbers, then one of the following hap-
pens:

(a) liminfN→∞
1

aN
∑

N
n=1 A◦T n = 0 a.e. for all A ∈ L1

+;

(b) ∃Nk ↑ ∞ s.t. 1
aNk

∑
Nk
n=1 A◦T n = 0 a.e. for all A ∈ L1

+;

So 6 ∃aN s.t. ∑
N
n=1 A(T nω)∼ aN for a.e. ω , even for a single A ∈ L1

+.

These results can all be found in [2]: (1) is a consequence of the Halmos Recurrence
Theorem; (2) follows from the Ratio Ergodic Theorem; and (3) is a theorem of J.
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Aaronson. Specializing to the case A = 1E we find that V ω
N → ∞ a.e.; V ω

N = o(N)
a.e. as N→ ∞; and 6 ∃aN so that V ω

N ∼ aN for a.e. ω ∈Ω . �

Here are our general results on MCRE with infinite noise spaces.

Theorem 8.5. Suppose fω is a random additive functional on a MCRE with infinite
noise space on a non-atomic σ -finite measure space. Under the standing assump-
tions (B), (E), (S):

(1) If f is relatively cohomologous to a constant, then |V ω
N | ≤C for all N, for a.e.

ω , where C =C(ε0,K) is a constant.
(2) If f is not relatively cohomologous to a constant then V ω

N → ∞ a.s.

Theorem 8.6. Suppose fω is a random additive functional on a MCRE with infinite
noise space on a non-atomic σ -finite measure space. Assume the standing assump-
tions (B), (E),(S) and that

(a) Either |S| ≤ℵ0, or |S|> ℵ0 and the continuity hypothesis (C) holds.
(b) f is not relatively cohomologous to a coset of tZ for any t 6= 0.

Then for a.e. ω , for every open interval (a,b), and for every zN ,z ∈ R such that
zN−Eω (Sω

N )

V ω
N

→ z, P
[
Sω

N − zN ∈ (a,b)
]
∼ e−z2/2√

2πV ω
N
|a−b| as N→ ∞.

Theorem 8.7. Suppose fω is a random additive functional on a MCRE with in-
finite noise space on a non-atomic σ -finite measure space. Assume the standing
assumptions (B),(E),(S), and that all the values of f are integers. If f is not rela-
tively cohomologous to a coset of tZ with t 6= 1, then for every zN ,z ∈ R such that
zN−Eω (Sω

N )√
V ω

N
→ z, for a.e. ω , P

[
Sω

N = zN
]
∼ e−z2/2√

2πV ω
N

as N→ ∞.

8.3 Proofs

Throughout this section Xω is a Markov chain in random environment with sta-
tionary ergodic, possibly infinite, noise process (Ω ,F ,m,T ), and fω is a random
additive functional on Xω . We assume throughout (B),(E),(S).

8.3.1 The essential range is a.s. constant

The purpose of this section is to prove the following result:

Proposition 8.1. There exist closed subgroups H,Gess ≤ R s.t. for m–a.e. ω , the
co-range of (Xω , fω) equals H , the essential range of (Xω , fω) equals Gess, and
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Gess =


R H = {0},
2π

t Z H = tZ, t 6= 0,
{0} H = R.

We call H and Gess the a.s. co-range and a.s. essential range.
We begin with a calculation of the structure constants of (Xω , fω). Fix an element

ω in the noise space, and let Hex(ω) denote the probability space of position 3
hexagons for Xω . Let mω denote the hexagon measure, as defined in section 1.3.1.
Recall the definition of the balance Γ (P) of a hexagon P, and define

u(ω) := E(|Γ (P)|2)1/2

d(ξ ,ω) := E(|eiξΓ (P)−1|2)1/2 (expectation on P ∈ Hex(ω) w.r.t. mω ).

Since the space of position n+ 3 hexagons for Xω is Hex(T nω), together with the
hexagon measure mT nω , it follows that the structure constants of (Xω , fω) are

dn+3(ξ , f ω) = d(T n
ω,ξ ) and un+3( f ω) = u(T n

ω) (n≥ 0), (8.3.1)

Lemma 8.1. u(·),d(·, ·) are Borel measurable, and for every ω , d(·,ω) is continu-
ous. Under the continuity hypothesis (C), u(·),d(·, ·) are continuous.

Proof. To check this, express the hexagon measure explicitly as a measure on S6

in terms of the transition kernel π(ω,x,y), using the formulas for the bridge distri-
butions of §1.2.3, and write Γ (P) explicitly a function on S6 in terms of f (ω,x,y).
We omit the details, which are routine. �

Proof of Proposition 8.1. By the definition of essential range and (8.3.1)

Hω := H(Xω , fω) = {ξ ∈ R :
∞

∑
n=0

d(ξ ,T n
ω)2 < ∞}.

Clearly HT ω =Hω . Our plan is to show that ω 7→Hω is measurable, and then invoke
the ergodicity of T to see that Hω is constant almost surely. The proposition then
follows from Theorems 3.1 and 3.2.

Let DN(ξ ,ω) :=
N
∑

n=3
dn(ξ , f

ω)2 ≡
N−3
∑

n=0
d(T nω,ξ )2.

STEP 1: U(a,b) := {ω ∈ Ω : DN(·,ω)−−−→
N→∞

∞ uniformly on (a,b)} is measurable

and T -invariant for all a < b.

Proof. T -invariance is because d2 ≤ 4 whence |DN(ξ ,T ω)−DN(ξ ,ω)| ≤ 8. Mea-
surability is because of the identity

U(a,b) =
{

ω ∈Ω :
∀M ∈Q ∃N ∈ N s.t.
for all ξ ∈ (a,b)∩Q, DN(ω,ξ )> M

}
.

The inclusion⊆ is obvious. The inclusion⊇ is because if ω 6∈U(a,b) then for some
M ∈Q, for all N ∈N there exists some η ∈ (a,b) s.t. DN(ω,η)< M, whence by the
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continuity of η 7→ DN(ω,η) there is some ξ ∈ (a,b)∩Q such that DN(ω,ξ )< M.
So ω 6∈U(a,b)⇒ ω 6∈ RHS.

STEP 2: The sets Ω1 := {ω ∈Ω : Hω = {0}}, Ω2 := {ω ∈Ω : Hω =R}, and Ω3 :=
{ω ∈ Ω : Hω = tZ for some t 6= 0} are measurable and T -invariant. Therefore by
ergodicity, for each i, either m(Ωi) = 0 or m(Ω c

i ) = 0.

Proof. Recall that for Markov chains, DN →∞ uniformly on compact subsets of the
complement of the co-range (Theorem 3.5). So

Ω1 =
∞⋂

n=1

U( 1
n ,n) , Ω2 =

⋂
0<a<b rational

U(a,b)c , Ω3 = Ω
c
1 ∩Ω

c
2 .

By step 1, Ωi are T -invariant and measurable. Since T is ergodic, these sets are
either of measure zero or of full measure.

STEP 3: If Ω3 has full measure, then there exist t 6= 0 such that Ω3(t) := {ω ∈ Ω :
Hω = tZ} has full measure.

