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6 Contents

Notation

∇a the additive functional {a(N)
n+1(X

(N)
n+1)−a(N)

n (X (N)
n )} (a gradient)

B(S) the Borel σ -algebra of a separable complete metric space S
c−,c+ large deviations threshold, see §6.4
Cc(R) the space of continuous ϕ : R→ R with compact support
Cmix the mixing constant from Proposition 1.11
Cov the covariance
CVar the circular variance, see §3.3.1
dn(ξ ),d

(N)
n (ξ ) structure constants, see §1.3

DN(ξ ) structure constants, see §1.3
δ (π) the contraction coefficient of a Markov operator π , see §1.2.2
δ (f) the graininess constant of f, see chapter 3
ε0 (usually) the uniform ellipticity constant, see §1.2.1
E, Ex the expectation operator. Ex := E(·|X1 = x)
ess sup the essential supremum, see chapter 1
f,g,h additive functionals
fn, f (N)

n an entry of an additive functional f of a Markov chain or array
FN(ξ ) the normalized log-moment generating function, see chapter 6
Galg(X, f) the algebraic range, see chapter 3
Gess(X, f) the essential range, see chapter 3
Γ the balance (of a hexagon), see §1.3.1
H(X, f) the co-range, see chapter 3
Hex(N,n) the space of level N hexagons at position n, see §1.3.1
IN(η) the rate function, see chapter 6
kN (usually) the length of the N-th row of an array, minus one
µ(dx) a measure with its integration variable
log the natural logarithm (same as ln)
N {1,2,3, . . .}
Osc the oscillation, see §1.2.2
(Ω ,F ,µ,T ) a measurable map T : Ω →Ω on a measure space (Ω ,F ,µ)
P(A),Px(A) the probability of the event A. Px(A) := P(A|X1 = x)
πn,n+1(x,dy) the n-th transition kernel of a Markov chain
pn(x,y) (usually) the density of πn,n+1(x,dy)
ΦN(x,ξ ) characteristic functions, see §4.2.1
SN ∑

N
i=1 fi(Xi,Xi+1) (chains), or ∑

kN
i=1 f (N)

i (X (N)
i ,X (N)

i+1 ) (arrays)
sgn(x) the sign of x: (+1) when x > 0, (−1) when x < 0, and 0 for x = 0
Sn, S(N)

n the state space of Xn (chains) or of X (N)
n (arrays)

un,u
(N)
n ,UN structure constants, see §1.3

Var the variance
VN the variance of SN

Xn, X (N)
n an entry of a Markov chain, or the N-th row of a Markov array

X a Markov chain or a Markov array
zN (usually) a real number not too far from E(SN)
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a.e. almost everywhere
a.s. almost surely
TFAE the following are equivalent
s.t. such that
w.l.o.g. without loss of generality

∅ the empty set
∵ because
∴ therefore
1E the indicator function of the set E, equal to 1 on E and to

zero elsewhere
a± ε a quantity inside [a− ε,a+ ε]
e±εa a quantity in [e−εa,eεa]
∼ an ∼ bn⇔ an/bn −−−→

n→∞
1

� an � bn⇔ 0 < liminf(an/bn)≤ limsup(an/bn)< ∞

. an . bn⇔ limsup(an/bn)< ∞

� for measures: µ � ν means “ν(E) = 0⇒ µ(E) = 0 for all measurable
E; For numbers: non-rigorous shorthand for “much smaller than”

≈ non-rigorous shorthand for “approximately equal”
:= is defined to be equal to
!
= an equality that will be justified later
?
= a possibly false equality that requires checking

Xn
prob−−−→
n→∞

Y convergence in probability

Xn
dist−−−→

n→∞
Y convergence in distribution

Xn
Lp
−−−→
n→∞

Y convergence in Lp

[SN > t] conditions in brackets indicate the events that the conditions happen.
For example, if ϕ : S→ R, then [ϕ(ω)> t] := {ω ∈S : ϕ(ω)> t}

bxc, dxe bxc := max{n ∈ Z : n≤ x}, dxe := min{n ∈ Z : n≥ x}
{x},〈x〉 {x} := x−bxc; 〈x〉 is the unique number in [−π,π) s.t. x−〈x〉 ∈ 2πZ
{x}tZ, [x]tZ {x}tZ := t{x/t}, [x]tZ := x−{x}tZ, so [x]tZ ∈ tZ and {x}tZ ∈ [0, t)

The Fourier transform of an L1 function φ : R→ R is

φ̂(ξ ) :=
∫
R

e−iξ u
φ(u)du.

The Legendre-Fenchel transform of a convex real-valued function φ on R is

φ
∗(η) := sup

ξ

[ξ η−ϕ(ξ )].





Preface

Setup and aim

Our aim is to provide asymptotic formulas for the probabilities Px[SN − zN ∈ (a,b)], where Xn
is a Markov chain, x is some initial state, Px := P[ · |X1 = x],

SN =
N

∑
n=1

fn(Xn,Xn+1), and zN are real numbers not too far from E(SN).

Such results are called local limit theorems (LLT),1 and they have a long history, see the
end of this chapter. The novelty of this work is that we allow the Markov chain to be inhomoge-
neous. This means that we allow the set of states, the transition probabilities, and the summands
fn to depend on n.

We will always assume that fn are uniformly bounded real-valued functions, and that {Xn}
is uniformly elliptic, a technical condition which will be stated in chapter 1, and which implies
uniform exponential mixing.

These assumptions place us in the Gaussian domain of attraction. The analogy with classical
results for sums of independent identically distributed (iid) random variables suggests that in the
best of all situations, we should expect the following (in what follows VN = Var(SN) and AN ∼
BN ⇔ AN/BN −−−→

N→∞
1):

(1) Local deviations: If
zN−E(SN)√

VN
→ z, then Px[SN− zN ∈ (a,b)]∼ e−z2/2

√
2πVN

|a−b|.

(2) Moderate deviations: If
zN−E(SN)

VN
→ 0, then

Px[SN− zN ∈ (a,b)]∼ e
− 1+o(1)

2

(
zN−E(SN )√

VN

)2

√
2πVN

|a−b|.

(3) Large deviations: If
∣∣∣∣zN−E(SN)

VN

∣∣∣∣< c with c > 0 sufficiently small, then for every x in the

state space of X1,

Px[SN− zN ∈ (a,b)]∼ e−VNIN(
zN
VN

)

√
2πVN

·
∫ b

a
e−tξN

(
zN−E(SN )

VN

)
dt ·ρN

(
x, zN−E(SN)

VN

)
, where

◦ IN(·) are the Legendre transforms of FN(ξ ) := 1
VN

logE(eξ SN ).

1 By contrast, central limit theorems describe P[SN − zN ∈ (a
√

Var(SN),b
√

Var(SN))].

9
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◦ ξN : (−c,c)→R satisfy ξN(0) = 0, sgn(ξN(η)) = sgn(η), and ∃C > 0 independent of N
s.t. C−1|η | ≤ |ξN(η)| ≤C|η | for all N ∈ N, |η |< c.

◦ ρN(x, t) −−→
t→0

1 uniformly in N,x, and ρn(·, ·) are uniformly bounded away from 0,∞ on

S1× [−c,c] where S1 is the state space of X1.

◦ c,ξN ,ρN depend on the Markov chain, but not on zN or on (a,b).

(The asymptotic results in the large deviation regime are more precise than in the moderate
deviation case, but less universal. See Chapter 6 for more details.)

Although the asymptotic formulas (1)–(3) above are true in many cases, they do sometime fail
— even when SN is a sum of iid’s. The aim of this work is to give general sufficient conditions
for (1)–(3), and to provide the necessary asymptotic corrections when some of these conditions
fail. To do this we first identify all the obstructions to (1)–(3), and then we analyze SN when
these obstructions happen.

The obstructions to the local limit theorems

The algebraic range is the smallest closed additive subgroup G ≤ R for which there are cn ∈
R so that fn(Xn,Xn+1)− cn ∈ G almost surely for all n. We show that the following list is a
complete set of obstructions to (1)–(3):

(I) Lattice behavior: The algebraic range is tZ with t ∈ R.

(II) Center-tightness: Var(SN) does not tend to infinity. In chapter 2 we will see that in this
case Var(SN) must be bounded.

(III) Reducibility: fn(Xn,Xn+1)= gn(Xn,Xn+1)+cn(Xn,Xn+1) where {cn(Xn,Xn+1)} is center-
tight, and the algebraic range of {gn(Xn,Xn+1)} is strictly smaller than the algebraic range
of { fn(Xn,Xn+1)}.

One of our main results is that (1)–(3) hold whenever (I), (II), (III) fail.

How to show that the obstructions do not occur

While it is usually easy to rule out the lattice obstruction (I), it is often not clear how to rule
out (II) and (III). What is needed is a tool that determines from the data of fn and Xn whether
{ fn(Xn,Xn+1)} is center-tight or reducible.

In chapter 1, we introduce numerical constants dn(ξ ) (n≥ 3,ξ ∈R) which are defined purely
in terms of the transition probabilities πn,n+1(x,E) := P(Xn+1 ∈ E|Xn = x) and the functions
fn(x,y), and which can be used to determine which obstructions occur and which vanish:

◦ If ∑d2
n(ξ ) = ∞ for all ξ 6= 0, then the obstructions (I),(II),(III) do not occur, and the asymp-

totic expansions (1)–(3) hold.

◦ If ∑d2
n(ξ )< ∞ for all ξ 6= 0, then Var(SN) is bounded (obstruction II).

◦ If ∑d2
n(ξ ) = ∞ for some but not all ξ 6= 0, then Var(SN)→ ∞ but we are either lattice or

reducible: (II) fails, but at least one of (I),(III) occurs.

We call dn(ξ ) the structure constants of X= {Xn} and f = { fn}.
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What happens when the obstructions do occur

(I) The lattice case

The lattice obstruction (I) already happens for sums of iid’s, and the classical approach how to
adjust (1)–(3) to this setup extends without much difficulty to the inhomogeneous Markov case.

Suppose the algebraic range is tZwith t 6= 0, i.e. there are constants cn such that fn(Xn,Xn+1)−
cn ∈ tZ almost surely for all n. Assume further that tZ is the smallest group with this property.
In this case

SN ∈ γN + tZ a.s. for all N,

where γN = ∑
N
i=1 ci mod tZ. Instead of analyzing Px[SN− zN ∈ (a,b)], which might be equal to

zero, we study Px[SN− zN = kt], with k ∈ Z fixed and zN ∈ γN + tZ.
We show that in case (I), if the algebraic range is tZ, and obstructions (II) and (III) do not

occur, then (as in the case of iid’s):

(1’) If
zN−E(SN)√

VN
→ z, zN ∈ γN + tZ and k ∈ Z, then Px[SN− zN = kt]∼ e−z2/2

√
2πVN
|t|.

(2’) If
zN−E(SN)

VN
→ 0, zN ∈ γN + tZ and k ∈ Z, then

Px[SN− zN = kt]∼ 1√
2πVN

e
− 1+o(1)

2

(
zN−E(SN )√

VN

)2

|t|.

(3’) If
∣∣∣∣zN−E(SN)

VN

∣∣∣∣ < c with c > 0 sufficiently small, zN ∈ γN + tZ and (a,b)∩ tZ 6= ∅, then

for every x in the state space of X1,

Px[SN− zN ∈ (a,b)]∼ e−VNIN(
zN
VN

)

√
2πVN

· ∑
τ∈(a,b)∩tZ

|t|e−τξN(
zN−E(SN )

VN
) ·ρN

(
x, zN−E(SN)

VN

)
where IN(·), ρN and ξN have the properties listed in the non-lattice case (3).

The previous results hold for lattice valued, irreducible, non-center tight additive functionals,
that is, when (I) holds and (II),(III) fail. Here is an equivalent condition in terms of the data of
Xn and fn:

∃t 6= 0 s.t. ∑d2
n(ξ )< ∞ exactly when ξ ∈ 2π

t
Z.

Under this condition, (1’)–(3’) hold with parameter |t|.

(II) The center-tight case

We show that obstruction (II) happens iff fn(Xn,Xn+1) can be put in the form

fn(Xn,Xn+1) = an+1(Xn+1)−an(Xn)+hn(Xn,Xn+1)+ cn (∗)

where an(Xn) are uniformly bounded, cn are constants, hn(Xn,Xn+1) have mean zero, and
∑Var[hn(Xn,Xn+1)]< ∞.
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The freedom in choosing an(Xn) is too great to allow general statements on the asymptotic
behavior of Px[SN−zN ∈ (a,b)], see Example 2.2.2 But as we shall we see in chapter 2, (∗) does
provide us with some almost sure control:

SN = aN+1(XN+1)−a1(X1)+
N

∑
n=1

hn(Xn,Xn+1)+ γN ,

where γN = ∑
N
i=1 ci, and

∞

∑
n=1

hn(Xn,Xn+1) converges almost surely. This means that in the center-

tight scenario, SN−E(SN) can be decomposed into the sum of two terms: A bounded oscillatory
term which only depends on X1,XN+1, and a term which depends on the entire past X1, . . . ,XN+1
and which converges almost surely.

(III) The reducible case

In the reducible case, we can decompose

fn(Xn,Xn+1) = gn(Xn,Xn+1)+ cn(Xn,Xn+1) (∗∗)

where {cn(Xn,Xn+1)} is center-tight, and the algebraic range of {gn(Xn,Xn+1)} is strictly
smaller than the algebraic range of { fn(Xn,Xn+1)}.

In principle, it is possible that {gn(Xn,Xn+1)} is reducible too, but in chapter 5 we show that
one can find an “optimal” decomposition (∗∗) where {gn(Xn,Xn+1)} is not reducible, and cannot
be decomposed further. The algebraic range of the “optimal” {gn(Xn,Xn+1)} is the “infimum”
of all possible reduced ranges:

Gess :=
⋂{

G : G is the algebraic range of some {gn(Xn,Xn+1)}
which satisfies (∗∗) with {cn(Xn,Xn+1)} center-tight

}
.

We call Gess the essential range of { fn}. It can be calculated explicitly from the data of fn and
Xn in terms of the structure constants, see Theorem 3.2.

It follows from the definitions that Gess is a proper closed subgroup of R, so Gess = {0} or
tZ or R. In the reducible case, Gess = {0} or tZ, because if Gess = R, then the algebraic range
(which contains Gess) is also equal to R.

If Gess = {0}, then the optimal {gn} has algebraic range {0}, and gn are constant functions.
In this case fn is center-tight, and we are back in case (II).

If Gess = tZ with t 6= 0, then {gn(Xn,Xn+1)} is lattice, non-center-tight, and irreducible.
Therefore

SN =
N

∑
n=1

gn(Xn,Xn+1)︸ ︷︷ ︸
SN(g)

+
N

∑
n=1

cn(Xn,Xn+1)︸ ︷︷ ︸
Sn(c)

(†)

where Sn(g) satisfies the lattice local limit theorems (1’)–(3’) with parameter t, and Var[SN(c)] =
O(1). Trading constants between g and c, we can also arrange E(SN(c)) = O(1).

Unfortunately even though Var[Sn( f )]→∞ and Var[SN(c)] =O(1), examples show that SN(c)
is still powerful enough to disrupt the local limit theorem for SN , lattice or non-lattice (example
2 Throughout this work, Example X.Y is example number Y in chapter X. Similarly for Theorems, Propositions etc.
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5.1). Heuristically, what happens is that the mass of SN(g) concentrates on cosets of tZ accord-
ing to (1’)–(3’), but SN(c) smudges this mass to a neighborhood of the lattice in a non-universal
manner.

This suggests that (1)–(3) should be approximately true for intervals (a,b) of length |a−b|�
|t|, but false for intervals of length |a−b| � |t|. In chapter 5 we prove results in this direction.

For intervals with size |a−b|> 2|t|, we show that for all zN ∈ R such that zN−E(SN)√
VN

→ z, for
all N large enough

1
3

(
e−z2/2|a−b|√

2πVN

)
≤ Px[SN− zN ∈ (a,b)]≤ 3

(
e−z2/2|a−b|√

2πVN

)
.

If |a−b|> L > |t|, we can replace 3 by a constant C(L) such that C(L)−−−−−→
L/|t|→∞

1.

For general intervals, possibly with length less than |t|, we show the following: There are
uniformly bounded functions bN(x1,xN+1) and a random variable H= H(X1,X2,X3, . . .) so that
for every zN ∈ tZ s.t. zN−E(SN)√

VN
→ z, for every φ : R→ R continuous with compact support,

lim
N→∞

√
VNEx[φ(SN− zN−bN(X1,XN+1))] =

e−z2/2|t|√
2π

∑
m∈Z

Ex[φ(mt +H)]. (‡)

For φ ≈ 1[a,b] with |a−b|� |t|, the right-hand-side of (‡) is approximately equal to e−z2/2|a−b|√
2π

,
in accordance with (1), see Lemma 5.7. But for |a−b| � |t|, the right-hand-side depends on the
essential range tZ and on the detailed structure of {cn(Xn,Xn+1)} through t, bN(X1,XN+1) and
H.

What are bN(XN ,XN+1) and H? Recall that the term cn(Xn,Xn+1) on the right-hand-side of
(†) is center-tight. As such, it can be put in the form

cn(Xn,Xn+1) = an+1(Xn+1)−an(Xn)+hn(Xn,Xn+1)+ c∗n,

where supn(ess sup |an|)< ∞, c∗n are constants, E(hn(Xn,Xn+1)) = 0, and ∑hn converges almost
surely. Let γN := ∑

N
n=1 c∗n = E(SN(c))+O(1) = O(1). The proof of (‡) shows that

◦ bN = aN+1(XN+1)−a1(X1)+{γN}tZ, where {x}tZ = |t|{x/|t|}= x mod tZ;
◦ H= ∑

∞
n=1 hn(Xn,Xn+1).3

This works as follows. Let z∗N := zN − [γN ]tZ, where [x]tZ := x−{x}tZ ∈ tZ. Then z∗N ∈ tZ,
z∗N−E(SN)

VN
= zN−E(SN)+O(1)

VN
→ z, and

SN−bN− zN = [SN(g)− z∗N ]+SN(h).

By subtracting bN from SN , we are shifting the distribution of SN to the distribution of the sum
of two terms: The first, SN(g), is an irreducible tZ-valued additive functional; and the second,
SN(h), converges almost surely to H.

Suppose for the sake of discussion that SN(g),SN(h) were independent, then the lattice LLT
for SN(g) and the definition of H would imply that

lim
N→∞

√
VNEx[φ(SN−bN− zN)] =

∫
R

φ(x)m(dx),

3 It is possible to replace H by a different random variable F which is bounded, see chapter 5.
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where m := e−z2/2
√

2π
mtZ ∗mH, and mH(E) := P[H ∈ E], mtZ := |t|·counting measure of tZ. Calcu-

lating, we find that
∫
Rφdm =right-hand-side of (‡).

In general, SN(g) and SN(h) are not independent, and the problem of proving (‡) reduces to
the problem of proving that SN(g) and SN(h) are asymptotically independent. This is done in
chapter 5.

For further consequences of (‡), including an interpretation in terms of the asymptotic distri-
butional behavior of SN modulo tZ, see chapter 5.

Final words on the setup of this work

Before we end the preface, we would like to comment on a choice we made when we wrote this
work, specifically, our focus on additive functionals of the form fn = fn(Xn,Xn+1).

This choice is somewhat unorthodox: The theory of Markov processes is mostly concerned
with the case fn = fn(Xn) (see e.g. [45, 109, 139]), and the theory of stochastic processes is
mostly concerned with the case fn = fn(Xn,Xn+1, . . .), under assumptions of weak dependence
of Xk,Xn when |k− n| � 1 (see e.g. [74, 130]). We decided to study fn = fn(Xn,Xn+1) for the
following reasons:

◦ The case fn = fn(Xn,Xn+1) is richer than the case fn = fn(Xn) because it contains gradients
an+1(Xn+1)− an(Xn). Two additive functionals which differ by a gradient with uniformly
bounded ess sup |an| will have the same CLT behavior, but they may have different LLT be-
havior, because their algebraic ranges can be different. This leads to an interesting reduction
theory which we would have missed had we only considered the case fn = fn(Xn).4

◦ The case fn(Xn, . . . ,Xn+m) with m > 1 can be deduced from the case fn(Xn,Xn+1), and does
not require new ideas, see Example 1.3 and the discussion in §1.3.3. We decided to keep
m = 1 and leave the extension to m > 1 to the reader.

◦ The case fn = fn(Xn,Xn+1, . . .) is of great interest, and we hope to address it in the future, but
at the moment our results do not cover it.

We hope to stimulate research into the local limit theorem of additive functionals of general
non-stationary stochastic processes with mixing conditions. Such work will have applications
outside the theory of stochastic processes, such as the theory of dynamical systems. Our work
here is a step in this direction.

Notes and references

Local limit theorems for sums of iid’s. The first LLT is of course the celebrated de Moivre–
Laplace Theorem. De Moivre, in his 1738 book [33], gave approximations for P[a ≤ Sn ≤ b]
when Sn = X1 + · · ·+Xn, and Xi are iid, equal to zero or one with equal probabilities. Laplace
extended de Moivre’s results to the case when Xi are equal to zero or one with non-equal prob-
abilities [89, 90]. Pólya, in 1921, extended these results to the vector valued iid which generate
the simple random walk on Zd , and deduced his famous criterion for the recurrence of simple
random walks [121].
4 We cannot reduce the case fn(Xn,Xn+1) to the case fn(Yn) by working with the Markov chain Yn = (Xn,Xn+1) because {Yn} may no
longer satisfy some of our standing assumptions, specifically the uniformly ellipticity condition (see chapter 1).
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The next historical landmark is Gnedenko’s 1948 work [59, 60] which initiated the study of
the LLT for sums of iid with general lattice distributions. He asked for the weakest possible
assumptions on the distribution of iid’s Xi which lead to a LLT with Gaussian or stable limit.
Khinchin popularized the problem by emphasizing its importance to the foundations of quan-
tum statistical physics [77], and it was studied intensively by the Russian school, with important
contributions by Linnik, Ibragimov, Prohorov, Richter, Saulis, Petrov and others. We will com-
ment on some of these contributions in later chapters. For the moment, we refer the reader to
the excellent books by Gnendenko & Kolmogorov [61], Ibragimov & Linnik [74], and Petrov
[117] and the many references they contain.

The early works on the local limit theorem all focused on the lattice case. The Gnedenko–
Kolmogorov book [61] contains the first result we are aware of which could be considered to be
a non-lattice local limit theorem. The authors assume that each of the iid’s Xi have a probability
density function p(x) ∈ Lr with finite variance σ2, and show that the density function pn(x) of
X1 + · · ·+Xn satisfies

σ
√

npn(σ
√

nx)−−−→
n→∞

1√
2π

e−x2/2.

There could be non-lattice iid’s without density functions, for example the iid’s Xi equal to
(−1), 0, or

√
2 with equal probabilities (the algebraic range isR, because the group generated by

(−1) and
√

2 is dense). Shepp [141] was the first to consider non-lattice LLT in such cases. His
approach was to provide asymptotic formulas for P[a≤ Sn−E(SN)≤ b] for arbitrary intervals
[a,b], or for √

2πVar(SN)E[φ(SN−E(SN))]

for all test functions φ :R→R which are continuous with compact support. In this monograph,
we use a slight modification of Shepp’s formulation of the LLT. Instead of working with SN −
E(SN), we work with SN − zN subject to the assumptions that zN is “not too far” from E(SN),
and that SN− zN ∈ algebraic range.

Stone proved non-lattice LLT in Shepp’s sense for sums of vector valued iid in [147], ex-
tending earlier work of Rvačeva [132] who treated the lattice case. These works are important
not only because of the intrinsic interest in the vector valued case, but also because of technical
innovations which became tools of the trade, see e.g. [17].

Local limit theorems for stationary stochastic processes. The earliest local limit theorem
for non-iid sequences {Xi} is due to Kolmogorov [83]. He considered stationary homogeneous
Markov chains {Xi}with a finite set of states S= {a1, . . . ,an}, and proved a local limit theorem
for the occupation times

SN =
N

∑
i=1

→
f (Xi), where

→
f (x) = (1a1(x), . . . ,1an(x)).

Following further developments for finite state Markov chains by Sirazhdinov [142], Nagaev
[109] was able to obtain a very general local limit theorems for SN = ∑

N
i=1 f (Xi) for a large

class of stationary homogeneous countable Markov chains {Xi} and for a variety of unbounded
functions f , both in the gaussian and stable cases.

Nagaev’s paper introduced the method of characteristic function operators, which is also ap-
plicable outside the context of Markov chains. This opened the way for proving LLT for other
weakly dependent stationary stochastic processes, and in particular to time series of probability
preserving dynamical systems. Guivarc’h & Hardy [65] proved gaussian local limit theorems
for Birkhoff sums SN = ∑

N
i=1 f (T ix) for Anosov diffeomorphisms T : X → X with an invari-
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ant Gibbs measure, and Hölder continuous functions f . Rosseau-Egele [127] and Broise [19]
proved such theorems for piecewise expanding interval map possessing an absolutely continu-
ous invariant measure, X = [0,1], and f ∈ BV . Aaronson & Denker [4] gave general LLT for sta-
tionary processes generated by Gibbs-Markov maps both in the gaussian and in the non-gaussian
domain of attraction. These results have found many applications in infinite ergodic theory, dy-
namical systems and hyperbolic geometry, see for example [1], [3], [5]. The influence of Na-
gaev’s method can also be recognized in other works on other asymptotic problems in dynamics
and geometry, see for example [9], [10], [69], [76], [87], [88], [91], [92],[119],[120], [140]. For
the connection between the LLT and the behavior of local times for stationary stochastic pro-
cesses, see [38, 51].

Local limit theorems for non-stationary stochastic processes. The interest in limit theorems
for sums of non-identically distributed, independent, random variables goes back to the works of
Chebyshev [148], Lyapunov [99] , and Lindeberg [95] who considered the central limit theorem
for such sums.

The study of LLT for sums of non-identically distributed random variables started later, in
the works of Prohorov [122] and Rozanov [128]. A common theme in these works and those
that followed them is to assume an asymptotic for P[a ≤ SN−AN

BN
≤ b] for suitable normalizing

constants AN ,BN , and then ask what extra conditions imply an asymptotic for P[a≤ SN−AN ≤
b].

An important counterexample by Gamerklidze [58] pointed the way towards the phenomenon
that the distribution of SN may lie close to a proper sub-group of its algebraic range without
actually charging it, and a variety of sufficient conditions which rule this out were developed
over the years. We mention especially Rozanov’s condition in the lattice case [128] (see the end
of chapter 3), the Mineka-Silverman condition in the non-lattice case [104], and Statulevicius’s
condition [146], and conditions motivated by additive number theory such as those appearing
in [106] and [107]. For a discussion of these conditions, see [108].

Dolgopyat proved a LLT for sums of non-identically distributed, independent random vari-
ables which also applies to the reducible case [49].

Dobrushin proved a general central limit theorem for inhomogeneous Markov chains in [45]
(see chapter 2). Local limit theorems for inhomogeneous Markov chains are considered in [145].

Merlevède, M. Peligrad and C. Peligrad proved local limit theorems for sums
N

∑
i=1

fi(Xi) where

{Xi} is a ψ-mixing inhomogeneous Markov chain, under the irreducibility condition of Mineka
& Silverman [114]. Hafouta obtained local limit theorems for a class of inhomogeneous Markov
chains in [67]. In a different direction, central limit theorems for time-series of inhomogeneous
sequences of Anosov diffeomorphisms are proved in [12] and [27].

An important source of examples of inhomogeneous Markov chains is a Markov chain in
random environment, when considered for a specific (“quenched”) realizations of the environ-
ment (see chapter 8). Hafouta & Kifer proved local limit theorems for non-conventional ergodic
sums in [68], and local limit theorems for random dynamical systems including Markov chains
in random environment in [69]. Demers, Péne & Zhang [36] prove a LLT for an integer valued
observable for a random dynamical system.

Comparing the theory of inhomogeneous Markov chains to theory of Markov chains in ran-
dom environment studied in [69], we note the following differences:

(a) The theory of inhomogeneous Markov chains applies to fixed realizations of noise and not
just to almost every realization of noise;
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(b) In the random environment setup, a center–tight additive functional must be a coboundary,
while in the general case it can also have a component with summable variances;

(c) In the non center-tight random environment setup, the variance grows linearly for a.e. re-
alization of noise. But for a general inhomogeneous Markov chain it can grow arbitrarily
slowly.

The contribution of this work. The novelty of this work is in providing optimal sufficient
conditions for the classical asymptotic formulas for P[SN − zN ∈ (a,b)], and in the analysis of
P[SN− zN ∈ (a,b)] when these conditions fail.

In particular, we derive a new asymptotic formula for P[SN − zN ∈ (a,b)] in the reducible
case, subject to assumption that VN := Var(SN)→ ∞, and we prove a structure theorem for SN
in case VN 6→ ∞.

Unlike previous works, our analysis does not require any assumptions on the rate of growth
of VN , beyond convergence to infinity.
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Chapter 1
Additive functionals on Markov arrays

This chapter discusses the setup and standing assumptions used in this work.

1.1 The basic setup

1.1.1 Inhomogeneous Markov chains

A Markov chain is given by the following data:

◦ State spaces: Borel spaces (Sn,B(Sn)) (n ≥ 1), where Sn is a complete separable metric
space, and B(Sn) is the Borel σ -algebra of Sn. Sn is the set of “the possible states of the
Markov chain at time n.”

◦ Transition probabilities: Borel probability measures π
(N)
n,n+1(x,dy) on Sn+1 (x ∈Sn,n≥ 1),

so that for every Borel E ⊂Sn+1, the function x 7→ π
(N)
n,n+1(x,E) is measurable. The measure

πn(x,E) is “the probability of event E at time n+1, given that the state at time n was x.”

◦ Initial distribution: π(dx), a Borel probability measure on S1. π(E) is “the probability that
the state x at time 1 satisfies x ∈ E.”

The Markov chain associated with this data is the Markov process X := {Xn}n≥1 such that
Xn ∈Sn for all n, and so that for all Borel Ei ⊂Si,

P(X1 ∈ E1) = π(E1) , P(Xn+1 ∈ En+1|Xn = xn) = πn,n+1(xn,En+1).

X is uniquely defined, with joint distribution

P(X1 ∈ E1, · · · ,Xn ∈ En) := (1.1.1)∫
En−1

∫
En−2

· · ·
∫

E1

πn−1,n(xn−1,En)π(dx1)π1,2(x1,dx2) · · ·πn−2,n−1(xn−2,dxn−1).

X satisfies the following important Markov property:

P(Xn+1 ∈ E|Xn,Xn−1, . . . ,X1) = P(Xn+1 ∈ E|Xn) = πn,n+1(Xn,E). (1.1.2)

See, for instance, [17, Ch. 7].
In what follows P,E and Var denote the probability, expectation, and variance calculated

using this joint distribution. In the special case when π is the point mass at x, we write
Px,Ex and Varx.

19
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If the state spaces and the transition probabilities do not depend on n, i.e., Sn = S1 and
πn,n+1(x,dy) = π1,2(x,dy) for all n, then we call X a homogeneous Markov chain. Otherwise,
X is called an inhomogeneous Markov chain. In this work, we are mainly interested in the
inhomogeneous case.

Example 1.1 (Markov chain with finite state spaces). These are Markov chains X with state
spaces Sn = {1, . . . ,dn} , B(Sn) = { subsets of Sn}.

In this case the transition probabilities are completely characterized by the rectangular
stochastic matrices with entries

π
n
xy := πn,n+1(x,{y}) (x = 1, . . . ,dn ; y = 1, . . . ,dn+1),

and the initial distribution is completely characterized by the probability vector

πx := π({x}) (x = 1, . . . ,dn).

The joint distribution of {Xn} is given by

P(X1 = x1, · · · ,Xn = xn) = πx1π
1
x1x2

π
2
x2x3
· · ·πn−1

xn−1xn
,

and this leads to the following discrete version of (1.1.1):

P(X1 ∈ E1, · · · ,Xn ∈ En) = ∑
xn−1∈En−1

∑
xn−2∈En−2

· · · ∑
x1∈E1

πx1π
1
x1x2

π
2
x2x3
· · ·πn−1

xn−1xn
.

Example 1.2 (Markov chains in random environment).

Let X denote a homogeneous Markov chain with state space S, transition probability
π(x,dy), and initial distribution concentrated at a point x1. It is possible to view X as a model
for the motion of a particle on S as follows. At time 1, the particle is located at x1, and a parti-
cle at position x will jump after one time step to a random location y, distributed like π(x,dy):
P(y ∈ E) = π(x,E). With this interpretation,

Xn = the position of the particle at time n.

The homogeneity of X is reflected in the fact that the law of motion which governs the jumps
does not change in time.

Let us now refine the model by adding a dependence of the transition probabilities on an
external parameter ω , which we think of as “the environment.” For example, ω can represent
a external force field which affects the likelihood of various movements, and which can be
modified by God or some other experimentalist. The transition probabilities become π(x,ω,dy).

Suppose the environment ω changes in time according to some deterministic rule. This is
modeled by a map T : Ω → Ω , where Ω is the collection of all possible states of the environ-
ment, and T is a deterministic law of motion which says that an environment at state ω will
evolve after one unit of time to the state T (ω). Iterating we see that if the initial state of the en-
vironment at time zero was ω , then its state at time n will be ωn = T n−1(ω) = (T ◦ · · · ◦T )(ω).

Returning to our particle, we see that if the initial condition of the environment at time one is
ω , then the transition probabilities at time n are

π
ω
n,n+1(x,dy) = π(x,T n−1(ω),dy).
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Thus each ω ∈Ω gives rise to an inhomogeneous Markov chain Xω , which describes the Marko-
vian dynamics of a particle, coupled to a changing environment, and corresponding to the initial
condition that at time one, the particle is at position x1 and the environment is at state ω .

If T (ω) = ω , the environment stays fixed, and the Markov chain is homogeneous, otherwise
the Markov chain is inhomogeneous. We will return to Markov chains in random environment
in chapter 8.

Example 1.3 (Markov chains with finite memory).

We can weaken the Markov property (1.1.2) by specifying that for some fixed k0 ≥ 1, for all
E ∈B(Sn+1),

P(Xn+1 ∈ E|Xn, . . . ,X1) =

{
P(Xn+1 ∈ E|Xn, . . . ,Xn−k0+1) n > k0;
P(Xn+1 ∈ E|Xn, . . . ,X1) n≤ k0.

Stochastic processes like that are called “Markov chains with finite memory” (of length k0).
Markov chains with memory of length 1 are ordinary Markov chains. Markov chains with mem-
ory of length k0 > 1 can be recast as ordinary Markov chains by considering the stochastic pro-
cess X̃= {(Xn, . . . ,Xn+k0−1)}n≥1 with its natural state spaces, initial distribution, and transition
kernels.

Example 1.4 (A non-example). Every inhomogeneous Markov chain X can be presented as a
homogeneous Markov chain Y, but this is not very useful.

Let Si denote the state spaces of X. These are complete separable metric spaces, and therefore
they are Borel isomorphic toR, or to Z, or to a finite set (see e.g. [143], §3). So we can construct
Borel bi-measurable injections ϕi : Si ↪→ R. Let

Yn = (ϕn(Xn),n).

We claim that Y= {Yn}n≥1 is a homogeneous Markov chain. Let δξ denote the Dirac measure
at ξ , defined by δξ (E) := 1 when E 3 ξ and δξ (E) := 0 otherwise. Let Sn,πn,n+1 and π denote
the states spaces, transition probabilities, and initial distribution of X. Define a homogeneous
Markov chain Z with

◦ state space S := R×N
◦ initial distribution π̂ := (π ◦ϕ

−1
1 )×δ1, a measure on S1×{1}

◦ transition probabilities

π̂
(
(x,n),A×B

)
:=

{
πn,n+1

(
ϕ−1

n (x),ϕ−1
n+1(A)

)
δn+1(B) x ∈ ϕn(Sn)

δ0(A)δ1(B) otherwise.

A direct calculation shows that the joint distribution Z is equal to the joint distribution of Y =
{(ϕn(Xn),n)}n≥1. So Y is a homogeneous Markov chain.

Such presentations will not be useful to us, because they destroy useful structures which
are essential for our work on the local limit theorem. For example, they destroy the uniform
ellipticity property in section 1.2 below.
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1.1.2 Inhomogeneous Markov arrays

For technical reasons that we will explain later, it is useful to consider a generalization of a
Markov chain, called a Markov array. To define a Markov array, we need the following data:

◦ Row lengths: kN +1 where kN ≥ 1 and (kN)N≥1 is strictly increasing.

◦ State spaces: (S(N)
n ,B(S

(N)
n )), (1≤ n≤ kN +1), where S(N)

n is a complete separable metric
space with more than one point, and B(S

(N)
n ) is its Borel σ -algebra.

◦ Transition probabilities: {π(N)
n,n+1(x,dy)}

x∈S(N)
n

(1 ≤ n ≤ kN) where π
(N)
n,n+1(x,dy) are Borel

probability measures on S
(N)
n+1, so that for every Borel E ⊂S

(N)
n+1, the function x 7→ π

(N)
n,n+1(x,E)

is measurable, and for all x, and πn,n+1(x, ·) is not carried by a single atom.

◦ Initial distributions: Borel probability measures π(N)(dx) on S
(N)
1 .

For each N ≥ 1, this data determines a finite Markov chain of length kN +1
X(N) = (X (N)

1 ,X (N)
2 , . . . ,X (N)

kN+1), called the N-th row of the array. We will continue to denote the
joint probability distribution, expectation, and variance of X(N) by P,E, and Var. These objects
depend on N, but the index N will always be obvious from the context, and can be suppressed.
As always, in cases when we wish to condition on the initial state X (N)

1 = x, we will write Px
and Ex.

The rows X(N) = (X (N)
1 ,X (N)

2 , . . . ,X (N)
kN+1) can be arranged in an array of random variables

X=


X (1)

1 , . . . ,X (1)
k1+1

X (2)
1 , . . . ,X (2)

k1+1, . . . ,X
(2)
k2+1

X (3)
1 , . . . ,X (3)

k1+1, . . . ,X
(3)
k2+1, . . . ,X

(3)
k3+1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Each horizontal row X(N) = (X (N)
1 ,X (N)

2 , . . . ,X (N)
kN+1) comes equipped with a joint distribution,

which depends on N. But no joint distribution on elements of different rows is specified.

Example 1.5 (Markov chains as Markov arrays).

Every Markov chain {Xn} gives rise to a Markov array with row lengths kN = N+1 and rows
X(N) = (X1, . . . ,XN+1). In this case S

(N)
n =Sn, π

(N)
n,n+1 = πn,n+1, and π(N) = π .

Conversely, any Markov array so that S(N)
n =Sn, π

(N)
n,n+1 = πn,n+1, and π(N) = π determines

a Markov chain with state spaces Sn, transition probabilities π
(N)
n,n+1 = πn,n+1, and initial distri-

butions π(N) = π .

Example 1.6 (Change of measure). Suppose {Xn}n≥1 is a Markov chain with data Sn,πn,n+1,π ,
and let ϕ

(N)
n (x,y) be a family of positive measurable functions on Sn×Sn+1. Define new tran-

sition probabilities by

π
(N)
n,n+1(x,dy) :=

ϕ
(N)
n,n+1(x,y)∫

ϕ
(N)
n,n+1(x,y)πn,n+1(x,dy)

πn,n+1(x,dy).
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Then the data kN = N+1, S(N)
n :=Sn, π(N) := π and π

(N)
n,n+1 determines a Markov array called

the change of measure of {Xn} with weights ϕ
(N)
n .

Why study Markov arrays? There are several reasons, and the one most relevant to this work
is the following: The theory of large deviations for Markov chains, relies on a change of measure
which results in Markov arrays. Thus, readers who are only interested in local limit theorems
for Markov chains in the local regime zN−E(SN)√

Var(SN)
→ z, may ignore the theory of arrays and limit

their attention to Markov chains. But those who are also interested in the large deviations
regime, where | zN−E(SN)

Var(SN)
| is of order 1, will need the theory for Markov arrays.

1.1.3 Additive functionals

An additive functional of a Markov chain is a sequence f = { fn}n≥1 of measurable functions
fn :Sn×Sn+1→R, where Sn are the states spaces of the Markov chain. The pair X= {Xn}, f =
{ fn} determines a stochastic process

SN = f1(X1,X2)+ f2(X2,X3)+ · · ·+ fN(Xn,XN+1) (N ≥ 1).

We will often abuse terminology and call (X, f) and {SN}N≥1 “additive functionals.”
An additive functional of a Markov array X with row lengths kN +1 and state spaces S(N)

n

is an array of measurable functions f (N)
n : S(N)

n ×S
(N)
n+1→ R with row lengths kN :

f =


f (1)1 , . . . , f (1)k1

f (2)1 , . . . , f (2)k1
, . . . , f (2)k2

f (3)1 , . . . , f (3)k1
, . . . , f (3)k2

, . . . , f (3)k3
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Again, this determines a sequence of random variables

SN = f (N)
1 (X (N)

1 ,X (N)
2 )+ f (N)

2 (X (N)
2 ,X (N)

3 )+ · · ·+ f (N)
kN

(X (N)
kN

,X (N)
kN+1) (N ≥ 1),

which we also refer to as “additive functional.” But be careful! This is not a stochastic process,
because no joint distribution of S1,S2, . . . is specified.

Suppose f,g are two additive functionals on X. If X is a Markov chain,

f+g := { fn +gn}, cf := {c fn}, |f| := sup
n

(
sup
x,y
| fn(x,y)|

)
and ess sup |f| := sup

n
(ess sup | fn(Xn,Xn+1)|).

Similarly, if X is a Markov array with row lengths kN +1, then

f+g := { f (N)
n +g(N)

n }, cf := {c f (N)
n }, |f| := sup

N
sup

1≤n≤kN

(
sup
x,y
| f (N)

n (x,y)|
)
,

and
ess sup |f| := sup

N
sup

1≤n≤kN

(
ess sup | f (N)

n (X (N)
n ,X (N)

n+1)|
)
.



24 1 Additive functionals on Markov arrays

The notation |f| ≤ K a.s. will mean that ess sup | f | ≤ K ( “a.s.” stands for “almost surely”). An
additive functional is called uniformly bounded if there is a constant K such that |f| ≤ K, and
uniformly bounded a.s. if ∃K such that |f| ≤ K a.s.

1.2 Uniform ellipticity

1.2.1 The definition

A Markov chain X with state spaces Sn and transition probabilities πn,n+1(x,dy) is called uni-
formly elliptic, if there exists a Borel probability measure µn on Sn, Borel measurable functions
pn : Sn×Sn+1→ [0,∞), and a constant 0 < ε0 < 1 called the ellipticity constant such that for
all n≥ 1,

(a) πn,n+1(x,dy) = pn(x,y)µn+1(dy);
(b) 0≤ pn ≤ 1/ε0;
(c)

∫
Sn+1

pn(x,y)pn+1(y,z)µn+1(dy)> ε0.

We will see in Proposition 1.12 below that one can always assume without loss of generality
that µn are the measures µn(E) = P(Xn ∈ E).

The integral in (c) is the two-step transition probability P(Xn+2 = z|Xn = x), and we will
sometime call (c) a two-step ellipticity condition. For more general γ-step ellipticity condi-
tions, see §1.3.3.

Example 1.7 (Doeblin chains) Suppose X has finite state spaces Sn s.t |Sn| ≤M < ∞ for all
n, and πn

xy := πn,n+1(x,{y}) satisfy

(1) ∃ε ′0 > 0 s.t. for all n≥ 1 and (x,y) ∈Sn×Sn+1, either πn
xy = 0 or πn

xy > ε ′0;
(2) for all n, for all (x,z) ∈Sn×Sn+2, there exists y ∈Sn+1 such that πn

xyπn+1
yz > 0.

Doeblin chains are uniformly elliptic: Take µn to be the uniform measure on Sn and
pn(x,y) := πn

xy/|Sn+1|. Then (a) is clear, (b) holds with any ε0 < 1/M, and (c) holds with
ε0 := (ε ′0/M)2. Doeblin chains are named after W. Doeblin, who studied homogeneous count-
able Markov chains satisfying similar conditions.

Here is the formulation of the uniform ellipticity conditions for Markov arrays. A Markov
array X with state spaces S

(N)
n , transition probabilities π

(N)
n,n+1(x,dy), and row lengths kN +

1 is called uniformly elliptic, if there exist Borel probability measures µ
(N)
n on S

(N)
n , Borel

measurable functions p(N)
n : S(N)

n ×S
(N)
n+1→ [0,∞), and a constant 0 < ε0 < 1 as follows: For

all N ≥ 1 and 1≤ n≤ kN ,

(a) π
(N)
n,n+1(x,dy) = p(N)

n (x,y)µ(N)
n+1(dy);

(b) 0≤ p(N)
n ≤ 1/ε0;

(c)
∫
Sn+1

p(N)
n (x,y)p(N)

n+1(y,z)µ
(N)
n+1(dy)> ε0.

Example 1.8 Suppose X is a uniformly elliptic Markov chain and suppose Y is a Markov array
obtained from X by the change of measure construction described in Example 1.6. If the weights
ϕ
(N)
n (x,y) are uniformly bounded away from zero and infinity, then Y is uniformly elliptic.
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1.2.2 Contraction estimates and exponential mixing

Suppose X,Y are complete and separable metric spaces. A transition kernel from X to Y is
a family {π(x,dy)}x∈X of Borel probability measures on Y so that x 7→ π(x,E) is measurable
for all E ⊂ X Borel. A transition kernel {π(x,dy)}x∈X determines two Markov operators, one
acting on measures and the other acting on functions. The action on measures takes a probability
measure µ on X and maps it to a probability measure on Y via

π(µ)(E) :=
∫
X

π(x,E)µ(dx).

The action on functions takes a bounded Borel function u : Y→ R and maps it to a bounded
Borel function on X via

π(u)(x) =
∫
Y

u(y)π(x,dy).

The two operators are dual:
∫

u(y)π(µ)(dy) =
∫

π(u)(x)µ(dx).
These operators are contractions in the following sense. Define the oscillation of a function

u : Y→ R to be
Osc(u) := sup

y1,y2∈Y
|u(y1)−u(y2)|.

The contraction coefficient of {π(x,dy)}x∈X is

δ (π) := sup{|π(x1,E)−π(x2,E)| : x1,x2 ∈ X, E ∈B(Y)}.

The total variation distance between two probability measures µ1,µ2 on X is

‖µ1−µ2‖Var := sup{|µ1(A)−µ2(A)| : A⊂ X is measurable}

≡ 1
2

sup
{∫

w(x)(µ1−µ2)(dx)
∣∣w : X→ [−1,1] is measurable

}
.

Caution! ‖µ1− µ2‖Var is actually one half of the total variation of µ1− µ2, because it is equal
to (µ1−µ2)

+(X) and to (µ1−µ2)
−(X), but not to

|µ|(X) = (µ1−µ2)
+(X)+(µ1−µ2)

−(X).

Lemma 1.9 ([139]) Suppose X,Y are complete and separable metric spaces, and {π(x,dy)}x∈X
is a transition kernel from X to Y. Then:

(a) 0≤ δ (π)≤ 1.
(b) δ (π) = sup{Osc[π(u)] | u : Y→ R measurable, and Osc(u)≤ 1}.
(c) If Z is a complete separable metric space, π1 is a transition kernel from X to Y, and π2 is a

transition kernel from Y to Z, then δ (π1 ◦π2)≤ δ (π1)δ (π2).
(d) Osc[π(u)]≤ δ (π)Osc(u) for every u : Y→ R bounded and measurable.
(e) ‖π(µ1)−π(µ2)‖Var ≤ δ (π)‖µ1−µ2‖Var for all Borel probability measures µ1,µ2 on X.
(f) Suppose λ is a probability measure on X×Y with marginals µX, µY, and transition kernel
{π(x,dy)}, i.e. λ (E×Y) = µX(E), λ (X×E) = µY(E), and

λ (dx,dy) =
∫
X

π(x,dy)µX(dx).

Let f ∈ L2(µX),g ∈ L2(µY) be two elements with zero integral. Then
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X×Y

f (x)g(y)λ (dx,dy)
∣∣∣∣≤√δ (π)‖ f‖L2(µX)

‖g‖L2(µY).

Proof. (a) is trivial.
The inequality ≤ in (b) is because for every E ∈ B(Y), u := 1E satisfies Osc(u) ≤ 1. To

see ≥, fix some u : Y→ R measurable such that Osc(u) ≤ 1. Suppose first that u is a simple

function (a measurable function with finitely many values), then we can write u = c+
m

∑
i=1

αi1Ai

where c ∈ R, |αi| ≤ 1
2 Osc(u), and Ai measurable and pairwise disjoint. For every pair of points

x1,x2 ∈ X,

|π(u)(x1)−π(u)(x2)|=

∣∣∣∣∣ m

∑
i=1

αi[π(x1,Ai)−π(x2,Ai)]

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
π(x1,Ai)>π(x2,Ai)

αi[π(x1,Ai)−π(x2,Ai)]

∣∣∣∣∣+
∣∣∣∣∣ ∑
π(x1,Ai)<π(x2,Ai)

αi[π(x1,Ai)−π(x2,Ai)]

∣∣∣∣∣
≤ 1

2
Osc(u)δ (π)+

1
2

Osc(u)δ (π) = δ (π)Osc(u) = δ (π).

So Osc[π(u)] ≤ δ (π) for all simple functions u with Osc(u) ≤ 1. A standard approximation
argument now shows that Osc[π(u)] ≤ δ (π) for all measurable u s.t. Osc(u) ≤ 1. This proves
(b). Part (c) and (d) immediately follow.

To see (e), we restrict to the non-trivial case µ1 6= µ2. Let µ := µ1− µ2, and decompose
µ = µ+− µ− where µ± are singular positive measures (this is the Jordan decomposition).
Since µ(X) = 0, µ+,µ− has equal total mass, and

µ
±(X) =

1
2
(µ+(X)+µ

−(X)) =
1
2
|µ|(X)≡ ‖µ1−µ2‖Var.

Let

µ̂1 := µ
+/‖µ1−µ2‖Var , µ̂2 := µ

−/‖µ1−µ2‖Var , µ̂ := µ̂1− µ̂2 =
µ1−µ2

‖µ1−µ2‖Var
.

Note that µ̂1 and µ̂2 are probability measures.
For every non-constant measurable function w : Y→ [−1,1],

1
2
∫
Yw(y)π(µ)(dy)

‖µ1−µ2‖Var
=

1
2

∫
Y

w(y1)π(µ̂1)(dy1)−
∫
Y

w(y2)π(µ̂2)(dy2)

=
1
2

∫
X

π(w)(x1)µ̂1(dx1)−
∫
X

π(w)(x2)µ̂2(dx2)

=
1
2

∫
X

∫
X
[π(w)(x1)−π(w)(x2)]µ̂1(dx1)µ̂2(dx2), because µ̂i(X) = 1,

≤ 1
2

δ (π)Osc(w)≤ δ (π),by (b) and because Osc(w)≤ 2‖w‖∞ ≤ 2.

Passing to the supremum over all w(y) gives part (e).
Part (f) is the content of Lemma 4.1 in [139, Lemma 4.1], and we reproduce the proof given

there. Consider the σ -algebra G := {X×E : E ⊂Y is measurable}, which represents the infor-
mation on the Y–coordinate of (x,y) ∈ X×Y.
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Let π̃y be a measurable family of conditional probabilities given G , i.e. π̃y is a probability
measure on X×{y}, y 7→

∫
f dπ̃y is Borel for every Borel function f : X×Y→ [0,1], λ =∫

X×Y π̃ydλ , and for every λ–absolutely integrable f (x,y),

Eλ ( f (x,y)|G )(y) =
∫
X

f dπ̃y λ -a.e.

We may identify π̃y with a probability measure π̂(y,dx) on X defined by

π̂(y,E) = π̃y(E×{y}) (E ⊂ X Borel).

It is useful to think of π̂(y,dx) as the transition kernel “which goes the opposite way” to π(x,dy).
Indeed, if π(x,dy) is the transition probability of a Markov chain {Xn} from n to n+ 1, and λ

is the joint distribution of (Xn,Xn+1), then π̂(y,dx) is the transition probability from n+1 to n,
i.e. π̂(y,E) = P(Xn ∈ E|Xn+1 = y).

The operators π : L2(µY)→ L2(µX) and π̂ : L2(µX)→ L2(µY) are dual to one another, be-
cause

∫
X f (x)π(g)(x)dµX(x) and

∫
Y π̂( f )(y)g(y)dµY(y) are both equal to

∫
f (x)g(y)λ (dx,dy).

CLAIM: Q := π ◦ π̂ : L2(µX) → L2(µX) is self-adjoint, Q preserves the linear subspace
L2

0(µX) := { f ∈ L2(µX) :
∫

f dµX = 0}, and the spectral radius of Q : L2
0→ L2

0 is at most δ (Q).

Proof of the claim: Q is self adjoint, because Q∗ = (ππ̂)∗ = π̂∗π∗ = ππ̂ .
It is useful to notice that Q is given by (Q f )(x) =

∫
X f (x′)Q(x,dx′) where Q(x,E) is the prob-

ability measure on X given by Q(x,E) =
∫

π̂(y,E)π(x,dy). Q(x,dx′) is a transition probability
from X to X. Notice that Q(µX) = µX:

(QµX)(E) =
∫
X

Q(x,E)µX(dx) =
∫
X

∫
Y

µX(dx)π(x,dy)π̃y(E×{y})

=
∫
X×Y

π̃y(E×{y})λ (dx,dy) =
∫
X×Y

π̃y(E×Y)dλ = λ (E×Y) = µX(E).

Thus, for all f ∈ L2(µX),
∫

Q f dµX =
∫

f d(QµX) =
∫

f dµX. It follows that Q : L2(µX)→
L2(µX) preserves the linear space L2

0.

For every ϕ ∈ L2
0∩L∞, ‖ϕ‖∞ ≤Osc(ϕ). Since Q preserves L2

0∩L∞, for every f in this space,
we have by parts (c) and (d) that

‖Qn f‖2 ≤ ‖Qn f‖∞ ≤ Osc(Qn f )≤ δ (Q)n Osc( f ). (1.2.1)

This implies that the spectral radius of Q : L2
0→ L2

0 is less than or equal to δ (Q). Otherwise
there is an L2

0-function, part of whose spectral decomposition corresponds to the part of the
spectrum outside {λ ∈ R : |λ | ≤ δ (Q)+ ε} (self-adjoint operators have real spectrum). Any
sufficiently close L2

0 ∩ L∞–function would have components with similar properties; but the
existence of such components is inconsistent with (1.2.1). The proof of the claim is complete.

We are ready for the proof of (f). Since Q : L2
0 → L2

0 is a self-adjoint operator on a Hilbert
space with spectral radius ≤ δ (Q), 〈Q( f ), f 〉L2

0
≤ δ (Q)‖ f‖2

L2
0

for all f ∈ L2
0(µX). It follows that

‖π̂( f )‖2
L2

0(µY)
= 〈π̂( f ), π̂( f )〉L2

0(µY) = 〈Q( f ), f 〉L2
0(µX)

≤ δ (Q)‖ f‖2
L2

0(µX)
.

So every f ∈ L2
0(µX),g ∈ L2

0(µY)
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X×Y

f (x)g(y)λ (dx,dy)
∣∣∣∣= ∣∣∣∣∫

Y
µY(dy)

∫
X

π̂(y,dx) f (x)g(y)
∣∣∣∣= 〈π̂( f ),g〉L2(µY)

≤ ‖π̂( f )‖2‖g‖2 ≤
√

δ (Q)‖ f‖2‖g‖2, as required. �

We now return to the setup of Markov arrays X= {X (N)
n : 1≤ n≤ kN +1,N ≥ 1} and consider

the following two-step transition probabilities

π
(N)
n,n+2(x,E) :=

∫
π
(N)
n+1,n+2(y,E)π

(N)
n,n+1(x,dy)

defined for 1≤ n <N <∞, x∈S(N)
n , and E ∈B(S

(N)
n+2). The uniform ellipticity condition gives

the following uniform bound for δ (π
(N)
n,n+2):

Lemma 1.10 Let X be a uniformly elliptic Markov array with ellipticity coefficient ε0. Then
sup

N
sup

1≤n<kN

δ (π
(N)
n,n+2)≤ 1− ε0. Similarly for Markov chains.

Proof. We fix N and drop the superscripts (N).
Uniform ellipticity implies that πn,n+2(x,E)� µn+2 and that the Radon-Nikodym density is

bounded from below by ε0. This allows us to write

πn,n+2(x,dy) = ε0µn+2(dy)+(1− ε0)π̂n,n+2(x,dy). (1.2.2)

Note that the first term does not depend on x.
Let u :Sn+2→R be a measurable function with Osc(u)≤ 1, then we can write u(·)= c+w(·)

where c is a constant and ‖w‖∞ ≤ 1
2 . A direct calculation shows that∣∣∣∣∫

Sn

u(z)πn,n+2(x1,dz)−
∫
Sn

u(z)πn,n+2(x2,dz)
∣∣∣∣

=

∣∣∣∣∫
Sn

w(z)πn,n+2(x1,dz)−
∫
Sn

w(z)πn,n+2(x2,dz)
∣∣∣∣

= (1− ε0)

∣∣∣∣∫
Sn

w(z)π̂n,n+2(x1,dz)−
∫
Sn

w(z)π̂n,n+2(x2,dz)
∣∣∣∣

≤ (1− ε0)‖w‖∞ [πn,n+2(x1,Sn+2)+πn,n+2(x2,Sn+2)]≤ 1− ε0,

where the last inequality holds since ‖w‖∞ ≤ 1
2 . �

Proposition 1.11 If X is uniformly elliptic, then there exist θ ∈ (0,1) and Cmix > 0, which only
depend on the ellipticity constant ε0 as follows. Suppose h(N)

n (x,y) are measurable functions on
S

(N)
n ×S

(N)
n+1, and let h(N)

n := h(N)
n (X (N)

n ,X (N)
n+1), then

(1) If h(N)
n is bounded and E(h(N)

n ) = 0, then for all 1≤ m < n≤ kN

‖E
(
h(N)

n |X (N)
m
)
‖∞ ≤Cmixθ

n−m‖h(N)
n ‖∞. (1.2.3)

(2) If Var(h(N)
n ),Var(h(N)

m )< ∞ and E(h(N)
n ),E(h(N)

m ) = 0, then for all 1≤ m < n≤ kN

‖E(h(N)
n |X (N)

m )‖2 ≤Cmixθ
n−m‖h(N)

n ‖2. (1.2.4)

|E(h(N)
m h(N)

n )| ≤Cmixθ
n−m‖h(N)

m ‖2‖h
(N)
n ‖2. (1.2.5)
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The analogous statements hold for Markov chains.

Proof. We fix N and let πn,n+1 := π
(N)
n,n+1, Xn = X (N)

n , hn := h(N)
n . Define for k ≤ n

wn,k(Xk) := E(hn|Xk),

then wn,n(Xn) :=E(hn|Xn) =
∫

hn(Xn,y)πn,n+1(Xn,dy) = πn,n+1[hn(Xn, ·)]. By the Markov prop-
erty, wn,n(Xn) = E(hn|Xn,Xn−1, . . . ,X1), and this allows us to write πn−1,n(wn,n)(Xn−1) ≡
E(wn,n(Xn)|Xn−1)=E(E(hn|Xn, . . . ,X1)|Xn−1))=E(hn|Xn−1). So πn−1,n(wn,n)(Xn−1)=wn,n−1(Xn−1).

Applying the Markov operator πn−2,n−1 on both sides gives in a similar way (πn−2,n−1 ◦
πn−1,n)(wn,n)(Xn−2) = wn,n−2(Xn−2).

Continuing in this way we arrive eventually to the identity

wn,m(Xm) := E(hn|Xm) = (πm,m+1 ◦ · · · ◦πn−1,n)(wn,n)(Xm).

By the previous lemmas Osc[wn,m]≤ (1− ε0)
b n−m

2 cOsc[wn,n].
Notice that for every bounded measurable function v, ‖v‖∞ ≤ |E(v)|+Osc(v). Since by as-

sumption E(wn,m(Xm)) = E(hn) = 0,

‖wn,m(Xm)‖∞ ≤ (1− ε0)
b n−m

2 cOsc[wn,n].

Osc[wn,n]≤ 2‖wn,n‖∞ ≤ 2‖hn‖∞, and part 1 follows.
Part 2 is proved in a similar way, using Lemma 1.9(f). �

1.2.3 Hitting probabilities and bridge probabilities

Throughout this section, let X be an inhomogeneous Markov array with row lengths kN , and
data S

(N)
n , π

(N)
n,n+1, π(N). Suppose X is uniformly elliptic:

π
(N)
n,n+1(x,dy) = p(N)

n (x,y)µn+1(dy)

where 0≤ p(N)
n ≤ 1/ε0 and

∫
Sn+1

p(N)
n (x,y)p(N)

n+1(y,z)µn+1(dy)> ε0.

The following proposition estimates P(X (N)
n ∈ E) in terms of µ

(N)
n :

Proposition 1.12 Under the above assumptions, for every 3≤ n≤ kN +1 < ∞ and every Borel

set E ⊂S
(N)
N , ε0 ≤ P(X (N)

n ∈E)

µ
(N)
n (E)

≤ ε
−1
0 . Similarly for Markov chains.

Proof. We fix a row N, and drop the superscripts (N). Define a probability measure on Sn by
Pn(E) = P(Xn ∈ E), then for every 1≤ n < kN , for every bounded measurable ϕ : Sn+2→ R,∫

ϕdPn+2 = E(ϕ(Xn+2)) = E
(
E
(
E
(
ϕ(Xn+2)

∣∣Xn+1,Xn
)∣∣∣∣Xn

))
= E

(
E
(
E
(
ϕ(Xn+2)

∣∣Xn+1
)∣∣Xn

))
(∵Markov property)

=
∫ ∫ ∫

ϕ(z)πn+1,n+2(y,dz)πn,n+1(x,dy)Pn(dx)

=
∫ ∫ ∫

ϕ(z) pn+1(y,z)pn(x,y)µn+2(dz)µn+1(dy)Pn(dx)
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=
∫

ϕ(z)
[∫(∫

pn+1(y,z)pn(x,y)µn+1(dy)
)

Pn(dx)
]

µn+2(dz)

The quantity in the square brackets is bounded below by ε0 and bounded above by ε
−1
0 . So the

measures Pn+2,µn+2 are equivalent, and ε0 ≤ dPn+2
dµn+2

≤ ε
−1
0 . �

Notice that in checking the uniform ellipticity condition, we are free to modify µ
(N)
n by a den-

sity bounded away form zero and infinity. Thus, proposition 1.12 allows us to assume without
loss of generality that µ

(N)
n (E) = P(X (N)

n ∈ E) for 3≤ n≤ kN .

The ellipticity property implies that for all x ∈S
(N)
n ,z ∈S

(N)
n+2,

Z(N)
n (x,z) :=

∫
Sn+1

p(N)
n (x,y)p(N)

n+1(y,z)µ
(N)
n+1(dy) 6= 0.

This allows us to make the following definition: The bridge distribution of X (N)
n+1 given that

X (N)
n = x and X (N)

n+2 = z is the measure on S
(N)
n+1 which assigns to a Borel set E ⊂ S

(N)
n+1 the

probability

P

(
E
∣∣∣∣X (N)

n = x
X (N)

n+2 = z

)
:=

1

Z(N)
n (x,z)

∫
E

p(N)
n (x,y)p(N)

n+1(y,z)µ
(N)
n+1(dy). (1.2.6)

The definition makes sense because Z(N)
n (x,z) 6= 0. The following lemma explains why the

formula (1.2.6) is reasonable:
Lemma 1.13 Let ψE(x,z) :=right hand side of (1.2.6), then

ψE(X
(N)
n ,X (N)

n+2) = P
(

X (N)
n+1 ∈ E

∣∣∣∣X (N)
n ,X (N)

n+2

)
P-almost everywhere.

We omit the proof, which is routine. The lemma does not “prove” (1.2.6): Conditional prob-
abilities are only defined almost everywhere, and are by their very nature non–canonical. But
(1.2.6) makes sense everywhere. It is a definition, not a theorem.

1.3 Structure constants

Throughout this section we assume that f is an additive functional on a uniformly elliptic
Markov array X with row lengths kN +1, state spaces S(N)

n , and transition probabilities as in the
ellipticity condition: π

(N)
n,n+1(x,dy) = pn(x,y)µn(dy), where µ

(N)
n (E) = P(X (N)

n ∈ E). See §1.2.3

why we may assume this on µ
(N)
n .

1.3.1 Hexagons, balance, and structure constants

A Level N hexagon at position 3≤ n≤ kN is a configuration

P(N)
n :=

(
xn−2; xn−1

yn−1
; xn

yn
;yn+1

)
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where xi,yi ∈S
(N)
i . A hexagon is called admissible if

p(N)
n−2(xn−2,xn−1)p(N)

n−1(xn−1,xn)p(N)
n (xn,yn+1) 6= 0

p(N)
n−2(xn−2,yn−1)p(N)

n−1(yn−1,yn)p(N)
n (yn,yn+1) 6= 0

Admissible hexagons exist because of uniform ellipticity.
The space of level N admissible hexagons at position n will be denoted by Hex(N,n).
One can put a natural probability measure on Hex(N,n) by taking {Y (N)

n } to be an indepen-
dent copy of {X (N)

n }, and looking at the distribution of(
X (N)

n−2;
X (N)

n−1

Y (N)
n−1

; X (N)
n

Y (N)
n

;Y (N)
n+1

)
conditioned on

X (N)
n−2 = Y (N)

n−2

X (N)
n+1 = Y (N)

n+1.

Writing the measure explicitly is possible, but cumbersome. It is better to think of it as the result

of the following sampling procedure for
(

xn−2; xn−1
yn−1

; xn
yn

;yn+1

)
:

◦ (xn−2,xn−1) is sampled from the distribution of (X (N)
n−2,X

(N)
n−1);

◦ (yn,yn+1) is sampled from the distribution of (Y (N)
n ,Y (N)

n+1) (so it is independent of (xn,xn+1));
◦ xn and yn−1 are conditionally independent given the previous choices, and are sampled using

the bridge distributions

P(xn ∈ E|xn−1,yn+1) = P

(
X (N)

n ∈ E
∣∣∣∣X (N)

n−1 = xn−1

X (N)
n+1 = yn+1

)

P(yn−1 ∈ E|xn−2,yn) = P

(
Y (N)

n−1 ∈ E
∣∣∣∣Y (N)

n−2 = xn−2

Y (N)
n = yn

)
.

We call the resulting measure the hexagon measure on Hex(N,n).

The balance of a hexagon P(N)
n :=

(
xn−2; xn−1

yn−1
; xn

yn
;yn+1

)
is

Γ (P(N)
n ) := f (N)

n−2(xn−2,xn−1)+ f (N)
n−1(xn−1,xn)+ f (N)

n (xn,yn+1)

− f (N)
n−2(xn−2,yn−1)− f (N)

n−1(yn−1,yn)− f (N)
n (yn,yn+1).

(1.3.1)

Definition 1.14 The structure constants of f = { f (N)
n } are

u(N)
n := u(N)

n (f) := E
(
(Γ (P(N)

n )2)1/2(expectation on Hex(N,n))

d(N)
n (ξ ) := d(N)

n (ξ , f) := E(|eiξΓ (P(N)
n )−1|2)1/2(expectation on Hex(N,n))

UN :=UN(f) :=
kN

∑
n=3

(u(N)
n )2 , DN(ξ ) :=

kN

∑
n=3

d(N)
n (ξ )2.

(1.3.2)

If X is a Markov chain, we write un = u(N)
n , dn(ξ ) = d(N)

n (ξ ).
The significance of the structure constants will become clear in later chapters. At this point

we can only hint and say that the behavior of UN determines if Var(SN)→ ∞, and the behavior
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of DN(ξ ) determines “how close” f is to an additive functional whose values all belong to the
lattice (2π/ξ )Z.

Lemma 1.15 Suppose f,g are two additive functionals of on a uniformly elliptic Markov array
X, then

(a) d(N)
n (ξ +η , f)2 ≤ 8(d(N)

n (ξ , f)2 +d(N)
n (η , f)2);

(b) d(N)
n (ξ , f+g)2 ≤ 8(d(N)

n (ξ , f)2 +d(N)
n (ξ ,g)2);

(c) d(N)
n (ξ , f)≤ |ξ |u(N)

n (f);
(d) u(N)

n (f+g)2 ≤ 2[u(N)
n (f)2 +u(N)

n (g)2].

Proof. For any z,w ∈ C such that |z|, |w| ≤ 2, we have 1

|zw+ z+w|2 ≤ 8(|z|2 + |w|2).

So if P is a level N hexagon P at position n, and ξP := ξΓ (P), ηP := ηΓ (P), then

|ei(ξP+ηP)−1|2 = |(eiξP−1)(eiηP−1)+(eiξP−1)+(eiηP−1)|2

≤ 8
(
|eiξP−1|2 + |eiηP−1|2

)
. (1.3.3)

Part (a) follows by integrating over all P ∈ Hex(n,N). Part (b) has a similar proof which we
omit. Part (c) is follows from the inequality |eiθ − 1|2 = 4sin2 θ

2 ≤ |θ |
2. Part (d) follows from

Minkowski’s inequality and |ab| ≤ 1
2(a

2 +b2). �

Example 1.16 (Gradients) Suppose fn(x,y) = an+1(y)−an(x)+ cn for all n, then the balance
of each hexagon is zero and un,dn(ξ ) are all zero. For a converse statement, see §2.2.1.

Suppose fn(x,y) = an+1(y)−an(x)+cn mod 2π

ξ
Z for all n. Then eiξΓ (P)= 1 for all hexagons

P, and dn(ξ ) are all zero. For a converse statement, see §3.3.1.

Example 1.17 (Sums of independent random variables) Let SN = X1 + · · ·+ XN . where Xi
are independent real valued random variables with non-zero variance. Let us see what un and
dn(ξ ) measure in this case.

Proposition 1.18 u2
n = 2

(
Var(Xn−1) +Var(Xn)

)
and

N

∑
n=3

u2
n � Var(SN) (i.e ∃N0 such that the

ratio of the two sides is uniformly bounded for N ≥ N0).

Proof. Let {Yn} be an independent copy of {Xn}, and let X∗i := Xi−Yi (the symmetrization of
Xi). A simple calculation shows that the balance of a position n hexagon is equal in distribution
to X∗n−1 +X∗n . Clearly E[X∗i ] = 0 and E[(X∗i )2] = 2Var(Xi). Consequently,

u2
n(ξ ) = E[(X∗n−1)

2 +(X∗n )
2] = 2Var(Xn−1)+2Var(Xn).

Summing over n we obtain ∑
N
n=3 u2

n � Var(SN). �

We remark that the proposition also holds for Markov arrays satisfying the one-step ellipticity
condition (see §1.3.3).

Next we relate d2
n(ξ ) to the distance of Xi from a coset of 2π

ξ
Z. The distance of a random

variable X from a coset 2π

ξ
Z is measured by the following quantity:

1 (zw+ z+w)2 = z2w2 + z2 +w2 +2(z2w+ zw2 + zw), and |z2w2| ≤ 4|zw| ≤ 2|z|2 +2|w|2, |z2w| ≤ 2|z|2, 2|zw| ≤ |z|2 + |w|2, |zw2| ≤
2|w|2.
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D(X ,ξ ) := min
θ∈R

E
[

dist2
(

X ,θ +
2π

ξ
Z
)]1/2

.

The minimum exists because the quantity we are minimizing is a periodic and continuous func-
tion of θ .

Proposition 1.19 For every ξ 6= 0 dn(ξ ) = 0 iff Xi ∈ coset of 2π

ξ
Z a.s. (i = n−1,n). In addition,

there exists C(ξ )> 1 such that if dn(ξ ) 6= 0 then

C(ξ )−1 ≤ d2
n(ξ )

D(Xn−1,ξ )2 +D(Xn,ξ )2 ≤C(ξ ).

