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Part 0. Introduction and statement of results

1.1. Results. Let M be a compact C°*° Riemannian manifold of dimension two,

and let f : M — M be a C'*# diffeomorphism (0 < 8 < 1) with positive topological
entropy hiop(f). Set Po(f) :={x € M : f*(x) = z}|.

Anatole Katok showed in [K1],[K2] that limsup £ log P,(f) > hop(f), and
n—oo

conjectured that if f is C°° then limsup e o»(/) P, (f) > 0 (see [K3]). We show:
n—oo

Theorem 1.1. Suppose f is a C'TP diffeomorphism of a compact smooth surface,
and assume hiop(f) > 0. If f has a measure of mazimal entropy, then Ip € N s.1.
liminf e "reor(H) P, (f) > 0.
n—o00,p|n
This proves Katok’s conjecture, because C*° diffeomorphisms on compact manifolds
have measures of maximal entropy (Newhouse [N]).

Jéréme Buzzi has conjectured in [Bu4] that f admits at most countably many
different ergodic measures of maximal entropy. We prove this to be correct:

Theorem 1.2. Suppose f is a C'8 diffeomorphism of a compact smooth surface.
If hiop(f) > 0 then f possesses at most countably many ergodic invariant probability
measures with maximal entropy.
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Buzzi also conjectured that if f is C°°, then the number of different ergodic
invariant measures of maximal entropy is finite. This conjecture remains open.

Katok’s conjecture and Buzzi’s conjectures were previously known to hold in the
following cases: Hyperbolic automorphisms of the torus [AW], Anosov diffeomor-
phisms [Si1, Si2], [M], Axiom A diffeomorphisms [B4], [PP], continuous piecewise
affine homeomorphisms of affine surfaces [Bu4]. There are also results on non—
invertible maps, see [Hofl, Hof2] and [Bul, Bu5|. A wealth of diffeomorphisms
such that limsup e~™»(/) P, (f) = oo can be found in [Kal].

n—oQ

1.2. Symbolic dynamics. The proof of Theorems 1.1 and 1.2 is based on a change
of coordinates which simplifies the iteration of f. The idea, which goes back to the
work of Hadamard, Birkhoff and Artin on geodesic flows, is to semi-conjugate f on
a large set to the left shift on a topological Markov shift. We recall the definition.

Let ¢4 be a directed graph with a countable collection of vertices ¥ s.t. every
vertex has at least one edge coming in, and at least one edge coming out. The
topological Markov shift associated to ¢ is the set

= E(g) = {(Ui)iEZ S 7/Z DU Vg1 for all 7,}

We equip ¥ with the natural metric: d(u,v) := exp[—min{|i| : u; # v;}], thus
turning it into a complete separable metric space. X is compact iff ¢ is finite. X is
locally compact iff every vertex of 4 has finite degree.

The left shift map o : ¥ — ¥ is defined by o[(v;)icz] = (vit1)icz-

Let X% := {(vi)icz € X : Ju,v € ¥Ing,my, T 00 8.t. V_pm, = U, v, = v} BF
contains all the periodic points of o, and by the Poincaré Recurrence Theorem,
every o-invariant probability measure gives ©# full measure.

We say that a set Q C M is x—large, if u(Q) = 1 for every ergodic invariant
probability measure p whose entropy is greater than y. We prove:

Theorem 1.3. For every 0 < x < hop(f) there exists a locally compact topological
Markov shift 3, and a Hoélder continuous map my : £y, — M s.t. myo00 = fom;
Ty [Zf] is x—large; and s.t. every point in m, [Zf] has finitely many pre-images.

Theorem 1.4. Denote the set of states of X, by V5. There exists a function
Oyt Y X VY = Nosit. if o = my [(v;)iez] and v; = u for infinitely many negative 1,
and v; = v for infinitely many positive 1, then \ng(xﬂ < oy (u,v).

Theorem 1.5. Every ergodic f-invariant probability measure p on M such that
hu(f) > x equals [i o 7;1 for some ergodic o—invariant probability measure i on
Xy with the same entropy.

The other direction is trivial: If i is an ergodic o—invariant probability measure on
Yy, then p:=Jlio T !is an ergodic f-invariant probability measure on M, and u
has the same entropy as /i because 7, is finite-to-one.

A remark on the regularity of m,,. Our bound for the Holder exponent of m, decays
to zero as x — 0, see the proofs of Proposition 4.15 and Theorem 4.16.

A remark on x—largeness. Call a set 2 C M yx—very-large, if Q2 has full measure with
respect to every ergodic invariant probability measure with at least one Lyapunov
exponent larger than x.

In dimension two, the positive Lyapunov exponent of an ergodic invariant prob-
ability measure is bigger than or equal to its metric entropy (“Ruelle’s entropy
inequality” [Ru]). Therefore, every y—very-large set is x—large.
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As pointed out to the author by Professor L.-S. Young, Professor S. Newhouse,
and the referee, the proofs given in this paper actually show that 7, [Zf] in Theorem
1.3 is x—very-large, not just x—large. Similarly in Theorem 1.5 one can replace the
condition h,(f) > x by the assumption that 1 has a Lyapunov exponent x(u) > x.

We explain how to use these results to prove Theorems 1.1 and 1.2. This reduc-
tion was already known to Katok and Buzzi [K3],[Bud]. Write ¥, = X(¥). By
Theorem 1.5, every ergodic measure of maximal entropy p for f lifts to an ergodic
measure of maximal entropy fi for o. By ergodicity, i is carried by a set X(¥’)
where (1) ¢4’ is a subgraph of ¢4, and (2) ¢’ is irreducible: for any two vertices vg, v1
there exists a path in ¢’ from vy to v1. Since [ is a measure of maximal entropy for
o:X(9) = X(9), it is also a measure of maximal entropy for o : X(¥¢') — X(¥47).