Proof. For every ω ∈Ω3 there exists t(ω)> 0 such that Hω = t(ω)Z. We can char-
acterize t(ω) as follows:

t(ω) = sup
{

t ∈Q∩ (0,∞) :
DN(ω, ·)→ ∞ uniformly
on compact subsets of (0, t)

}
.

It is clear from this expression that t(T ω) = t(ω), and that for every A > 0,

[t(ω)≥ A] =
⋂

0<a<b<A rational

U(a,b).

So t(·) is a measurable T -invariant function, whence by ergodicity constant. Let t
denote this constant, then Hω = tZ for a.e. ω . �

8.3.2 Variance growth

In this section we prove Theorems 8.1 and 8.5 on the behavior of V ω
N as N→ ∞.

Lemma 8.2. Suppose (Ω ,F ,m,T ) is an invertible, ergodic, measure preserving
map of a probability space or of a non-atomic infinite measure space. Let A : Ω→R
be a non-negative measurable function. Either A = 0 a.e., or ∑

n≥0
A◦T n = ∞ a.e.

Proof. The lemma follows from the well-known fact that invertible ergodic measure
preserving maps on non-atomic measure spaces are conservative. We supply the
details, for completeness.

If A is not equal to 0 a.e., then there is ε > 0 s.t. E := {ω ∈ Ω : A(ω) ≥ ε} has
positive measure. We claim that
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∑
n≥0

1E(T n
ω) = ∞ (8.3.2)

almost everywhere on E. Since A≥ ε1E (8.3.2) implies that ∑
n≥0

A(T n
ω) = ∞ almost

everywhere on E, and, by ergodicity, almost everywhere on Ω , proving the lemma.
It remains to prove (8.3.2). Suppose by way of contradiction that it is not true

that ∑
n≥0

1E(T n
ω) = ∞ almost everywhere on E. Then there exists N s.t.

W := {ω ∈ E :
∞

∑
n=0

1E(T n
ω) = N}

has positive measure. The invertibility and measurability of T implies that T n(W ) is
measurable for all n ∈ Z, and that {T n(W )}n∈Z are pairwise disjoint.

Since (Ω ,F ,m) is non-atomic, we can break W = W1 ∪W2 where Wi are mea-
surable, disjoint, and with positive measure. By invertibility, Ŵi :=

⋃
n∈ZT nWi are

disjoint T -invariant sets with positive measure. But this contradicts ergodicity. �

Part 1: V ω
N is bounded, or tends to infinite almost surely. Recall that K is a bound

for ess sup | f |, and ε0 is a uniform ellipticity constant for Xω . By Theorem 2.1 and
(8.3.1) there are positive constants Ci =Ci(ε0,K) (i = 1,2) such that for all N,

C−1
1

N

∑
n=3

u(T n
ω)2−C2 ≤V ω

N ≤C1

N

∑
n=3

u(T n
ω)2 +C2.

If u(ω) = 0 m-a.e., then for a.e. ω , V ω
N ≤C2 for all N. Otherwise, by Lemma 8.2,

∑
N
n=3 u(T nω)2 −−−→

N→∞
∞, whence V ω

N → ∞ almost everywhere.

Part 2: Linear growth of variance when V ω
N → ∞ a.e. and m(Ω) = 1. Suppose

m(Ω) = 1 and V ω
N → ∞ almost surely. We claim that

∃σ2 > 0 s.t. V ω
N ∼ Nσ

2 a.s. (8.3.3)

Let σ2
0 :=

∫
Ω

u2dm. This is a finite number, because ‖u‖∞ ≤ 6K and m(Ω) = 1.
This is a positive number, because as we saw in part 1, if u = 0 a.e., then V ω

N = O(1)

a.e. contrary to our assumptions. By the pointwise ergodic theorem,
N

∑
n=3

u(T n
ω)2 =

[1+o(1)]σ2
0 N. Hence V ω

N ≥ [1+o(1)]C1(ε0,K)−1Nσ2
0 → ∞.

Let Fn := f (T n−1ω,Xω
n ,Xω

n+1) and let Eω , Varω , Covω denote the expectation,
variance and covariance with respect to Xω , then
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V ω
N =

N

∑
n=1

Varω(Fn)+2
N

∑
n=1

N

∑
m=n+1

Covω(Fn,Fm)

=
N

∑
n=1

Varω(Fn)+2
N

∑
n=1

N−n

∑
k=1

Covω(Fn,Fn+k).

By assumption (S) {µω} are stationary, so {XT nω
i }i≥1 has the same distri-

bution as {Xω
1 }i≥n. Therefore Varω(Fn) = VarT n−1ω(F1) and Covω(Fn,Fn+k) =

CovT n−1ω(F1,F1+k). Thus

V ω
N =

N−1

∑
n=0

ψ0(T n
ω)+2

N

∑
n=1

N−n−1

∑
k=0

ψk(T n
ω),

where ψ0(ω) := Varω [ f (ω,Xω
1 ,Xω

2 )] and

ψk(ω) = Covω [ f (ω,Xω
1 ,Xω

2 ), f (T k
ω,Xω

k+1,X
ω
k+2)].

By the ergodic theorem lim
N→∞

1
N

N
∑

n=1
ψ0(T nω) =

∫
ψ0dm. To find the limit of the

normalized double sum we first recall that by the uniform mixing of {Xω
n } (a con-

sequence of the ellipticity assumption), ‖ψk‖∞ ≤Cmix‖ f‖2
∞θ k with Cmix,0 < θ < 1

which only depend on ε0 (Proposition 1.1). Therefore for every M

lim
N→∞

1
N

N

∑
n=1

N−n−1

∑
k=0

ψk(T n
ω) = lim

N→∞

1
N

N

∑
n=1

M−1

∑
k=0

ψk(T n
ω)+O(θ M),

whence by the ergodic theorem lim
N→∞

1
N

N
∑

n=1

N−n−1
∑

k=0
ψk(T nω) =

∞

∑
k=1

∫
ψkdm, with the

last sum converging exponentially fast. In summary,

1
N

V ω
N −−−→N→∞

σ
2 :=

∫ [
ψ0 +2

∞

∑
k=1

ψk

]
dm.

Since as we saw above liminf 1
N V ω

N ≥ C1σ2
0 and σ2

0 > 0, it must be the case that
σ2 > 0, and (8.3.3) is proved.

We now relate the following two properties:

(a) f is relatively cohomologous to a constant;
(b) V ω

N is bounded m-a.e.

Part 3: (a)⇒(b): Suppose f is relatively cohomologous to a constant. By Fubini’s
theorem, for m-a.e. ω , for every n,

f ω
n (Xω

n ,Xω
n+1) = a(T n

ω,Xω
n )−a(T n+1

ω,Xω
n+1)+ c(T n

ω) a.s.
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with respect to the distribution of {Xω
n }.2

Summing over n, we obtain that for a.e. ω , for every N

|Sω
N −

N

∑
n=1

c(T n
ω)|= |a(ω,Xω

1 )−a(T N
ω,Xω

N+1)| ≤ 2esssupa(·, ·).