Proof. Choose θi ∈ [0, 2π

ξ
] s.t. D(Xi,ξ ) = E[dist2(Xi,θi +

2π

ξ
Z)]. There is no loss of generality

in assuming that θi = 0, because the structure constants of fi(x) = x and gi(x) = x−θi are the
same. Henceforth we assume that

D(Xi,ξ ) = E[dist2(Xi,
2π

ξ
Z)]. (1.3.4)

As in the proof of the previous proposition, the balance of a position n hexagon is equal in
distribution to X∗n−1 +X∗n , where X∗i := Xi−Yi and {Yi} is an independent copy of {Xi}. So
d2

n(ξ ) = E(|ei(X∗n−1+X∗n )−1|2).
We need the following elementary facts:

|ei(x+y)−1|2 = 4sin2 x+y
2 = 4(sin x

2 cos y
2 + sin y

2 cos x
2)

2 (x,y ∈ R) (1.3.5)
4

π2 dist2(t,πZ)≤ sin2 t ≤ dist2(t,πZ) (t ∈ R) (1.3.6)

P[X∗i ∈ [0, π

2ξ
]+ 2π

ξ
Z]≥ 1

4
(i≥ 1) (1.3.7)

(1.3.5) is trivial; (1.3.6) is because of the inequality 2t/π ≤ sin t ≤ t on [0, π

2 ], which the

reader may verify by drawing the graphs. To see (1.3.7) note that R =
(
[0, π

2ξ
]+ π

ξ
Z
)
](

[0, π

2ξ
]+ π

2ξ
+ π

ξ
Z
)
, and therefore there exists k = 0,1 such that P[Xi ∈ [0, π

2ξ
]+ kπ

2ξ
+ π

ξ
Z]≥ 1

2 .

Since Yi is an independent copy of Xi, P[Xi,Yi ∈ [0, π

2ξ
]+ kπ

2ξ
+ π

ξ
Z] ≥ 1

4 . This event is a subset

of
[
X∗i ∈ [0, π

2ξ
]+ 2π

ξ
Z
]
.

Returning to the identity d2
n(ξ ) = E(|ei(X∗n−1+X∗n )−1|2), we see that by (1.3.5)

d2
n(ξ ) = E(|eiξ (X∗n−1+X∗n )−1|2)

= 4E
(

sin2 ξ X∗n−1
2 cos2 ξ X∗n

2 + sin2 ξ X∗n
2 cos2 ξ X∗n−1

2 + 1
2 sin(ξ X∗n−1)sin(ξ X∗n )

)
= 4E

(
sin2 ξ X∗n−1

2

)
E
(

cos2 ξ X∗n
2

)
+4E

(
sin2 ξ X∗n

2

)
E
(

cos2 ξ X∗n−1
2

)
(1.3.8)

where we used the symmetry of the distribution of X∗i to see that E[sin(ξ X∗i )] = 0. By (1.3.7),

E
(

cos2 ξ X∗i
2

)
≥ cos2(π

4 )P[X
∗
i ∈ [0, π

2ξ
] + 2π

ξ
Z] ≥ 1

8 , and therefore there exists Cn ∈ [1
8 ,4] such

that
d2

n(ξ ) =Cn

[
E
(

sin2 ξ X∗n−1
2

)
+E

(
sin2 ξ X∗n

2

)]
. (1.3.9)
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It remains to bound E
(

sin2 ξ X∗n−1
2

)
in terms of D(Xi,ξ ).

Recall that X∗i = Xi−Yi where Yi is an independent copy of Xi, and use (1.3.5) and indepen-
dence to find that

E
(

sin2 ξ X∗i
2

)
= E

[(
sin

ξ Xi

2
cos

ξYi

2
− sin

ξYi

2
cos

ξ Xi

2

)2
]

= 2E(sin2 ξ Xi
2 )E(cos2 ξ Xi

2 )− 1
2
E(sin(ξ Xi))

2 ≤ 2E(sin2 ξ Xi
2 )

≤ 2E(dist2(ξ Xi
2 ,πZ))≡ ξ 2

2 E(dist2(Xi,
2π

ξ
Z)) =

ξ 2

2
D(Xi,ξ ), by (1.3.4),(1.3.6).

Next by (1.3.6) and the definition of D(Xi,ξ ),

E
(

sin2 ξ X∗i
2

)
≥ 4

π2E
(

dist2(ξ X∗i
2 ,πZ)

)
=

ξ 2

π2E
(

dist2(Xi−Yi,
2π

ξ
Z)
)

=
ξ 2

π2EYi

[
EXi

(
dist2(Xi,Yi +

2π

ξ
Z)
)]
≥ ξ 2

π2EYi [D(Xi,ξ )] =
ξ 2

π2D(Xi,ξ ).

The proposition follows from (1.3.9). �

1.3.2 The ladder process

The material of this section is needed for the proofs of the gradient lemma and the reduction
lemma in chapters 2 and 3, but will not be used elsewhere.

Suppose X= {X (N)
i } is a Markov array with row lengths kN +1, state spaces S(N)

n , and tran-
sition probabilities π

(N)
n,n+1(x,dy). Let µ

(N)
n (E) := P(X (N)

n ∈ E). Suppose X is uniformly elliptic.
In particular,

π
(N)
n,n+1(x,dy) = p(N)

n (x,y)µ(N)
n+1(dy),

with p(N)
n (x,y) as in the uniform ellipticity condition.

We would like to define a new Markov array L, called the Ladder process, with the following
structure (figure 1.3.2):

(a) Each row has entries L(N)
n = (Z(N)

n−2,Y
(N)
n−1,X

(N)
n ) (3≤ n≤ kN +1),

(b) {Z(N)
i } is an independent copy of X,

(c) Y (N)
n−1 ∈S

(N)
n−1 are independent given {X (N)

i },{Z
(N)
i }, and

(d) P
(

Y (N)
n−1 ∈ E

∣∣∣∣{X (N)
i }= {xi},{Z(N)

i }= {zi}
)
= P

(
X (N)

n−1 ∈ E
∣∣∣∣X (N)

n−2 = zn−2

X (N)
n = xn

)
,

see the discussion of bridge probabilities above.
Let L(N)

n = (zn−2,yn−1,xn). Define the probability measures

m(N)
n (dL(N)

n ) :=
p(N)

n−2(zn−2,yn−1)p(N)
n−1(yn−1,xn)∫

S
(N)
n−1

p(N)
n−2(zn−2,η)p(N)

n−1(η ,xn)µ
(N)
n−1(dη)

µ
(N)
n−2(dzn−2)µ

(N)
n−1(dyn−1)µ

(N)
n (dxn).
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Fig. 1.1 The ladder process. {Z(N)
i }, {X

(N)
i } are independent copies. Y (N)

n are conditionally independent given {X (N)
i },{Z

(N)
i }.

Lemma 1.20 L exists, is Markov, and is uniformly elliptic with ellipticity constant ε2
0 (with

respect to the background measure mn), where ε0 is the ellipticity constant of X. For every N,

(1) {X (N)
n }kN+1

n=3 , {Z(N)
n }kN−1

n=1 are independent, and distributed like the corresponding pieces of
the N-th rows of X.

(2) Y (N)
n are conditionally independent given {X (N)

i }, {Z
(N)
i }.

(3) P(N)
n :=

(
Z(N)

n−2,
Z(N)

n−1

Y (N)
n−1

Y (N)
n

X (N)
n

,X (N)
n+1

)
is distributed like the level N, position n, random hexagon.

Proof. Let P

(
dyn

∣∣∣∣X (N)
n−1 = zn−1

X (N)
n+1 = xn+1

)
denote the bridge measure on S

(N)
n with boundary conditions

X (N)
n−1 = zn−1,X

(N)
n+1 = xn+1. Define the Markov array L with

◦ Rows L(N)
n = (zn−2,yn−1,xn) (3≤ n≤ kN +1, N ≥ 1)

◦ State spaces: S(N)
n :=S

(N)
n−2×S

(N)
n−1×S

(N)
n (3≤ n≤ kN +1).

◦ Initial distribution: π(N)(dz1,dy2,dx3) =
∫

S
(N)
1 ×S

(N)
3

µ
(N)
1 (dz)µ(N)

3 (dx)P

(
dy
∣∣∣∣X (N)

1 = z
X (N)

3 = x

)
◦ Transition probabilities π

(N)
n ((zn−2,yn−1,xn),En−1×En×En+1) =

=
∫

En−1×En×En+1

p(N)
n−2(zn−2,zn−1)p(N)

n (xn,xn+1)P

(
dyn

∣∣∣∣X (N)
n−1 = zn−1

X (N)
n+1 = xn+1

)
.

(We evolve zn−2→ zn−1 and xn→ xn+1 independently according to π
(N)
n−2(zn−2,dz), π

(N)
n (xn,dx),

and then sample yn using the relevant bridge distribution.)
It is routine to check that L has the structure described at the beginning of the section, and

that it satisfies the properties listed in the lemma.
Here for example is the proof of uniform ellipticity. In what follows we fix N, suppose

xi,yi,zi ∈Si, and write p(N)
n = p whenever the subscript is clear from the variables.

Then π
(N)
n (Ln,dLn+1) = P(Ln,Ln+1)mn+1(dLn+1), where
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P(Ln,Ln+1) := p(zn−2,zn−1)p(xn,xn+1).

If X has ellipticity constant ε0, then P(Ln,Ln+1)≤ ε
−2
0 , and∫

P(Ln,Ln+1)P(Ln+1,Ln+2)mn+1(dLn+1)

≥
∫∫∫

p(zn−2,zn−1)p(xn,xn+1)p(zn−1,zn)p(xn+1,xn+2)×

× p(zn−1,yn)p(yn,xn+1)∫
p(zn−1,η)p(η ,xn+1)µn(dη)

µn−1(dzn−1)µn(dyn)µn+1(dxn+1)

=
∫∫

p(zn−2,zn−1)p(xn,xn+1)p(zn−1,zn)p(xn+1,xn+2)µn−1(dzn−1)µn+1(dxn+1)

=
∫

p(zn−2,zn−1)p(zn−1,zn)µn−1(dzn−1)
∫

p(xn,xn+1)p(xn+1,xn+2)µn+1(dxn+1)

≥ ε
−2
0 .

So the ladder process is uniformly elliptic with ellipticity constant ε2
0 . �

1.3.3 γ-step ellipticity conditions

We mention a few possible variants of the uniform ellipticity condition discussed in this chapter.
Suppose X is a Markov array with row lengths kN +1 and transition probabilities taking the form
π
(N)
n,n+1(x,dy) = p(N)

n (x,y)µ(N)
n+1(dy).

The one-step ellipticity condition is that for some ε0 > 0, for all N ≥ 1, 1≤ n≤ kN , and for
every x ∈S

(N)
n ,y ∈S

(N+1)
n+1 ,

ε0 < p(N)
n (x,y)≤ ε

−1
0 .

Notice that this implies that all transitions x→ y have positive probability.
The γ-step ellipticity condition (γ = 2,3, . . .) is that for some ε0 > 0, for all N ≥ 1,n≤ kN ,

0≤ p(N)
n ≤ 1/ε0

and for all n≤ kN− γ +1, and every x ∈S
(N)
n ,z ∈S

(N)
n+γ , the iterated integral

∫
S

(N)
n+1

· · ·
∫

S
(N)
n+γ

p(N)
n (x,y1)

γ−2

∏
i=1

p(N)
n+i(yi,yi+1)p(N)

n+γ−1(yγ−1,z)µn+1(dy1) · · ·µnγ(dyγ−1)

is bigger than ε0 (with the convention that
0

∏
i=1

:= 1).

The ellipticity condition we use in this work corresponds to γ = 2. This is weaker than the
one-step condition, but stronger than the γ-step condition for γ ≥ 3.

The results of this work could in principle be reproduced assuming only a γ-step condition
with γ ≥ 2. To do this, one needs to replace the space of hexagons by the space of 2(γ +1)-gons(

xn−γ ; xn−γ+1
yn−γ+1

· · · xn
yn

;yn+1

)
with its associated structure constants, and its associated γ-ladder
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process L(N)
n = (Z(N)

n−γ−1,Y
(N)
n−γ , . . . ,Y

(N)
n−1,X

(N)
n ). Since no new ideas are needed, and since our

notation is already heavy enough as it is, we will only treat the case γ = 2 in this work.

1.3.4 Uniform ellipticity and strong mixing conditions

The contents of this section are not used elsewhere in this work.

Suppose (Ω ,F ,P) is a probability space, and let A ,B be two sub σ -algebras of F . There
are several standard measures for the dependence between A and B:

α(A ,B) := sup{|P(A∩B)−P(A)P(B)| : A ∈A ,B ∈B};

ρ(A ,B) := sup
{
|E( f g)−E( f )E(g)| : f ∈ L2(A ),g ∈ L2(B);

‖ f −E( f )‖2 = 1,‖g−E(g)‖2 = 1

}
;

φ(A ,B) := sup
{∣∣P(B|A)−P(B)∣∣ : A ∈A ,B ∈B,P(A) 6= 0

}
;

ψ(A ,B) := sup
{∣∣∣∣ P(A∩B)
P(A)P(B)

−1
∣∣∣∣ : A ∈A ,B ∈B with non-zero probabilities

}
.

If one of these quantities vanishes then they all vanish, and this happens iff P(A∩ B) =
P(A)P(B) for all A ∈A , B ∈B. In this case we say that A ,B are independent. In the depen-
dent case, α,ρ,φ ,ψ can be used to bound the covariance between (certain) A -measurable and
B-measurable random variables:

Theorem 1.1. Suppose X is A -measurable, Y is B-measurable, then

(1) |Cov(X ,Y )| ≤ 8α(A ,B)1− 1
p−

1
q‖X‖p‖Y‖q whenever p ∈ (1,∞], q ∈ (1,∞],

1
p +

1
q < 1, X ∈ Lp, Y ∈ Lq.

(2) |Cov(X ,Y )| ≤ ρ(A ,B)‖X−EY‖2‖Y −EY‖2 whenever X ,Y ∈ L2.
(3) |Cov(X ,Y )| ≤ 2φ(A ,B)‖X‖1‖Y‖∞ whenever X ∈ L1,Y ∈ L∞.
(4) |Cov(X ,Y )| ≤ ψ(A ,B)‖X‖1‖Y‖1 whenever X ∈ L1,Y ∈ L∞.

For proof and references, see [16, vol 1, ch. 3].

Definition 1.21 Let X := {Xn}n≥1 be a general stochastic process, not necessarily stationary
or Markov. Let F n

1 denote the σ -algebra generated by X1, . . . ,Xn, and let F ∞
m denote the σ -

algebra generated by Xk for k ≥ m.

(1) X is called α-mixing, if α(n) := supk≥1 α(F k
1 ,F

∞
k+n)−−−→n→∞

0.

(2) X is called ρ-mixing, if ρ(n) := supk≥1 ρ(F k
1 ,F

∞
k+n)−−−→n→∞

0.

(3) X is called φ -mixing, if φ(n) := supk≥1 φ(F k
1 ,F

∞
k+n)−−−→n→∞

0.

(4) X is called ψ-mixing, if ψ(n) := supk≥1 ψ(F k
1 ,F

∞
k+n)−−−→n→∞

0.

Theorem 1.2. If (Ω ,F ,P) is a probability space, and A ,B are sub-σ -algebras of F , then
α := α(A ,B), ρ := ρ(A ,B), φ := φ(A ,B), ψ := ψ(A ,B) satisfy the inequalities

2α ≤ φ ≤ 1
2

ψ , ρ ≤ 2
√

φ . (1.3.10)
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For the proof, see [16, vol 1, Prop. 3.11]). It follows that

ψ-mixing⇒ φ -mixing⇒ ρ-mixing⇒ α-mixing.

These implications are strict, see [16, vol 1 §5.23].
Let us see what is the connection of φ -mixing to uniform ellipticity. First we’ll show that

uniform ellipticity implies exponential ψ-mixing, and then we’ll give a weak converse of this
statement for finite state Markov chains.

Proposition 1.22 Let X be a uniformly elliptic Markov chain, then for every x ∈ S1, X con-
ditioned on X1 = x is ψ-mixing. Moreover, α(n),ρ(n),φ(n),ψ(n) −−−→

n→∞
0 exponentially fast,

uniformly in x.

Proof. We will need the following fact:
CLAIM. There exists a constant K which only depends on the ellipticity constant of X as follows.
For every x ∈S1, k ≥ 2, and for every bounded measurable function hk : Sk→ R, we have the
inequality ‖Ex(hk(Xk)|Xk−2)‖∞ ≤ KEx(|hk(Xk)|).
Proof of the claim. By the uniform ellipticity of X, the transition kernels of X can be put in the
form πn,n+1(x,dy) = pn(x,y)µn+1(dy), where 0≤ pn ≤ ε

−1
0 and

∫
pn(x,y)pn+1(y,z)µn+1(dy)>

ε0. In addition, Prop. 1.12 tells us that the Radon-Nikodym derivative of µn+1 with respect to
the measure Px(Xn+1 ∈ E) is almost everywhere in [ε0,ε

−1
0 ]. It follows that for all ξ ,

|Ex(hk+2(Xk+2)|Xk = ξ )| ≤
∫∫

pk(ξ ,y)pk+1(y,z)|hk+2(z)|µk+1(dy)µk+2(dz)

≤ ε
−2
0

∫
|hk+2(z)|µk+2(dz)≤ ε

−3
0 Ex(|hk+2(Xk+2)|).

We now prove the proposition. Fix x ∈S1, and let ψx denote the ψ measure of dependence
for X conditioned on X1 = x. Let Fk denote the σ -algebra generated by Xk. Using the Markov
property, it is not difficult to see that

ψx(n) = sup
k≥1

ψx(Fk,Fk+n),

see [16, vol 1, pp. 206–7].
Suppose now that n > 2, and fix some A ∈ Fk,B ∈ Fk+n with positive Px-measure. Let

hk := 1A and hk+n := 1B−Px(B). Then

|Px(A∩B)−Px(A)Px(B)|= |Ex(hkhk+n)|= |Ex(Ex(hkhk+n|Fk))|
= |Ex(hkEx(hk+n|Xk))| ≤ Ex(|hk|)‖Ex(hk+n|Xk)‖∞

= Px(A)‖Ex(Ex(hk+n|Xk+n−2)|Xk)‖∞

≤ Px(A) ·Cmixθ
n−2‖Ex(hk+n|Xk+n−2)‖∞, by uniform ellipticity and (1.2.3)

≤ Px(A) ·Cmixθ
n−2 ·KEx(|hk+n|), by the claim

≤ 2KCmixθ
n−2Px(A)Px(B).

Dividing by Px(A)Px(B) and passing to the supremum over A ∈Fk,B ∈Fk+n, gives ψx(n) ≤
2KCmixθ n−2.

Recall from Proposition 1.11 that Cmix,θ depend on the ellipticity constant of X, but not
on x. So ψx(n)→ 0 exponentially fast, uniformly in x. By (1.3.10), αx(n),ρx(n),φx(n)→ 0
exponentially fast, uniformly in n. �
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Proposition 1.23 Let X be a Markov chain such that

(1) ∃κ > 0 s.t. P(Xn = x)> κ for every n≥ 1, x ∈Sn (in particular, |Sn|< 1/κ).
(2) φ(n)−−−→

n→∞
0.

Then X satisfies the γ-step ellipticity condition for all γ large enough.

Proof. By (1), all state spaces are finite sets. Define a measure on Sn by µn(E) = P(Xn ∈ E),

and let pn(x,y) :=
P(Xn+1 = y|Xn = x)
P(Xn+1 = y)

. This is well-defined by (1), and:

(a) By construction, πn,n+1(x,dy) = pn(x,y)µn+1(dy).
(b) By (1), pn(x,y)≤ 1/P(Xn+1 = y)≤ κ−1.
(c) By (2), for all γ large enough, φ(γ)< 1

2κ . For such γ ,

∫
Sn+1

· · ·
∫

Sn+γ

pn(x,y1)
γ−2

∏
i=1

pn+i(yi,yi+1)pn+γ−1(yγ−1,z)µn+1(dy1) · · ·µn+γ(dyγ−1)

= P(Xn+γ = z|Xn = x)≥ P(Xn+γ = z)−φ(Fn,Fn+γ)≥ κ−φ(γ)>
1
2

κ.

We obtain the γ-ellipticity condition with ellipticity constant 1
2κ . �

1.4 Notes and references

For a comprehensive treatment of inhomogeneous Markov chains on general state spaces, see
Doob’s book [52]. The uniform ellipticity condition is one of a plethora of contraction con-
ditions for Markov operators, which were developed over the years as sufficient conditions for
results such as Propositions 1.11 and 1.12. We mention in particular the works of Markov [100],
Doeblin [46, 47], Hajnal [70], Doob [52], and Dobrushin [45] (see also Seneta [137] and Sethu-
raman & Varadhan [139]).

The contraction coefficient mentioned in section 1.2.2 is also called an “ergodicity coeffi-
cient,” and it plays a major role in Dobrushin’s proof of the CLT for inhomogeneous Markov
chains [45]. Our treatment of contraction coefficients follows closely [139]. In particular,
Lemma 1.9 and the proof of part (f) of that lemma is taken from there.

Proposition 1.12 is similar in spirit to Doeblin’s estimates for the stationary probability vector
of a Markov chain satisfying Doeblin’s condition in terms of the stochastic matrix of the chain
[46, 47].

For a discussion of the “change of measure” construction see chapter 6. The quantities
D(X ,ξ ) were introduced by Mukhin for the purpose of studying local limit theorem for sums
of independent random variables. See [108] and references therein.

For a comprehensive account of measures of dependence and mixing conditions, see [16].





Chapter 2
Variance growth, center-tightness, and the central limit theorem

In this chapter we analyze the variance of SN = f1(X1,X2) + · · ·+ fN(XN ,XN+1) as N → ∞,
characterize the additive functionals for which Var(SN) 6→∞, and prove Dobrushin’s Theorem:
If VN → ∞ then the central limit theorem holds.

2.1 Main results

Let X be a Markov array with row lengths kN +1, let f an additive functional on X, and define

SN =
kN

∑
i=1

f (N)
i (X (N)

i ,X (N)
i+1 ).

Definition 2.1 f is called center-tight if there are constants mN s.t. for every ε > 0, there exists
M s.t. P[|SN−mN |> M]< ε for all N.

Center-tightness is an obstruction to the local limit theorem. We shall see below (Theorem
2.2) that f is center-tight iff Var(SN) 6→ ∞. Obviously, in such a situation the right hand side in

P[SN−zN ∈ (a,b)]
?∼ e−z2/2|a−b|√

2πVN
can be made bigger than one by choosing |a−b| sufficiently big,

and the asymptotic relation fails. One could hope for a different universal asymptotic behavior,
but as the following class of examples shows, this is hopeless:

Example 2.2 (Non-universality in the LLT for center-tight functionals):

Let X= {Xn}n≥1 be a sequence of identically distributed independent random variables with
uniform distribution on [0,1]. Choose an arbitrary sequence of random variables {Zn}n≥1 tak-
ing values in [0,1]. By the isomorphism theorem for Lebesgue spaces, there are measurable
functions gn : [0,1]→ [0,1] such that

g0 ≡ 0 , gn(Xn) = Zn in distribution.

Let f = { fn}n≥1 with fn(Xn,Xn+1) := gn+1(Xn+1)− gn(Xn). Then SN = ZN+1 in distribution,
whence P(SN ∈ (a,b)) = P(ZN+1 ∈ (a,b)) is completely arbitrary.

Every Markov array admits center-tight additive functionals. Here are three constructions
which lead to such examples (in the uniformly bounded, uniformly elliptic case, all center-tight
additive functional arise this way, see Theorem 2.2 below):

Example 2.3 (Gradients): Gradients on Markov chains are additive functionals of the form

fn(x,y) := (∇a)n(x,y) := an+1(y)−an(x).

41
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where an : Sn→ R is measurable, and a= {an} is a.s. uniformly bounded.
Gradients on Markov arrays are defined similarly by the formula f (N)

n (x,y) := a(N)
n+1(y)−

a(N)
n (x). where a(N)

n : S(N)
n → R is measurable, and a = {a(N)

n } is a.s. uniformly bounded. We
write f = ∇a, and say that f is the gradient of a and a is the potential of f.1

The gradient of an a.s. uniformly bounded potential is center-tight because if |a| ≤ K, then
|SN |= |a(N)

kN+1(XN+1)−a(N)
1 (X1)| ≤ 2K.

Example 2.4 (Summable variance): We say that an additive functional f on a Markov chain
X has summable variance if it is a.s. uniformly bounded, and

V∞ :=
∞

∑
n=1

Var[ fn(Xn,Xn+1)]< ∞.

The definition of summable variance for additive functionals on arrays is similar, except that

now V∞ is defined by V∞ := sup
N

kN

∑
n=1

Var[ f (N)
n (X (N)

n ,X (N)
n+1)]< ∞.

If X is uniformly elliptic and |f| ≤ K a.s., then summable variance implies center-tightness.
This follows from Chebyshev’s inequality and the following lemma:

Lemma 2.5 Let f be a uniformly bounded functional of the uniformly elliptic Markov array.

Then VN ≤V N

(
1+ 2Cmix

1−θ

)
where V N :=

kN

∑
n=1

Var( f (N)
n (X (N)

n ,X (N)
n+1)), and Cmix and 0 < θ < 1 are

as in Prop. 1.11.

Proof. We give the proof for Markov chains (the proof for arrays is identical):

Var(SN) =
N

∑
n=1

Var( fn)+2
N−1

∑
n=1

N

∑
m=n+1

Cov( fn, fm)

≤V N +2Cmix

N−1

∑
n=1

N

∑
m=n+1

θ
m−n
√

Var( fn)Var( fm), with Cmix,θ as in (1.2.5)

≤V N +2Cmix

N−1

∑
j=1

θ
j

N− j

∑
n=1

√
Var( fn)Var( fn+ j)<V N +

2CmixV N

1−θ

by the Cauchy-Schwarz inequality. �

Example 2.6 Suppose X is uniformly elliptic. Then every additive functional of the form f =
g+h where g is a gradient and h has summable variance is center-tight.

We will now state the main results of this chapter. We assume throughout that

(E) X= {X (N)
n } is a uniformly elliptic inhomogeneous Markov array with row lengths kN +1,

state spaces S
(N)
n , transition probabilities π

(N)
n,n+1, initial distributions π(N), and ellipticity

constant ε0.

(B) f = { f (N)
n } is an a.s. uniformly bounded additive functional on X, satisfying the bound

|f| ≤ K almost surely.
1 In the ergodic theoretic literature, f is called a coboundary and a is called a transfer function.
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Let VN := Var(SN), and UN :=
kN

∑
n=3

(u(N)
n )2 where u(N)

n are as in (1.3.2).

Theorem 2.1. There are constants C1,C2 > 0 which only depend on ε0,K s.t. for every uniformly
elliptic array with ellipticity constant ε0 and every additive functional f on X s.t. |f| ≤ K a.s.,

C−1
1 UN−C2 ≤ Var(SN)≤C1UN +C2 for all N.

Corollary 2.7 Suppose X is a Markov chain. Either Var(SN)→ ∞ or Var(SN) = O(1). More-

over, Var(SN)�
N
∑

n=3
u2

n where un are the structure constants from (1.3.2).

(The corollary is clearly false for arrays.) Returning to arrays, we’ll show:

Theorem 2.2. Var(SN) is bounded iff f is center-tight iff f = ∇a+ h where a is a uniformly
bounded potential, and h has summable variance.

Corollary 2.8 f is center-tight iff sup
N

UN < ∞.

Theorem 2.1 is a statement on the localization of cancellations. In general, if the variance of
an additive functional of a stochastic process does not tend to infinity, then there must be some
strong cancellations in SN . A priori, these cancellations may involve summands located far apart
from one another. Theorem 2.1 says that strong cancellations must already occur among three
consecutive terms f (N)

n−2 + f (N)
n−1 + f (N)

n : This is what UN measures.
If f depends only on one variable fn(x,y) = fn(x), and we have the one-step ellipticity con-

dition pN(x,y)≥ ε0 one can define the ladder process using quadrilaterals

QN
n =

(
XN

n−1
XN

n
Y N

n
Y N

n+1

)
instead of hexagons. As a result un is replaced by

(u(N)
n )2 �

∫∫
| f (N)

n (y1)− f (N)
n (y2)|2dµn(y1)dµn(y2) = 2Var( fn). (2.1.1)

Repeating the arguments from the proof of Theorem 2.1 we obtain that there are constants Ĉ1,Ĉ2
such that

Ĉ−1
1 ∑

n
Var( fn(Xn))−Ĉ2 ≤VN ≤ Ĉ1

(
∑
n

Var( fn(Xn))

)
+Ĉ2.

This estimate has been previously obtained in [45, 139] under weaker ellipticity assumptions.
A similar estimate does not hold in case f (N)

n depends on two variables. Indeed if f (N)
n is a

gradient, then VN is bounded while
N

∑
n=1

Var( fn(Xn,Xn+1)) can be arbitrarily large.

We end the chapter with the reproduction of the proofs of the following two known well-
known results.

Theorem 2.3 (Dobrushin). Let f be an a.s. uniformly bounded additive functional on a uni-
formly elliptic Markov array X. If Var(SN)→ ∞, then for every interval,

P

[
SN−E(SN)√

Var(SN)
∈ (a,b)

]
−−−→
N→∞

1√
2π

∫ b

a
e−t2/2dt.
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The proof we give, which is due to Sethuraman & Varadhan, is based on McLeish’s martingale
central limit theorem. For the convenience of the reader we prove the martingale CLT in section
2.2.4.

The next result reduces in the case of identically distributed independent random variables to
Khintchin-Kolmogorov’s Two-Series Theorem. The result is stated for Markov chains, and not
Markov arrays, because it relates to the properties of SN as a stochastic process.

Theorem 2.4. Let f = { fn} be an a.e. uniformly bounded additive functional of a uniformly

elliptic inhomogeneous Markov chain X= {Xn}. If
∞

∑
n=1

Var[ fn(Xn,Xn+1)] is finite, then

∞

∑
n=1

[ fn(Xn,Xn+1)−E( fn(Xn,Xn+1))] converges almost surely.

2.2 Proofs

2.2.1 The Gradient Lemma

Lemma 2.9 (Gradient Lemma) Suppose f is an additive functional on a uniformly elliptic
Markov array X, and assume |f| ≤ K almost surely. Then we can write

f = f̃+∇a+ c,

where f̃,a,c are additive functionals on X with the following properties:

(a) |a| ≤ 2K and a(N)
n (x) are measurable functions on S

(N)
n .

(b) |c| ≤ K and c(N)
n are constant functions.

(c) |̃f| ≤ 6K and f̃ (N)
n (x,y) satisfy ‖ f̃ (N)

n ‖2 ≤ u(N)
n for all 3≤ n≤ kN +1.

If X is a Markov chain, we can choose f (N)
n = fn, a(N)

n = an, c(N)
n = cn.

Proof for Doeblin chains: Before proving the lemma in full generality, we consider the impor-
tant special case of Doeblin chains (Example 1.7), for which the proof is particularly simple.

Recall that a Doeblin chain is a Markov chain X with finite state spaces Sn of uniformly
bounded cardinality, and whose associated transition matrices πn

xy := πn,n+1(x,{y}) satisfy the
following properties:

(E1) ∃ε ′0 > 0 s.t. for all n≥ 1 and (x,y) ∈Sn×Sn+1, either πn
xy = 0 or πn

xy > ε ′0;
(E2) for all n, for all (x,z) ∈Sn×Sn+2, ∃y ∈Sn+1 such that πn

xyπn+1
yz > 0.

We saw in example 1.7 that X is uniformly elliptic.
We re-label the states in Sn so that Sn = {1, . . . ,dn} where dn ≤ d, and in such a way that

πn
11 > 0 for all n. Assumption (E2) guarantees that for every n≥ 3 and every x ∈Sn there exists

a state ξn−1(x) ∈Sn−1 s.t. π
n−2
1,ξn−1(x)

π
n−1
ξn−1(x),x

> 0. Let

a0 ≡ 0, a1 ≡ 0, and an(x) := fn−2(1,ξn−1(x))+ fn−1(ξn−1(x),x) for n≥ 3
c0 := 0, c1 := 0, and cn := fn−2(1,1) for n≥ 3

f̃ := f−∇a− c.
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We claim that f̃,a,c satisfy our requirements. To explain why and to motivate the construc-
tion, consider the special case un = 0. In this ‖̃f‖2 = 0 and the lemma reduces to constructing
functions bn : Sn → R s.t. f = ∇b+ c. We first try to solve f = ∇b with c = 0. Any solution
must satisfy

fn(x,y) = bn+1(y)−bn(x). (2.2.1)

Necessarily, bn(y) = b2(x2) + f2(x2,x3) + · · ·+ fn−2(xn−2,xn−1) + fn−1(xn−1,y) for all paths
(x2, . . . ,xn−1,y) with positive probability. The path x2 = · · ·= xn−2 = 1, xn−1 = ξn−1(y) suggests
to define

b2 ≡ 0 , bn(y) :=
n−3

∑
k=2

fk(1,1)+ fn−2(1,ξn−1(y))+ fn−1(ξn−1(y),y)

This works: for every n≥ 3, if πn
xy > 0 then

bn+1(y)−bn(x) = [ fn−2(1,1)+ fn−1(1,ξn(y))+ fn(ξn(y),y)
− fn−2(1,ξn−1(x))− fn−1(ξn−1(x),x)− fn(x,y)]+ fn(x,y)

∴ bn+1(y)−bn(x) = Γn

(
1 1

ξn−1(x)
ξn(y)

x y
)
+ fn(x,y)

!
= fn(x,y). (2.2.2)

Here is the justification of !
=. In the setup we consider, the natural measure on the level n

hexagons is atomic, and every admissible hexagon has positive mass. So un = 0 implies that
Γn(P) = 0 for every admissible hexagon, and !

= follows.
We proved (2.2.1), but we are not yet done because b is not necessarily uniformly bounded.

To fix this decompose bn(y) = an(y)+∑
n−3
k=2 fk(1,1). Then |a| ≤ 2K, and a direct calculation

shows that fn(x,y) = an+1(y)−an(x)+ fn−2(1,1), whence f = ∇a+ c as we claimed.
This proves the lemma in case un = 0. The general case un ≥ 0 is done in exactly the same

way, except that now the identity (2.2.2) gives for f̃ := f−∇a− c

f̃n(x,y) = fn(x,y)− (an+1(y)−an(x))− cn =−Γn

(
1 1

ξn−1(x)
ξn(y)

x y
)
.

If |f| ≤ K, then |Γn| ≤ 6K, whence |̃f| ≤ 6K. Next,

‖ f̃n‖2
2 ≤ E

[
Γn

(
1 1

ξn−1(Xn)
ξn(Xn+1)

Xn
Xn+1

)2
]
.

In the scenario we consider the space of admissible hexagons has a finite number of elements,
and each has probability uniformly bounded below. So there is a global constant C which only
depends on sup |Sn| and on ε ′0 in (E2) such that

E

[
Γn

(
1 1

ξn−1(Xn)
ξn(Xn+1)

Xn
Xn+1

)2
]
≤CE[Γ (P)2],

where the last expectation is over all position n hexagons. So ‖̃f‖2 ≤
√

C ·u2
n.

(The gradient lemma says that we can choose a and c so that C = 1. The argument we gave
does not quite give this, but the value of the constant is not important for the applications we
have in mind.)
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The proof of the gradient lemma in the general case: Recall the ladder process L = {L(N)
n },

L(N)
n = (Z(N)

n−2,Y
(N)
n−1,X

(N)
n ) from §1.3.2. In what follows we omit the superscripts (N) on the right

hand side of identities. Define

F(N)
n (L(N)

n ) := Fn(Ln) = fn−2(Zn−2,Yn−1)+ fn−1(Yn−1,Xn)

Γ
(N)

n (L(N)
n ,L(N)

n+1) := Γn(Ln,Ln+1) = Γ

(
Zn−2

Zn−1
Yn−1

Yn
Xn

Xn+1

)
, see (1.3.1).

Then we have the following identity:

f (N)
n (Xn,Xn+1) = Fn+1(Ln+1)−Fn(Ln)+ fn−2(Zn−2,Zn−1)−Γn(Ln,Ln+1). (2.2.3)

Next define a(N)
n : S(N)

n → R and c(N)
n ∈ R by

a(N)
n (ξ ) := E

(
E(Fn(Ln)|Xn = ξ

))
(3≤ n≤ kN) (2.2.4)

c(N)
n := E[ fn−2(Zn−2,Zn−1)]. (2.2.5)

We will show that the lemma holds with a,c and f̃ := f−∇a− c.
Since |f| ≤ K by assumption, it is clear that |a| ≤ 2K and |c| ≤ K. It remains to bound f̃ in L∞

and L2.

CLAIM: For every (ξ ,η) ∈Sn×Sn+1,

c(N)
n = E

[
E
(

fn−2(Zn−2,Zn−1)

∣∣∣∣Xn+1 = η

Xn = ξ

)]
,

a(N)
n (ξ ) = E

(
Fn(Ln)

∣∣∣∣Xn+1 = η

Xn = ξ

)
a(N)

n+1(η) = E
(

Fn+1(Ln+1)

∣∣∣∣Xn+1 = η

Xn = ξ

)
Proof of the claim. The proof is based on Lemma 1.20. The first identity is because {Zn} is
independent from {Xn}. The second identity is because conditioned on Xn, Ln is independent of
Xn+1. The third identity is because conditioned on Xn+1, Ln+1 is independent of Xn.

With the claim proved, we can proceed to bound f̃. Taking the conditional expectation
E( · |X (N)

n+1 = η , X (N)
n = ξ ) on both sides of (2.2.3), we find that

f (N)
n (ξ ,η) = an+1(η)−an(ξ )+ cn−E

(
Γn(Ln,Ln+1)

∣∣∣∣Xn+1 = η

Xn = ξ

)
,

whence f̃n(ξ ,η) :=−E
(

Γn(Ln,Ln+1)

∣∣∣∣Xn+1 = η

Xn = ξ

)
.

Clearly |̃f| ≤ 6K. To bound the L2 norm we recall that the marginal distribution of {Xn} with
respect to the distribution of the ladder process is precisely the distribution of our original array.
Therefore
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‖ f̃ (N)
n ‖2

2 ≡ E
[

f̃ (N)
n (Xn,Xn+1)

2
]
= E

[
E
(

Γn(Ln,Ln+1)

∣∣∣∣Xn+1Xn

)2
]

≤ E
[
E
(
Γn(Ln,Ln+1)

2)]
because conditional expectations contract L2-norms.

Next we use Lemma 1.20(3) to see that Γ
(N)

n (Ln,Ln+1) is equal in distribution to the balance
of a random level N hexagon at position n, whence E(Γ 2

n ) = (u(N)
n )2. �

The gradient lemma splits an additive functional into a gradient term, and a term with con-
trolled variance. The next lemma estimates the covariances between the two terms.

Lemma 2.10 Suppose f is a uniformly bounded functional of a uniformly elliptic Markov array.
There is a constant C s.t. if h(N)

`N
are uniformly bounded measurable functions on S

(N)
`N
×S

(N)
`N+1

,

and ess sup | f (N)
n | ≤ K, ess sup |h(N)

`N
| ≤ L, then

Cov
(

SN ,h
(N)
`N

(X (N)
`N

,X (N)
`N+1

)
)
≤CKL.

Proof. This follows from the decomposition Cov(SN ,h
(N)
`N

) =
kN

∑
n=1

Cov( f (N)
n ,h(N)

`N
) and the expo-

nential mixing of X (Proposition 1.11). �

2.2.2 The estimate for Var(SN)

We prove Theorem 2.1. Let f = { f (N)
n } be an a.s. uniformly bounded additive functional on

a uniformly elliptic Markov array X = {X (N)
n } with row lengths kN + 1. Our aim is to bound

Var(SN) above and below by affine functions of the structure constants UN = ∑
kN
n=3(u

(N)
n )2.

Assume |f| ≤ K almost surely.
Throughout the proof, we fix N and drop the superscripts (N). So X (N)

n = Xn, f (N)
n = fn,

u(N)
n = un etc.

Lower bound for the variance. Let’s split UN = ∑
kN
n=3 u2

n into three sums:

UN = ∑
γ=0,1,2

UN(γ), where UN(γ) :=

(
kN

∑
n=3

u2
n1[n=γ mod 3](n)

)
.

For every N there is at least one γN ∈ {0,1,2} such that UN(γN)≥ 1
3UN . Let

αN := γN +1.

and define βN by
kN−βN +1 = max{n≤ kN : n = αN mod 3}.

With these choices, αN ,βN ∈ {1,2,3}, and kN−βN +1 = αN mod 3.
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We begin by bounding from below the variance of S′N :=
kN−βN

∑
k=αN

f j(X j,X j+1). Write kN−βN +

1 = 3MN +αN , with MN ∈ N, then

S′N = F0 + · · ·+FMN−1, where Fk := f3k+αN + f3k+αN+1 + f3k+αN+2.

Observe that S′N is a function of the following variables:

XαN ,XαN+1,XαN+2, XαN+3 ,XαN+4,XαN+5, · · · , XkN−βN+1 ,

where we have boxed the terms with indices congruent to αN mod 3. Let FN denote the σ -
algebra generated by the boxed random variables. Conditioned on FN , Fk are independent.
Therefore,

Var(S′N |FN) =
MN−1

∑
k=0

Var(Fk|FN) =
MN−1

∑
k=0

Var(Fk|X3k+αN ,X3(k+1)+αN )

Taking the expectation on both sides, and using the general inequality Var(S′N)≥E(Var(S′N |FN)),
we obtain

Var(S′N)≥
MN−1

∑
k=0

E
(

Var(Fk|X3k+αN ,X3(k+1)+αN )

)
.

To estimate the summands, we recall that for every random variable W , Var(W ) = 1
2E[(W

′−
W ′′)2] where W ′,W ′′ are two independent copies of W . Thus

Var(Fk|X3k+αN = a,X3(k+1)+αN = b)

=
1
2
E
[

Γ

(
X3k+αN

X3k+αN+1
Y3k+αN+1

X3k+αN+2
Y3k+αN+2

Y3(k+1)+αN

)2 ∣∣∣∣X3k+αN = Y3k+αN = a
X3(k+1)+αN = Y3(k+1)+αN = b

]
,

whence E
(
Var(Fk|X3k+αN ,X3(k+1)+αN )

)
≡ E(Γ (P)2)≡ (u(N)

3k+αN+2)
2 where Γ (P) is the balance

of a random hexagon P ∈ Hex(N,3k+αN +2). So

Var(S′N)≥
1
2

MN−1

∑
k=0

(u(N)
3k+αN+2)

2 =
1
2

MN−1

∑
k=0

(u(N)
3(k+1)+γN

)2 (∵ αN = γN +1)

≥ 1
2

kN

∑
n=3

u2
n1[n=γn mod 3](n)−2sup{u2

j} ≥
1
2

UN(γN)−2 · (6K)2

>
1
6

UN−100K2, by choice of γN .

Now we claim that |Var(SN)−Var(S′N)| is uniformly bounded from below. To see this, let
f ∗j := f j −E( f j), and let AN := { j ∈ N : 1 ≤ j ≤ α or kN − β ≤ j ≤ kN}. Then SN = S′N +
∑ j∈AN f j, whence

Var(SN) = Var(S′N)+Var( ∑
j∈AN

f j)+2 ∑
j∈AN

Cov(S′N , f j).

Since |f| ≤ K and |AN | ≤ 6, the second term bounded by 4K2|AN | ≤ 24K2. Next by uniform
ellipticity and (1.2.5), there are mixing constants θ ∈ (0,1) and Cmix > 0 which only depend on
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ε0, the ellipticity constant of X, so that

Cov(S′N , f j)≤Cmix

kN

∑
n=1
‖ f ∗n ‖2‖ f ∗j ‖2θ

|n− j| ≤ 2CmixK2

1−θ
.

It follows that Var(SN)≥Var(S′N)−const ≥ constUN−const, where the constants depends only
on K and the ellipticity constant ε0.

Upper bound for the variance. Write f = f̃+∇a+ c as in the gradient lemma. In particular,
Var( f̃n(Xn−1,Xn))≤ u2

n. Then

Var

(
kN

∑
n=1

fn

)
= Var

(
kN

∑
n=1

f̃n

)
+Var(aN+1−a1)+2Cov

(
kN

∑
n=1

f̃n,aN+1−a1

)
.

The first term is smaller than C1UN +C′2 due to the gradient Lemma and Lemma 2.5 the second
term is smaller than C′′2 due to Lemma 2.10. �

2.2.3 Characterization of center-tight additive functionals

We prove Theorem 2.2. Suppose f is an a.s. uniformly bounded functional on a uniformly elliptic
array X. We will show that the following conditions are equivalent:

(a) Var(SN) = O(1);
(b) f is the sum of a gradient and an additive functional with summable variance;
(c) f is center tight.

(a)⇒(b): By the gradient lemma f = ∇a+ (̃f+ c), where a(N)
n (x) are measurable functions on

S
(N)
n with uniformly bounded L∞ norm, c(N)

n are uniformly bounded constants, and ‖̃fn‖2≤ u(N)
n .

By Theorem 2.1, sup
N

kN

∑
n=3

(u(N)
n )2 < ∞, so f̃+ c has summable variance, proving (b).

(b)⇒(c): We already saw that gradients and functionals with summable variance are center-
tight. Since the sum of center-tight functionals is center-tight, (c) is proved.

(c)⇒(a): Assume by way of contradiction that ∃Ni ↑ ∞ such that VNi = Var(SNi)→ ∞. By Do-

brushin’s CLT (see [45], [139] and §2.2.5),
SNi−E(SNi)√

VNi

converges in distribution to a standard

Gaussian distribution. But center-tightness implies that there are constants µ ′N s.t. SN−µ ′N√
VN

con-
verges in distribution to the deterministic random variable W ≡ 0, and both statements cannot
be true simultaneously. �

2.2.4 McLeish’s martingale central limit theorem

A martingale difference array with row lengths kN is a (possibly non-Markov) array ∆ of
random variables

∆ = {∆ (N)
j : N ≥ 1,1≤ j ≤ kN}
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together with an array of σ -algebras {F (N)
j : N ≥ 1,1≤ j ≤ kN}, so that:

(1) For each N, ∆
(N)
1 , . . . ,∆

(N)
kN

are random variables on the same probability space (SN ,FN ,µN).

(2) F
(N)
1 ⊂F

(N)
2 ⊂F

(N)
3 ⊂ ·· · ⊂F

(N)
kN

are sub σ -algebras of FN .

(3) ∆
(N)
j is F

(N)
j –measurable, E(|∆ (N)

j |)< ∞, and E(∆ (N)
j+1|F

(N)
j ) = 0.

We say that ∆ has finite variance, if every ∆
(N)
j has finite variance. Notice that E(∆ (N)

j ) = 0 for

all j = 2, . . . ,kN+1. If in addition E(∆ (N)
1 ) = 0 for all N, then we say that ∆ has zero mean.

Example 2.11 Suppose {Sn} is a martingale relative to {Fn}, then

∆
(N)
1 := S1 , ∆

(N)
j := S j−S j−1 , F

(N)
j := F j , j = 1, . . . ,N

is a martingale difference array.

The following basic observation on martingale difference arrays is a key to many of their
properties:

Lemma 2.12 Suppose ∆ is a martingale difference array with finite variance, then for each N
∆
(N)
1 , . . . ,∆

(N)
kN

are uncorrelated, and if ∆ has zero mean, then

Var(
kN

∑
n=1

∆
(N)
n ) =

kN

∑
n=1
E[(∆ (N)

n )2].

Proof. Fix N and write ∆
(N)
j = ∆ j, F

(N)
j = F j.

If i < j, then E(∆ j∆i) =E[E(∆ j∆i|F j−1)] =E[E(∆iE(∆ j|F j−1))] =E(∆i ·0) = 0. The iden-
tity for the variance immediately follows. �

Theorem 2.5 (McLeish’s Martingale Central Limit Theorem). Let ∆ = {∆ (N)
j } be a mar-

tingale difference array with row lengths kN , zero mean, and finite variance, and let VN :=
∑

kN
j=1E[(∆

(N)
j )2]. Suppose:

(1) max
1≤ j≤kN

|∆ (N)
j |√
VN

has uniformly bounded L2 norm;

(2) max
1≤ j≤kN

|∆ (N)
j |√
VN
−−−→
N→∞

0 in probability; and

(3) 1
VN

∑
kN
n=1(∆

(N)
n )2 −−−→

N→∞
1 in probability.

Then for all intervals (a,b), P
[

1√
VN

∑
kN
j=1 ∆

(N)
j ∈ (a,b)

]
−−−→
N→∞

1√
2π

∫ b
a e−t2/2dt.

We prepare the ground for the proof.
A sequence of random variables {Yn} on (Ω ,F ,µ) is called uniformly integrable if for

every ε , ∃K s.t. E(|Yn|1[|Yn|>K]) < ε for all n. This is strictly stronger than tightness (there are
tight non-integrable random variables).

Example 2.13 If Mp := sup‖Yn‖p < ∞ for some p > 1, then {Yn} is uniformly integrable.

Indeed, by Chebyshev’s inequality, µ[|Yn|> K]≤ 1
K p Mp

p , and by Hölder’s inequality
E(|Yn|1[|Yn|>K])≤Mpµ[|Yn|> K]1/q = O(K−p/q) for the q s.t. 1

p +
1
q = 1.
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Lemma 2.14 Suppose Yn,Y ∈ L1(Ω ,F ,µ), then Yn
L1
−−−→
n→∞

Y iff {Yn} are uniformly integrable

and Yn −−−→
n→∞

Y in probability. In this case E(Yn)−−−→
n→∞

E(Y ).

Proof. We include the well-known, standard proof for completeness.
Proof of (⇒): Since Y ∈ L1, it follows (for example from the Dominated Convergence Theo-

rem) that lim
K→∞

E(|Y |1|Y |≥K) = 0. Given ε take K so that E(|Y |1|Y |≥K)< ε. Let δ = P(|Y || ≤ K)

then it is easy to see that

E(|Y |1F)< ε for all measurable sets F s.t. µ(F)< δ . (2.2.6)

Fix ε > 0, and choose δ as in (2.2.6).
Suppose ‖Yn−Y‖1 → 0. By Markov’s inequality P[|Yn−Y | > ε] ≤ ‖Yn−Y‖1/ε → 0, and

Yn→ Y in probability.
Markov’s inequality also implies that P[|Yn|> K]≤ K−1 sup‖Yn‖1 = O(K−1), so there exists

K s.t. P[|Yn|> K]< δ for all n. By the choice of δ ,∫
[|Yn|>K]

|Yn|dµ ≤
∫
[|Yn|>K]

|Y |dµ +
∫
[|Yn|>K]

|Yn−Y |dµ ≤ ε +‖Yn−Y‖1 −−−→n→∞
ε.

Uniform integrability follows.

Proof of (⇐): Given a random variable Z, let ZK := Z1[|Z|≤K]. Since {Yn} is uniformly inte-
grable, for every ε there is a K > 1 s.t. ‖Y K

n −Yn‖1 < ε for all n. Similarly, ‖Y K−Y‖1 < ε for
all K large enough. Thus for all n,

‖Yn−Y‖1 ≤ ‖Y K
n −Y K‖1 +2ε ≤ εµ[|Y K

n −Y K| ≤ ε]+2Kµ[|Y K
n −Y K|> ε]+2ε

≤ 3ε +2K
(

µ[|Yn−Y |> ε]+µ[|Yn|> K]+µ[|Y |> K]

)
≤ 3ε +2Kµ[|Yn−Y |> ε]+2E(|Yn|1[|Yn|>K])+2E(|Y |1|Y |>K)

∴ limsup
n→∞

‖Yn−Y‖1 ≤ 3ε +2sup
n
E(|Yn|1[|Yn|>K])+2E(|Y |1|Y |>K),

where we have used the assumption that Yn→Y in probability. The last expression can be made
arbitrarily small, by choosing ε sufficiently small, K sufficiently large, and appealing to the
uniform integrability of Yn. �

Lemma 2.15 (McLeish) Let {W (N)
j : 1≤ j ≤ kN} be a triangular array of random variables2,

where W (N)
1 , . . . ,W (N)

kN
are defined on the same probability space. Fix t ∈ R and let TN(t) :=

kN

∏
j=1

(1+ itW (N)
j ). Suppose

(1) {TN(t)} is uniformly integrable and E(TN)−−−→
N→∞

1,

(2) ∑
kN
j=1(W

(N)
j )2 −−−→

N→∞
1 in probability,

(3) max
1≤ j≤kN

|W (N)
j | −−−→N→∞

0 in probability.

Then E(eit(W (N)
1 +···+W (N)

kN
)
)−−−→

N→∞
e−

1
2 t2

.

2 Not necessarily a martingale difference array or a Markov array.
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Proof. Define a function r(x) on [−1,1] by the identity eix = (1+ ix)e−
1
2 x2+r(x), then r(x) =

− log(1+ ix)+ ix+ 1
2x2 = O(|x|3). Fix C s.t. |r(x)| ≤C|x|3 for |x|< 1.

Substituting SN := W (N)
1 + · · ·+W (N)

kN
in eix = (1+ ix)e−

1
2 x2+r(x) gives (in what follows we

drop the superscripts (N) and abbreviate Tn := Tn(t)):

E(eitSN ) = E(
kN

∏
j=1

eitW j) = E(TNe−
1
2 ∑

kN
j=1 t2W 2

j +r(tW j))

= E(TNUN), where UN := exp

[
−1

2

kN

∑
j=1

t2(W (N)
j )2 + r(tW (N)

j )

]
.

TN and UN have the following properties:

(a) E(TN)−−−→
N→∞

1, by assumption.

(b) {TN} is uniformly integrable by assumption, and |TNUN |= |eitSN |= 1.

(c) UN
prob−−−→

N→∞
exp
(
−1

2
t2
)

, because

◦
kN

∑
j=1

(
W (N)

j

)2 prob−−−→
N→∞

1, by assumption,

◦ max
1≤ j≤kN

∣∣∣W (N)
j

∣∣∣ prob−−−→
n→∞

0 by assumption, so with asymptotic probability one,

∣∣∣∣∣ kN

∑
i=1

r(tW (N)
j )

∣∣∣∣∣≤C|t|3 max
1≤ j≤kN

∣∣∣W (N)
j

∣∣∣ kN

∑
j=1

(
W (N)

j

)2 prob−−−→
N→∞

0.

We claim that this implies that E(eitSN ) = E(TNUN) −−−→
N→∞

e−
1
2 t2

. Let L := e−
1
2 t2

. Since

|E(TNUN)−L| ≤ |E(TN(UN−L))|+L|E(TN)−1|, (a) tells us that

|E(TNUN)−L| ≤ |E(TN(UN−L))|+o(1). (2.2.7)

Next, for every K,ε , µ[|TN(UN−L)|> ε]≤ µ[|TN |> K]+µ[|UN−L|> ε/K]. Therefore by (b)
and (c),

TN(UN−L)−−−→
N→∞

0 in probability. (2.2.8)

Finally, |TN(UN − L)| ≤ 1+ L|TN |, so TN(UN − L) is uniformly integrable by (b). By Lemma
2.14, E(TN(UN−L))→ 0, and by (2.2.7), E(eitSN ) = E(TNUN)→ e−

1
2 t2

. �

Proof of the Martingale CLT [103]: Let ∆ = {∆ (N)
j } be a martingale difference array with

row lengths kN , which satisfies the assumptions of Theorem 2.5, and let

SN :=
kN

∑
j=1

∆
(N)
j and VN := Var(SN)≡

kN

∑
j=1
E[(∆ (N)

j )2] (see Lemma 2.12).

It is tempting to apply McLeish’s Lemma to the normalized array ∆
(N)
j /
√

VN , but to do this

we need to check the uniform integrability of ∏
n
j=1(1+ it∆ (N)

j /
√

VN) and this is difficult. It is
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easier to work with the following array of truncations:

W (N)
1 := 1√

VN
∆
(N)
1 , W (N)

n := 1√
VN

∆
(N)
n 1

[∑n−1
k=1(∆

(N)
k )2≤2VN ]

.

It is easy to check that {W (N)
n } is a martingale difference array relative to F

(N)
n , and that {W (N)

n }
has zero mean, and finite variance.

In addition, S∗N := ∑
kN
n=1W (N)

n are close to SN/
√

VN in probability:

µ[S∗N 6=
SN√
VN
]≤ µ

[
∃1≤ j ≤ kN s.t.

j−1

∑
k=1

(∆
(N)
k )2 > 2VN

]
≤ µ

[ kN

∑
j=1

(∆
(N)
k )2 > 2VN

]
−−−→
N→∞

0

because 1
VN

kN

∑
j=1

(
∆
(N)
j

)2 prob−−−→
N→∞

1 by assumption.

Thus to prove the theorem, it is enough to show that S∗N converges in distribution to the
standard Gaussian distribution. To do this, we check that {W (N)

n } satisfies the conditions of
McLeish’s Lemma.

Fix t ∈R, and let TN =TN(t) :=∏
kN
j=1(1+itW (N)

j ). Let JN :=max{2≤ j≤ kN : ∑
j−1
k=1(∆

(N)
n )2≤

2VN} (or JN = 1 if the maximum is over the empty set). Writing Wj =W (N)
j and ∆ j = ∆

(N)
j , we

obtain

|TN |=
kN

∏
j=1

(1+ t2W 2
j )

1/2 =
JN

∏
j=1

(
1+

t2∆ 2
j

VN

)1/2

=

(
JN−1

∏
j=1

(
1+

t2∆ 2
j

VN

))1/2

·
(

1+
t2∆ 2

JN

VN

)1/2

, where
0

∏
j=1

(· · ·) := 1

≤ exp
(

t2

2VN

JN−1

∑
j=0

∆
2
j

)(
1+

t2

VN
∆

2
JN

)1/2

≤ et2
(

1+ |t| max
1≤ j≤kN

∣∣∣∣∆ (N)
j√
VN

∣∣∣∣).
Thus

‖TN(t)‖2
2 ≤ e2t2

1+ |t|E

 max
1≤ j≤kN

∣∣∣∣∣∣∆
(N)
j√
VN

∣∣∣∣∣∣
2

.

By the first assumption of the theorem, the last quantity is uniformly bounded for each t. It
follows that {TN(t)}N≥1 is uniformly integrable for each t. Next, successive conditioning shows
that E(TN) = 1+ itE

(
∆
(N)
1

)
= 1. The first condition of McLeish’s Lemma is verified.

The second condition of McLeish’s Lemma follows from the assumption
1

VN

kN

∑
n=1

(
∆
(N)
n

)2
→

0 in probability, and the estimate

µ

[
kN

∑
n=1

(W (N)
n )2 6=

kN

∑
n=1

(∆
(N)
n√
VN
)2

]
≤ µ

[
∃1≤ n≤ kN s.t.

n

∑
j=1

(∆
(N)
j )2 > 2VN

]
≤
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≤ µ

[
kN

∑
n=1

(∆
(N)
n )2 > 2VN

]
−−−→
N→∞

0, because
1

Vn

kN

∑
j=1

(∆
(N)
n )2→ 1 in probability.

The third condition of McLeish’s Lemma follows from the assumption that
max

1≤ j≤kN
|W (N)

j | → 0 in probability, for similar reasons.

So McLeish’s lemma applies to {W (N)
n }, and E(eitS∗N )→ e−

1
2 t2

for all t ∈ R. By Lévy’s con-

tinuity theorem, this implies that S∗N
dist−−−→

N→∞
N(0,1).

As explained above, this implies that SN√
VN

dist−−−→
N→∞

N(0,1). �

2.2.5 Proof of Dobrushin’s central limit theorem

Let X = {X (N)
n } be a uniformly elliptic Markov array with row lengths kN + 1, and let

f = { f (N)
n } be an a.s. uniformly bounded additive functional on X. Define as before SN =

kN

∑
n=1

f (N)
n (X (N)

n ,X (N)
n+1) , VN := Var(SN). Without loss of generality,

E[ f (N)
n (X (N)

n ,X (N)
n+1)] = 0 and | f (N)

n | ≤ K for all n,N.

Define F
(N)
n := σ(X (N)

1 , . . . ,X (N)
n+1) for n≥ 1, and F

(N)
0 :=trivial σ -algebra. Fix N and write

fk = f (N)
k (X (N)

k ,X (N)
k+1) and Fk = F

(N)
k , then E( fk|Fk) = fk, E( fk|F0) = E( fk) = 0, and there-

fore

SN =
kN

∑
k=1

fk =
kN

∑
k=1

(
E( fk|Fk)−E( fk|F0)

)
=

kN

∑
k=1

k

∑
n=1

(
E( fk|Fn)−E( fk|Fn−1)

)
=

kN

∑
n=1

kN

∑
k=n

(
E( fk|Fn)−E( fk|Fn−1)

)
=

kN

∑
n=1

∆
(N)
n , where ∆

(N)
n :=

kN

∑
k=n

(
E( f (N)

k |F
(N)
n )−E( f (N)

k |F
(N)
n−1)

)
.

The array {∆ (N)
n : 1 ≤ n ≤ kN ;N ≥ 1} is a martingale difference array relative to the filtrations

F
(N)
n , with zero mean and finite variances. To prove the theorem, it suffices to check that {∆ (N)

n }
satisfies the conditions of the martingale CLT.

STEP 1: max
1≤ j≤kN

|∆ (N)
j |√
VN

has uniformly bounded L2 norm, and max
1≤ j≤kN

|∆ (N)
j |√
VN

prob−−−→
N→∞

0.

Proof. The proof is based on the exponential mixing of uniformly elliptic Markov arrays (Propo-
sition 1.11): Let K := ess sup |f|, then there are constants Cmix > 1 and 0 < θ < 1 such that for
all k ≥ n,

‖E( f (N)
k |F

(N)
n )‖∞ ≤CmixKθ

k−n−1.
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It follows that |∆ (N)
j | < 2CmixK ∑

∞
`=−1 θ ` = 2CmixKθ−2

1−θ
. The step follows from the assumption

that VN → ∞.

STEP 2:
1

VN

kN

∑
n=1

(∆
(N)
n )2 −−−→

N→∞
1 in probability.

Proof. We follow [139] closely.

Let Y (N)
i := (∆

(N)
i )2/VN . We will show that

∥∥∥∑
kN
i=1Y (N)

i −1
∥∥∥2

2
−−−→
N→∞

0, and use the general

fact that L2-convergence implies convergence in probability (by Chebyshev’s inequality).

Notice that E
( kN

∑
i=1

Y (N)
i

)
= 1, because by Lemma 2.12, this expectation equals

1
VN
×Var

(
kN

∑
n=1

∆
(N)
n

)
=

1
VN

Var(SN) = 1.

So ∥∥ kN

∑
i=1

Y (N)
i −1

∥∥2
2 = E

[( kN

∑
i=1

Y (N)
i
)2
]
−2E

[ kN

∑
i=1

Y (N)
i

]
+1

= E
[ kN

∑
i=1

(
Y (N)

i
)2
]
+2E

[ kN

∑
i< j

Y (N)
i Y (N)

j

]
−2+1

= O( max
1≤`≤kN

‖Y (N)
` ‖∞) ·E

[ kN

∑
`=1

Y (N)
i

]
+2E

[
∑
i< j

Y (N)
i Y (N)

j

]
−1.

We saw in the proof of step 1 that ‖∆ (N)
j ‖∞ are uniformly bounded. Thus max

1≤`≤kN
‖Y (N)

` ‖∞ =

O(1/VN), so
∥∥∑

kN
i=1Y (N)

i −1
∥∥2

2 = 2E
[
∑i< j Y

(N)
i Y (N)

j
]
−1+o(1). It remains to show that

2E
[
∑
i< j

Y (N)
i Y (N)

j

]
−−−→
N→∞

1. (2.2.9)

The proof of (2.2.9) is based on the following fact:

Osc(N) := max
1≤i≤kN

Osc

(
E
( kN

∑
j=i+1

Y (N)
j

∣∣∣∣F (N)
i

))
−−−→
N→∞

0. (2.2.10)

Here Osc is the oscillation, which was defined in §1.2.1. Before proving this, we explain why
(2.2.10) implies (2.2.9). Write x = y± ε whenever y− ε ≤ x ≤ y+ ε . Every bounded function
ϕ satisfies ϕ = E(ϕ)±Osc(ϕ). So

2E
[
∑
i< j

Y (N)
i Y (N)

j

]
= 2E

[ kN

∑
i=1

Y (N)
i

kN

∑
j=i+1

Y (N)
j

]
= 2E

[ kN

∑
i=1

Y (N)
i E

( kN

∑
j=i+1

Y (N)
j

∣∣F (N)
i
)]

= 2E
[ kN

∑
i=1

Y (N)
i E

( kN

∑
j=i+1

Y (N)
j
)]
±2E

[ kN

∑
i=1

Y (N)
i

]
Osc(N)
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= 2
kN

∑
i=1
E(Y (N)

i )
kN

∑
j=i+1

E(Y (N)
j )±2Osc(N) (∵

kN

∑
i=1
E(Y (N)

i ) = 1)

=

(
kN

∑
i=1
E(Y (N)

i )

)2

−
kN

∑
i=1
E(Y (N)

i )2±2Osc(N)

= 1+O
(

max
1≤i≤kN

‖Y (N)
i ‖∞

)
±2Osc(N),∵∑E(Y (N)

i )2 ≤∑E(Y (N)
i )︸ ︷︷ ︸

=1

max‖Y (N)
i ‖∞

= 1+O(V−1
N )+O(Osc(N)).

So (2.2.10) implies (2.2.9), and with it the step.
We turn to the proof of (2.2.10). Henceforth we fix N and drop all the (N) superscripts. First

we note that a routine modification of the proof of Lemma 2.12 shows that for all j,k > i,
E(∆ j∆k|Fi) = 0. It follows that

E

(
kN

∑
j=i+1

Y j

∣∣∣∣Fi

)
≡ 1

VN
E
( kN

∑
j=i+1

∆
2
j

∣∣∣∣Fi

)
=

1
VN
E
(( kN

∑
n=i+1

∆n
)2
∣∣∣∣Fi

)

=
1

VN
E
(( kN

∑
n=i+1

kN

∑
k=n

[E( fk|Fn)−E( fk|Fn−1)]

)2∣∣∣∣Fi

)

=
1

VN
E
(( kN

∑
k=i+1

k

∑
n=i+1

E( fk|Fn)−E( fk|Fn−1)

)2∣∣∣∣Fi

)

=
1

VN
E
(( kN

∑
k=i+1

[ fk−E( fk|Fi)]

)2∣∣∣∣Fi

)

=
1

VN

kN

∑
k,`=i+1

E
[(
[ fk−E( fk|Fi)]

)(
f`−E( f`|Fi)

)∣∣∣∣Fi

]

=
1

VN

kN

∑
k,`=i+1

E
[

fk f`+E( fk|Fi)E( f`|Fi)− fkE( f`|Fi)− f`E( fk|Fi)

∣∣∣∣Fi

]

=
1

VN

kN

∑
k,`=i+1

[
E
[

fk f`|Fi
]
−E( f`|Fi)E( fk|Fi)

]
(2.2.11)

The oscillation of the summands can be estimated as follows. By Lemma 1.9(d)

Osc
(
E
(
u(X (N)

k ,X (N)
k+1)

∣∣X (N)
j
))
≤ δ

(
π
(N)
j,k

)
Osc(u),

where δ

(
π
(N)
j,k

)
is the contraction coefficient of the (k− j)-step Markov operator π

(N)
j,k . In the

uniformly elliptic case, by Lemma 1.10, δ (π
(N)
j, j+2) ≤ 1− ε0, where ε0 > 0 is the ellipticity

constant of X. Iterating Lemma 1.9(c) we conclude that there exists C0 > 0 and 0 < θ < 1 such
that for all k > i+1, and for every bounded function u : S(N)

k ×S
(N)
k+1→ R,

Osc
(
E
(
u(X (N)

k ,X (N)
k+1)

∣∣F (N)
i
))
≤C0θ

k−iOsc(u).
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This, (1.2.3), and the inequalities | f j| ≤ K, Osc(u) ≤ 2‖u‖∞ and Osc(uv) ≤ ‖u‖∞Osc(v)+
‖v‖∞Osc(u) imply the existence of constants C1 > 0 and 0 < θ < 1 such that for every N ≥ 1
and i+2≤ k ≤ `≤ kN ,

Osc
(
E( f`|Fi)E( fk|Fi)

)
≤ Osc(E( f`|Fi))‖E( fk|Fi)‖∞ +‖E( f`|Fi)‖∞Osc(E( fk|Fi))≤C1θ

k−i
θ
`−i.

Osc
(
E
[

fk f`|Fi
])

= Osc
(
E
[

fkE( f`|Fk)|Fi
])

≤C0θ
k−iOsc( fkE( f`|Fk))≤C0θ

k−i[K ·Osc(E( f`|Fk))+Osc( fk)‖E( f`|Fk)‖∞]

≤C1θ
k−i

θ
`−k.

We have stated these bounds for k, `≥ i+2, but in fact they remain valid for k = i+2 or `= i+2,
if we increase C1 to guarantee that C1θ 2 > 2K2.

Substituting these bounds in (2.2.11), we find that

Osc(N)≤ 2C1

VN

∞

∑
k,`=i+1

θ
k−i

θ
`−k ≤ 2C1

VN

(
θ

1−θ

)2

−−−→
N→∞

0.

This proves (2.2.10), and completes the proof of step 2.

Steps 1 and 2 verify the conditions of the martingale CLT. So 1√
VN

∑
kN
n=1 ∆

(N)
n converges in

distribution to the standard Gaussian distribution. By construction, 1√
VN

SN ≡ 1√
VN

∑
kN
n=1 ∆

(N)
n ,

and the theorem is proved. �

2.2.6 Almost sure convergence for sums of functionals with summable variance

We prove Proposition 2.4. Let f ∗0 := 0, f ∗n := fn(Xn,Xn+1)−E fn(Xn,Xn+1), let F0 denote the
trivial σ -algebra, and let Fn denote the σ -algebra generated by X1, . . . ,Xn. Then f ∗k is Fk+1-
measurable, so

f ∗k = E( f ∗k |Fk+1)−E( f ∗k |F0) =
k

∑
n=0
E( f ∗k |Fn+1)−E( f ∗k |Fn).

Therefore (numbered equalities are justified below):

N

∑
k=1

f ∗k =
N

∑
k=1

k

∑
n=0

[E( f ∗k |Fn+1)−E( f ∗k |Fn)] =
N

∑
n=0

N

∑
k=n

[E( f ∗k |Fn+1)−E( f ∗k |Fn)]

(1)
=

N

∑
n=0

∞

∑
k=n

(E( f ∗k |Fn+1)−E( f ∗k |Fn))−
N

∑
n=0

∞

∑
k=N+1

(E( f ∗k |Fn+1)−E( f ∗k |Fn))

(2)
=

N

∑
n=0

∞

∑
k=n

(E( f ∗k |Fn+1)−E( f ∗k |Fn))−
∞

∑
k=N+1

N

∑
n=0

(E( f ∗k |Fn+1)−E( f ∗k |Fn))

(3)
=

N

∑
n=0

∞

∑
k=n

(E( f ∗k |Fn+1)−E( f ∗k |Fn))−
∞

∑
k=N+1

E( f ∗k |FN+1).
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To justify the numbered inequalities almost surely, we need to establish the convergence of
the series which they involve.

By (1.2.4), ‖E( f ∗k |Fn+1)‖2 + ‖E( f ∗k |Fn)‖2 ≤ 2Cmix
√

Var( fk)θ
k−n+1, so by the Cauchy-

Schwarz inequality and the assumption ∑Var( fn)< ∞,

N

∑
n=0

∞

∑
k=n
‖E( f ∗k |Fn+1)−E( f ∗k |Fn)‖2 < ∞.

This justifies
(1)
= and

(2)
= .