The irreducibility of ¢’ means that o : X(¥4’) — 3(¥’) is topologically transi-
tive. Gurevich proved in [Gul, Gu2] that a topologically transitive topological
Markov shift 3(%’) admits at most one measure of maximal entropy, and that such
a measure exists iff Ip € N s.t. for every vertex vg in ¢/,

Hv € 2(¢') : 0™ (v) = v,v9 = v}| <X exp[nhmax(X(¥’))] as n — oo in pN,

where hmax(X(¥’)) = sup{h,(c) : ¢ a o-invariant Borel prob. measure on X(¥4")},
and h, (o) denotes the metric entropy of p w.r.t. 0. By“a, < b, as n — oo in pN”
we mean that for some C > 1, C~1 < an /by, < C for all n € pN large enough.

Since 1, 00 = fom, the collection {v € £(¥') : 0" (v) = v,vp = v} is mapped by
Ty to a collection of points z € M s.t. f™(zx) = x. By Theorem 1.4, the mapping
is bounded-to-one, with the number of pre-images bounded by ¢, (vg,v9). Thus
liminf,, 0 pn e~ hmax (S P, (£) > 0. By construction, hmax(2(94)) = ha(o) =
hy(f) = max{h,(f) : v f-inv.}. The last quantity is equal to hip(f) by the
variational principle [G]. Theorem 1.1 follows.

This argument also shows that the cardinality of the collection of measures of
maximal entropy for f is bounded by the cardinality of the collection of subgraphs
Y C ¥ st. (1) 9 is irreducible, (2) X(¥¢’) carries a unique measure of maximal
entropy, and (3) hmax(E(¥’)) = hmax(2(9)).

Any two such subgraphs are equal, or their sets of vertices are disjoint: Otherwise
the shift defined by their union carries at least two measures of maximal entropy,
and this contradicts Gurevich’s theorem. It follows that the collection of subgraphs
satisfying (1),(2), and (3) is finite or countable. Theorem 1.2 follows.

1.3. Markov partitions. As in [AW, Sil, B1], the symbolic description of f
relies on the existence of a countable Markov partition. This is a pairwise disjoint
collection Z of Borel sets with the following properties:
(1) Covering property: The union of # is x—large.
(2) Product structure: There are W*(z, R), W"(z,R) C R (x € R € %) s.t.
(a) W¥(x, R)NW*(z,R) = {z}.
(b) Vz,y € R, 3z € Rs.t. W¥(z, R)yNW*(y,R) = {z}.
(¢) Vz,y € R, W*(z,R) and W#(y, R) are equal, or they are disjoint.
Similarly for W*(z, R), W"(y, R).
(3) Hyperbolicity: If y,z € W9(z, R), then d(f"(y), f"(z)) —— 0. If

y.z € W(z, R), then d(f~"(y). f~"(2)) ——> 0. o

(4) Markov property: Suppose Ry, Ry € # and z € Ry, f(z) € R, then
fIW*(z, R1)] € W*(f(x), Rz) and f~'[W*"(f(z), R2)] € W*(z, Ry).
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‘We do not ask for the sets R to be the closure of their interiors.

1.4. Comparison to other results in the literature.

Markov partitions for diffeomorphisms. These were previously constructed in
the following cases: Hyperbolic toral automorphisms [Be],[AW], Anosov diffeomor-
phisms [Sil], pseudo—Anosov diffeomorphisms [F'S], and Axiom A diffeomorphisms
[B1, B2]. This paper treats the general case, in dimension two.

Katok horseshoes [K1, K2],[KM]. Katok showed that if a C'*# surface diffeo-
morphism f has positive entropy, then for every ¢ > 0 there is a compact invari-
ant subset A, s.t. f: A, — A, has a finite Markov partition, and hep(f[a.) >
hrop(f) — =.

Typically, A, will have zero measure w.r.t. any ergodic invariant measure with
large entropy. This paper constructs a “horseshoe” 7, (X,) with full measure for
all ergodic invariant measures with large entropy.

Some differences should be noted: (a) our horseshoe is not compact, (b) its
Markov partition is infinite, and (c) the semi-conjugacy m, is not one-to-one as
in [KM]. (a) and (b) are unavoidable. I do not know if it is possible to get a
semi-conjugacy which is one-to-one on a set of full measure for “nice” measures:
the boundaries of the partition elements constructed here could be very large.

Katok’s work also includes the higher dimensional case, with the condition of
positive topological entropy replaced by the stronger assumption that there exist
ergodic measures without zero Lyapunov exponents with metric entropy arbitrarily
close to the topological entropy. We expect a similar generalization of our results.

Tower extensions [Ta],[Hofl],[Y]: These are representations of certain maps
as infinite-to-one factors of other maps (“towers”) which possess obvious infinite
Markov partitions. Such extensions have been used in the study of one-dimensional
systems with great success, see e.g. [Hof2],[Bul], [Bru],[Ke2], [PSZ],[IT],[Z]. For
higher dimension, see [Bu4, Bu2, Bu5|, [BT], [BY], [Y].

Unlike tower extensions, our coding is finite-to-one. This ensures that any er-
godic invariant measure with high entropy can be lifted to the symbolic space
(Theorem 1.5, see also (13.1)). For tower extensions proving the existence of a lift
is highly non-trivial, and there are very few results in dimension higher than one,
see [Kel], [Bu4|, [BT], [PSZ] and references therein.