In particular, for every ω , V N
ω is bounded. By the first part of the proof, for a.e. ω ,

for all N |V ω
N | ≤C2(ε0,K).

Part 4: (b)⇒(a): Next suppose that f is not relatively cohomologous to a constant.
Recall that σ2

0 =
∫

u2dm. We claim that σ2
0 > 0, and deduce from the first part of

the proof that V ω
N →+∞ a.e.

Assume by way of contradiction that σ2
0 = 0, then u(ω) = 0 a.e., whence for a.e.

ω , for every n, almost every position n hexagon of Xω has balance zero. Applying
the gradient lemma to Xω , we find bounded functions gω

n and constants cω
n such that

f ω
n (Xω

n ,Xω
n+1) = gω

n (X
ω
n )−gω

n+1(X
ω
n+1)+ cω

n a.s.

The issue is to show that gω
n ,c

ω
n can be given the form gω

n (x) = a(T nω,x) and
cω

n = c(T nω) where a(·, ·),c(·) are measurable.
This is indeed the case, because the proof of the gradient lemma shows that we

can take

cω
n = Eω [ f ω

n−2(X
ω
n−2,X

ω
n−1)]

gω
n (z) = E

(
f ω
n−2(X

ω
n−2,X

ω
n−1)+ f ω

n−1(X
ω
n−1,X

ω
n )

∣∣∣∣Xω
n = z

)
.

So cω
n = c(T nω) and gω

n (z) = a(T nω,z) for

c(ω) :=
∫
S2

µT−2ω(x)µT−1ω(dy)p(T n−2
ω,x,y) f (T−2

ω,x,y).

a(ω,z) :=
∫
S3

µT−2ω(dx)µT−1ω(dy)p(T n−2
ω,x,y)p(T−1

ω,y,z)×

f (T−2ω,x,y)+ f (T−1ω,y,z)∫
S2 µT−2ω(dx)µT−1ω(dy)[p(T n−2ω,x,y)p(T−1ω,y,z)]

.

These are measurable functions, and our standing assumptions imply that they are
bounded.

We see that f is relatively cohomologous to a constant in contradiction to our
assumption. So σ2

0 > 0, whence by the first part of the proof V ω
N tends to infinity.�

2 Here we use the assumption that (Ω ,F ,m) is σ -finite. Fubini’s theorem may be false otherwise.
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8.3.3 The local limit theorem

In this section, we prove Theorems 8.2, 8.3, 8.6 and 8.7 on the local limit theorem
for Markov chains in random environment. We need the following lemmas:

Lemma 8.3. Suppose Ω is a Borel space, S is a separable metric space, and ψ :
Ω ×S→R is a Borel function such that for every ω ∈Ω , ψ(ω, ·) is continuous on
S and positive somewhere. Then there exists a Borel measurable x : Ω → S such
that ψ(ω,x(ω))> 0.

Proof. Fix a countable dense set {xi} ⊂ S. Our assumptions on ψ imply that for
every ω there exists an i such that ψ(ω,xi)> 0. So

i(ω) := min{i ∈ N : ψ(ω,xi)> 0}

is well-defined and Borel measurable. Take x(ω) := xi(ω). �

Lemma 8.4. If W1,W2 are two independent random variables such that for some
a, t ∈R, W1+W2 ∈ a+tZ with full probability, then a= a1+a2 where W1 ∈ a1+tZ,
W2 ∈ a2 + tZ with full probability.

Proof. Without loss of generality a = 0, t = 2π . Then

|E(eiW1)| · |E(eiW2)|= |E(ei(W1+W2))|= 1,

whence |E(eiWk)| = 1 (k = 1,2). Choose ak such that E(ei(Wk−ak)) = 1, then
E(cos(Wk− ak)) = 1, whence Wk− ak ∈ 2πZ almost surely. Necessarily a1 + a2 ∈
2πZ, and there is no problem in adjusting a1 to get that the sum zero. �

Proof of Theorems 8.2 and 8.6 on the non-lattice case. Theorems 8.2 and 8.6
provide the LLT for Markov chains in random environment with finite and infinite
noise process, under the assumption that f is not relatively cohomologous to a coset
of tZ with t 6= 0.

In this case, f is also not relatively cohomologous to a constant, and by Theorems
8.1 and 8.5, V ω

N →∞ as N→∞. Moreover, if the noise process (Ω ,F ,m,T ) satisfies
m(Ω) = 1, then ∃σ2 > 0 s.t. V ω

N ∼ Nσ2.
To prove the theorems it is sufficient to show that for a.e. ω , Gess(X

ω , fω) = R,
as this will imply the LLT by the general results of Chapter 4.

Assume by way of contradiction that Gess(X
ω , fω) 6=R on a set of ωs of positive

measure. By Proposition 8.1, Gess(X
ω , fω) =Gess a.e. where Gess = {0} or 2π

t Zwith
t 6= 0. The first possibility cannot happen, because it implies that fω is center-tight,
whence V ω

N =O(1), whereas V ω
N →∞. So there exists t 6= 0 such that Gess(X

ω , fω)=
(2π/t)Z a.s., and Hω := H(Xω , fω) = tZ a.e.

By the reduction lemma, for every ω s.t. Hω = tZ there are measurable functions
gω

n (x), hω
n (x,y) with ∑Var[hω

n ]< ∞, and constants cω
n such that

exp
[
it( f ω

n (x,y)−gω
n (x)+gω

n+1(y)+hω
n (x,y)− cω

n )
]
= 1
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a.s. with respect to the distribition of (Xω
n ,Xω

n+1). So eit( f (ω,x,y)+hω
n (x,y)) = λ ω

n
aω

n (x)
aω

n+1(y)
,

where λ ω
n = eitcω

n , aω
n (x) = eitgω

n (x).

But now we run into a problem: Our proof of the reduction lemma does not
provide gω

n and cω
n of the form cω

n = c(T nω) , aω
n = a(T nω,x) with c(·),a(·, ·)

measurable, and we need to show that hω
n = 0.

To this end we use the following additional structure: For a.e. ω , Hω = tZ so
∑d(T nω, t)2 < ∞ µ-almost everywhere. By the ergodic theorem, this can only hap-
pen if d(ω, t) = 0 almost everywhere. Hence

Γ

(
Zω

1 ,
Zω

2
Y ω

2
,
Y ω

3
Xω

3
,Xω

4

)
∈ 2π

t
Z a.e. in Hex(ω) for m-a.e. ω . (8.3.4)

Recall the ladder process Lω
n = (Zω

n−2,Y
ω
n−2,X

ω
n ) associated with {Xω

n }. Let Pω

denote its distribution, and define as in the proof of the reduction lemma,

Hω(Lω
n ,L

ω
n+1) := Γ

(
Zω

n−2,
Zω

n−1
Y ω

n−1
,
Y ω

n
Xω

n
,Xω

n+1

)
Γ

(
Zω

1 ,
Zω

2
Y ω

2
,

Zω
3

Xω
3
,
Y ω

4
Xω

4
,Xω

5

)
!