Next by assumption, |f| ≤K a.s. for some constant K. By (1.2.3), ‖E( f ∗k |F0)‖∞+‖E( f ∗k |Fn)‖∞≤

4KCmixθ n−k so ∑
∞
k=N+1 |E( f ∗k |FN+1)|< ∞. This justifies

(3)
= .

In summary,
N

∑
k=1

f ∗k =
N

∑
n=0

∆n−ZN , where

∆n :=
∞

∑
k=n

(E( f ∗k |Fn+1)−E( f ∗k |Fn)) , ZN :=
∞

∑
k=N+1

E( f ∗k |FN+1).

To finish the proof, we show that
∞

∑
n=0

∆n and lim
N→∞

ZN exist a.s.

CLAIM 1. MN :=∑
N−1
n=0 ∆n is a martingale relative to {FN}, and sup‖MN‖2 <∞. Consequently,

limMN exists almost surely.

Proof. E(MN+1−MN |FN) = E(∆N |FN)
!
=

∞

∑
k=N

E(E( f ∗k |FN+1)|FN)−E(E( f ∗k |FN)|FN) = 0.

To justify !
= we note that the series

∆N =
∞

∑
k=N

[E( f ∗k |Fn+1)−E( f ∗k |Fn)]

converges in L2, because ‖E( f ∗k |Fn+1)−E( fk|Fn)‖∞ =O(θ k−n), so its conditional expectation
can be calculated term-by-term.

Next we show that ‖MN‖2 is uniformly bounded:

‖MN+1‖2 ≤
∥∥∥∥ N

∑
n=0

∞

∑
k=n
E( f ∗k |Fn+1)−E( f ∗k |Fn)

∥∥∥∥
2

≤
∥∥∥∥ ∞

∑
k=0

k∧N

∑
n=0
E( f ∗k |Fn+1)−E( f ∗k |Fn)

∥∥∥∥
2
=

∥∥∥∥ ∞

∑
k=0
E( f ∗k |F(k∧N)+1)

∥∥∥∥
2

≤
∥∥ N

∑
k=0

f ∗k
∥∥

2 +
∥∥ ∞

∑
k=N+1

E( f ∗k |FN+1)
∥∥

2

≤

√√√√ N

∑
k=0
‖ f ∗k ‖2

2 +2 ∑
0≤k<`≤N

Cov( f ∗k , f ∗` )+
∞

∑
k=N+1

‖E( f ∗k |FN+1)‖∞
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≤
√

∞

∑
k=0
‖ f ∗k ‖2

2 +2Cmix ∑
0≤k<`≤∞

θ `−k‖ f ∗k ‖2‖ f ∗` ‖2 +Cmix

∞

∑
k=N+1

‖ f ∗k ‖∞θ
k−N .

The last expression is uniformly bounded, because ∑Var( fk)< ∞ and

∑
0≤k<`<∞

θ
`−k‖ f ∗k ‖2‖ f ∗` ‖2 ≤

∞

∑
r=1

θ
r

∞

∑
k=0
‖ f ∗k ‖2‖ f ∗k+r‖2 ≤

1
1−θ

∞

∑
k=0
‖ f ∗k ‖2

2

∞

∑
k=N+1

‖ f ∗k ‖∞θ
k−N =

1
1−θ

sup
k
‖ f ∗k ‖∞.

CLAIM 2. ZN −−−→
N→∞

0 almost surely.

Proof. It is enough to prove that ∑‖ZN‖2
2 < ∞, because this implies using Chebyshev’s inequal-

ity that ∑P[|ZN | > ε] ≤ 1
ε2 ∑‖ZN‖2

2 < ∞ for all ε > 0, whence, by the Borel-Cantelli Lemma,
limsup |ZN | ≤ ε a.s. for all ε . Equivalently, limZN = 0 a.s.

Here is the proof that ∑‖ZN‖2
2 < ∞:

1
2

∞

∑
N=1
‖ZN‖2

2 =
∞

∑
N=1

∑
k2≥k1>N

E
[
E( f ∗k1

|FN+1)E( f ∗k2
|FN+1)

]
=

∞

∑
N=1

∑
k2≥k1>N

E
[

f ∗k2
E( f ∗k1

|FN+1)

]
≤Cmix

∞

∑
N=1

∑
k2≥k1>N

θ
k2−N+1‖ f ∗k2

‖2‖E( f ∗k1
|FN+1)‖2 by (1.2.5)

≤C2
mix

∞

∑
N=1

∑
k2≥k1>N

θ
k2−N+1‖ f ∗k2

‖2 ·θ k1−N+1‖ f ∗k1
‖2 by (1.2.4)

=C2
mix ∑

j≥0
θ

j
∑
k>0

θ
2k

∞

∑
N=1
‖ f ∗k+N+ j‖2‖ f ∗k+N‖2

(after changing indices j = k2− k1, k = k1−N +1)

≤C2
mix ∑

j≥0
θ

j
∑
k>0

θ
2k

√
∞

∑
N=1
‖ f ∗k+N+ j‖2

2

∞

∑
N=1
‖ f ∗k+N‖2

2

≤ C2
mix

1−θ
∑
k>0

θ
2k

∞

∑
N=k
‖ f ∗N‖2

2 =
C2

mix
1−θ

∞

∑
N=1
‖ f ∗N‖2

2

N

∑
k=1

θ
2k < ∞,

because 0 < θ < 1 and ∑‖ f ∗k ‖2
2 < ∞. �

2.2.7 Convergence of moments.

Dobrushin’s CLT (Theorem 2.3) shows that if VN→∞ then for any bounded continuous function
φ : R→ R we have
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lim
N→∞

E
[

φ

(
SN−E(SN)√

VN

)]
=

1√
2π

∫
∞

−∞

φ(z)e−z2/2dz. (2.2.12)

In applications, one often need to have convergence of expectations for unbounded functions,
such as polynomials. This problem is addressed in the present section.

Lemma 2.16 Let f be a centered bounded additive functional of a uniformly elliptic Markov
chain such that VN → ∞. Then for each r ∈ N there is a constant Cr such that for all N,

|E [Sr
N ]| ≤CrV

br/2c
N .

Corollary 2.17 Under the assumptions of Lemma 2.16

lim
N→∞

E[Sr
N ]

V r/2
N

=

{
0 r is odd,

(r−1)!! = ∏
(r/2)−1
k=0 (r−2k−1) r is even.

The corollary follows from Dobrushin’s CLT (Theorem 2.3), using the fact that by Lemma 2.16
and the de la Vallée-Poussin Lemma, (SN/

√
VN)

r is uniformly integrable for all r > 1 even, and
therefore limE[(SN/

√
VN)

r] = E[Nr], where N is a Gaussian random variable with mean zero
and variance one.

The proof of Lemma 2.16 proceeds by expanding Sr
N into a sum of r-tuples fn1 · · · fnr

(n1 ≤ ·· · ≤ nr), and by estimating the expectation of each tuple. (Here and throughout,
fn = fn(Xn,Xn+1).) In view of the gradient lemma it is sufficient to prove Lemma 2.16 under
the assumption that there is some constant C > 0 such that ũn := ‖ fn‖L2 satisfy ∑

n
ũ2

n ≤CVN .

Consider an r tuple fn1 · · · fnr where n1 ≤ n2 ≤ ·· · ≤ nr. Segments of the form [n j,n j+1] will
be called edges. The vertices belonging to an edge are called bound, the other vertices are called
free.

A marking is a non-empty collection of edges satisfying the following two conditions. Firstly,
each vertex n j belongs to at most one edge. Secondly, for every free vertex nl , either

(i) there exists a minimal f (l)> l such that n f (l) is bound, and for all l ≤ i < f (l), ni+1−ni ≤
n f (l)+1−n f (l); or

(ii) there exists a maximal p(l)< l such that np(l) is bound, and for all p(l)< i≤ l, ni−ni−1≤
np(l)−np(l)−1.

If (i) holds we will say that nl is associated to the edge [n f (l),n f (l)+1] otherwise it is associated
to [np(l)−1,np(l)].

Lemma 2.18 There are constants L = L(r)> 0 and 0 < θ < 1 such that∣∣∣∣∣E
[

r

∏
i=1

fni

]∣∣∣∣∣≤ L ∑
markings

∏
[n j,n j+1] is an edge

(
θ
(n j+1−n j) ũn j ũn j+1

)
.

Proof. If r = 1 then the result holds since E[ fn] = 0 (in this case there are no markings, and we
let the empty sum be equal to zero).

If r = 2 then the lemma says that |E [ fn1 fn2]| ≤ Kθ n2−n1‖ fn1‖L2‖ fn2‖L2 which is true due to
Proposition 1.11(2).

For r ≥ 3 we use induction. Take j such that n j+1−n j is the largest. Then

E

[
r

∏
i=1

fni

]
= E

[
j

∏
i=1

fni

]
E

[
r

∏
i= j+1

fni

]
+O

(
θ
(n j+1−n j)

∥∥∥∥∥ j

∏
i=1

fni

∥∥∥∥∥
L2

∥∥∥∥∥ r

∏
i= j+1

fni

∥∥∥∥∥
L2

)
.
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Let K := ess sup |f|, then the second term is smaller than θ
(n j+1−n j)ũn j ũn j+1Kr−2. Thus this

term is controlled by the marking with only one marked edge [n j,n j+1]. Applying the inductive
assumption to each factor in the first term we obtain the result. �

Lemma 2.19 There exists Cr > 0 s.t. for every set C of r tuples 1≤ n1 ≤ ·· · ≤ nr ≤ N,

ΓC := ∑
(n1,...,nr)∈C

∣∣∣∣∣E
[

r

∏
i=1

fni

]∣∣∣∣∣≤CrV
br/2c
N .

Lemma 2.19 implies Lemma 2.16 since

E [Sr
N ] =

r

∑
s=1

∑
k1+···+ks=r

r!
k1! · · ·ks!

∑
1≤n1<···<ns≤N

E

[
s

∏
j=1

f k j
n j

]
.

Therefore it suffices to prove Lemma 2.19.

Proof. By Lemma 2.18

ΓC ≤ L ∑
(n1,...,nr)∈C

∑
markings (e1, . . . ,es)

of (n1, . . . ,nr)

s

∏
j=1

(
ũe−j

ũe+j
θ
(e+j −e−j )

)

where the marked edges are e j = [e−j ,e
+
j ], j = 1, . . . ,s. Collecting all terms with a fixed set of

marked edges (e1, . . . ,es) we obtain

ΓC ≤C(r)∑
s

∑
(e1,...,es)

s

∏
j=1

(
ũe−j

ũe+j
θ
(e+j −e−j )(e+j − e−j )

r−2
)

(2.2.13)

where C(r)∏
j
(e+j − e−j )

r accounts for all tuples which admit a marking (e1, . . .es). Indeed, for

every edge e = [e−,e+] there are at most 0 ≤ j ≤ r− 2 vertices which may be associated to e
and the positions of those vertices are located inside[

e−− (r−2)(e+− e−),e−
)
∪
(
e+,e++(r−2)(e+− e−)

]
.

It follows that there are at most 2(r−2)(e+− e−) choices to place each vertex associated to a
given edge. This gives

∏
e

(
r−2

∑
j=0

[
2(r−2)(e+− e−)

] j

)
≤C(r)∏

e
(e+− e−)r−2

possibilities for tuples with marking (e1, . . . ,es) proving (2.2.13).
The sum over (e1, . . .es) in (2.2.13) can be estimated by(

N−1

∑
n=1

N−n

∑
m=1

ũnũn+mθ
mmr−2

)s

.

For each m, ∑
n

ũnũn+m =O(VN) due to the Cauchy-Schwartz inequality and because ∑
N
n=1 ũ2

n≤

CVN by assumption. Summing over m gives ΓC ≤ const ∑
2s≤r

V s
N where the condition 2s ≤ r ap-
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pears because each edge involves two distinct vertices, and no vertex belongs to more than one
edge. The result follows. ut

2.3 Notes and references

The connection between the non-growth of variance and representation in terms of gradients is
well-known for stationary stochastic processes. The first result in this direction we are aware of
is Leonov’s Theorem [94]. He showed that the asymptotic variance of a homogeneous additive
functional of a stationary homogeneous Markov chain is zero iff the additive functional is the
sum of a gradient and a constant. Rousseau-Egele [127] and Guivarc’h & Hardy [65] extended
this to the context of dynamical systems preserving an invariant Gibbs measure. Kifer [80],
Conze & Raugi [28], Dragičević,Froyland & González-Tokman [53] have proved versions of
Leonov’s theorem for random and/or sequential dynamical systems.

The connection between center-tightness and gradients is a central feature of the theory of
cocycles over ergodic transformations. Suppose T : X → X is an ergodic probability preserving
transformation on a non-atomic probability space. For every measurable f : X →R, { f ◦T n} is
a stationary stochastic process, and

SN = f + f ◦T + · · ·+ f ◦T N−1

are called the “ergodic sums of the cocycle f .” A “coboundary” is a function of the form f =
g−g◦T with g measurable. Schmidt characterized cocycles with center-tight SN as those arising
from coboundaries [136, page 181]. These results extend to cocycles taking values in locally
compact groups, see Moore & Schmidt [105] and Aaronson & Weiss [7]. For more on this, see
Aaronson [2, chapter 8], and Bradley [16, chapters 8,19]. We also refer to [64] for an analogous
result in the continuous setting.

Notice that inhomogeneous theory is different from the stationary theory in that there is
another cause for center-tightness: Having summable variance. This cannot happen in the sta-
tionary homogeneous world (unless all fi are constant).

Theorem 2.3 is a special case of a more general result due to Dobrushin, which can be found
in [45]. The conditions for Dobrushin’s full result are more general than uniform boundedness
or uniform ellipticity. Our proof follows the paper of Sethuraman & Varadhan [139], except for
some changes we needed to make to deal with additive functionals of the form fk(Xk,Xk+1), and
not just fk(Xk) as in [139]. McLeish’s Lemma, the martingale CLT, and their proofs are due to
McLeish [103]. We refer the reader to Hall & Heyde [71] for the history of this result, further
extensions, and references.

Theorem 2.4 is extends the Kolmogorov-Khintchin “Two-Series Theorem” [84]. There are
other extensions to sums of dependent random variables. We mention for example a version for
martingales (Hall & Heyde [71, chapter 2]), for sums of negatively dependent random variables
(Matuła, [101]) and for expanding maps ([28]).

The proofs of theorems 2.3 and 2.4 use Gordin’s “martingale-coboundary decomposition”
[62], see also [71],[86].



Chapter 3
The essential range and irreducibility

In this chapter we discuss the following question: How small can we make the range of an
additive functional, by subtracting from it a center-tight functional?

3.1 Definitions and motivation

Let f = { fn} be an additive functional of a Markov chain X := {Xn}. The algebraic range of
(X, f) is the intersection Galg(X, f) of all closed groups G s.t. ,

∃cn ∈ R s.t. P[ fn(Xn,Xn+1)− cn ∈ G] = 1 for all n≥ 1. (3.1.1)

We will see later (Lemma 3.9) that Galg(X, f) itself satisfies (3.1.1), therefore Galg(X, f) is the
smallest closed group satisfying (3.1.1).

Example 3.1 (The simple random walk). Suppose {Xn} are independent random variables
such that P(Xn = ±1) = 1

2 , and let fn(x,y) = x. Then Sn = X1 + · · ·+Xn is the simple random
walk on Z. The algebraic range in this case is 2Z.

Proof : Galg ⊂ 2Z, because we can take cn :=−1. Assume by contradiction that Galg ( 2Z, then
Galg = tZ for t ≥ 4, and the supports of Sn are cosets of tZ.

But this is false, because ∃a1,a2 s.t. |a1− a2| < t and P(Sn = ai) 6= 0: For n even take ai =
(−1)i, and for n odd take ai = 1+(−1)i. �

The lattice case is the case when Galg(X, f) = tZ for some t ≥ 0. The non-lattice case is the
case when Galg(X, f) =R. The distinction is important for the following reason. If Galg(X, f) =
tZ and γN := c1 + · · ·+ cN , then

P(SN ∈ γN + tZ) = 1 for all N.

In this case it is not true that P(SN− zN ∈ (a,b))∼ e−z2/2|a−b|√
2πVN

whenever zN−E(SN)√
VN

→ z, because
P(SN − zN ∈ (a,b)) = 0 whenever |a− b| < t and zN +(a,b) falls inside the gaps of γN + tZ.
This is the lattice obstruction to the local limit theorem.

There is a related, but more subtle, obstruction. An additive functional f is called reducible
on X, if there is another additive functional g on X such that f−g is center-tight, and

Galg(X,g)( Galg(X, f).

In this case we say that g is a reduction of f, and call the algebraic range of g a reduced range
of f.

63
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Example 3.2 (Simple random walk with continuous first step): Suppose {Xn}n≥1 are inde-
pendent real valued random variables such that X1 has continuous non-uniform distribution F
with compact support, and X2,X3, . . . are equal to ±1 with equal probabilities. Let fn(x,y) = x,
then Sn = X1 +X2 + · · ·+Xn.

Because of the continuously distributed first step, Galg(f) = R. But if we subtract from f the
center-tight functional c with components

cn(x,y) = x when n = 1 and cn(x,y)≡ 0 when n > 1,

then the result g := f− c has algebraic range 2Z. So f is reducible.
The reduction g satisfies the lattice local limit theorem (see the preface), because it generates

the (delayed) simple random walk. But by the assumptions on F, the original functional f = g+c
does not satisfy the LLT, lattice or non-lattice. This can be seen by direct calculation from
the observation that the distribution of Sn is the convolution of F and the centered binomial
distribution. See chapter 5 for details.

Here we see an instance of the reducibility obstruction to the local limit theorem: A situation
when the LLT fails because the additive functional is a sum of a lattice term which satisfies the
lattice LLT and a non-lattice center-tight term which spoils it. The reducibility obstruction to
the LLT raises the following questions:

1. Given an additive functional f, how small can we make its algebraic range by subtracting
from it a center-tight term?

2. Is there an “optimal” center-tight functional c such that the algebraic range of f− c cannot
be reduced further?

Motivated by these questions, we introduce the following definitions. The essential range of
f is

Gess(X, f) :=
⋂{

Galg(X,g) : f−g is center tight
}
.

This is a closed sub-group of Galg(X, f).
An additive functional without reductions is called irreducible. Equivalently, f is irreducible

iff Gess(X, f) = Galg(X, f).
In this terminology questions 1 and 2 call for the calculation of Gess(X, f) and ask for an

irreducible reduction of f.

3.2 Main results

3.2.1 Results for Markov chains

The questions raised at the end of the last section can be answered using the structure constants
dn(ξ ) introduced in (1.3.2). Define the co-range of f to be the set

H(X, f) := {ξ ∈ R :
∞

∑
n=3

dn(ξ )
2 < ∞}.

Theorem 3.1. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. If f is center-tight then H(X, f) = R, and if not then either H(X, f) = {0}, or
H(X, f) = tZ for some t ≥ π/(6ess sup | f |).
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Theorem 3.2. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X, then

(a) If H(X, f) = 0, then Gess(X, f) = R.
(b) If H(X, f) = tZ with t 6= 0, then Gess(X, f) =

2π

t Z.
(c) If H(X, f) = R, then Gess(X, f) = {0}.

Theorem 3.3. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. Then there exists an irreducible uniformly bounded additive functional g such
that f−g is center-tight, and

Galg(X,g) = Gess(X,g) = Gess(X, f).

Corollary 3.3 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. If Gess(X, f) = tZ with t 6= 0, then |t| ≤ 12ess sup |f|.

The corollary follows directly from Theorems 3.1 and 3.2(b).

3.2.2 Results for Markov arrays

The previous discussion applies to Markov arrays. Let f be an additive functional on a Markov
array X with row lengths kN +1:

(1) The algebraic range Galg(X, f) is the intersection of all closed subgroups G of R such that
for all 1≤ k ≤ kN ,N ≥ 1

∃c(N)
k ∈ R s.t. P[ f (N)

k (X (N)
k ,X (N)

k+1)− c(N)
k ∈ G] = 1.

(2) The essential range Gess(X, f) is the intersection of the algebraic ranges of all additive
functionals of the form f−h where h is center-tight.

(3) The co-range is H(X, f) := {ξ ∈ R : sup
N

kN

∑
k=3

d(N)
k (ξ )2 < ∞}.

(4) An additive functional f is called irreducible if Gess(X, f) = Galg(X, f).

This is consistent with the definitions for Markov chains, see Corollary 3.4 below.

Theorem 3.4. The results of Theorems 3.1, 3.2 3.3 and of Corollary 3.3 hold for all a.s. uni-
formly bounded additive functionals on uniformly elliptic Markov arrays.

Corollary 3.4 Suppose f = { fn} is an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X = {Xn}. Let f̃ = { f (N)

n } be an additive functional on a Markov array
X̃= {X (N)

n } s.t. f (N)
n = fn and X (N)

n = Xn. Then

Galg(X̃, f̃) = Galg(X, f) , Gess(X̃, f̃) = Gess(X, f) , H(X̃, f̃) = H(X, f).

Proof. The equality of the algebraic ranges and co-ranges is trivial, but the equality of the
essential ranges requires justification, because some center-tight functionals of {X (N)

n } are not
of the form h(N)

n = hn.
However, since the co-ranges agree, the essential ranges must also agree, by the version of

Theorem 3.2 for arrays. �
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3.2.3 Hereditary arrays

Some results for Markov chains do not extend to general Markov arrays. Of particular impor-
tance is the following fact, which we need for the proof of the LLT (see the proof of Theorem
4.1, claim 2). Recall the definition of DN(ξ ) from (1.3.2).

Theorem 3.5. Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X, then

DN(ξ )−−−→
N→∞

∞ uniformly on compact subsets of R\H(X, f). (3.2.1)

Proof. Suppose ξ ∈ R\H(X, f), then sup
N

DN(ξ ) = ∞, whence

DN(ξ ) =
N

∑
k=3

d(N)
k (ξ )2 −−−→

N→∞

∞

∑
k=3

d(N)
k (ξ )2 ≡ sup

N
DN(ξ ) = ∞.

Since DN(ξ ) is non-decreasing and ξ 7→ DN(ξ ) are continuous, the convergence is uniform on
compact subsets of R\H(X, f). �

The following two examples show that Theorem 3.5 fails for some arrays:

Example 3.5 Let Xn be a sequence of independent uniform random variables with zero mean
and variance equal to one. Form an array by setting

X (N)
k =

{
Xk 1≤ k ≤ N +1,N odd
0 1≤ k ≤ N +1,N even

(k = 1, . . . ,N)

and let f (N)
k (x,y) := x. Then for every 0 6= ξ ∈ R\H(X, f), DN(ξ ) 6→ ∞.

Proof. We claim that sup
N

D2N+1(ξ ) = ∞ for every ξ 6= 0.

To see this, suppose P =

(
Xn−2

Xn−1
Yn−1

Xn
Yn

,Yn+1

)
is a random level 2N+1 hexagon at position

n, then Γ (P)=Xn−1+Xn−Yn−1−Yn where Xi,Yj are independent random variables each having
uniform distribution with mean zero and unit variance. So Γ (P) is a non lattice random variable
and for every ξ 6= 0, d(2N+1)

n (ξ )2 = E(|eiξΓ (P)−1|2) = c(ξ ), where c(ξ ) is a positive constant
independent of n. So

D2N+1(ξ ) = (2N−1)c(ξ )−−−→
N→∞

∞.

Thus H(X, f) = {0}. But DN(ξ ) 6→ ∞ for ξ 6= 0, because D2N(ξ ) = 0. �

Example 3.6 Suppose Xn are a sequence of independent identically distributed random vari-
ables, equal to ±1 with probability 1

2 . Form an array with row lengths N + 1 by setting

X (N)
n = Xn, and let

f (N)
n (Xn,Xn+1) :=

1
2

(
1+

1
3
√

N

)
Xn (1≤ n≤ N +1).

Then DN(ξ )→∞ for all ξ 6∈H(X, f), but the convergence is not uniform on compact subsets of
R\H( f ).



3.2 Main results 67

Proof. Γ

(
+1+1

+1
+1
−1 +1

)
= 1+N−1/3. Since Hex(N,n) consists of 26 hexagons, the hexagon(

+1+1
+1

+1
−1 +1

)
has probability 2−6. It follows that

d(N)
n (ξ )≥ 2−6|eiξ (1+N−1/3)−1|2 = 1

16
sin2 ξ (1+N−1/3)

2

DN(ξ )≥
N−2

16
sin2 ξ (1+N−1/3)

2
∼

{
16−1N sin2 ξ

2 ξ 6∈ 2πZ
16−1 3

√
N ξ ∈ 2πZ.

We see that DN(ξ )→ ∞ for all ξ 6= 0, whence H(X, f) = {0}, and DN(ξ )→ ∞ for all ξ 6∈
H(X, f ). But the convergence is not uniform on any compact neighborhood of 2πk, k 6= 0,
because DN(ξN)≡ 0 for ξN = 2πk(1+N−1/3)−1→ 2πk. �

Because of the importance of property (3.2.1) to the proof of the LLT, we would like to
characterize the additive functionals on Markov arrays which satisfy it. Examples 1 and 2 point
the way.

Let X be a Markov array with row lengths kN . A sub-array of X is an array X′ of the form
{X (N`)

k : 1≤ k ≤ kN`
+1, `≥ 1} where N` ↑ ∞. The restriction of f to X′ is

f|X′ = { f (N`)
k : 1≤ k ≤ kN`

, `≥ 1}.

(X, f) is called hereditary, if Gess(X
′, f|X′) = Gess(X, f) for all sub-arrays X′, and stably hered-

itary if (X,g) is hereditary whenever g = {(1+ εN) f (N)
k } with εN → 0.

Theorem 3.6. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov array X, then the following conditions are equivalent:

(1) f is hereditary;

(2) for all ξ , liminf
N→∞

kN

∑
k=3

d(N)
k (ξ )2 < ∞⇒ limsup

N→∞

kN

∑
k=3

d(N)
k (ξ )2 < ∞;

(3) for all ξ 6∈ H(X, f), DN(ξ )−−−→
N→∞

∞;

(4) H(X′, f |X′) = H(X, f ) for every sub-array X′ of X.

In addition, f is stably hereditary iff the convergence in (3) is uniform on compact subsets of
R\H(X, f).

Example 3.7 (Markov chains): Suppose f is an a.s. uniformly bounded additive functional on
a uniformly elliptic Markov array X. If f (N)

n = fn and X (N)
n = Xn, then f is stably hereditary.

Proof. This follows from Theorems 3.5 and 3.6. �

Example 3.8 (“Change of measure”): Let Y be an array obtained from a Markov chain X

using the change of measure construction (example 1.6). Let ϕ
(N)
n denote the weights of the

change of measure. If ∃C > 0 s.t.

C−1 < ϕ
(N)
n <C for all n,N,

then for every a.s. uniformly bounded additive functional f on X, the additive functional f (N)
n :=

fn is stably hereditary on Y .
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Proof. If dn(ξ ,X) are the structure constants of f on X, and d(N)
n (ξ ,Y) are the structure constants

of f on Y, then C−6dn(ξ ,X)≤ d(N)
n (ξ ,Y)≤C6dn(ξ ,X). So H(Y, f) = H(X, f).

Theorem 3.5 says that DN(ξ ,X)→ ∞ uniformly on compact subsets of R \H(X, f). Since
DN(ξ ,Y)≥C−6DN(ξ ,X), DN(ξ ,X)→ ∞ uniformly on compact subsets of R\H(Y, f). �

Sometimes (but not always, Example 3.6), every hereditary functional is stably hereditary:

Theorem 3.7. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov array X.

(a) Suppose Gess(X, f) = tZ or {0}. If f is hereditary then f is stably hereditary.
(b) Suppose f is integer valued and not center-tight, and |f| ≤K, then Gess(X, f) =

k
2π
Z for some

0 < k ≤ 12K, and if f is hereditary then f is stably hereditary.

3.3 Proofs

3.3.1 Reduction lemmas

Lemma 3.9 Let f be an additive functional on a Markov array X with row lengths kN +1. For
every N≥ 1 and 1≤ n≤ kN , there exists c(N)

k s.t. f (N)
n (X (N)

n ,X (N)
n+1)−c(N)

n ∈Galg(X, f) almost surely.

Proof. Galg(X, f) is the intersection of all closed subgroups G such that

∃c(N)
k s.t. f (N)

n (X (N)
n ,X (N)

n+1)− c(N)
n ∈ G almost surely. (3.3.1)

This is a closed subgroup of R. The lemma is trivial when Galg(X, f) =R (take c(N)
n ≡ 0), so we

focus on the case Galg(X, f) 6= R.
In this case (3.3.1) holds with some G = tZ with t ≥ 0, and f (N)

n (Xn,Xn+1) must be a discrete
random variable. Let A(N)

n denote the set of values attained by f (N)
n (Xn,Xn+1) with positive

probability. Since G = tZ satisfies (3.3.1), A(N)
n ⊂coset of tZ, and D(N)

n := A(N)
n −A(N)

n ⊂ tZ.
Let G0 denote the group generated by

⋃
N≥1

⋃
1≤n≤kN

D(N)
n . Then G0 is a subgroup of tZ. In

particular, G0 is closed.
By the previous paragraph, G0 ⊂ tZ for any group tZ which satisfies (3.3.1). So G0 ⊆

Galg(X, f). Next, we fix n,N and observe that all the values of f (N)
n (Xn,Xn+1) belong to the

same translate of A(N)
n −A(N)

n , and therefore to the same coset of G0. So G0 satisfies (3.3.1), and
G0 ⊃ Galg(X, f). So Galg(X, f) = G0. Since G0 satisfies (3.3.1), Galg(X, f) satisfies (3.3.1). �

Lemma 3.10 (Reduction Lemma) Let f be an a.s. uniformly bounded additive functional on

a uniformly elliptic Markov array X. If ξ 6= 0 and sup
N

kN

∑
k=3

d(N)
k (ξ )2 < ∞, then there exists a

uniformly bounded additive functional g on X s.t.

f−g is center-tight, and Galg(g)⊂
2π

ξ
Z.

If X (N)
n = Xn and f (N)

n = fn (as in the case additive functionals of Markov chains), then we can
take g such that g(N)

n = gn.
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Proof for Doeblin chains: As in the case of the gradient lemma, the reduction lemma has a
particularly simple proof in the important special case of Doeblin Markov chains (Example
1.7). Recall that Doeblin chains have finite state spaces Sn. Let πn

xy := πn,n+1(x,{y}), and re-
label the states Sn = {1, . . . ,dn} in such a way that πn

11 = πn,n+1(1,{1}) 6= 0 for all n. The
Doeblin condition guarantees that for every x ∈Sn, there exists a state ξn(x) ∈Sn+1 such that
π

n−1
1,ξn(x)

πn
ξn(x),1

> 0.
Define as in the proof of the gradient lemma,

a0 ≡ 0, a1 ≡ 0, and an(x) := fn−2(1,ξn−1(x))+ fn−1(ξn−1(x),x) for n≥ 3
c0 := 0, c1 := 0, and cn := fn−2(1,1) for n≥ 3

f̃ := f−∇a− c.

Then f̃n(x,y) = fn(x,y)−(an+1(y)−an(x))−cn =−Γn

(
1 1

ξn−1(x)
ξn(y)

x y
)

, where Γn denotes

the balance of a hexagon, see (1.3.1).
For Doeblin chains, there are finitely many admissible hexagons at position n, and the

hexagon measure assigns each of them a mass which is uniformly bounded from below. Let
C−1 be a uniform lower bound for this mass, then

|eiξ f̃n(x,y)−1|2 ≤CE(|eiξΓn−1|2) =Cd2
n(ξ ).

Decompose f̃n(x,y)= gn(x,y)+hn(x,y) where gn(x,y)∈ 2π

ξ
Z and hn(x,y)∈ [−π

ξ
, π

ξ
). Clearly

|g| ≤ |f|+ |∇a|+ |c|+ |h| ≤ 6|f|+π/ξ , and Galg(X,h)⊂ 2π

ξ
Z.

We show that f−g is center tight. We need the following inequality:1

4x2

π2 ≤ |e
ix−1|2 ≤ x2 for all |x| ≤ π. (3.3.2)

By (3.3.2), |hn(x,y)|2 ≤ π2

4ξ 2 |eiξ hn(x,y)−1|2 = π2

4ξ 2 |eiξ f̃n(x,y)−1|2 ≤C π2

4ξ 2 d2
n(ξ ), whence

∞

∑
n=3

Var(hn(Xn,Xn+1)+ cn) =
∞

∑
n=3

Var(hn(Xn,Xn+1))≤
Cπ2

4ξ 2

∞

∑
n=3

d2
n(ξ )< ∞.

So h+ c has summable variance. Therefore f−g = ∇a+(h+ c) is center tight. �

Preparations for the proof in the general case.

Lemma 3.11 Suppose E1, . . . ,EN are measurable events, and let W denote the random variable
which counts how many of Ei occur simultaneously, then

P(W ≥ t)≤ 1
t

N

∑
k=1
P(Ek).

Proof. Apply Markov’s inequality to W = ∑1Ek . �

Suppose W is a real-valued random variable. A circular mean of W is a real number θ ∈
[−π,π) which minimizes the quantity E(|ei(W−θ)− 1|2). Such numbers always exist, because
1 Proof of (3.3.2): Since y = sinx is concave on [0, π

2 ], its graph lies above the chord y = 2x/π and below the tangent y = x. So
2x/π ≤ sinx≤ x on [0, π

2 ]. Now use the identity |eix−1|2 = 2(1− cosx) = 4sin2 x
2 .
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θ 7→ E(|ei(W−θ)−1|2) is continuous and 2π-periodic. But circular means are not unique: If, for
example, W is uniformly distributed on [−π,π], then every θ ∈ [−π,π) is a circular mean.

The circular variance of a real random variable W is defined to be

CVar(W ) := min
θ∈[−π,π)

E(|ei(W−θ)−1|2)≡ min
θ∈[−π,π)

4E
(
sin2 W−θ

2

)
.

For every x ∈ R, let

〈x〉 := unique element of [−π,π) s.t. x−〈x〉 ∈ 2πZ. (3.3.3)

It is not difficult to see, using (3.3.2), that for every circular mean θ

4
π2 Var〈W −θ〉 ≤ CVar(W )≤ Var(W ). (3.3.4)

Lemma 3.12 For every real-valued random variable W, we can write W = W1 +W2 where
W1 ∈ 2πZ almost surely, and Var(W2)≤ π2

4 CVar(W ).

Proof. W1 := (W −θ)−〈W −θ〉, W2 := 〈W −θ〉+θ , θ := a circular mean. �

Proof of the Reduction Lemma in the general case: Suppose f is an a.s. uniformly bounded
additive functional on a uniformly elliptic Markov array X, with row lengths kN , and fix ξ 6= 0
such that

sup
N

kN

∑
n=3

d(N)
n (ξ )2 < ∞.

Let L denote the ladder process associated to X (see section 1.3.2). We remind the reader that
this is a Markov array with entries L(N)

n = (Z(N)
n−2,Y

(N)
n−1,X

(N)
n ) (3 ≤ n ≤ kN), and for every N:

(a) {X (N)
n }, {Z(N)

n } are two independent copies of X(N); (b) Y (N)
n are conditionally independent

given {X (N)
i } and {Z(N)

i }; and (c) the conditional distribution of Y (N)
n given {Z(N)

i } and {X (N)
i }

is given by

P

(
Y N

n−1 ∈ E
∣∣∣∣{Z(N)

i }= {ζ
(N)
i }

{X (N)
i }= {ξ

(N)
i }

)
=

bridge probability for X that X (N)
n−1 ∈ E

given that X (N)
n−2 = ζ

(N)
n−2 and X (N)

n = ξ
(N)
n .

(see §1.2.3).

Let F,H be the additive functionals on L with entries

F(N)(Ln) := f (N)
n−2(Z

(N)
n−2,Y

(N)
n−1)+ f (N)

n−1(Y
(N)
n−1,X

(N)
n )

H(N)
n (L(N)

n ,L(N)
n+1) :=

〈
ξΓ

(
Z(N)

n−2
Z(N)

n−1

Y (N)
n−1

Y (N)
n

X (N)
n

X (N)
n+1

)〉
(3≤ n≤ kN , N ≥ 1)

(see (1.3.1) and (3.3.3)). Clearly ess sup |F| ≤ 2ess sup |f| and |H| ≤ π .

STEP 1: |E(H(N)
n )| ≤ π

4 d(N)
n (ξ )2, E[(H(N)

n )2]≤ π2

4 d(N)
n (ξ )2, and

sup
N
E[(H(N)

3 + · · ·+H(N)
kN

)2]< ∞.

PROOF OF STEP 1. We fix N and drop the superscripts (N).
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The map ı :
(

Zn−2
Zn−1
Yn−1

Yn
Xn

,Xn+1

)
7→
(

Zn−2
Yn−1
Zn−1

Xn
Yn

,Xn+1

)
preserves the natural mea-

sure on the space of hexagons, and is an involution: ı2 = id. Clearly

Γ ◦ ı =−Γ .

Using the partial symmetry 〈−x〉 = −〈x〉 for all x 6∈ −π + 2πZ, we find that Hn ◦ ı = −Hn on
[Hn 6=−π]. So E(Hn1[Hn 6=−π]) = 0, and therefore

|E(Hn)|= πP(Hn =−π)≤ π

4
E(|eiHn−1|2) = π

4
E(|eiξΓ −1|2) = π

4
dn(ξ )

2,

which is the first statement we needed to show.
Next we observe from (3.3.2) that E(H2

n ) ≤ π2

4 E(|e
iξΓ − 1|2) = π2

4 d(N)
n (ξ )2, which is the

second statement we had to prove.
The two statements already proven and the boundedness of dn show that there is a constant C

s. t. Var(Hn)≤Cd2
n(ξ )

2. Now the third statement follows from Lemma 2.5. The proof of step 1
is complete.

From now on, fix a constant D such that

sup
N

kN

∑
n=3

d(N)
n (ξ )2 + sup

N
E

( kN

∑
n=3

H(N)
n

)2
< D.

STEP 2: For every N ≥ 1 there exists ζ
(N) = (ζ

(N)
1 , . . . ,ζ

(N)
kN+1) ∈

kN+1

∏
i=1

S
(N)
i s.t.

kN

∑
n=3
E
(

H(N)
n (L(N)

n ,L(N)
n+1)

2
∣∣∣∣{Z(N)

i }= ζ
(N)

)
< π

2D,

E

( kN

∑
n=3

H(N)
n (L(N)

n ,L(N)
n+1)

)2 ∣∣∣∣{Z(N)
i }= ζ

(N)

< π
2D,

EX

[
kN

∑
n=3

CVar
(

ξ F(N)
n (L(N)

n )

∣∣∣∣{Z(N)
i }= ζ

(N),X (N)
n

)]
< π

2D and

| f (N)
n (ζ

(N)
n ,ζ

(N)
n+1)| ≤ ess sup | f | for all 3≤ n≤ kN .

Here and throughout Ln = (Z(N)
n−2,Y

(N)
n−1,X

(N)
n ), and EX indicates averaging on {X (N)

i }.

PROOF OF STEP 2. We fix N and drop the (N) superscripts.
Let Ω1 :=

{
ζ : ∑

kN
n=3E(H

2
n |{Zi}= ζ )≤ π2D

}
. By step 1,

EZ

[
E

(
kN

∑
n=3

H2
n

∣∣∣∣{Zi}= ζ

)]
=

kN

∑
n=3
E(H2

n )≤
π2

4

kN

∑
n=3

d(N)
n (ξ )2 ≤ π2

4
D,
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where EZ = integration over ζ with respect to the distribution of {Z(N)
i } (recall that {Z(N)

i }
dist
=

{X (N)
i }). By Markov’s inequality, P[{Z(N)

i } ∈Ω1]>
3
4 .

Let Ω2 := {ζ :E
[(

∑
kN
n=3 Hn(Ln,Ln+1)

)2∣∣{Zi}= ζ
]
< π2D}. As before, by Markov’s inequal-

ity, P[{Z(N)
i } ∈Ω2]≥ 1− 1

π2 .

Let Ω3 :=
{

ζ : EX

[
kN

∑
n=3

CVar
(
ξ F(Ln+1)

∣∣{Zi}= ζ ,Xn+1
)]

< π2D
}

,

θ
∗(Ln,Xn+1,Zn−1) :=−ξ fn−2(Zn−2,Zn−1)+ξ F(Ln)+ξ fn(Xn,Xn+1).

Then exp[iHn(Ln,Ln+1)] = exp[iξ F(Ln+1)− iθ ∗(Ln+1,Xn+1,Zn−2)].
Given Xn+1 and {Zi}, Ln+1 is conditionally independent from Ln, {Xi}i6=n+1. So

EZ,X

(
CVar

(
ξ F(Ln+1)

∣∣{Zi},Xn+1

))
= E

(
CVar

(
ξ F(Ln+1)

∣∣Ln,{Zi},{Xi}
))

!
≤ E

(
E
(
|eiξ F(Ln+1)−iθ∗(Ln,Xn+1,Zn−1)−1|2

∣∣Ln,{Xi},{Zi}
))

= E(|ei(ξ F(Ln+1)−θ∗)−1|2)≡ E(|eiHn−1|2) = E(|eiξΓ −1|2) = dn(ξ )
2,

where
!
≤ is because θ ∗ is conditionally constant. So

EZ

[
EX

(
kN

∑
n=3

CVar
(
ξ F(Ln+1)

∣∣{Zi},Xn+1)

)]
< D.

By Markov’s inequality, P({Z(N)
i } ∈Ω3)≥ 1− 1

π2 .

Finally, let Ω4 := {ζ : | fn(ζn,ζn+1)| ≤ ess sup |f|}, then P({Z(N)
i } ∈Ω4) = 1.

In summary P

[ ⋃
1≤i≤4

Ω
c
i

]
≤ 2

π2 +
1
4
< 1. Necessarily Ω1∩Ω2∩Ω3∩Ω4 6=∅. Any ζ = ζ

(N)

in the intersection satisfies the requirements of step 2.

STEP 3: There exist measurable functions θ
(N)
n : S(N)

n → [−π,π) s.t.

kN

∑
n=3
E
(
|eiξ F(N)

n (L(N)
n )−iθ (N)

n (Xn)−1|2
∣∣∣∣{Z(N)

i }= ζ
(N)

)
< 2π

2D.

Proof. We fix N and drop the (N) superscripts.
Clearly, θ 7→ E(|ei(W−θ)− 1|2) is continuous for every random variable W . So CVar(W ) =

infq∈QE(|ei(W−q)− 1|2), an infimum over a countable set, whence CVar(ξ Fn|{Zi} = ζ ,Xn) =

infq∈QE(|eiξ F(Ln)−iq−1|2|{Zi}= ζ ,Xn = ξn).
The expectation can be expressed explicitly using integrals with respect to the bridge distri-

butions, and this expression shows that

η 7→ CVar(ξ Fn|{Zi}= ζ ,Xn = η)

is measurable on S
(N)
n .
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Fix N and ζ = ζ
(N). We say that (η ,q) ∈ S(N)

n ×R have “property Pn(η ,q)”, if the following
condition holds:

E(|eiξ Fn(Ln)−iq−1|2|{Zn}= ζ ,Xn = η)

≤ CVar(ξ Fn(Ln)|{Zn}= ζ ,Xn = η)+
D
n2

(Pn(ξ ,q))

By the previous paragraph, {η : Pn(η ,q) holds} is measurable, and for every η there exists
q ∈Q∩ (−π,π) such that Pn(η ,q) holds. Let

θn(η) = θ
(N)
n (η) := inf{q : q ∈Q∩ (−π,π) s.t. Pn(η ,q) holds} .

Again, this is a measurable function, and since for fixed η , Pn(η ,q) is a closed property of q,
θ
(N)
n (η) itself satisfies property Pn(η ,θ

(N)
n (ξ )). So

EX

[
kN

∑
n=3
E(|eiξ Fn(Ln)−iθ (N)

n (Xn)−1|2|{Zn}= ζ ,Xn

]

≤ EX

[
kN

∑
n=3

CVar
(

ξ Fn(Ln)

∣∣∣∣{Zn}= ζ ,Xn

)]
+

π2

6
D

< 2π
2D, by choice of ζ .

STEP 4 (THE REDUCTION). Let ζ = ζ
(N), θn = θ

(N)
n , fn = f (N)

n , Fn = F(N)
n , Xn = X (N)

n , Zn =

Z(N)
n . Define

c(N)
n := fn(ζn−2,ζn−1)

a(N)
n (x) :=

1
ξ

[
θn(Xn)+E

(
〈ξ Fn(Ln)−θn(Xn)〉

∣∣{Zi}= ζ ,Xn = x
)]

(x ∈S
(N)
n )

f̃ :=
1
ξ

〈
ξ
(
f−∇a− c

)〉
g := f−∇a− c− f̃.

Then a,c, f̃,g are uniformly bounded, and Galg(g)⊂ 2π

ξ
Z.

Proof. By choice of ζ
(N), |c| ≤ ess sup |f|, and by the definition of θ (N) and 〈·〉, |a| ≤ 2π/|ξ |

and |̃f| ≤ π/|ξ |. It follows that |g| ≤ 2ess sup |f|+3π/|ξ |. Next,

g ≡ 1
ξ

(
ξ (f−∇a− c)−〈ξ (f−∇a− c)〉

)
.

The term in the brackets belongs to 2πZ by the definition of 〈·〉, so Galg(g) ⊂ 2π

ξ
Z, and the

proof of step 4 is complete.

Notice that f − g = ∇a+ c+ f̃. Gradients and constant functionals are center tight. So to
complete the proof of the reduction lemma, it suffices to show:

STEP 5: f̃ is center-tight.

Proof. We fix N and drop the (N) superscripts.
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We begin with a few identities. Suppose {Z(N)
i } = {ζ

(N)
i }, and consider the hexagon Pn :=(

Zn−2
Zn−1
Yn−1

Yn
Xn

Xn+1

)
=

(
ζn−2

ζn−1
Yn−1

Yn
Xn

Xn+1

)
, then

−Γ (Pn) =− fn−2(Zn−2,Zn−1)−Fn+1(Ln−1)+Fn(Ln)+ fn(Xn,Xn+1),

whence

ξ f̃n(Xn,Xn+1) =

〈
ξ
(
−Γ (Pn)+an(Xn)−F(Ln)+F(Ln+1)−an+1(Xn+1)

)〉
=

〈
−Hn(Ln,Ln+1)+ξ

(
an(Xn)−F(Ln)

)
+ξ
(
F(Ln+1)−an+1(Xn+1)

)〉
.

Define a new functional W of the ladder process {Ln} with entries

W (Ln) := 〈ξ F(Ln)−θn(Xn)〉−E
(
〈ξ F(Ln)−θn(Xn)〉

∣∣{Zi}= ζ
(N),Xn

)
.

Notice that W (Ln) = ξ (F(Ln)−an(Xn)) mod 2πZ. Therefore

ξ f̃n(Xn,Xn+1) =

〈
W (Ln+1)−W (Ln)−Hn(Ln,Ln+1)

〉
. (3.3.5)

CLAIM. Given δ > 0, let Tδ = 11π2D/δ . Then there exists a measurable set ΩX of {Xi} such
that P(ΩX)> 1−δ and such that for all ξ ∈ΩX ,

(1) ∑
kN
n=3P

(
|W (Ln)|> π

3

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
< Tδ ,

(2) ∑
kN
n=3P

(
|Hn(Ln,Ln+1)|> π

3

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
< Tδ ,

(3) E
(∣∣∑kN

n=3 Hn(Ln,Ln+1)
∣∣∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
< Tδ .

Proof of the claim. Ln is conditionally independent of {Xi}i6=n given {Zi},Xn. So

kN

∑
n=3
P
(
|W (Ln)| ≥

π

4

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
=

kN

∑
n=3
P
(
|W (Ln)| ≥

π

4

∣∣∣∣{Zi}= ζ ,Xn = ξn

)
.

Since E(W (Ln)|{Zi} = ζ ,Xn) = 0, we can use the Chebyshev inequality to bound the sum of
probabilities from above by

≤ 16
π2

kN

∑
n=3

Var
(
〈ξ F(Ln)−θn(Xn)〉|{Zi}= ζ ,Xn

)
≤ 4

kN

∑
n=3
E
(
|eiξ F(Ln)−iθn(Xn)−1|2

∣∣{Zi}= ζ ,Xn
)
, see (3.3.2).

Integrating over {Xi} we have by the choice of θ
(N)
n (Xn) (step 3) that



3.3 Proofs 75

EX

[
kN

∑
n=3
P
(
|W (Ln)| ≥

π

4

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)]
≤ 8π

2D.

By Markov’s inequality, the set

Ω
1
X(T ) :=

{
ξ :

kN

∑
n=3
P
(
|W (Ln)|>

π

3

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
≤ T

}

has probability P[Ω 1
X(T )]≥ 1−8π2D/T .

Similarly, by Markov’s inequality

P
(
|Hn| ≥

π

4

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
≤ 16

π2E
(

H2
n

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
.

By the choice of ζ , EX

[
∑

kN
n=3P

(
|Hn| ≥ π

4

∣∣∣∣{Zi}= ζ ,{Xi}
)]
≤ 16D. So the set

Ω
2
X(T ) :=

{
ξ :

kN

∑
n=3
P
(
|Hn(Ln,Ln+1)|>

π

3

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
≤ T

}

has probability P[Ω 2
X(T )]≥ 1−16D/T > 1−2π2D/T .

Finally, since conditional expectations contract L2-norms,

EX

[
E
(∣∣ kN

∑
n=3

Hn(Ln,Ln+1)
∣∣∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)2]
≤ E

[( kN

∑
n=3

Hn(Ln,Ln+1)

)2∣∣∣∣{Zi}= ζ

]
≤ π

2D.

So Ω 3
X(T ) :=

{
ξ : E

(∣∣∑kN
n=3 Hn(Ln,Ln+1)

∣∣∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
≤ T

}
has probability

P[Ω 3
X(T )]> 1−π

2D/T 2.

We see that if T > 1, then P[Ω 1
X(T )∩Ω 2

X(T )∩Ω 3
X(T )]> 1− 11π2D

T . The claim follows. �

We can now complete the proof of the step 5 (and the reduction lemma) and show that f̃ is
center-tight.

Fix δ > 0 and ΩX , Tδ as in the claim. Fix N and define the random set

AN({L(N)
n }) := {3≤ n≤ kN : |W (Ln)| ≥

π

3
or |Hn(Ln,Ln+1)| ≥

π

3
}.

For all ξ ∈ΩX , we have the following bound (Lemma 3.11):

P
(
|AN |> 4Tδ

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
<

1
2
.

Similarly, for all ξ ∈ΩX , P
(∣∣ kN

∑
n=3

Hn
∣∣> 4Tδ

∣∣∣∣{Zi}= ζ ,{Xi}= ξ

)
≤ 1

4
.
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Since the probabilities of these events add up to less than one, the intersection of their com-
plements is non-empty. So for every ξ ∈ΩX we can find {Y (N)

i (ξ )}kN−1
i=2 such that L∗n := L∗n(ξ )=

(ζ
(N)
n−2,Y

(N)
n−1(ξ ),ξn) has the following two properties:∣∣∣∣∣ kN

∑
n=3

Hn(L∗n,L
∗
n+1)

∣∣∣∣∣≤ 4Tδ , and

M := #
{

3≤ n≤ kN : |W (L∗n)| ≥
π

3
or |Hn(L∗n,L

∗
n+1)| ≥

π

3

}
≤ 4Tδ .

Let n1 < · · ·< nM be an enumeration of the indices n where |W (L∗n)| ≥ π

3 or |Hn(L∗n,L
∗
n+1)| ≥

π

3 .
By (3.3.5), if ni < n < ni+1−1,

ξ f̃n(ξn,ξn+1) =W (L∗n+1)−W (L∗n)−Hn(L∗n,L
∗
n+1),

because 〈x+ y+ z〉= x+ y+ z whenever |x|, |y|, |z|< π

3 . So

−
ni+1−1

∑
n=ni

ξ f̃n(ξn,ξn+1) =
ni+1−1

∑
n=ni+1

Hn(L∗n,L
∗
n+1)±6π

where we have used the bounds |W| ≤ 2π and |Hni| ≤ π . Summing over i we find that for every
ξ ∈ΩX , ∣∣∣∣∣ξ kN

∑
n=3

f̃n(ξn,ξn+1)

∣∣∣∣∣≤
∣∣∣∣∣ kN

∑
n=3

Hn(L∗n,L
∗
n+1)

∣∣∣∣∣+10Mπ ≤ 4Tδ +40Tδ π < 42πTδ .

Setting Cδ := 42πTδ/ξ , we find that P(
∣∣∑kN

n=3 f̃ (N)
n
∣∣ ≥ Cδ ) < δ for all N, whence the (center-

)tightness of f̃. �

In chapter 5 we will need the following variant of the reduction lemma for integer valued f.

Lemma 3.13 (Integer Reduction Lemma) Let X be a uniformly elliptic Markov chain, and f

an integer valued additive functional on X s.t. | f | ≤ K a.s. For every N, fn(x,y) = g(N)
n (x,y)+

a(N)
n (x)−a(N)

n+1(y)+ c(N)
n (n = 1, . . . ,N) where

(1) c(N)
n are integers such that |c(N)

n | ≤ K,

(2) a(N)
n are measurable integer valued functions on Sn s.t. |a(N)

n | ≤ 2K,

(3) g(N)
n are measurable, integer valued, and

N

∑
n=3
E[g(N)

n (Xn,XN+1)
2]≤ 103K4

N

∑
n=3

u2
n, with un the

structure constants of f.

Proof. Let
(

Zn−2
Zn−1 Yn
Yn−1 Xn

Xn+1

)
be a random hexagon. By the definition of the structure con-

stants,

E

[
N

∑
n=3
E

(
Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)2 ∣∣∣∣Zn−2,Zn−1

)]
=

N

∑
n=3

u2
n.

Therefore, for every N there exists zn = zn(N) ∈Sn (n = 1, . . . ,N−2) such that
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N

∑
n=3
E

[
E

(
Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)2 ∣∣∣∣Zn−2 = zn−2,Zn−1 = zn−1

)]
≤

N

∑
n=3

u2
n.

We emphasize that zn depends on N.
Let c(N)

n := fn−2(zn−2,zn−1), and let a(N)
n (xn) be the (smallest) most likely value of

fn−2(zn−2,Y )+ fn−1(Y,xn),

where Y has the bridge distribution of Xn−1 conditioned on Xn−2 = zn−2 and Xn = xn. The
most likely value exists, and has probability bigger than δK := 1

5K , because fn−2(zn−2,Y ) +
fn−1(Y,xn) ∈ [−2K,2K]∩Z.

Set g(N)
n (xn,xn+1) := fn(xn,xn+1)+a(N)

n (xn)−a(N)
n+1(xn+1)−c(N)

n . Equivalently, g(N)
n (xn,xn+1)=

−Γ

(
zn−2

zn−1 yn
yn−1 xn

xn+1

)
for the yk which maximize the likelihood of the value fk−1(zk−1,Y )+

fk(Y,xk+1) when Y has the bridge distribution of Xk given Xk−1 = zk−1,Xk+1 = xk+1.
Our task is to estimate ∑

N
n=3E[g

(N)
n (Xn,Xn+1)

2]. Define for this purpose the functions h(N)
n :

Sn×Sn+1→ R,

h(N)
n (xn,xn+1) := E

(
Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)2 ∣∣∣∣Zn−2 = zn−2 Zn−1 = zn−1
Xn = xn Xn+1 = xn+1

)1/2

,

Our plan is to show the following:

(a)
N

∑
n=3
E(h(N)

n (Xn,Xn+1)
2)≤

N

∑
n=3

u2
n

(b) If h(N)
n (xn,xn+1)< δK , then g(N)

n (xn,xn+1) = 0.
(c) E(g(N)

n (Xn,Xn+1)
2)≤ (6K)2P[h(K)

n ≥ δk]≤ 36K2δ
−2
K E[h(N)

n (Xn,Xn+1)
2].

Part (a) is because of the choice of zn. To see part (b), note that since f is integer valued, either
the balance of a hexagon is zero, or it has absolute value≥ 1. Therefore, if h(N)

n (Xn,Xn+1)< δK ,
then necessarily

P
[

Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)
6= 0
∣∣∣∣Zn−2 = zn−2 Zn−1 = zn−1
Xn = xn Xn+1 = xn+1

]
≤ E

[
Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)2 ∣∣∣∣Zn−2 = zn−2 Zn−1 = zn−1
Xn = xn Xn+1 = xn+1

]
= h(N)

n (Xn,Xn+1)
2 < δ

2
K,

whence P
[

Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)
= 0
∣∣∣∣Zn−2 = zn−2 Zn−1 = zn−1
Xn = xn Xn+1 = xn+1

]
> 1−δ 2

K.

At the same time, by the structure of the distribution of random hexagons,

Ωn :=

{(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)
:

fn−1(Zn−1,Yn)+ fn(Yn,Xn+1) = a(N)
n+1(Xn+1)

fn−2(Zn−2,Yn−1)+ fn−1(Yn−1,Xn) = a(N)
n (Xn)

}

satisfies P
[

Ωn

∣∣∣∣Zn−2 = zn−2 Zn−1 = zn−1
Xn = xn Xn+1 = xn+1

]
> δ 2

K,
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If the sum of the probabilities of two events is bigger than one, then they must intersect. It
follows that there exist yn−1,yn such that

◦ a(N)
n (Xn) = fn−2(zn−2,yn−1)+ fn−1(yn−1,Xn);

◦ a(N)
n+1(Xn+1) = fn−1(zn−1,yn)+ fn(yn,Xn+1);

◦ Γ

(
zn−2

zn−1 yn
yn−1 Xn

Xn+1

)
= 0.

By the definition of g(N)
n , this implies that g(N)

n (Xn,Xn+1) = 0, which proves part (b).
Part (c) follows from part (b), Chebyshev’s inequality, and the estimate ‖g(N)

n ‖∞ ≤ 6K (as is
true for the balance of every hexagon). �

Combining Lemmas 3.10 and 3.13 we obtain the following result

Corollary 3.14 (Joint Reduction) There is a constant L = L(ε,K) such that under the condi-
tions of the Reduction Lemma we can arrange, in addition to the other conclusions of Lemma

3.10, that
kN

∑
n=3
‖g(N)

n ‖2
2 ≤ LUN .

Proof. Apply Lemma 3.10 and then apply Lemma 3.13 to the resulting integer valued additive
functional ξg

2π
. Notice that the reduction in this corollary depends on N even if f is an additive

functional of a Markov chain. �

Corollary 3.14 says the following. Suppose we have an additive functional f such that both
UN is small and DN(ξ ) is small for some ξ (but DN(ξ ) can be much smaller than UN). Then we
can adjust f such that at time N, the resulting functional will have a small norm as prescribed
by UN and small distance to 2π

ξ
Z as prescribed by DN at the same time.

3.3.2 The possible values of the co-range

We prove Theorem 3.1 in its version for Markov arrays: The co-range of an a.s. uniformly
bounded additive functional on a uniformly elliptic Markov array X is equal to R when f is
center tight, and to {0} or tZ (t > 0) otherwise.

Recall that the co-range is defined by

H := H(X, f) = {ξ ∈ R : sup
N

DN(ξ )< ∞}, where DN(ξ ) =
kN

∑
n=3

d(N)
n (ξ )2.

STEP 1. H is a subgroup of R.

Proof. H = −H, because d(N)
n (−ξ ) = d(N)

n (ξ ). H 3 0, because d(N)
n (0) = 0. H is closed under

addition, because if ξ ,η ∈ H, then by Lemma 1.15,

sup
N

kN

∑
n=3

d(N)
n (ξ +η)2 ≤ 8

[
sup

N

kN

∑
n=3

d(N)
n (ξ )2 + sup

N

kN

∑
n=3

d(N)
n (η)2

]
< ∞.

STEP 2. If f is center-tight, then H = R.
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Proof. Suppose f is center-tight. By Corollary 2.8 and the center-tightness of f, sup
N

kN

∑
k=3

(u(N)
k )2 <

∞. By Lemma 1.15(c), sup
N

kN

∑
k=3

d(N)
n (ξ )2 < ∞ for all ξ ∈ R.

STEP 3. If f is not center-tight, then ∃t0 s.t.

H ∩ (−t0, t0) = {0}. (3.3.6)

Proof. Let K := ess sup |f|, then |Γ (P)| ≤ 6K for a.e. hexagon P.
Fix τ0 > 0 such that |eit −1|2 ≥ 1

2t2 for all |t|< τ0, and let t0 := τ0(6K)−1. Then then for all
|ξ |< t0, |eiξΓ (P)−1|2 ≥ 1

2ξ 2Γ (P)2 for all hexagons P.
Taking the expectation over P ∈ Hex(N,n), we obtain that

d(N)
n (ξ )2 ≥ 1

2
ξ

2(u(N)
n )2 for all |ξ |< t0,1≤ n≤ kN ,N ≥ 1. (3.3.7)

Now assume by way of contradiction that there is 0 6= ξ ∈H∩(−t0, t0), then sup
N

kN

∑
n=3

(u(N)
n )2≤

2
ξ 2 sup

N

kN

∑
n=3

d(N)
n (ξ )2 < ∞. By Corollary 2.8, f is center-tight, in contradiction to our assumption.

STEP 4. If f is not center-tight, then H = {0}, or H = tZ with t ≥ π

6ess sup | f | .

Proof. By steps 2 and 3, H is a proper closed subgroup of R. So it must be equal to {0} or
tZ where t > 0. To see that t ≥ π

6ess sup | f | , assume by contradiction that t = ( π

6ess sup | f |)ρ with
0 < ρ < 1, and let κ := min{|eiu−1|2/|u|2 : |u| ≤ πρ}> 0. Then |tΓ (P)| ≤ 6tess sup | f |= πρ

for every position n hexagon P, whence

d2
n(t) = E(|eitΓ −1|2)≥ κE(Γ 2) = κu2

n.

This is impossible: t ∈ H so ∑d2
n(t)< ∞, whereas f is not center-tight so ∑u2

n = ∞. �

3.3.3 Calculation of the essential range

We prove Theorem 3.2 in its version for Markov arrays: For every a.s. uniformly bounded
additive functional f on a uniformly elliptic Markov array X,

Gess(X, f) =


{0} H(X, f) = R
2π

ξ
Z H(X, f) = ξZ

R H(X, f) = {0}.
(3.3.8)

Lemma 3.15 Suppose f,g are two a.s. uniformly bounded additive functionals on the same
uniformly elliptic Markov array. If f−g is center-tight, then f and g have the same co-range.

Proof. By Corollary 2.8, if h= g− f is center-tight, then sup
N

kN

∑
n=3

u(N)
n (h)2 < ∞. By Lemma 1.15

(b),(c),
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sup
N

kN

∑
n=3

d(N)
n (ξ ,g)2 ≤ 8sup

N

kN

∑
n=3

d(N)
n (ξ , f)2 +8ξ

2 sup
N

kN

∑
n=3

u(N)
n (h)2.

So the co-range of f is a subset of the co-range of g. By symmetry they are equal. �

Proof of Theorem 3.2: As we saw in the previous section, the possibilities for the co-range are
R, tZ with t 6= 0, and {0}.
CASE 1: The co-range equals R. As we saw above, this can only happen if f is center-tight, in
which case the essential range is {0} because we may subtract f from itself.

CASE 2.: The co-range equals ξZ with ξ 6= 0. We show that Gess(X, f) =
2π

ξ
Z.

By assumption, ξ is in the co-range: supN ∑
kN
n=3 d(N)

n (ξ )2 < ∞. By the Reduction Lemma, f
differs by a center-tight functional from a functional with algebraic range⊆ 2π

ξ
Z. So Gess(X, f)⊆

2π

ξ
Z.

Assume by way of contradiction that Gess(X, f)( 2π

ξ
Z, then there exists a center-tight h such

that the algebraic range of g := f−h is a subset of 2π`
ξ
Z for some integer ` > 1. The structure

constants of g must satisfy d(N)
n (ξ

` ,g) ≡ 0, whence ξ

` ∈co-range of g. By Lemma 3.15, ξ

` ∈
co-range of f, whence ξ

` ∈ ξZ. But this contradicts ` > 1.

CASE 3.: The co-range equals {0}. We claim that the essential range is R. Otherwise, there
exists a center-tight h such that the algebraic range of g := f− h equals tZ with t 6= 0 or {0}.
But this is impossible:

(a) If the algebraic range of g is tZ, then d(N)
n (2π

t ,g) = 0 for all 3 ≤ n ≤ kN , N ≥ 1, so the co-
range of g contains 2π/t. By Lemma 3.15, the co-range of f contains 2π/t, in contradiction
to the assumption that it is {0}.

(b) If the algebraic range of g is {0}, then f ≡ h, and f is center-tight. But by Theorem 3.1, the
co-range of a center-tight functional is R, whereas the co-range of our functional is {0}. �

3.3.4 Existence of irreducible reductions

We prove Theorem 3.3, in its version for Markov arrays: For every a.s. uniformly bounded
additive functional on a uniformly elliptic Markov array X, there exists an irreducible functional
g such that f−g is center-tight and Galg(X,g) = Gess(X,g) = Gess(X, f).

Proof. The essential range is a closed subgroup of R, so Gess(X, f ) = {0}, tZ or R.

(a) If Gess(X, f) = {0}, then H(X, f) = R, and f is center-tight. So take g ≡ 0.

(b) If Gess(X, f ) = tZ with t 6= 0, then by Theorem 3.2 the co-range of f is ξZ with ξ :=

2π/t. So sup
N

kN

∑
n=3

d(N)
n (ξ , f )2 < ∞. By the reduction lemma, there exists an additive func-

tional g such that f− g is center-tight, and Galg(X,g) ⊆ tZ. By Lemma 3.15 Gess(X, f) =
Gess(X,g), whence Gess(X, f) = Gess(X,g)⊆Galg(X,g)⊆ tZ= Gess(X, f), and Gess(X,g) =
Galg(X,g) = Gess(X, f).

(c) If Gess(X, f ) = R, take g := f. �
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3.3.5 Proofs of results on hereditary arrays

Proof of Theorem 3.6: Suppose f is an a.s. uniformly bounded additive functional on a uni-
formly elliptic Markov array X.

The first part of the theorem asks for the equivalence of the following conditions:

(1) f is hereditary

(2) for all ξ , liminf
N→∞

kN

∑
k=3

d(N)
k (ξ )2 < ∞⇒ limsup

N→∞

kN

∑
k=3

d(N)
k (ξ )2 < ∞

(3) for all ξ 6∈ H(X, f), DN(ξ )−−−→
N→∞

∞

(4) H(X′, f|X′) = H(X, f) for every sub-array X′ of X.

(1)⇒(2): Assume that f is hereditary and Linf(ξ ) := liminfDN(ξ ) < ∞. We’ll show that
Lsup(ξ ) := limsupDN(ξ )< ∞. This is obvious for ξ = 0, so suppose ξ 6= 0.

Choose N`,M` ↑ ∞ such that DN`
(ξ )−−−→

`→∞
Linf(ξ ), DM`

(ξ )−−−→
`→∞

Lsup(ξ ). Let

X′ := {X (N`)
k } and X′′ := {X (M`)

k }.

Since Linf(ξ ) < ∞, H(X′, f|X′) contains ξ , whence by (3.3.8), Gess(X
′, f |X′) ⊆ 2π

ξ
Z. By the

hereditary property, Gess(X
′′, f|X′′) = Gess(X, f) = Gess(X

′, f|X′) ⊆ 2π

ξ
Z. This implies by (3.3.8)

that H(X′′, f|X′′) 3 ξ , whence Lsup(ξ )< ∞.

(2)⇒(3): We assume that Linf(ξ ) < ∞ ⇒ Lsup(ξ ) < ∞ and show that DN(ξ ) → ∞ for all
ξ 6∈ H(X, f). If ξ 6∈ H(X, f), then sup

N
DN(ξ ) = ∞, so Lsup(ξ ) = ∞. By assumption, this forces

Linf(ξ ) = ∞, whence DN(ξ )→ ∞.

(3)⇒(4): We assume that DN(ξ )→ ∞ for all ξ 6∈ H(X, f), and show that H(X, f) = H(X′, f|X′)
for all sub-arrays X′ = {X (N`)

n }. If ξ ∈ H(X, f), then sup
N

DN(ξ ) < ∞, whence sup
`

DN`
(ξ ) < ∞

and ξ ∈H(X′, f|X′). If ξ 6∈H(X, f), then DN(ξ )→∞, whence DN`
(ξ )→∞ and ξ 6∈H(X′, f|X′).

(4)⇒(1): We assume that H(X′, f |X′)=H(X, f) for all sub-arrays X′, and show that Gess(X
′, f |X′)=

Gess(X, f) for all sub-arrays. The inclusion Gess(X
′, f |X′) ⊆ Gess(X, f) is obvious, so we focus

on Gess(X
′, f |X′)⊇ Gess(X, f).

If Gess(X
′, f|X′) = R then there is nothing to prove.

Suppose Gess(X
′, f|X′) 6=R, then Gess(X

′, f|X′) = tZ for some t ∈R. Let ξ := 2π/t when t 6= 0
or any real number otherwise. By (3.3.8),

H(X′, f|X′) 3 ξ .

By assumption (4), this implies that H(X, f) 3 ξ , whence by (3.3.8), Gess(X, f) ⊆ 2π

ξ
Z =

Gess(X
′, f |X′), and the proof of (1) is complete.

This finishes the proof that properties (1)–(4) are equivalent.

The second part of the theorem asks to show that f is stably hereditary iff DN(ξ )→ ∞ uni-
formly on compact subsets of R\H(X, f).

Suppose f is stably hereditary, then f is hereditary, whence DN(ξ )→ ∞ for all ξ 6∈ H(X, f).
To show that the convergence is uniform on compacts, we check that
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∀ξ 6∈ H(X, f),∀M > 0,∃Nξ ,δξ > 0
(

N > Nξ

|ξ ′−ξ |< δξ

⇒ DN(ξ
′)> M

)
. (3.3.9)

Suppose this were false for some ξ and M, then ∃ξN→ ξ such that DN(ξN)≤M. But this implies
that {(1+ εN) f (N)

k } is not hereditary for εN := ξN
ξ
−1, in contradiction to our assumptions.

Conversely, if DN(ξ )→ ∞ uniformly on compact subsets of R \H(X, f), and εN → 0, then
{g(N)

k } = {(1 + εN) f (N)
k }) is hereditary, because for all ξ 6∈ H(X, f), DN(ξ ,g) ≡ DN((1 +

εN)ξ , f)→ ∞, and as we saw above (2)⇒(1). �

Proof of Theorem 3.7: The first part of the theorem assumes that Gess(X, f) = tZ or {0} and
that f is hereditary, and asks to show that f is stably hereditary.

We begin with several reductions. It is sufficient to consider the case Gess(X, f) = Z: If
Gess(X, f) = tZ with t 6= 0 we work with t−1f, and if Gess(X, f) = {0} then H(X, f) = R and
DN(ξ )→ ∞ uniformly on compact subsets of R\H(X, f) (vacuously), so f is stably hereditary
by Theorem 3.6.

Next we claim that it is enough to treat the special case Galg(X, f)=Gess(X, f)=Z. Otherwise
we use Theorem 3.3 to write f = g− h where Galg(X,g) = Gess(X,g) = Gess(X, f) and h is
center-tight. By Lemma 3.15, H(X,g) = H(X, f), and by Lemma 1.15 and Corollary 2.8,

DN(ξ , f)≥
1
8

DN(ξ ,g)−
1
8

ξ
2 sup

n

kn+1

∑
k=3

u(n)k (h)2 =
1
8

DN(ξ ,g)−O(1).

Thus, if DN(ξ ,g)→ ∞ uniformly on compact subsets of R \H(X,g), then DN(ξ , f)→ ∞ uni-
formly on compact subsets of R\H(X, f).

By assumption, ess sup | f | ≤ K for some integer K. Then for every hexagon P ∈ Hex(N,n),
Γ (P) ∈ Z∩ [−6K,6K].

Let m(N)
n denote the probability measure on the space of hexagons Hex(N,n) and define for

every γ ∈ Z∩ [−6K,6K],

µN({γ}) :=
kN

∑
n=3

m(N)
n {P ∈ Hex(N,n) : Γ (P) = γ}.