Symbolic extensions [BD],[DN],[BFF]. These are representations of a diffeo-
morphism as a topological factor of o : A — A where A C {1,..., N}% is closed and
shift invariant and o is the left shift (“subshift”). Burguet has shown that every
C? surface diffeomorphism has a symbolic extension [Bur]. In the C*° case there
are symbolic extensions whose factor maps preserve entropy [Bul],[BFF]. In lower
regularity it is not even always true that hiop(0) = heop(f).

Unlike symbolic extensions, our symbolic space is not compact. But it is Mar-
kovian, and this gives us access to many results which are not true for general
subshifts, such as Gurevich’s theory which was essential for Theorems 1.1 and 1.2.
Another advantage of our extension is the lifting theorem (Theorem 1.5), which
does not seem to be available for general symbolic extensions.

Markov partitions for billiards. [BS] and [BSC] construct countable Markov
partitions for certain dispersing billiard systems. Their partitions capture sets of
full Liouville measure. If our methods could be adapted to handle maps with
singularities such as billiards, then one could hope to construct Markov partitions
which capture the measure of maximal entropy.
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1.5. Overview of the construction of a Markov partition. It is useful first
to recall Bowen’s construction in the case of an Anosov diffeomorphisms [B4].

Bowen’s idea was to use e—pseudo—orbits. These are sequences of points x =
{z;}iez such that d(z;41, f(z;)) < € for all i. A pseudo—orbit z is said to d—shadow
a real orbit {f(z)}iez if d(z;, fi(z)) < & for all i € Z. Anosov showed that for
every 0 small enough, there exists an ¢ > 0 s.t.

(A1) Every e—pseudo—orbit x —shadows the real orbit of some unique point 7 (z).

(A2) “Finite alphabet suffices”: There exists a finite set of points A such that
{m(z) : x € A% is an e-pseudo-orbit} is the entire manifold.

(A3) “Inverse problem”: If two pseudo—orbits z, y é—shadow the same orbit, then

their corresponding coordinates are close, d(x;,y;) < 20 for all i € Z.

Since pseudo—orbits are defined in terms of nearest neighbor constraints, one can
view the collection of pseudo—orbits in A% as the collection of infinite paths on the
graph with set of vertices A, and edges a — b when d(f(a),b) <e. (Al) and (A2)
say that f is a factor of the topological Markov shift

Y= {x € A% . d(xi1, f(2:)) < ¢ for all i € Z}.

The factor map is 7. It is an infinite-to—one map.

The sets gla] := {z € ¥ : xp = a} form a natural Markov partition for the left
shift on ¥.! Their projections Z(a) = {7(z) : 2 € ¥ ,x9 = a} (a € A) would have
been natural candidates for a Markov partition, had they not overlapped. Sinai
came up with a set—theoretic procedure for refining

% ={Z(a):a € A}

into a partition without destroying the product structure. This partition is a
Markov partition [B4].

Our proof follows a similar strategy. But since Anosov’s theory of pseudo—orbits
relies on uniform hyperbolicity and our setting is only non-uniformly hyperbolic,
we have to find a substitute for Anosov’s shadowing theory. This problem was
previously considered by Kriiger & Troubetzkoy [KT], but their construction does
not work in our setting.

In part 1, we introduce e-chains as a replacement to e—pseudo—orbits in the
non—uniformly hyperbolic setup. Much like a pseudo—orbit, a chain is a sequence of
symbols which satisfies nearest neighbor conditions. Each symbol contains partial
information on the location of the point and the position and size of its local stable
and unstable manifolds. The nearest neighbor conditions are tailored in such a way
that the following analogues of parts (A1) and (A2) of Anosov’s theorem hold for
a suitable choice of e:

(A1’) Every e—chain v corresponds to a unique real orbit 7(v);
(A2’) There is a countable set A of symbols s.t. {m(u): u € A% is an e—chain} is
x—large. A and ¢ depend on y.
As a result, we obtain a representation of f (restricted to a large invariant set) as
a factor of a topological Markov shift.
The next step is to construct Z as before and try to apply Sinai’s method to

obtain a countable refining partition. Here we run into a serious problem: whereas

IThe product structure is given by W4(z, o[a]) := {ye Xy =2 (1 <0)}, Wo(z,0[a]) :=
{yeZ:yi=2; (1 >0)}.
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Sinai dealt with a finite cover, our cover is infinite, and a general countable cover
need not have a countable refining partition. To avoid such pathologies one needs
to ensure that 2 is locally finite: Every Z € 2 intersects at most finitely many
other Z' € & . This difficulty turns out to be the heart of the matter.

We deal with this issue in part 2. Here we obtain the following analogue of part
(A3) of Anosov’s theorem:

(A3’) If two e—chains v,u are “regular” and m(u) = m(v), then u; and v; are
“close” for every i € Z (see §5 for the precise statement).

Unlike (A3), this is not a trivial statement, because the symbols u;, v; contain much
more information than mere location. The fact that e—chains satisfy (A3’) is the
main point of this work.

The alphabet A from part 1 can be chosen s.t. (a) for every u € A, the number
of v € A “close” to u is finite, and (b) {m(u) : u € A% w is a regular e—chain} has
full measure w.r.t. any ergodic invariant probability measure with entropy more
than y. As a result, the sets Z(v) := {n(v) : v € A% is a regular e-chain} form a
locally finite cover Z of a large set.

Sinai’s refinement procedure can now be safely applied to 2. In part 3, we
check that the elements of & have the “product structure” and “symbolic Markov
properties” needed to push through Bowen’s proof that Sinai’s refinement is a
Markov partition. We also explain how to deduce Theorems 1.3, 1.4, and 1.5. The
proofs are modeled on [B4, B3|.

Some of the lemmas we need to develop the theory of e—chains are routine mod-
ification of well-known results in Pesin Theory. Part 4 collects their proofs.