:= Hω(Lω
3 ,L

ω
4 )+Hω(Lω

4 ,L
ω
5 )

The last definition requires justification because the RHS seems at first sight to
depend on Y ω

3 . In fact it does not. To see this observe that the last expression is

the balance of the octagon obtained by stacking
(

Zω
2 ,

Zω
3

Y ω
3
,
Y ω

4
Xω

4
,Xω

5

)
on top of(

Zω
1 ,

Zω
2

Y ω
2
,
Y ω

3
Xω

3
,Xω

4

)
and removing the common edge (Zω

2 ,Y
ω
3 ,Xω

4 ) which “cancels

out.”

CLAIM 1. Let Pω denote the distribution of {Lω
n }, then there exists measurable

functions ζ1(ω),ζ2(ω) ∈S such that for a.e. ω

Γ

(
ζ1(ω),

ζ2(ω)
Y ω

2
,

ζ1(ω)
Xω

3
,

Y ω
4

Xω
4
,Xω

5

)
∈ 2π

t
Z Pω

 ·∣∣∣∣ Zω
3 = ζ1(ω)

Zω
2 = ζ2(ω)

Zω
1 = ζ1(ω)

–a.e.

Proof. By (8.3.4), Γ ∈ 2π

t Zwith full Pω –probability, for a.e. ω . The point it to obtain
this a.s. with respect to the conditional measures.

Suppose first that S is countable, then for fixed ω , the Pω -distribution of
(Lω

3 ,L
ω
2 ,L

ω
3 ) is purely atomic, and Γ ∈ 2π

t Z for every octagon with positive Pω –
probability. So the claim holds for any pair (ζ1(ω),ζ2(ω)) ∈S such that

Pω
[
(Zω

1 ,Z
ω
2 ,Z

ω
3 ) = (ζ1(ω),ζ2(ω),ζ1(ω))

]
> 0.

Such pairs exist by the ellipticity assumption. Since S is countable there is no prob-
lem to choose such (ζ1,ζ2) measurably.
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Now suppose S is uncountable but with the continuity property (C). By Fubini’s
theorem and (8.3.4), for a.e. ω ∈Ω , for a.e. (ζ1,ζ2,ζ3) with respect to the distribu-
tion (ζ1,ζ2,ζ3)∼ (Zω

1 ,Z
ω
2 ,Z

ω
3 ),

EPω

(∣∣e(2πi/t)Γ
(

Zω
1 ,

Zω
2

Y ω
2
,

Zω
3

Xω
3
,

Y ω
4

Xω
4
,Xω

5

)
−1
∣∣2∣∣∣∣ Zω

1 = ζ1
Zω

2 = ζ2
Zω

3 = ζ3

)
= 0. (8.3.5)

By the Markov property, this conditional expectation has canonical interpretation
for every (ω,ζ1,ζ2,ζ3) in the set

A = {(ω,a,b,c) : p(ω,a,b)p(T ω,b,c)> 0}.

By assumption (C2), A is open. By assumption (C1), every open subset of A has
positive measure with respect to the measure

∫
Pω µ(dω). By assumption (C2), the

left-hand-side of (8.3.5) depends continuously on (ω,ζ1,ζ2,ζ3). Therefore (8.3.5)
is true for all (ζ1,ζ2,ζ3) ∈ A.

Thus to prove the claim it remains to construct measurable functions ζ1(ω),ζ2(ω)
such that (ω,ζ1(ω),ζ2(ω),ζ1(ω)) ∈ A for all ω .

By the ellipticity condition
∫
S p(ω,a,ζ )p(T ω,ζ ,a)µT ω(dζ )> ε0, so for every

ω there are (ζ1,ζ2) s.t.

ψ(ω,(ζ1,ζ2)) := p(ω,ζ1,ζ2)p(T ω,ζ2,ζ1)> 0.

By Lemma 8.3 it is possible to choose measurable ζ1(ω),ζ2(ω) like this. Claim 1
is proved.

Given ω ∈Ω and a,b ∈S, construct the bridge distribution Pω
ab(E) = P

ω(Y ω
2 ∈

E|Zω
1 = a,Xω

3 = b) as in §1.2.3.

CLAIM 2. For a.e. ω , for a.e. (ξ3,ξ4,ξ5)∼ (Xω
3 ,Xω

4 ,Xω
5 ), the random variables

W ω
3 := f (ω,ζ1(ω),Y2)+ f (T ω,Y2,ξ3), Y2 ∼ Pω

ζ1,ξ3

W T 2ω
5 := f (T 2

ω,ζ1(ω),Y4)+ f (T 3
ω,Y4,ξ5), Y4 ∼ PT 2ω

ζ1,ξ5

are purely atomic, and belong to some coset of 2π

t Z with full probability. (These
cosets could be different.)

Proof. By choice of ζi(ω) and Fubini’s theorem, for a.e. (ξ3,ξ4,ξ5)∼ (Xω
3 ,Xω

4 ,Xω
5 ),

Γ

(
ζ1(ω),

ζ2(ω)
Y ω

2
,

ζ1(ω)
ξ3

,
Y ω

4
ξ4

,ξ5

)
∈ 2π

t
Z Pω

(
·
∣∣∣∣ Zω

3 = ζ1 Xω
3 = ξ3

Zω
2 = ζ2 Xω

4 = ξ4
Zω

1 = ζ1 Xω
5 = ξ5

)
–a.e.

Notice that Γ

(
ζ1(ω),

ζ2(ω)
Y ω

2
,

ζ1(ω)
ξ3

,
Y ω

4
ξ4

,ξ5

)
is equal to the independent differ-

ence of W ω
3 and W T 2ω

5 , plus a constant which only depends on ω . The claim now
follows from Lemma 8.4

CLAIM 3. Given ω and (ξ3,ξ4,ξ5) as in claim 2, let
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g(ω,ξ3) :=
(

the smallest positive atom of W ω
3 if ∃ positive atoms,

otherwise, the largest non-positive atom of W ω
3

)
c(ω) :=− f (ω,ζ1(ω),ζ2(ω))− f (T ω,ζ2(ω),ζ1(ω)).

These functions are well-defined, measurable, and

[ f (T 2
ω,ξ3,ξ4)+ f (T 3

ω,ξ4,ξ5)]+g(ω,ξ3)−g(T 2
ω,ξ5)+ c(ω) ∈ 2π

t
Z (8.3.6)

for µ-a.e. ω , for a.e. (ξ3,ξ4,ξ5)∼ (Xω
3 ,Xω

4 ,Xω
5 ).