Using the identity |eiξ γ −1|2 = 4sin2 ξ γ

2 , we see that

d2
N(ξ ) = 4

6K

∑
γ=−6K

µN(γ)sin2 ξ γ

2
.

Since f is hereditary, DN→∞ onR\H(X, f), and the expression for d2
N(ξ ) shows that if DN→∞

at ξ , then DN → ∞ uniformly on an open neighborhood of ξ .
It follows that DN → ∞ uniformly on compact subsets of R \H(X, f). By Theorem 3.6, f

must be stably hereditary. This is the first part of the theorem.

The second part of the theorem says that if f is integer valued and not center-tight, and if
ess sup |f| ≤ K, then Gess(X, f) = kZ for some integer 0 < k ≤ 12K.

To see this recall that Gess(X, f) ⊂ Galg(X, f) ⊂ Z, whence Gess(X, f) = kZ for some k ∈ Z.
Since f is not center-tight, k 6= 0. By (3.3.8), H(X, f) = 2π

k Z.
The inequality | f | ≤ K implies that every hexagon P has balance |Γ (P)| ≤ 6K. This implies

that k ≤ 12K: Otherwise |2πΓ (P)
k |< 0.95π and (3.3.2) gives



3.4 Notes and references 83

|e(2πi/k)Γ (P)−1|2 ≥ const Γ (P)2.

But this implies that d(N)
n (2π

k )≥ const u(N)
n , whence

sup
N

kN

∑
n=3

d(N)
n (

2π

k
)2 ≥ sup

N

kN

∑
n=3

(u(N)
n )2 = ∞ by non-center-tightness.

This contradicts 2π

k ∈ H(X, f). Thus 0 < k ≤ 12K.

It follows from the first part of the theorem and from Theorem 3.6, that if f is integer valued
and not center-tight, then the properties of being hereditary and of being stably hereditary are
equivalent. �

3.4 Notes and references

In the stationary world, a center-tight cocycle is a coboundary (Schmidt [136]) and the problems
discussed in this chapter reduce to the question how small can one make the range of a cocycle
by subtracting from it a coboundary. The question appears naturally in the ergodic theory of
group actions, because of its relation to the ergodic decomposition of skew-products [2, chapter
8], [136], [29], and to the structure of locally finite ergodic invariant measures for skew-products
[6], [133], [124]. In the general setup of ergodic theory, minimal reductions such as in Theorem
3.3 are not always possible [93], although they do sometime exist [133],[124].

The relevance of (ir)reducibility to the local limit theorem appears in different form in the
papers of Guivarc’h & Hardy [65], Aaronson & Denker [4], and Dolgopyat [49]. There “irre-
ducibility” is expressed in terms of a condition which rules out non-trivial solutions for certain
cohomological equations.

It is more difficult to uncover the irreducibility condition in the probabilistic literature on the
LLT for sums of independent random variables. Rozanov’s paper [128], for example, proves a
LLT for independent Z-valued random variables Xk assuming Lindeberg’s condition (which is
automatic for bounded random variables), ∑Var(Xk) = ∞, and subject to the assumption that

∞

∏
k=1

(
max

0≤m<t
P(Xk = m mod t)

)
= 0 for all integers t ≥ 2. (3.4.1)

Let X = {Xk} and f = { fk} where fk(x) = x. Clearly, (3.4.1) implies that Galg(X, f) = Z. We
claim that (3.4.1) is equivalent to the irreducibility: Gess(X, f) = Z.

To see why, it is useful first to note that (3.4.1) is equivalent to

∑
k
P[Xk 6= mk mod t] = ∞ (3.4.2)

where mk is the (smallest) most likely residue mod t for Xk.

Irreducibility⇒Rozanov’s condition: Define for x∈Z and 2≤ t ∈Z, {x}tZ := t{x/t}, [x]tZ :=
x−{x}tZ, and set

◦ yk(x) := the (smallest) integer in mk + tZ closest to x
◦ zk(x) := x− yk(x)
◦ gk(x) := (yk(x)−mk)+ [x− yk(x)]tZ (gk takes values in tZ)
◦ hk(x) := {x− yk(x)}tZ (hk takes values in Z). Then
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Xk = gk(Xk)+hk(Xk)+mk.

The algebraic range of gk is inside tZ, and by the Borel-Cantelli Lemma,

(3.4.2) fails⇔ Xk 6= mk mod tZ finitely often a.s.⇔ hk(Xk) 6= 0 finitely often a.s.

If (3.4.2) fails, then
∞

∑
k=0

hk(Xk) converges a.s. (since a.s. there are only finitely non-zero terms).

Hence h is center-tight. Since Galg(g)⊂ tZ, we have a contradiction to irreducibility.

Rozanov’s condition⇒ irreducibility: Fix θ ∈ [0, t) and let m be the closest integer in [0, t)∩Z
to θ . Then |m′−θ | ≥ 1

2 for m′ 6= m, whence

E[dist2(Xn,θ + tZ)]≥ 1
4
P(Xn 6= mmod t)≥ 1

4
[1− max

0≤m<t
P(Xn = m mod t)].

Passing to the infimum over θ , we obtain that

D2(Xn,
2π

t )≥
1
4
[1− max

0≤m<t
P(Xn = m mod t)].

(See §1.3.) We now obtain from Proposition 1.19 that

∞

∑
n=3

d2
n(

2π

t )≥ const
∞

∑
n=3

(
D2(Xn−1,

2π

t )+D2(Xn,
2π

t )
)

≥ const
∞

∑
n=2

(
1− max

0≤m<t
P(Xk = m mod t)

)
= ∞, by (3.4.2).

We find that the co-range does not contain 2π/t for t = 2,3,4, . . .. We already know that the
co-range does contain 2π (because Xk are integer valued). The only closed sub-group of R with
these properties is 2πZ. So the co-range is 2πZ, and the essential range is Z =the algebraic
range

Other sufficient conditions for the LLT for sums of independent random variables such as
those appearing in [104],[146] and [108] can be analyzed in a similar way. The reduction lemma
was proved for sums of independent random variables in [49]. A version of Theorem 3.5 for
sums of independent random variables appears in [108].



Chapter 4
The local limit theorem in the irreducible case

In this chapter we prove the local limit theorem for P(SN−zN ∈ (a,b)) when zN−E(SN)√
Var(SN)

converges

to a finite limit and f is irreducible. In this regime, the asymptotic behavior of P(SN−zN ∈ (a,b))
does not to depend on the details of X and f (“universality”).

4.1 Main results

4.1.1 Local limit theorems for Markov chains

In the next two theorems, we assume that f is an a.s. uniformly bounded additive functional on
a uniformly elliptic Markov chain X, and we let X = {Xn}, f = { fn}, SN = f1(X1,X2)+ · · ·+
fN(XN ,XN+1), and VN :=Var(SN). We make no assumptions on the initial distribution and allow
P= Px = P( · |X1 = x).

Theorem 4.1. Suppose f is irreducible, with algebraic range R. Then VN → ∞, and for every
interval (a,b) and zN ∈ R s.t. zN−E(SN)√

VN
converges to a finite limit z,

P[SN− zN ∈ (a,b)] = [1+o(1)]
e−z2/2
√

2πVN
(b−a), as N→ ∞. (4.1.1)

Theorem 4.2. Suppose t > 0 and f is irreducible with algebraic range tZ. Then VN → ∞ and
there are constants 0 ≤ γN < t such that for all k ∈ Z, and for all zN ∈ γN + tZ s.t. zN−E(SN)√

VN
converges to a finite limit z,

P[SN− zN = kt] = [1+o(1)]
e−z2/2t√

2πVN
, as N→ ∞. (4.1.2)

The constants γN are determined by the condition P[SN ∈ γN + tZ] = 1 for all N.

The conditions of the theorems can be checked from the data of X and f using the structure
constants dn(ξ ) from §1.3:

Lemma 4.1 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. Then

(1) f is non-lattice and irreducible iff ∑d2
n(ξ ) = ∞ for all ξ 6= 0.

(2) f is lattice and irreducible with algebraic range tZ, t > 0, iff ∑d2
n(ξ )< ∞ for ξ ∈ (2π/t)Z

and ∑d2
n(ξ ) = ∞ for ξ 6∈ (2π/t)Z.

85
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(3) f is lattice and irreducible with algebraic range {0} iff fn(Xn,Xn+1) are a.s. constant for all
n.

Proof. f is non-lattice and irreducible iff Gess(X, f) = Galg(X, f) = R. By Theorem 3.1, this
happens iff f has co-range {0}, which proves part (1). Part (2) is proved in a similar way, and
part (3) is a triviality. �

4.1.2 Local limit theorems for Markov arrays

In this section, we assume that f is an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov array X with row lengths kN + 1, and we let X = {X (N)

n }, f = { f (N)
n }, SN =

∑
kN
i=1 f (N)

i (X (N)
i ,X (N)

i+1 ), and VN := Var(SN). We make no assumptions on the initial distribution,

and allow P= P
x(N)

1
= P( · |X (N)

1 = x(N)
1 ).

The LLT for SN may fail due to the possibility that f|X′ may have different essential range for
different sub-arrays X′. To deal with this we need to assume hereditary behavior, see §3.2.3.

Theorem 4.1’. Suppose f is stably hereditary, non-lattice and irreducible. Then VN → ∞, and
for every interval (a,b) and zN ∈ R s.t. zN−E(SN)√

VN
−−−→
N→∞

z ∈ R,

P[SN− zN ∈ (a,b)] = [1+o(1)]
e−z2/2
√

2πVN
(b−a), as N→ ∞. (4.1.3)

Theorem 4.2’. Suppose t > 0 and f is hereditary, irreducible, and with algebraic range tZ. Then
VN → ∞, and there are 0≤ γN < t such that for all k ∈ Z and zN ∈ γN + tZ s.t. zN−E(SN)√

VN
−−−→
N→∞

z ∈ R,

P[SN− zN = kt] = [1+o(1)]
e−z2/2t√

2πVN
, as N→ ∞. (4.1.4)

The constants γN are determined by the condition P[SN ∈ γN + tZ] = 1 for all N.

Notice that whereas in the non-lattice case we had to assume that f is stably hereditary, in the
lattice case it is sufficient to assume that f is hereditary. This is because in the lattice case the
two assumptions are equivalent, see Theorem 3.7.

Again, it is possible to check the assumptions of the theorems from the data of X and f using
the structure constants:

Lemma 4.1’. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov array X with row lengths kN +1. Let d(N)

n (ξ ) be as §1.3, then

(1) f is stably hereditary, irreducible, and with algebraic range R iff

kN

∑
n=3

d(N)
n (ξ )2 −−−→

N→∞
∞ uniformly on compacts in R\{0}.

(2) Suppose t 6= 0, then f is hereditary and irreducible with algebraic range tZ if and only if
∑

kN
n=3 d(N)

n (ξ )2 −−−→
N→∞

∞ for all ξ 6∈ 2π

t Z. In this case f is also stably hereditary.
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Proof. As in the case of Markov chains, f is non-lattice and irreducible iff its co-range equals
{0}. By Theorem 3.6, f is stably hereditary iff ∑

kN
n=3 d(N)

n (ξ )2 −−−→
N→∞

∞ uniformly on compacts

in R\{0}, which proves part (1).
Part (2) is proved in a similar way, with the additional observation that thanks to Theorem

3.7, in the irreducible lattice case, every hereditary additive functional is automatically stably
hereditary. �

4.1.3 Mixing local limit theorems

Let f be an additive functional on a Markov X with row lengths kN + 1, and state spaces
(S

(N)
n ,B(S

(N)
n )). Let SN and VN be as in the previous section.

Theorem 4.3 (Mixing LLT). Suppose X is a uniformly elliptic Markov array, and f is an ad-
ditive functional on X which is stably hereditary, a.s. uniformly bounded, and irreducible. Let
AN ⊂S

(N)
kN+1 be measurable events such that P[X (N)

kN+1 ∈AN ] is bounded away from zero, and let

xN ∈S
(N)
1 . Then for every φ : R→ R continuous with compact support,

(1) Non-lattice case: Suppose f has algebraic range R. For every zN ∈R s.t. zN−E(SN)√
VN

→ z ∈R,

lim
N→∞

√
VNE[φ(SN− zN)|X (N)

kN+1 ∈ AN ,X
(N)
1 = xN ] =

e−z2/2
√

2π

∫
∞

−∞

φ(u)du.

(2) Lattice case: Suppose f has algebraic range tZ (t > 0) and P[SN ∈ γN + tZ] = 1 for all N.
For every zN ∈ γN + tZ s.t. zN−E(SN)√

VN
→ z ∈ R,

lim
N→∞

√
VNE[φ(SN− zN)|X (N)

kN+1 ∈ AN ,X
(N)
1 = xN ] =

e−z2/2|t|√
2π

∑
u∈Z

φ(tu).

To understand what this means, think of φ ≈ 1(a,b).

In the next chapter, we will use mixing LLT for irreducible additive functionals to study
the LLT for some reducible additive functionals, as follows. Suppose f = f̃ +∇h, where f is
irreducible and h is uniformly bounded. Then

SN(f) = SN (̃f)+h(N)
1 (X (N)

1 )−h(N)
kN+1(X

(N)
kN+1).

To pass from the LLT for SN (̃f) (which we know since f̃ is irreducible) to the LLT for SN(f)
(which we do not know because of the reducibility of f), we need to understand the joint distri-
bution of SN (̃f), h(N)

1 (X (N)
1 ) and h(N)

kN+1(XkN+1). This is the task achieved by the mixing LLT.

4.2 Proofs

We will provide the proofs in the general context of Markov arrays.

Standing assumptions and notation for the remainder of the chapter:
X= {X (N)

n } is a Markov array with row lengths kN +1, state spaces S(N)
n , and transition proba-
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bilities π
(N)
n,n+1(x,dy), and f = { f (N)

n } is an additive functional on X. As always, d(N)
n (ξ ) are the

structure constants of f.
We assume that ess sup | f |< K < ∞, and that X is uniformly elliptic with ellipticity constant

ε0. By the uniform ellipticity assumption,

π
(N)
n,n+1(x,dy) = p(N)

n (x,y)µ(N)
n+1(dy)

with 0 ≤ p(N)
n (x,y) < ε

−1
0 such that

∫
p(N)

n (x,y)p(N)
n+1(y,z)µ

(N)
n+1(dy) > ε0. There is no loss of

generality in assuming that µ
(N)
k (E) = P(X (N)

k ∈ E), see Proposition 1.12 and the discussion
which follows it.

4.2.1 Characteristic functions

The classical approach to limit theorems in probability theory, due to P. Lévy, is to apply the
Fourier transform, and analyze the characteristic functions of the random variables in the
problem. In our case the relevant characteristic functions are:

ΦN(x,ξ ) := Ex

(
eiξ SN

)
≡ E

(
eiξ SN |X (N)

1 = x
)
.

ΦN(x,ξ |A) := Ex

(
eiξ SN |XkN+1 ∈ A

)
≡ E

(
eiξ SN |X (N)

kN+1 ∈ A,X (N)
1 = x

)
.

Here x ∈S
(N)
1 , A⊂S

(N)
kN+1, ξ ∈ R, and Ex(·) = E( · |X (N)

1 = x).
We write these functions in terms of perturbation operators as in [109]. For every N ∈ N

and 1≤ n≤ kN +1, define L
(N)

n,ξ : L∞(S
(N)
n+1)→ L∞(S

(N)
n ) by

(
L

(N)
n,ξ v

)
(x) :=

∫
S

(N)
n+1

p(N)
n (x,y)eiξ f (N)

n (x,y)v(y)dµ
(N)
n+1(y)

≡ E
(
eiξ f (N)

n (X (N)
n ,X (N)

n+1)v(X (N)
n+1)|X

(N)
n = x

)
.

Lemma 4.2 (Nagaev) Let 1(·)≡ 1, then the following identities hold:

E
(

eiξ SN v(X (N)
kN+1)

∣∣∣∣X (N)
1 = x

)
=
(
L

(N)
1,ξ L

(N)
2,ξ . . .L

(N)
kN ,ξ

v
)
(x), (4.2.1)

ΦN(x,ξ ) =
(
L

(N)
1,ξ L

(N)
2,ξ . . .L

(N)
kN ,ξ

1
)
(x), (4.2.2)

ΦN(x,ξ |A) =

(
L

(N)
1,ξ L

(N)
2,ξ . . .L

(N)
N,ξ

1A
)
(x)

Px[X
(N)
kN+1 ∈ A]

. (4.2.3)

Proof. E(eiξ SN v(X (N)
kN+1)

∣∣X (N)
1 = x) =∫

p(N)
1 (x,y)eiξ f (N)

1 (x,y)E
(
eiξ ∑

N
n=2 f (N)

n v|X (N)
2 = y

)
dµ

(N)
2 (y).

Proceeding by induction, we obtain (4.2.1), and (4.2.1) implies (4.2.2),(4.2.3). �

Let ‖ · ‖ denote the operator norm on Hom(L∞,L∞).
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Lemma 4.3 L
(N)

n,ξ are bounded linear operators, and there is a positive constant ε̃ which only

depends on ε0 such that for all N ≥ 1 and 5≤ n≤ kN , ‖L (N)
n,ξ ‖ ≤ 1, and∥∥∥L (N)

n−4,ξ L
(N)

n−3,ξ L
(N)

n−2,ξ L
(N)

n−1,ξ L
(N)

n,ξ

∥∥∥≤ e−ε̃d(N)
n (ξ )2

.

Proof. Throughout this proof we fix N and drop the superscripts (N), and we use the notation
xi,zi etc. to denote points in Si =S

(N)
i .

It is clear that ‖L (N)
n,ξ ‖ ≤ 1. To estimate the norm of

L := Ln−4,ξ Ln−3,ξ L
(N)

n−2,ξ L
(N)

n−1,ξ Ln,ξ : L∞(Sn+1)→ L∞(Sn−4),

we represent this operator as an integral operator, and analyze the kernel. Let

◦ p(xk, . . . ,xm) :=
m−1

∏
i=k

pi(xi,xi+1),

◦ f (xk, . . . ,xm) :=
m−1

∑
i=k

fi(xi,xi+1),

◦ L(xn−4,zn+1) =

=
∫

Sn−3×···×Sn

p(xn−4,zn−3, . . . ,zn+1)eiξ f (xn−4,zn−3,...,zn+1)µn−3(dzn−3) · · ·µn(dzn).

Then (L v)(xn−4) =
∫
Sn+1

[
L(xn−4,zn+1)v(zn+1)

]
µn+1(dzn+1), whence

‖L v‖∞ ≤ ‖v‖∞ sup
xn−4∈Sn−4

∫
Sn+1

|L(xn−4,zn+1)|µn+1(dzn+1).

To estimate this integral we change the order of integration:∫
Sn+1

|L(xn−4,zn+1)|µn+1(dzn+1)≤
∫∫

Sn−2×Sn+1

[
|Kn(zn−2,zn+1)|

∫
Sn−3

p(xn−4,zn−3,zn−2)µn−3(dzn−3)

]
µn−2(dzn−2)µn+1(dzn+1), (4.2.4)

where Kn(zn−2,zn+1) :=∫∫
Sn−1×Sn

p(zn−2,zn−1,zn,zn+1)eiξ f (zn−2,zn−1,zn,zn+1)µn−1(dzn−1)µn(dzn).

CLAIM: Let p(zn−2→ zn+1) := P(Xn+1 = zn+1|Xn−2 = zn−2), then

|Kn(zn−2,zn−1)| ≤ p(zn−2→ zn+1)−

− 1
4

p(zn−2→ zn+1)E
(
|eiξΓ (P)−1|2

∣∣∣∣Xn−2 = Yn−2 = zn−2
Xn+1 = Zn+1 = zn+1

)
.

(4.2.5)



90 4 The local limit theorem in the irreducible case

Proof of the claim. Set K̃n(zn−2,zn+1) := Kn(zn−2,zn+1)
p(zn−2→zn+1)

, then

K̃n(zn−2,zn+1) = E
(

eiξ ∑
n
k=n−2 fk(Xk,Xk+1)

∣∣∣∣Xn−2 = zn−2
Xn+1 = zn+1

)
.

Writing |K̃n(zn−2,zn+1)|2 = K̃n(zn−2,zn+1)K̃n(zn−2,zn+1), we find that

|K̃n(zn−2,zn+1)|2 = E
(

eiξΓ

(
Xn−2

Xn−1
Yn−1

Xn
Yn Xn+1

)∣∣∣∣Xn−2 = Yn−2 = zn−2
Xn+1 = Zn+1 = zn+1

)
,

where {Yn} is an independent copy of {Xn}, and Γ is as in (1.3.1).

The imaginary part is necessarily zero, so writing P =
(
Xn−2

Xn−1
Yn−1

Xn
Yn

Xn+1
)

we have by the

identity 1− cosα = 1
2 |e

iα −1|2 that

|K̃n(zn−2,zn−1)|2 = 1−E
(
1− cos(ξΓ (P))| Xn−2 = Yn−2 = zn−2

Xn+1 = Zn+1 = zn+1

)
≡ 1− 1

2
E
(
|eiξΓ (P)−1|2| Xn−2 = Yn−2 = zn−2

Xn+1 = Zn+1 = zn+1

)
.

The claim follows, since
√

1− t ≤ 1− t
2 for all 0≤ t ≤ 1.

We now substitute (4.2.5) in (4.2.4). The result is a difference of two terms:

(a) The first term is obtained by replacing Kn(zn−2,zn+1) in (4.2.4) by p(zn−2→ zn+1). It has
the following upper bound:∫∫

Sn−2×Sn+1

∫
Sn−3

p(xn−4,zn−3,zn−2)p(zn−2→ zn+1) = 1.

(b) The second term is obtained by replacing Kn(zn−2,zn+1) in (4.2.4) by

1
4

p(zn−2→ zn+1)E
(
|eiξΓ (P)−1|2| Xn−2 = Yn−2 = zn−2

Xn+1 = Zn+1 = zn+1

)
.

The inner-most integral satisfies
∫
Sn−3

p(xn−4,zn−3,zn−2)µn−3(dzn−3)≥ ε0 because of uni-

form ellipticity. This leads to the following lower bound for the second term:

1
4

ε
2
0E
(
|eiξΓ (P)−1|2

)
=

1
4

ε
2
0 dn(ξ )

2.

In total we get:
∫
|L(xn−4,zn+1)|µn+1(dzn+1)≤ 1− ε̃dn(ξ )

2, where ε̃ := 1
4ε2

0 . Since 1− t ≤ e−t ,
we are done. �

Recall that DN(ξ ) = ∑
kN
n=3 d(N)

n (ξ )2. Write DN =
4

∑
j=0

D j,N where

D j,N(ξ ) = ∑
3≤n≤kN

n≡ j mod 5

d(N)
n (ξ )2.

Applying Lemma 4.3 iteratively we conclude that there is a constant C independent of N s.t. for
all N,
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|ΦN(x,ξ )| ≤Ce−ε̃ max(D0,N ,...,D4,N) ≤Ce−
1
5 ε̃DN(ξ ). (4.2.6)

If P(X (N)
kN+1 ∈ A)≥ δ then by (4.2.3), |ΦN(x,ξ |A)| ≤ δ

−1‖L (N)
1,ξ L

(N)
2,ξ . . .L

(N)
kN ,ξ

1A‖ whence

|ΦN(x,ξ |A)| ≤Ce−
1
5 ε̃DN(ξ ). (4.2.7)

The next result shows that if u(N)
n is big, then dN

n (·) cannot be small at two nearby points.
Recall the standing assumption ess sup‖ f (N)

n ‖∞≤K, and the definition of the structure constants
u(N)

n in (1.3.2).

Lemma 4.4 ∃δ̃ = δ̃ (K)> 0 s.t. if |δ | ≤ δ̃ then for all 3≤ n≤ kN ,

d(N)
n (ξ +δ )2 ≥ 2

3
δ

2
(

u(N)
n

)2
−2|δ |u(N)

n d(N)
n (ξ ). (4.2.8)

Proof. Fix a hexagon P =

(
xn−2

xn−1
yn−1

xn
yn

yn+1

)
∈ Hex(N,n), and let

un := Γ (P) , dn(ξ ) := |eiξun−1|,

then the identity |eiθ −1|2 = 2(1− cosθ) implies

d2
n(ξ +δ ) = |ei(ξ+δ )un−1|2 = 2[1− cos((ξ +δ )un)]

= 2[1− cos(ξun)cos(δun)+ sin(ξun)sin(δun)]

= 2[(1− cos(ξun))cos(δun)+(1− cos(δun))+ sin(ξun)sin(δun)] (4.2.9)

≥ 2
[
(1− cos(δun))−|sin(ξun)sin(δun)|

]
provided |δ̃ |< π

12K
,

because in this case |δun| < π

2 , so cos(δun) ≥ 0. Make δ̃ even smaller to guarantee 0 ≤ |t| ≤
6Kδ̃ ⇒ 1

3t2 ≤ 1− cos t ≤ t2, then

d2
n(ξ +δ )≥ 2

(1
3δ

2u2
n−|δun|

√
1− cos2(ξun)

)
= 2
(

1
3δ

2u2
n−|δun|

√
(1− cos(ξun))(1+ cos(ξun))

)
≥ 2
(

1
3δ

2u2
n−|δun|

√
2(1− cos(ξun))

)
= 2

3δ
2u2

n−2|δun||eiξun−1|

= 2
3δ

2u2
n−2|δun|dn(ξ ).

Integrating on P∈Hex(N,n), and using Cauchy-Schwarz to estimate the second term we obtain
the lower bound for dn(ξ +δ )2. �

Lemma 4.4 and the Cauchy-Schwarz inequality together give

DN(ξ +δ )≥ 2
3

δ
2UN−2|δ |

√
UNDN(ξ ) (4.2.10)

where Un :=
kN

∑
k=3

(u(N)
k )2. If VN := Var(SN)→ ∞, then as soon as VN > 2C2 where C2 is the

constant from Theorem 2.1, we have
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UN

2C1
≤VN ≤ 2C1UN . (4.2.11)

So there are ε̂1, ĉ1 > 0 s.t. DN(ξ +δ )≥ ε̂1δ 2VN− ĉ1|δ |
√

VNDN(ξ ). By (4.2.6), there are ε̂, ĉ> 0
s.t. for all N so large that VN > 2C2, for all ξ and |δ |< δ̃

|ΦN(x,ξ +δ )| ≤C exp
(
−ε̂VNδ

2 + ĉ|δ |
√

VNDN(ξ )
)
. (4.2.12)

We rephrase (4.2.12) as follows. Given a compact interval I ⊂ R, let

AN(I) :=− log sup
(x,ξ )∈S(N)

1 ×I

∣∣ΦN(x,ξ )
∣∣ (4.2.13)

and choose some pair (x̃N , ξ̃N) ∈S
(N)
1 × I such that

AN(I)≤− log |ΦN(x̃N , ξ̃N)| ≤ AN(I)+ ln2.

So |Φ(x̃N , ξ̃N)| ≥ 1
2e−AN(I) = 1

2 sup |ΦN(·, ·)| on S
(N)
1 × I.

Corollary 4.5 For each δ there are C̃, ε̂,c > 0 s.t. for every compact interval I s.t. |I| ≤ δ̃ , for
all N for every (x,ξ ) ∈S

(N)
1 × I, for every A⊂S

(N)
kN+1 s.t. µ

(N)
kN+1(A)≥ δ ,

|ΦN(x,ξ )| ≤ C̃ exp
(
−ε̂VN(ξ − ξ̃N)

2 + c|ξ − ξ̃N |
√

VNAN(I)
)

;

|ΦN(x,ξ |A)| ≤ C̃ exp
(
−ε̂VN(ξ − ξ̃N)

2 + c|ξ − ξ̃N |
√

VNAN(I)
)
.

Proof. We only give the proof in the case VN is large, so that (4.2.12) holds. This is the case
we need. We remark that the result also holds generally, because the estimate we seek is trivial
when VN is small.

Applying (4.2.12) with ξ̃N instead of ξ and δ = ξ − ξ̃N gives

|ΦN(x,ξ )| ≤C exp
(
−ε̂VN(ξ − ξ̃N)

2 + ĉ|ξ̃N−ξ |
√

VNDN(ξ̃N)

)
.

By (4.2.6), e−AN(ξ̃N) ≤ 2|ΦN(x̃N , ξ̃N)| ≤ 2Ce−
1
5 ε̃DN(ξ̃N). We conclude that

DN(ξ̃ )≤C1AN(I)+C2

for some global constants C1,C2. The estimate of |ΦN(x,ξ )| follows. The second estimate is
proved in the same way. �

4.2.2 The LLT in the irreducible non-lattice case

We give the proof for arrays (Theorem 4.1’). Theorem 4.1 on chains follows, because every
additive functional on a Markov chain is stably hereditary (Example 3.7).

We begin by proving that VN −−−→
N→∞

∞. Otherwise liminfVN <∞, and one can find N` ↑∞ such

that Var(SN`
) = O(1). Let X′ denote the sub-array with rows X′(`) = X(N`). By Theorem 2.2,
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f|X′ is center-tight, whence Gess(X
′, f|X′) = {0}. At the same time, Gess(X, f) = Galg(X, f) = R,

because f is irreducible and non-lattice. So Gess(X
′, f|X′) 6= Gess(X, f), in contradiction to the

assumption that f is stably hereditary.
Next we fix zN ∈R such that zN−E(SN)√

VN
→ z, and show that for every non-empty interval (a,b),

for every choice of x(N)
1 ∈S

(N)
1 (N ≥ 1),

P
x(N)

1
[SN− zN ∈ (a,b)]∼ e−z2/2

√
2πVN

(b−a), as N→ ∞. (4.2.14)

A well-known approximation argument [147], [17, chapter 10] reduces (4.2.14) to showing
that for all φ ∈ L1(R) whose Fourier transform φ̂(ξ ) :=

∫
R e−iξ uφ(u)du has compact support,

lim
N→∞

√
VNEx(N)

1

[
φ
(
SN− zN

)]
=

e−z2/2
√

2π

∫
∞

−∞

φ(u)du. (4.2.15)

Fix φ ∈ L1 such that supp(φ̂) ⊆ [−L,L]. By the Fourier inversion formula, E
x(N)

1
(φ(SN −

zN)) =
1

2π

∫ L

−L
φ̂(ξ )ΦN(x

(N)
1 ,ξ )e−iξ zN dξ . So (4.2.15) is equivalent to

lim
N→∞

√
VN ·

1
2π

∫ L

−L
φ̂(ξ )ΦN(x

(N)
1 ,ξ )e−iξ zN dξ =

e−z2/2
√

2π
φ̂(0). (4.2.16)

Below, we give a proof of (4.2.16).
We note for future reference that the proof of (4.2.16) below works under the milder assump-

tion that φ̂ is bounded, continuous at zero and has compact support, e.g. φ̂ = 1
2π

1[−π,π] (which

is the Fourier transform of φ(u) = sin(πu)
πu 6∈ L1).

Divide [−L,L] into segments I j of length ≤ δ̃ where δ̃ is given by Lemma 4.4, so that I0 is
centered at 0. Let

J j,N :=
1

2π

∫
I j

φ̂(ξ )ΦN(x
(N)
1 ,ξ )e−iξ zN dξ .

CLAIM 1 (CONTRIBUTION OF J0,N ):√
VNJ0,N −−−→

N→∞

1√
2π

e−z2/2
φ̂(0). (4.2.17)

Proof of the claim. Fix R > 0. Since J0,N 3 0, AN(J0,N) = 0. By Corollary 4.5, given ε > 0 there
is R > 0 such that ∣∣∣∣√VN

∫
{ξ∈I0:|ξ |>R/

√
VN}

φ̂(ξ )ΦN(x
(N)
1 ,ξ )e−iξ zN dξ

∣∣∣∣≤ ε.

Next, a change of variables ξ = s/
√

VN gives√
VN

∫
[|ξ |≤R/

√
VN ]

φ̂(ξ )ΦN(x
(N)
1 ,ξ )e−iξ zN dξ =

∫
[|s|≤R]

φ̂

(
s√
VN

)
E

x(N)
1
(e

is SN−zN√
VN ) ds.
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By Dobrushin’s CLT for inhomogeneous Markov arrays (Theorem 2.3) SN−zN√
VN

converges in
distribution w.r.t. P

x(N)
1

to the normal distribution with mean −z and variance 1. By Lévy’s

continuity theorem, this implies that

E
x(N)

1
(e

is SN−zN√
VN )−−−→

N→∞
e−isz−s2/2

uniformly on compacts, and so√
VN

∫
|ξ |≤R/

√
VN

φ̂(ξ )ΦN(x
(N)
1 ,ξ )e−iξ zN dξ = φ̂(0)

∫ R

−R
e−isze−s2/2ds+oN→∞(1).

Since this is true for all R, we can let R→ ∞ sufficiently slow to obtain (4.2.17).

CLAIM 2 (CONTRIBUTION OF THE OTHER J j,N ):
√

VNJ j,N −−−→
N→∞

0 for j 6= 0.

Proof of the claim. Since f is irreducible with algebraic range R, the co-range of f is {0} (The-
orems 3.1, 3.4). Since f is stably hereditary,

DN(ξ )−−−→
N→∞

∞ uniformly on compacts in R\{0}.

By (4.2.6), ΦN(x
(N)
1 ,ξ )→ 0 uniformly on compacts in R\{0}.

We will use this to show that for any interval I ⊂ R\{0}√
VN

∫
I
|Φ(x(N)

1 ,ξ )|dξ → 0. (4.2.18)

By subdividing I into finitely many subintervals we see that it suffices to prove the claim
for I = I j for some j. Recall that AN(I j) =− logsup |ΦN(·, ·)| on S

(N)
1 × I j, and (x̃ j,N , ξ̃ j,N) are

points where this supremum is achieved up to factor 2. Set A j,N := AN(I j), then A j,N → ∞ as
N→ ∞ for each j 6= 0.

Take large R and split I j into two regions

I′j,N :=

{
ξ ∈ I j : |ξ − ξ̃ j,N | ≤ R

√
A j,N

VN

}
, I′′j,N := I j \ I′j,N .

Split the integral
∫

I j
|Φ(x(N)

1 ,ξ )|dξ into two integrals J′j,N , J′′j,N accordingly.

◦ On I′j,N , |ΦN(x
(N)
1 ,ξ )| ≤ e−A j,N and |I′j,N | ≤ 2R

√
A j,N
VN

, so√
VN |J′j,N | ≤ 2R

√
A j,Ne−A j,N .

◦ On I′′j,N , by Corollary 4.5,

|ΦN(x
(N)
1 ,ξ )| ≤ C̃ exp

(
−ε̂VN |ξ − ξ̃ j,N |R

√
A j,N

VN
+ c|ξ − ξ̃ j,N |

√
VNA j,N

)
≤ C̃ exp

(
− ε̂

2
|ξ − ξ̃ j,N |

√
A j,NVN

)
, provided Rε̂ > c+

ε̂

2
.
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Hence
√

VNJ′′j,N ≤
√

VNC̃
∫

∞

−∞

e−
ε̂

2 |s|
√

A j,NVN ds = O(A
− 1

2
j,N).

Combining these estimates, we obtain√
VN‖ΦN(x

(N)
1 , ·)‖L1(I j)

≤ 2R
√

A j,N e−A j,N +
C√
A j,N

. (4.2.19)

Since A j,N → ∞ as N→ ∞ (4.2.18) follows.

Since |J j,N | ≤
‖φ̂‖∞ ‖ΦN(x

(N)
1 , ·)‖L1(I j)

2π
, claim 2 follows from (4.2.18).

Remark 4.6 Note that in the proof of (4.2.18) the irreducibility assumption is only used at the
last sentence, namely, to conclude that AN, j → 0 as N → ∞. In particular, (4.2.19) holds for
arbitrary arrays, irreducible or not.

Claims 1 and 2 imply (4.2.16), and (4.2.16) implies (4.2.14) by [17, chapter 10]. This proves
the LLT theorem for initial distributions concentrated at single points (i.e. P= P

x(N)
1

). To deduce

the theorem for arbitrary initial distribution µ
(N)
1 (dx(N)

1 ), it is sufficient to prove the following
claim and then integrate:

CLAIM 3: (4.2.14) holds uniformly with respect to the choice of {x(N)
n }.

Proof of the claim. Assume by contradiction that this is false, then there exists ε > 0 and Nk→∞

with y(Nk)
1 such that P

y
(Nk)
1

[SNk−zNk ∈ (a,b)]
/e−z2/2(b−a)√

2πVNk
6∈ [e−ε ,eε ]. But this contradicts (4.2.14)

for any sequence {x(N)
1 } such that x(Nk)

1 = y(Nk)
1 . �

4.2.3 The LLT for the irreducible lattice case

We give the proof in the context of arrays (Theorem 4.2’): X is a uniformly elliptic array, and f
is an additive functional on X which is a.s. uniformly bounded, hereditary, irreducible, and with
algebraic range tZ with t > 0. Without loss of generality, t = 1, otherwise work with t−1f.

By Lemma 3.9 and the assumption that Galg(R) = Z, there are constants c(N)
n such that

f (N)
n (X (N)

n ,X (N)
n+1)− c(N)

n ∈ Z a.s. We may assume without loss of generality that c(N)
n = 0, oth-

erwise we work with f− c. So

SN ∈ Z a.s. for every N ≥ 1.

We will show that for every sequence of numbers zN ∈ Z such that zN−E(SN)√
VN

→ z, and for every

x(N)
1 ∈S

(N)
n ,

P
x(N)

1
(SN = zN) = [1+o(1)]

e−z2/2
√

2πVN
, as N→ ∞. (4.2.20)

As in the irreducible case, once we prove (4.2.20) for all choices of {x(N)
1 }, it automatically

follows that (4.2.20) holds uniformly in {x(N)
1 }. Integrating over (S(N)

1 ,B(S
(N)
1 ),µ

(N)
1 ) gives

(4.1.4) with k = 0. For general k, take z′N := zN + k.
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The assumptions on f imply that Var(SN)−−−→
N→∞

∞. The proof is a routine modification of the

argument we used in the non-lattice case, so we omit it.
Observe that 1

2π

∫
π

−π
eimξ dξ is equal to zero when m ∈ Z\{0}, and equal to one when m = 0.

In particular, since SN− zN ∈ Z almost surely, for every x(N)
1 ∈S

(N)
1

P
x(N)

1
(SN− zN = 0) = E

x(N)
1

(
1

2π

∫
π

−π

eiξ (SN−zN)dξ

)
=

1
2π

∫
π

−π

Φ(x(N)
1 ,ξ )e−iξ zN dξ .

Thus to prove (4.2.20) it is sufficient to show that

lim
N→∞

√
VN ·

1
2π

∫
π

−π

ΦN(x
(N)
1 ,ξ )e−iξ zN dξ =

1√
2π

e−z2/2. (4.2.21)

Notice that (4.2.21) is (4.2.16) in the case φ(u) = sin(πu)
πu , φ̂(ξ ) = 1

2π
1[−π,π](ξ ), and can be

proved in almost exactly the same way.
Here is a sketch of the proof. One divides [−π,π] into segments I j of length less than the δ̃

of Lemma 4.4.
The contribution of the interval which contains zero is asymptotic to 1√

2πVN
e−z2/2. This is

shown as in claim 1 of the preceding proof.
The remaining intervals are bounded away from 2πZ. Their contribution is o(1/

√
VN). This

can be seen as in claim 2 of the preceding proof, using the facts that since f is irreducible with
algebraic range Z, H(X, f) = 2πZ (Theorems 3.1, 3.4), and since f is hereditary and Galg( f ) =
Z, f is stably hereditary, whence DN(ξ )−−−→

N→∞
0 uniformly on compacts in R\2πZ. �

4.2.4 The mixing LLT

The proof is very similar to the proof of the local limit theorem, except that we use Φ(x,ξ |A)
instead of Φ(x,ξ ).

We outline the proof in the non-lattice case, and leave the lattice case to the reader. Suppose
X is a uniformly elliptic Markov array, and that f is a.s. uniformly bounded, stably hereditary,
irreducible and with algebraic range R.

Let AN ∈S(N)
kN+1 be measurable sets s.t. P(X (N)

kN+1 ∈AN)> δ > 0, and let xN ∈S(N)
1 be points.

Suppose zN−E(SN)√
VN

→ z. As before, VN→∞, and a standard approximation argument ([17], chap-

ter 10) says that it is enough to show that for every φ ∈ L1(R) s.t. supp(φ̂)⊂ [−L,L],

lim
N→∞

√
VN ·

1
2π

∫ L

−L
φ̂(ξ )ΦN(xN ,ξ |AN)e−iξ zN dξ =

e−z2/2
√

2π
φ̂(0).

Divide [−L,L] as before into intervals I j of length ≤ δ̃ where δ̃ is given by Lemma 4.4 and
I0 is centered at zero, and let

J j,N :=
1

2π

∫
I j

φ̂(ξ )ΦN(xN ,ξ |AN)e−iξ zN dξ .

CLAIM 1:
√

VNJ0,N −−−→
N→∞

(2π)−
1
2 e−z2/2φ̂(0).
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Proof of the claim: Fix R > 0. As before, applying Corollary 4.5 with AN = 0 we conclude that
for each ε > 0 there is R > 0 such that∣∣∣∣√VN

∫
{ξ∈I0:|ξ |>R/

√
VN}

φ̂(ξ )ΦN(xN ,ξ |AN)e−iξ zN dξ

∣∣∣∣≤ ε.

Next the change of variables ξ = s/
√

VN gives√
VN

∫
{ξ∈I0:|ξ |≤R/

√
VN}

φ̂(ξ )Φ(xN ,ξ |AN)e−iξ zN dξ

=
∫ R

−R
φ̂

(
s√
VN

)
ExN

(
e

is( SN−zN√
VN

)
∣∣∣∣X (N)

kN+1 ∈ AN

)
dξ

=
1

P(X (N)
kN+1 ∈ AN)

∫ R

−R
φ̂

(
s√
VN

)
ExN

(
e

is( SN−zN√
VN

)
1AN (X

(N)
kN+1)

)
dξ . (4.2.22)

We analyze the expectation in the integrand. Take 1 ≤ rN ≤ kN such that rN → ∞ and
rN/
√

VN → 0, and let

S∗N :=
kN−rN

∑
j=1

f (N)
j (X (N)

j ,X (N)
j+1)≡ SN−

kN

∑
j=kN−rN+1

f (N)
j (X (N)

j ,X (N)
j+1).

Since ess sup |f|< ∞, |SN−S∗N |= o(
√

VN), and so

ExN

(
e

is( SN−zN√
VN

)
1AN (X

(N)
kN+1)

)
= ExN

(
e

is(
S∗N−zN√

VN
)
1AN (X

(N)
kN+1)

)
+o(1)

= ExN

(
e

is(
S∗N−zN√

VN
)
E
(

1AN (X
(N)
kN+1)|X

(N)
1 , . . . ,X (N)

kn−rN

))
+o(1)

= ExN

(
e

is(
S∗N−zN√

VN
)
E
(

1AN (X
(N)
kN+1)|X

(N)
kn−rN

))
+o(1) by the Markov property

!
= ExN

(
e

is(
S∗N−zN√

VN
) [
P(X (N)

kN+1 ∈ AN)+O(θ rN )
])

+o(1), where 0 < θ < 1

and !
= uses the exponential mixing estimate (1.2.3). Since P(X (N)

kN+1 ∈ AN) is bounded below,

and S∗N−zN√
VN

converges in distribution to the standard normal distribution by Dobrushin’s theorem,
we may conclude that

ExN

(
e

is( SN−zN√
VN

)
1AN (X

(N)
kN+1)

)
=

1+o(1)√
2π

e−z2/2−izsP
(

X (N)
kN+1 ∈ AN

)
.

Substituting this in (4.2.22) gives the claim.

CLAIM 2:
√

VNJ j,N −−−→
N→∞

0 for j 6= 0.

The claim is proved as in the previous proof, but with (4.2.7) replacing (4.2.6). Together, claims
1 and 2 imply the theorem. �
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4.3 Notes and references

For a brief account of the history of the local limit theorem, see the end of the preface.
Many of the techniques we used in this chapter have a long history. The reduction of the LLT

to the asymptotic analysis of the integrals (4.2.16) and (4.2.21) for φ ∈ L1 with Fourier trans-
forms with compact support was already used by Stone [147] for proving local limit theorems
for sums of iid random variables. As mentioned at the end of the synopsis, the method of char-
acteristic function operators is due to Nagaev [109], who used it to prove central and local limit
theorems for homogeneous Markov chains, and this method was used extensively in dynami-
cal systems. Hafouta & Kifer [69], Hafouta [66, 67], and Dragičević, Froyland, & González-
Tokman [53], used this technique to prove the local limit theorem in a non-homogeneous setup.

The terminology “mixing LLT” is due to Rényi [125], who initiated the study of the stability
of limit theorems under conditioning and changes of measure. The relevance of Mixing LLT to
the study of reducible case is noted by Guivarc’h & Hardy [65]. Mixing LLT have numerous
other applications including mixing of special flows [65, 50], homogenization [44] and skew
products (see in particular, Theorem 5.2 in Chapter 5). Mixing LLT for additive functionals of
(stationary) Gibbs-Markov processes were proved by Aaronson & Denker [4].



Chapter 5
The local limit theorem in the reducible case

In this chapter we prove the local limit theorem for P(SN−zN ∈ (a,b)) when zN−E(SN)√
Var(SN)

converges

to a finite limit and f is reducible. In the reducible case, the asymptotic behavior of P(SN− zN ∈
(a,b)) depends on the details of fn(Xn,Xn+1). The dependence is strong for small intervals, and
weak for large intervals.

5.1 Main results

5.1.1 Heuristics and warm up examples

An additive functional is called reducible if

f = g+ c

where c is center-tight, and the algebraic range of g is strictly smaller than the algebraic range of
f. By the results of Chapter 3, if Var(SN(f))→ ∞, X is uniformly elliptic, and f is a.s. bounded,
then we can choose g to be irreducible. In this case

SN(f) = SN(g)+SN(c).

where Var(SN(g)) ∼ Var(SN(f))→ ∞, Var(SN(c)) = O(1), and SN(g) satisfies the lattice local
limit theorem. The contribution of Sn(c) cannot be neglected. In this chapter we give the
corrections to the LLT needed to take Sn(c) into account.

Before stating our results in general, we discuss two simple examples which demonstrate
some of the possible effects of SN(c).

Example 5.1 (Simple random walk with continuous first step and drift):

Suppose {Xn}n≥1 are independent real-valued random variables, where X1 is distributed like
a random variable F, and Xi (i≥ 2) are equal to 0,1 with equal probabilities.

F could be arbitrary, but we assume for simplicity that 0≤ F< 1 a.s., E[F] = 1
2 , the distribu-

tion of F has a density, and F is not uniformly distributed on [0,1]. Let µF denote the probability
measure associated with the distribution of F.

SN := X1 + · · ·+XN is exactly SN(f), where fn(x,y) := x. Since the distribution of F has a
density, f has algebraic range R.

The following decomposition shows that f is reducible, with essential range Z: Let δi j be
Kronecker’s delta, then f = g+ c where

99
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gn(x,y) := (1−δ1,n)x, cn(x,y) := δ1,nx,

g is irreducible with essential range Z, and c is center tight.
We have SN = (X2 + · · ·+XN︸ ︷︷ ︸

SN(g)

)+ X1︸︷︷︸
SN(c)

. Clearly, SN(g), SN(c) are independent; SN(c)∼ F; and

SN(g) has the binomial distribution B(1
2 ,N− 1). So SN has distribution µF ∗B(1

2 ,N− 1). This
distribution has a density, which we denote by pN(x)dx. The following holds as N→ ∞:

(A) Non-uniform scaling limit for pN(x)dx: mN := pN(x)dx is a positive functional on
Cc(R) = {continuous functions with compact support}. Fix zN := E(SN) = N/2 and let VN :=
Var(SN)∼ N/4. Then for every φ ∈Cc(R) and N even,∫

φ(x− zN)pN(x)dx = E[φ(SN− zN)] = E[φ(SN(g)+SN(c)− zN)]

= ∑
m∈Z

E[φ(F+m− zN)]P[Sn(g) = m] =
N−1

∑
m=0

(
N−1

m

)
1

2N−1E[φ(F+m− zN)]

=
1

2N−1

N−1

∑
m=0

(
N−1

m

)
ψ(m− N

2 ), where ψ(m) := E[φ(F+m)]

=
1

2N−1

N/2−1

∑
m=−N/2

(
N−1

m+N/2

)
ψ(m)∼ 1√

2πVN
∑

m∈Z
ψ(m) by Stirling’s formula

∼ 1√
2πVN

∑
m∈Z

E[φ(F+m)], as N→ ∞. This also holds for N odd.

Thus the distribution of SN− zN tends to zero in the vague topology of Radon measure on R “at
a rate of 1/

√
2πN,” and if we inflate it by

√
2πVN then it converges in the vague topology to

µF∗(counting measure on Z).
By the assumptions on F, the scaling limit µF∗(counting measure on Z) is not a Haar measure

on a closed subgroup of R. This is different from the irreducible case, when the scaling limit is
the Haar measure on Gess(X, f).

(B) Non-standard limit for
√

2πVNP[SN−zN ∈ (a,b)]: Fix a,b∈R\Z s.t. |a−b|> 1. Repeat-
ing the previous calculation with φi ∈Cc(R) such that φ1 ≤ 1(a,b) ≤ φ2 and ∑

m∈Z
E[φi(m+F)]≈

∑
m∈Z

E[1(a,b)(m+F)] gives for zN = E(SN) that

√
2πVNP[SN− zN ∈ (a,b)]−−−→

N→∞
∑

m∈Z
E[1(a,b)(m+F)]. (5.1.1)

This is different than the limit in the irreducible non-lattice LLT (Theorem 4.1):√
2πVNP[SN− zN ∈ (a,b)]−−−→

N→∞
|a−b|; (5.1.2)

or the limit in the irreducible lattice LLT with range Z (Theorem 4.2):√
2πVNP[SN− zN ∈ (a,b)]−−−→

N→∞
∑

m∈Z
1(a,b)(m). (5.1.3)
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(C) Robustness for large intervals: Although different, the limits in (5.1.1),(5.1.3) and (5.1.2)
are nearly the same as |a−b| → ∞.

The ratio between the limits in (5.1.3),(5.1.2) tends to one as |a− b| → ∞. The ratio be-
tween the limits in (5.1.1),(5.1.3) tends to one too, because supp(F) ⊂ [0,1], so |a− b| − 2 ≤
∑

m∈Z
1(a,b)(m+F)≤ |a−b|+2 a.s., whence

∣∣∣∣∣∣
∑

m∈Z
E[1(a,b)(m+F)]

∑
m∈Z

1(a,b)(m)
−1

∣∣∣∣∣∣≤ 2
|a−b|

−−−−−→
|a−b|→∞

0.

Example 5.1 is very special in that Sn(g),SN(c) are independent. Nevertheless, we will see
below that (A), (B), (C) are general phenomena, which also happen when SN(g), SN(h) are
strongly correlated. The following simple example demonstrates another pathology that is quite
general:

Example 5.2 (Gradient perturbation of the lazy random walk) :

Suppose Xn,Yn are independent random variables such that Xn = −1,0,+1 with equal prob-
abilities, and Yn are uniformly distributed in [0,1]. Let X= {(Xn,Yn)}n≥1.

◦ The additive functional gn((xn,yn);(xn+1,yn+1)) = xn generates the lazy random walk on Z,
SN(g) = X1 + · · ·+XN . It is irreducible, and satisfies the lattice LLT with range Z.
◦ The additive functional cn((xn,yn),(xn+1,yn+1)) = yn − yn+1 is center-tight, and SN(c) =

YN+1−Y1.
◦ The sum f = g+ c is reducible, with algebraic range R (because of c) and essential range Z

(because of g). It generates the process

SN(f) = SN(g)+YN+1−Y1.

SN(f) lies in a random coset bN +Z, where bN = YN+1−Y1. Since the distribution of bN is
continuous, P[SN− zN = k] = 0 for all zN ,k ∈ Z, and the standard lattice LLT fails. To deal with
this, we must “shift” SN− zN back to Z. This leads to the following (correct) statement: For all
zN ∈ Z s.t. zN√

VN
→ z, for all k ∈ Z,

P[SN− zN−bN = k]∼ e−z2/2
√

2πVN

Notice the shift by a random bounded quantity bN .

5.1.2 The LLT in the reducible case

Theorem 5.1. Let X = {Xn} be a uniformly elliptic Markov chain, and let f be a reducible a.s.
uniformly bounded additive functional with essential range δ (f)Z, where δ (f) 6= 0. Then there
are random variables bN = bN(X1,XN+1) and F= F(X1,X2, . . .) with the following properties:

(1) For every zN ∈ δ (f)Z such that zN−E(SN)√
VN

→ z, for every φ ∈Cc(R) and x ∈S1,

lim
N→∞

√
VNEx [φ(SN− zN−bN)] =

δ (f)e−z2/2
√

2π
∑

m∈Z
Ex[φ(mδ (f)+F)].
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(2) For every AN+1 ⊂SN+1 measurable such that P[XN+1 ∈ AN+1] is bounded below, and for
every x ∈S1,

lim
N→∞

√
VNEx

[
φ(SN− zN−bN)

∣∣XN+1 ∈ AN+1
]
=

δ (f)e−z2/2
√

2π
∑

m∈Z
Ex[φ(mδ (f)+F)].

(3) ‖bN‖∞ ≤ 9δ (f), and F ∈ [0,δ (f)).

The statement may seem at first sight different from the previous LLT we discussed, so we’d
like to spend some time on clarifying what it is saying.

◦ Ex [φ(SN− zN−bN)] , when viewed as a positive functional on Cc(R), represents the measure
on R, mx,N(E) = Px[SN− zN−bN(X1,XN+1) ∈ E]. This is the distribution of SN , conditioned
on X1 = x, after a shift by zN +bN(X1,XN+1). The deterministic shift by zN cancels the drift
of SN (notice that zN ≈ E(SN)≈ Ex(SN)). The random shift bN is needed to force SN to stay
inside δ (f)Z, see Example 5.2.
◦ The linear functional

Ax(φ) := δ (f) ∑
m∈Z

Ex[φ(mδ (f)+F)] (5.1.4)

defines the element of Cc(R)∗ which represents the measure µx,F ∗mδ (f), where µx,F(E) =
Px(F ∈ E) and mδ (f) := δ (f)× counting measure on δ (f)Z. So part (1) of Theorem 5.1 says

that mx,N → 0 in Cc(R)∗ at rate 1/
√

VN , and gives the scaling limit
√

2πVNmN
w∗−−−→

N→∞
µx,F ∗

mδ (f) when z = 0. See Example 5.1.
◦ As in Example 5.1, part (1) implies the following: For all a < b s.t. F has no atoms in {a,b}+

δ (f)Z, and for all zN ∈ δ (f)Z s.t. zN−E(SN)√
VN

→ z,

Px[SN− zN−bN ∈ (a,b)] = [1+o(1)]
e−z2/2
√

2πVN
·Ax(1(a,b)), and

Ax(1(a,b))∼

{
|a−b| as |a−b| → ∞

Px[F ∈ (a,b)] for (a,b)⊂ [0,δ (f)].

Viewed from this perspective, Ax(1(a,b)) is a “correction” to the term |a−b| in classical LLT
(4.1.1), which is needed for intervals with length of order δ (f).

These observations should be sufficient to understand the content of part (1). Part (2) is a
“mixing” version of part (1), in the sense of §4.1.3. Such results are particularly useful in the re-
ducible setup for the following reason. The random shift bN(X1,XN+1) is sometimes a nuisance,
and it is tempting to turn it into a deterministic quantity by conditioning on X1,XN+1. We would
have liked to say that part (1) survives such conditioning, but we cannot. The best we can say
in general is that part (1) remains valid under conditioning of the form X1 = x1,XN+1 ∈ AN+1
provided P(XN+1 ∈ AN+1) is bounded below. This the content of part (2). For an example how
to use such a statement, see §5.2.3.

In the following sections, we explore some of the consequences of Theorem 5.1.
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5.1.3 Irreducibility as a necessary condition for the mixing LLT

Theorem 5.1 exposes the pathologies that could happen in the reducible case. But is irreducibil-
ity a necessary condition for the non-lattice LLT? No!

Example 5.3 Take example 5.1 with fixed x and F uniformly distributed on [0,1], given X1 = x.

In this case, δ (f)= 1, µx,F∗mδ (f)=Lebesgue’s measure, Ax(1(a,b))= |a−b|, and
zN−E(SN)√

VN
→

z⇒ Px[SN − zN ∈ (a,b)] ∼ e−z2/2
√

2πVN
|a− b|, even though f is reducible, with essential range Z.

Of course, such behavior is immediately destroyed if we modify X1.

In this section we show that irreducibility is a necessary condition for the mixing LLT,
provided we impose the mixing LLT not just for (X, f), but also for all (X′, f ′) obtained from
(X, f) by changing finitely many terms.

Let f be an additive functional on a Markov chain X. Denote the state spaces of X by Sn,
and write X= {Xn}n≥1, f = { fn}n≥1. A sequence of events Ak ⊂Sk is called regular if Ak are
measurable, and P(Xn ∈ An) is bounded away from zero.

◦ We say that (X, f) satisfies the mixing non-lattice local limit theorem if VN :=Var(SN)→∞,
and for every regular sequence of events An ∈Sn, x∈S1, for all zN ∈R such that zN−E(SN)√

VN
→

z, and for each non-empty interval (a,b),

Px

(
SN− zN ∈ (a,b)

∣∣XN+1 ∈ AN+1

)
= [1+o(1)]

e−z2/2
√

2πVN
|a−b| as N→ ∞.

◦ Fix t > 0. We say that (X, f) satisfies the mixing uniform distribution mod t property, if
for every regular sequence of events An ⊂Sn, x ∈S1, and a non-empty interval (a,b) with
length less than one,

Px
(
SN ∈ (a,b)+ tZ|XN+1 ∈ AN+1

)
−−−→
N→∞

|a−b|
t

.

Theorem 5.2. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain. Given m, let (Xm, fm) := ({Xn}n≥m,{ fn}n≥m). The following are equivalent:

(1) f is irreducible with algebraic range R;
(2) (Xm, fm) satisfy the mixing non-lattice local limit theorem for all m;
(3) (Xm, fm) satisfy the mixing uniform distribution mod t for all m and t > 0.

5.1.4 Universal bounds for Px[SN− zN ∈ (a,b)]

So far we have considered the problem of finding Px[SN− zN ∈ (a,b)] up to asymptotic equiva-
lence. We now consider the problem of finding Px[SN−zN ∈ (a,b)] up to bounded multiplicative
error, assuming only that VN → ∞.

We already saw that the predictions of the LLT for large intervals (a,b) are nearly the same
both in the reducible and irreducible, lattice and non-lattice cases. Therefore we expect univer-
sal lower and upper bounds, for all sufficiently large intervals without further assumptions on
irreducibility or on the arithmetic structure of the range. The question is how large is “suffi-
ciently large.”
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We certainly cannot expect universal lower and upper bounds for intervals smaller than the
graininess constant of (X, f):

δ (f) :=


t Gess(X, f) = tZ, t > 0
0 Gess(X, f) = R
∞ Gess(X, f) = {0},

(5.1.5)

because intervals with length less than δ (f) may fall in the gaps of the support of SN − zN .
Theorem 5.1 can be used to see that universal bounds do apply as soon as |a−b|> δ (f):

Theorem 5.3. Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. Then for every interval (a,b) of length L > δ (f), for all ε > 0, x ∈ S1 and
zN ∈ R such that zN−E(SN)√

VN
→ z, for all for all N large enough,

Px(SN− zN ∈ (a,b))≤ e−z2/2|a−b|√
2πVN

(
1+

21δ (f)

L
+ ε

)
, (5.1.6)

Px(SN− zN ∈ (a,b))≥ e−z2/2|a−b|√
2πVN

(
1− δ (f)

L
− ε

)
. (5.1.7)

In addition, if 0 < δ (f)< ∞ and kδ ( f )� L� (k+1)δ ( f ), k ∈ N, then(
e−z2/2
√

2πVN

)
kδ ( f ). Px(SN− zN ∈ (a,b)).

(
e−z2/2
√

2πVN

)
(k+1)δ ( f ).

Here AN . BN means that limsup
N→∞

(AN/BN)≤ 1.

We note that both upper and lower bound become asymptotic to the Gaussian density as
L→ ∞. Notice also that the theorem makes no assumptions on the irreducibility of f.

Theorem 5.3 is an easy corollary of Theorem 5.1, see §5.2.4, but this is an overkill. At the
end of the chapter we will supply a proof of universal bounds for intervals of length L > 2δ (f),
which does not require the full force of Theorem 5.1, and which also applies to arbitrary initial
distributions and to arrays.

5.2 Proofs

5.2.1 Characteristic functions

Setup: Throughout this section we assume that X= {Xn} is a uniformly elliptic Markov chain
with state spaces Sn, marginals µn(E) = P(Xn ∈ E), and transition probabilities πn,n+1(x,dy) =
pn(x,y)µn+1(dy) which satisfy the uniform ellipticity condition with ellipticity constant ε0.

For every bounded measurable function ϕ : Sn×Sn+1→ R, we let

E(ϕ) := E[ϕ(Xn,Xn+1)] , σ(ϕ) :=
√

Var(ϕ(Xn,Xn+1)).

Next we assume that K > 0, ε ∈ (0,1) and f = { f (N)
n : 1 ≤ n ≤ N < ∞} is an array of mea-

surable functions f (N)
n : Sn×Sn+1→ R which satisfy the following assumptions for all N:
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(I) E( f (N)
n ) = 0 and ess sup |f|< K.

(II) Let SN :=
N

∑
n=1

f (N)
n (Xn,Xn+1) and VN := Var(SN), then there exists Ĉ > 0 s.t.

VN → ∞ and
1

VN

N

∑
n=1

σ
2( f (N)

n )≤ Ĉ. (5.2.1)

(III) f = F+h+ c, where

(a) F= {F(N)
n } are measurable functions such that ess sup |F| ≤ K , Galg(X,F)⊂ Z.

(b) h= {h(N)
n } are measurable functions such that

E(h(N)
n ) = 0, ess sup |h|< K,

N

∑
n=1

σ
2(h(N)

n )≤ ε.

(c) c = {c(N)
n } are constants. Necessarily |c(N)

n | ≤ 3K and c(N)
n = −E(F(N)

n ). Let c(N) :=
∑

N
n=1 c(N)

n .

We are not assuming that E(F(N)
n ) = 0: F(N)

n are integer valued, and we do not wish to destroy
this by subtracting the mean.

Lemma 5.4 Under the above assumptions, for every K > 0, m ∈ Z, there are C,N > 0 s.t. for
every N > N, |s| ≤ K, x ∈S1, and vN+1 : SN+1→ R with ‖vN+1‖∞ ≤ 1,

Ex

(
e

i
(

2πm+ s√
VN

)
SN

vN+1(XN+1)

)
= e2πimc(N)

e−s2/2 E(vN+1(XN+1))+ηN(x)

where E(|η |)≤C
[
∑

N
n=1 σ2(h(N)

n )
]1/2
≤C
√

ε .

Proof. In this proof we fix the value of N, and drop the superscripts N for the ease of notation
(for example c(N) = c).

We develop a perturbation theory of transfer operators similar to [12]. Recall the operators
Ln,ξ : L∞(Sn+1)→ L∞(Sn) given by

(Ln,ξ u)(x) =
∫
Sn+1

pn(x,y)eiξ fn(x,y)u(y)µn+1(dy).

Let ξ = ξ (m,s) := 2πm+
s√
VN

. Since Fn is integer valued,

eiξ fn = exp[2πimFn +
is√
VN
Fn + iξ cn + iξ hn)] = e2πimcne

i
(

s√
VN

(Fn+cn)+ξ hn

)
.

We now split e−2πimcnLn,ξ = L n,ξ + L̂n,ξ + L̃n,ξ where

(
L n,ξ u

)
(x) =

∫
Sn+1

pn(x,y)e
is√
VN

(Fn(x,y)+cn)
u(y)µn+1(dy),(

L̂n,ξ u
)
(x) = iξ

∫
Sn+1

pn(x,y)hn(x,y)u(y)µn+1(dy), and
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L̃n,ξ u

)
(x) =

∫
Sn+1

pn(x,y)
[

e
iξ hn+

is√
VN

(Fn(x,y)+cn)− e
is√
VN

(Fn(x,y)+cn)− iξ hn(x,y)
]

u(y)µn+1(dy).

We claim that there exists C1(K,m)> 1 such that for |s| ≤ K, n≥ 1

∥∥Ln,ξ
∥∥ :=

∥∥Ln,ξ
∥∥

L∞→L∞
≤ 1, (5.2.2)∥∥Ln,ξ

∥∥
L1→L∞

≤C1(K,m), (5.2.3)∥∥L n,ξ
∥∥ :=

∥∥L n,ξ
∥∥

L∞→L∞
≤ 1, (5.2.4)∥∥∥L̂n,ξ

∥∥∥
L∞→L1

≤C1(K,m)σ(hn), (5.2.5)∥∥∥L̃n,ξ

∥∥∥
L∞→L1

≤C1(K,m)

[
σ

2(hn)+
σ(hn)σ( fn)√

VN

]
. (5.2.6)

To see this, we represent these operators as integral operators, and estimate their kernels. For
example, L̂n,ξ is an integral operator whose kernel has absolute value |iξ pn(x,y)hn(x,y)| ≤
ε
−1
0 |ξ ||hn(x,y)|. So

‖L̂n,ξ‖L∞→L1 ≤ ε
−1
0

√
4π2m2 +K2‖hn‖L1 ≤ ε

−1
0

√
4π2m2 +K2‖hn‖L2,

and (5.2.5) follows from the identity ‖hn‖L2 ≡ σ(hn). Similarly, L̃n,ξ has kernel with absolute
value

pn(x,y)
∣∣eiξ hn+isFn(x,y)+cn√

VN − e
isFn(x,y)+cn√

VN − iξ hn(x,y)
∣∣≤ ε

−1
0

∣∣eisFn(x,y)+cn√
VN

(
eiξ hn−1

)
− iξ hn

∣∣
= ε

−1
0

∣∣eisFn(x,y)+cn√
VN

(
iξ hn +O(ξ 2h2

n)
)
− iξ hn

∣∣= ε
−1
0

∣∣eisFn(x,y)+cn√
VN −1

∣∣|ξ hn|+O
(
h2

n
)

= O
(

1√
VN
|hn(Fn + cn)|

)
+O

(
h2

n
)

where the implicit constants in O(·) are uniform on compact sets of ξ . It follows that uniformly
on compact sets of ξ ,

‖L̃n,ξ‖L∞→L1 = O(V−1/2
N )E(|hn(Fn + cn)|)+O(‖hn‖2

2)

= O(V−1/2
N )‖hn‖2‖Fn + cn‖2 +O(‖hn‖2

2)

= O(V−1/2
N )‖hn‖2(‖ fn−hn‖2)+O(‖hn‖2

2)

= O(V−1/2
N )‖hn‖2(‖ fn‖2 +‖hn‖2)+O(‖hn‖2

2)

= O
(
‖hn‖2‖ fn‖2√

VN
+‖hn‖2

2

)
= O

(
σ(hn)σ( fn)√

VN
+σ

2(hn)

)
,

as claimed in (5.2.6).

Recall Nagaev’s identity (4.2.1): Ex[eiξ SN vN+1(XN+1)] = (L1,ξ L2,ξ · · ·LN,ξ vN+1)(x). The
decomposition e−2πimcnLn,ξ = L n,ξ + L̂n,ξ + L̃n,ξ implies that

Ex

(
eiξ SN vN+1(XN+1)

)
= e2πimc

(
ΦN(x,ξ )+ Φ̂N(x,ξ )+ Φ̃N(x,ξ )

)
(5.2.7)
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where c = c(N) = c1 + · · ·+ cN , and

ΦN(x,ξ ) :=
(
L 1,ξ . . .L N,ξ vN+1

)
(x),

Φ̃N(x,ξ ) :=
N−1

∑
k=1

e−2πim(c1+···+ck−1)
(
L1,ξ · · ·Lk−1,ξ L̃k,ξ L k+1,ξ . . .L N,ξ vN+1

)
(x),

Φ̂N(x,ξ ) :=
N−1

∑
k=1

e−2πim(c1+···+ck−1)
(
L1,ξ . . .Lk−1,ξ L̂k,ξ L k+1,ξ . . .L N,ξ vN+1

)
(x).

We will analyze each of these summands.

CLAIM 1:For every m ∈ Z,
∣∣∣ΦN(x,ξ )− e−s2/2Ex(vN+1(XN+1))

∣∣∣−−−→
N→∞

0 uniformly in s on {s ∈
R : |s| ≤ K}, x ∈S1, vN+1 ∈ {v ∈ L∞(SN+1) : ‖v‖ ≤ 1}.

PROOF: ΦN(x,ξ ) = Ex

(
exp
(

is∑
N
k=1Fk+c√

VN

)
vN+1(XN+1)

)
, where E(∑N

k=1Fn) =−c. Fix 1≤ r≤
N. Using the decomposition f = F+h+ c, we find that

1√
VN

( N

∑
k=1
Fk + c

)
=

1√
VN

N−r

∑
k=1

fk +
1√
VN

(
O(r)−

N

∑
k=1

hk

)
.

By assumption III(b), the L2 norm of the second summand is O(1/
√

VN). Therefore the second
term converges to 0 in probability as N→ ∞, and

ΦN(x,ξ ) = Ex

(
e

is√
VN

SN−r
vN+1(XN+1)

)
+o(1), (5.2.8)

where we have abused notation and wrote SN−r = f (N)
1 + · · ·+ f (N)

N−r.
The rate of convergence to 0 depends on r and m, but is uniform when |s| ≤K and ‖vN+1‖∞≤

1. At the same time, by exponential mixing (see (1.2.3)), there is 0 < θ < 1 such that

Ex

(
e

is√
VN

SN−r
vN+1(XN+1)

)
= Ex

[
e

is√
VN

SN−rEx
(
vN+1(XN+1)

∣∣X1, . . . ,XN−r
)]

= Ex

[
e

is√
VN

SN−rEx
(
vN+1(XN+1)

∣∣XN−r
)]

(Markov property)

= Ex

(
e

is√
VN

SN−r
[Ex(vN+1(XN+1)+O(θ r)]

)
(exponential mixing)

= Ex(eisSN−r/
√

VN )Ex(vN+1(XN+1))+O(θ r) (5.2.9)

where the O(θ r) is uniform in ‖vN+1‖∞.
A similar mixing argument shows that

Ex(SN−r) = E(SN−r|X1 = x) = E(SN)+O(1) = O(1)

uniformly in x ∈S1. By Dobrushin’s CLT,

Ex(eisSN−r/
√

VN ) = [1+o(1)]Ex(e
is SN−Ex(SN )√

VN ) = [1+o(1)]e−s2/2 as N→ ∞.



108 5 The local limit theorem in the reducible case

The claim follows from this, (5.2.8), and (5.2.9).

CLAIM 2. There exists C2(K,m) s.t. for all |s| ≤ K and ‖vN+1‖∞ ≤ 1,∥∥Φ̃N(x,ξ )
∥∥

L1 ≤C2(K,m)
√

ε.

PROOF: ‖Φ̃N(x,ξ )‖1 ≤ ‖L̃1,ξ‖L∞→L1

∥∥L 2,ξ
∥∥ · · ·∥∥L N,ξ

∥∥
+

N

∑
k=2

(∥∥L1,ξ
∥∥ · · ·∥∥∥Lk−1,ξ L̃k,ξ

∥∥∥∥∥L k+1,ξ
∥∥ · · ·∥∥L N,ξ

∥∥)
Suppose |s| ≤ K, then (5.2.3), (5.2.4) and (5.2.6) tell us that

‖L̃1,ξ‖L∞→L1

∥∥L 2,ξ
∥∥ · · ·∥∥L N,ξ

∥∥≤C1(K,m)

[
σ(h1)

2 +
σ(h1)σ( f1)√

VN

]
,∥∥∥Lk−1,ξ L̃k,ξ

∥∥∥≤ ∥∥Lk−1,ξ
∥∥

L1→L∞

∥∥∥L̃k,ξ

∥∥∥
L∞→L1

≤C1(K,m)2
[

σ(hk)
2 +

σ(hk)σ( fk)√
VN

]
.