1.6. Notational conventions and standing assumptions. In what follows, M
is a compact C*° Riemannian manifold of dimension two. We assume without loss
of generality that M is orientable (otherwise pass to a finite orientable extension).

Let f : M — M be a C'*# diffeomorphism where 0 < § < 1. We assume that
the topological entropy of f is positive, and fix a constant 0 < x < hop(f).

Suppose P is a property. The statement “for all € small enough P holds” means
‘Geg > 0 which only depends on f, M, and x s.t. for all 0 < e < ey P holds”.

The metric entropy of an f-invariant measure g is denoted by h,(f). The
topological entropy of f is denoted by hiop(f).

T, M is the tangent space to M at x. The exponential map is denoted by
exp, : TxzM — M. The Riemannian norm and inner product on T, M are denoted
by |||l and (-, -),. Sometimes, we drop the subscript . Given two non-zero vectors
u,v € T, M, the angle from u to v is denoted by £(u,v). This is a signed quantity.

Let V be a vector space. The zero element in V is denoted by 0. We identify the
tangent space to V at v € V with V. Let A: V — W be a linear map between two
linear vector spaces V, W. We identify (dA), : T,V — Ta,W with A: V — W.

Suppose a,b,c € R. We write a =b+cifb—c < a < b+e¢, and a = e=°b if
e % < a<e. Let ap,b, > 0, then a,, ~ b, means that ‘;—: :;;% 1, and a,, < b,
means that IN, ¢ s.t. Vn > N (e b, < a,, < €°by,). Finally, a A b := min{a, b}.

Some abbreviations: s.t. is “such that”, w.r.t is “with respect to”, i.0. is
“infinitely often”, resp. is “respectively”, and w.l.0.g is “without loss of generality”.
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Part 1. Chains as pseudo—orbits
2. PESIN CHARTS

2.1. Non-uniform hyperbolicity. By the variational principle, f admits ergodic
invariant probability measures of entropy larger than x (see [G]). Quite a lot is
known about the properties of these measures. We will use the following fact, which
follows from Ruelle’s Entropy Inequality [Ru] and the Oseledets Multiplicative
Ergodic Theorem [Os] (see [BP]):

Theorem 2.1 (Oseledets, Ruelle). Any ergodic invariant probability measure
for fs.t. hy(f) > x gives full probability to the set NUH, (f) of points x € M for
which for every y € {f*(x) : k € Z}, T,M = E*(y) ® E"(y) where

(1) B(y) = spanfe* (1)}, [le*(w)ll, = L. lim_Llog ()" ()l gy < —x:
(2) B(y) = span{e" ()}, e (W)lly = 1, L Llog |(df™)ye" )l -y > x:
(3) lim Glog[sina(f"(y))| =0, where a(y) := £(e*(y),€"(y));

(4) dfy[E*(y)] = E*(f(y)) and dfy[E"(y)] = E*(f(y))-

NUH, (f) is invariant. Properties (1) and (2) determine the splitting E* & E*
uniquely, but the vectors e®, e" are only determined up to a sign. To fix the sign we
use the assumption that M is orientable to choose a measurable family of positively
oriented bases (e, e2) of T,M (y € M); then we choose the signs of e*/"(y) so that
4(ey,e*(y)) € [0,m) and (e*(y),e*(y)) have positive orientation.

NUH(f) := Ux>0 NUH, (f) is called the non-uniformly hyperbolic set of f, and
is f—invariant. This set has full probability w.r.t. any ergodic invariant probability
measure with positive entropy.

The linear spaces E*(x), E*(x) are called, respectively, the stable and unstable

spaces of df. The numbers
: 1 n S
log (@) = lim_—log (4" )ae* ()] e
1 (@ & NUH(/)
log () = lim_—log [(df")ae" (2) g+ s
are called the Lyapunov exponents of x. They are f—invariant, whence constant

a.e. w.r.t. any ergodic invariant measure. The value depends on the measure. On
NUH, (f), log A(z) < —x and log u(z) > x.

2.2. Lyapunov change of coordinates. The splitting 7, M = E*(z)® E%“(x) can
be used to diagonalize the action of df on {T,M : x € NUH(f)} (“Oseledets—Pesin
Reduction”).

We describe a change of coordinates which achieves this. The construction de-
pends on x. Given x € NUH, (f), let

. 1/2
SX(.I‘) = \[2 (Z e2kx||(dfk)Les(x)||?k(1)> )
k=0

- 1/2
wy (@) = V2 (Z e”“XH(df’“>xe“<z>llfek<x>> -

k=0

The v/2 is needed to make the change of coordinates a contraction, see Lemma 2.5.
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Definition 2.2. The Lyapunov change of coordinates (with parameter x) is the
linear map Cy(z) : R? = T, M (z € NUH,(f)) s.t. Cy(z)e; = sy (z)"te?(z), and
Cy(z)ey = uy (z)"te"(x), where e, = ((1)) and e5 = (1)

Notice that C, (x) preserves orientation.

Theorem 2.3 (Oseledets—Pesin Reduction Theorem). There ezists a constant Cy
which only depends on f s.t. for every x € NUH,(f),

Cx(f(x))fl odfy o Cx(x) = ( )\Xéx) ,ux(zm) >

where C'f_1 <A ()] < e7X and X < |py(z)| < Cy.

Pesin’s original construction in [P] is slightly different. He defined s, (z) and
uy (z) with e 2 X(2) 72k or e=2k¢(x)?* replacing e?*X. His method gives better
bounds on A, (z) and p, (), and makes sense on all of NUH(f). Our method can
only be guaranteed to work on NUH, (f), but it has the advantage that Cy(z) is
not sensitive to the values of A(z), u(z). This is important, because we want to
capture the dynamics of all orbits with exponents bounded away from Yy, therefore
we have to work with points with different Lyapunov exponents.