Proof. The function g(ω,ξ3) is well-defined for a.e. ω because of claim 2. To see

that it is measurable, we note that (ω,ξ3) 7→ P(W ω
3 ∈ (a,b)) are measurable, and

[g(ω,ξ3)> a] = {(ω,ξ3) : P(0 <W ω
3 ≤ a) = 0 ,P(W ω

3 > a) 6= 0} (a > 0)
[g(ω,ξ3)> a] = {(ω,ξ3) : P(W ω

3 > a) 6= 0} (a≤ 0)

are measurable. The measurability of c(ω) is clear.
Equation (8.3.6) holds because the left-hand-side of (8.3.6) is, up to a sign, an

atom of the random variable

Γ

(
ζ1(ω),

ζ2(ω)
Y ω

2
,

ζ1(ω)
ξ3

,
Y ω

4
ξ4

,ξ5

)
, (Lω

3 ,L
ω
4 )∼ Pω

·∣∣∣∣Z
ω
3 = ζ1(ω) Xω

3 = ξ3
Zω

2 = ζ2(ω) Xω
4 = ξ4

Zω
1 = ζ1(ω) Xω

5 = ξ5


and we chose (ζ1(ω),ζ2(ω)) so that this random variable takes values in 2π

t Z a.s.

Claim 3 gives us measurable functions a(ω,x) := exp(−itg(T−2ω,x)) and λ (ω) :=
exp(−itc(T−2ω)) such that

eit[ f (ω,Xω
1 ,Xω

2 )+ f (T ω,Xω
2 ,Xω

3 )] = λ (ω)
a(ω,Xω

1 )

a(T 2ω,Xω
3 )

.

Multiplying both sides of the equation by eit[ f ω− f ω◦T ] gives

e2it f (ω,Xω
1 ,Xω

2 ) = λ (ω)
b(ω,Xω

1 ,Xω
2 )

b(T ω,Xω
2 ,Xω

3 )
,

where b(ω,x,y) := a(ω,x)a(T ω,y)eit f (ω,x,y).
This not quite a relative cohomology to a coset of (π/t)Z, because b(ω,x,y)

seems to depend not just on x but also on y. In fact there is a bounded measurable
function β (ω,x) such that

b(ω,Xω
1 ,Xω

2 ) = β (ω,Xω
1 ) P− almost everywhere,

where P is given by (8.2.1). This can be seen as follows. Rearrange terms to see that

b(T ω,Xω
2 ,Xω

3 ) = λ (ω)e−2it f (ω,Xω
1 ,Xω

2 )b(ω,Xω
1 ,Xω

2 ).
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By the Markov property of Xω , for fixed ω , the left-hand-side and the right-hand-
side of this equation are conditionally independent given Xω

2 . Two independent ran-
dom variables which are equal, must be constant. So for m-a.e. ω ,

b(T ω,Xω
2 ,Xω

3 ) = Eω(b(T ω,Xω
2 ,Xω

3 )|Xω
2 ).

Setting
β (ω,Xω

1 ) := Eω(b(ω,Xω
1 ,Xω

2 )|Xω
1 )

and using stationarity to shift indices where needed, we find that

b(ω,Xω
1 ,Xω

2 ) = β (ω,Xω
1 ) P−a.e., b(T ω,Xω

2 ,Xω
3 ) = β (T ω,Xω

2 ) P−a.e.

Hence

e2it f (ω,Xω
1 ,Xω

2 ) = λ (ω)
β (ω,Xω

1 )

β (T ω,Xω
2 )

P-a.e..

So f is relatively cohomologous to a coset of π

t Z.

We obtained a contradiction to out assumptions. This contradiction shows that
Gess(X

ω , fω) = R for a.e. ω . The local limit theorem now follows from Theorem
4.1, applied to (Xω , fω), and from Theorem 8.1 which gives the a.s. asymptotic
V ω

N ∼ Nσ2 for some σ2 > 0 independent of ω . �

Proofs of Theorem 8.3 and 8.7 on the lattice case. Theorems 8.3 and 8.7 provide
the LLT for Markov chains in random environment with finite and infinite noise
processes for integer valued additive functionals, under the assumption that f is not
relatively cohomologous to a coset of tZ with t 6= 1.

The proof is similar to the proof in the non-lattice case, except that now to check
irreducibility we need to show that Hω = Z almost surely. Since f is integer valued,
1 ∈Hω , so if this is not the case then necessarily Hω = tZ for t = 1

n and n ∈N. Now
repeat the proof of Theorems 8.2 and 8.6 verbatim. �

8.3.4 Log-moment generating functions and rate functions

We prove Theorem 8.4 on the a.s. convergence of the log-moment generating func-
tions of (Xω , fω) and their Legendre transforms. Suppose f is an essentially bounded
additive functional on a MCRE with a finite noise space (Ω ,B,m,T ). Without loss
of generality, m(Ω) = 1.

Part (1): Convergence of log-moment generating functions: We are asked to
show that for a.e. ω , G ω

N (ξ ) := 1
N logE(eξ Sω

N ) converge pointwise on R. To do this
we recall three facts from chapter 6:

FACT 1: Given ξ ∈ R, for every ω ∈ Ω there are unique numbers pn(ξ ,ω) ∈ R
and unique non-negative functions hn(·,ξ ,ω) ∈ L∞(S,B(S),µT n−1ω) such that∫
S hn(x,ξ ,ω)µT n−1ω(dx) = 1 for all n≥ 1, and
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S

eξ f (T nω,x,y) hn+1(y,ξ ,ω)

epn(ξ ,ω)hn(x,ξ ,ω)
π(T n

ω,x,dy) = 1. (8.3.7)

Furthermore, pn(ξ ,ω) = p(ξ ,T nω) for all n, where and p(ξ ,ω) is measurable.

Proof. The existence and uniqueness of hn, pn follows from Lemma 6.1, applied to
(Xω , fω) with an = 0. Writing (8.3.7) first for (n,ω) and then for (n− 1,T ω), and
then invoking uniqueness, we find that pn(ξ ,ω) = pn−1(ξ ,T ω). So

pn(ξ ,ω) = pn−1(ξ ,T ω) = · · ·= p1(ξ ,T
n−1

ω) = p(ξ ,T n
ω),

where p(ξ ,ω) := p1(ξ ,T
−1ω). The proof of Lemma 6.1 represents hn(x,ξ ,ω) as

a limit of expressions which are measurable in (x,ξ ,ω), so (x,ξ ,ω) 7→ hn(x,ξ ,ω)
is measurable. By (8.3.7), (ω,ξ ) 7→ p(ξ ,ω) is measurable.

FACT 2: Let K := ess sup |f| and let ε0 denote a uniform ellipticity bound for Xω .
For every R > 0 there exists a constant C(ε0,K,R) such that |p(ξ ,ω)| ≤C(ε0,K,R)
for all ω ∈Ω and |ξ | ≤ R.

Proof. See the proof of Lemma 6.2.

FACT 3: Let PN(ξ ,ω) := ∑
N
k=1 p(ξ ,T kω), then for a.e. ω ∈Ω ,

G ω
N (ξ ) =

(
V ω

n

N

)[
PN(ξ )

V ω
N

+O
(

1
V ω

N

)]
uniformly on compact subsets of ξ ∈ R.

Proof. It is convenient to work with F ω
N (ξ ) := 1

V ω
N

logE(eξ Sω
N ) ≡ (N/V ω

N )G ω
N (ξ ).