Therefore ‖Φ̃N(x,ξ )‖1 ≤C1(K,m)2
∑

N−1
k=1

[
σ(hk)

2 + σ(hk)σ( fk)√
VN

]
. By Cauchy-Schwarz,

N−1

∑
k=1

σ(hk)
2 +

σ(hk)σ( fk)√
VN

≤
N−1

∑
k=1

σ(hk)
2 +

√√√√N−1

∑
k=1

σ2(hk) ·
1

VN

N−1

∑
k=1

σ2( fk)

≤ ε +
√

Ĉε, by assumptions II and III(b). The claim follows.

CLAIM 3. There exists C3(K,m) s.t. for all |s| ≤ K, and ‖vN+1‖∞ ≤ 1,
‖Φ̂N(x,ξ )‖1 ≤C3(K,m)

√
ε .

PROOF. Fix N, vN+1 ∈ L∞(SN+1) such that ‖vN+1‖∞ ≤ 1, and define ζk ∈ L∞(Sk), ηk ∈ R s.t.

φk(·) := (L k,ξ . . .L N,ξ )vN+1 = ζk(·)+ηk

where ηk := E
[
(L k,ξ · · ·L N,ξ )vN+1(Xk)

]
, and E[ζk(Xk)] = 0. Then

∥∥Φ̂N(x,ξ )
∥∥

1 ≤
N

∑
k=1
‖L1,ξ · · ·Lk−1,ξ L̂k,ξ (ζk+1 +ηk+11)‖1. (5.2.10)

By (5.2.4), |ηk| ≤ 1. We will now work towards a control of ζk:

SUB-CLAIM. We can decompose ζk = ζ ′k +ζ ′′k so that for all |s| ≤ K, there exist Ĉ0, K̂0 > 0 and
0 < θ̂0 < 1 s.t. for all k = 1, . . . ,N−2

‖ζ ′k‖∞ ≤ θ̂
2
0 ‖ζ ′k+2‖∞ + K̂0‖ζ ′′k+2‖1, (5.2.11)

‖ζ ′′k ‖∞ ≤ Ĉ0

(
σ( fk)+σ( fk+1)+σ(hk)+σ(hk+1)√

VN

)
. (5.2.12)

Proof. In what follows, Lk = Lk,0. Write

ηk +ζk = φk =
(
L k,ξ L k+1,ξ

)
φk+2 =

(
L k,ξ L k+1,ξ

)
(ηk+2 +ζk+2)
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= (LkLk+1)ηk+2 +(LkLk+1)ζk+2 +
(
L k,ξ L k+1,ξ −LkLk+1

)
φk+2.

Observe that Lk1 = 1, so (LkLk+1)ηk+2 = ηk+2. This leads to the decomposition

ζk = (LkLk+1)ζk+2︸ ︷︷ ︸
ζ ′k

+
(
L k,ξ L k+1,ξ −LkLk+1

)
φk+2 +ηk+2−ηk︸ ︷︷ ︸

ζ ′′k

We use this decomposition to define ζ ′k,ζ
′′
k . This gives the following recursion:

ζ
′
k = (LkLk+1)ζ

′
k+2 +(LkLk+1)ζ

′′
k+2,

ζ
′′
k =

(
L k,ξ L k+1,ξ −LkLk+1

)
φk+2 +ηk+2−ηk.

(5.2.13)

Notice that ζ ′k,ζ
′′
k both have zero means. Indeed in our setup, µ j(E) = P(X j ∈ E) and

(Lku)(x) = E(u(Xk+1)|Xk = x), whence∫
ζ
′
kdµk = E(ζ ′k(Xk)) = E[E(E(ζk+2(Xk+2)|Xk+1)|Xk)] = E(ζk+2(Xk+2)) = 0,

and E(ζ ′′k ) = E(ζk)−E(ζ ′k) = 0−0 = 0.
To prove the estimates on ‖ζ ′k‖∞, we first make the following general observations. If ψk+2 ∈

L∞(Sk+2), then (LkLk+1ψk+2)(x) =
∫

p̃(x,z)ψk+2(z)µk+2(dz), where

p̃(x,z) =
∫
Sk+1

pk(x,y)pk+1(y,z)µk+1(dy).

By uniform ellipticity, p̃ ≥ ε0 so we can decompose p̃k = ε0 +(1− ε0)q̃k where q̃k is a proba-
bility density. Hence if ψk+2 has zero mean then

(LkLk+1ψk+2)(x) = ε0

∫
ψk+2dµk+2 +(1− ε0)

∫
q̃k(x,y)ψk+2(y)µk+2(dy)

= (1− ε0)
∫

q̃k(x,y)ψk+2(y)µk+2(dy).

Thus ‖LkLk+1ψk+2‖∞
≤ (1− ε0)‖ψk+2‖∞.

We apply this to ζ ′k+2 = (LkLk+1)ζ ′k+2 +(LkLk+1)ζ ′′k+2:

‖ζ ′k‖∞ ≤ (1− ε0)‖ζ ′k‖∞ +‖LkLk+1ζ
′′
k+2‖∞

≤ (1− ε0)‖ζ ′k‖∞ +‖Lk‖L1→L∞‖Lk+1‖L1→L1‖ζ ′′k+2‖1 ≤ (1− ε0)‖ζ ′k‖∞ + ε
−2
0 ‖ζ

′′
k+2‖1.

The last step is because 0≤ pn(x,y)≤ ε
−1
0 . This proves (5.2.11).

Next we analyze ‖ζ ′′k ‖∞. Since ζ ′′k has zero mean and ηk+2 − ηk is constant, we can
write ζ ′′k = ζ̂ ′′k −E(ζ̂ ′′k ) with ζ̂ ′′k :=

(
L k,ξ L k+1,ξ −LkLk+1

)
φk+2. Observe that the kernel

of
(
L k,ξ L k+1,ξ −LkLk+1

)
is bounded by

const
|s|√
VN

∫ (
Fk(x,z)+Fk+1(z,y)+ ck + ck+1

)
µk+1(dz).

By assumptions II and III, the L1-norm of the kernel is bounded by

O
(
|s|√
VN

)(
‖ fk−hk‖1 +‖ fk+1−hk+1‖1

)
= O

(
|s|√
VN

)(
‖ fk‖1 +‖hk‖1 +‖ fk+1‖1 +‖hk+1‖1

)
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≤ O
(
|s|√
VN

)(
‖ fk‖2 +‖hk‖2 +‖ fk+1‖2 +‖hk+1‖2

)
.

This implies that ‖ζ̂ ′′k ‖∞ = O
(
|s|√
VN

)(
σ( fk)+σ( fk+1)+σ(hk)+σ(hk+1)

)
, whence ‖ζ ′′k ‖∞ ≤

2‖ζ̂ ′′k ‖∞ = O
(
|s|√
VN

)(
σ( fk) + σ( fk+1) + σ(hk) + σ(hk+1)

)
. (5.2.12) and the sub-claim are

proved.

We return to the proof of Claim 3. Iterating the estimate in the sub-claim, we conclude that
for some constant C

‖ζ ′k‖∞ ≤C

θ̂
2bN−k

2 c
0 +

bN−k
2 c−1

∑
r=1

θ̂ 2r
0 (σ( fk+2r)+σ( fk+2r+1)+σ(hk+2r)+σ(hk+2r+1))√

VN


≤Cθ̂

−1
0

[
θ̂

N−k
0 +

N−k

∑
r=1

θ̂ r
0√
VN

(
σ( fk+r)+σ(hk+r)

)]
.

Since L j,ξ are contractions and ‖L̂k,ξ‖L∞→L1 ≤C1(K,m)σ(hk), this implies that

∑
k

∥∥L1,ξ . . .Lk−1,ξ L̂k,ξ (ζ
′
k+1)

∥∥
L1

≤CC1(K,m)

[
∑
r

θ̂
r
0 ∑

k
σ(hk)

σ( fk+r)+σ(hk+r)√
VN

+∑
k

σ(hk)θ̂
N−k
0

]
.

As in the proof of Claim 2, it follows from the Cauchy Schwartz inequality, (5.2.1), and as-
sumption III(b) that the sum over k is O(

√
ε). Hence

∑
k

∥∥∥L1,ξ . . .Lk−1,ξ L̂k,ξ (ζ
′
k+1)

∥∥∥
L1

= O(
√

ε). (5.2.14)

Next we claim that

∑
k

∥∥∥L1,ξ . . .Lk−1,ξ L̂k,ξ (ζ
′′
k+1)

∥∥∥
L1

= O(
√

ε). (5.2.15)

The proof is similar to the proof of (5.2.14), except that now we use (5.2.13) to see that as in
the proofs of (5.2.5),(5.2.6) and (5.2.12),

‖L1,ξ . . .Lk−1,ξ L̂k,ξ (ζ
′′
k+1)‖L1 ≤C4(K,m)σ(hk)

σ( fk+1)+σ( fk+2)+σ(hk+1)+σ(hk+2)√
VN

for some constant C4(K,m).
(5.2.14) and (5.2.15) give us an O(

√
ε) bound for contribution of ζk+1 to (5.2.10). It remains

to estimate the contribution of ηk+1 to (5.2.10).

Split Ln,ξ = e2πimcnLn +L ′
n,ξ . As before,

L1,ξ · · ·Lk−1,ξ L̂k,ξ (1) = e2πim(c1+···+ck−1)L1 · · ·Lk−1L̂k,ξ (1)

+∑
j

e2πim(c j+1+···+ck−1)L1,ξ · · ·L j−1,ξ L ′
j,ξ L j+1 · · ·Lk−1L̂k,ξ (1).

(5.2.16)
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Since E(hk) = 0, E[(L̂k,ξ 1)(Xk)] = 0. By exponential mixing (1.2.3), the first term on the RHS
of (5.2.16) has L∞ (whence L1) norm no larger than

Cmixθ
k−1‖L̂k,ξ 1‖∞ ≤ Ĉ3σ(hk)θ

k

for some constant Ĉ3 = Ĉ3(K,m) and 0 < θ < 1. Similarly each summand in the second term
on the RHS of (5.2.16) has L1 norm less than

‖L ′
j,ξ‖Ĉ3σ(hk)θ

k− j ≤ Ĉ4σ(hk)θ
k− j
∥∥∥∥ s√

VN
(F j + c j)+ξ h j

∥∥∥∥
2

≤ Ĉ4σ(hk)θ
k− j
(

σ( f j)√
VN

+σ(h j)

)
,

for Ĉ4 = Ĉ4(K,m). So the second term on the RHS of (5.2.16) has norm less than

Ĉ5σ(hk)
k

∑
j=1

θ
k− j
(

σ( f j)√
VN

+σ(h j)

)
(5.2.17)

for some constant Ĉ5.
It follows that ∑

k

∥∥∥L1,ξ . . .Lk−1,ξ L̂k,ξ (1)
∥∥∥

1
is bounded by

N

∑
k=1

(
Ĉ3σ(hk)θ

k +Ĉ5σ(hk)
k

∑
j=1

θ
k− j
(

σ( f j)√
VN

+σ(h j)

))

≤ Ĉ3

√√√√ N

∑
k=1

σ2(hk)

√√√√ N

∑
k=1

θ 2k +Ĉ5

N−1

∑
r=0

θ
r

N

∑
j=1

(
σ( f j)√

VN
+σ(h j)

)
σ(h j+r)

≤ Ĉ3
√

ε√
1−θ 2

+Ĉ5

N−1

∑
r=0

θ
r

√√√√ N

∑
j=1

σ2( f j)

VN
+

√√√√ N

∑
j=1

σ2(h j)

√√√√ N

∑
j=1

σ2(h j+r)

 .
By assumptions II and III, there is a constant Ĉ6 = Ĉ6(K,m) such that

∑
k

∥∥∥L1,ξ . . .Lk−1,ξ L̂k,ξ (1)
∥∥∥

1
≤ Ĉ6

√
ε. (5.2.18)

Claim 3 now follows from (5.2.10), (5.2.14), (5.2.15), and (5.2.18).

Lemma 5.4 now follows from Claims 1–3 and (5.2.7). �

5.2.2 Proof of the LLT in the reducible case

Setup and reductions. Let f = { fn} be an a.s. uniformly bounded additive functional on a
Markov chain X = {Xn} with state spaces Sn and marginals µn(E) = P(Xn ∈ E). We assume
that f is not center-tight, and that f is reducible. In this case Gess(X, f) = δ (f)Z with some
δ (f)> 0. Without loss of generality,
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δ (f) = 1 , Gess(f) = Z , E( fn) := E[ fn(Xn,Xn+1)] = 0 for all n,

otherwise we center and rescale f.
By the reduction lemma (Lemma 3.10), f = F+∇a+h+ c, where

Galg(X,F) = Gess(X,F) = Z,

h has summable variances and E(hn) := E(hn(Xn,Xn+1)) = 0, c = {cn} are constants, and
F,a,h,c are a.s. uniformly bounded. There is no loss of generality in assuming that a ≡ 0, be-
cause Theorem 5.1 holds for f with bN iff Theorem 5.1 holds for f−∇a with b′N(X1,XN+1) :=
bN(X1,XN+1)+aN+1(XN+1)−a1(X1).

Henceforth we assume f = F+h+ c, and E( fn) = E(hn) = 0. So cn =−E(Fn). Let

c(N) :=−
N

∑
k=1
E[Fk(Xk,Xk+1)]. (5.2.19)

By Theorem 2.4, the following sum converges a.s.:

H(X1,X2, . . .) :=
∞

∑
n=1

hn(Xn,Xn+1).

Lemma 5.5 Under the previous assumptions, for every sequence of non-negative functions
vN+1 ∈ L∞(SN+1) s.t. ‖vN+1‖∞ 6= 0 and for some δ > 0∫

SN+1

vN+1dµN+1 ≥ δ ||vN+1||∞, (5.2.20)

for all m ∈ Z, s ∈ R and x ∈S1,

Ex

(
e

i(2πm+ s√
VN

)SN
vN+1(XN+1)

)
E(vN+1(XN+1))

= e2πimc(N)−s2/2Ex

(
e2πmiH

)
+oN→∞(1). (5.2.21)

where o(·) term converges to 0 uniformly when |m+ is| are bounded, vN+1 are bounded, and
(5.2.20) holds.

Proof. Since the LHS of (5.2.21) remains unchanged upon multiplying vN+1 by a constant, we
may assume that ‖vN+1‖∞ = 1.

Fix ε > 0 small and r so large that
∞

∑
k=r

Var(hk) < ε . Fix N. Applying the Integer Reduction

Lemma (Lemma 3.13) to {Fn}N
n=r, we obtain a decomposition

Fn(xn,xn+1) = a
(N)
n+1(xn+1)−a

(N)
n (xn)+ c

(N)
n + f̃ (N)

n (xn,xn+1)

where c
(N)
n are bounded integers, and a

(N)
n (·), f̃ (N)

n (·, ·) are uniformly bounded measurable inte-
ger valued functions such that

N

∑
n=r
‖ f̃ (N)

n ‖2
2 = O

(
N

∑
n=r

u2
n(F)

)
.
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There is no loss of generality in assuming that a(N)
N+1 = a

(N)
r = 0, otherwise replace f̃ (N)

r (x,y)

by f̃ (N)
r (x,y)−a

(N)
r (x), and f̃ (N)

N (x,y) by f̃ (N)
N (x,y)+a

(N)
N+1(y). Then

N

∑
n=r
Fn =

N

∑
n=r

(c
(N)
n + f̃ (N)

n ),

whence

SN−Sr−1 =
N

∑
n=r

fn =
N

∑
n=r

c
(N)
n + f̃ (N)

n +hn + cn =
N

∑
n=r

f̃ (N)
n +hn−E( f̃ (N)

n +hn). (5.2.22)

(The last equality is because E(SN−Sr−1) = 0.)
Let g denote the array with rows g(N)

n := f̃ (N)
n +hn−E( f̃ (N)

n +hn) (n = r, . . . ,N), N > r. We
claim that g satisfies assumptions (I)–(III) of Lemma 5.4. (I) is clear, and (III) holds by choice
of r and because f̃ (N)

n is integer valued. To see (II), note that

N

∑
n=1

σ
2(g(N)

n ) =
N

∑
n=1

σ
2( f̃ (N)

n +hn) =
N

∑
n=1

σ
2( f̃ (N)

n )+σ
2(hn)+2Cov( f̃ (N)

n ,hn)

≤
N

∑
n=1

σ
2( f̃ (N)

n )+σ
2(hn)+2σ( f̃ (N)

n )σ(hn)≤ 2
N

∑
n=1

σ
2( f̃ (N)

n )+σ
2(hn) (∵ 2ab≤ a2 +b2)

= O
( N

∑
n=r

u2
n(F)

)
+O(1), by choice of f̃ and h.

Since f =F+h+c, u2
n(F)= u2

n(f+h)≤ 2[u2
n(f)+u2

n(h)], see Lemma 1.15(4). Thus by Theorem
2.7 and the assumption that h has summable variances,

N

∑
n=r

u2
n(F)≤ 2

N

∑
n=r

u2
n( f )+u2

n(h) = O
(
VN
)
+O(1) = O(VN).

Assumption (II) is checked.
We now apply Lemma 5.4 to g, and deduce that for every K > 0 and m∈Z there are C,N > 0

such that for all N > N + r, |s| ≤ K, and vN+1 in the unit ball of L∞

E
(

e
i(2πm+ s√

VN
)(SN−Sr−1)

vN+1(XN+1)

∣∣∣∣Xr

)
= e2πimc(N)

· e−s2/2E(vN+1(XN+1))+ηN−r(Xr),

where c(N) :=−∑
N
n=rE( f̃ (N)

n ) and ‖ηN−r‖1≤C
√

ε . Since ‖vN+1‖∞ = 1, we also have the trivial
bound ‖ηN−r‖∞ ≤ 2.

We are ready to prove the lemma. The left-hand-side of (5.2.21) equals

Ex

(
e

i(2πm+ s√
VN

)SN
vN+1(XN+1)

)
E(vN+1(XN+1))

=

= Ex

e
i(2πm+ s√

VN
)Sr−1

E
(

ei(2πm+ s√
Vn

)(SN−Sr−1)vN+1(XN+1)
∣∣Xr

)
E(vN+1(XN+1))


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= Ex

[
e

i(2πm+ s√
VN

)Sr−1
(

e2πimc(N)−s2/2 +
ηN−r(Xr)

E(vN+1(XN+1))

)]
= e2πimc(N)−s2/2Ex(e2πimSr−1+o(1))︸ ︷︷ ︸

A

+O(δ
−1
)Ex(ηN−r(Xr))︸ ︷︷ ︸

B

, as N→ ∞.

We examine A,B. Let ĉ(r−1) :=
r−1

∑
k=1

ck =−E(
r−1

∑
k=1
Fk(Xk,Xk+1)). Since c(N) =−

N

∑
k=1
E(Fk),

c(N) =−
r−1

∑
k=1
E(Fk)−

N

∑
k=r

(E( f̃ (N)
n )+ c

(N)
n ) because

N

∑
n=r
Fn =

N

∑
n=r

(c
(N)
n + f̃ (N)

n )

≡ ĉ(r−1)+ c(N) mod Z, because c
(N)
n ∈ Z.

By assumption, f = F+h+ c with F integer valued. Necessarily,

exp(2πimSr−1) = exp(2πimHr +2πimĉ(r−1)) (5.2.23)

where Hr :=
r−1

∑
k=1

hk(Xk,Xk+1). By choice of r and Lemma 2.5,

∣∣Ex(eiξH)−Ex(eiξHr)
∣∣≤ |ξ |Ex (|H−Hr|)≤ |ξ |Var

(
∞

∑
k=r

hk(Xk,Xk+1)

)1/2

= O
(√

ε
)

uniformly when ξ varies in a compact domain. Substituting (5.2.23) in A, we obtain

A = [1+o(1)]e2πimc(N)− s2
2 Ex

(
e2πimH

)
+O

(√
ε
)
.

Next, the exponential mixing of X implies that for all N large enough,

B := Ex(ηN−r(Xr)) = E(ηN−r(Xr))+o(1) = O(
√

ε).

Thus the left-hand-side of (5.2.21) equals e2πimc(N)−s2/2Ex(e2πimH+o(1))+O(
√

ε). The lemma
follows, because ε was arbitrary. �

Proof of Theorem 5.1. Suppose f is an a.s. uniformly bounded additive functional on a uni-
formly elliptic Markov chain X, and assume Gess(f) = δ (f)Z with δ (f) 6= 0.

We begin with some reductions. By Theorem 3.3, f has an optimal reduction, and we can
write f = F+F where F has algebraic range δ (f)Z and F is a.s. uniformly bounded and center-
tight. There is no loss of generality in assuming that ess sup |F| ≤ δ (f), since this can always
be arranged by replacing Fn by Fn mod δ (f). Next by the gradient lemma (Lemma 2.9), we
decompose

F= ∇a+ f̃+ c̃

where ess sup |a| ≤ 2ess sup |F|, f̃ has summable variances, and c̃n are constants.

It is convenient to introduce f ∗n :=
1

δ (f)
[ fn−∇an−E( fn−∇an)]. Gess(X, f

∗) = Z, and

f∗ =
1

δ (f)
F+h+ c, (5.2.24)
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where hn := 1
δ (f) [ f̃n−E( f̃n)] is a centered additive functional with summable variances, and

cn := 1
δ (f) [c̃n +E( f̃n)−E( fn−∇an)].

We first prove the theorem in the special case when

δ (f) = 1, E( fn) = 0 for all n, and a≡ 0. (5.2.25)

In this case f = f∗ and (5.2.24) places us in the setup of Lemma 5.5. Given this lemma, the proof
is very similar to the proof of the local limit theorem in the irreducible non-lattice case, but we
reproduce it for completeness. We focus on parts (2) and (3) of the theorem, because part (1)
follows from them.

Define as in (5.2.19), c(N) :=− 1
δ (f)

N

∑
k=1
E[Fk(Xk,Xk+1)], and let

H :=
∞

∑
n=1

hn(Xn,Xn+1), bN := {c(N)}.

Fix φ ∈ L1(R) such that supp(φ̂) ⊂ [−L,L], and let vN+1 denote the indicator function of
AN+1. By the Fourier inversion formula

Ex(φ(SN−bN− zN)|XN+1∈ AN+1)

=
1

2π

∫ L

−L
φ̂(ξ )

Ex

(
eiξ (SN−bN−zN)vN+1(XN+1)

)
E(vN+1(XN+1))

dξ (5.2.26)

and the task is to find the asymptotic behavior of (5.2.26) in case zN ∈ Z, zN√
VN
→ z.

Let K := ess sup |f| and recall the constant δ̃ = δ̃ (K) from Lemma 4.4. Split [−L,L] into a
finite collection of subintervals I j of length less than min{δ̃ ,π}, in such a way that every I j is
either bounded away from 2πZ, or intersects it an unique point 2πm exactly at its center.

If I j∩2πZ=∅, then ∑d2
n(ξ )=∞ uniformly on I j (Theorem 3.5). Thus by (4.2.7), ΦN(x,ξ )→

0 uniformly on I j. In this case we can argue as in the proof of (4.2.18) and show that the contri-
bution of I j to the integral (5.2.26) is o

(
V−1/2

N
)
.

If I j∩2πZ 6=∅, then the center of I j equals 2πm for some m ∈ Z. Fix some large R. Let J′j,N
be the contribution to the integral from the set {ξ ∈ I j : |ξ − 2πm| ≤ RV−1/2

N }, and let J′′j,N be

the integral over {ξ ∈ I j : |ξ −2πm|> RV−1/2
N }.

The main contribution comes from J′j,N , because one can show as in Claim 2 in §4.2.2 that

|J′′j,N | ≤C
∫
|u|>RV−1/2

N

e−cVNu2
du≤C

e−cR2

R
√

VN
, which is negligible for R� 1.

To estimate J′j,N , we make the change of variables ξ = 2πm+ s√
VN

. Since zN ∈ Z and bN =

{c(N)}, we have ξ (SN−bN− zN) = ξ SN−2πmc(N)− s√
VN
(zN +{c(N)}) mod 2π. So

J′j,N =
1

2π
√

VN

∫
|s|<R

φ̂(2πm+
s√
VN

)
e−2πimc(N)Ex

(
eiξ SN vN+1(XN+1)

)
E(vN+1(XN+1))

e
−is zN+O(1)√

VN ds

 .
Fixing R and letting N→ ∞, we see by Lemma 5.5 that
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VNJ′j,N =

φ̂(2πm)

2π
Ex

(
e2πimH

)∫
|s|<R

e−isz−s2/2ds+oN→∞(1)

=
φ̂(2πm)√

2π
Ex

(
e2πimH

)
e−z2/2 +oR→∞(1)+oN→∞(1).

Combining the estimates for J j,N we obtain that

lim
N→∞

√
VNJ j,N =

e−z2/2
√

2π
Ex

(
e2πimH

)
φ̂(2πm),

if I j intersects 2πZ, and this limit is zero otherwise. Hence

lim
n→∞

√
VNEx(φ(SN−bN− zN)|XN+1 ∈ AN+1)

=
e−z2/2
√

2π
∑

m∈Z∩[−L,L]
Ex

(
e2πimH

)
φ̂(2πm) =

e−z2/2
√

2π
∑

m∈Z
Ex

(
e2πimH

)
φ̂(2πm)

≡ e−z2/2
√

2π
∑

m∈Z
Ex

(
e2πimF

)
φ̂(2πm), where F ∈ [0,1), F := H mod Z

=
e−z2/2
√

2π
∑

m∈Z
(̂Cxφ)(2πm), where (Cxφ)(t) := Ex[φ(t +F)]

=
e−z2/2
√

2π
∑

m∈Z
(Cxφ)(m)≡ e−z2/2

√
2π

∑
m∈Z

Ex[φ(m+F)],

by the Poisson summation formula.
This proves part (2) of the theorem in the special case (5.2.25), and in particular for the

additive functional f∗ defined above. Now consider the general case:

SN(f)−E[SN(f)]≡ δ (f)SN(f
∗)+aN+1(XN+1)−a1(X1)+E[a1(X1)−aN+1(XN+1)].

Since part (2) of the theorem holds for f∗ with F = {∑hn} ∈ [0,1) and bN = {c(N)}, it must
hold for f with δ (f)F and

bN(X1,XN+1) := δ (f){c(N)}+aN+1(XN+1)−a1(X1)+E[a1(X1)−aN+1(XN+1)].

Clearly |bN | ≤ δ (f)+4ess sup |a|. Recalling that ess sup |a| ≤ 2ess sup |F| ≤ 2δ (f), we find that
ess sup |bN | ≤ 9δ (f), proving part (3) as well. �

5.2.3 Necessity of the irreducibility assumption

Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain
X. Recall that fr = { fn}n≥r and Xr = {Xn}n≥r. In this section we prove Theorem 5.2, which
asserts the equivalence of the following three conditions:

(a) f is irreducible with algebraic range R.
(b) (Xr, fr) satisfies the mixing non-lattice local limit theorem, for all r.
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(c) (Xr, fr) satisfies the mixing uniform distribution mod t for all r and t > 0.

(a)⇒(b): To see this recall that additive functionals on uniformly elliptic Markov chains are
special cases of stably hereditary additive functionals on uniformly elliptic Markov arrays, and
apply Theorem 4.3(1) to φ continuous with compact support which approximate indicators of
intervals in L1(R).
(b)⇒(a): Assume f satisfies the “mixing non-lattice LLT” property. By definition, VN→∞, and
therefore f is not center-tight.

Also, Galg(X, f) =R, otherwise Px(SN−zN ∈ (a,b)|XN+1 ∈AN+1) = 0 for zN and (a,b) such
that zN +(a,b)⊂ R\Galg(X, f).

If Gess(X, f) = R then f is irreducible and we are done. Assume by way of contradiction
that Gess(X, f) 6= R, then Gess(X, f) = tZ for some t > 0 (t = 0 is impossible because f is not
center-tight). There is no loss of generality in assuming that

Gess(X, f) = Z and E( fn(Xn,Xn+1)) = 0 for all n.

Let S(r)N := fr(Xr,Xr+1)+· · ·+ fN(XN ,XN+1) and V (r)
N :=Var(S(r)N ). By the exponential mixing

of X (Proposition 1.11),

|VN−V (r)
N |= |Vr−1 +2Cov(S(r)N ,Sr−1)| ≤Vr +2

r−1

∑
j=1

∞

∑
k=r

Cov( f j, fk) = O(1).

Therefore, for fixed r, VN/V (r)
N −−−→

N→∞
1.

Since Galg(X,R) = R and Gess(X, f) = Z, f is reducible, and we can write

f = F+∇a+h+ c,

where F is irreducible with algebraic range Z, an(x) are uniformly bounded (say by K), h has
summable variances, E(hn) = 0, and c are constants.

Let

b(r)N (Xr,XN+1) := aN+1(XN+1)−ar(Xr)+

{
−

N

∑
k=r
E(Fk(Xk,Xk+1))

}
,

F :=
∞

∑
n=1

hn(Xn,Xn+1) , Fr :=
∞

∑
n=r

hn(Xn,Xn+1).

By Theorem 2.4, these sums converge almost surely and in L2.

As we saw in the proof of Theorem 5.1, if zN−E(S
(r)
N )√

V (r)
N

→ 0 and P(Xn ∈ An) is bounded below,

then for all φ ∈Cc(R) and xr ∈Sr,

lim
N→∞

√
2πVNExr [φ(S

(r)
N −b(r)N − zN)] = ∑

m∈Z
E[φ(m+Fr)]. (5.2.27)

We are going to choose r,xr,zN ,AN and φ in such a way that (5.2.27) is inconsistent with (b).
Here are the choices:

◦ Choice of r: Since Fr is the tail of a convergent series, Fr −−−→
r→∞

0 a.s., whence in probability.

Choose r s.t. P(|Fr| ≥ 0.2)< 10−3.
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◦ Choice of xr: P(|Fr| ≥ 0.2) =
∫
Px(|Fr| ≥ 0.2)]µr(dx). So there exist xr ∈Sr s.t.

Pxr(|Fr|> 0.2)< 10−3.

◦ Choice of AN : By construction, ess sup |b(r)N | ≤ 2K +1. Divide [−2K−1,2K +1] into equal
intervals of length less than 10−2. At least one such interval, call it JN , satisfies P(b(r)N ∈ JN)≥
10−2(4K +2)−1 and |JN | ≤ 10−2. Let

A
(r)
N+1 := [b(r)N ∈ JN ].

◦ zN :=−center of JN , then zN = O(1) and zN−E(S
(r)
N )√

V (r)
N

→ 0.

◦ Choose a sequence Nk→ ∞ such that zNk → a. Let I :=−a+[0.4,0.6].
◦ Choose φ ∈Cc(R) s.t. 0≤ φ ≤ 1, φ |[0.3,0.7] ≡ 1 and φ |R\[0.2,0.8] ≡ 0.

With these choices,

liminf
N→∞

√
2πV (r)

N Pxr

(
S(r)N − zN ∈ I

∣∣XN+1 ∈ A
(r)
N+1
)

≤ lim
k→∞

√
2πVNkPxr

(
S(r)Nk
− zNk ∈ I

∣∣b(r)Nk
(Xr,XNk+1) ∈ JNk

) (
because

V (r)
N

VN
→ 1

)
≤ lim

k→∞

√
2πVNkPxr

(
S(r)Nk
−b(r)Nk

− zNk ∈ [0.3,0.7]
∣∣b(r)Nk

∈ JNk

)
, (because for k� 1

I−bNk ⊂ I− JNk ⊂ I +
(

zNk−
|JNk |

2 ,zNk +
|JNk |

2

)
⊂ I +(a−0.1,a+0.1)⊂ [0.3,0.7])

≤ lim
k→∞

√
2πVNkExr

(
φ(S(r)Nk

−b(r)Nk
− zNk)

∣∣b(r)Nk
∈ JNk+1

)
= ∑

m∈Z
Exr [φ(m+Fr)], by (5.2.27)

≤ ∑
m∈Z

Pxr

(
m+Fr ∈ [0.2,0.8]

)
≤ Pxr

(
|Fr| ≥ 0.2

)
< 10−3 < |I|.

But this contradicts (b).

(a)⇒(c): Suppose (X, f) is non-lattice and irreducible, then (Xr, fr) is non-lattice and irreducible
for all r. Fix t > 0, x1 ∈ S1, and some sequence of measurable events An ⊂ Sn such that

P(Xn ∈ An) is bounded below. Let S(r)N :=
N

∑
k=r

fk(Xk,Xk+1).

We show that for every continuous and periodic φ(x) with period t,

Ex(φ(S
(r)
N )|XN+1 ∈ AN+1)−−−→

N→∞

1
t

∫ t

0
φ(x)dx. (5.2.28)

It is enough to show (5.2.28) for trigonometric polynomials φ(u) = ∑
|n|<L

cne2πinu/t , as these are

dense in C[0, t]. For such functions,
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Ex(φ(S
(r)
N )|XN+1 ∈ AN+1) = ∑

|n|<L
cnEx(e2πinS(r)N /t |XN+1 ∈ AN+1)

= c0 + ∑
0<|n|<L

ΦN
(
x, 2πn

t |AN+1
)
,where ΦN are the characteristic functions of (Xr, fr)

= c0 +o(1), by irreducibility and (4.2.7).

Since c0 =
1
t
∫ t

0 φ(u)du, (5.2.28) follows. Standard approximation arguments show that (5.2.28)
implies that

Px(S
(r)
N ∈ (a,b)|XN+1 ∈ AN+1)−−−→

N→∞

|a−b|
t

for all intervals (a,b).

(c)⇒(a): We need the following lemma.

Lemma 5.6 Fix a regular sequence of sets AN , x, and t > 0, and suppose that

Px(S
(r)
N ∈ (a,b)+ tZ|XN+1 ∈ AN+1)−−−→

N→∞

|a−b|
t

for all intervals (a,b) s.t. 0 < |a−b|< t. Then the convergence is uniform in (a,b).

Proof. Without loss of generality, (a,b)⊂ [0, t). We are asked to find for each ε > 0 an N0 such
that

|Px(S
(r)
N ∈ (a,b)+ tZ|XN+1 ∈ AN+1)− |a−b|

t |< ε for all N > N0 and a < b.

Choose 0 < δ < min{ ε

5 ,1}, and divide [0, t] into finitely many equal disjoint intervals {I j} with
length |I j|< δ . Choose N0 so that for all N > N0, for all I j,∣∣Px(S

(r)
N ∈ I j + tZ|XN+1 ∈ AN+1)−

|I j|
t

∣∣< δ |I j|
t

. (5.2.29)

I := (a,b) can be approximated from within and from outside by finite (perhaps empty) unions
of intervals I j whose total length differs from |a− b| by no more than 2δ . Summing (5.2.29)
over these unions we see that for all N > N0,

Px(S
(r)
N ∈ I + tZ|XN+1 ∈ AN+1)≤

|a−b|+2δ

t
+

δ (|a−b|+2δ )

t

Px(S
(r)
N ∈ I + tZ|XN+1 ∈ AN+1)≥

|a−b|−2δ

t
− δ |a−b|

t
.

By choice of δ , |Px(S
(r)
N ∈ I + tZ|XN+1 ∈ AN+1)− |a−b|

t |< ε . �

We can now prove that (c)⇒ (a). Suppose (Xr, fr) has the “mixing uniform distribution mod
t” property for all r and t. This property is invariant under centering, because of Lemma 5.6. So
we may assume without loss of generality that E[ fn(Xn,Xn+1)] = 0 for all n.

First we claim that (X, f) is not center-tight. Otherwise there are constants cN and M such that
P(|SN − cN | > M) < 0.1 for all N. Take t := 5M and Nk → ∞ such that cNk −−−→k→∞

c mod tZ,

then by the bounded convergence theorem and (c),

0.9≤ lim
k→∞

P
(
SNk ∈ [c−2M,c+2M]

)
≤ lim

N→∞
P
(
SN ∈ [c−2M,c+2M]+ tZ

)
=
∫
S1

lim
N→∞

Px
(
SN ∈ [c−2M,c+2M]+ tZ|XN+1 ∈SN+1

)
µ1(dx) =

4M
t

= 0.8,
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a contradiction. Thus (X, f) is not center-tight and VN → ∞.
Assume by way of contradiction that Gess(X, f) 6= R, then Gess(X, f) = tZ for some t, and

t 6= 0 because VN → ∞. Without loss of generality t = 1, otherwise we can rescale f. By the
integer reduction lemma, we can write

fn(x,y)+an(x)−an+1(y) = Fn(x,y)+hn(x,y)+ cn

where ak,Fk,hk,ck are uniformly bounded, Fn are integer valued, hn have summable variances,
andE(hn)= 0. Then F :=∑n≥1 hn(Xn,Xn+1) converges a.s., and Fr :=∑n≥r hn(Xn,Xn+1)−−−→r→∞

0
almost surely.

Working as in the proof of (b)⇒ (a), we construct x ∈S1 and r > 1 such that

|Ex(e2πiFr)|> 0.999.

Next we construct a regular sequence of measurable sets AN+1, and intervals JN with lengths
< 0.0001 and centers zN = O(1) such that aN+1(XN+1)− a1(Xr) ∈ JN , whenever XN+1 ∈
AN+1,Xr = x.

By Lemma 5.5 with s = 0, m = 1, and vN+1 ≡ 1, there are c(r,N) ∈ R s.t.

Ex
(
e2πi(S(r)N +a(X1)−a(XN+1)−zN)|XN+1 ∈ AN+1

)
= e2πi(c(r,N)−zN)Ex(e2πiFr)+o(1),

as N→ ∞. Since∥∥∥∥(e2πi(S(r)N +a(Xr)−a(XN+1)−zN)− e2πi(S(r)N )

)
1[XN+1∈AN+1,Xr=x]

∥∥∥∥
∞

< 0.1,

we find that for all N large enough, |Ex
(
e2πi(S(r)N )|XN+1 ∈ AN+1

)
|> 1

2 .
But this is a contradiction, since (c) implies that

Ex
(
e2πiS(r)N |XN+1 ∈ AN+1

)
−−−→
N→∞

1
2π

∫ 2π

0
eiudu = 0.

So Gess(X, f) = R and (a) is proved. �

5.2.4 Universal bounds for Markov chains

Lemma 5.7 Suppose F is a real random variable such that 0 ≤ F < δ almost surely. Then for
every interval (a,b) of length L > δ ,(

1− δ

L

)
|a−b|< δ ∑

m∈Z
E[1(a,b)(mδ +F)]<

(
1+

δ

L

)
|a−b|.

Proof. Fix k large, and divide [0,δ ) into k intervals I j := jδ
k +[0, δ

k ). For each j,

δ ∑
m∈Z

E[1(a,b)(mδ +F)|F ∈ I j]≤ δ ∑
m∈Z

E[1
(a+ ( j−1)δ

k ,b+ ( j+1)δ
k )

(mδ )|F ∈ I j]

= δ ∑
m∈Z

1
(a+ ( j−1)δ

k ,b+ ( j+1)δ
k )

(mδ )≤ |a−b|+1+
2δ

k
−−−→
k→∞

|a−b|+1.
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Multiplying by P[F∈ I j] and summing over j = 0, . . . ,k−1 gives the bound δ ∑m∈ZE[1(a,b)(mδ +
F)]≤ |a−b|+δ . Similarly, δ ∑m∈ZE[1(a,b)(mδ +F)]≥ |a−b|−δ . The lemma follows. �

Proof of Theorem 5.3: If δ (f) = ∞ then there is nothing to prove, and if δ (f) = 0 then (X, f) is
non-lattice and irreducible, and the universal bounds follow from Theorem 4.1. So assume δ (f)
is finite and positive.

Suppose zN−E(SN)√
VN

→ z. Let F and bN(X1,XN) be as in Theorem 5.1.

Upper bound (5.1.6): Fix x ∈ S1, let δ := δ (f) and suppose (a,b) is an interval of length
L > δ . We may assume without loss of generality that a− 10δ ,b+ 10δ are not atoms of the
distribution of F given X1 = x (otherwise change a,b a little).

Suppose zN−E(SN)√
VN

→ z, and write zN = zN +ζN , zN ∈ δZ , |ζN | ≤ δ . Recall that by Theorem
5.1, |bN | ≤ 9δ . Therefore

SN− zN ∈ (a,b)⇒ SN− zN−bN ∈ (a−10δ ,b+10δ )

So

limsup
N→∞

√
2πVNPx[SN− zN ∈ (a,b)]

≤ limsup
N→∞

√
2πVNPx[SN− zN−bN ∈ (a−10δ ,b+10δ )]

= e−z2/2
δ ∑

m∈Z
Ex[1(a−10δ ,b+10δ )(mδ +F)] by Theorem 5.1

≤
(

1+
δ

|a−b|+20δ

)
e−z2/2(|a−b|+20δ ) by Lemma 5.7 (5.2.30)

≤ (|a−b|+21δ )e−z2/2 ≤
(

1+
21δ

L

)
e−z2/2|a−b|.

Lower bound (5.1.7): Fix x ∈S1 and an interval (a,b) with length bigger than some L > δ (f).
Recall that |bN | are uniformly bounded. Choose some K so that P[|bN | ≤ K] = 1 and fix x ∈S1
s.t. Px[sup |bN | ≤ K] = 1.

Next, divide [−K,K] into k disjoint intervals I j,N of equal length 2K
k , with k large. For each

N, ∑
Px[bN∈I j,N ]≥k−2

Px[bN ∈ I j,N ] ≥ 1− 1
k
, because to complete the left-hand-side to one we need

to add the probabilities of [bN ∈ I j,N ] for the j s.t. Px[bN ∈ I j,N ] < k−2, and there are at most k
such events.

Therefore, we can divide {I j,N} into two groups of size at most k: The first contains the I j,N
with Px[bN ∈ I j,N ] ≥ k−2, and the second corresponds to events with total probability less than
1
k (conditioned on X1 = x).

Re-index the intervals in the first group (perhaps with repetitions) in such a way that it takes
the form I j,N ( j = 1, . . . ,k) for all N. Then for each j, A j,N := [bN ∈ I j,N ,X1 = x] is a regular
sequence of events.

Let β j,N := center of I j,N and set z j,N := zN−β j,N . Every sequence has a subsequence s.t. z j,N
converges mod δ (f). We will henceforth assume that z j,N = z j,N +ζ0+ζ j,N where z j,N ∈ δ (f)Z
and |ζ j,N |< K

k , and |ζ0|< δ (f) is fixed.
Recall that |I j,N | = 2K

k . Conditioned on A j,N , bN = β j,N ± 2K
k , therefore z j,N + ζ0 + bN =

zN± 3K
k , whence
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SN− z j,N−bN ∈
(

a−ζ0 +
3K
k
,b−ζ0−

3K
k

)
⇒ SN− zN ∈ (a,b).

There is no loss of generality in assuming that the endpoints of this interval are not atoms of the
distribution of F given X1 = x, otherwise perturb K a little. Since A j,N is a regular sequence, we
have by Theorem 5.1 part (2) and the lemma that

liminf
N→∞

√
2πVNPx(SN− zN ∈ (a,b)|A j,N)

≥ liminf
N→∞

√
2πVNPx(SN− z j,N−bN ∈ (a−ζ0 +

3K
k ,b−ζ0− 3K

k )|A j,N)

= δ (f)e−z2/2
∑

m∈Z
Ex[1(a−ζ0+

3K
k ,b−ζ0− 3K

k )
(mδ (f)+F)]

≥
(

1− δ

L

)(
|a−b|− 6K

k

)
e−z2/2. (5.2.31)

We now multiply these bounds by Px[A j,N ] and sum over j. This gives

liminf
N→∞

√
2πVNPx

(
[SN− zN ∈ (a,b)]

⋂ k⋃
j=1

A j,N

)

≥
(

1− δ

L

)(
|a−b|− 6K

k

)
e−z2/2

(
1− 1

k

)
.

Passing to the limit k→ ∞, we obtain

liminf
N→∞

√
2πVNPx ([SN− zN ∈ (a,b)])≥

(
1− δ

L

)
e−z2/2|a−b|,

and the lower bound is proved.
To prove the last statement of the theorem let Ax be the positive functional on Cc(R) defined

by (5.1.4), and let µAx be the Radon measure on R s.t. µAx(φ) = Ax[φ ] for φ ∈Cc(R).
The inequalities (5.2.30), (5.2.31) can be used to see that

(1−δL−1)(|a−b|−O(1))≤ µAx(a,b)≤ (1+21δL−1)(|a−b|+O(1)),

whence lim
L→∞

µA [0,L]
L

= 1. Since µAx is clearly invariant under translation by δ (f), it must be

the case that for each a, µA [a,a+δ (f)) = δ (f), whence

∀k ∈ N µA ([a,a+δ (kf))) = kδ (f). (5.2.32)

Given an interval (a,b) of length L with kδ (f)< L < (k+1)δ (f) take two intervals I−, I+ such
that

I− ⊂ (a,b)⊂ I+, µA (∂ I−) = µA (∂ I+) = 0, |I−|= kδ (f), |I+|= (k+1)δ (f).

Next let φ−,φ+ be continuous functions with compact support such that

1I− < φ
− < 1[a,b] < φ

+ < 1I+.
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Then for large N,
√

VNP(SN − zN ∈ (a,b)) is sandwiched between A (φ−) and A (φ+) which
in turn is sandwiched between

µA (I−) = kδ (f) and µA (I+) = (k+1)δ (f)

where the equalities rely on (5.2.32). The proof of the theorem is complete. �

5.2.5 Universal bounds for Markov arrays

Next, we give a different proof of universal lower and upper bounds, which does not rely on
Theorem 5.1, and which also applies to arrays and to arbitrary initial distributions.

Theorem 5.4. Let X be a uniformly elliptic Markov array, and f an a.s. uniformly bounded
additive functional which is stably hereditary and not center tight. For every ε > 0 there is
Nε > 0 as follows. Suppose zN−E(SN)√

VN
−−−→
N→∞

z ∈R, and |a−b|> 2δ (f)+ ε , then for all N > Nε ,

1
3

(
e−z2/2|a−b|√

2πVN

)
≤ P(SN− zN ∈ (a,b))≤ 3

(
e−z2/2|a−b|√

2πVN

)
.

Recall that by our conventions, the Fourier transform of an L1 function γ :R→R is γ̂(x) =∫
∞

−∞
e−itxγ(t)dt. Fix some b > 0, and define the Fourier pair

ψb(t) :=
π

4b
1[−b,b](t) , ψ̂b(x) =

π

2b

(
sin(bx)

x

)
.

Lemma 5.8 1≤ ψ̂b(x)≤ π

2 for |x| ≤ π

2b ; and |ψ̂b(x)|< 1 for |x|> π

2b .

Proof. The function ψ̂b(x) is even, with zeroes at zn = πn/b, n ∈Z\{0}. The critical points are
c0 = 0 and ±cn where n≥ 1 and

cn := the unique solution of tan(bcn) = bcn in
(

zn,zn +
π

2b

)
.

It is easy to see that cn = zn +
π

2b −o(1) as n→ ∞, and that

sgn[ψ̂b(cn)] = (−1)n , |ψ̂b(cn)| ≤
1

2n
, ψ̂b(cn)∼

(−1)n

2n
as n→ ∞.

So ψ̂b attains global maximum ψ̂b(0) = π

2 at c0, and |ψ̂b(t)| ≤ 1
2n everywhere on [πn/b,π(n+

1)/b].
In particular, |ψ̂b(t)| < 1/2 for |t| ≥ π/b. On (0,π/b) the function is decreasing from its

global maximum ψ̂b(0) = π

2 to ψ̂b(
π

b ) = 0, passing through ψ̂b(
π

2b) = 1. It follows that 1 ≤
ψ̂b(t) ≤ π

2 on (0, π

2b) and |ψ̂b(t)| < 1 for t > π

2b . The lemma follows, because ψ̂b(−t) = ψ̂b(t).
�

Lemma 5.9 There exist two continuous functions γ1(x),γ2(x) s.t. supp(γi)⊂ [−2,2]; γ1(0)> 1
3 ;

γ2(0)< 3; and γ̂1(x)≤ 1[−π,π](x)≤ γ̂2(x) (x ∈ R).
Proof. Throughout this proof, ψ∗n := ψ ∗ · · · ∗ψ (n times), where ∗ denotes the convolution.
Let γ1(t) := 1

4 [ψ
∗4
1
2
(t)−ψ∗21

2
(t)]. Then γ̂1(x) = 1

4 [ψ̂ 1
2
(x)4− ψ̂ 1

2
(x)2]. By Lemma 5.8, 1≤ ψ̂ 1

2
≤ π

2

on [−π,π] and |ψ̂ 1
2
|< 1 outside [−π,π]. So
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max
|x|≤π

γ̂1(x)≤ max
1≤y≤ π

2

1
4
(y4− y2) =

1
4

[(
π

2

)4
−
(

π

2

)2
]
< 1,

max
|x|≥π

γ̂1(x)≤max
|y|≤1

1
4
(y4− y2) = 0.

So γ̂1(x)≤ 1[−π,π](x) for all x ∈ R.
It is obvious from the definition of the convolution that

supp(γ1) = {x+ y+ z+w : x,y,z,w ∈ [−1
2
,
1
2
]}= [−2,2].

Here is the calculation showing that γ1(0)> 1
3 :

(ψ∗2b )(t) =
π2

16b2 (1[−b,b] ∗1[−b,b])(t) =
π2

16b2 1[−2b,2b](t)(2b−|t|)

(ψ∗4b )(0) = (ψ∗2b ∗ψ
∗2
b )(0)

=
π4

256b4

∫
∞

−∞

1[−2b,2b](t)(2b−|t|)1[−2b,2b](−t)(2b−|− t|)dt

=
π4

256b4

∫ 2b

−2b
(2b−|t|)2dt =

π4

128b4

∫ 2b

0
(2b− t)2dt =

π4

128b4 ·
(2b)3

3
=

π4

48b
.

So ψ∗41
2
(0) = π4

24 , ψ∗21
2
(0) = π2

4 , and γ1(0) = 1
4(

π4

24 −
π2

4 )> 1
3 .

Next we set γ2(t) :=(ψ 1
2
∗ψ 1

2
)(t)≡ π2

4 1[−1,1](t)(1−|t|). Then supp(γ2)= [−1,1] and γ2(0)=
π2

4 < 3. Finally, γ̂2 ≥ 1[−π,π](x), because by Lemma 5.8,

◦ γ̂2(t) = (ψ̂ 1
2
)2(x)≥ 1 for all |x| ≤ π

2· 12
= π , and

◦ γ̂2(t) = (ψ̂ 1
2
)2(x)≥ 0 for all |x| ≥ π . �

Proof of Theorem 5.4. If Gess(X, f) = R then the theorem follows from the LLT in the irre-
ducible case. Otherwise (since f is not center-tight), Gess(X, f) = tZ for some t > 0, and there is
no loss of generality in assuming that Gess(X, f) = Z.

Henceforth we assume that Gess(X, f) = Z. In this case our interval I := [a,b] has length
bigger than 2. Notice that we can always center I by modifying zN by a constant. So we may
take our interval to be of the form

I = [−a,a], with a > 1.

Let γi(t) be the functions constructed in Lemma 5.9, then

γ̂1

(
πt
a

)
≤ 1I(t)≤ γ̂2

(
πt
a

)
.

Therefore, for every choice of x(N)
1 ∈S

(N)
1 (N ≥ 1),

P
x(N)

1
(SN− zN ∈ I) = E

x(N)
1
[1I(SN− zN)]≥ Ex(N)

1

[
γ̂1

(
π(SN− zN)

a

)]
= E

x(N)
1

[∫
∞

−∞

e−i πt
a (SN−zN)γ1(t)dt

]
=
∫

∞

−∞

E
x(N)

1
(e−i πt

a (SN−zN))γ1(t)dt.
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Recalling that supp(γ1)⊂ [−2,2], and substituting t = aξ/π , we obtain

P
x(N)

1
(SN− zN ∈ I)≥ |I|

2π

∫ 2π/a

−2π/a
E

x(N)
1
(e−iξ (SN−zN))γ1(

aξ

π
)dξ . (5.2.33)

Similarly, we have

P
x(N)

1
(SN− zN ∈ I)≤ |I|

2π

∫ 2π/a

−2π/a
E

x(N)
1
(e−iξ (SN−zN))γ2(

aξ

π
)dξ . (5.2.34)

Next we claim that under the assumptions of Theorem 5.4:

Lemma 5.10 If Gess(X, f) = Z and zN−E(SN)√
VN

−−−→
N→∞

z ∈ R, then for every a > 1

√
VN

2π/a∫
−2π/a

E
x(N)

1
(e−iξ (SN−zN))γi

(
aξ

π

)
dξ −−−→

N→∞

√
2πe−

1
2 z2

γi(0)

and the convergence is uniform in a on compact subsets of R\ [−1,1].

Proof. In what follows we fix i ∈ {1,2} and let γ(ξ ) := γi

(
aξ

π

)
. Divide [−2π

a , 2π

a ] into segments

I j of length at most δ̃ , where δ̃ is given by Lemma 5.5, making sure that I0 is centered at zero.
Let

J j,N :=
∫

I j

E
x(N)

1
(e−iξ (SN−zN))γ(ξ )dξ .

CLAIM 1.
√

VNJ0,N −−−→
N→∞

√
2πe−z2/2γ(0).

Proof. The proof is similar to the proof of (4.2.17).
Applying Corollary 4.5 to the interval I0, and noting that AN(I0) = 0 and ξ̃N = 0 we find that

|E
x(N)

1
(e−iξ (SN−zN))| ≤ C̃ exp(−ε̂ξ

2VN).

So for every R > 1,√
VN

∫
ξ∈I0:|ξ |> R√

VN

E
x(N)

1
(e−iξ (SN−zN))γ(ξ )dξ = O(e−ε̂R2

).

Similarly, for all N large enough√
VN

∫
ξ∈I0:|ξ |≤ R√

VN

E
x(N)

1
(e−iξ (SN−zN))γ(ξ )dξ =

∫ R

−R
E

x(N)
1
(e
−iη(

SN−zN√
VN

)
)γ( η√

VN
)dη

=
∫ R

−R
E

x(N)
1
(e
−iη(

SN−E(SN )√
VN

)
)e

iη(
zN−E(SN )√

VN
)
γi(

aη

π
√

VN
)dη

!
=
∫ R

−R
e−

1
2 η2+iηz

γ(0)dη +oN→∞(1) uniformly on compact sets of a

=
√

2πe−
1
2 z2

γ(0)+oR→∞(1)+oN→∞(1),
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where !
= is a consequence of Dobrushin’s CLT and the bounded convergence theorem. (When

applying Dobrushin’s Theorem it is useful to recall that by the exponential mixing of uniformly
elliptic arrays, |E(SN)−Ex(N)

1
(SN)|= O(1), therefore the condition z−E(SN)√

VN
→ z is equivalent to

the condition (z−E
x(N)

1
(SN))/

√
VN → z.) In summary,

√
VNJ0,N =

√
2πe−

1
2 z2

γ(0)+oR→∞(1)+oN→∞(1).

Fixing R, we see that limsup
√

VNJ0,N and liminf
√

VNJ0,N are both equal to
√

2πe−
1
2 z2

γ(0)+oR→∞(1).

Passing to the limit R→ ∞ gives us that the limit exists and is equal to
√

2πe−
1
2 z2

γ(0).
It is not difficult to see that the convergence is uniform on compact subsets of a.

CLAIM 2.
√

VNJ j,N −−−→
N→∞

0 for every j 6= 0.

Proof. Since Gess(f) = Z, the co-range is H(f) = 2πZ. So

I j ⊂ [−2π

a , 2π

a ]\ int(I0)⊂ a compact subset of R\H(f).

This implies by the stable hereditary property of f that

DN(ξ )−−−→
N→∞

∞ uniformly on I j,

whence by (4.2.6), |E
x(N)

1
(e−iη(SN−zN))| −−−→

N→∞
0 uniformly on I j.

Let A j,N := − log{sup |E
x(N)

1
(e−iξ (SN−zN))| : (x,ξ ) ∈S

(N)
1 × I j}, then A j,N −−−→

N→∞
∞, and this

divergence is uniform for a ranging over compact subsets of R\ [−1,1].
From this point onward, the proof of the claim is identical to the proof of (4.2.18). We omit

the details.
The Lemma follows by summing over all subintervals I j in [−2π

a , 2π

a ], and noting that the

number of these intervals is uniformly bounded
(

by 1+ 4π

δ̃

)
. �

We now return to the proof of theorem. Lemma 5.10, (5.2.33), (5.2.34), and the inequalities
γ1(0)> 1

3 and γ2(0)< 3 imply that for every choice of {x(N)
1 }N≥1, for all N sufficiently large

1
3
· |I|√

2πVN
e−z2/2 ≤ P

x(N)
1
(SN− zN ∈ I)≤ 3 · |I|√

2πVN
e−z2/2. (5.2.35)

This estimate is uniform in {x(N)
1 }N≥1: There is an N0 such that (5.2.36) holds for all N ≥ N0

and for all choices of {x(N)
1 }N≥1. Otherwise, there exist Nk→∞ and x(Nk)

1 ∈S(Nk)
1 which violate

(5.2.36). But then (5.2.36) fails for any choice of x(N)
1 which contains x(Nk)

1 as a subsequence,
whereas (5.2.36) holds for all possible choices.

Since (5.2.36) holds uniformly in {x(Nk)
1 }N≥1, we can integrate and deduce that for all N

sufficiently large

1
3
· |I|√

2πVN
e−z2/2 ≤ P(SN− zN ∈ I)≤ 3 · |I|√

2πVN
e−z2/2 (5.2.36)
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for any initial distributions µ
(N)
1 (dx(N)

1 ) on S
(N)
1 . �

We end this section by recording a useful consequence of the previous proof: The upper
bound in Theorem 5.4 does not require any information about the arithmetic properties of f.

Lemma 5.11 For each K,ε0 and ` there is a constant C∗ = C∗(K,ε0, `) s.t. if f is an additive
functional of a uniformly elliptic Markov chain with ellipticity constant ε0, and if |f| ≤ K, then
for every x ∈S1, N ≥ 1, and for each interval J of length `,

Px (SN ∈ J)≤ C∗√
VN

.

Proof. It suffices to prove the result for `= 4 since longer intervals could be covered by a finite
number of intervals of length 4. Thus J = zN + I with I = [−2,2]. Applying (5.2.34) with a = 2
we get

Px(SN ∈ J)≤ Ĉ
∫

π

−π

|ΦN(x,−ξ )|dξ .

where Ĉ =
2
π
‖γ2‖∞. Dividing [−π,π] into finitely many subintervals of length δ̃/2 where δ̃

comes from Lemma 4.4, and applying (4.2.19) on each subinterval we obtain the result. �

5.3 Notes and references

Dolgopyat proved a version of Theorem 5.1 for sums of independent random variables. The
connection between the LLT and uniform distribution modulo t was considered for sums of
independent random variables by Prohorov [122], Rozanov [128], and Gamkrelidze [58].

The question of estimating P[SN−zN ∈ (a,b)] is related to the study of the rate of convergence
in the CLT. In particular, a Berry-Esseen type result on the rate of convergence in the CLT would
certainly imply that ∃M s.t. for all |a− b| > M, if zN−E(SN)√

VN
→ z, then for all N large enough,

P[SN−zN ∈ (a,b)] equals e−z2/2|a−b|√
2πVN

up to bounded multiplicative error. Such results were shown
to us by Y. Hafouta. The Berry-Esseen approach has the advantage of gives information on the
time N when the universal estimates kick in, but has the disadvantage that it only applies to very
large intervals (how large depends on the growth of the third moment of SN). By contrast, the
results of this chapter apply to intervals of length > δ (f), which is optimal, but do not say on
how large N should be for the estimates to work.

Lemma 5.11 for the sums of independent random variables appears in [117, Section III.1].
The proof in the Markov case is essentially the same.





Chapter 6
Local limit theorems for large and moderate deviations

In this chapter we prove the local limit theorem in the regimes of moderate and large devia-
tions. In these cases the asymptotic behavior of P(SN− zN ∈ (a,b)) is determined by the “rate
functions,” the Legendre transforms of the log-moment generating functions of SN .

6.1 The moderate deviations and large deviations regimes

Suppose f is an irreducible, a.s. uniformly bounded, additive functional on a uniformly elliptic
Markov chain X, with algebraic range R or tZ with t > 0. Let

SN = f1(X1,X2)+ · · ·+ fN(XN ,XN+1) , VN := Var(SN).

In the previous chapters, we analyzed P(SN − zN ∈ (a,b)) as N → ∞, in the regime of local
deviations, zN−E(SN)√

Var(SN)
→ const. In this chapter we ask what happens when zN−E(SN)√

Var(SN)
→ ∞.

Usually in the literature the large deviations regime is defined by the condition |zN−E(SN)| ≥
εVar(SN)for some fixed ε > 0. However, to get meaningful results we need to assume some
upper bounds |zN−E(SN)| as well. We will study the following regimes:

(1) Moderate deviations: zN−E(SN)√
Var(SN)

→ ∞ and zN−E(SN) = o(Var(SN)),

(2) Large deviations: zN−E(SN)√
Var(SN)

→ ∞ and |zN −E(SN)| ≤ εVar(SN) for some ε > 0 “small

enough.”

In some cases we can take ε = ∞, see e.g. §7.3, but in others ε must really be finite, see Exam-
ple 6.21. To see why it is forced on us, let us consider a few examples of what might go wrong
when |zN−E(SN)|/Var(SN) is “too big.”

If zN−E(SN)
VN

grows too fast, e.g. if zN−E(SN)
VN

> 2ess sup |SN |
VN

, then the probabilities P[SN − zN ∈
(0,∞)] are all equal to zero, and our problem is vacuous. A more subtle but related issue
arises when zN−E(SN)

VN
falls at the boundary of the domain of the Legendre transforms of

t 7→ 1
VN

logE(et(SN−E(SN))). Why this matters will be clear once we explain the strategy of our
proofs (see the end of §6.3.1 and §6.4). At this point we can only present an example:

Example 6.1 If zN−E(SN)
VN

falls near the boundary of the domain of the Legendre transforms of
t 7→ 1

VN
logE(et(SN−E(SN))), then the behavior of P[SN − zN ∈ (a,b)] may depend not just on

lim
N→∞

zN−E(SN)
VN

but also on zN itself.

129
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Proof. Let SN := X1 + · · ·+XN where Xi are identically distributed independent random vari-
ables equal to −1,0,1 with equal probabilities. Here E(SN) = 0, VN = 2N/3, the Legendre
transforms of the log-moment generating functions have domains (−3

2 ,
3
2), and the classical

theory of large deviations says that if z ∈ (−3
2 ,

3
2), then lim

zN/VN→z

1
VN

logP[SN− zN > 0] exists and

is finite. But no such conclusion holds when z = 3
2 :

◦ If zN = N, then [SN− zN > 0] =∅ and 1
VN

logP[SN− zN > 0] =−∞;
◦ If zN = N−1, then [SN− zN > 0] = [SN = N], and 1

VN
logP[SN− zN > 0] =−3

2 log3.

So the limit depends on how zN/VN approaches 3
2 , and it could be infinite. �

For general additive functionals on Markov chains (homogeneous or not), we do not know
how to determine the asymptotic behavior of P[SN−zN ∈ (a,b)] when zN

VN
is close to ∂CN , where

CN := domain of the Legendre transform of
1

VN
logE(et(SN−E(SN))).

We can only analyze the case where zN−E(SN)
Var(SN)

is well inside the interior of CN for all N. This is
why we must assume that |zN−E(SN)| ≤ εVar(SN) for ε small enough.

It is instructive to compare the regime of large deviations to the regime of the LLT from the
point of view of universality.

The asymptotic behavior of P[SN − zN ∈ (a,b)] in the regime of local deviations does not
depend on the details of the distributions of fn(Xn,Xn+1). It depends only on rough features
such as Var(SN), the algebraic range, and (in case the algebraic range is tZ) on the constants cN
s.t. SN ∈ cN + tZ almost surely.

By contrast, in the regime of large deviations the asymptotic behavior of P[SN− zN ∈ (a,b)]
depends on the entire distribution of SN . The dependence is through the Legendre transform of
logE(etSN ), a function which encodes the entire distribution of SN , not just its rough features.

We will consider two partial remedies to the lack of universality:

(a) Conditioning: The conditional distributions of SN−zn given that SN−zN > a has a universal
scaling limit, see Corollary 6.4.

(b) Moderate deviations: If |zN−E(SN)|= o(Var(SN)), then P[SN− zN ∈ (a,b)] have universal
lower and upper bounds (Theorems 6.3, 6.4).

6.2 Local limit theorems for large deviations

6.2.1 The log moment generating functions

Suppose |f| < K almost surely. For every N such that VN 6= 0, we define the normalized log
moment generating function of SN to be

FN(ξ ) :=
1

VN
logE(eξ SN ) (ξ ∈ R).

The a.s. uniform boundedness of f guarantees the finiteness of the expectation, and the real
analyticity of FN(ξ ) on R.
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Example 6.2 (Sums of iid’s)

Suppose that SN =
N

∑
n=1

Xn where Xn where XN are i.i.d. bounded random variables with non-zero

variance. Let X denote the common law of Xn. Then

FN(ξ ) = FX(ξ ) :=
1

Var(X)
logE(eξ X)

is independent of n. In addition,

(i)FX(ξ ) is strictly convex, by Hölder’s inequality and because X 6= const a.s. Since FX(ξ ) is
smooth, its second derivative must be bounded away from zero on compacts. So FN(ξ ) are
uniformly strictly convex on compacts.

(ii) lim
ξ→−∞

F ′
N(ξ ) = ess inf(X)/Var(X), lim

ξ→+∞

F ′
N(ξ ) = ess sup(X)/Var(X). To see this, use con-

vexity to see that limF ′
N(ξ ) are the slopes of the asymptotes of FX(ξ ), or equivalently

lim 1
ξ
FN(ξ ). The last limits can be easily found to be equal to ess sup(X)/Var(X) as ξ →∞,

and ess inf(X)/Var(X) as ξ →−∞.

Properties (i) and (ii) play a key role in the study of large deviations for sums of i.i.d. random
variables. A significant part of the effort in this chapter is to understand to which extent similar
results holds in the setting of bounded additive functionals of uniformly elliptic Markov chains.
We start with the following facts.

Theorem 6.1. Let f be an a.s. uniformly bounded additive functional of a uniformly elliptic
Markov chain X, and assume VN 6= 0 for all N ≥ N0, then

(1) For all N ≥ N0, FN(0) = 0 , F ′
N(0) =

E(SN)
VN

, F ′′
N(0) = 1.

(2) For every N ≥ N0, FN(ξ ) is strictly convex on R.

(3) The convexity is uniform on compacts: For every R > 0 there is C =C(R) positive s.t. for all
N ≥ N0, C−1 ≤F ′′

N(ξ )≤C on [−R,R].

(4) Suppose VN → ∞. For every ε > 0 there are δ ,Nε > 0 s.t. for all |ξ | ≤ δ , N > Nε , we have
e−ε ≤F ′′

N(ξ )≤ eε , and

e−ε 1
2

(
ξ − E(SN)

VN

)2

≤FN(ξ )−
E(SN)

VN
ξ ≤ eε 1

2

(
ξ − E(SN)

VN

)2

.

This is very similar to what happens for iid’s, but there is one important difference: In our setting
VN may be much smaller than N.

For the proof of this theorem see §6.3.5. Here is an immediate corollary:

Corollary 6.3 Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. If VN := Var(SN)→ ∞, then for all 0 < α < 1

2 and κ > 0, if zN−E(SN)
VN

∼ κV−α

N
as N→ ∞, then

lim
N→∞

1
V 2α−1

N
logP[SN− zN ≥ 0] =−1

2
κ

2.

Proof. There is no loss of generality in assuming that E(SN) = 0 for all N. Let an := V 1−2α
n ,

bn :=V α
n , Wn := Sn/bn. Then an→ ∞, whence by Theorem 6.1(4),
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F (ξ ) := lim
n→∞

1
an

logE(eξWn) = lim
n→∞

V 2α
n FN(

ξ

V α
n
) =

1
2

ξ
2.

We may now use the Gärtner-Ellis Theorem see e.g. [55, Thm II.6.1]) and zn
anbn
→ κ to deduce

that lim
n→∞

1
an

logP[Sn− zn ≥ 0] = lim
n→∞

1
an

logP[Wn
an
≥ zn

anbn
] =−1

2κ2. �

6.2.2 The rate functions

Suppose VN 6= 0. The rate functions IN(η) are the Legendre transforms of FN(ξ ). Specifi-
cally, let aN := infF ′

N and bN := supF ′
N ; then IN : (aN ,bN)→ R is

IN(η) := ξ η−FN(ξ ) for the unique ξ s.t. F ′
N(ξ ) = η .

The existence and uniqueness of ξ is because of the smoothness and strict convexity of FN on
R. We call (aN ,bN) the domain of IN , and denote it by

dom(IN) := (aN ,bN).

Equivalently, dom(IN) = (F ′(−∞),F ′(+∞)), where F ′(±∞) := lim
t→±∞

F ′(t). Later we will

also need the sets (aR
N ,b

R
N)⊂ dom(IN), where R > 0 and

aR
N := F ′

N(−R), bR
N := F ′

N(R). (6.2.1)

The functions IN and their domains depend on N. The following theorem identifies certain
uniformity and universality in their behavior.

Theorem 6.2. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X, and assume VN 6= 0 for all N large enough, then

(1) ∃c,N1,R > 0 s.t. for all N > N1, dom(IN)⊃ [aR
N ,b

R
N ]⊇

[
E(SN)

VN
− c, E(SN)

VN
+ c
]
.

(2) For each R there exists ρ = ρ(R) s.t. ρ−1 ≤I ′′N ≤ ρ on [aR
N ,b

R
N ] for all N > N1.

(3) Suppose VN → ∞. For every ε > 0 there exists δ > 0 and Nε such that for all η ∈ [E(SN)
VN
−

δ , E(SN)
VN

+δ ] and N > Nδ ,

e−ε 1
2

(
η− E(SN)

VN

)2

≤IN(η)≤ eε 1
2

(
η− E(SN)

VN

)2

.

(4) Suppose VN → ∞ and zN−E(SN)
VN

→ 0, then

VNIN

(
zN

VN

)
=

1+o(1)
2

(
zN−E(SN)√

VN

)2

as N→ ∞.

The proof of the theorem will be given in §6.3.6.
The significance of part (4) will become apparent in §6.2.3.
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6.2.3 The LLT for moderate deviations.

Recall that the state spaces of X are denoted by Si (i≥ 1), and that Px denotes the conditional
probability given X1 = x.

Theorem 6.3. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. Suppose f is irreducible with algebraic rangeR. If zN ∈R satisfy zN−E(SN)

VN
→ 0,

then for every non-empty (a,b) and x ∈S1,

Px[SN− zN ∈ (a,b)] = [1+o(1)]
|a−b|√

2πVN
exp
(
−VNIN

(
zN

VN

))
as N→ ∞,

Px[SN− zN ∈ (a,b)] = [1+o(1)]
|a−b|√

2πVN
exp

[
−1+o(1)

2

(
zN−E(SN)√

VN

)2
]

as N→ ∞.

Theorem 6.4. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. Assume f is irreducible with algebraic range Z, and SN ∈ cN +Z almost
surely. If zN ∈ cN +Z satisfy zN−E(SN)

VN
→ 0, then for every x ∈S1,

Px[SN = zN ] =
[1+o(1)]√

2πVN
exp
(
−VNIN

(
zN

VN

))
as N→ ∞,

Px[SN = zN ] =
[1+o(1)]√

2πVN
exp

[
−1+o(1)

2

(
zN−E(SN)√

VN

)2
]

as N→ ∞.