We need the following definition from linear algebra: suppose L : V — W is an
invertible linear map between two finite dimensional vector spaces equipped with
inner products, then the operator norm of L is | L] := max{||Lv|lw : ||v|]lv = 1},
and the Frobenius norm of L is |L||p, = /tr(©*'L{LO), where O is some (any)
isometry © : W — V. ||L||p, is well defined,? and ||L|| < ||L||r- < V2||L||.> One
of the advantages of the Frobenius norm is that it has an explicit formula: If L is
represented by the matrix (a;;) w.r.t. to some (any) orthonormal bases for V, W,

2\2 4
then |[L|[pr = (Zij aij) :
Some more information on Cy(z) (see the appendix for proofs):

Lemma 2.4. ||Cy(z) 7 |pr = v/5y(2)? + uy(x)?/|sina(z

Lemma 2.5. C,(z) is a contraction: ||Cx($)(§)||x < ||(f})|| for all §,n e R.

Lemma 2.6. There is a x-large invariant set NUH (f) C NUH, (f) s.t. for every
€ NUHY(f),

(1) lim_Hlog [Cy(f(@) ! =
(2) kgrf +log [|Cy (f*(x))e; ka =0, where ¢! = () and € = (0);
(3)  lim g log|det Cy(f*(2))| = 0.

2Proof: tr(©4LILO2) = tr[0401 (0! LI LO1)(0401)!] = tr(6% LI LO;).

3Proof: Let s1(L) > so(L) denote the singular values of L (equal by definition to the eigenvalues
of VLL), then ||L|| = s1(L), and ||L||pr = v/s1(L)? + s2(L)2.

4Proof: Let © : W — V be the isometry which maps the base we chose for W to the base we
chose for V, then LO : W — W is represented w.r.t. the base we chose for W by the matrix (a;;).
A calculation shows that tr(©'L'LO) = Za?j.
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2.3. Pesin Charts. Having diagonalized the action of the differential of f, we turn
to the action of f itself. The basic result (due to Pesin [P]) is that NUH, (f) has
an atlas of charts with respect to which f is close to a linear hyperbolic map.

Some notation. Let exp, : T, M — M denote the exponential map. We denote
the zero vector (in T, M or R?) by 0. Balls and boxes are denoted as follows:

By(z) :=={y € M :d(z,y) <n} By(0):={veR*:v=/!),\/vf+v3 <n}
By(0)={ve T, M :[|ull. <n} Ry(0):={v e R*:v= ) |v1l,[v2| <n}

2
Since M is compact, there exist 7(M), p(M) > 0 s.t. for every x € M
exp, maps B3,y (0) diffeomorphically onto a neighborhood of B, (z). (2.1)
We take p(M) so small that (x,y) — exp, ' (y) is well defined and 2-Lipschitz on

B,m)(2) X By (2) for all z € M, and so small that [|(dexp;?t),|| < 2 for all
y € By (x) (see e.g. [Sp, chapter 9]). Since C is a contraction,

U, = exp, oC\(z) (2.2)

maps R,y (0) diffeomorphically into M. Since Cy(x) preserves orientation, W,
preserves orientation.

Let f, := \Iljf(lx) o foW,, then the linearization of f, at 0 is the linear hyperbolic
map < )\Xéx) L ?w) ) The question is how large is the neighborhood of 0 where
X

fz can be approximated by its linearization. The size of the neighborhood is known.
For reasons that will become clear later, we prefer to define it as a quantity taking
values in I, := {e~3% : £ € N}, where ¢ will be determined later. Set

Q- (x) == max{q € I : ¢ < Q,(x)} where
Qxla) = 7 (|Cyla) o)
Theorem 2.7 (Pesin). For all ¢ small enough, and for every x € NUH, (f),
(1) ¥4(0) = = and Y, : Rigq, ()(0) = M is a diffeomorphism onto its image
such that ||(d¥;)y| < 2 for every u € Riog, (2)(0);
(2) fz:= \I/;(lx) o foW, is well defined and injective on Ryoq_(2)(0) and

(a) fz(0) =0 and (dfz)o = < Agx) B(()x) ) where Cf_l < |A(z)| < e7X

and eX < |B(z)| < Cy (cf. Theorem. 2.3);
(b) || fz— (de)QHcH% <€ on Rypg.(2)0). The CY™% norm of r: U — R?

lldre —dry|
T—ylB/2 *
£y lz—yll

(2.3)

on U C R? is sup ||r(z)[| + sup [|dr[| +  sup
zeU zeU z,yel,z

(3) The symmetric statement holds for f;1 =V 1o f_lio Wt (a)-
This is a version of [BP, Theorem 5.6.1]. See the appendix for the proof.

Definition 2.8. Suppose © € NUH,(f) and 0 < n < Q(x). The Pesin chart ¥
is the map ¥, : R,(0) — M.

Some additional information on Q.(z) (see the appendix for proofs):

Lemma 2.9. The following holds for all € small enough:
(1) Q-(x) < &3/ on NUH, (f);
(2) IO (f () HI"* < e/P/Qx(x) fori=—1,0,1;
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3) {Q:(x) : Qc(x) > t,x € NUH, (f)} is finite for all t > 0;
4) Llog Q.(f"(x)) m() on NUH (f) (cf. Lemma 2.6);

)

) w

) F71 < Q.0 f/Q. < F on NUH,(f), where F is independent of ¢;

) there exists a function q. : NUH (f) — (0,1) so that g-(z) < eQc(z) and

e /% < g0 f/qe < e¥/* on NUHY(f).