Let PN(ξ ,ω) := PN(ξ ,ω) +
(
E(Sω

N )−
d

dξ

∣∣
ξ=0P′N(0,ω)

)
ξ . For each ω ∈ Ω such

that V ω
N → ∞,

(1) d
dξ

∣∣
ξ=0P′N(0,ω) exists, by Lemma 6.3.

(2) |PN(ξ ,ω)−PN(ξ ,ω)|=O(1) uniformly on compact subsets of ξ ∈R, by Lem-
mas 6.4 and 6.5

(3) |F ω
N (ξ )−PN(ξ )/V ω

N |= O(1/V ω
N ) uniformly on compact subsets of ξ ∈ R, by

Lemma 6.5. Fact 3 follows.

We can now prove the a.s. convergence of F ω
N (ξ ). By the assumptions of the

theorem, f is not relatively cohomologous to a constant. Therefore, by Theorem 8.1,
there exists σ2 > 0 such that V ω

N ∼ σ2N as N→ ∞ for a.e. ω .
Fix a countable dense set {ξ1,ξ2, . . .} ⊂ R. For each i, ω 7→ p(ξi,ω) is bounded

and measurable. So for a.e. ω ,

lim
N→∞

G ω
N (ξi) = σ

2 lim
N→∞

1
V ω

N

N

∑
k=1

p(ξi,T k
ω) = lim

N→∞

1
N

N

∑
k=1

p(ξi,T k
ω)

=
∫

Ω

p(ξi,ω)m(dω), by the Birkhoff ergodic theorem.
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This shows that for all i there exists G (ξi) ∈ R such that lim
N→∞

G ω
N (ξi) = G (ξi) for

a.e. ω . Let Ω ′ denote the set of full measure of ω where this holds for all i ∈ N.
Fix ω ∈ Ω ′, then the functions ξ 7→ F ω

N (ξ ) are equicontinuous on compacts,
because if K := ess sup |f|, then

|(F ω
N )′(ξ )| ≤

∣∣∣∣∣ |ξ |E(|Sω
N |eξ Sω

N )

V ω
N E(eξ Sω

N )

∣∣∣∣∣= |ξ |KN
V ω

N
= O(|ξ |).

Therefore for a.e. ω , the functions ξ 7→ G ω
N (ξ ) are equicontinuous on compacts.

Recall that if a sequence of functions ϕn(ξ ) which is equicontinuous on compacts
converges on a dense subset of R, then ϕn(ξ ) converges for all ξ ∈ R. Moreover,
the limit is continuous. So there is a continuous function F ω(ξ ) such that

lim
N→∞

G ω
N (ξ ) = F ω(ξ ) for all ξ ∈ R, ω ∈Ω

′.

In fact F ω(ξ ) does not depend on ω , because by virtue of continuity,

F ω(ξ ) = lim
k→∞

F ω(ξik) = lim
k→∞

G (ξik), whenever ξik −−−→k→∞
ξi.

We are therefore free to write F ω(ξ ) = F (ξ ).
It remains to show that F (ξ ) is differentiable and strictly convex on R. Fix ω ∈

Ω ′. Applying Theorem 6.1 to (Xω , fω) we find that for every R > 0 there is a C =
C(R) such that C−1 ≤ (F ω

N )′′ ≤C on [−R,R]. This implies that F is differentiable
and strictly convex on (−R,R) because of the following general lemma:

Lemma 8.5. Suppose ϕn :R→R are twice differentiable convex functions such that
C−1 ≤ ϕ ′′n ≤C with C > 0, on (−R,R). If ϕn −−−→

N→∞
ϕ pointwise on (−R,R), then ϕ

is continuously differentiable and strictly convex on (−R,R).

Proof. A pointwise limit of convex functions is convex, and convex functions have
one sided derivatives. Let ϕ ′±(ξ ) denote the one-sided derivatives of at ξ .
DIFFERENTIABILITY: For all |ξ |< R,

|ϕ ′+(ξ )−ϕ
′
−(ξ )|= lim

h→0+

∣∣∣∣ϕ(ξ +h)−ϕ(ξ )

h
− ϕ(ξ −h)−ϕ(ξ )

h

∣∣∣∣
= lim

h→0+
lim
n→∞

∣∣∣∣ϕn(ξ +h)−ϕn(ξ )

h
− ϕn(ξ −h)−ϕn(ξ )

h

∣∣∣∣
= lim

h→0+
lim
n→∞
|ϕ ′n(ξn)−ϕ

′
n(ηn)| for some ξn,ηn ∈ (ξ −h,ξ +h)

≤ lim
h→0+

lim
n→∞

2Ch = 0, because |ϕ ′′n | ≤C on a neighborhood of ξ .

We find that ϕ ′+(ξ ) = ϕ ′−(ξ ), whence ϕ is differentiable at ξ .
STRICT CONVEXITY: Suppose −R < ξ < η < R, then
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ϕ
′(η)−ϕ

′(ξ ) = ϕ
′
+(η)−ϕ

′
−(ξ ) = lim

h→0+

ϕ(η +h)−ϕ(η)

h
− ϕ(ξ −h)−ϕ(ξ )

h

= lim
h→0+

lim
n→∞

ϕn(η +h)−ϕn(η)

h
− ϕn(ξ −h)−ϕn(ξ )

h
= lim

h→0+
ϕ
′
n(ηn)−ϕ

′
n(ξn) for some ξn ∈ [ξ −h,ξ ], ηn ∈ [η ,η +h]

≥ liminf
n→∞

C−1|ηn−ξn| ≥C−1(η−ξ ), because ϕ
′′
n >C−1 on (−R,R).

It follows that ϕ ′ is strictly increasing on (−R,R).
THE DERIVATIVE IS CONTINUOUS: The same calculation as before shows that if
−R < ξ < η < R, then |ϕ ′(η)−ϕ ′(ξ )| ≤C|ξ −η |, whence ϕ ′ is (Lipschitz) con-
tinuous on (−R,R). �

Part (2): Convergence of E(Sω
N )/N: We need the following standard fact.

Lemma 8.6. Suppose ϕn(ξ ),ϕ(x) are finite, convex, and differentiable on (−R,R).
If ϕn(ξ )−−−→

n→∞
ϕ(ξ ) on (−R,R), then ϕ ′n(ξ )−−−→n→∞

ϕ ′(ξ ) on (−R,R).

Proof. Fix ξ ∈ (−R,R). By convexity, for every h > 0 sufficiently small,

ϕn(ξ )−ϕn(ξ −h)
h

≤ ϕ
′
n(ξ )≤

ϕn(ξ +h)−ϕn(ξ )

h
(8.3.8)

To see this note that the LHS is at most (ϕn)
′
−(ξ ), the RHS is at least (ϕn)

′
+(ξ ), and

both one-sided derivatives equal ϕ ′n(ξ ).
Passing to the limit n→ ∞ in (8.3.8), we find that

limsupϕ
′
n(ξ ), liminfϕ

′
n(ξ ) ∈

[
ϕ(ξ )−ϕ(ξ −h)

h
,

ϕ(ξ +h)−ϕ(ξ )

h

]
.