We will obtain these results as special cases of a more complicated and general asymptotic
relation which we will state in the next section.

The two asymptotic relations in Theorems 6.3 and 6.4 complement each other. The first is a
precise asymptotic, but it is not universal, because it is expressed in terms of the rate functions,
which depend on the fine details of the distributions of SN . The second is universal, but it is not
an asymptotic equivalence because the right-hand-side is only determined up to a multiplicative
error of size exp[o( zN−E(SN)√

VN
)2].

6.2.4 The LLT for large deviations.

Recall the definition of the subsets (aR
N ,b

R
N) := (F ′

N(−R),F ′
N(R))⊂ dom(IN) from (6.2.1). It

is convenient to define

[âR
N , b̂

R
N ] :=

[
aR

N−
E(SN)

VN
,bR

N−
E(SN)

VN

]
.

Theorem 6.5. Let f be an a.s. uniformly bounded, irreducible, additive functional on a uni-
formly elliptic Markov chain X. For every R large enough there are functions ρN : S1 ×[
âR

N , b̂
R
N

]
→ R+, ξN : [âR

N , b̂
R
N ]→ R as follows:

(1) ∃c > 0 such that [âR
N , b̂

R
N ]⊃ [−c,c] for all N large enough.

(2) Non Lattice case: Suppose Galg(X, f) =R, then for every sequence of zN ∈R s.t. zN−E(SN)
VN

∈
[âR

N , b̂
R
N ], for all finite non-empty intervals (a,b), and for every x∈S1, we have the following
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asymptotic as N→ ∞:

Px[SN− zN ∈ (a,b)] = [1+o(1)] · e
−VNIN(

zN
VN

)

√
2πVN

ρN

(
x, zN−E(SN)

VN

)∫ b

a
e
−tξN

(
zN−E(SN)

VN

)
dt.

(3) Lattice case: Suppose Galg(X, f) = Z and SN ∈ cN +Z a.s., then for every sequence of
zN ∈ cN +Z s.t. zN−E(SN)

VN
∈ [âR

N , b̂
R
N ], for all finite non-empty intervals (a,b) and x ∈S1, the

following asymptotic holds when N→ ∞:

Px[SN− zN ∈ (a,b)] = [1+o(1)] · e
−VNIN(

zN
VN

)

√
2πVN

ρN

(
x, zN−E(SN)

VN

)
· ∑

t∈(a,b)∩Z
e
−tξN

(
zN−E(SN)

VN

)
.

(4) Properties of the error terms:

(a) ρN(x,η) are bounded away from 0,∞ on S1×[âR
N , b̂

R
N ] uniformly in N, and ρN(x,η)−−−→

η→0
1 uniformly in N and x.

(b) For each R > 0 there exists C =CR > 0 such that for all η ∈ [âR
N , b̂

R
N ] and N, C−1|η | ≤

|ξN(η)| ≤C|η | and sgn(ξ (η)) = sgn(η).

The proof of this result will occupy us in §§6.3.1–6.3.7.
Theorem 6.5 above assumes irreducibility. Without this assumption we have a following

weaker bound.

Theorem 6.6. Let K := ess sup |f|, and suppose VN → ∞. For each ε,R there is D(ε,R,K) and
N0 such that for all zN ∈ [F ′

N(ε),b
R
N ] and N > N0,

D−1 ≤
√

VNP(SN ≥ zN)

e−VNIN

(
zN
VN

) ≤ D.

To assist the reader in digesting the statement of Theorem 6.5, we now explain how to use it
to obtain Theorems 6.3, 6.4 on moderate deviations, as well as other consequences.

Proof of Theorems 6.3 and 6.4: By Theorem 6.5(1), ∃R > 0 s.t. if zN−E(SN)
VN

→ 0, then
zN−E(SN)

VN
∈ [âR

N , b̂
R
N ] for all N large enough, and

ρN(x,
zN−E(SN)

VN
)−−−→

N→∞
1, ξN(

zN−E(SN)
VN

)→ 0,
1

b−a

∫ b

a
e−tξN(

zN−E(SN)
VN

)dt→ 1.

Suppose Galg(X, f) = R, then theorem 6.5(2) implies that

P[SN− zN ∈ (a,b)]∼ |a−b|√
2πVN

exp(−VNIN(zN/VN)).

Next, by Theorem 6.2(2), if zn−E(SN)
VN

→ 0, then

VNIN

(
zN

VN

)
∼ 1

2

(
zn−E(SN)√

VN

)2

,

whence P[SN − zN ∈ (a,b)] ∼ |a−b|√
2πVN

exp(−1+o(1)
2 ( zn−E(SN)√

VN
)2). This proves Theorem 6.3. The

proof of Theorem 6.4 is similar, and we leave it to the reader. �
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Here are some other consequences of Theorem 6.5.

Corollary 6.4 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain. Suppose f is irreducible, with algebraic range R.

(1) If zN−E(SN)
VN

→ 0 then for any finite non empty interval (a,b) the distribution of SN − zN

conditioned on SN− zN ∈ (a,b) is asymptotically uniform on (a,b).

(2) If liminf zN−E(SN)
VN

> 0 and there exists R s.t. zN−E(SN)
VN

∈ [âR
N , b̂

R
N ] for all sufficiently large N,

then the distribution of

ξN

(
zN−E(SN)

VN

)
· (SN− zN) conditioned on SN ≥ zN

is asymptotically exponential with parameter 1.

Remark. The condition in (2) is satisfied whenever liminf zN−E(SN)
VN

> 0, and limsup zN−E(SN)
VN

> 0
is small enough, see Theorem 6.5(1).

Proof. To see part (1), note first that if zN−E(SN)
VN

→ 0, then ξN = ξN(
zN−E(SN)

VN
)→ 0, whence

1
β−α

∫
β

α
e−tξN dt −−−→

N→∞
1 for every non-empty interval (α,β ). Thus by Theorem 6.5, for every

interval [c,d]⊂ [a,b],

lim
N→∞

Px[SN− zN ∈ (c,d)]
Px[SN− zN ∈ (a,b)]

=
|c−d|
|a−b|

.

(the prefactors ρN are identical, and they cancel out).
To see part (2), note first that our assumptions on zN guarantee that ξN = ξN

(
zN−E(SN)

VN

)
is

bounded from away from zero and infinity, and that all its limit points are strictly positive.
Suppose ξNk→ ξ . Then arguing as in part (1) it is not difficult to see that for all (a,b)⊂ (0,∞)

and r > 0,

lim
k→∞

Px[ξNk(SNk− zNk) ∈ (a+ r,b+ r)|SNk > zNk ]

Px[ξNk(SNk− zNk) ∈ (a,b)|SNk > zNk ]
= e−r.

Since this is true for all convergent {ξNk}, and since any subsequence of {ξN} has a convergent
subsequence,

liminf
N→∞

Px[ξN(SN− zN) ∈ (a+ r,b+ r)|SN > zN ]

Px[ξN(SN− zN) ∈ (a,b)|SN > zN ]
= e−r,

limsup
N→∞

Px[ξN(SN− zN) ∈ (a+ r,b+ r)|SN > zN ]

Px[ξN(SN− zN) ∈ (a,b)|SN > zN ]
= e−r,

and so lim
N→∞

Px[ξN(SN− zN) ∈ (a+ r,b+ r)|SN > zN ]

Px[ξN(SN− zN) ∈ (a,b)|SN > zN ]
= e−r. So conditioned on SN > zN , ξN(SN−

zN) is asymptotically exponential with parameter 1. �

Corollary 6.5 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain. Suppose f is irreducible, with algebraic rangeZ. Let zN be a sequence of integers.

(1) If zN−E(SN)
VN

→ 0 then for any a < b in Z the distribution of SN−zN conditioned on SN−zN ∈
[a,b] is asymptotically uniform on [a,b].
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(2) If liminf zN−E(SN)
VN

> 0 and there exists R s.t. zN−E(SN)
VN

∈ [âR
N , b̂

R
N ] for all sufficiently large N,

ξN

(
zN−E(SN)

VN

)
→ ξ , then

(SN− zN) conditioned on SN ≥ zN

is asymptotically geometric with parameter e−ξ .

The proof is similar to the proof in the non-lattice case, so we omit it.
It worthwhile to note the following consequence of this result. In the following statement,

“local distribution” means a functional on Cc(R) and “vague convergence” means convergence
on all continuous functions with compact support.

Corollary 6.6 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain. Let zN be a sequence s.t. for some R, zN−E(SN)

VN
∈ [âR

N , b̂
R
N ] for large N. Let ζN be

the local distribution of SN around zN , that is ζN(φ) = Ex(φ(SN− zN)). Let ζ be a vague limit
of {qNζN} for some sequence qN > 0. If f is irreducible then ζ has density c1ec2t with respect
to the Haar measure on the algebraic range of f for some c1 ∈ R+,c2 ∈ R.

If the restriction zN−E(SN)
VN

∈ [âR
N , b̂

R
N ] is dropped, then it is likely that ζ is either as above, or an

atomic measure with one atom, but our methods are insufficient for proving this.

6.3 Proofs

We prove Theorems 6.1, 6.2, 6.5 and 6.6. (Theorems 6.3 and 6.4 are direct consequences, and
were proved in §6.2.4.)

We assume throughout that {Xn} is a uniformly elliptic Markov chain with state spaces Sn,
transition probabilities πn,n+1(x,dy), and stationary distributions µk(E) := P(Xk ∈ E). Let f =
{ fn} be an a.s. uniformly bounded additive functional on X. Let ε0 denote the ellipticity constant
of X, and K = ess sup |f|.

6.3.1 Strategy of proof

The proof can be briefly described as an implementation of “change of measure” technique (aka
“Cramér’s transform”).

We explain the idea. Suppose f is an a.s. uniformly bounded additive functional on a uni-
formly elliptic Markov chain X, and let zN be as in Theorem 6.5. We will modify the tran-
sition probabilities of X = {Xn} to generate a Markov array X̃ = {X̃ (N)

n } whose row sums
S̃N = f1(X̃

(N)
1 , X̃ (N)

2 )+ · · ·+ fN(X̃
(N)
N , X̃ (N)

N+1) satisfy

zN−E(S̃N) = o
(√

Var(S̃N)

)
. (6.3.1)

(6.3.1) places us in the regime of local deviations which we have analyzed in Chapter 4. The
results of that chapter provide asymptotics for P(S̃N − zN ∈ (a,b)), and these can be translated
into asymptotics for P(SN− zN ∈ (a,b)).
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The array X̃ is constructed from (X, f) as follows: Let Sn and πn,n+1(x,dy) denote the state
spaces and transition probabilities of the original Markov chain X, then we take f (N)

n = fn,
S

(N)
n =Sn, and we let X̃ be the Markov array with state spaces S(N)

n and transition probabilities

π̃
(N)
n,n+1(x,dy) := eξN fn(x,y) hn+1(y,ξN)

epn(ξN)hn(x,ξN)
·πn,n+1(x,dy).

Here ξN is a parameter that is calibrated to get (6.3.1), and pn,hn,hn+1 are chosen to guarantee
that π̃

(N)
n,n+1(x,dy) has total mass equal to one. This technique is called a “change of measure.”

The value of ξN depends on zN−E(SN)
VN

. To construct ξN and to control it, we must know that
zN
VN

belong to a sets where FN are strictly convex, uniformly in N. This is the reason why we

need to assume that ∃R s.t. zN−E(SN)
VN

∈ [âR
N , b̂

R
N ] for all N, a condition we can check as soon as

| zN−E(SN)
VN

|< c with c small enough.1

We remark that the dependence of ξN on N means that {X̃ (N)
n } is an array, not a chain. The fact

that the change of measure produces arrays from chains is the reason we insisted on working
with arrays in the first part of this work.

6.3.2 A parameterized family of changes of measure

In this section we construct, for an arbitrary given sequence of constants ξN ∈ R, transition
probabilities of the form

π̃
(N)
n,n+1(x,dy) := eξN fn(x,y) hn+1(y,ξN)

epn(ξN)hn(x,ξN)
·πn,n+1(x,dy), (6.3.2)

where pn(ξN) are real numbers and hξN
k (·) = hk(·,ξN) are positive functions on Sk which are

chosen to guarantee that π̃
(N)
n,n+1(x,dy) has total mass equal to one.

We treat the sequence of parameters ξN as arbitrary. In the next section we will explain how
to choose a particular {ξN} to guarantee (6.3.1).

Lemma 6.7 Given ξ ∈ R and a sequence of real numbers {an}n∈N, there are unique numbers
pn(ξ ) ∈ R, and unique non-negative hn(·,ξ ) ∈ L∞(Sn,B(Sn),µn) s.t.

∫
Sn

hn(x,ξ )µn(dx) =
exp(anξ ) for all n, and for a.e. x∫

Sn+1

eξ fn(x,y) hn+1(y,ξ )
epn(ξ )hn(x,ξ )

πn,n+1(x,dy) = 1. (6.3.3)

The unique solution is positive almost everywhere.

Remark.: Notice that if {hn(·,ξ )}, {pn(ξ )} satisfy the Lemma with an = 0, then the unique

solution with general {an} is given by

hn(·,ξ ) := eanξ hn(·,ξ ) , pn(ξ ) := pn(ξ )−anξ +an+1ξ . (6.3.4)
1 Other situations where the condition zN−E(SN )

VN
∈ [âR

N , b̂
R
N ] can be checked are discussed in §6.4.
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Evidently, hn, pn give rise to the same probability kernel (6.3.2) as do hn, pn. We call {hn} and
{pn} the fundamental solution.

Proof. It is enough to prove the existence and uniqueness of the fundamental solution, so hence-
forth we assume an = 0. We may also assume without loss of generality that |ξ | ≤ 1, else scale
f.

Set Vn := L∞(Sn,B(Sn),µn), and define operators Lξ
n : Vn+1→Vn by

(Lξ
n h)(x) =

∫
Sn+1

eξ fn(x,y)h(y)πn,n+1(x,dy). (6.3.5)

The operators Lξ
n are linear, bounded, and positive.

For (6.3.3) to hold, it is necessary and sufficient that hξ
n (·) := hn(·,ξ ) be positive a.e., and

Lξ
n hξ

n+1 = epn(ξ )hξ
n for some pn(ξ ) ∈ R.

Positivity everywhere may be replaced by the weaker property that hξ
n ∈ L∞ \ {0} are all

non-negative a.e., because for such functions, since |f| ≤ K a.s. and X is uniformly elliptic with
ellipticity constant ε0,

hξ
n (x) = e−pn(ξ )−pn+1(ξ )(Lξ

n Lξ

n+1hξ

n+2)(x)≥ e−pn(ξ )−pn+1(ξ )−2K
ε0‖hξ

n+2‖1.

Thus to prove the lemma it is enough to find a sequence numbers pn(ξ ) ∈ R and non-negative
hξ

n ∈ L∞ \{0} such that Lξ
n hξ

n+1 = epn(ξ )hξ
n for some pn(ξ ) ∈ R.

The existence and uniqueness of such “generalized eigenvectors” can be proved as in
[56],[15],[81] using Hilbert’s projective metrics. We recall what these are. Let Cn := {h ∈
Vn : h≥ 0 a.e. }. These are closed cones and Lξ

n (Cn+1)⊂Cn. Define

dn(h,g) := log
(

M(h|g)
m(h|g)

)
∈ [0,∞], (h,g ∈Cn),

where M = M( f |g),m = m( f |g) are the best constants in the estimate mh ≤ f ≤ Mh. This is
a pseudo-metric on the interior of Cn, and d(h,g) = 0⇔ h,g are proportional. Also, for all
h,g ∈Cn \{0}, ∥∥∥∥ h∫

h
− g∫

g

∥∥∥∥
1
≤ edn(h,g)−1. (6.3.6)

Birkhoff’s theorem [13] says that any linear map T : Cn+2→ Cn such that the dn–diameter of
T (Cn+2) in Cn is less than some ∆ > 0, contracts the Hilbert’s projective metric at least by a
factor θ := tanh(∆/4) ∈ (0,1).

We will apply Birkhoff’s theorem to the linear transformations

T ξ
n := Lξ

n Lξ

n+1 : Cn+2→Cn.

One checks using the standing assumptions and |ξ | ≤ 1 that

e−2K
ε0‖h‖1 ≤ (T ξ

n h)(x)≤ e2K
ε
−2
0 ‖h‖1 (h ∈Cn+2), (6.3.7)

whence dn(T
ξ

n h,1) ≤ 4K + 3log(1/ε0). So the diameter of T ξ
n (Cn+2) in Cn is less than ∆ :=

8K +6log(1/ε0). Hence by Birkhoff’s Theorem mentioned above,
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dn(T
ξ

n+1h,T ξ

n+1g)≤ θdn+2(h,g) (h,g ∈Cn+2). (6.3.8)

where θ := tanh(2K + 3
2 log(1/ε0)) ∈ (0,1).

It follows that for every n, {Lξ
n Lξ

n+1 · · ·L
ξ

n+k−11Sn+k}k≥1 ⊂ Cn is a Cauchy sequence with
respect to dn. By (6.3.6),

Lξ
n Lξ

n+1 · · ·L
ξ

n+k−11Sn+k

‖Lξ
n Lξ

n+1 · · ·L
ξ

n+k−11Sn+k‖1

is a Cauchy sequence in L1.
The limiting function hξ

n has integral one, and is positive and bounded, because of (6.3.7).
Clearly, Lξ

n hξ

n+1 = epnhξ
n for some pn ∈ R. So {hξ

n},{pn} exist.

Moreover, the proof shows that diam
(⋂

k≥1 Lξ
n · · ·Lξ

n+k−1(Cn+k)
)
= 0. It follows that hξ

n

is unique up to multiplicative constant, whence by the normalization condition, unique. The
lemma is proved. �

The proof has the following consequence, which we mention for future reference: For every
R > 0, there exists C0 > 0 and θ ∈ (0,1) (depending on R) such that for every |ξ | ≤ R

d1

(
Lξ

1 · · ·L
ξ

Nhξ

N+1, Lξ

1 · · ·L
ξ

N1
)
≤C0θ

N/2dN+1

(
hξ

N+1,1
)
. (6.3.9)

The case when N is even follows directly from (6.3.8) and does not require the constant C0. The
case of odd N is obtained from the even case by using the exponential contraction of Lξ

2 · · ·L
ξ

N

and the fact that one additional application of Lξ

1 (or any other positive linear operator) does not
increase the Hilbert norm. This implies (6.3.9) with C0 := θ−1/2.

Lemma 6.8 Let hξ
n (·) = h(·,ξ ) be as in Lemma 6.7. If an is bounded, then for every R > 0 there

is C =C(R) s.t. for all n≥ 1, a.e. x ∈Sn and |ξ | ≤ R,

C−1 ≤ hn(x,ξ )≤C and C−1 < epn(ξ ) <C.

Proof. It is enough to consider the fundamental solution (an = 0,
∫

hn = 1); the general case
follows from (6.3.4). It is also sufficient to consider the case |ξ | ≤ 1; the general case follows
by scaling f.

Let {hξ
n} be the fundamental solution, then in the notation of the previous proof, T ξ

n hξ

n+2 =

epn(ξ )+pn+1(ξ )hξ
n , whence by (6.3.7),

e−2K
ε0 ≤ epn(ξ )+pn+1(ξ )hξ

n+2 ≤ e2K
ε
−2
0 .

Integrating, and recalling that
∫

hξ

n+2 dµn+2 = exp(an+2ξ ) = 1, we obtain

e−2K
ε0 ≤ epn(ξ )+pn+1(ξ ) ≤ e2K

ε
−2
0 .

So e−4Kε2
0 ≤ hξ

n (·)≤ e4Kε
−4
0 .

Observe that epn =
∫

Lξ
n hξ

n+1dµn+1 = e±K ∫ hξ

n+1dµn+1. So epn is also uniformly bounded
away from zero and infinity. �
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In the next section we will choose ξN to guarantee (6.3.1), and as it turns out, the choice
involves a condition on ∂ pn

∂ξ
. Later, we will also require information on ∂ 2 pn

∂ξ 2 . In preparation for
this, we will now study the differentiability of

ξ 7→ hξ
n and ξ 7→ pn(ξ ).

The map ξ 7→ hξ
n takes values in the Banach space L∞. To analyze it, we will use the theory of

real-analytic maps into Banach spaces [43].
Let us briefly review this theory. Suppose X,Y are Banach spaces. Let an : Xn → Y be a

multilinear map. The norm of an is

‖an‖ := sup{‖an(x1, . . . ,xn)‖ : xi ∈ X, ‖xi‖ ≤ 1 for all i}.

A multilinear map is called symmetric if it is invariant under the permutation of its coordinates.
Given x ∈ X, we denote

anxn := an(x, . . . ,x).

A power series is a formal expression ∑n≥1 anxn where an : Xn→Y are multilinear and sym-
metric.

A function φ : X→Y is called real analytic at x0 if there is some r > 0 and a power series
∑anxn (called the Taylor series at x0) such that ∑‖an‖rn < ∞ and

φ(x) = φ(x0)+ ∑
n≥1

an(x− x0)
n

whenever ‖x− x0‖< r. One can check that if this happens, then

an(x1, . . . ,xn) =
1
n!

d
dt1

∣∣∣∣
t1=0
· · · d

dtn

∣∣∣∣
tn=0

φ(x0 +
n

∑
i=1

tixi). (6.3.10)

Conversely, if ∑an(x− x0)
n has positive radius of convergence with an as in (6.3.10), then φ is

real-analytic, and equal to its Taylor series φ(x0)+∑an(x− x0)
n on a neighborhood of x0.

Example 6.9 Let φ : X×X×R→ X be the map φ(x,y,z) := x− y/z. Then φ is real-analytic
at every (x0,y0,z0) such that z0 6= 0, with Taylor series

φ(x,y,z) = φ(x0,y0,z0)+
∞

∑
n=1

an(x− x0,y− y0,z− z0)
n,

where ‖an‖= O(‖y0‖/|z0|n+1)+O(n/|z0|n+1).

Proof. If |z− z0| < |z0|, then x− y/z = x− y
z0

∑k≥0(−1)k 1
zk
0
(z− z0)

k. For each n ≥ 1, x0 :=

(x0,y0,z0), xi := (xi,yi,zi) (1≤ i≤ n), and (t1, . . . , tn) ∈ Rn,

φ(x0 +
n

∑
i=1

tixi) = x0 +
n

∑
i=1

tixi +
∞

∑
k=0

(−1)k+1

zk+1
0

(
y0 +

n

∑
i=1

tiyi

)(
n

∑
i=1

tizi

)k

converges in norm whenever (t1, . . . , tn) ∈ An :=
[
|∑n

i=1 tizi| < |z0|
]
. In particular, on An, this

series is real-analytic in each ti, and can be differentiated term-by-term infinitely many times.
To find an(x1, . . . ,xn) we observe that the differential (6.3.10) is equal to the coefficient of

t1 · · · tn in the previous series. So for n > 2,
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an(x1, . . . ,xn) =
(−1)n+1y0

zn+1
0

· z1 · · ·zn +
(−1)n

zn
0

n

∑
i=1

yiz1 · · · ẑi · · ·zn

where the hat above zi indicates that the i-th term should be omitted. It follows that ‖an‖ =
O(‖y0‖/|z0|n+1)+O(n/|z0|n). �

Lemma 6.10 The functions ξ 7→ hξ
n , pn(ξ ) are real-analytic. If an is bounded, then for every

R > 0 there is C(R)> 0 s.t. for every |ξ | ≤ R and n≥ 1,∥∥∥∥ ∂

∂ξ
hn(·,ξ )

∥∥∥∥
∞

≤C(R),
∥∥∥∥ ∂ 2

∂ξ 2 hn(·,ξ )
∥∥∥∥

∞

≤C(R).

Proof. The proof is based on §3.3 in [54], although it is somewhat simpler because our setup is
more elementary.

It is enough to consider the special case R = 1 and an = 0. In particular,
∫

hξ
n = 1.

Fix |ξ | ≤ 1 and let Tn := T ξ
n , hn(·) = hn(·,ξ ) be as in the proof of Lemma 6.7. Define two

Banach spaces:

X :=
{
(Sn)n∈N : Sn : L∞(Sn+2)→ L∞(Sn) are bounded linear

operators, and ‖S‖ := supn ‖Sn‖< ∞

}
Y := {(ϕn)n∈N : ϕn ∈ L∞(Sn+2) , ‖ϕ‖ := sup‖ϕn‖∞ < ∞}

Using (6.3.7), it is not difficult to see that T := (Tn) belongs to X . By Lemma 6.8, h := (hn)n∈N
belongs to Y .

STEP 1. There exists 0 < δ < 1 s.t. for every (S,ϕ) ∈ X×Y , for all |ξ | ≤ 1, if ‖S−T‖< δ and
‖ϕ−h‖< δ , then inf |

∫
(Snϕn+2)|> δ .

Proof. By (6.3.7), ‖Tn‖ ≤M where M := e2Kε
−2
0 , and by Lemma 6.8, there is a constant ε1 > 0

so that for all n and |ξ | ≤ 1
ε1 ≤ (Tnhn+2)(x)≤ ε

−1
1 .

So if ‖S−T‖< δ and ‖ϕ−h‖< δ , then for a.e. x,

Snϕn+2(x) = (Tnhn+2)(x)− (Tn−Sn)hn+2(x)−Sn(hn+2−ϕn+2)(x)
≥ ε1−‖T −S‖‖h‖− (‖S−T‖+‖T‖)‖h−ϕ‖
≥ ε1−δ‖h‖− (δ +M)δ .

Let C be a uniform upper bound for ‖h‖ which holds for all |ξ | ≤ 1. If 0 < δ < ( ε1
C+M+2)∧1,

then Snϕn+2 > δ a.e., and the step follows.

Henceforth we fix δ as in step 1. Let Bδ (T ) := {S ∈ X : ‖S−T‖< δ} and Bδ (h) := {ϕ ∈Y :
‖ϕ−h‖< δ}, and define

ϒ : Bδ (T )×Bδ (h)→ Y, ϒ (S,ϕ) :=
(

ϕn−
Snϕn+2∫

(Snϕn+2)dµn+2

)
n∈N

.

This is well-defined by the choice of δ , and ϒ (T,h) = 0.

STEP 2. ϒ is real-analytic on Bδ (T )×Bδ (h).

Proof. First we write ϒ = Φ(ϒ (1),ϒ (2),ϒ (3)) with

◦ ϒ (1) : X×Y → Y , ϒ (1)(S,ϕ) = ϕ
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◦ ϒ (2) : X×Y → Y , ϒ (2)(S,ϕ) = (Snϕn+2)n∈N.
◦ ϒ (3) : X×Y → `∞, ϒ (3)(S,ϕ) = (

∫
(Snϕn+2)dµn+2)n∈N.

◦ Φ : {(ϕ,ψ,ξ ) ∈ Y ×Y × `∞ : inf |ξi|> 0}→ Y ,

Φ((ϕ,ψ,ξ )i≥1) = (ϕi−ξ
−1
i ψi)i≥1.

By step 1,
→
ϒ := (ϒ (1),ϒ (2),ϒ (3)) maps Bδ (T )×Bδ (h) into

U := {(ϕ,ψ,ξ ) ∈ Y ×Y × `∞ : ‖ϕ‖<C+δ ,‖ψ‖< M+δ , inf |ξi|> δ/2},

whence into the domain of Φ .
We claim that for each of the functions ϒ (i), some high enough derivative of ϒ (i) is identically

zero. Let D be the derivative, and let Di be the partial derivative with respect to the i-th variable,
then

(1) ϒ (1) is linear, so (Dϒ (1))(S,ϕ) is constant, and D2ϒ (1) = 0.

(2) ϒ (2) : X×Y → Y , ϒ (2)(S,ϕ) = (Snϕn+2)n∈N. Here

(D1ϒ
(2))(S,ϕ)(S′) = (S′nϕn+2)n∈Z , (D2

1ϒ
(2))(S,ϕ) = 0

(D2ϒ
(2))(S,ϕ)(ϕ ′) = (Snϕ ′n+2)n∈Z , (D2

2ϒ
(2))(S,ϕ) = 0

(D1D2ϒ
(2))(S,ϕ)(S′,ϕ ′) = (S′nϕ ′n+2)n∈Z

We see that D2ϒ (2) does not depend on (S,ϕ), so D3ϒ = 0

(3) ϒ (3) : X ×Y → `∞, ϒ (3)(S,ϕ) = (
∫
(Snϕn+2)dµn+2)n∈N. As before, the third derivative is

zero.

Consequently, ϒ (i) are real-analytic on its domain (with finite Taylor series at every point).
Next we show that Φ is real-analytic on U . To do this we recall that by Example 6.9, x− y

z
=

∞

∑
n=0

an(x0,y0,z0)(x−x0,y−y0,z− z0)
n where an(x0,y0,z0) : (R3)n→R are symmetric multilin-

ear functions depending on (x0,y0,z0), s.t. ‖an(x0,y0,z0)‖ = O(|y0|/|z0|n+1)+O(n/|z0|n). So

Φ(ϕ,ψ,ξ ) = Φ(ϕ(0),ψ(0),ξ (0))+
∞

∑
n=1

An(ϕ−ϕ
(0),ψ−ψ

(0),ξ −ξ
(0))n, (6.3.11)

where An : (Y ×Y × `∞)n→ Y , has entries

An((ϕ
(1),ψ(1),ξ (1)), . . . ,(ϕ(n),ψ(n),ξ (n)))i(x) :=

an
(
ϕ
(0)
i (x),ψ(0)

i (x),ξ (0)
i
)
((ϕ

(1)
i (x),ψ(1)

i (x),ξ (1)
i ), . . . ,(ϕ

(n)
i (x),ψ(n)

i (x),ξ (n)
i ))

An inherits multilinearity and symmetry from an, and by construction,

‖An(ϕ
(0),ψ(0),ξ (0)))‖ ≤sup

{
‖an(x0,y0,z0)‖ : |x0|, |y0| ≤C+M+δ , |z0|>

δ

2

}
= O(2nn/δ

n).

So the right-hand-side of (6.3.11) has positive radius of convergence, proving the analyticity of
Φ : U → Y .

The step follows from the well-known result that the composition of real-analytic functions
is real-analytic, see [43].
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CLAIM 4. (D2ϒ )(T,h) : Y → Y , the partial derivative of ϒ at (T,h) with respect to the second
variable, has bounded inverse.

Proof. A direct calculation shows that (D2ϒ )(T,h)(ϕ) = ϕ−Λϕ , where

(Λϕ)n =
Tnϕn+2∫

(Tnhn+2)dµn
−
(∫

(Tnϕn+2)dµn∫
(Tnhn+2)dµn

)
hn.

To prove the claim, we show that Λ has spectral radius < 1.
Let T (k)

n := TnTn+2 · · ·Tn+2(k−1), then we claim that

(Λ k
ϕ)n =

T (k)
n ϕn+2k∫

(T (k)
n hn+2k)dµn

−

(∫
(T (k)

n ϕn+2k)dµn∫
(T (k)

n hn+2k)dµn

)
hn. (6.3.12)

To see this we first note, using Tmhm+2 ∝ hm and
∫

hmdµm = 1, that∫
(T (k+1)

n hn+2(k+1))dµn =
∫
(Tnhn+2)dµn

∫
(T (k)

n+2hn+2(k+1))dµn+2.

With this identity in mind, the formula for Λ k follows by induction.
We now explain why (6.3.12) implies that the spectral radius of Λ is less than one. Fix ϕ ∈Y .

Recall that C−1 ≤ hn ≤C for all n, and let

ψ := ϕ +2C‖ϕ‖h.

Then ψ ∈ Y , Λ kψ = Λ kϕ for all k (because Λh = 0), and for all n

C‖ϕ‖hn ≤ ψn ≤ 3C‖ϕ‖hn (6.3.13)

In particular, if Cn is the cone from the proof of Lemma 6.7, and dn is its projective Hilbert
metric, then ψn ∈Cn and dn(ψn,hn) ≤ log3. Since Tn contracts the Hilbert projective norm by
a factor θ ∈ (0,1),

dn(T
(k)

n ψn+2k,T
(k)

n hn+2k)≤ θ
k log3.

This implies by the definition of dn that for a.e. x ∈Sn,∣∣∣∣∣(T (k)
n ψn+2k)(x)/

∫
(T (k)

n ψn+2k)

(T (k)
n hn+2k)(x)/

∫
(T (k)

n hn+2k)
−1

∣∣∣∣∣≤max{3θ k
−1,1−3−θ k

}= 3θ k
−1 =: εk.

The denominator simplifies to hn. So∥∥∥∥∥ (T (k)
n ψn+2k)∫

(T (k)
n ψn+2k)

−hn

∥∥∥∥∥
∞

≤ εk‖h‖. (6.3.14)

Next we use the positivity of T (k)
n and (6.3.13) to note that

C‖ϕ‖T (k)
n hn+2k ≤ T (k)

n ψn+2k ≤ 3C‖ϕ‖T (k)
n hn+2k.

We deduce that

C‖ϕ‖ ≤
∫
(T (k)

n ψn+2k)∫
(T (k)

n hn+2k)
≤ 3C‖ϕ‖. (6.3.15)
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By (6.3.12), (6.3.14) and (6.3.15),

‖Λ k
ϕ‖∞ ≡ ‖Λ k

ψ‖= sup
n

∥∥∥∥∥ T (k)
n ψn+2k∫
T (k)

n hn+2k

−
∫

T (k)
n ψn+2k∫

T (k)
n hn+2k

·hn

∥∥∥∥∥
∞

≤ sup
n

∥∥∥∥∥ T (k)
n ψn+2k∫
T (k)

n ψn+2k

−hn

∥∥∥∥∥
∞

· sup
n

∥∥∥∥∥
∫

T (k)
n ψn+2k∫

T (k)
n hn+2k

∥∥∥∥∥
∞

≤ 3Cεk‖h‖ · ‖ϕ‖,

whence ρ(Λ)≤ lim k
√

εk = θ < 1.

COMPLETION OF THE PROOF OF THE LEMMA. We constructed a real-analytic function ϒ :
X×Y →Y such thatϒ (T,h)= 0 and (D2ϒ )(T,h) :Y →Y has a bounded inverse. By the implicit
function theorem for real-analytic functions on Banach spaces [151], T has a neighborhood
W ⊂ X where one can define a real-analytic function h : W → Y so that ϒ (S,h(S)) = 0.

Recall that T = T ξ := {T ξ
n }n∈N and h= {hn(·,ξ )}n≥1. By the uniqueness part of Lemma 6.7,

h(T ) = h(·,ξ ). It is easy to see using ess sup |f|<∞ that ξ 7→ T ξ is real-analytic (even holomor-
phic). So ξ 7→ h(T ξ ) is real-analytic, whence continuously differentiable infinitely many times.
Thus ξ 7→ hn(·,ξ ) is real-analytic for all n, and

{
∂ k

∂ξ k hn(·,ξ )
}

n≥1
= ∂

∂ξ k h(T ξ ) ∈ Y for all k.

By the definition of Y , sup
|ξ |≤1

sup
n≥1
‖ ∂

∂ξ
hn(·,ξ )‖∞ = ‖ ∂

∂ξ
h(T )‖< ∞ and sup

|ξ |≤1
sup
n≥1
‖ ∂ 2

∂ξ 2 hn(·,ξ )‖∞ =

‖ ∂ 2

∂ξ 2 h(T )‖< ∞. �

6.3.3 Choosing the parameters

Given ξ ∈ R and {an} ⊂ R bounded, let {X̃ξ
n }n≥1 denote the Markov chain with the initial

distribution and state spaces of X, but with transition probabilities

π̃
ξ

n,n+1(x,dy) = eξ fn(x,y) hn+1(y,ξ )
epn(ξ )hn(x,ξ )

·πn,n+1(x,dy),

where pn(ξ ) and hξ

k (·) = hk(·,ξ ) are as in Lemma 6.7. (This chain does not depend on the
choice of {an}, see the remark after the statement of Lemma 6.7.) Denote the expectation and
variance operators of this chain by Ẽξ , Ṽ ξ .

In this section we show that if VN := Var(SN)→ ∞ and zN−E(SN)
VN

is sufficiently small, then it
is possible to choose ξN and an bounded s.t.

zN− ẼξN (SN)√
Ṽ ξN (SN)

−−−→
N→∞

0 and
N

∑
n=1

p′n(0) = E(SN).

Indeed, we will find ξN so that ẼξN (SN) = zN + O(1). The construction will show that if
zN−E(SN)

VN
→ 0, then ξN → 0.

Let h
ξ

n := hn(·,ξ ) : Sn → (0,∞) and pn(ξ ) ∈ R be the fundamental solution: Lξ
n h

ξ

n+1 =

epn(ξ )h
ξ

n and
∫

hn(x,ξ )µn(dx) = 1. Then h
ξ

n = e−anξ hn(·,ξ ) and pn(ξ ) = pn(ξ )+anξ −an+1ξ
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so

π̃
ξ

n,n+1(x,dy) = eξ fn(x,y) hn+1(x,ξ )
epn(ξ )hn(y,ξ )

πn,n+1(x,dy).

Let PN(ξ ) := p1(ξ )+ · · ·+ pN(ξ ).

Lemma 6.11 ξ 7→ PN(ξ ) is real analytic, and for every R > 0 there is a constant C(R) such
that for all |ξ | ≤ R and N ∈ N,

(1) |P′N(ξ )− Ẽξ (SN)| ≤C(R);
(2) Suppose VN → ∞. Then C(R)−1 ≤ Ṽ ξ (SN)/VN ≤C(R) for all N and |ξ | ≤ R, and

P′′N(ξ )/Ṽ ξ (SN)−−−→
N→∞

1 uniformly in |ξ | ≤ R.

Proof. We have the identity ePN(ξ ) =
∫
(Lξ

1 · · ·L
ξ

Nh
ξ

N+1)(x)µ1(dx). Since ξ 7→ h
ξ and ξ 7→ Lξ

n
are real-analytic, ξ 7→ PN(ξ ) is real-analytic.

Given x ∈ S1 (the state space of X1), define two measures on ∏
N+1
i=2 Si so that for every

Ei ∈B(Si) (1≤ i≤ N +1),

πx(E2×·· ·×EN+1) := P(X2 ∈ E2, . . . ,XN+1 ∈ EN+1|X1 = x1),

π̃
ξ
x (E2×·· ·×EN+1) := P̃ξ (X̃ξ

2 ∈ E2, . . . , X̃
ξ

N+1 ∈ EN+1|X̃ξ

1 = x1).

Let SN(x,y) := f (x,y1)+∑
N
i=1 fi(yi,yi+1), then

dπ̃
ξ
x

dπx
(y2, . . . ,yN+1) = eξ SN(x,y)e−PN(ξ )

(
hN+1(yN+1,ξ )

h1(x,ξ )

)
.

By Lemma 6.10, ξ 7→ dπ̃
ξ
x

dπx
(y2, . . . ,yN+1) is real-analytic. Differentiating, gives

d
dξ

[dπ̃
ξ
x

dπx

]
=
[
SN(x,y)−P′N(ξ )

h1(x,ξ )
hN+1(yN+1,ξ )

d
dξ

(
hN+1(yN+1,ξ )

h1(x,ξ )

)]
dπ̃

ξ
x

dπx
. We write this as

d
dξ

[
dπ̃

ξ
x

dπx

]
=
[
SN(x,y)−P′N(ξ )+ εN(x,yN+1,ξ )

] dπ̃
ξ
x

dπx
, (6.3.16)

where εN(x,yN+1,ξ ) := h1(x,ξ )
hN+1(yN+1,ξ )

d
dξ

(
hN+1(yN+1,ξ )

h1(x,ξ )

)
. By Lemmas 6.8 and 6.10, εN(x,yN+1,ξ )

is uniformly bounded in N, x,y, and |ξ | ≤ R.

By the intermediate value theorem and the uniform boundedness of ξ 7→ d
dξ

[
dπ̃

ξ
x

dπx

]
on com-

pact subsets of ξ ∈R, 1
δ

[
dπ̃

ξ+δ
x

dπx
− dπ̃

ξ
x

dπx

]
is uniformly bounded for 0< |h|< 1. So by the bounded

convergence theorem∫
lim
δ→0

1
h

[
dπ̃

ξ+δ
x

dπx
− dπ̃

ξ
x

dπx

]
dπx = lim

δ→0

∫ 1
h

[
dπ̃

ξ+δ
x

dπx
− dπ̃

ξ
x

dπx

]
dπx = 0.

So
∫ d

dξ

[
dπ̃

ξ
x

dπx

]
dπx = 0, whence by (6.3.16), 0= Ẽξ

x (SN)−P′N(ξ )+O(1), where Ẽξ
x = Ẽξ (·|X̃ξ

1 =

x). Integrating with respect to x we obtain that
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P′N(ξ ) = Ẽξ (SN)+O(1)

uniformly in |ξ | ≤ R, N→ ∞.
Differentiating (6.3.16) again we obtain

d2

dξ 2

[
dπ̃

ξ
x

dπx

]
=

d
dξ

[
dπ̃

ξ
x

dπx

(
SN(x,y)−P′N(ξ )+ εN(x,yN+1,ξ )

)]

=
dπ̃x

dπx

[(
SN(x,y)−P′N(ξ )+ εN(x,yN+1,ξ )

)2
−P′′N(ξ )+

dεN

dξ

]
.

By Lemmas 6.8 and 6.10, dεN
dξ

is uniformly bounded in x,yN+1,N and |ξ | ≤ R. As before,∫ d2

dξ 2
dπ̃

ξ
x

dπx
dπx =

d2

dξ 2

∫ dπ̃
ξ
x

dπx
dπx = 0, whence

0 = Ẽξ

[(
SN−P′N(ξ )+O(1)

)2
]
−P′′N(ξ )+O(1)

= Ẽξ

[(
SN− Ẽξ (SN)+O(1)

)2
]
−P′′N(ξ )+O(1), (6.3.17)

= Ṽ ξ (SN)−P′′N(ξ )+O
(√

Ṽ ξ (SN)

)
where the O(1) terms are uniformly bounded in N when |ξ | ≤ R.

If |ξ | ≤ R, then π̃
ξ

n,n+1(x,dy) are uniformly elliptic with ε0 replaced by ε0/(C2eKR) for the C
in Lemma 6.8. Therefore by Theorem 2.7, Ṽ ξ (SN)� ∑

N
n=3 u2

n(ξ ) where un(ξ ) are the structure
constants of {X̃ξ

n }. Clearly, un(ξ ) � un where un = un(0) are the structure constants of {Xn}.
So Ṽ ξ (SN) � VN → ∞ where the multiplicative error bounds is uniform in N and |ξ | ≤ R. By
(6.3.17), P′′N(ξ )/Ṽ ξ (SN)−−−→

N→∞
1. �

The choice of aN: Lemma 6.11(1) with ξ = 0 says that P′N(0) = E(SN)+O(1). The error term
is a nuisance, and we will choose an to get rid of it. Given N, let

an := E(Sn−1)−P′n−1(0) , a1 := 0 (6.3.18)

This is a bounded sequence, because of Lemma 6.11(1). The choice of {an} leads to the follow-
ing objects:

hξ
n (x) = hn(x,ξ ) := exp(anξ )hn(x,ξ ),

pn(ξ ) := pn(ξ )+(an+1−an)ξ .
(6.3.19)

The transition kernel π̃
ξ

n,n+1 is left unchanged, because the differences between hn and hn and
between pn and pn cancel out. But now,

PN(ξ ) := p1(ξ )+ · · ·+ pN(ξ )≡ PN(ξ )+
(
E(SN)−P′N(0)

)
ξ , (6.3.20)

satisfies P′N(0) = E(SN).

Properties of PN(ξ ): These functions turn out to be closely related to the distributional proper-
ties of X and its change of measure Xξ .
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Recall that FN(ξ ) := 1
VN

logE(eξ SN ), and that Ṽ ξ is the variance of SN with respect to the
change of measure X̃ξ . Then:

Lemma 6.12 Suppose VN → ∞ then ξ 7→ PN(ξ ) is real analytic, and

(1) P′N(0) = E(SN)
(2) For every R > 0, there exists C(R)> 0 s.t.

|P′N(ξ )− Ẽξ (SN)| ≤C(R) for all |ξ | ≤ R,N ∈ N.

(3) For every R > 0, there exists C(R)> 0 s.t.

C(R)−1 ≤ Ṽ ξ (SN)/VN ≤C(R) for all |ξ | ≤ R, N ∈ N.

(4) P′′N(ξ )/Ṽ ξ (SN)−−−→
N→∞

1 uniformly on compact subsets of ξ .

(5) PN(ξ )/VN = FN(ξ ) + o(V−1
N ) uniformly on compact subsets of ξ , as N → ∞. Specif-

ically, let ∆N(R) := sup
|ξ |≤R

VN

∣∣∣FN(ξ )− PN(ξ )
VN

∣∣∣ . Then sup
N

∆N(R) < ∞ for all R > 0, and

sup
N

∆N(R)−−−→
R→0+

0.

(6) P′N(ξ )/VN = F ′
N(ξ )+O(V−1

N ) uniformly on compact subsets of ξ , as N→ ∞. Specifically,

let ∆ N(R) := sup
|ξ |≤R

VN

∣∣∣F ′
N(ξ )−

P′N(ξ )
VN

∣∣∣ . Then sup
N≥N0

∆ N(R)< ∞.

Proof. The real analyticity of PN(ξ ) and parts (1)–(4) follow directly from Lemma 6.11, the
identity PN(ξ ) = PN(ξ )+(aN+1−a1)ξ , and the boundedness of an.

The proof of part (5) uses the operators Lξ
n : L∞(Sn+1)→ L∞(Sn) from (6.3.5), (Lξ

n h)(x) :=∫
Sn+1

eξ fn(x,y)h(y)πn,n+1(x,dy)≡ Ex[eξ fn(x,Xn+1)h(Xn+1)].

Let hξ
n := hn(·,ξ ) ∈ L∞(Sn) be the unique positive functions constructed so that Lξ

n hξ

n+1 =

epn(ξ )hξ
n , where p1(ξ )+ · · ·+ pN(ξ ) = PN(ξ ). (To construct hξ

n , apply Lemma 6.7 with an as
in (6.3.19).) In particular, h0

n ≡ 1 and

Ex

(
eξ SN hN+1(XN+1)

)
= ePN(ξ )hξ

1 (x). (6.3.21)

By Lemma 6.8, there exists C1 = C1(R) > 1 such that C−1
1 ≤ hξ

N+1 ≤C1 for all |ξ | ≤ R and
N ≥ 1. Thus by (6.3.21),

C1(R)−2ePN(ξ ) ≤ E
(

eξ SN
)
≤C1(R)2ePN(ξ ).

Taking logarithms, we deduce that |FN(ξ )−PN(ξ )/VN | ≤ 2C1(R)/VN for all N≥ 1 and |ξ | ≤R.
Equivalently, supN ∆N(R)≤ 2C1.

Next, by Lemma 6.10 and the identity h0
n ≡ 1, ‖hξ

N − 1‖∞ −−−→
N→∞

0 uniformly on compact

subsets of ξ . Returning to the definition of C1(R) we find that we may choose C1(R) −−−→
R→0+

1.

As before, this implies that supN ∆N(R)−−−→
R→0

0.

Here is the proof of part (6). Fix R> 0 and let Ẽξ denote the expectation operator with respect
to the change of measure Xξ , then
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VNF ′
N(ξ ) =

E(SNeξ SN )

E(eξ SN )
=
Ẽξ (SN(h

ξ

1/hξ

N+1))

Ẽξ (hξ

1/hξ

N+1)
. (6.3.22)

We have already remarked that Xξ are uniformly elliptic, and that their uniform ellipticity con-
stants are bounded away from zero for ξ ranging on a compact set. This gives us the mixing
bounds in Proposition 1.11 with the same Cmix > 0, 0 < θ < 1 for all |ξ | ≤ R. So

Ẽξ

(
hξ

1 SN

hξ

N+1

)
= Ẽξ (hξ

1 )Ẽ
ξ

(
1/hξ

N+1

)
Ẽξ (SN)+O(1) as N→ ∞,

Ẽξ

(
hξ

1

hξ

N+1

)
= Ẽξ (hξ

1 )Ẽ
ξ

(
1/hξ

N+1

)
+O(θ N), as N→ ∞

where the big oh’s are uniform for |ξ | ≤ R. Plugging this into (6.3.22) gives

VNF ′
N(ξ ) = Ẽξ (SN)+O(1) as N→ ∞, uniformly for |ξ | ≤ R.

Part (6) follows from this from part (2) of the lemma. �

The choice of ξN: We choose ξN so that P′N(ξN) = zN , ẼξN (SN) = zN +O(1). The following
lemma gives sufficient conditions for the existence of such ξN .

Lemma 6.13 Suppose VN → ∞, R > 0, and

[âR
N , b̂

R
N ] :=

[
F ′

N(−R)− E(SN)

VN
,F ′

N(R)−
E(SN)

VN

]
.

(1) For each R there is C(R), N(R) s.t. if zN−E(SN)
VN

∈ [âR
N , b̂

R
N ], and N > N(R) then

(a) ∃!ξN ∈ [−(R+1),(R+1)] s.t. P′N(ξN) = zN;

(b) C(R)−1
∣∣∣ zN−E(SN)

VN

∣∣∣≤ |ξN | ≤C(R)
∣∣∣ zN−E(SN)

VN

∣∣∣;
(c) sgn(ξN) = sgn( zN−E(SN)

VN
);

(d)
∣∣∣ẼξN (SN)− zN

∣∣∣≤C(R).

(2) For every R > 1 there exists c(R)> 0 such that for all N large enough,

if
∣∣∣∣zN−E(SN)

VN

∣∣∣∣≤ c(R), then
zN−E(SN)

VN
∈ [âR

N , b̂
R
N ]. (6.3.23)

Consequently, if | zN−E(SN)
VN

|< c(R), then there exists a unique ξN with (a)–(d) above.

Proof. Let [ãR
N , b̃

R
N ] :=

[
P′N(−R)−E(SN)

VN
,
P′N(R)−E(SN)

VN

]
.

CLAIM: For all R > 0, for all N large enough,

[âR
N , b̂

R
N ]⊂ [ãR+1

N , b̃R+1
N ]⊂ [âR+2

N , b̂R+2
N ].

Proof of the claim: By parts (3) and (4) of Lemma 6.12, there exists δ > 0 such that P′′N(ξ )/VN ≥
δ on [−(R+2),(R+2)]. Thus by the mean value theorem,
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b̃R+2
N ≥ b̃R+1

N +δ , b̃R+1
N ≥ b̃R

N +δ , ãR+2
N ≤ ãR+1

N −δ , ãR+1
N ≤ ãR

N−δ .

Next by part (6) of Lemma 6.12, |b̂R′
N − b̃R′

N | = O(V−1
N ) and |âR′

N − ãR′
N | = O(V−1

N ) for all R′ ≤
R+2. For all N large enough |O(V−1

N )|< δ , and

âR+2
N < ãR+1

N < âR
N < b̂R

N < b̃R+1
N < b̂R+2

N ,

which proves the claim.

We can now prove part (1) of the lemma. Let ϕN(ξ ) :=
PN(ξ )−ξ P′N(0)

VN
. By Lemma 6.12,

ϕN(ξ ) is strictly convex, smooth, and

P′N(ξN) = zN iff ϕ
′
N(ξN) =

zN−P′N(0)
VN

.

Fix R > 0. By the claim, for all N large enough, if zN−E(SN)
VN

∈ [âR
N , b̂

R
N ], then zN−P′N(0)

VN
≡

zN−E(SN)
VN

∈ [ãR+1
N , b̃R+1

N ]≡ ϕ ′N [−(R+1),(R+1)]. Since ϕ ′N is continuous and strictly increasing,

there ∃!ξN ∈ [−(R+1),(R+1)] such that ϕ ′N(ξN)=
zN−P′N(0)

VN
. Equivalently, there exists a unique

|ξN | ≤ R+1 such that P′N(ξN) = zN .
This argument shows that for every N sufficiently large, for every η ∈ [âR

N , b̂
R
N ] there exists a

unique ξ = ξ (η) ∈ [−(R+1),(R+1)] such that

ϕ
′
N(ξ (η)) = η .

By Lemma 6.12, ∃δ (R)> 0 so that δ (R)≤ϕ ′′N ≤ δ (R)−1 on [−(R+1),(R+1)]. So η 7→ ξ (η)

is 1
δ (R)-bi-Lipschitz on [âR

N , b̂
R
N ]. By construction, ϕ ′N(0) = 0. So ξ (0) = 0, whence by the bi-

Lipschitz property
δ (R)|η | ≤ |ξ (η)| ≤ δ (R)−1|η | on [âR

N , b̂
R
N ].

Since ϕN is real-analytic and strictly convex, ϕ ′N is smooth and strictly increasing. By the inverse
mapping theorem, η 7→ ξ (η) is smooth and strictly increasing. So

sgn(ξ (η)) = sgn(η) on [âR
N , b̂

R
N ].

Specializing to the case η = zN−E(SN)
VN

, gives properties (a)–(c) of ξN .
Property (d) is because of by Lemma 6.12, which says that

zN = P′N(ξN) = ẼξN (SN)+O(1).

Notice that the big oh is uniform because |ξN | ≤ R+1. This completes the proof of part (1).

Here is the proof of part (2): For every R > 1, for all N large enough

[âR
N , b̂

R
N ]⊃ [ãR−1

N , b̃R−1
N ]≡ ϕ

′
N [−(R−1),(R−1)] (∵ claim, ϕ

′
N is increasing)

⊃ [−δ (R−1)(R−1),δ (R−1)(R−1)] (∵ ϕ
′
N(0) = 0,ϕ ′′N ≥ δ (R+1)).

So [âR
N , b̂

R
N ]⊃ [−c,c] for R≥ 2 where c := δ (1). �

Corollary 6.14 Suppose VN → ∞ and zN−E(SN)
VN

→ 0, then for all N large enough, there exists a
unique ξN such that P′N(ξN) = zN . Furthermore, ξN → 0.
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6.3.4 The asymptotic behavior of Ṽ ξN (SN)

Let Ṽ ξ

N denote the variance of SN with respect to the change of measure Xξ . We compare Ṽ ξ

N to
VN .

Lemma 6.15 Suppose VN −−−→
N→∞

∞, and define ξN as in Lemma 6.13.

(1) Suppose R > 0 and zN−E(SN)
VN

∈ [âR
N , b̂

R
N ] for all N, then Ṽ ξN

N �VN as N→ ∞.

(2) If zN−E(SN)
VN

→ 0, then Ṽ ξN
N ∼VN as N→ ∞.

(3) Ṽ ξ

N ∼ VN as N → ∞ uniformly on compact subsets of ξ : For every ε > 0 there are ξ ∗ > 0
and N0 > 1, so that Ṽ ξ

N /VN ∈ [e−ε ,eε ] for all |ξ |< ξ ∗,N > N0.

Proof. Part (1) is because of Lemma 6.12(3) and the bound |ξN | ≤ R+ 1 from Lemma 6.12.
Part (2) follows from part (3) and Corollary 6.14. It remains to prove part (3).

To do this we decompose SN into weakly correlated large blocks of roughly the same X-
variance, and check that the Xξ -variance of the i-th block converges uniformly in i to its X-
variance.

Let {Xn} and {X̃ξ
n } denote the Markov chains with transition kernels {πn,n+1(x,dy)},

{π̃ξ

n,n+1(x,dy)} and initial distribution µ1(dx). Given natural numbers n > m, let

Sn,m := Xn + · · ·+Xm−1

S̃ξ
n,m := X̃ξ

n + · · ·+ X̃ξ

m−1

pn,m(ξ ) := pn(ξ )+ · · ·+ pm−1(ξ ).

Notice that for all R > 0, n < m, and |ξ | ≤ R,

pn,m(0) = 0, p′n,m(0) = E(Sn,m), |p′n,m(ξ )− Ẽξ (S̃ξ
n,m)| ≤C(R). (6.3.24)

The first identity is because hn(·,0)≡ 1, pn(0) = 1 by the uniqueness of the fundamental solu-
tion. The second identity is because

p′n,m(0) = P′m−1(0)−P′n−1(0) = E(Sm−1)−E(Sn−1)

by choice of {an}. The inequality can be proved by applying Lemma 6.12 to the shifted Markov
chain {Xk}k≥n.

Let V (Sn,m) := Var(Sn,m). The application of Lemma 6.12 to the shifted Markov chain
{Xk}k≥n also gives a constant M0 s.t. for all |ξ | ≤ R,

V (Sn,m)≥M0⇒

{
C(R)−1 ≤ Ṽ ξ (S̃ξ

n,m)/V (Sn,m)≤C(R)

2−1 ≤ p′′n,m(ξ )/Ṽ ξ (S̃ξ
n,m)≤ 2.

(6.3.25)

M0 is independent of n: It is a function of R, K, ε0, and the uniform bounds on hn(·,ξ ) and its
derivatives.

STEP 1 (UNIFORM EXPONENTIAL MIXING). There are C∗mix =Cmix(R)> 0, η = η(R) ∈ (0,1)
such that for every |ξ | ≤ R, for all n < m,∣∣Cov

(
fm(X̃ξ

m , X̃
ξ

m+1), fn(X̃ξ
n , X̃

ξ

n+1)
)∣∣≤C∗mixη

m−n.
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Proof: If |ξ | ≤ R, then the Markov chain X̃ξ
n is uniformly elliptic with ellipticity constant

ε0(R)> 0. The step follows from Proposition 1.11.

STEP 2 (BLOCK DECOMPOSITION). For every ε > 0 small enough, for every R> 1, there exists
M > 1 and integers ni ↑ ∞ such that:

(1) M ≤V (Sni,ni+1)≤ 2M;

(2) |Cov(S̃ξ
ni,ni+1, S̃

ξ
n j,n j+1)| ≤C#

mixηn j−ni+1 for all |ξ | ≤ R and i < j, where the constant C#
mix is

independent of M, i, j;
(3) For all |ξ | ≤ R, for all i > 3, for all n ∈ [ni,ni+1],

e−ε ≤
Ṽ ξ (S̃ξ

1,n)

i−1

∑
k=1

Ṽ ξ (S̃ξ
nk,nk+1

)+Ṽ ξ
ni,n

≤ eε . (6.3.26)

(4) M∗ := sup
i

sup
n∈[ni,ni+1]

sup
|ξ |≤R

|p′′ni,n(ξ )|< ∞

Proof. We write Vn,m :=V (Sn,m) and Ṽ ξ
n,m := Ṽ ξ (S̃ξ

n,m), and fix

M > max
{

2
(

K2 +
C∗mix
1−η

)
,

4C∗mixC(R)
ε−1(1−η)3

}
.

Construct ni = ni(M) ∈ N by induction as follows: n1 := 1, and

ni+1 := min{n > ni : Vni,ni+1 > M}.

There does indeed exist n > ni with Vni,ni+1 > M, because Vni,n −−−→n→∞
∞, as can be seen from the

following calculation:

∞←−−−
∞← n

V1,n =V1,ni +Vni,n +2Cov(S1,ni,Sni,n)

=Vni,n +V1,ni +O

(
ni−1

∑
m=1

∞

∑
k=0
|Cov(Xm,Xni+k)|

)
=Vni,n +O(1), by step 1 with ξ = 0.

By construction, Vni,ni+1 > M, and

Vni,ni+1 ≤Vni,ni+1−1 + |Vni,ni+1−Vni,ni+1−1|
≤M+ |Vni,ni+1−Vni,ni+1−1| by the minimality of ni+1

≤M+V ( fni+1−2(Xni+1−2,Xni+1−1))

+2|Cov( fni+1−2(Xni+1−2,Xni+1−1),Sni+1−1)|

≤M+2
(

K2 +
C∗mix
1−η

)
≤ 2M by the choice of M.

So M <Vni,ni+1 ≤ 2M, and {ni} satisfies part (1).

If i < j, then |Cov(S̃ξ
ni,ni+1

, S̃ξ
n j,n j+1

)| ≤
ni+1−1

∑
k=ni

n j+1−1

∑
`=n j

C∗mixη
`−k
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≤C∗mix

ni+1−1

∑
k=ni

ηn j−k

1−η
=

C∗mixηn j−ni+1

1−η

ni+1−1

∑
k=ni

η
ni+1−k =

C∗mixηn j−ni+1

(1−η)2 .

Part (2) follows with C#
mix :=C∗mix/(1−η)2.

Part (3) follows from parts (1),(2). Namely, fix n ∈ [ni,ni+1], then∣∣∣∣∣Ṽ ξ (S̃ξ

1,n)−
i−1

∑
k=1

Ṽ ξ
nk,nk+1

−Ṽ ξ
ni,n

∣∣∣∣∣
≤ 2 ∑

1≤k<`≤i−1
|Cov(S̃ξ

nk,nk+1
, S̃ξ

n`,n`+1
)|+2 ∑

1≤k≤i−1
|Cov(S̃ξ

nk,nk+1
, S̃ξ

ni,n)|

≤ 2 ∑
1≤k<`≤i−1

C#
mixη

n`−nk+1 +2 ∑
1≤k≤i−1

C#
mixη

ni−nk+1 ≤ 2 ∑
1≤k<`≤i

C#
mixη

`−k−1

= 2C#
mix

i−1

∑
k=1

i−1

∑
`=k+1

η
`−k−1 ≤ 2C#

mixi
1−η

=
2C∗mixi
(1−η)3 .

By (6.3.25),
i−1

∑
k=1

Ṽ ξ
nknk+1

≥ M(i−1)
C(R)

. So

∣∣∣∣∣∣ Ṽ ξ (S̃ξ

ni−1)

∑
i−1
k=1 Ṽ ξ

nknk+1 +Ṽ ξ
ni,n
−1

∣∣∣∣∣∣≤
(

2C∗mix
(1−η)3

)
i

C(R)−1M(i−1)
≤ 1

M
· 2C∗mixC(R)

(1−η)3 ·
i

i−1
≤ ε

2
· i

i−1
,

where the last inequality is by the choice of M. If i > 3, the last bound is less than 3
4ε , and

(6.3.26) follows for all ε sufficiently small.

Part (4) is a uniform bound on |p′′ni,n(ξ )| for i ∈ N, n ∈ [ni,n], |ξ | ≤ R. By construction,
Vni,n ≤ 2M. By Theorem 2.7, this implies a uniform upper bound on ∑

n−1
k=ni

u2
k . The structure

constants of {Xn} and {X̃ξ
n } are equal up to a bounded multiplicative error. So the same the-

orem, applied to the Markov chain {X̃ξ

k }k≥ni , gives a uniform upper bound for Ṽ ξ
ni,n, whence

supi supn∈[ni,ni+1]
sup|ξ |≤R Ṽ ξ

ni,n < ∞.
A routine modification of the argument we used to show (6.3.17) shows that∣∣∣∣p′′n,m(ξ )− Ẽξ

[(
S̃ξ

ni,n− Ẽ
ξ (S̃ξ

ni,n)+O(1)
)2
]∣∣∣∣≤ const.

The expectation term is uniformly bounded because of the bound on Ṽ ξ
ni,n and the Minkowski

inequality, so part (4) follows.

STEP 3 (BLOCK EXPECTATION). For every ε > 0 there exists ξ ∗ > 0 such that for all |ξ | ≤ ξ ∗,∣∣∣Ẽξ (S̃ξ
ni,n)−E(Sni,n)

∣∣∣≤ ε for all i ∈ N and ni ≤ n≤ ni+1.

Proof. By Lemma 6.8 hk(·,ξ ) is uniformly bounded away from zero and infinity when |ξ | ≤ R.
By Lemma 6.10, ξ 7→ hk(·,ξ ) is uniformly Lipschitz on [−R,R]. It follows that

hn+1(y,ξ )
hni(x,ξ )

−−−→
ξ→0

1 uniformly for i ∈ N, n ∈ [ni,ni+1], (x,y) ∈Sni×Sn+1.
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In particular, there is a ξ ∗1 s.t. for all |ξ | ≤ ξ ∗1

2−1 ≤ hn+1(y,ξ )
hni(x,ξ )

≤ 2 for all i ∈ N, n ∈ [ni,ni+1], and (x,y) ∈Sni×Sn.

This has a useful consequence. Since

E

(
eξ Sni,n

hn+1(Xn+1,ξ )

epni,n(ξ )hni(Xni,ξ )

)
= E

(
EXni

(
eξ Sni,n

hn+1(Xn+1,ξ )

epni,n(ξ )hni(Xni,ξ )

))
= E(1) = 1,

2−1E
(

eξ Sni,n
)
≤ epni,n(ξ ) ≤ 2E

(
eξ Sni,n

)
whenever |ξ | ≤ ξ

∗
1 . (6.3.27)

Fix L > 0 and let AL := [|Sni,n−E(Sni,n)| ≤ L], then:

Ẽξ

Xni
(S̃ξ

ni,n)−E(Sni,n) = E

(
(Sni,n−E(Sni,n))e

ξ Sni,n · hn+1(Xn+1,ξ )

epni,n(ξ )hni(Xni,ξ )

)

= EXni

(
(Sni,n−E(Sni,n))e

ξ Sni,n−pni,n(ξ ) · hn+1(Xn+1,ξ )

hni(Xni,ξ )
·1AL

)
+EXni

(
(Sni,n−E(Sni,n))e

ξ Sni,n−pni,n(ξ ) · hn+1(Xn+1,ξ )

hni(Xni,ξ )
·1Ac

L

)
.

Expectation of the first summand: M∗ := sup
i

sup
n∈[ni,ni+1]

sup
|ξ |≤R

|p′′ni,n(ξ )|<∞. Therefore by (6.3.24),

for all |ξ | ≤ R, n ∈ [ni,ni+1],

pni,n(ξ ) = pni,n(0)+ξ p′ni,n(0)+O(ξ 2) = ξE(Sni,n)+O(ξ 2), (6.3.28)

where |O(ξ 2)| ≤M∗ξ 2.
So on AL, |ξ Sni,n− pni,n(ξ )| ≤ |ξ | · |Sni,n−E(Sni,n)|+M∗ξ 2 ≤ L|ξ |+M∗ξ 2, uniformly in

i,n ∈ [ni,n]. In particular,

eξ Sni,n−pni,n(ξ ) −−−→
ξ→0

1 on AL, uniformly in i, n ∈ [ni,n].

Together with the uniform convergence hn+1(Xn+1,ξ )
hni(Xni ,ξ )

−−−→
ξ→0

1, this implies that the first summand

converges to EXni
[(Sni,n−E(Sni,n))1AL ] uniformly in i, Xni , and n ∈ [ni,ni+1].

The expectation of the limit satisfies

|E[(Sni,n−E(Sni,n))1AL ]|= |E[(Sni,n−E(Sni,n))1Ac
L
]|

≤ E[L−1(Sni,n−E(Sni,n))
21Ac

L
]≤

V (Sni,n)

L
≤ 2M

L
.

Thus, for every ε > 0, for every L large enough, for all |ξ | sufficiently small, for all i,n ∈
[ni,ni+1], the first summand has expectation < ε/2.

Expectation of the second summand: Fix 0 < δ � ξ ∗1 . Assume L is so large s.t. |t| < δeδ |t| for
all |t|> L.

Decompose Ac
L := Ac

+]Ac
−, where Ac

+ := [Sni,n−E(Sni,n)> L] and Ac
+ := [Sni,n−E(Sni,n)<

−L]. Then
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EXni

(
|Sni,n−E(Sni,n)|e

ξ Sni,n−pni,n(ξ ) · hn+1(Xn+1,ξ )

hni(Xni,ξ )
·1Ac

+

)
≤ 2EXni

(
|Sni,n−E(Sni,n)|e

ξ Sni,n−pni,n(ξ ) ·1Ac
+

)
, provided |ξ | ≤ ξ

∗
1

≤ 4EXni

(
(Sni,n−E(Sni,n))e

ξ Sni,n ·1Ac
+

)/
E(eξ Sni,n), by (6.3.27)

= 4EXni

(
(Sni,n−E(Sni,n))e

ξ (Sni,n−E(Sni,n)) ·1Ac
+

)/
E(eξ (Sni,n−E(Sni,n)))

≤ 4δEXni
(e(ξ+δ )(Sni,n−E(Sni,n)))

/
E(eξ (Sni,n−E(Sni,n)))

≤ 16δ exp(pni,n(ξ +δ )− pni,n(ξ )−δE(Sni,n)) , provided |ξ +δ |< ξ
∗
1 .

(see (6.3.27)). Expanding pni,n(ξ +δ ) into Taylor series around ξ , and recalling |p′′ni,n(ξ )| ≤M∗

for |ξ | ≤ R, we find that the term in the exponent is bounded above by

δ |p′ni,n(ξ )−E(Sni,n)|+M∗δ 2 = δ |p′ni,n(ξ )− p′ni,n(0)|+M∗δ 2

≤M∗(δ |ξ |+δ
2)≤M∗(Rδ +δ

2),

which can be made as small as we wish by choosing δ properly.
The conclusion is that for all L large enough, for all |ξ | sufficiently small, for all i,n ∈

[ni,ni+1],

E
(
|Sni,n−E(Sni,n)|e

ξ Sni,n−pni,n(ξ ) · hn+1(Xn+1,ξ )

hni(Xni,ξ )
·1Ac

+

)
≤ ε

4
.

Similarly, one can show that for all L large enough, for all |ξ | sufficiently small, for all i,n ∈
[ni,ni+1],

E
(
|Sni,n−E(Sni,n)|e

ξ Sni,n−pni,n(ξ ) · hn+1(Xn+1,ξ )

hni(Xni,ξ )
·1Ac

−

)
<

ε

4
.

Thus, for every ε > 0, for all L sufficiently large, for all |ξ | sufficiently small, for all i,n ∈
[ni,ni+1], the expectation of the second summand is less than ε/2 in absolute value.

STEP 4 (BLOCK VARIANCE). For every ε > 0 there exists ξ ∗ > 0 such that for all |ξ | ≤ ξ ∗,∣∣∣Ṽ ξ
ni,n−Vni,n

∣∣∣≤ ε for all i ∈ N and ni ≤ n≤ ni+1.

Proof. The proof is similar to the proof of step 3. Fix L to be determined later and let AL :=
[|Sni,n−E(Sni,n)| ≤ L], then

Ṽ ξ (S̃ξ
ni,n) = E

(
(Sni,n− Ẽ(S̃

ξ
ni,n))

2eξ Sni,n · hn+1(Xn+1,ξ )

epni,n(ξ )hni(Xni,ξ )
1AL

)

+E

(
(Sni,n− Ẽ(S̃

ξ
ni,n))

2eξ Sni,n · hn+1(Xn+1,ξ )

epni,n(ξ )hni(Xni,ξ )
1Ac

L

)
.

The second summand can be analyzed as in step 3, this time with the inequality t2 < δeδ |t|

for all |t| large enough. The conclusion is that for every ε > 0, for all L sufficiently large, for all
|ξ | sufficiently small, for all i,n ∈ [ni,ni+1],

E

(
(Sni,n− Ẽ(S̃

ξ
ni,n))

2eξ Sni,n · hn+1(Xn+1,ξ )

epni,n(ξ )hni(Xni,ξ )
1Ac

L

)
<

ε

2
. (6.3.29)
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The first summand converges to E((Sni,n − E(Sni,n))
21AL) as ξ → 0 uniformly in i,n ∈

[ni,ni+1] because

• eξ Sni,n · hn+1(Xn+1,ξ )

epni,n(ξ )hni(Xni ,ξ )
1AL −−−→

ξ→0
1AL uniformly in i ∈ N,n ∈ [ni,ni+1], see the proof of step 3;

and
• (Sni,n− Ẽ(S

ξ
ni,n))

21AL −−−→
ξ→0

(Sni,n−E(Sni,n))
21AL uniformly in i,n ∈ [ni,n], because for some

t between Ẽ(S̃ξ
ni,n) and E(Sni,n),∣∣(Sni,n− Ẽ(S

ξ
ni,n))

2− (Sni,n−E(Sni,n))
2∣∣

= 2|Sni,n− t||Ẽ(Sξ
ni,n)−E(Sni,n)|

≤ 2(L+ |Ẽ(Sξ
ni,n)−E(Sni,n)|)|Ẽ(S

ξ
ni,n)−E(Sni,n)| on AL

−−−→
ξ→0

0 uniformly on AL in i ∈ N,n ∈ [ni,ni+1], by step 3.