(
(
(®
(6

2.4. Distortion compensating bounds. Our main use of Pesin charts is to ana-
lyze local stable and unstable manifolds. First we will use the charts to parameterize
the manifolds, and then we will interpret the analytic properties of the parameter-
izations in terms of the Riemannian metric.

The last step is dangerous, because Pesin charts can distort distances and angles
considerably. To see where the distortion comes form, recall that a Pesin chart
is given by ¥, = exp, oC,(z). The exponential map causes no problems: it is
bi-Lipschitz and uniformly smooth. But the linear map C, (z) can have enormous
distortion. We can measure this distortion by ||Cy (z) || (we do not need to worry
about ||Cy(z)| because C, () is contraction). By lemma 2.4, ||Cy(z)™!| (and
therefore the distortion of ¥,) is large iff

e s, (z) is large (it takes a long time for df}’ to contract e®(x)), or
o u, (x) is large (it takes a long time for df; ™ to contract e*(x)), or
e |sina(x)| is small (the stable direction is close to the unstable direction).

So the distortion of ¥, is tied to the quality of hyperbolicity at z.

For non-uniformly hyperbolic diffeomorphisms, there are no uniform bounds on
Sy (), uy (x) and |sin a(x)|. Therefore the distortion of Pesin charts is not bounded.

We will deal with the unbounded distortion of Pesin charts by tying the quality
of the estimates we make in Pesin coordinates to the size of ||Cy (z)~!|: the larger
the norm, the stronger the bounds we will require from our parameterized objects.
The idea is to make the bounds so strong, that something useful will survive the
application of the map W, : Rg_(5)(0) — M. These “distortion compensating
bounds” will often take the form

some power

distance, error, proximity bound < const Q. (z)™e PO™er

or constn

where x is the center of the chart and 0 < n < Q. ().
Since Q. (z) < [|Cy(x)~1||~Ple Power " this will do the work provided the powers
are chosen correctly.

2.5. NUHff(f). The set NUH] (f) constructed in Lemma 2.6 is x-large. By the
Poincaré Recurrence Theorem, the set

NUH#(f) := {z € NUHL(f) : limsup ¢ (f"(z)), limsup ¢. (f ~"(z)) # 0}  (2.4)

n—oo n— oo

is x—large. This is the set that we will attempt to cover by a Markov partition.

3. OVERLAPPING CHARTS

We would like to replace ¢ := {¥] : x € NUH (f),0 < n < Q:(2)} by a
countable collection &7 in such a way that every element of € “overlaps” some
element of o/ “well”. Later, we will use &7 to construct the set of vertices of a
directed graph related to the dynamics of f.
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3.1. The overlap condition. We need to compare the maps C,(z) : R? — T,,M
for different € M, even though they take values in different spaces. We circumvent
the problem as follows. Every z € M has an open neighborhood D of diameter less
than p(M) and a smooth map ©p : TD — R? s.t.
(1) ©p : T,M — R? is a linear isometry for every x € D;
(2) let ¥ := (Op|r,nm) "t : R? = T, M, then (z,u) — (exp, o¥;)(u) is smooth
and Lipschitz on D x B(0) with respect to the metric d(z, z') + |lu — «/||;
(3) @ + ¥, oexp, ! is a Lipschitz map from D into C?(D,R?), the space of
C? maps from D to R2.
Let 2 be an finite cover of M by such neighborhoods. Let £(Z) be a Lebesgue
number for 2. If d(x,y) < e(2), then z,y fall in some element D. Instead of
comparing C, (z) to Cy(y), we will compare ©p o Cy(x) to Op o C,(y) (two linear
maps from R? to R?).

Definition 3.1. Two Pesin charts Wt W}2 e—overlap if e7° < Z—; < €%, and for

some D € 9, x1,22 € D and d(z1,72) + ||©p o Cy(z1) — Op o Cy (z2)|| < nin3.
The overlap condition is symmetric. It is also monotone: if ¥}t e—overlap, then

\Ilfg e—overlap for all n; < & < Q(z;) st. e ¢ < &1/& < ef. Notice that the

overlap requirement is stronger at areas of NUH, (f) where s,(x) or u,(x) are

large or where e®(z) and e"(z) are nearly parallel. This is because by construction
| sin ()|

sx (@) + uy (2)?

The following proposition explains what the overlap condition means.

Proposition 3.2. The following holds for all € small. If V., : R, (0) = M and
V., : Ry, (0) = M e—overlap, then

(1) \IJM[Re—?Em (Q)] C Uy, [an (0)] and V,, [Re*%nz (Q)] C \Ilm[Rm (Q)],

Mi < Qe(wi) < |Cx (i) Iy =

2) dist . s (U toW, ,Id) < en?n? ({i,5} = {1,2}), where the C'+% —distance
clts z; j il
is calculated on R.—<.(a)(0) and r(M) is defined in (2.1).

Remark. By (2), the greater the distortion of W,, or ¥,,, the closer they are to one
another. This distortion compensating bound will be used in the sequel to argue
that \Il]j(lw) o f oW, remains close to a linear hyperbolic map if we replace W y(,) by

an overlapping chart ¥, (Proposition 3.4 below).

Proof. Suppose Wi e—overlap, and fix some D € 2 which contains z; and z2 such
that d(x1,22) + |©p o Cy(z1) — Op o Cy(x2)|| < nins. Write C; := Op o Cy(x;),
then ¥, = exp,. oty, o C;.