We now invoke the differentiability of ϕ , pass to the limit h→ 0+, and discover that
limsupϕ ′n(ξ ), liminfϕ ′n(ξ ) = ϕ ′(ξ ). �

For a.e. ω , (V ω
N /N)F ω

N (ξ )≡ GN(ξ ,ω)−−−→
N→∞

F (ξ ). So by the lemma

(V ω
N /N)

d
dξ

∣∣∣∣
ξ=0

F ω
N (ξ ,ω)−−−→

N→∞
F ′(0).

A calculation shows that the derivative equals E(Sω
N )/V ω

N . So E(Sω
N )/N→F ′(0).

Part (3): Convergence of Legendre transforms. Again, the proof is based on a
general property of convex functions.

Lemma 8.7. Suppose ϕn(ξ ),ϕ(ξ ) are finite, strictly convex, continuously differen-
tiable functions on R, s.t. ϕn(ξ )→ ϕ(ξ ) for all ξ ∈R. Let ϕ ′(±∞) := lim

ξ→±∞

ϕ ′(ξ ).

Let ϕ∗n ,ϕ
∗ denote the Legendre transforms of ϕn,ϕ . For all η ∈ (ϕ ′(−∞),ϕ ′(+∞)),

ϕ∗n (η) is well-defined for all n sufficiently large, and ϕ∗n (η)→ ϕ∗(η).
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Proof. Fix η ∈ (ϕ ′(−∞),ϕ ′(+∞)). By assumption, ϕ ′ is continuous and strictly
increasing. Therefore, there exists ξ such that ϕ ′(η) = ξ .

Fix ε > 0 and ξ1 < ξ < ξ2 such that |ξ1−ξ2|< ε . Then ϕ ′(ξ1)< η < ϕ ′(ξ2). By
Lemma 8.6, ϕ ′n(ξi)→ ϕ ′(ξi), and therefore there exists N such that for all n > N,

ϕ
′(ξ1)−1 < ϕ

′
n(ξ1)< η < ϕ

′
n(ξ2)< ϕ

′(ξ2)+1.

Since η ∈ (ϕ ′n(ξ1),ϕ
′
n(ξ2)) and ϕ ′n is continuous and strictly increasing, there

exists a unique ξn ∈ (ξ1,ξ2) so that ϕ ′n(ξn) = η . So ϕ∗n (η) is well-defined, and

ϕ
∗
n (η) = ξnη−ϕn(ξn).

Similarly, ϕ∗(η) = ξ η−ϕ(ξ ).
We now estimate the distance between ϕ∗n (η) and ϕ∗(η). Recall first that for all

n > N, ϕ ′(ξ1)−1 < ϕ ′n(ξ1)< ϕ ′n(ξ2)< ϕ ′(ξ2)+1. Let

M := max{|ϕ ′(ξ1)−1|, |ϕ ′(ξ2)+1|},

then |ϕ ′n| ≤M on (ξ1,ξ2) for all n > N. Consequently,

|ϕ∗n (η)−ϕ
∗(η)| ≤ |ξn−ξ | · |η |+ |ϕn(ξn)−ϕ(ξ )|

≤ |ξ1−ξ2| · |η |+ |ϕn(ξn)−ϕn(ξ )|+ |ϕn(ξ )−ϕ(ξ )|
≤ ε|η |+M|ξn−ξ |+ |ϕn(ξ )−ϕ(ξ )| ≤ ε(M+ |η |)+o(1), as n→ ∞.

because ϕn(ξ )→ ϕ(ξ ), ξ ,ξn ∈ (ξ1,ξ2), and |ξ1−ξ2| ≤ ε . Since ε is arbitrary, we
have that ϕ∗n (η)→ ϕ∗(η). �

Part (4): Properties of I (η). Fix ω such that ϕN(ξ ) := 1
N logE(eξ Sω

N ) converges
pointwise to F . By the previous section, ϕ∗N converges pointwise to I . Since ϕ ′′N
is uniformly bounded away from zero and infinity on compacts (see the first part of
the proof), (ϕ∗N)

′′ is uniformly bounded away from zero and infinity on compacts.
Hence by Lemma 8.5

I = limϕ
∗
N is strictly convex and continuously differentiable.

By Lemma 8.6, (ϕ∗N)
′(η) −−−→

N→∞
I ′(η) for all η in the interior of the range of ϕ ′,

and ϕN(ξ ) −−−→
N→∞

F ′(ξ ) for all ξ ∈ R. The convergence is uniform on compacts,

because (ϕ∗N)
′′,ϕ ′′N are bounded on compacts.

It is easy to verify that ϕN is twice differentiable. Therefore by Lemma 6.9, ϕ∗N is
twice differentiable and (ϕ∗N)

′(ϕ ′N(ξ )) = ξ for all ξ . Passing to the limit as N→ ∞

we obtain the important identity I ′(F ′(ξ )) = ξ for all ξ ∈ R.
One consequence of the identity I ′(F ′(ξ )) = ξ is that I ′(F ′(0)) = 0, so η =

F ′(0) is a critical point of I (·). By strict convexity, I attains its global minimum
at F ′(0). The value there is zero:

I (F ′(0)) = 0 ·F ′(0)−F (0) = 0.
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We conclude that I (η) = 0 when η = F ′(0), and I (η)> 0 for η 6= F ′(0).
Another consequence of the identity I ′(F ′(ξ )) = ξ (and the fact that F ′ is

increasing) is that I ′(ξ )−−−−→
ξ→±∞

±∞, and therefore I has compact level sets. �

Part (5): Large deviation treshold. We prove the identity for F ′(∞), the identity
for F ′(−∞) follows by replacing f→−f.
Step I. c+ ≥F ′(+∞).

Proof. Given η ∈ (F ′(−∞),F (+∞)) choose

F ′(−∞)< η
− < η < η

+ < F (+∞).

Take ξ± be s.t. F ′(ξ±) = η±. By Lemma 8.6, lim
N→∞

F ′
N(ξ

±) = η
±. Hence for large

N F ′
N(ξ

−)≤ η ≤FN(ξ
+) and so η is reachable.

Step II. c+ ≤F ′(+∞).

Proof. Take η > c+. If η ∈ CR for some R we would have that for some R, for
all N large enough F ′

N(R) ≥ η (see Lemma 6.5(5)). However by Lemma 8.6,
lim

N→∞
FN(R) =F ′(R)<F ′(+∞)< η contradicting our assumption that η is reach-

able.

Step III. Denote SN(ω) = ess supSω
N . Then the limit s+ := lim

N→∞

SN(ω)

N
exists and

is independent of ω with probability one.
Proof. By our ellipticity assumption

SN+M(ω)≤SN(ω)+SM(T N
ω)−4K.