The limit of the first summand E((Sni,n − E(Sni,n))
21AL) −−−→L→∞

Vni,n uniformly in i,n ∈
[ni,ni+1]. Indeed, applying (6.3.29) with ξ = 0

|Vni,n−E((Sni,n−E(Sni,n))
21AL)|= E((Sni,n−E(Sni,n))

21Ac
L
)<

ε

2

for all L large enough, for all i ∈ N,n ∈ [ni,ni+1]. Step 4 follows.

PROOF OF PART (3) OF THE LEMMA. Fix ε > 0, and construct the block decomposition as in
step 2.

By step 4 there exists ξ ∗ > 0 s.t. for all |ξ | < ξ ∗, for all k ∈ N,n ∈ [nk,nk+1], e−εVnk,n ≤
Ṽ ξ

nk,n ≤ eεVnk,n. Therefore

e−ε ≤ ∑
i−1
k=1 Ṽ ξ

nk,nk+1 +Ṽ ξ
ni,n

∑
i−1
k=1Vnk,nk+1 +Vni,n

≤ eε .

By part (3) of step 2, for all n > n3, for all |ξ |< ξ ∗, e−3ε ≤ Ṽ ξ
n
/

Vn ≤ e3ε . �

6.3.5 Asymptotics of the log moment generating functions

We need an elementary observation from probability theory. Let X ,Y be two random variables
on the same probability space (Ω ,F ,P). Suppose X has finite non-zero variance, and Y is
positive and bounded. Let VarY (X) be the variance of X with respect to the change of measure

Y
E(Y )dP, i.e.

VarY (X) :=
E(X2Y )
E(Y )

−
(
E(XY )
E(Y )

)2

.

Lemma 6.16 Suppose 0 < Var(X) < ∞ and C−1 ≤ Y ≤ C with C a positive constant, then

C−4 ≤ VarY (X)

Var(X)
≤C4.

Proof. For every random variable W , if W1,W2 are two independent copies of W then Var(W ) =
1
2E[(W1−W2)

2]. In particular, if (X1,Y1), (X2,Y2) are two independent copies of the random
vector (X ,Y ), then



156 6 Local limit theorems for large and moderate deviations

VarY (X) =
1
2
E[(X1−X2)

2Y1Y2]

E(Y1Y2)
=C±4 1

2
E[(X1−X2)

2] =C±4Var(X). �

Proof of Theorem 6.1 on the asymptotic behavior of FN(ξ ) := 1
VN

logE(eξ SN ): Let f be an
a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X , s.t. VN :=
Var(SN) 6= 0 for N ≥ N0.

Since ‖SN‖∞ < ∞, we may differentiate under the expectation and obtain that for all k,
dk

dξ kE(eξ SN ) = E(Sk
Neξ SN ). A direct calculation now shows that

F ′
N(ξ ) =

1
VN

E(SNeξ SN )

E(eξ SN )
=

1
VN
EY ξ

N (SN),

F ′′
N(ξ ) =

1
VN

E(S2
Neξ SN )

E(eξ SN )
−

(
E(SNeξ SN )

E(eξ SN )

)2
=

VarY
ξ

N (SN)

Var(SN)
, where Y ξ

N := eξ SN .

Part 1: Substituting ξ = 0 gives FN(0) = 0, F ′
N(0) =

E(SN)
VN

, F ′′
N(0) = 1.

Part 2: F ′′
N(ξ ) = 0 ⇔ VarY

ξ

N (SN) = 0 ⇔ SN = const Y ξ

N

E(Y ξ

N )
dP–a.s. ⇔ SN = const P–a.s. ⇔

Var(SN) = 0. So FN is strictly convex on R for all N > N0.

Part 3:
Ṽ ξ

N (SN)

Var(SN)
≡ VarZN (SN)

Var(SN)
, where Zξ

N := eξ SN
hξ

N+1

hξ

1

(the normalization constant does not

matter). Next, Zξ

N ≡ Y ξ

N W ξ

N , where W ξ

N := hξ

N+1/hξ

1 . Lemma 6.8 says that for every R > 0 there

is a constant C =C(R) s.t. C−1 ≤W ξ

N ≤C for all N and |ξ | ≤ R. Lemma 6.10 and the obvious
identity h0

n ≡ 1 imply that W ξ

N −−−→
ξ→0

1 uniformly in N. So there is no loss of generality in

assuming that C(R)−−−→
R→0

1.

By Lemma 6.16 with the probability measure eξ SN

E(eξ SN )
dP and Y =W ξ

N ,

Ṽ ξ

N (SN)

VNF ′′
N(ξ )

=
VarY

ξ

N W ξ

N (SN)

VarY
ξ

N (SN)
∈
[
C(R)−4,C(R)4] , ∀|ξ | ≤ R, N ≥ 1. (6.3.30)

By Lemma 6.12(3), Ṽ ξ

N (SN) � VN uniformly on compact sets of ξ , and by Lemma 6.15
for every ε there exists δ ,Nε > 0 s.t. e−ε < Ṽ ξ

N (SN)/VN < eε for all N > Nε and |ξ | ≤ δ . It
follows that for every R there exists C2(R)> 1 such that C2(R)−−−→

R→0
1 and C2(R)−1≤F ′′

N(ξ )≤
C2(R) for all |ξ | ≤ R.

Part 4: Suppose ε > 0. We saw in part 3 that there exist δ ,Nε s.t. e−ε ≤F ′′
N(ξ ) ≤ eε for all

|ξ | ≤ δ ,N ≥ Nε .
Recall that FN(0) = 0 and F ′

N(0) = E(SN)/VN . So for all |ξ | ≤ δ ,

FN(ξ ) = FN(0)+
∫

ξ

0

(
F ′

N(0)+
∫

η

F ′N(0)
F ′′

N(α)dα

)
dη .
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Since F ′′
N = e±ε on [−δ ,δ ] and |η | ≤ |ξ | ≤ δ ,

FN(ξ ) =
E(SN)

VN
ξ +

1
2

e±ε

(
ξ − E(SN)

VN

)2

. �

6.3.6 Asymptotics of the rate functions.

The rate functions IN(η) are the Legendre transforms of FN(ξ ) =
1

VN
logE(eξ SN ). Recall

that the Legendre transform of a strictly convex function ϕ : R → R is the function ϕ∗ :
(infϕ ′,supϕ ′)→ R,

ϕ
∗(η) = ξ η−ϕ(ξ ) for the unique ξ s.t. ϕ

′(ξ ) = η .

On its domain, ϕ∗(η) = max{ξ η−ϕ(ξ )}.

Lemma 6.17 Suppose ϕ(ξ ) is strictly convex and twice differentiable on R, and let ϕ ′(±∞) :=
lim

ξ→±∞

ϕ ′(ξ ). Then the Legendre transform ϕ∗ is strictly convex and twice differentiable on

(ϕ ′(−∞),ϕ ′(+∞)), and for every ξ ∈ R,

ϕ
∗(ϕ ′(t)) = tϕ ′(t)−ϕ(t), (ϕ∗)′(ϕ ′(t)) = t , (ϕ∗)′′(ϕ ′(t)) =

1
ϕ ′′(t)

(6.3.31)

Proof. Under the assumptions of the lemma, ϕ ′ is strictly increasing and differentiable. So
(ϕ ′)−1 : (ϕ ′(−∞),ϕ ′(∞))→ R is well-defined, strictly increasing and differentiable, and

ϕ
∗(η) = η(ϕ ′)−1(η)−ϕ[(ϕ ′)−1(η)]

The lemma follows by differentiation of right-hand-side. �

Proof of Theorem 6.2 on the asymptotics of the rate functions IN := F ∗
N:

Part 1: Since FN is strictly convex and smooth, F ′
N is strictly increasing and continuous. So

F ′
N [−1,1] = [F ′

N(−1),F ′
N(1)] ≡ [a1

N ,b
1
N ], and for every η ∈ [a1

N ,b
1
N ], there exists a unique

ξ ∈ [−1,1] such that F ′
N(ξ ) = η . So dom(IN)⊃ [a1

N ,b
1
N ].

By Theorem 6.1 there is C > 0 such that C−1 ≤F ′′
N ≤ C on [−1,1] for all N ≥ N0. Since

F ′
N(0) =

E(SN)
VN

and F ′
N(ρ) = F ′

N(0)+
∫ ρ

0 F ′′
N(ξ )dξ , we have

b1
N ≡F ′

N(1)≥
E(SN)

VN
+C−1 , a1

N ≡F ′
N(−1)≤ E(SN)

VN
−C−1.

So dom(IN)⊇ [a1
N ,b

1
N ]⊇

[
E(SN)

VN
−C−1, E(SN)

VN
+C−1

]
for all N ≥ N0.

Part 2 follows from Lemma 6.17 and the strict convexity of FN on [−R,R].

Part 3: Let JN :=
[
E(SN)

VN
−C−1, E(SN)

VN
+C−1

]
. In part 1 we constructed functions ξN : JN →

[−1,1] such that F ′
N(ξN(η)) = η .

Clearly ξN

(
E(SN)

VN

)
= 0. Recalling that C−1 ≤ F ′′

N ≤ C on [−1,1], we see that ξ ′N(η) =
1

F ′′
N(ξN(η))

∈ [C−1,C] on JN . Hence

|ξN(η)| ≤C|η− E(SN)
VN
| for all η ∈ JN , N ≥ N0.
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Fix 0 < ε < 1. By Theorem 6.1(4) there are δ ,Nε > 0 s.t. e−ε ≤F ′′
N ≤ eε on [−δ ,δ ] for all

N > Nε . If |η− E(SN)
VN
|< δ/C, then |ξN(η)|< δ , and F ′′

N(ξN(η)) ∈ [e−ε ,eε ].

Since FN(0) = 0 and F ′
N(0) =

E(SN)
VN

, we have by (6.3.31) that IN(
E(SN)

VN
) = I ′N(

E(SN)
VN

) = 0
and I ′′N (η) = 1/F ′′

N(ξN(η)) ∈ [e−ε ,eε ]. Writing

IN(η) = IN(
E(SN)

VN
)+

∫
η

E(SN)
VN

(
I ′N(

E(SN)
VN

)+
∫

α

E(SN)
VN

I ′′N (β )dβ

)
dα,

we find that IN(η) = e±ε 1
2(η−

E(SN)
VN

)2 for all η s.t. |η− E(SN)
VN
| ≤ δ/C.

Part 4: If zN−E(SN)
VN

→ 0, then
zN

VN
∈
[
E(SN)

VN
−δN ,

E(SN)

VN
+δN

]
with δN → 0. By part 3,

IN(
zN
VN
)∼ 1

2

(
zN−E(SN)

VN

)2
, whence VNIN(

zN
VN
)∼ 1

2

(
zn−E(SN)√

VN

)2
. �

Let HN(η) denote the Legendre transform of PN(ξ )/VN . We will compare HN(η) to IN(η).
This is needed to link the change of measure we performed in section §6.3.3 to the functions
IN which appear in the statement of the local limit theorem for large deviations.

Lemma 6.18 Suppose R > 0 and VN 6= 0 for all N large enough. Then

(1) HN is well-defined and real-analytic on
[

P′N(−R)
VN

,
P′N(R)

VN

]
for all N large enough.

(2) There exists c > 0 such that HN(·) is well-defined and real-analytic on(
E(SN)

VN
− c, E(SN)

VN
+ c
)

for all N large enough.

Proof. Lemma 6.13 and its proof provide real analytic maps

ξN :
[

P′N(−R)
VN

,
P′N(R)

VN

]
→ [−R,R] s.t.

P′N(ξN(η))

VN
= η .

Hence HN(η) =
1

VN

[
ξN(η)P′N(ξ (η))−PN(ξ (η))

]
is well-defined and real-analytic on the in-

terval [P′N(−R)
VN

,
P′N(R)

VN
]. This proves part (1). Part (2) follows from Lemma 6.13(2). �

Lemma 6.19 Suppose VN 6= 0 for all N ≥ N0, then ∃c > 0 such that

(1) dom(IN)∩dom(HN)⊃
[
E(SN)

VN
− c, E(SN)

VN
+ c
]

for all N ≥ N0.

(2) Recall that [aR
N ,b

R
N ] = [F ′

N(−R),F ′
N(R)]. For every R> 0 there exists C(R)> 0 s.t. if z/VN ∈

[aR
N ,b

R
N ] and N ≥ N0, then ∣∣VNIN(

z
VN
)−VNHN(

z
VN
)
∣∣≤C(R).

(3) For every ε > 0, ∃δ ,Nε > 0 s.t. if N ≥ Nε and
∣∣∣ z−E(SN)

VN

∣∣∣< δ , then∣∣VNIN(
z

VN
)−VNHN(

z
VN
)
∣∣≤ ε.

Proof. Part (1) is a direct consequence of Lemma 6.18 and Theorem 6.2(1).
To prove the other parts of the lemma, we use the following consequence of Lemma 6.12(6):

For every R > 0, for all N large enough, for every η ∈ [aR
N ,b

R
N ], there exist ξ

(1)
N ,ξ

(2)
N ∈ [−(R+

1),(R+1)] such that
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P′N(ξ
(1)
N )

VN
= η , F ′

N(ξ
(2)
N ) = η .

Arguing as in the proof of part 3 of Theorem 6.2, we can also find a constant C(R) such that
|ξ (i)

N | ≤C(R)
∣∣η− E(SN)

VN

∣∣.
It is a general fact that the Legendre transform of a convex function ϕ is equal on its domain

to ϕ∗(η) = sup
ξ

{ξ η−ϕ(ξ )}. Thus for every z ∈ [aR
NVN ,bR

NVN ],

VNIN

(
z

VN

)
=VN sup

ξ

{
ξ

z
VN
−FN(ξ )

}
=VN

(
ξ
(2)
N

z
VN
−FN(ξ

(2)
N )

)

≤VN

(
ξ
(2)
N

z
VN
−

PN(ξ
(2)
N )

VN

)
+∆N (R+1) , see Lemma 6.12(5)

≤VN sup
ξ

{
ξ

z
VN
− PN(ξ )

VN

}
+∆N(R+1)≡VNHN

(
z

VN

)
+∆N(R+1).

So VNIN
( z

VN

)
−VNHN

( z
VN

)
≤ ∆N(R+1).

Similarly, one can show that VNHN
( z

VN

)
−VNIN

( z
VN

)
≤ ∆N(R+1), whence

sup
N≥N0

sup
z∈[aR

NVN ,bR
NVN]

∣∣∣∣VNIN

(
z

VN

)
−VNHN

(
z

VN

)∣∣∣∣≤ sup
N≥N0

∆N(R+1).

Part (2) now follows from Lemma 6.12(5).

If instead of taking z/VN ∈ [aR
N ,b

R
N ] we take z/VN ∈

(
E(SN)

VN
−δ ,

E(SN)

VN
+δ

)
, then |ξ (i)

N |<

Cδ , and the same argument will show that

sup
N≥N0

sup∣∣∣ z−E(SN )
VN

∣∣∣≤δ

∣∣∣∣VNIN

(
z

VN

)
−VNHN

(
z

VN

)∣∣∣∣≤ sup
N≥N0

∆N(Cδ ).

Part (3) follows from Lemma 6.12(5). �

6.3.7 The local limit theorem for large deviations.

Proof of Theorem 6.5. We give the proof in the non-lattice case; the modifications needed for
the lattice case are routine.

Suppose f is an a.s. uniformly bounded additive functional of a uniformly elliptic Markov
chain X. We assume that f is irreducible, and that f has algebraic range R. In this case f is not
center-tight, and VN := Var(SN)→ ∞ (see §2.1). There is no loss of generality in assuming that
VN 6= 0 for all N.

Recall that [âN , b̂N ] = [F ′
N(−R)− E(SN)

VN
,F ′

N(R)−
E(SN)

VN
], and suppose

zN−E(SN)

VN
∈ [âN , b̂N ].
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Let hξ
n (·) := hn(·,ξ ), pn(ξ ), and PN(ξ ) be as in §§6.3.2, 6.3.3. The assumption on zN allows us

to construct ξN ∈ [−(R+1),(R+1)] as in Lemma 6.13:

P′N(ξN) = zN and ξN = O
(

zN−E(SN)
VN

)
.

Define a Markov array X̃ := {X̃ (N)
n : 1 ≤ n ≤ N +1} with state spaces (Sn,B(Sn),µn) (the

state spaces of X), and transition probabilities

π̃
(N)
n,n+1(x,dy) := eξN fn(x,y) hn+1(y,ξN)

epn(ξN)hn(x,ξN)
·πn,n+1(x,dy).

Let f̃ = { f (N)
n : 1≤ n≤ N +1,N ∈ N} where f (N)

n := fn, and set

S̃N := f1(X̃
(N)
1 , X̃ (N)

2 )+ · · ·+ fN(X̃
(N)
N , X̃ (N)

N+1).

Recall that eξN fn , hn, and epn(ξN) are uniformly bounded away from zero and infinity, by
the assumption on f, and Lemma 6.8. So π̃

(N)
n,n+1(x,dy) differ from πn,n+1(x,dy) by densities

which are bounded away from zero and infinity uniformly in N. It follows that X̃ is uniformly
elliptic, f̃ is a.s. uniformly bounded, and the structure constants of (X̃, f̃) are equal to the structure
constants of (X, f) up to a uniformly bounded multiplicative error. Thus

(1) (X̃, f̃) and (X, f) have the same algebraic ranges, co-ranges, and essential ranges. In partic-
ular, (X̃, f̃) is irreducible and non-lattice.

(2) (X̃, f̃) is stably hereditary (see Examples 3.5 and 3.6 in §3.2.3).
(3) ṼN := Var(S̃N)−−−→

N→∞
∞ (because ṼN � ∑

N
n=3 u2

n �VN → ∞).

Furthermore, by the choice of ξN , E(S̃N)≡ ẼξN (SN) = zN +O(1), so

zN−E(S̃N)√
VN

= O
(

1√
VN

)
−−−→
N→∞

0.

Therefore S̃N satisfies the local limit theorem (Theorem 4.1):

Px(S̃N− zN ∈ (a,b))∼ |a−b|
/√

2πṼ ξN
N

for every x ∈S1 and (a,b) 6=∅.

We will translate this into an asymptotic for P(SN− zN ∈ (a,b)). For all N large enough, for
every x ∈S1,

Px[SN− zN ∈ (a,b)] = ePN(ξN)−ξNzN×

×Ex

(
eξNSN

hξN
N+1(X

(N)
N+1)

ePN(ξN)hξN
1 (x)

·
hξN

1 (x)

hξN
N+1(X

(N)
N+1)

· eξN(zN−SN)1(a,b)(SN− zN)

)
= ePN(ξN)−ξNzN hξN

1 (x)Ẽx

(
hξN

N+1(X̃
(N)
N+1)

−1
φa,b(S̃N− zN)

)
(6.3.32)

where φa,b(t) := 1(a,b)(t)e−ξNt .
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The pre-factor simplifies as follows. By construction P′N(ξN)
VN

= zN
VN
. Thus

ξN zN−PN(ξN) =VN

(
ξN

zN

VN
− PN(ξN)

VN

)
=VN

(
ξN

P′N(ξN)

VN
− PN(ξN)

VN

)
.

So

ePN(ξN)−ξNzN = e−VNHN

(
zN
VN

)
, (6.3.33)

where HN(η) is the Legendre transform of PN(ξ )/VN .
Using the mixing LLT for Markov arrays Theorem 4.3, one can see that

Ex

(
hξN

N+1(X̃
(N)
N+1)

−1
φa,b(S̃N− zN)

)
∼

µN+1

(
1/hξN

N+1

)
√

2πṼ ξN
N

∫ b

a
e−ξNtdt, (6.3.34)

as N → ∞. To do this approximate φa,b in L1(R) from below and above continuous functions
with compact support, and approximate hξN

N+1 in L1(S
(N)
N+1,B(S

(N)
N+1),µ

(N)
N+1) from above and

below by finite linear combinations of indicators of sets with uniformly bounded measure (here
µ
(N)
N+1 is the distribution of X (N)

N+1).

Since ξN is bounded, Lemma 6.12(4) tells us that Ṽ ξN
N ∼ P′′N(ξN) as N→ ∞. Since HN(η) is

the Legendre transform of PN(ξ )/VN , and P′N(ξN)/VN = zN/VN ,

Ṽ ξN
N ∼VN ·

(
P′′N(ξN)

VN

)
=

VN

H ′′N(
zN
VN
)

as N→ ∞. (6.3.35)

Substituting (6.3.33), (6.3.34), and (6.3.35) in (6.3.32), we obtain the following:

Px[SN− zN ∈ (a,b)]∼

[
e−VNIN(

zN
VN

)

√
2πVN

∫ b

a
e−ξNtdt

]
×

×
[

eVNIN(
zN
VN

)−VNHN(
zN
VN

)
√

H ′′N(
zN−E(SN)

VN
)

]
︸ ︷︷ ︸

ρ̂N

(
zN−E(SN )

VN

) ×
[

hξN
1 (x)µN+1

(
1

hξN
N+1

)]
︸ ︷︷ ︸

ρN

(
x, zN−E(SN )

VN

)
Let ηN := zN−E(SN)

VN
, then ξN = ξN(ηN) where ξN : [âN , b̂N ]→ [−(R+1),(R+1)] is defined

implicitly by P′N(ξN(η)) = ηVN +E(SN). Lemma 6.13 shows that ξN(·) is well-defined.
Notice that there exists a constant L = L(R) such that |ηN | ≤ L(R). Indeed, ηN ∈ [âR

N , b̂
R
N ] and

|âR
N |, |b̂R

N | ≤ |F ′(±R)−F ′(0)| ≤ R sup
[−R,R]

F ′′
N , which is uniformly bounded by Theorem 6.1(3).

The functions ρ̂N : [−L,L]→ R are defined by

ρ̂N(η) := eVNIN

(
η+

E(SN )
VN

)
−VNHN

(
η+

E(SN )
VN

)√
H ′′N(η).

Lemma 6.19 and Theorem 6.2 say that there exists C such that

C−1 ≤ ρ̂N(η)≤C for all N and |η | ≤ L.

They also say that for every ε > 0 there are δ ,Nε > 0 s.t.
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e−ε ≤ ρ̂N(η)≤ eε for all N > Nε and |η | ≤ δ .

In particular, if zN−E(SN)
VN

→ 0, then ρ̂N
( zN−E(SN)

VN

)
−−−→
N→∞

1.

The functions ρN : S1× (−c,c)→ R are defined by

ρN(x,η) := h1(x,ξ (η))µN+1

(
1

hN+1(x,ξ (η))

)
.

By Lemma 6.8, there exists a constant C such that

C−1 ≤ ρN(x,η)≤C for all N and |η | ≤ L.

By Lemma 6.10 and the obvious identity hn(·,0)≡ 1, ‖hξ
n −1‖∞ −−−→

ξ→0
0 uniformly in n. Since

|ξ (η)| ≤C|η |, for every ε > 0 there are δ ,Nε > 0 such that

e−ε ≤ ρN(x,η)≤ eε for all x ∈S1, N > Nε , and |η | ≤ δ .

Setting ρN := ρ̂N ·ρN we complete the proof of theorem in the non-lattice case. The modifica-
tions needed for the lattice case are routine, and are left to the reader. �

6.3.8 Rough bounds in the reducible case.

Proof of Theorem 6.6: We proceed as in the proof of Theorem 6.5 in §6.3.7, but using the
rough bounds of §5.2.5 instead of the precise LLT to estimate the probabilities for the change
of measure.

Let } = 100K + 1 where K = ess sup(f). Then using Theorem 5.4 and the assumption that
zN ∈ [F ′

N(ε),b
R
N ] we get that there exist a constant c = c(R) and ξN := ξN

(
zN
VN

)
∈ [ε,R+ 1]

such that for all N large enough,

ce−ξN}}≤
√

VNP(SN− zN ∈ [0,}])

e−VNIN

(
zN
VN

) . (6.3.36)

Note that Theorem 5.4 is applicable since }> 2δ (f) due to Corollary 3.3).
Since P(SN ≥ zn)≥ P(SN− zN ∈ [0,}]) the lower bound follows.
Likewise applying Lemma 5.11 we conclude that there is a constant C∗ =C∗(R) s.t for all N

large enough we have, uniformly in j ∈ N∪{0},
√

VNP(SN− zN ∈ [} j,}( j+1)])

e−VNIN

(
zN
VN

) ≤C∗e−ξN} j.

Summing over j we obtain the lower bound. �

6.4 Large deviations threshold

The results of this chapter are all stated for zN s.t. for some R > 0 and all sufficiently large N,
zN−E(SN)

VN
∈ [âR

N , b̂
R
N ]. In this section we will discuss how restrictive is this assumption.
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We say that a sequence {zN} is R-admissible if there is a constant N0 s.t. for N ≥ N0 ∃ξN ∈
[−R,R] such that P′N(ξN) = zN . A sequence {zN} is admissible if it is R-admissible for some R.

A number z is called reachable (respectively R-reachable) if the sequence {zVN} is admis-
sible (respectively R-admissible).

We denote the set of R–reachable points by CR and the set of reachable points by C . Since
P′N is monotone increasing,

int(C ) = (c−,c+)

for some c± = c±(X).

Example 6.20 (Sums of iid’s)

Let SN =
N

∑
n=1

Xn where Xn are iid random variables having law X with expectation zero and

variance one. Recall from Example 6.2 that in this case FN does not depend on N 2 so by
property (ii) of Example 6.2 we obtain

c− = ess inf(X), c+ = ess sup(X). (6.4.1)

Then SN/N ∈ [c−,c+] almost surely for all N, and therefore P[SN − zN ∈ (a,b)] is zero when
z 6∈ [c−,c+]. Henceforth we refer to such z as “irrelevant.”

Not all relevant z are reachable: z is reachable only when z∈ (c−,c+). Our results do not apply
for z = c±. Indeed different asymptotic behavior may hold for zN s.t. zN

VN
→ c±, see Example 6.1.

Still, the large deviation LLT for P[SN− zN ∈ (a,b)] holds for most “relevant” values of z. Our
next example shows that this is not always the case:

Example 6.21

Let Xn = (Yn,Zn) where {Yn}, {Zn} are two independent sequences of iid random variables
having uniform distribution on [0,1]. Fix a sequence {pn} and let

fn(Yn,Zn) =

{
Zn if Yn > pn

2 if Yn ≤ pn.

We now discuss two possible choices of {pn}.
(a) Let f ′ be defined as above with pn ≡ 1

2 . Then f ′n are iid so by discussion of the Example
6.20 the results of the present chapter apply to P(S′N ∈ zN+(a,b)) provided that z∈ (0,2) while
the possible range of SN(f

′)
N is [0,2].

(b) Let f ′′ be defined as above with pn tending to 0 as n→ ∞. Since Var(Zn) =
1

12 it follows

that VN = (1+o(1))
N
12

. We shall show below that in case (b)

c− = 0, c+ = 12. (6.4.2)

In other words the results of the present chapter apply to P(SN(f
′′) ∈ zN +(a,b)) provided that

z ∈ (0,1). On the other hand, the possible range of SN(f
′′)

N is [0,2] since for each fixed N the
distributions of SN(f

′) and SN(f
′′) are absolutely continuous with respect to each other. We will

see that the reason our results do not apply for z > 1 is that in that case P(SN(f
′′)≥ zN) decays

super exponentially.
2 Note that in this case we also have PN(ξ )/N = FN(ξ ), since LN,ξ (eξ xn+1 ) = E(eξ X ) · eξ xn , whence pn(ξ ) = lnE(eξ X ).
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In this section we discuss methods for computing c± (in particular, proving (6.4.2)) and pro-
vide sufficient conditions for good behavior, when (c−,c+) covers “most” relevant z.

Lemma 6.22 ∀R> 0 ∃ε = ε(R)> 0 s.t. if {zN} is R-admissible, and |zN−zN | ≤ εVN , then {zN}
is (R+1)-admissible.

Proof. By the uniform strict convexity of PN
VN

on [−(R+1),(R+1)], there exists ε > 0 such that
P′N(R+1)≥ zN + εVN and P′N(−(R+1))≤ zN− εVN . �

Corollary 6.23 (a) C is open, and (b) if E(Sn) ≡ 0, then C is a non-empty neighborhood of
zero.

Proof. Part (a) follows from Lemma 6.22. Part (b) follows from (6.3.23). �

Without the assumption E(SN) = 0, C may be empty. Even though Theorem 6.2 provides
many admissible sequences, the associated zN

VN
need not converge:

Example 6.24 An example with C = ∅ and with admissible sequences {zN} such that zN/VN
does not converge.

Let Nk = 10k. Consider Xn = an +Un where Un are iid having uniform distribution on [0,1] and

an =

{
10 if N2k ≤ n < N2k+1,

−10 if N2k+1 ≤ n < N2k+2.

With probability one SN2k+1 > N2k+1, SN2k <−N2k. The first inequality gives C ∩ (−∞,0] =∅,
the second one gives C ∩ [0,+∞) =∅. Hence C =∅.

In this example, if {zN} is an admissible sequence then
zN2k+1
N2k+1

≥ 1 and
zN2k
N2k
≤ −1. Since

VN = N
12 the ratio zN

VN
does not converge.

Theorem 6.7. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X, with essential range Z or R. The following are equivalent:

(a) {zN} is admissible.
(b) ∃ε > 0,η > 0 s.t. ∀{zN} with |zN−zN | ≤ εVN and ∀aN ,bN s.t. |aN |, |bN | ≤ 10 and bN−aN >

1 we have P(SN ∈ zN +(aN ,bN))≥ ηVN .
(c) ∃ε > 0,η > 0 s.t. P(SN ≥ zN + εVN)≥ η

VN and P(SN ≤ zN− εVN)≥ ηVN .

Example 6.25 The case ε = 0.

Let SN =
N

∑
n=1

Xn where Xn are iid supported on [α,β ] and such that X has an atom on the right

edge: P(X = β ) = γ > 0. Then P[SN ≥ βN] = P[SN = βN] = γN while P[SN ≥ βN + 1] = 0.
Thus {βN} is not admissible. This example shows that taking ε = 0 in part (c) of Theorem 6.7
gives a condition which is not equivalent to the conditions (a)–(c) of the theorem.

Proof. (a)⇒ (b) : If {zN} is admissible then by Lemma 6.22 ∃ε > 0 such that if |zN−zN | ≤ εVN
then {zN} is admissible. Now (b) follows from formula (6.3.36) in the proof of Theorem 6.6.

(b)⇒ (c) : The bound P[SN ≥ zN + εVN ] ≥ ηVN follows from part (b) with zN = zN + εVN ,
aN = 0, bn = 1.1. The lower bound is similar.

(c)⇒ (a) : Our assumptions on the essential range imply that (X, f) is not center-tight, and
therefore VN → ∞. By Lemma 6.12(5) PN(R)−VNFN(R) is eventually bounded, and therefore
for some c(R)> 0 and all N > N(R),



6.4 Large deviations threshold 165

ePN(R) ≥ c(R)E
(

eRSN
)
≥ c(R)E

(
eRSN 1[SN≥zN+εVN ]

)
≥ c(R)ηVN eR(zN+εVN).

This implies that for all N large enough PN(R)≥ R(zN +(ε/2))VN .
Since PN(0) = 0 the Mean Value Theorem tells us that ∃ξ+

N ∈ [0,R] such that P′N(ξ
+
N ) ≥

zN+
εVN

2
. Likewise we can find ξ

−
N ∈ [−R,0] such that P′N(ξ

−
N )≤ zN−

εVN

2
. By the Intermediate

Value Theorem ∃ξN ∈ [ξ−N ,ξ+
N ] s.t. P′N(ξN) = zN . �

Corollary 6.26 Under the assumptions of the previous theorem, if E(SN)≡ 0 then c+ = sup{z :
I(z)< ∞}, where

I(z) = limsup
N→∞

| logP(SN ∈ zVN +[−1,1])|
logVN

.

Proof. By Theorem 6.7(b), if z ∈ (c−,c+), then I(z)< ∞. So c+ ≤ sup{z : I(z)< ∞}.
To see the other inequality, note that c+ > 0 (by Corollary 6.23), and I(0)< ∞ (by (6.3.36)).

We will show that

1
2

sup{z : I(z)< ∞}< z < sup{z : I(z)< ∞}⇒ z is admissible, (6.4.3)

and deduce that c+ ≥ sup{z : I(z)< ∞}.
Fix z as in (6.4.3), then ∃ε > 0 s.t. I(z+2ε)< ∞ and z− ε > 0. Necessarily ∃η > 0 s.t. for

all N large enough

P[SN ≥ (z+ ε)VN ]≥ P[SN ∈ (z+2ε)VN +[−1,1]]≥ η
N

P[SN ≤ (z− ε)VN ]≥ P[SN ≤ 0] =
1
2
+o(1)≥ η

N

By Theorem 6.7(c), z is admissible. �

We say that (X, f) and (X̃, f̃) are related by the change of measure if fn ≡ f̃n and πn(x,dy) is
equivalent to π̃N(x,dy) with

ε ≤ π̃n(x,dy)
πn(x,dy)

≤ ε
−1.

Lemma 6.27 Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. If (X, f) and (X̃, f̃) are related by the change of measure and VN ≥ cN for some
c > 0, then {zN} is (X, f)-admissible iff {zN} is (X̃, f̃)-admissible.

Proof. Since X is uniformly elliptic, X̃ is uniformly elliptic. The exponential mixing bounds for
uniformly elliptic chains imply that ṼN := Var[SN(X̃, f̃)] and VN := Var[SN(X̃, f̃)] are both O(N).
Without loss of generality, cN ≤VN ≤ c−1CN .

Under the assumptions of the Lemma, the structure constants of (X, f) are equal to the
structure constants of (X̃, f̃) up to bounded multiplicative error. By Theorem 2.7, ṼN :=
Var[SN(X̃, f̃)]�VN as N→ ∞. So ∃c̃ > 0 s.t. c̃N ≤ ṼN ≤ c̃−1N.

Let {zN} be (X, f)-admissible. Then there are ε > 0,η > 0 such that

P[SN ≥ zN + εVN ]≥ η
N , P[SN ≤ zN− εVN ]≥ η

N .

It follows that P̃[SN(X̃, f̃)≥ zN + ε̃ṼN ]≥ η̃N , P̃[SN(X̃, f̃)≤ zN− ε̃ṼN ]≥ η̃N where η̃ = ηε and
ε̃ := c̃cε . Hence {zN} is X̃-admissible. �
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Lemma 6.28 Let f and f̃ be two a.s. uniformly bounded additive functionals on the same uni-
formly elliptic Markov chain. Suppose VN := Var[SN(f)]→ ∞ and

lim
N→∞

‖SN (̃f)−SN(f)‖∞

VN
= 0. (6.4.4)

Then {zN} is f-admissible iff {zN} is f̃-admissible.

Proof. We write SN = SN(f), and S̃N = SN(f). By the assumptions of the lemma, ṼN :=
Var(S̃N)∼VN as N→ ∞.

Let {zN} be f-admissible. By Theorem 6.7(b), there are ε > 0,η > 0 such that

P[SN ≥ zN + εVN ]≥ η
N , P[SN ≤ zN− εVN ]≥ η

N .

It now follows from (6.4.4) that for large N

P̃
[
S̃N ≥ zN +

ε

2
ṼN

]
≥ η

N , P̃
[
S̃N ≤ zN−

ε

2
ṼN

]
≥ η

N .

Hence {zN} is f̃-admissible. �

We end this section by proving (6.4.2).

Proof of (6.4.2). To show that c+ ≤ 12 assume by contradiction that int(C ) contained some
z > 12. Then Theorem 6.6 would imply that

P[SN ≥ zVN ]≥ η
VN for some η > 0. (6.4.5)

Note that
logE(eξ fn(Yn,Zn)) = log

(
pne2ξ +(1− pn)E(eξU [0,1])

)
= log

(
pne2ξ +(1− pn)

eξ −1
ξ

)
−−−→
n→∞

log
eξ −1

ξ

because pn→ 0. So

FN(ξ ) =
1

VN
log

N

∏
n=1
E
(

eξ fn(Yn,Zn)
)
∼ 12

N

N

∑
n=1

logE
(

eξ fn(Yn,Zn)
)
−−−→
N→∞

12log

(
eξ −1

ξ

)
.

The last expression is strictly smaller than 12ξ if ξ > 0. Therefore for any ξ > 0 we have for
sufficiently large N, E

(
eξ SN

)
≤ e12VNξ . By Markov’s inequality,

P [SN ≥ zVN ]≤ e(12−z)VNξ for all ξ > 0 and N sufficiently large.

But this is incompatible with (6.4.5), since z > 12. Therefore c+ ≤ 12.
Next we show that (0,12) ∈Int(C ). By Theorem 6.7 it suffices to show that for every z :=

z
12 ∈ (0,1), ∃ε,η > 0 such that P[A±ε (N)]≥η

N where

A+
ε (N) = P[SN ≥ (z+ ε)N], A−ε (N) = P[SN ≤ (z− ε)N].

Take ε > 0 so small that z := z+ ε < 1. Since SN ≥ ZN we have
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P[SN ≥ zN]≥ P

[
N

∑
n=1

Zn ≥ zN

]
.

The RHS is greater than some η
N in view of Theorem 6.6 and equation (6.4.1) from Example

6.20. It follows that c+ = 12.
The proof of the fact that c− = 0 is similar but easier. �

6.5 Notes and references

The reader should note the difference between the LLT for large deviations and the large de-
viations principle (LDP): LLT for large deviations give the asymptotics of P[SN − zN ∈ (a,b)]
or P[SN > zN ]; The LDP gives the asymptotics of the logarithm of P[SN > zN ], see Dembo &
Zeitouni [35] and Varadhan [149].

The interest in precise asymptotics for P[SN > zN ] in the regime of large deviations goes
back to the first paper on large deviations, by Cramér [31]. That paper gave an asymptotic
series expansion for P[SN −E(SN) > x] for SN =sums of iid’s. The first sharp asymptotics for
P[SN − zN ∈ (a,b)] appear to be the work of Richter [126],[74, chapter 7] and Blackwell &
Hodges [14].

These results were refined by many authors, with important contributions by Petrov [116],
Linnik [96], Moskvin [106], Bahadur & Ranga Rao [11], Statulavicius [144] and Saulis [134].
We refer the reader to the books of Ibragimov & Linnik [74], Petrov [117], and of Saulis & Stat-
ulevicius [135] for accounts of these and other results, and also to the survey of Nagaev [110]
for a discussion of the case of sums of independent random variables which are not necessarily
identically distributed.

Plachky and Steinebach [118] and Chaganty & Sethuraman [22, 23] proved LLT for large
deviations for arbitrary sequences of random variables Tn (e.g. sums of dependent random vari-
ables), subject only to assumptions on the asymptotic behavior of the normalized log-moment
generating functions of Tn and their Legendre-Fenchel transforms (their rate functions). Our
LLT for large deviations are in the spirit of these results.

Corollary 6.4 is an example of a limit theorem conditioned on a large deviation. For other
examples of such results, in the context of statistical physics, see [39].

We comment on some of the technical devices in the proofs. The “change of measure” trick
discussed in section 6.3.1 goes back to Cramér [31] and is a standard idea in large deviations.
In the classical homogeneous setup, a single parameter ξN = ξ works for all times N, but in our
inhomogeneous setup, we need to allow the parameter ξN to depend N. For other instances of
changes of measure which involve a time dependent parameter, see Dembo & Zeitouni [34] and
references therein.

Birkhoff’s Theorem on the contraction of Hilbert’s projective metric is proved in [13]. Results
similar to Lemma 6.7 on the existence of the generalized eigenfunction hξ

n were proved by many
authors in many different contexts, see for example [81], [56],[15], [131], [54], [69], [67]. The
analytic dependence of the generalized eigenvalue and eigenvector on the parameter ξ was
considered in a different context (the top Lyapunov exponent) by Ruelle [129] and Peres [115].
Our proof of Lemma 6.10 follows closely a proof in [54]. For an account of the theory of real-
analyticity for vector valued functions, see [43] and [151].





Chapter 7
Miscellaneous examples and special cases

In this chapter we consider several special cases where our general results take stronger form.
These include homogeneous Markov chains, asymptotically homogeneous additive functionals.
We also explain how continuity assumptions can be used to strengthen the results of the previous
chapters.

7.1 Homogenous Markov chains

A Markov chain X= {Xn} is called homogeneous if its state spaces and transition probabilities
do not depend on n

Sn =S, µn = µ, πn(x,dy) = π(x,dy) for all n,

and Xn is stationary.
An additive functional on a homogeneous Markov chain is called homogeneous if f = { fn}

and
fn(x,y) = f (x,y) for all n.

The LLT for homogeneous countable state Markov chains is due to Nagaev. The following
version, which allows continuous spaces, follows from results in [73].

Theorem 7.1. Let f denote an a.s. uniformly bounded homogeneous additive functional on a
uniformly elliptic homogeneous Markov chain X.

(1) Asymptotic Variance: The limit σ
2 = lim

N→∞

1
N

Var(SN) exists, and σ2 = 0 iff we can repre-

sent f (X1,X2) = a(X2)−a(X1)+κ a.s. where a : S→R is a bounded measurable function
and κ is a constant, equal to E( f (X1,X2)).

(2) CLT: If σ2 > 0, then SN−E(SN)√
N

converges in probability as N→ ∞ to the Gaussian distribu-

tion with mean zero and variance σ2.

(3) LLT: If σ2 > 0 then exactly one of the following options holds:

(a) Non-Lattice LLT: If zN−E(SN)√
N
→ z, then for every interval [a,b],

P[SN− zN ∈ [a,b]] = [1+o(1)]
e−z2/(2σ2)

√
2πσ2N

(b−a), as N→ ∞;

169
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(b) Periodicity: There exist κ ∈R, t > 0 and a bounded measurable function a : S→R such
that f (X1,X2)+a(X1)−a(X2)+κ ∈ tZ a.s.

Proof. Let VN := Var(SN) and fk := f (Xk,Xk+1), and assume without loss of generality that
E[ f (X1,X2)] = 0.

Proof of part (1): By stationarity, E( fn) = 0 for all n, and so

VN = E
(

f 2
n
)
=

N

∑
n=1
E( f 2

n )+2 ∑
1≤m<n=N

E( fn fm).

By stationarity, E( fn fm) = E( f0 fn−m) and

1
N

VN = E( f 2
0 )+2

N−1

∑
k=1
E( f0 fk)

(
1− k

N

)
.

|E( f0 fm)| decays exponentially (Prop. 1.11), so ∑ |E( f0 fk)|< ∞, whence

σ
2 := lim

N→∞

1
N

Var(SN) = E( f 2
0 )+2

∞

∑
k=1
E( f0 fk). (7.1.1)

(This identity for σ2 is called the Green-Kubo formula.)
Let un denote the structure constants of (X, f). The homogeneity assumptions implies that un

is independent of n, say un = u for all n. It follows that UN ≡ u2
3 + · · ·+u2

N = (N−2)u2. Now
we have two cases:

(I) u > 0: In this case by Theorem 2.7, VN �UN � N, whence σ2 > 0.
(II) u = 0: In this case, Var(SN) = O(1) by Theorem 2.7, whence σ2 = 0 and f is center-tight.

By the Gradient Lemma, (Lemma 2.9), f (X1,X2) = a2(X2)−a1(X1)+κ for some a1,a2 :
S→ R bounded and measurable and κ ∈ R. In the homogeneous case, we may take
a1≡ a2, see (2.2.4) in the proof of the Gradient Lemma. So f (X1,X2) = a(X2)−a(X1)+κ

a.s.

Proof of part (2): This follows from part (1) and Dobrushin’s CLT.

Proof of part (3): By homogeneity, the structure constants dn(ξ ) are independent of n, and
they are all equal to d(ξ ) := E(|eiξΓ −1|2)1/2, where Γ is the balance of a random hexagon at
position 3. So DN(ξ ) = ∑

N
k=3 d2

k (ξ ) = (N−3)d2(ξ ).
If d(ξ ) 6= 0 for all ξ 6= 0, then DN(ξ )→ ∞ for all ξ 6= 0, f is irreducible by Theorem 3.2.

and the LLT follows from Theorem 4.1.
If d(ξ ) = 0 for some ξ 6= 0, then DN(ξ ) = 0 for all N, ξ is in the co-range of (X, f), and our

reduction lemma says that there exist cn ∈R and uniformly bounded measurable an :S→R and
hn(Xn,Xn+1) such that ∑hn(Xn,Xn+1) converges a.s., and f (Xn,Xn+1)+an(Xn)−an+1(Xn+1)+
hn(Xn,Xn+1)+κn ∈ 2π

ξ
Z a.s.

Let An(Xn,Xn+1, . . .) := an(Xn)+∑k≥n hk(Xk,Xk+1), then for all n

fn(Xn,Xn+1)+An(Xn,Xn+1, . . .)−An+1(Xn+1,Xn+2, . . .)+κn ∈
2π

ξ
Z a.s. . (7.1.2)

We need to replace Ai(Xi,Xi+1, . . .) by a(Xi). This is the purpose of the following proposition,
whose proof will complete the proof of the theorem:
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Proposition 7.1 Let X be a uniformly elliptic homogeneous Markov chain with state space
(S,B,µ), and let f : S×S→ R be a measurable function such that ess sup | f (X1,X2)| < ∞.
If there exist measurable functions An : SN→ R and κn ∈ R satisfying (7.1.2), then there exist
κ ∈ R and a measurable a : S→ R such that

f (Xn,Xn+1)+a(Xn)−a(Xn+1)+κ ∈ Z a.s. for all n.

Proof. Throughout this proof, let Ω :=SN, equipped with the σ -algebra F generated by the
cylinder sets

[A1, . . . ,An] := {x ∈SN : xi ∈ Ai (i = 1, . . . ,n)} (Ai ∈B)

and the unique probability measure m on (Ω ,F ) s.t.

m[A1, . . . ,An] = P[X1 ∈ A1, . . . ,Xn ∈ An]

Let σ : Ω → Ω denote the left-shift map, σ [(xn)n≥1] = (xn+1)n≥1. The stationarity of X trans-
lates to the shift invariance of m: m◦σ−1 = m.
STEP 1 (Zero-One Law): Let σ−nF := {σ−n(A) : A ∈F}, then for every A ∈

⋂
n≥1 σ−nF ,

either m(A) = 0 or m(A) = 1.

Proof. Fix a cylinder A := [A1, . . . ,A`].
By uniform ellipticity, for every cylinder B = [B1, . . . ,Bn],

m(A∩σ
−(`+1)B) = m([A1, . . . ,A`,∗,B1, . . . ,Bn])≥ ε0m(A)m(B).

Applying this to cylinders [Ω , . . . ,Ω︸ ︷︷ ︸
k times

,B1, . . . ,Bn] we find that

m(A∩σ
−(`+k)[B1, . . . ,Bn])≥ ε0m(A)m(B) for all k ≥ 1.

By the monotone class theorem,

m(A∩σ
−(`+k)E)≥ ε0m(A)m(E) for every F–measurable E and k ≥ 1. (7.1.3)

Suppose E ∈
⋂

k≥1 σ−nF , and let A be an arbitrary cylinder of length `. By the assumption
on E, E = σ−nEn with En ∈F and n > `. So

m(A∩E) = m(E ∩σ
−nEn)≥ ε0m(A)m(En) = ε0m(A)m(E).

We see that m(A∩E)
m(A) ≥ ε0m(E) for all cylinders A, whence

E(1E |X1, . . . ,X`)≥ ε0m(E) for all `.

By the martingale convergence theorem, 1E ≥ ε0m(E) a.e., whence m(E) = 0 or 1.
STEP 2: Identify f with a function f : Ω → R s.t. f [(xi)i≥1] = f (x1,x2). Then there exist A :
Ω → R measurable and κ ∈ R s.t. f +A−A◦σ +κ ∈ Z almost surely.
Proof. The assumptions of the proposition say that there exist An : Ω → R measurable and
κn ∈ R s.t.

f ◦σ
n +An ◦σ

n−An+1 ◦σ
n+1 +κn ∈ Z m-a.e. for every n.

Let wn := e2πiAn , then e2πi f◦σn wn◦σn

wn+1◦σn+1 = 1 m-a.s. Since m◦σ−1 =m we have e2πi f wn
wn+1◦σ =

1 a.s. for all n. This gives the chain of identities
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wn = e−2πi f wn+1 ◦σ = e−2πi( f+ f◦σ)wn+2 ◦σ
2 = · · ·= e−2πi∑

k−1
j=0 f◦σ k

wn+k ◦σ
k.

It follows that wn/wn+1 = (wn+k/wn+k+1)◦σ k for all k. Hence wn/wn+1 is σ−kF–measurable
for all k. By the zero-one law, wn/wn+1 is constant almost surely. In particular, there exists a
constant c such that A2−A1 ∈ c+Z m–a.e., and the step follows with A := A1 and κ := κ1 + c.
STEP 3: There exists a : Ω→R constant on cylinders of length one such that f +a−a◦σ +κ ∈
Z m-a.e.
Proof. Let L : L1(Ω)→ L1(Ω) denote the transfer operator of σ : Ω→Ω , which describes the

action of σ on mass densities on Ω : σ∗[ϕdµ] = Lϕdµ. Formally, Lϕ := dmϕ◦σ−1

dm , where mϕ :=
ϕdm. We will need the following (standard) facts:

(a) If ϕ depends only on the first m-coordinates, then Lϕ depends only on the first (m−1)∨1–
coordinates. Specifically, (Lϕ)[(yi)i≥1] = Φ(y1, . . . ,ym−1) where

Φ(y1, . . . ,ym−1) := E[ϕ(X1, . . . ,Xm)|Xi = yi (1≤ i≤ m−1)];

(b) Lϕ is characterized by the condition
∫

ψLϕdm =
∫

ψ ◦σϕdm ∀ψ ∈ L∞(S);
(c) L(ϕψ ◦σ) = ψLϕ ∀ϕ ∈ L1,ψ ∈ L∞;
(d) L1 = 1;
(e) ∀ϕ ∈ L∞, Lnϕ −−−→

n→∞

∫
ϕdm in L1.

Part (b) is standard. Parts (c) and (d) follow from (b) and the σ -invariance of m. Part (a)
follows from (b), and the identity∫

ψLϕdm =
∫

ψdmϕ ◦σ
−1 =

∫
ψ ◦σϕdm = E[ψ(X2,X3, . . .)ϕ(X1, . . . ,Xm)]

= E
(
ψ(X2,X3, . . .)E[ϕ(X1, . . . ,Xm)|X2,X3, . . .]

) !
= E

(
ψ(X2,X3, . . .)E[ϕ|X2, . . . ,Xm]

)
=
∫

ψΦdm

where !
= is because of the Markov property. To see part (e) note that it is enough to consider

ϕ ∈ L∞ such that
∫

ϕdm = 0 (otherwise work with ϕ−
∫

ϕdm). For such functions,

‖Ln
ϕ‖1 =

∫
sgn(Ln

ϕ)Ln
ϕ dm =

∫
sgn(Ln

ϕ)◦σ
n ·ϕ dm

=
∫

sgn(Ln
ϕ)◦σ

nE(ϕ|σ−nF )dm≤
∫
|E(ϕ|σ−nF )|dm

The integrand is uniformly bounded (by ‖ϕ‖∞), and it converges pointwise to E(ϕ|
⋂

σ−nF ) =
E(ϕ|{∅,Ω}) = E(ϕ) = 0.

Let w := e2πiA where A : Ω →R is as in step 2, and assume w.l.o.g. that κ = 0 (else absorb it
into f ). Set Sn = f + f ◦σ + · · ·+ f ◦σn−1, then e−2πi f = w/w◦σ , whence e−2πiSn = w/w◦σn.
By (c), for all ϕ ∈ L1(Ω),

wLn(e−2πiSnϕ) = Ln(e−2πiSnw◦σ
n
ϕ) = Ln(wϕ)

L1
−−−→
n→∞

∫
wϕdm.

Since |w| = 1 a.e., ∃m ≥ 2 and ∃ϕ = ϕ(x1, . . . ,xm) bounded measurable so that
∫

wϕdm 6= 0.
For this ϕ , we have
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w−1 = L1- lim
n→∞

Ln(e−2πiSnϕ)∫
wϕdm

.

We claim that the right-hand-side depends only on the first coordinate. This is because
e−2πi f ϕ is function of the first m coordinates, whence by (a), L(e−2πi f ϕ) is a function of
the first (m− 1)∨ 1 coordinates. Applying this argument again we find that L2(e−2πiS2ϕ) =
L[e−2πi f L(e−2πi f ϕ)] is a function of the first (m−2)∨1 coordinates. Continuing by induction,
we find that Ln(e−2πiSnϕ) is a function of (m− n)∨ 1-coordinates, and eventually of the first
coordinate only.

So w−1 is an L1-limit of a functions of the first coordinate. Therefore we can write w[(xi)i≥1] =
exp[2πia(x1)] a.e., where a : S → R is measurable. By construction e2πi f w/w ◦ σ = 1, so
f (X1,X2)+a(X1)−a(X2)∈Z almost surely. By stationarity, f (Xn,Xn+1)+a(Xn)−a(Xn+1)∈Z
almost surely for all n. �

We now determine the domain of the rate functions for large deviations. We note that the
results of Chapter 6 concern P[SN ≥ zVN ] = P[SN ≥ zσ2(1+ o(1))N], while in large deviation
literature it is common to use the normalization P[SN ≥ zN]. To simplify the comparison with
other results we will assume till the end of this section that σ2 = 1 which can always be achieved
by scaling f .

Let SN = ess supSN . Using the stationarity of {Xn} and the homogeneity of f it is not difficult
to see that Sn+m ≤Sn +Sm, and therefore the limit

s+ = lim
N→∞

ess supSN

N
= lim

N→∞

SN

N

exists. Repeating the same argument for (−f) gives that

s− = lim
N→∞

ess infSN

N

exists as well.
Recall the notation for large deviation thresholds c−,c+ introduced in §6.4.

Theorem 7.2. Let f be an a.s. uniformly bounded homogenous additive functional on a uni-
formly elliptic homogeneous Markov chain, and assume f has zero mean and asymptotic vari-
ance σ2 = 1. Then c+ = s+ and c− = s−.

Proof. We prove the first identity, the second one is similar.
First, for any ε > 0, P[SN ≥ (s++ε)N] = 0 for sufficiently large N, whence by Theorem 6.7,

c+ ≤ s+.
Let K := ess sup |f|. For every ε > 0, for all sufficiently large M,

δM := P[SM ≥ (s+− ε)M]> 0.

Let σ(Xi, . . . ,X j) denote the σ -field generated by Xi, . . . ,X j. By uniform ellipticity, if E ∈
σ(X1, . . . ,XM+1) and F ∈σ(XM+3, . . . ,X2M+3), then P[E∩F ]≥ ε0P(E)P(F) (see (7.1.3)). Con-
sequently,
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P[S2(M+2) ≥ 2(s+− ε)M−2K]

≥ P

[
M

∑
k=1

fk(Xk,Xk+1)≥M(s+− ε) ,
2M+2

∑
k=M+3

fk(Xk,Xk+1)≥M(s+− ε)

]

≥ ε0P

[
M

∑
k=1

fk(Xk,Xk+1)≥M(s+− ε)

]
P

[
2M+2

∑
k=M+3

fk(Xk,Xk+1)≥M(s+− ε)

]
.

Thus by stationarity, P[S2(M+2) ≥ 2(s+− ε)M− 2K] ≥ ε0δ 2
M. Applying this argument repeat-

edly, we find that for each `,

P[S(M+2)` ≥ ((s+− ε)M−2K)`]≥
(
ε0δ

2
M
)`
.

Now Corollary 6.26 tells us that for all sufficiently large M, c+ ≥
(s+− ε)M−2K

M+2
. Letting

M→ ∞ we obtain c+ ≥ s+− ε. Since ε is arbitrary, c+ ≥ s+. �

7.2 Perturbations of homogeneous chains

Let (X, f) be a bounded homogenous additive functional on a uniformly elliptic Markov chain
with stationary measure µ and transition probability π(x,dy) = p(x,y)µ(dy). We consider non-
homogeneous perturbations (X̃, f̃) of the form

f̃n(x,y) = f (x,y)+gn(x,y) , π̃n(x,dy) = p̃n(x,y)µ(dy).

We assume that the strength of the perturbation decays at infinity. Namely for each ε > 0 there
is n0 such that for n≥ n0

‖gn‖∞ ≤ ε and 1− ε ≤ p̃n(x,y)
p(x,y)

≤ 1+ ε.

Theorem 7.3. If the additive functional g is center tight on X, then Gess(X̃, f̃) = Gess(X, f). If g
is not center tight then Gess(X̃, f̃) = R.

Proof. We note that it suffices to prove the result in the case p̃n ≡ p. Indeed by our assumptions,

1
2
≤ p̃n(x,y)

p(x,y)
≤ 2 (7.2.1)

if n is sufficiently large. Since discarding a finite number of terms does not change the essential
range (since any functional vanishing for large n is center tight) we may assume that (7.2.1)
holds for all n. Now Example 3.8 shows that the essential range of the functionals defined via p
and via p̃n are the same. Thus we assume henceforth that p̃n ≡ p for all n.

If g is center tight then the essential ranges of f and f̃ are the same, so we shall assume that
g is not center tight, and prove that DN(ξ , f̃)→ ∞ for every ξ 6= 0. Let d := dn(ξ , f) (the RHS
does not depend on n by stationarity).

Suppose first that d 6= 0. By Lemma 1.15(2) we have

d2 = d2
n(ξ , f)≤ 8

[
dn(ξ , f̃)

2 +dn(ξ ,g)
2
]
.



7.2 Perturbations of homogeneous chains 175

Next, the assumption ‖gn‖∞ −−−→
n→∞

0 implies that d2
n(ξ ,g) −−−→n→∞

0. Accordingly dn(̃f,ξ )
2 ≥ d2

10
for all n large enough, so that DN(ξ , f̃)→ ∞ as needed.

Next assume d = 0. In this case for any hexagon Pn we have eiξΓ (f,Pn) = 1, where Γ (f, ·)
denotes the balance for the additive functional f. Hence eiξΓ (̃f,·) = eiξΓ (g,·), and so

dn(ξ , f̃) = dn(ξ ,g).

Let γN :=maxn≥N ess sup |gn|, and fix τ0 > 0 such that |eit−1|2≥ 1
2t2 for all |t|< τ0. If n≥N

and 0 < |η | ≤ τ0(6γN)
−1, then (3.3.7) tells us that

d2
n(η ,g)≥ η2

2
u2

n(g) for all n > N +3.

By assumption, g is not center-tight, so ∑u2
n(g) = ∞. It follows that DN(η ,g) → ∞ for all

0 < |η | ≤ τ0(6γN)
−1.

By assumption, γN → 0, so DN(η ,g)→ ∞ for all η 6= 0. It follows that the co-range of g
equals {0}, and the essential range of g equals R. �

Next we discuss the large deviation thresholds for f̃.

Theorem 7.4. (a) If f is not a coboundary then c±(̃f) = c±(f) = s±(f).

(b) If f is a homogeneous gradient, E(gn) = 0 for all n, and g is not center tight, then c+(̃f) =

+∞, c−(̃f) =−∞.

Proof. The proof of part (a) is very similar to the proof of Lemma 6.28 so we omit it.
In the proof of part (b) we may assume that f = 0 since adding a homogeneous gradient does

not change the large deviation threshold. In particular in the rest of the proof we will abbreviate
SN = SN(g), Sn1,n2 = Sn1,n2(g) = ∑

n2−1
k=n1

gk(Xk,Xk+1), VN = Var(SN(g)). Since g is not center
tight, VN → ∞.

Assume without loss of generality that ess sup |g| ≤ 1
2 , then Var[gk(Xk,Xk+1)] ≤ 1 for all k.

Divide the interval [0,N] into blocks[
n1,n2

]
∪{n2 +1}∪

[
n3,n4

]
∪·· ·∪

[
nk,nk+1

]
∪{nk+1 +1}∪

[
nk+2,N

]
where ni is increasing, 1≤ Var(Sn j,n j+1)≤ 2 for j ≤ k+1, and Var(Snk+2,N)≤ 1.

Since ‖gn‖∞→ 0, min{n j+1−n j : `≤ j≤ k} −−−→
`→∞

∞. Also, the analysis of §6.3.4 shows that

1
VN

∑
j

Var(Sn j,n j+1)→ 1.

In particular, the number of blocks βN , is between VN/2 and 3VN/2.
Let M j = max

n j≤l≤n j+1
‖gl‖∞. Note that M j→ 0. Therefore applying Dobrushin CLT to the array

{gl/M j}n j≤l≤n j+1 we conclude that Sn j,n j+1/
√

Var(Sn j,n j+1) is asymptotically normal. In partic-

ular, for each z > 0 there exists η = η(z) > 0 such that for j large enough and all x j ∈ Sn j

Px j(Sn j,n j+1 ≥ 3z)≥ η . (7.2.2)

A uniform ellipticity argument similar to the one we used in the proof of Theorem 7.2 gives
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Px j(SN ≥ βNz)≥ cη
βN ,

where c incorporates the contribution of blocks (with small j) where (7.2.2) fails.
Now Corollary 6.26 implies that c+ ≥ z. Since z is arbitrary, c+ = +∞. A similar argument

shows that c−(g) =−∞. �

7.3 Small additive functionals.

The perturbations of f ≡ 0 were analyzed in the previous section, however, since this case is of
independent interest it makes sense to summarize the results obtained for this particular case.

Theorem 7.5. Let g be a uniformly bounded additive functional of uniformly elliptic Markov
chain. Suppose that E(gn) = 0 and that lim

n→∞
‖gn‖∞ = 0. Then

either g is center tight in which case
∞

∑
n=1

gn converges almost surely

or g is not center tight in which case SN(g) satisfies non lattice LLT (4.1.1) and c±(g) =±∞.

Proof. The non-center tight case was analyzed in §7.2. In the center tight case the results of
Chapter 2 tell us that g can be decomposed as

gn(x,y) = cn +an+1(y)−an(x)+hn(x,y) where ∑
n

Var(hn)< ∞.

Changing an if necessary we may assume that E(an) = 0 in which case

E(gn) = 0 = E(hn + cn).

Therefore the additive functional h̃= h+c has zero mean and finite variance. Hence by Theorem

2.4
∞

∑
n=1

(hn+cn) converges almost surely. In summary SN(g)−aN +a1 converges almost surely,

and hence SN(g)− aN converges almost surely. On the other hand equation (2.2.4) shows that
lim

N→∞
aN = 0 completing the proof. �

The following result which a direct consequence of Theorem 7.5 shows that for small additive
functionals a vague limit of the local distribution of SN always exists.

Corollary 7.2 Let g satisfy the assumptions of Theorem 7.5. Then either and SN converges a.s.
to some random variable S in which case for each continuous compactly supported function φ

lim
N→∞

E(φ(SN)) = E(φ(S ))

or SN satisfies a non-lattice LLT. That is, for each continuous compactly supported function φ

for each sequence zN such that the limit z = lim
N→∞

zN√
VN

exists we have

lim
N→∞

VNE(φ(SN)) = E(φ(S )) =
e−z2/2
√

2π

∫
∞

−∞

φ(s)ds.
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7.4 Equicontinuous additive functionals

In this section we examine the consequences of topological assumptions on f and X. Specifically
we will say that (X, f) is equicontinuous if

(T) (Sn,Bn,µn) are complete separable metric spaces, Bn are the Borel σ -algebras, and µn are
Borel probability measures;

(S) for every ε > 0 there exists δ > 0 such that for all xn ∈Sn and n≥ 1, µn[B(xn,ε)]> δ . Here
B(x,ε) := {y ∈Sn : dist(x,y)< ε}.

(U) for every ε > 0 there exists δ > 0 such that for all n≥ 1 and xn,yn ∈Sn, dist(xn,yn)< δ ⇒
| fn(xn)− fn(yn)|< ε .

7.4.1 Range.

Theorem 7.6. Suppose (X, f) is equicontinuous and a.s. uniformly bounded. Assume in addition
the following:

(a) One-step ellipticity condition: ∃ε0 s.t. for every n, πn(x,dy) = pn(x,y)µn+1(dy) where
ε0 ≤ pn(x,y)≤ ε

−1
0 .

(b) Sn are all connected.

Then f is either irreducible with algebraic range R, or it is center tight.

Proof. Choose c1 > 0 such that |eiθ −1|2 = 4sin2
(

θ

2

)
≥ c1θ

2 for all |θ | ≤ 0.1. We fix ξ 6= 0,

and consider the following two cases:

(I) ∃N0 such that |ξΓ (P)|< 0.1 for every position n hexagon P, for each n≥ N0.
(II) ∃nk ↑ ∞ and ∃ position nk hexagons Pnk such that |ξΓ (Pnk)| ≥ 0.1.

In case (I), for all n≥ N0, d2
n(ξ ) = E(|eiξΓ −1|2)≥ c1E(Γ 2)≡ c1u2

n. So either ∑u2
n = ∞ and

then ∑d2
n(ξ ) = ∞ for all ξ 6= 0, and f is irreducible with essential range R; or ∑u2

n < ∞ and then
f is center-tight by Corollary 2.8.

In case (II), for every k there is a position nk hexagon Pnk with |ξΓ (Pnk)| ≥ 0.1. There is also
a position nk hexagon P′nk

with balance zero (such hexagons always exist because we can take
ynk−1 = xnk−1, ynk = xnk). We would like to apply the intermediate value to deduce the existence
of a position nk hexagon Pnk such that 0.05 < ξΓ (Pnk)< 0.1. To do this we note that:

◦ Because of the one-step ellipticity condition, the space of position nk hexagons is homeomor-
phic to Snk−2×S2

nk−1×S2
nk
×Snk .

◦ The product of connected topological spaces is connected.
◦ Real-valued continuous functions on connected topological spaces satisfy the intermediate

value theorem.
◦ The balance of hexagon depends continuously on the hexagon.

So Pnk exists. Necessarily, |eiξΓ (Pnk )−1| ≥ c1ξ 2Γ 2(Pnk) =: c2.

Write Pnk in coordinates: Pnk :=
(

xnk−2;
xnk−1
ynk−1

;
xnk

ynk

;ynk+1

)
. By the equicontinuity of f, ∃ε >

0 such that |eiξΓ (P)−1|> 1
2c2 for every hexagon P whose coordinates are in the ε-neighborhood

of the coordinates of Pnk . By the equicontinuity of µn and the one-step ellipticity condition, this
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collection of hexagons P have hexagon measure ≥ δ for some δ > 0 independent of k. So
d2

nk
(ξ )≥ 1

2c2δ .

Summing over all k, we find that ∑d2
nk
(ξ ) = ∞. Since ξ 6= 0 was arbitrary, (X, f) has essential

range R. �

7.4.2 Large deviation threshold.

Lemma 7.3 Suppose that Sn are metric spaces, fn are equicontinuous, and for each ε > 0
there exists δ > 0 such that if pn(x,y)> 0 then

πn(x,B(y,ε))> δ . (7.4.1)

Suppose that VN > cN and that

limsup
N→∞

inf
x1,...,xN+1

N

∑
j=1

f j(x j,x j+1)

VN
< z < liminf

N→∞

sup
x1,...,xN+1

N

∑
j=1

f j(x j,x j+1)

VN
.

Then z ∈ C .

Note that assumption (7.4.1) is satisfied whenever X satisfies (S) and the one step ellipticity
condition. We also remark that Example 6.21 shows that equicontinuity assumption on f is
essential.

Proof. Fix N. Consider first the case where z > E(SN)
VN

. By assumption there is an ε such that for
all sufficiently large n there is a sequence x1, . . . ,xN+1 such that

N

∑
j=1

f j(x j,x j+1)≥ (z+ ε)VN .

By ellipticity, for each x ∈S1 there a sequence x̃1, x̃2 . . . x̃N+1 such that x̃1 = x and

N

∑
j=1

f j(x̃ j, x̃ j+1)≥ (z+ ε)VN−4K, where K := ess sup |f|.

(In fact one can take x̃ j = x j for j ≥ 3.) By uniform continuity of f j and the fact that VN grows
linearly, there is r such that if X j ∈ B(x̃ j,r) for j ≤ N +1 then

N

∑
j=1

f j(X j,X j+1)≥ (z+ ε/2)VN−4K.

By (7.4.1) there is δ > 0 such that Px(X j ∈ B(x̃ j,r))≥ δ N . Hence

P(SN ≥ (z+ ε/3)VN)≥ δ
N .
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Next, by the CLT and the assumption that z > E(SN)
VN

, if ε is small enough and N is large enough,
then1 P(SN ≤ (z− ε)VN)≥ δ N . Now Theorem 6.7 shows that z ∈ C .

The case z < E(SN)
VN

is analyzed similarly now using the estimate

limsup
N→∞

inf
x1,...,xN+1

N

∑
j=1

f j(x j,x j+1)

Vn
≤ z− ε. �

Corollary 7.4 Under the assumptions of Lemma 7.3 if

z− = lim
N→∞

inf
x1,...,xN+1

N

∑
j=1

f j(x j,x j+1)

VN
exists then z− = c−,

z+ = lim
N→∞

sup
x1,...,xN+1

N

∑
j=1

f j(x j,x j+1)

VN
exists then z+ = c+.

Proof. We will prove the second statement, the first one is similar. z+ ≤ c+ by Lemma 7.3. On
the other hand if z > z+ then for large N, P(SN >VNz) = 0. Hence c+ ≤ z+. �

We now restate the result of the last corollary in a slightly different way under an extra
assumption. Namely, we suppose that

Sn are compact & ∀xn,xn+1 : pn(xn,xn+1)> 0 (7.4.2)

Definition 7.5 Let MN denote the space of sequences x ∈∏
n
Sn such that if yn = xn for n ≥

N +1 then
N

∑
n=1

f (yn,yn+1)≥
N

∑
n=1

f (xn,xn+1).

Denote M =
∞⋂

N=1

MN . The elements of M will be called minimizers.

The properties of MN are summarized below.

Lemma 7.6 Suppose that (7.4.2) holds and that fn : Sn→ [−K,K] are continuous. Then

(a) MN are closed sets.
(b) If N ≥M then MN ⊂MM.
(c) M is non empty.

(d) If
N

∑
n=1

f (xn,xn+1) = inf
y

N

∑
n=1

f (yn,yn+1) then x ∈MN .

(e) If x ∈MN then
N

∑
n=1

f (xn,xn+1)≤ inf
y

N

∑
n=1

f (yn,yn+1)+2K.

1 Alternatively, combining Theorem 6.2(1)) and Theorem 6.6 (applied to −SN ) we get that P
(

SN ≤−
E(SN)

VN
− ε

)
≥ δ

N provided

that ε is small enough and δ is close to 1.
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Proof. (a) If MN 3 x j −−−→
j→∞

x 6∈MN , then there would exist x such that xn = xn for n≥ N +1,

and
N

∑
n=1

f (xn,xn+1)<
N

∑
n=1

f (xn,xn+1).

Let y j be the sequence such that y j
n = x j

n for n≥ N +1, y j
n = xn for n≤ N. By the continuity of

f ,
N

∑
n=1

f (y j
n,y

j
n+1)<

N

∑
n=1

f (x j
n,x

j
n+1)

for large j contradicting, x j ∈MN .
Next let x ∈MN and xn = yn for n≥M with N > M. Then

M

∑
n=1

[ fn(yn,yn+1)− fn(xn,xn+1)] =
N

∑
n=1

[ fn(yn,yn+1)− fn(xn,xn+1)]≥ 0.

This proves (b).
Combining (a) and (b) we see that Mn are nested compact sets, hence their intersection is

non-empty.
(d) is clear.
Next, let x be the argmin of ∑

N
n=1(zn,zn+1) and y ∈MN . Let z be such that zn = xn, for

1≤ n≤ N−1 and zn = yn for n≥ N. Then

N

∑
n=1

fn(yn,yn+1)≤
N

∑
n=1

fn(zn,zn+1)≤
N

∑
n=1

fn(xn,xn+1)+2K

proving (e). �

If, in addition to the assumptions of Lemma 7.6 we also suppose that f satisfies (U), then part
(e) of the lemma implies that for each x ∈M (which is non-empty by part (c))

c− = lim
N→∞

1
N

N

∑
n=1

f (xn,xn+1).