Thus the sequence TN(ω) =SN(ω)−4K is subadditive. Since SN(ω)≥−KN the

Subadditive Ergodic Theorem implies that the limit lim
N→∞

SN(ω)

N
= lim

N→∞

TN(ω)

N
exists and is independent of ω with probability one.
Step IV. c+ ≤ s+ because for each ε > 0 we have that with probability one for large
N, Pω(SN ≥ (s++ ε)N) = 0.
Step V. c+ ≥ s+

Proof. Fix ε > 0. By Step III for each sufficiently large N0 there exists γε,N0 > 0 and
a set Ωε,N0 s.t. m(Ωε,N0)≥ 1− ε and for all ω ∈Ωε,N0 , for µω -a.e. x ∈S,

Pω(SN0 ≥ (s+− ε)N0|X1 = x)≥ γε,N0 . (8.3.9)

Given M let j1(ω) < j2(ω) < · · · < jnM(ω)(ω) be all the times 1 ≤ j < M when
T jN0(ω) ∈Ωε,N0 , then

Pω
(
SN0M ≥ nM(s+− ε)N0− (M−nM)N0K

)
≥ γ

N0M
ε,N0

.

(To see this, estimate conditional probabilities of this event given Xω
j1 , . . . ,X

ω
jnM

using
(8.3.9), and take expectation over Xω

j1 , . . . ,X
ω
jnM

.)
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By the Ergodic Theorem, for a.e. ω there is a limit

β (ω) = lim
M→∞

nM(ω)

M
and

∫
β (ω)dm = m(Ωε,N0).

So for large M, and on a set Ω ε of positive measure, nM/M > 1−2ε whence

nM(s+− ε)N0− (M−nM)N0K ≥
[
(1−2ε)(s+− ε)−2εK

]
N0M.

Now Theorem 6.7(c) shows that on Ω ε , c+(ω)≥ (1−2ε)(s+−ε)−2εK. Since c+

actually does not depend3 Since ε is arbitrary the result follows. �

8.4 Notes and references

Markov chains in random environment (MCRE) should not be confused with “ran-
dom walks in random environment” (RWRE). In the RWRE model, the transi-
tion kernel at time n depends on the position of random walk at time n, i.e.
πn(x,dy) = π(Sn,x,dy). In a MCRE, the transition kernel at time n depends on the
noise at time n, i.e. πn(x,dy) = π(T nω,x,dy).

Markov chains in random environment were introduced by Cogburn [22]. The
setup is a particular case of a “random dynamical system.” For a fixed realization
of noise, a Markov chain in random environment reduces to an inhomogeneous
Markov chain, and a random dynamical system reduces to a “sequential” (aka “time-
dependent” or “non-autonomous”) dynamical system. Various authors considered
probabilistic limit theorems in these contexts. Limit theorems for Markov chains
in random environment are given in Cogburn [23], Kifer [69], and Hafouta & Kifer
[60, chapters 6,7],[59]. Results for random dynamical systems can be found in Kifer
[69], Conze, Le Borgne & Roger [25], Denker & Gordin [34], Aimino, Nicol & Vai-
enti [8], Nicol, Török & Vaienti [98], and Dragičević, Froyland & González-Tokman
[45]. For limit theorems for sequential dynamical systems, see Bakhtin [12], Conze
& Raugi [26], Haydn, Nicol & Török [63], Korepanov, Kosloff & Melbourne [75],
and Hafouta [57, 58].

These LLT in this chapter are random generalizations of the LLT for (homoge-
neous) stationary Markov chains due to Nagaev [96] and Guivarc’h & Hardy [56],
see Theorem 7.1. To get the non-random case take the noise process to equal the
identity map on a singleton.

The results of this chapter are all essentially known in the case T preserves a
finite measure. Theorem 8.1 was proved in the more general setup of random dy-

3 This follows from Steps I and II above. Alternatively it is easy to verify directly, using Theorem
6.7, that c+ is T -invariant on ω we get that

c+(ω)≥ (1−2ε)(s+− ε)−2εK.
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namical systems by Kifer [69]. Theorems 8.2 and 8.3 are close to the (earlier) results
of Dragičević, Froyland & González-Tokman [45], and Hafouta & Kifer [60, chap-
ter 7, Theorem 7.1.5]. The main difference is in the irreducibility assumptions. Our
condition of non-relative cohomology to a coset is replaced in [60] by what these
authors call the “lattice” and “non-lattice” cases (this is not the same as our termi-
nology). In the paper [45], the non-cohomology condition is replaced by a condition
on the decay of the norms of certain perturbed characteristic function operators, and
a connection to a non-cohomology condition is made under additional assumptions.

The results for infinite noise processes seem to be new. The reason we can also
treat this case, is that the LLT we provide in this work do not require any assump-
tions on the rate of growth of VN , and they also work when it grows sub-linearly.
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in H. Cramér, Collected works, A. Martin-Löf (Ed.), vol II, Springer, Berlin, 1994, pages
895–913.

29. R. de la Llave, J. M. Marco, and R. Moriyón. Canonical perturbation theory of Anosov
systems and regularity results for the Livšic cohomology equation. Ann. of Math. (2),
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bolic dynamics. Astérisque, (187-188):268, 1990.

100. William Parry and Mark Pollicott. Skew products and Livsic theory. In Representation
theory, dynamical systems, and asymptotic combinatorics, volume 217 of Amer. Math. Soc.
Transl. Ser. 2, pages 139–165. Amer. Math. Soc., Providence, RI, 2006.

101. M. Peligrad. On the local limit theorems for lower psi-mixing markov chains. Preprint, page
12 pages, 2018.

102. Yuval Peres. Domains of analytic continuation for the top Lyapunov exponent. Ann. Inst. H.
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110. Firas Rassoul-Agha and Timo Seppäläinen. A course on large deviations with an introduction
to Gibbs measures, volume 162 of Graduate Studies in Mathematics. American Mathemati-
cal Society, Providence, RI, 2015.

111. Albert Raugi. Mesures invariantes ergodiques pour des produits gauches. Bull. Soc. Math.
France, 135(2):247–258, 2007.
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Quasi-periodic noise process, 192

range
algebraic, 59, 61
reduced, 60

rate functions, 134
reachable, 169
real-analyticity for functions on Banach

spaces, 143
reduced range, 60
reducible, 60

local limit theorems, 99
reduction, 60
Reduction lemma, 65
regime

of large deviations, 132
local, 19
local deviations, 131
moderate, 132
of large deviations, 19, 131
universality, 131

relatively cohomologous, 194
restriction, 63
row lengths, 18
Rozanov’s condition, 81

simple random walk, 59
stably hereditrary, 64
State spaces, 15
state spaces

of Markov array, 18
structure constants

and center tightness, 37
and growth of variance, 37
definition, 29

sub-array, 63
summable variance, 36

a.s. convergence of SN , 38
symmetric multilinear function, 143

Taylor series on Banach spaces, 143
total variation distance, 22
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transfer function, 36
transfer operator, 180
transition kernel, 21

contraction coefficient, 22
Transition probabilities

of Markov chains, 15
transition probabilities

of a Markov array, 18

uniform ellipticity
and decay of correlations, 25
for Markov arrays, 21

for Markov chains, 20
one-step, 186
weakening of, 33

uniform integrability, 45
universality, 131

variance
circular, 66

Variance estimate, 37

Zero-one law, 179
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