7.5 Notes and references

Theorem 7.1 is well-known, see [109, 73, 127, 65, 112]. We note that in the homogeneous
setting the assumptions on f can be significantly weakened. In particular, the assumption that
f is bounded can be replaced by the assumption that the distribution of f is in the domain of
attraction of the Gaussian distribution [109], one can allow f to depend on infinitely many Xn
assuming that the dependence of f (x1,x2, . . .) on (xn,xn+1, . . .) decays exponentially in n [65],
and the ellipticity assumption can be replaced by the assumption that the generator has a spectral
gap [109, 73]. In particular, the LLT holds under the Doeblin condition saying that ∃ε0 > 0 and
a measure ζ on S such that

π(x,dy) = ε0ζ +(1− ε0)π̃(x,dy)

where π̃ is an arbitrary transition probability (cf. equation (1.2.2) in the proof of Lemma 1.10).
There are also versions of this theorem for f in the domain of attraction of a stable law, see [4].
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The aforementioned weaker conditions however are not sufficient to get LLT in the large de-
viation regime, in fact large deviation probabilities could be polynomially small for unbounded
functions, see [150].

There is a vast literature on the sufficient conditions for the Central Limit Theorem for ho-
mogenous chains, see [40, 62, 63, 73, 82, 85, 102] and references wherein, however, the local
limit theorem is much less understood, see notes to Chapter 4.

The characterization of coboundaries in terms of vanishing of the asymptotic variance σ2 is
due to Leonov [94]. A large number of papers discuss the regularity of the gradients in case
an additive functional is a gradient, see [20, 32, 75, 97, 98, 113, 112, 152] and the references
wherein. Our approach is closest to [48, 75, 112]. We note that the condition u( f ) = 0 which
is sufficient for f being a coboundary, is simpler than the equivalent condition σ2 = 0. For
example for finite chains, to compute σ2 one needs to compute infinitely many correlations
E( f0 fn) while checking that u = 0 involves checking balance of finitely many hexagons.

Inhomogeneous Markov processes arising from perturbations of homogeneous Markov chains
as in section 7.2 arise naturally in some stochastic optimization algorithms such as the Metropo-
lis algorithm. For large deviations and other limit theorems for such examples, see [42, 41] and
references therein.

Minimizers play important role is statistical mechanics where they are called ground states.
See e.g. [57, 123]. In the case the phase spaces Sn are non-compact and/or the observable f (x,y)
is unbounded, the minimizers have an interesting geometry, see e.g. [26]. For finite states we
have the following remarkable result [18]: for each d there is a constant p(d) such that for any
homogeneous Markov chain with d states for any additive functional we have

s+ = max
q≤p

1
q

max
x1,...xq

[
f (x1,x2)+ · · ·+ f (xq−1,xq)+ f (xq,x1)

]
.

This result is false for more general homogenous chains, consider for example the case S= N
and f (x,y) = 1 if y = x+1 and f (x,y) = 0 otherwise.

Corollary 7.2 was proven in [49] for inhomogeneous sums of independent random variables
(in the independent case one does not need the assumption that lim

n→∞
‖gn‖∞ = 0 since the gradient

obstruction does not appear in the independent case).





Chapter 8
LLT for Markov chains in random environment

We prove quenched local limits theorems for Markov chains in random environment with sta-
tionary ergodic noise processes.

8.1 Markov chains in random environment

Informally, Markov chains in random environment (MCRE) are Markov chains whose transition
probabilities depend on a noisy parameter ω which varies in time.1 It is customary to model the
time evolution of ω by orbits of a dynamical system called the “noise process.” Here are the
formal definitions:

Noise process: This is an ergodic measure preserving invertible Borel transformation T on a
standard measure space (Ω ,F ,m). “Invertible” means that there exists Ω1⊂Ω of full measure
such that T : Ω1 → Ω1 is injective and surjective, and T−1,T : Ω1 → Ω1 are measurable.2

“Measure preserving” means that for every E ∈F , m(T−1E) = m(E). “Ergodic” means that
for every E ∈F , T−1E = E⇒ m(E) = 0 or m(Ec) = 0.

If m(Ω) < ∞ then we will speak of a finite noise process, and we will always normalize m
so that m(Ω) = 1. If m(Ω) = ∞, then we will speak of an infinite noise process. The infinite
noise processes we consider here will all be defined on σ -finite non-atomic measure spaces.
Such processes arise naturally in the study of noise driven by a null recurrent Markov chain, see
Example 8.5 below.

Markov chains in Random Environment (MCRE): A MCRE with noise process (Ω ,F ,m,T )
is given by the following data:

◦ State space: A separable complete metric space S, with its Borel σ -algebra B.

◦ Random transition kernel: A measurable family of Borel probability measures π(ω,x,dy)
on (S,B), indexed by (ω,x) ∈Ω ×S. Measurability means that (ω,x) 7→

∫
ϕ(y)π(x,ω,dy)

is measurable for every bounded Borel ϕ : S→ R.

◦ Initial probability distribution: A measurable family of Borel probability measures µω on
(S,B) indexed by ω ∈ Ω , Measurability means that for all bounded Borel ϕ : S → R,
ω 7→

∫
ϕ(x)µω(dx) is measurable.

This data gives for each ω an inhomogeneous Markov chain Xω = {Xω
n } with state space S,

initial distribution µω , and transition kernels πω
n (x,dy) = π(T nω,x,dy).

1 MCRE should not be confused with “random walks in random environment,” see §8.4.
2 Invertibility is convenient, but not necessary. Non-invertible ergodic noise processes can always be replaced by their ergodic and
invertible natural extensions. See [30, Ch. 10]

183
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Here a some examples. Suppose (S,B,µ0) is a standard probability space, S is a finite or
countable set, and {πi(x,dy)}i∈S are transition probabilities on S.

Example 8.1 (Bernoulli noise)

Consider the noise process (Ω ,F ,m,T ) where

◦ Ω = SZ = {(· · · ,ω−1,ω0,ω1, · · ·) : ωi ∈ S};
◦ F is generated by the cylinders k[ak, . . . ,an] := {ω ∈Ω : ωi = ai,k ≤ i≤ n}
◦ {pi}i∈S are non-negative numbers s.t. ∑ pi = 1, and m is the unique measure s.t. m(k[ak, . . . ,an])=

pak · · · pan for all cylinders.
◦ T : Ω →Ω is the left shift map, T [(ωi)i∈Z] = (ωi+1)i∈Z

It’s well-known that (Ω ,F ,µ,T ) is an ergodic probability preserving map.
Define π(ω,x,dy) := πω0(x,dy). Notice that π(T nω,x,dy) = πωn(x,dy), and ωn are iid’s

taking the values i ∈ S with probabilities pi. Since ωn are iid, {Xω : ω ∈Ω} represent a random
Markov chain whose transition probabilities vary randomly and independently in time.

Example 8.2 (Positive recurrent Markov noise)

Suppose (Yn)n∈Z is a stationary ergodic Markov chain with state space S and a stationary prob-
ability vector (ps)s∈S. In particular, (Yn)n∈Z is positive recurrent. Let:

◦ Ω := {(ωi) ∈ SZ : P[Y1 = ωi,Y2 = ωi+1] 6= 0 for all i ∈ Z};
◦ F is the σ -algebra generated by the cylinders (see above);
◦ m is the unique (probability) measure such that m(k[ak, . . . ,an]) = P[Yk = ak, . . . ,Yn = an] for

all cylinders;
◦ T is the left shift map (see above).

Define as before, π(ω,x,dy) := πω0(x,dy). The resulting MCRE represents a Markov chain
whose transition probabilities at time n = 1,2,3, . . . are πYn−1(x,dy).

Example 8.3 (General stationary ergodic noise processes)

The previous construction works verbatim with any stationary ergodic stochastic process {Yn}
taking values in S. The assumption that S is countable can be replaced by requiring only that S
be complete, separable, metric space, see e.g. [52].

Example 8.4 (Quasi-periodic noise)

Let (Ω ,F ,m,T ) be the circle rotation: Ω = T1 := {ω ∈ C : |ω| = 1}; F is the Borel σ -
algebra; m is the normalized Lebesgue measure; and T : Ω → Ω is the rotation by an angle α:
T (ω) = eiαω . T is probability preserving, and it is well-known that T is ergodic iff α/2π is
irrational.

Choose a partition of the unit circle Ω into disjoint arcs {Ii}i∈S and define ϕ : Ω → S by
ϕ(ω) = i for ω ∈ Ii. For example, if S = {1,2} we can take I1, I2 to be two equal halves of the
circle. Next define

π(ω,x,dy) = πϕ(ω)(x,dy)

Now Xω are inhomogeneous Markov chains whose transition probabilities vary quasi-periodically:
They are given by πϕ(einα ω)(x,dy).

More generally, one can take a d parameter measurable family of transition probabilities
πω(x,y), where ω = (ω1,ω2, . . .ωd) ∈ Rd/Zd , fix some “initial phase” (ω1, . . . ,ωd), and con-
sider the chain with transition probabilities

πn(x,y) = π(ω1+nα1,...,ωd+nαd) mod Zd(x,y).
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Example 8.5 (Null recurrent Markov noise)

This is an example with infinite noise process. Suppose (Yn)n∈Z is an ergodic null recurrent
Markov chain with countable state space S, and stationary positive vector (pi)i∈S. Here pi > 0
and (by null recurrence) ∑ pi = ∞. For example, (Yn)n∈Z could be the simple random walk on
Zd for d = 1,2, with the stationary measure which assigns the same mass to each site of Zd . Let

◦ Ω = {(ωi)i∈Z ∈ SZ : P[Y1 = ωi,Y2 = ωi+1] 6= 0 for all i ∈ Z};
◦ F is the σ -algebra generated by the cylinders;
◦ m is the unique (infinite) Borel measure which satisfies for each cylinder

m(k[ak, . . . ,an]) = pakP[Yi = ai (k ≤ i≤ n)|Yk = ak]

◦ T : Ω →Ω is the left shift map T [(ωi)i∈Z] = ωi+1.

Then it is well-known that (Ω ,F ,m,T ) is an infinite ergodic measure preserving invertible
map, see [2].

Just as in Example 8.2, one can easily construct many MCRE with transition probabilities
πYn(x,dy) which vary randomly in time according to (Yn)n∈Z. For each particular realization of
ω = (Yi)i∈Z, Xω is an ordinary inhomogeneous Markov chain (on a probability space). But as
we shall see below, some features of Xω such as the growth of variance, are different than in the
finite noise process case.

Example 8.6 (Transient Markov noise: a non-example)

The previous construction fails for transient Markov chains such as the random walk on Zd

for d ≥ 3, because in the transient case, (Ω ,F ,m,T ) is not ergodic, [2].
We could try to work with the ergodic components of m, but this does not yield a new math-

ematical object, because of the following general fact [2]: Every ergodic component of an in-
vertible totally dissipative infinite measure preserving map is concentrated on a single orbit
{T n(ω)}n∈Z. MCRE with such noise processes have just one possible realization of noise up
to time shift. Their theory is the same as the theory of general inhomogeneous Markov chains,
and does not merit separate treatment.

Suppose XΩ is a MCRE with noise space (Ω ,F ,m,T ). A Random additive functional is a
measurable function f : Ω ×S×S→ R. This induces the additive functional fω on Xω

f ω
n (x,y) = f (T n

ω,x,y).

For each ω ∈Ω we define

Sω
N :=

N

∑
n=1

f ω
n (Xω

n ,Xω
n+1)≡

N

∑
n=1

f (T n
ω,Xω

n ,Xω
n+1),

V ω
N := Var(Sω

N ) w.r.t. the distribution of Xω .

Throughout this chapter, we make the following standing assumptions:

(B) Uniform boundedness: | f | ≤ K where K < ∞ is a constant;
(E) Uniform ellipticity: There is a constant 0 < ε0 < 1 and a Borel function p : Ω ×S×S→

[0,∞) such that

(a) π(ω,x,dy) = p(ω,x,y)µω(dy);
(b) 0≤ p≤ 1/ε0;
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(c)
∫
S p(ω,x,y)p(T ω,y,z)µT ω(dy)> ε0 for all ω,x,z.

(S) Stationarity: For every ϕ : S→ R bounded and Borel, for every ω ∈Ω ,∫
ϕ(y)µT ω(dy) =

∫
S

(∫
S

ϕ(y)π(ω,x,dy)
)

µω(dx).

(B) and (E) imply that fω is a uniformly bounded additive functional and that Xω is uniformly
elliptic for every ω . (S) is equivalent to saying that if X0 is distributed according to µω then Xn
is distributed according to µT nω for all n > 0. Subject to (E), (S) can always be assumed without
loss of generality, because of Proposition 1.12 and the discussion which follows it.

Some of our results will require the following continuity hypothesis:

(C) The Borel structure of Ω and S is generated by a topologies so that Ω and S are complete
and separable metric spaces, and

(C1) T : Ω →Ω is a homeomorphism and supp(m) = Ω .
(C2) (ω,x,y) 7→ p(ω,x,y) is continuous, and ω 7→

∫
Sϕdµω is continuous for every

bounded continuous ϕ : S→ R.
(C3) (ω,x,y) 7→ f (ω,x,y) are continuous.

(C) is not part of our standing assumptions, and we will state it explicitly whenever it is used.

8.2 Main results

Let P denote the measure on Ω ×S×S which represents the joint distribution of (ω,Xω
1 ,Xω

2 ):

P(dω,dx,dy) :=
∫
S

∫
S

∫
Ω

m(dω)µω(dx)π(ω,x,dy). (8.2.1)

(1) f (ω,x,y) is called relatively cohomologous to a constant if there are bounded measurable
functions a : Ω ×S→ R and c : Ω → R such that

f (ω,x,y) = a(ω,x)−a(T ω,y)+ c(ω) P-a.e.

(2) Fix t 6= 0, then f (ω,x,y) is relatively cohomologous to a coset of tZ if there are measurable
functions a : Ω ×S→ S1 and λ : Ω → S1 s.t.

e(2πi/t) f (ω,x,y) = λ (ω)
a(ω,x)

a(T ω,y)
P-a.e.

Theorem 8.1. Assume f is an additive functional on a MCRE with finite noise process. Under
the standing assumptions (B), (E), (S):

(1) If f is relatively cohomologous to a constant, then |V ω
N | ≤ C for all N, for a.e. ω , where

C =C(ε0,K) is a constant.
(2) If f is not relatively cohomologous to a constant, then there is a constant σ2 > 0 such that

for a.e. ω , V ω
N ∼ Nσ2 as N→ ∞.

Theorem 8.2. Let f be an additive functional on a MCRE with finite noise process. Assume the
standing assumptions (B), (E),(S) and that

(a) Either |S| ≤ℵ0, or |S|> ℵ0 and the continuity hypothesis (C) holds.
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(b) f is not relatively cohomologous to a coset of tZ for any t 6= 0.

Then there exists σ2 > 0 such that for a.e. ω , for every open interval (a,b), and for every
zN ,z ∈ R such that zN−Eω (Sω

N )√
N

→ z,

P
[
Sω

N − zN ∈ (a,b)
]
∼ 1√

N

(
e−z2/2σ2

√
2πσ2

)
|a−b| as N→ ∞.

Theorem 8.3. Let f be an additive functional on a MCRE with finite noise process. Assume the
standing assumptions (B),(E),(S), and that all the values of f are integers. If f is not relatively
cohomologous to a coset of tZ with t 6= 1, then there exists σ2 > 0 such that for a.e. ω , and for
every zN ,z ∈ R such that zN−Eω (Sω

N )√
N

→ z,

P
[
Sω

N = zN
]
∼ 1√

N

(
e−z2/2σ2

√
2πσ2

)
as N→ ∞.

Theorem 8.4. Let f be an additive functional on a MCRE with finite noise process (Ω ,F ,m,T ).
Assume (B),(E),(S). If f is not relatively cohomologous to a constant, then

(1) There exists a continuously differentiable and strictly convex function F : R→ R such that
for a.e. ω ∈Ω , F (ξ ) = lim

N→∞

1
N logE(eξ Sω

N ) for all ξ ∈ R.

(2) 1
NE(S

ω
N )−−−→N→∞

F ′(0) for a.e. ω .

(3) Let F ′(±∞) := lim
ξ→±∞

F ′(ξ ), and let IN(η ,ω), I (η) denote the Legendre transforms

of FN(ξ ) := 1
N logE(eξ Sω

N ), F (ξ ). Then for a.e. ω , for every η ∈ (F ′(−∞),F ′(∞)),
IN(η ,ω)−−−→

N→∞
I (η).

(4) I (η) is strictly convex, has compact level sets, is equal to zero at η =F ′(0), and is strictly
positive elsewhere.

(5) With probability one

c− = F (−∞) = lim
N→∞

ess infSω
N

N
, c+ = F (+∞) = lim

N→∞

ess supSω
N

N
.

Corollary 8.7 Under the conditions of the previous theorem, for a.e. ω , Sω
N/N satisfies the large

deviations principle with the rate function I (η):

(1) limsup
N→∞

1
N logP[Sω

N/N ∈ K]≤− infz∈K I (z) for all closed sets K ⊂ R.

(2) limsup
N→∞

1
N logP[Sω

N/N ∈ G]≥− infz∈K I (z) for all open sets G⊂ R.

Proof. This is a consequence of the Gärtner-Ellis Theorem. �

So far we have only considered MCRE with finite noise spaces. We will now discuss the case
of infinite noise spaces (Ω ,F ,m,T ). The main new phenomena in this case are:

Example 8.8 For MCRE with an infinite noise process:

(a) It is possible that V ω
N → ∞ m-a.e., but that V ω

N = o(N) a.e.
(b) It is possible that 6 ∃aN s.t. V ω

N ∼ aN for m-a.e. ω .
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Proof. Let Xn be iid bounded real random variables with variance one and distribution µ . Let
fn(x) = x. Let (Ω ,F ,m,T ) be an infinite noise process, and fix E ∈F of finite positive mea-
sure. Let

π(ω,x,dy) := µ(dy) , f (ω,x,y) := 1E(ω)x

Then Sω
N =

N

∑
n=1

1E(T n
ω)Xn, and V ω

N = ∑
N
n=1 1E(T nω).

We now appeal to the following general results from infinite ergodic theory. Let (Ω ,F ,m,T )
be an ergodic, invertible, measure preserving map on a non-atomic σ -finite measure space, and
let L1

+ := {A ∈ L1(Ω ,F ,m) : A≥ 0,
∫

Adm > 0}. If m(Ω) = ∞, then

(1) ∑
N
n=1 A◦T n = ∞ almost everywhere for all A ∈ L1

+;
(2) 1

N ∑
N
n=1 A◦T n −−−→

N→∞
0 almost everywhere for all A ∈ L1;

(3) Let aN be a sequence of positive real numbers, then at least one of the following possibilities
happens:

(a) liminfN→∞
1

aN
∑

N
n=1 A◦T n = 0 a.e. for all A ∈ L1

+;
(b) limsupN→∞

1
aN

∑
N
n=1 A◦T n = ∞ a.e. for all A ∈ L1

+.

So 6 ∃aN ↑ ∞ s.t. ∑
N
n=1 A(T nω)∼ aN for a.e. ω , even for a single A ∈ L1

+.

These results can all be found in [2]: (1) is a consequence of the Halmos Recurrence Theorem;
(2) follows from the Ratio Ergodic Theorem; and (3) is a theorem of J. Aaronson. Specializing
to the case A = 1E we find that V ω

N → ∞ a.e.; V ω
N = o(N) a.e. as N → ∞; and 6 ∃aN so that

V ω
N ∼ aN for a.e. ω ∈Ω .

Here are our general results on MCRE with infinite noise spaces.

Theorem 8.5. Suppose fω is a random additive functional on a MCRE with infinite noise space
on a non-atomic σ -finite measure space. Under the standing assumptions (B), (E), (S):

(1) If f is relatively cohomologous to a constant, then |V ω
N | ≤ C for all N, for a.e. ω , where

C =C(ε0,K) is a constant.
(2) If f is not relatively cohomologous to a constant then V ω

N → ∞ a.s.

Theorem 8.6. Suppose fω is a random additive functional on a MCRE with infinite noise space
on a non-atomic σ -finite measure space. Assume the standing assumptions (B), (E),(S) and that

(a) Either |S| ≤ℵ0, or |S|> ℵ0 and the continuity hypothesis (C) holds.
(b) f is not relatively cohomologous to a coset of tZ for any t 6= 0.

Then for a.e. ω , for every open interval (a,b), and for every zN ,z ∈ R such that zN−Eω (Sω
N )

V ω
N

→ z,

P
[
Sω

N − zN ∈ (a,b)
]
∼ e−z2/2√

2πV ω
N
|a−b| as N→ ∞.

Theorem 8.7. Suppose fω is a random additive functional on a MCRE with infinite noise space
on a non-atomic σ -finite measure space. Assume the standing assumptions (B),(E),(S), and that
all the values of f are integers. If f is not relatively cohomologous to a coset of tZ with t 6= 1,

then for every zN ,z ∈R such that zN−Eω (Sω
N )√

V ω
N
→ z, for a.e. ω , P

[
Sω

N = zN
]
∼ e−z2/2√

2πV ω
N

as N→ ∞.
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8.3 Proofs

Throughout this section Xω is a Markov chain in random environment with stationary ergodic,
possibly infinite, noise process (Ω ,F ,m,T ), and fω is a random additive functional on Xω . We
assume throughout (B),(E),(S).

8.3.1 The essential range is a.s. constant

The purpose of this section is to prove the following result:

Proposition 8.9 There exist closed subgroups H,Gess ≤ R s.t. for m–a.e. ω , the co-range of
(Xω , fω) equals H , the essential range of (Xω , fω) equals Gess, and

Gess =


R H = {0},
2π

t Z H = tZ, t 6= 0,
{0} H = R.

We call H and Gess the a.s. co-range and a.s. essential range.
We begin with a calculation of the structure constants of (Xω , fω). Fix an element ω in the

noise space, and let Hex(ω) denote the probability space of position 3 hexagons for Xω . Let mω

denote the hexagon measure, as defined in §1.3.1. Recall the definition of the balance Γ (P) of
a hexagon P, and define

u(ω) := E(|Γ (P)|2)1/2

d(ξ ,ω) := E(|eiξΓ (P)−1|2)1/2 (expectation on P ∈ Hex(ω) w.r.t. mω ).

Since the space of position n+ 3 hexagons for Xω is Hex(T nω), together with the hexagon
measure mT nω , it follows that the structure constants of (Xω , fω) are

dn+3(ξ , f ω) = d(T n
ω,ξ ) and un+3( f ω) = u(T n

ω) (n≥ 0). (8.3.1)

Lemma 8.10 u(·),d(·, ·) are Borel measurable, and for every ω , d(·,ω) is continuous. Under
the continuity hypothesis (C), u(·),d(·, ·) are continuous.

Proof. To check this, express the hexagon measure explicitly as a measure on S6 in terms of the
transition kernel π(ω,x,y), using the formulas for the bridge distributions of §1.2.3, and write
Γ (P) explicitly a function on S6 in terms of f (ω,x,y). We omit the details, which are routine.
�

Proof of Proposition 8.9. Let Hω := H(Xω , fω) be the essential range of (Xω , fω). By Theorem
3.1, Hω is either R or tZ for some t ≥ 0. By (8.3.1)

DN(ξ ,ω) :=
N

∑
n=3

dn(ξ , f
ω)2 ≡

N−3

∑
n=0

d(T n
ω,ξ )2.

STEP 1: U(a,b) := {ω ∈ Ω : DN(·,ω) −−−→
N→∞

∞ uniformly on (a,b)} is measurable and T -

invariant for all a < b.

Proof. T -invariance is because d2 ≤ 4 whence |DN(ξ ,T ω)−DN(ξ ,ω)| ≤ 8. Measurability is
because of the identity
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U(a,b) =
{

ω ∈Ω : ∀M ∈Q ∃N ∈ N s.t.
for all ξ ∈ (a,b)∩Q, DN(ω,ξ )> M

}
.

The inclusion ⊆ is obvious. The inclusion ⊇ is because if ω 6∈U(a,b) then for some M ∈ Q,
for all N ∈N there exists some η ∈ (a,b) s.t. DN(ω,η)< M, whence by the continuity of η 7→
DN(ω,η) there is some ξ ∈ (a,b)∩Q such that DN(ω,ξ )< M. So ω 6∈U(a,b)⇒ ω 6∈ RHS.

STEP 2: The sets Ω1 := {ω ∈Ω : Hω = {0}}, Ω2 := {ω ∈Ω : Hω =R}, and Ω3 := {ω ∈Ω :
Hω = tZ for some t 6= 0} are measurable and T -invariant. Therefore by ergodicity, for each i,
either m(Ωi) = 0 or m(Ω c

i ) = 0.

Proof. Recall that for Markov chains, DN→∞ uniformly on compact subsets of the complement
of the co-range (Theorem 3.5). So

Ω1 =
∞⋂

n=1

U(1
n ,n) , Ω2 =

⋂
0<a<b rational

U(a,b)c , Ω3 = Ω
c
1 ∩Ω

c
2 .

By step 1, Ωi are T -invariant and measurable. Since T is ergodic, these sets are either of measure
zero or of full measure.

By Theorem 3.2, if Ω1 has full measure, then the essential range is a.s. R. Similarly, if Ω2
has full measure, then the essential range is {0} almost surely. It remains to consider the case
when Ω3 has full measure.

STEP 3: If Ω3 has full measure, then there exist t 6= 0 such that Ω3(t) := {ω ∈ Ω : Hω = tZ}
has full measure, and then the essential range is (2π/t)Z almost surely.

Proof. For every ω ∈Ω3 there exists t(ω)> 0 such that Hω = t(ω)Z. We can characterize t(ω)
as follows:

t(ω) = sup
{

t ∈Q∩ (0,∞) : DN(ω, ·)→ ∞ uniformly
on compact subsets of (0, t)

}
.

It is clear from this expression that t(T ω) = t(ω), and that for every A > 0,

[t(ω)≥ A] =
⋂

0<a<b<A rational

U(a,b).

So t(·) is a measurable T -invariant function, whence by ergodicity constant. Let t denote this
constant, then Hω = tZ for a.e. ω . By Theorem 3.2, Gess(X

ω , fω) = (2π/t)Z almost surely. �

8.3.2 Variance growth

In this section we prove Theorems 8.1 and 8.5 on the behavior of V ω
N as N→ ∞.

Lemma 8.11 Suppose (Ω ,F ,m,T ) is an invertible, ergodic, measure preserving map of a
probability space or of a non-atomic infinite measure space. Let A : Ω → R be a non-negative
measurable function. Either A = 0 a.e., or ∑

n≥0
A◦T n = ∞ a.e.

Proof. If m(Ω) < ∞, then the Lemma follows from the Birkhoff ergodic theorem. In the more
general case m(Ω) ≤ ∞, the lemma follows from the well-known fact that invertible ergodic
measure preserving maps on non-atomic measure spaces are conservative. We supply the de-
tails, for completeness.
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If A is not equal to 0 a.e., then there is ε > 0 s.t. E := {ω ∈ Ω : A(ω) ≥ ε} has positive
measure. We claim that

∑
n≥0

1E(T n
ω) = ∞ (8.3.2)

almost everywhere on E. Since A≥ ε1E (8.3.2) implies that ∑
n≥0

A(T n
ω) =∞ almost everywhere

on E, and, by ergodicity, almost everywhere on Ω , proving the lemma.
It remains to prove (8.3.2). Suppose by way of contradiction that it is not true that ∑

n≥0
1E(T n

ω)=

∞ almost everywhere on E. Then there exists N s.t.

W := {ω ∈ E :
∞

∑
n=0

1E(T n
ω) = N}

has positive measure. The invertibility and measurability of T implies that T n(W ) is measurable
for all n ∈ Z, and that {T n(W )}n∈Z are pairwise disjoint.

Since (Ω ,F ,m) is non-atomic, we can break W =W1∪W2 where Wi are measurable, disjoint,
and with positive measure. By invertibility, Ŵi :=

⋃
n∈ZT nWi are disjoint T -invariant sets with

positive measure. But this contradicts ergodicity. �

Part 1: V ω
N is bounded, or tends to infinite almost surely. Recall that K is a bound for

ess sup | f |, and ε0 is a uniform ellipticity constant for Xω . By Theorem 2.7 and (8.3.1) there
are positive constants Ci =Ci(ε0,K) (i = 1,2) such that for all N,

C−1
1

N

∑
n=3

u(T n
ω)2−C2 ≤V ω

N ≤C1

N

∑
n=3

u(T n
ω)2 +C2.

If u(ω) = 0 m-a.e., then for a.e. ω , V ω
N ≤C2 for all N. Otherwise, by Lemma 8.11,

∑
N
n=3 u(T nω)2 −−−→

N→∞
∞, whence V ω

N → ∞ almost everywhere.

Part 2: Linear growth of variance when V ω
N →∞ a.e. and m(Ω) = 1. Suppose m(Ω) = 1 and

V ω
N → ∞ almost surely. We claim that

∃σ2 > 0 s.t. V ω
N ∼ Nσ

2 a.s. (8.3.3)

Let σ2
0 :=

∫
Ω

u2dm. This is a finite number, because ‖u‖∞ ≤ 6K and m(Ω) = 1. This is
a positive number, because as we saw in part 1, if u = 0 a.e., then V ω

N = O(1) a.e. contrary

to our assumptions. By the pointwise ergodic theorem,
N

∑
n=3

u(T n
ω)2 = [1+ o(1)]σ2

0 N. Hence

V ω
N ≥ [1+o(1)]C1(ε0,K)−1Nσ2

0 → ∞.

Let Fn := f (T n−1ω,Xω
n ,Xω

n+1) and let Eω , Varω , Covω denote the expectation, variance and
covariance with respect to Xω , then

V ω
N =

N

∑
n=1

Varω(Fn)+2
N

∑
n=1

N

∑
m=n+1

Covω(Fn,Fm)

=
N

∑
n=1

Varω(Fn)+2
N

∑
n=1

N−n

∑
k=1

Covω(Fn,Fn+k).
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By assumption (S) {µω} are stationary, so {XT nω
i }i≥1 has the same distribution as {Xω

1 }i≥n.
Therefore Varω(Fn) = VarT n−1ω(F1) and Covω(Fn,Fn+k) = CovT n−1ω(F1,F1+k). Thus

V ω
N =

N−1

∑
n=0

ψ0(T n
ω)+2

N−1

∑
n=0

N−n

∑
k=1

ψk(T n
ω),

where ψ0(ω) := Varω [ f (ω,Xω
1 ,Xω

2 )] and

ψk(ω) = Covω [ f (ω,Xω
1 ,Xω

2 ), f (T k
ω,Xω

k+1,X
ω
k+2)].

By the ergodic theorem lim
N→∞

1
N

N
∑

n=1
ψ0(T nω) =

∫
ψ0dm. To find the limit of the normalized

double sum we first recall that by the uniform mixing of {Xω
n } (a consequence of the ellipticity

assumption), ‖ψk‖∞ ≤Cmix‖ f‖2
∞θ k with Cmix,0 < θ < 1 which only depend on ε0 (Proposition

1.11). Therefore for every M,

lim
N→∞

1
N

N−1

∑
n=0

N−n

∑
k=1

ψk(T n
ω) =

[
lim

N→∞

1
N

N−1

∑
n=0

M−1

∑
k=1

ψk(T n
ω)
]
+O(θ M),

whence by the ergodic theorem lim
N→∞

1
N

N−1

∑
n=0

N−n

∑
k=1

ψk(T n
ω) =

∞

∑
k=1

∫
ψkdm, with the last sum con-

verging exponentially fast. In summary,

1
N

V ω
N −−−→N→∞

σ
2 :=

∫ [
ψ0 +2

∞

∑
k=1

ψk

]
dm.

Since as we saw above liminf 1
NV ω

N ≥ C1σ2
0 and σ2

0 > 0, it must be the case that σ2 > 0, and
(8.3.3) is proved.

We now relate the following two properties:

(a) f is relatively cohomologous to a constant;
(b) V ω

N is bounded m-a.e.

Part 3: (a)⇒(b): Suppose f is relatively cohomologous to a constant. By Fubini’s theorem, for
m-a.e. ω , for every n,

f ω
n (Xω

n ,Xω
n+1) = a(T n

ω,Xω
n )−a(T n+1

ω,Xω
n+1)+ c(T n

ω) a.s.

with respect to the distribution of {Xω
n }.3

Summing over n, we obtain that for a.e. ω , for every N,

|Sω
N −

N

∑
n=1

c(T n
ω)|= |a(ω,Xω

1 )−a(T N
ω,Xω

N+1)| ≤ 2esssupa(·, ·).

In particular, for every ω , V N
ω is bounded. By the first part of the proof, for a.e. ω , for all N,

|V ω
N | ≤C2(ε0,K).

Part 4: (b)⇒(a): Next suppose that f is not relatively cohomologous to a constant. Recall that
σ2

0 =
∫

u2dm.
3 Here we use the assumption that (Ω ,F ,m) is σ -finite. Fubini’s theorem may be false otherwise.
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We claim that σ2
0 > 0, and deduce from the first part of the proof that V ω

N →+∞ a.e.
Assume by way of contradiction that σ2

0 = 0, then u(ω) = 0 a.e., whence for a.e. ω , for every
n, almost every position n hexagon of Xω has balance zero. Applying the gradient lemma to Xω ,
we find bounded functions gω

n and constants cω
n such that

f ω
n (Xω

n ,Xω
n+1) = gω

n (X
ω
n )−gω

n+1(X
ω
n+1)+ cω

n a.s.

The issue is to show that gω
n ,c

ω
n can be given the form gω

n (x) = a(T nω,x) and cω
n = c(T nω)

where a(·, ·),c(·) are measurable.
This is indeed the case, because the proof of the gradient lemma shows that we can take

cω
n = Eω [ f ω

n−2(X
ω
n−2,X

ω
n−1)]

gω
n (z) = E

(
f ω
n−2(X

ω
n−2,X

ω
n−1)+ f ω

n−1(X
ω
n−1,X

ω
n )

∣∣∣∣Xω
n = z

)
.

So cω
n = c(T nω) and gω

n (z) = a(T nω,z) for

c(ω) :=
∫
S2

µT−2ω(x)µT−1ω(dy)p(T n−2
ω,x,y) f (T−2

ω,x,y).

a(ω,z) :=
∫
S3

µT−2ω(dx)µT−1ω(dy)p(T n−2
ω,x,y)p(T−1

ω,y,z)×

f (T−2ω,x,y)+ f (T−1ω,y,z)∫
S2 µT−2ω(dx)µT−1ω(dy)[p(T n−2ω,x,y)p(T−1ω,y,z)]

.

These are measurable functions, and our standing assumptions imply that they are bounded.
We see that f is relatively cohomologous to a constant in contradiction to our assumption. So

σ2
0 > 0, whence by the first part of the proof V ω

N tends to infinity. �

8.3.3 The local limit theorem

In this section, we prove Theorems 8.2, 8.3, 8.6 and 8.7 on the local limit theorem for Markov
chains in random environment. We need the following lemmas:

Lemma 8.12 Suppose Ω is a Borel space, S is a separable metric space, and ψ : Ω×S→R is
a Borel function such that for every ω ∈Ω , ψ(ω, ·) is continuous on S and positive somewhere.
Then there exists a Borel measurable x : Ω →S such that ψ(ω,x(ω))> 0.

Proof. Fix a countable dense set {xi} ⊂S. Our assumptions on ψ imply that for every ω there
exists an i such that ψ(ω,xi)> 0. So

i(ω) := min{i ∈ N : ψ(ω,xi)> 0}

is well-defined and Borel measurable. Take x(ω) := xi(ω). �

Lemma 8.13 If W1,W2 are two independent random variables such that for some a, t ∈R, W1+
W2 ∈ a+ tZ with full probability, then a = a1 +a2 where W1 ∈ a1 + tZ, W2 ∈ a2 + tZ with full
probability.

Proof. Without loss of generality a = 0, t = 2π . Then

|E(eiW1)| · |E(eiW2)|= |E(ei(W1+W2))|= 1,



194 8 LLT for Markov chains in random environment

whence |E(eiWk)|= 1 (k = 1,2). Choose ak such that E(ei(Wk−ak)) = 1, then E(cos(Wk−ak)) =
1, whence Wk−ak ∈ 2πZ almost surely. Necessarily a1 +a2 ∈ 2πZ, and there is no problem in
adjusting a1 to get that the sum zero. �

Proof of Theorems 8.2 and 8.6 on the non-lattice case. Theorems 8.2 and 8.6 provide the
LLT for Markov chains in random environment with finite and infinite noise process, under the
assumption that f is not relatively cohomologous to a coset of tZ with t 6= 0.

In this case, f is also not relatively cohomologous to a constant, and by Theorems 8.1 and
8.5, V ω

N → ∞ as N→ ∞. Moreover, if the noise process (Ω ,F ,m,T ) satisfies m(Ω) = 1, then
∃σ2 > 0 s.t. V ω

N ∼ Nσ2.
To prove the theorems it is sufficient to show that for a.e. ω , Gess(X

ω , fω) = R, as this will
imply the LLT by the general results of Chapter 4.

Assume by way of contradiction that Gess(X
ω , fω) 6= R on a set of ω’s of positive measure.

By Proposition 8.9, Gess(X
ω , fω) = Gess a.e. where Gess = {0} or 2π

t Z with t 6= 0. The first
possibility cannot happen, because it implies that fω is center-tight, whence V ω

N =O(1), whereas
V ω

N →∞. So there exists t 6= 0 such that Gess(X
ω , fω) = (2π/t)Z a.s., and Hω :=H(Xω , fω) = tZ

a.e.
By the reduction lemma, for every ω s.t. Hω = tZ there are measurable functions gω

n (x),
hω

n (x,y) with ∑Var[hω
n ]< ∞, and constants cω

n such that

exp
[
it( f ω

n (x,y)−gω
n (x)+gω

n+1(y)+hω
n (x,y)− cω

n )
]
= 1

a.s. with respect to the distribution of (Xω
n ,Xω

n+1). So eit( f (ω,x,y)+hω
n (x,y)) = λ ω

n
aω

n (x)
aω

n+1(y)
, where

λ ω
n = eitcω

n , aω
n (x) = eitgω

n (x).

But now we run into a problem: Our proof of the reduction lemma does not provide gω
n and

cω
n of the form cω

n = c(T nω) , aω
n = a(T nω,x) with c(·),a(·, ·) measurable, and we need to

show that hω
n = 0.

To this end we use the following additional structure: For a.e. ω , Hω = tZ so ∑d(T nω, t)2 <
∞ µ-almost everywhere. By the ergodic theorem, this can only happen if d(ω, t) = 0 almost
everywhere. Hence

Γ

(
Zω

1 ,
Zω

2
Y ω

2
,
Y ω

3
Xω

3
,Xω

4

)
∈ 2π

t
Z a.e. in Hex(ω) for m-a.e. ω . (8.3.4)

Recall the ladder process Lω
n = (Zω

n−2,Y
ω
n−2,X

ω
n ) associated with {Xω

n }. Let Pω denote its
distribution, and define as in the proof of the reduction lemma,

Hω(Lω
n ,L

ω
n+1) := Γ

(
Zω

n−2,
Zω

n−1
Y ω

n−1
,
Y ω

n
Xω

n
,Xω

n+1

)
Γ

(
Zω

1 ,
Zω

2
Y ω

2
,

Zω
3

Xω
3
,
Y ω

4
Xω

4
,Xω

5

)
!

:= Hω(Lω
3 ,L

ω
4 )+Hω(Lω

4 ,L
ω
5 )

The last definition requires justification because the RHS seems at first sight to depend on Y ω
3 . In

fact it does not. To see this observe that the last expression is the balance of the octagon obtained

by stacking
(

Zω
2 ,

Zω
3

Y ω
3
,
Y ω

4
Xω

4
,Xω

5

)
on top of

(
Zω

1 ,
Zω

2
Y ω

2
,
Y ω

3
Xω

3
,Xω

4

)
and removing the common edge

(Zω
2 ,Y

ω
3 ,Xω

4 ) which “cancels out.”
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CLAIM 1. Let Pω denote the distribution of {Lω
n }, then there exist measurable functions

ζ1(ω),ζ2(ω) ∈S such that for a.e. ω

Γ

(
ζ1(ω),

ζ2(ω)
Y ω

2
,

ζ1(ω)
Xω

3
,
Y ω

4
Xω

4
,Xω

5

)
∈ 2π

t
Z ; Pω

 ·∣∣∣∣ Zω
3 = ζ1(ω)

Zω
2 = ζ2(ω)

Zω
1 = ζ1(ω)

–a.e.

Proof. By (8.3.4), Γ ∈ 2π

t Z with full Pω–probability, for a.e. ω . The point it to obtain this a.s.
with respect to the conditional measures.

Suppose first that S is countable, then for fixed ω , the Pω -distribution of (Lω
3 ,L

ω
2 ,L

ω
3 ) is

purely atomic, and Γ ∈ 2π

t Z for every octagon with positive Pω–probability. So the claim holds
for any pair (ζ1(ω),ζ2(ω)) ∈S such that

Pω
[
(Zω

1 ,Z
ω
2 ,Z

ω
3 ) = (ζ1(ω),ζ2(ω),ζ1(ω))

]
> 0.

Such pairs exist by the ellipticity assumption. Since S is countable there is no problem to choose
such (ζ1,ζ2) measurably.

Now suppose S is uncountable but with the continuity property (C). By Fubini’s theorem
and (8.3.4), for a.e. ω ∈ Ω , for a.e. (ζ1,ζ2,ζ3) with respect to the distribution (ζ1,ζ2,ζ3) ∼
(Zω

1 ,Z
ω
2 ,Z

ω
3 ),

EPω

(∣∣e(2πi/t)Γ
(

Zω
1 ,

Zω
2

Y ω
2
,

Zω
3

Xω
3
,

Y ω
4

Xω
4
,Xω

5

)
−1
∣∣2∣∣∣∣ Zω

1 = ζ1
Zω

2 = ζ2
Zω

3 = ζ3

)
= 0. (8.3.5)

By the Markov property, this conditional expectation has canonical interpretation for every
(ω,ζ1,ζ2,ζ3) in the set

A = {(ω,a,b,c) : p(ω,a,b)p(T ω,b,c)> 0}.

By assumption (C2), A is open. By assumption (C1), every open subset of A has positive mea-
sure with respect to the measure

∫
Pωm(dω). By assumption (C2), the left-hand-side of (8.3.5)

depends continuously on (ω,ζ1,ζ2,ζ3). Therefore (8.3.5) is true for all (ζ1,ζ2,ζ3) ∈ A.
Thus to prove the claim it remains to construct measurable functions ζ1(ω),ζ2(ω) such that

(ω,ζ1(ω),ζ2(ω),ζ1(ω)) ∈ A for all ω .
By the ellipticity condition

∫
S p(ω,a,ζ )p(T ω,ζ ,a)µT ω(dζ ) > ε0, so for every ω there are

(ζ1,ζ2) s.t.
ψ(ω,(ζ1,ζ2)) := p(ω,ζ1,ζ2)p(T ω,ζ2,ζ1)> 0.

By Lemma 8.12 it is possible to choose measurable ζ1(ω),ζ2(ω) like this. Claim 1 is proved.

Given ω ∈ Ω and a,b ∈ S, construct the bridge distribution Pω
ab(E) = P

ω(Y ω
2 ∈ E|Zω

1 =
a,Xω

3 = b) as in §1.2.3.

CLAIM 2. For a.e. ω , for a.e. (ξ3,ξ4,ξ5) sampled from the joint distribution of (Xω
3 ,Xω

4 ,Xω
5 ),

the random variables

W ω
3 := f (ω,ζ1(ω),Y2)+ f (T ω,Y2,ξ3), Y2 ∼ Pω

ζ1,ξ3

W T 2ω
5 := f (T 2

ω,ζ1(ω),Y4)+ f (T 3
ω,Y4,ξ5), Y4 ∼ PT 2ω

ζ1,ξ5

are purely atomic, and belong to some coset of 2π

t Z with full probability. (These cosets could
be different.)

Proof. By choice of ζi(ω) and Fubini’s theorem, for a.e. (ξ3,ξ4,ξ5)∼ (Xω
3 ,Xω

4 ,Xω
5 ),
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Γ

(
ζ1(ω),

ζ2(ω)
Y ω

2
,

ζ1(ω)
ξ3

,
Y ω

4
ξ4

,ξ5

)
∈ 2π

t
Z Pω

(
·
∣∣∣∣ Zω

3 = ζ1 Xω
3 = ξ3

Zω
2 = ζ2 Xω

4 = ξ4
Zω

1 = ζ1 Xω
5 = ξ5

)
–a.e.

Notice that Γ

(
ζ1(ω),

ζ2(ω)
Y ω

2
,

ζ1(ω)
ξ3

,
Y ω

4
ξ4

,ξ5

)
is equal to the independent difference of W ω

3

and W T 2ω
5 , plus a constant which only depends on ω . The claim now follows from Lemma

8.13.

CLAIM 3. Given ω and (ξ3,ξ4,ξ5) as in claim 2, let

g(ω,ξ3) :=
(

the smallest positive atom of W ω
3 if ∃ positive atoms,

otherwise, the largest non-positive atom of W ω
3

)
c(ω) :=− f (ω,ζ1(ω),ζ2(ω))− f (T ω,ζ2(ω),ζ1(ω)).

These functions are well-defined, measurable, and

[ f (T 2
ω,ξ3,ξ4)+ f (T 3

ω,ξ4,ξ5)]+g(ω,ξ3)−g(T 2
ω,ξ5)+ c(ω) ∈ 2π

t
Z (8.3.6)

for µ-a.e. ω , for a.e. (ξ3,ξ4,ξ5)∼ (Xω
3 ,Xω

4 ,Xω
5 ).

Proof. The function g(ω,ξ3) is well-defined for a.e. ω because of claim 2. To see that it is

measurable, we note that (ω,ξ3) 7→ P(W ω
3 ∈ (a,b)) are measurable, and

[g(ω,ξ3)> a] = {(ω,ξ3) : P(0 <W ω
3 ≤ a) = 0 ,P(W ω

3 > a) 6= 0} (a > 0)
[g(ω,ξ3)> a] = {(ω,ξ3) : P(W ω

3 > a) 6= 0} (a≤ 0)

are measurable. The measurability of c(ω) is clear.
Equation (8.3.6) holds because the left-hand-side of (8.3.6) is, up to a sign, an atom of the

random variable

Γ

(
ζ1(ω),

ζ2(ω)
Y ω

2
,

ζ1(ω)
ξ3

,
Y ω

4
ξ4

,ξ5

)
, (Lω

3 ,L
ω
4 )∼ Pω

·∣∣∣∣Z
ω
3 = ζ1(ω) Xω

3 = ξ3
Zω

2 = ζ2(ω) Xω
4 = ξ4

Zω
1 = ζ1(ω) Xω

5 = ξ5


and we chose (ζ1(ω),ζ2(ω)) so that this random variable takes values in 2π

t Z a.s.

Claim 3 gives us measurable functions a(ω,x) := exp(−itg(T−2ω,x)) and λ (ω) := exp(−itc(T−2ω))
such that

eit[ f (ω,Xω
1 ,Xω

2 )+ f (T ω,Xω
2 ,Xω

3 )] = λ (ω)
a(ω,Xω

1 )

a(T 2ω,Xω
3 )

.

Multiplying both sides of the equation by eit[ f ω− f ω◦T ] gives

e2it f (ω,Xω
1 ,Xω

2 ) = λ (ω)
b(ω,Xω

1 ,Xω
2 )

b(T ω,Xω
2 ,Xω

3 )
,

where b(ω,x,y) := a(ω,x)a(T ω,y)eit f (ω,x,y).
This not quite a relative cohomology to a coset of (π/t)Z, because b(ω,x,y) seems to depend

not just on x but also on y. In fact there is a bounded measurable function β (ω,x) such that

b(ω,Xω
1 ,Xω

2 ) = β (ω,Xω
1 ) P− almost everywhere,
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where P is given by (8.2.1). This can be seen as follows. Rearrange terms to see that

b(T ω,Xω
2 ,Xω

3 ) = λ (ω)e−2it f (ω,Xω
1 ,Xω

2 )b(ω,Xω
1 ,Xω

2 ).

By the Markov property of Xω , for fixed ω , the left-hand-side and the right-hand-side of this
equation are conditionally independent given Xω

2 . Two independent random variables which are
equal, must be constant. So for m-a.e. ω ,

b(T ω,Xω
2 ,Xω

3 ) = Eω(b(T ω,Xω
2 ,Xω

3 )|Xω
2 ).

Setting
β (ω,Xω

1 ) := Eω(b(ω,Xω
1 ,Xω

2 )|Xω
1 )

and using stationarity to shift indices where needed, we find that

b(ω,Xω
1 ,Xω

2 ) = β (ω,Xω
1 ) P−a.e., b(T ω,Xω

2 ,Xω
3 ) = β (T ω,Xω

2 ) P−a.e.

Hence

e2it f (ω,Xω
1 ,Xω

2 ) = λ (ω)
β (ω,Xω

1 )

β (T ω,Xω
2 )

P-a.e..

So f is relatively cohomologous to a coset of π

t Z.

We obtained a contradiction to our assumptions. This contradiction shows that Gess(X
ω , fω)=

R for a.e. ω . The local limit theorem now follows from Theorem 4.1, applied to (Xω , fω), since
Theorem 8.1 gives the a.s. asymptotic V ω

N ∼ Nσ2 for some σ2 > 0 independent of ω . �

Proofs of Theorem 8.3 and 8.7 on the lattice case. Theorems 8.3 and 8.7 provide the LLT for
Markov chains in random environment with finite and infinite noise processes for integer valued
additive functionals, under the assumption that f is not relatively cohomologous to a coset of
tZ with t 6= 1.

The proof is similar to the proof in the non-lattice case, except that now to check irreducibility
we need to show that Hω = Z almost surely. Since f is integer valued, 1 ∈ Hω , so if this is not
the case then necessarily Hω = tZ for t = 1

n and n ∈ N. Now repeat the proof of Theorems 8.2
and 8.6 verbatim. �

8.3.4 Log-moment generating functions and rate functions

We prove Theorem 8.4 on the a.s. convergence of the log-moment generating functions of
(Xω , fω) and their Legendre transforms. Suppose f is an essentially bounded additive functional
on a MCRE with a finite noise space (Ω ,B,m,T ). Without loss of generality, m(Ω) = 1.

Part (1): Convergence of log-moment generating functions: We are asked to show that for
a.e. ω , G ω

N (ξ ) := 1
N logE(eξ Sω

N ) converge pointwise on R. To do this we recall three facts from
chapter 6:

FACT 1: Given ξ ∈R, for every ω ∈Ω there are unique numbers pn(ξ ,ω)∈R and unique non-
negative functions hn(·,ξ ,ω) ∈ L∞(S,B(S),µT n−1ω) such that

∫
S hn(x,ξ ,ω)µT n−1ω(dx) = 1

for all n≥ 1, and ∫
S

eξ f (T nω,x,y) hn+1(y,ξ ,ω)

epn(ξ ,ω)hn(x,ξ ,ω)
π(T n

ω,x,dy) = 1. (8.3.7)
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Furthermore, pn(ξ ,ω) = p(ξ ,T nω) for all n, where and p(ξ ,ω) is measurable.

Proof. The existence and uniqueness of hn, pn follows from Lemma 6.7, applied to (Xω , fω) with
an = 0. Writing (8.3.7) first for (n,ω) and then for (n−1,T ω), and then invoking uniqueness,
we find that pn(ξ ,ω) = pn−1(ξ ,T ω). So

pn(ξ ,ω) = pn−1(ξ ,T ω) = · · ·= p1(ξ ,T
n−1

ω) = p(ξ ,T n
ω),

where p(ξ ,ω) := p1(ξ ,T
−1ω). The proof of Lemma 6.7 represents hn(x,ξ ,ω) as a limit of

expressions which are measurable in (x,ξ ,ω), so (x,ξ ,ω) 7→ hn(x,ξ ,ω) is measurable. By
(8.3.7), (ω,ξ ) 7→ p(ξ ,ω) is measurable.

FACT 2: Let K := ess sup |f| and let ε0 denote a uniform ellipticity bound for Xω . For every
R > 0 there exists a constant C(ε0,K,R) such that |p(ξ ,ω)| ≤ C(ε0,K,R) for all ω ∈ Ω and
|ξ | ≤ R.

Proof. See the proof of Lemma 6.8.

FACT 3: Let PN(ξ ,ω) :=
N

∑
k=1

p(ξ ,T k
ω), then for a.e. ω ∈Ω ,

G ω
N (ξ ) =

(
V ω

n
N

)[
PN(ξ ,ω)

V ω
N

+O
(

1
V ω

N

)]
uniformly on compact subsets of ξ ∈ R.

Proof. It is convenient to work with F ω
N (ξ ) := 1

V ω
N

logE(eξ Sω
N )≡ (N/V ω

N )G ω
N (ξ ). Let PN(ξ ,ω) :=

PN(ξ ,ω)+
(
E(Sω

N )−
d

dξ

∣∣
ξ=0P′N(0,ω)

)
ξ . For each ω ∈Ω such that V ω

N → ∞,

(1) d
dξ

∣∣
ξ=0P′N(0,ω) exists, by Lemma 6.10.

(2) |PN(ξ ,ω)−PN(ξ ,ω)| = O(1) uniformly on compact subsets of ξ ∈ R, by Lemmas 6.11
and 6.12.

(3) |F ω
N (ξ )−PN(ξ )/V ω

N |=O(1/V ω
N ) uniformly on compact subsets of ξ ∈R, by Lemma 6.12.

Fact 3 follows.

We can now prove the a.s. convergence of F ω
N (ξ ). By the assumptions of the theorem, f is

not relatively cohomologous to a constant. Therefore, by Theorem 8.1, there exists σ2 > 0 such
that V ω

N ∼ σ2N as N→ ∞ for a.e. ω .
Fix a countable dense set {ξ1,ξ2, . . .} ⊂R. For each i, ω 7→ p(ξi,ω) is bounded and measur-

able. So for a.e. ω ,

lim
N→∞

G ω
N (ξi) = σ

2 lim
N→∞

1
V ω

N

N

∑
k=1

p(ξi,T k
ω) = lim

N→∞

1
N

N

∑
k=1

p(ξi,T k
ω)

=
∫

Ω

p(ξi,ω)m(dω), by the Birkhoff ergodic theorem.

This shows that for all i there exists G (ξi) ∈R such that lim
N→∞

G ω
N (ξi) = G (ξi) for a.e. ω . Let Ω ′

denote the set of full measure of ω where this holds for all i ∈ N.
Fix ω ∈ Ω ′, then the functions ξ 7→ F ω

N (ξ ) are equicontinuous on compacts, because if
K := ess sup |f|, then
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|(F ω
N )′(ξ )| ≤

∣∣∣∣∣ |ξ |E(|Sω
N |eξ Sω

N )

V ω
N E(eξ Sω

N )

∣∣∣∣∣= |ξ |KN
V ω

N
= O(|ξ |).

Therefore for a.e. ω , the functions ξ 7→ G ω
N (ξ ) are equicontinuous on compacts.

Recall that if a sequence of functions ϕn(ξ ) which is equicontinuous on compacts converges
on a dense subset of R, then ϕn(ξ ) converges for all ξ ∈ R. Moreover, the limit is continuous.
So there is a continuous function F ω(ξ ) such that

lim
N→∞

G ω
N (ξ ) = F ω(ξ ) for all ξ ∈ R, ω ∈Ω

′.

In fact F ω(ξ ) does not depend on ω , because by virtue of continuity,

F ω(ξ ) = lim
k→∞

F ω(ξik) = lim
k→∞

G (ξik), whenever ξik −−−→k→∞
ξi.

We are therefore free to write F ω(ξ ) = F (ξ ).
It remains to show that F (ξ ) is differentiable and strictly convex onR. Fix ω ∈Ω ′. Applying

Theorem 6.1 to (Xω , fω) we find that for every R > 0 there is a C = C(R) such that C−1 ≤
(F ω

N )′′ ≤ C on [−R,R]. This implies that F is differentiable and strictly convex on (−R,R)
because of the following general lemma:

Lemma 8.14 Suppose ϕn : R→ R are twice differentiable convex functions such that C−1 ≤
ϕ ′′n ≤ C with C > 0, on (−R,R). If ϕn −−−→

N→∞
ϕ pointwise on (−R,R), then ϕ is continuously

differentiable and strictly convex on (−R,R).

Proof. A pointwise limit of convex functions is convex, and convex functions have one sided
derivatives. Let ϕ ′±(ξ ) denote the one-sided derivatives of at ξ .
DIFFERENTIABILITY: For all |ξ |< R,

|ϕ ′+(ξ )−ϕ
′
−(ξ )|= lim

h→0+

∣∣∣∣ϕ(ξ +h)−ϕ(ξ )

h
− ϕ(ξ −h)−ϕ(ξ )

h

∣∣∣∣
= lim

h→0+
lim
n→∞

∣∣∣∣ϕn(ξ +h)−ϕn(ξ )

h
− ϕn(ξ −h)−ϕn(ξ )

h

∣∣∣∣
= lim

h→0+
lim
n→∞
|ϕ ′n(ξn)−ϕ

′
n(ηn)| for some ξn,ηn ∈ (ξ −h,ξ +h)

≤ lim
h→0+

lim
n→∞

2Ch = 0, because |ϕ ′′n | ≤C on a neighborhood of ξ .

We find that ϕ ′+(ξ ) = ϕ ′−(ξ ), whence ϕ is differentiable at ξ .
STRICT CONVEXITY: Suppose −R < ξ < η < R, then

ϕ
′(η)−ϕ

′(ξ ) = ϕ
′
+(η)−ϕ

′
−(ξ ) = lim

h→0+

ϕ(η +h)−ϕ(η)

h
− ϕ(ξ −h)−ϕ(ξ )

h

= lim
h→0+

lim
n→∞

ϕn(η +h)−ϕn(η)

h
− ϕn(ξ −h)−ϕn(ξ )

h
= lim

h→0+
ϕ
′
n(ηn)−ϕ

′
n(ξn) for some ξn ∈ [ξ −h,ξ ], ηn ∈ [η ,η +h]

≥ liminf
n→∞

C−1|ηn−ξn| ≥C−1(η−ξ ), because ϕ
′′
n >C−1 on (−R,R).

It follows that ϕ ′ is strictly increasing on (−R,R).
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THE DERIVATIVE IS CONTINUOUS: The same calculation as before shows that if −R < ξ <
η < R, then |ϕ ′(η)−ϕ ′(ξ )| ≤C|ξ −η |, whence ϕ ′ is (Lipschitz) continuous on (−R,R). �

Part (2): Convergence of E(Sω
N )/N: We need the following standard fact.

Lemma 8.15 Suppose ϕn(ξ ),ϕ(x) are finite, convex, and differentiable on (−R,R). If ϕn(ξ )−−−→
n→∞

ϕ(ξ ) on (−R,R), then ϕ ′n(ξ )−−−→n→∞
ϕ ′(ξ ) on (−R,R).

Proof. Fix ξ ∈ (−R,R). By convexity, for every h > 0 sufficiently small,

ϕn(ξ )−ϕn(ξ −h)
h

≤ ϕ
′
n(ξ )≤

ϕn(ξ +h)−ϕn(ξ )

h
. (8.3.8)

To see this note that the LHS is at most (ϕn)
′
−(ξ ), the RHS is at least (ϕn)

′
+(ξ ), and both

one-sided derivatives equal ϕ ′n(ξ ).
Passing to the limit n→ ∞ in (8.3.8), we find that

limsupϕ
′
n(ξ ), liminfϕ

′
n(ξ ) ∈

[
ϕ(ξ )−ϕ(ξ −h)

h
,
ϕ(ξ +h)−ϕ(ξ )

h

]
.

We now invoke the differentiability of ϕ , pass to the limit h→ 0+, and discover that limsupϕ ′n(ξ )
and liminfϕ ′n(ξ ) are both equal to ϕ ′(ξ ). �

For a.e. ω , (V ω
N /N)F ω

N (ξ )≡ GN(ξ ,ω)−−−→
N→∞

F (ξ ). So by the lemma

(V ω
N /N)

d
dξ

∣∣∣∣
ξ=0

F ω
N (ξ ,ω)−−−→

N→∞
F ′(0).

A calculation shows that the derivative equals E(Sω
N )/V ω

N . So E(Sω
N )/N→F ′(0).

Part (3): Convergence of Legendre transforms. Again, the proof is based on a general prop-
erty of convex functions.

Lemma 8.16 Suppose ϕn(ξ ),ϕ(ξ ) are finite, strictly convex, continuously differentiable func-
tions on R, s.t. ϕn(ξ )→ ϕ(ξ ) for all ξ ∈ R. Let ϕ ′(±∞) := lim

ξ→±∞

ϕ ′(ξ ). Let ϕ∗n ,ϕ
∗ denote the

Legendre transforms of ϕn,ϕ . For all η ∈ (ϕ ′(−∞),ϕ ′(+∞)), ϕ∗n (η) is well-defined for all n
sufficiently large, and ϕ∗n (η)→ ϕ∗(η).

Proof. Fix η ∈ (ϕ ′(−∞),ϕ ′(+∞)). By assumption, ϕ ′ is continuous and strictly increasing.
Therefore, there exists ξ such that ϕ ′(η) = ξ .

Fix ε > 0 and ξ1 < ξ < ξ2 such that |ξ1− ξ2| < ε . Then ϕ ′(ξ1) < η < ϕ ′(ξ2). By Lemma
8.15, ϕ ′n(ξi)→ ϕ ′(ξi), and therefore there exists N such that for all n > N,

ϕ
′(ξ1)−1 < ϕ

′
n(ξ1)< η < ϕ

′
n(ξ2)< ϕ

′(ξ2)+1.

Since η ∈ (ϕ ′n(ξ1),ϕ
′
n(ξ2)) and ϕ ′n is continuous and strictly increasing, there exists a unique

ξn ∈ (ξ1,ξ2) so that ϕ ′n(ξn) = η . So ϕ∗n (η) is well-defined, and

ϕ
∗
n (η) = ξnη−ϕn(ξn).

Similarly, ϕ∗(η) = ξ η−ϕ(ξ ).
We now estimate the distance between ϕ∗n (η) and ϕ∗(η). Recall first that for all n > N,

ϕ ′(ξ1)−1 < ϕ ′n(ξ1)< ϕ ′n(ξ2)< ϕ ′(ξ2)+1. Let
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M := max{|ϕ ′(ξ1)−1|, |ϕ ′(ξ2)+1|},

then |ϕ ′n| ≤M on (ξ1,ξ2) for all n > N. Consequently,

|ϕ∗n (η)−ϕ
∗(η)| ≤ |ξn−ξ | · |η |+ |ϕn(ξn)−ϕ(ξ )|

≤ |ξ1−ξ2| · |η |+ |ϕn(ξn)−ϕn(ξ )|+ |ϕn(ξ )−ϕ(ξ )|
≤ ε|η |+M|ξn−ξ |+ |ϕn(ξ )−ϕ(ξ )| ≤ ε(M+ |η |)+o(1), as n→ ∞,

because ϕn(ξ )→ ϕ(ξ ), ξ ,ξn ∈ (ξ1,ξ2), and |ξ1− ξ2| ≤ ε . Since ε is arbitrary, we have that
ϕ∗n (η)→ ϕ∗(η). �

Part (4): Properties of I (η). Fix ω such that ϕN(ξ ) := 1
N logE(eξ Sω

N ) converges pointwise to
F . By Lemma 8.16, ϕ∗N converges pointwise to I . Since ϕ ′′N is uniformly bounded away from
zero and infinity on compacts (see the first part of the proof), (ϕ∗N)

′′ is uniformly bounded away
from zero and infinity on compacts. Hence by Lemma 8.14

I = limϕ
∗
N is strictly convex and continuously differentiable.

By Lemma 8.15, (ϕ∗N)
′(η) −−−→

N→∞
I ′(η) for all η in the interior of the range of ϕ ′, and

ϕN(ξ )−−−→
N→∞

F ′(ξ ) for all ξ ∈R. The convergence is uniform on compacts, because (ϕ∗N)
′′,ϕ ′′N

are bounded on compacts.
It is easy to verify that ϕN is twice differentiable. Therefore by Lemma 6.17, ϕ∗N is twice

differentiable and (ϕ∗N)
′(ϕ ′N(ξ )) = ξ for all ξ . Passing to the limit as N → ∞ we obtain the

important identity I ′(F ′(ξ )) = ξ for all ξ ∈ R.
One consequence of the identity I ′(F ′(ξ )) = ξ is that I ′(F ′(0)) = 0, so η = F ′(0) is a

critical point of I (·). By strict convexity, I attains its global minimum at F ′(0). The value
there is zero:

I (F ′(0)) = 0 ·F ′(0)−F (0) = 0.

We conclude that I (η) = 0 when η = F ′(0), and I (η)> 0 for η 6= F ′(0).
Another consequence of the identity I ′(F ′(ξ )) = ξ (and the fact that F ′ is increasing) is

that I ′(ξ )−−−−→
ξ→±∞

±∞, and therefore I has compact level sets. �

Part (5): Large deviation threshold. We prove the identity for F ′(∞), the identity for F ′(−∞)
follows by replacing f→−f.
Step I. c+ ≥F ′(+∞).

Proof. Given η ∈ (F ′(−∞),F (+∞)) choose

F ′(−∞)< η
− < η < η

+ < F (+∞).

Take ξ± be s.t. F ′(ξ±) = η±. By Lemma 8.15, lim
N→∞

F ′
N(ξ

±) = η
±. Hence for large N

F ′
N(ξ

−)≤ η ≤FN(ξ
+) and so η is reachable.

Step II. c+ ≤F ′(+∞).

Proof. Take η > c+. If η ∈ CR for some R we would have that for some R, for all N large
enough F ′

N(R) ≥ η (see Lemma 6.12(5)). However by Lemma 8.15, lim
N→∞

FN(R) = F ′(R) <

F ′(+∞)< η contradicting our assumption that η is reachable.

Step III. Denote SN(ω) = ess supSω
N . Then the limit s+ := lim

N→∞

SN(ω)

N
exists and is indepen-

dent of ω with probability one.
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Proof. By our ellipticity assumption

SN+M(ω)≤SN(ω)+SM(T N
ω)−4K.

Thus the sequence TN(ω) =SN(ω)−4K is subadditive. Since SN(ω)≥−KN the Subadditive

Ergodic Theorem implies that the limit lim
N→∞

SN(ω)

N
= lim

N→∞

TN(ω)

N
exists and is independent

of ω with probability one.
Step IV. c+ ≤ s+ because for each ε > 0 we have that with probability one for large N, Pω(SN ≥
(s++ ε)N) = 0.
Step V. c+ ≥ s+

Proof. Fix ε > 0. By Step III for each sufficiently large N0 there exists γε,N0 > 0 and a set Ωε,N0

s.t. m(Ωε,N0)≥ 1− ε and for all ω ∈Ωε,N0 , for µω -a.e. x ∈S,

Pω(SN0 ≥ (s+− ε)N0|X1 = x)≥ γε,N0. (8.3.9)

Given M let j1(ω)< j2(ω)< · · ·< jnM(ω)(ω) be all the times 1≤ j <M when T jN0(ω)∈Ωε,N0 ,
then

Pω
(
SN0M ≥ nM(s+− ε)N0− (M−nM)N0K

)
≥ γ

N0M
ε,N0

.

(To see this, estimate conditional probabilities of this event given Xω
j1 , . . . ,X

ω
jnM

using (8.3.9),
and take expectation over Xω

j1 , . . . ,X
ω
jnM

.)
By the Ergodic Theorem, for a.e. ω there is a limit

β (ω) = lim
M→∞

nM(ω)

M
and

∫
β (ω)dm = m(Ωε,N0).

So for large M, and on a set Ω ε of positive measure, nM/M > 1−2ε whence

nM(s+− ε)N0− (M−nM)N0K ≥
[
(1−2ε)(s+− ε)−2εK

]
N0M.

Now Theorem 6.7(c) shows that on Ω ε , c+(ω)≥ (1−2ε)(s+− ε)−2εK.
By steps I and II above, c+ actually does not depend on ω (in fact, using Theorem 6.7, it is

easy to verify directly that c+ is T -invariant, and therefore by ergodicity, constant). we get that

c+(ω)≥ (1−2ε)(s+− ε)−2εK

almost surely. Since ε is arbitrary the result follows. �

8.4 Notes and references

Markov chains in random environment (MCRE) should not be confused with “random walks in
random environment” (RWRE). In the RWRE model, the transition kernel at time n depends on
the position of random walk at time n, i.e. πn(x,dy) = π(Sn,x,dy). In a MCRE, the transition
kernel at time n depends on the noise at time n, i.e. πn(x,dy) = π(T nω,x,dy). For a recent
treatment of the LLT for RWRE, see [21] and references therein.

Markov chains in random environment were introduced by Cogburn [24]. The setup is a par-
ticular case of a “random dynamical system.” For a fixed realization of noise, a Markov chain in
random environment reduces to an inhomogeneous Markov chain, and a random dynamical sys-
tem reduces to a “sequential” (aka “time-dependent” or “non-autonomous”) dynamical system.
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Various authors considered probabilistic limit theorems in these contexts. Limit theorems for
Markov chains in random environment are given in Cogburn [25], Seppäläinen [138], Kifer [79],
[80] and Hafouta & Kifer [69, chapters 6,7],[68]. Results for random dynamical systems can be
found in Kifer [80], Conze, Le Borgne & Roger [27], Denker & Gordin [37], Aimino, Nicol &
Vaienti [8], Nicol, Török & Vaienti [111], and Dragičević, Froyland & González-Tokman [53].
For limit theorems for sequential dynamical systems, see Bakhtin [12], Conze & Raugi [28],
Haydn, Nicol & Török [72], Korepanov, Kosloff & Melbourne [86], and Hafouta [66, 67].

If we set the noise process to be the identity on the one point space, then the LLT in this
chapter reduce to LLT for homogeneous stationary Markov chains, as in Theorem 7.1. For more
general LLT for homogeneous Markov chains, see Nagaev [109], Guivarc’h & Hardy [65].

The results of this chapter are all essentially known in the case T preserves a finite mea-
sure. Theorem 8.1 was proved in the more general setup of random dynamical systems by Kifer
[80],[78]. Theorems 8.2 and 8.3 are close to the (earlier) results of Dragičević, Froyland &
González-Tokman [53], and Hafouta & Kifer [69, chapter 7, Theorem 7.1.5]. The main differ-
ence is in the irreducibility assumptions. Our condition of non-relative cohomology to a coset
is replaced in [69] by what these authors call the “lattice” and “non-lattice” cases (this is not
the same as our terminology). In the paper [53], the non-cohomology condition is replaced by a
condition on the decay of the norms of certain perturbed characteristic function operators, and
a connection to a non-cohomology condition is made under additional assumptions.

The results for infinite noise processes seem to be new. The reason we can also treat this case,
is that the LLT we provide in this work do not require any assumptions on the rate of growth of
VN , and they also work when it grows sub-linearly.
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15. Thomas Bogenschütz and Volker Mathias Gundlach. Ruelle’s transfer operator for random subshifts of finite type. Ergodic

Theory Dynam. Systems, 15(3):413–447, 1995.
16. Richard C. Bradley. Introduction to strong mixing conditions. Vol. 1,2,3. Kendrick Press, Heber City, UT, 2007.
17. Leo Breiman. Probability, volume 7 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, 1992. Corrected reprint of the 1968 original.
18. Julien Brémont. Gibbs measures at temperature zero. Nonlinearity, 16(2):419–426, 2003.
19. Anne Broise. Transformations dilatantes de l’intervalle et théorèmes limites. Astérisque, (238):1–109, 1996. Études spectrales
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Markov chains
Doeblin, 24
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definition, 31
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