By the definition of Pesin charts, 7; < Q.(x;), where Q.(z;) is given by (2.3).
Lemma 2.5 and the general inequality || - |7+ > || - || (see page 9) guarantee that

0 < P Ca) P (3.1)

In particular, n; < &3/8.
Our first constraint on ¢ is that it be so small that

38 min{1,r(M), p(M)}
5(L1+ Lo + Ly + La)*’

where (M) and p(M) are given by (2.1), and
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(1) Ly is a common Lipschitz constant for the maps (x,v) — (exp, 0¥, )(v) on
D x B,(M)(Q) (D (S 9),

(2) Lo is a common Lipschitz constant for the maps x — 9, ! o exp, ! from D
into C?(D,R?) (D € 92);

(3) Ls is a common Lipschitz constant for exp;* : B, (x) = T, M (x € M);

(4) Ly is a common Lipschitz constant for exp, : Bf(M)(Q) — M (x e M).

We assume w.l.o.g. that these constants are all larger than one.

Part 1. Wy [Re-2:,, (0)] C Wy, Ry, (0)].

(0). Lemma 2.5 says that C\(z1) is a contraction,

(0
Proof. Suppose v € R,.-
= ‘C ( ) || ||Q||, and (1171,012)7(5627012) € D x BT(IVI)(Q)
4
2

therefore ||Chv|| |
Since d(x1,z2) < nins,

d (exp,, oV, [C10], exp,, 0¥q, [C10]) < Linins.

It follows that W, (v) € By, pips(exp,, 0¥y, (C1v)). Call this ball B.

The radius of B is less than p(M ) because of our assumptions on e. Therefore
exp;z1 is well defined and Lipschitz on B, and its Lipschitz constant is at most Ls.
Writing B = exp,, [expy,' (B)], we deduce that

VU, (v) € B Cexp,, [BziLmi*né

where E := C, (z2)~ [B?;Lm%“( 22 (C10))]-

We claim that E C R,,(0). First note that E C B‘|CX(12)71||L3L177;1,]§(C’Q_lC’ly),
therefore if w € E, then

(2, (C10))] =: W, [E],

lellse < 1G5 Crtllos + 1Cx (w2) ™| s Lumitn
< (€511 = 1)) + [lelloe + Oy (@2) ™[ L Lantn3
< lulloo + V2(IC5 H[IC1 = Collllvlloe + 1Oy () M| LaLanins
< e+ || C(w2) "Ml (ming V21 + LaLaning) (- [|C1 — Call < i)
< e % 4 (| Ox(wa) " Hng - [(e72V2m + LaLa)ni] - m
< e % + €%, because of (3.1) and (3.2)
< (e + &%)y < 1y, because 1y < ey and 0 < € < % by (3.2).
It follows that E C R,,(0). Thus ¥, (v) € ¥,,[R,,(0)]. Part 1 follows.
Part 2. The C'*A/2-distance between W7 ! o W,, on R.—-,(ap)(0) is less than en;.

Proof. One can show exactly as in the proof of part 1 that W, [Re-<,)(0)] C
o, [Rr(ar)(0)], therefore W 1o W, is well defined on R.--,(p7)(0). We calculate
the distance of this map from the identity:
U low,, = Crlo U, oexpyoexp,, oy, 0 Cy
= Oyl o [0, cexpy ! +0, ) oexpy —0, ) o expy ] o exp,, 0¥y, 0 Cy
=C{'Cy+Crto [19;11 o exp;11 —19;21 o exp;;} oW,

=1d —i—Cl_l(Cz -Cy)+ C’l_1 o [19;11 o exp;l1 —19;21 o exp;;] oW,,.
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The C'*#/2-norm of the second summand is less than ||C; ! ||nins. The C1+5/2-
g
norm of the third summand is less than ||C] (|- Lad (1, x2) - Lf_ 2. This is less than
|Cy | Lo Lt s
It follows that distciis/2 (U5 oW, Id) < ||C7'||(1+ LoL3)nins. This is (much)
smaller than enin3, because of (3.1) and (3.2). O

The following distortion compensating bound is needed in §7 below:

Lemma 3.3. Suppose Wi W2 c—overlap, then

(@) W) Q@) Que) Qo))
sx(22) ux(22)

Proof. We use the notation of the previous proof. W ! o W, maps R.--,, (0) into
R2. Its derivative at the origin is

A= CX(xZ)_ld(EXp;;)zlCx(xl) = Cgld[ﬁgzl eXp;;]mﬁmCl
=Cy'Cy+ G AW} expy e, — 95192, Ch
=Cy'Cr+ Cy 't (d9,) expy e, — d[9; ) expy ey ) Ya, Ol
Since ||z, expz, lay — d[;, expy e, || < Lod(w1,22) < Lomin < eninj, and
¥4, Cy is a contraction, and ||A —Id || < dister () o ¥y, 1d) < enfng,
IG5 Oy = 1d || < 22| O3 [lntn3.

Since ||Cy|| < 1, we have that ||C; — Cy|| < 2¢||C5 Hnin3.
Recall that sx(xi)*l = ||Cy(x:)eq]| and sy (z;) = ||CX(xi)’1gs(x¢)|\, S0

sy(r1) ‘ _[sx(@2) Tt = sy (@)
sy (2) sy(x1)~!
< [Cx (@) - IOk (z1)en |l = IOy (z2)eq ]
= G- [lIC1ex ]l = | Caey
<G Gy = Coll < 2¢|CTHIC Hingng < emne.
Similarly Zigi;; — 1‘ < emne. Since 1; < Qe(x;), the lemma follows. O

3.2. The form of f in overlapping charts. Theorem 2.7 says that \I’;(lx) ofoW,

is close to a linear hyperbolic map. This remains the case if we replace W) by
some overlapping chart WU,:

Proposition 3.4. The following holds for all € small enough. Suppose x,y €
NUH, (f) and \II?(m) e—overlaps U, then foy = \I{;l o foW, is a well defined

Yy )
injective map from Ryoq_(z)(0) to R?, and fyy can be put in the form
fay(u,v) = (Au + hi(u,v), Bv + ha(u,v)), (3.3)

where Cf_1 < |A] < e7X, e < |B] < Cf (¢f Theorem 2.3), |h;(0)] < en,
IVhi(Q)| < en®’?, and | Vhi(w) — Vhi(v)|| < ellu—v]|*/* on Rioq. () (0)-

A similar statement holds for f;yl, assuming that \I/?,_l(y) e—overlaps V7.
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Proof. We write fo, = (W, ' 0 Wy(,) 0 fo where f, = Uy © f o Vs, and treat fuy,
as a perturbation of f,.
By Theorem 2.7, if € is small enough, then f, has the following properties:

(1) It is well-defined, differentiable, and injective on Ryoq_(z)(0).
(2) fz(0) =0and (dfy)o = ( 61 g )Where C’f_1 <|A| <e X, eX <|B| < Cy.
(3) For all u,v € Ripq.()(0), [[(dfe)u — (dfe)ull < 2¢llu —v[|/? (because the
C'+5 distance between f» and (dfy)o on Ry 2 (0) is less than ¢).
0 0Qc ()
(4) For every 0 < n < 10Q.(x) and u € R,(0), ||(dfs)u|l < 3Cf, provided ¢ is
small enough (because ||(df,)u| < ||(dfe)oll +en?/? < 2Cf + ¢).

(2) and (4) imply that fz[Ri00.(x)(0)] C Bsoq.(x)c, (0). Since Q.(z) < %7,
fo[R10g.(2)(0)] C Bsgo,es/6(0). If € is so small that 300438 < e~#r(M), then
f2[R100.(2)(0)] € Re—er(an)(0). Re-cr(ar)(0) is in the domain of W, ' oW ¢, (Propo-
sition 3.2, part 2), therefore f,, is well defined, differentiable, and injective on
Ri0q. (x) (Q)~

Equation (3.3) can be used to define the functions h;(u,v). We check that they
satisfy the properties in the statement.

We have (1 (0),5a(0) = foy(0) = ¥ (/(0) = (¥ 0 ¥y0))(0), therclore
[[(h1(0), ha(0))]| < dlstco(\ll oWy, 1d) < en?(n')? < 677

We differentiate the identity fo, = (¥, ' 0o Wy(,)) o f, at an arbitrary u € Ry(0).
The result, after some rearrangement is

(dfzy)g = [d(\I/y_l o \I/f(m))fm(g) - Id](dfw)y + [(dfz)g - (dfx)g} + (dfx)g’ (3'4)

The norm of the first summand is less than 3C} distm(\lf;l o W(s),1d), which
by Proposition 3.2 is less than 3Cfen?(n')? < 3Cyen?. The norm of the second

0 ) Thus

summand is less than e|ju||®/? < 2en®/2. The third term is ( 0 B
A 0

’ = (dfacy)g_ ( 0 B )H < 5[3Cf +2]775/2
<enP3 .30 + 20?6 < enP/3 . [3Cs + 2]v/E by (3.1).

If € is so small that [3C} + 2]/ < 1, then ||Vh;|| < en/? on R,(0). In particular,
VR ()] < en/?.
Equation (3.4) also shows that for every u,v € Rigq. (2)(0),

1(dfay)u = (dfoy)ull < NA(PL" 0 W) gy — (P 0 W) fowll - I1(dfe)ull
+ ”(dfx)u - (dfx)@” : (||d(\11;1 o \ij(w))fw(y)u + 1) .
By Proposition 3.2, distcivs/z (U o Wy, Id) < en®(n')?, therefore
8 8
1Ay ) — (fey)oll < en® ()2 - | fo(w) = Fo@)]|5 3Cs + 2¢[u— v (en?(n')? +2)

B B B
<en’-  sup  |(dfe)wll® - llu—2vll7 -3Cs + 5eflu— vl
WER10Q, (x)(0)

< e((3CH) 20 +5)|lu— o2 < e((3C;) 58/ 4 5)|u— uf|

s
a(u,v)

< bellu — y||§7 provided ¢ is small enough
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< 62(30Q: (2)) /0 lu — v]*? < 126%2u — 0| * (0 Qe < ¥/7F)

1
< §5||g — v||#/3, provided ¢ is small enough.

It follows that || 8((9}@2)2) (uw) — ag(z;g)z) ()| < 2ellu—2v||?/2 for all u,v € Rigg. (x)(0),

whence |[|[Vh;(u) — Vh;(v)]| < %EHQ—yHﬁB (i =1,2) for all u,v € Rypg_()(0). O

3.3. Coarse graining. We replace ¢ := {7} : x € NUH(f),0 <7 < Qc(2)} by
a “sufficient” countable subset «7. We remind the reader that NUH; is defined in
Lemma 2.6, and that I, = {e~3% : k € N}.

Proposition 3.5. The following holds for all € small. There exists a countable
collection o/ of Pesin charts with the following properties:
(1) Discreteness: {07 € of : n >t} is finite for every t > 0.
(2) Sufficiency: For every x € NUH(f) and for every sequence of positive
numbers 0 < 1, < e /3Q.(f"(x)) in I, s.t. €= < np/npsr < €, there
exists a sequence {W}" },cz of elements of &/ s.t. for every n,
(a) Wi e—overlaps ‘1]1}:/(95) and e=°/% < Q.(f"(2))/Qc(zy) < €/3;
(b) \IJ;?;) e—overlaps W'+
(c) \IJ?SZI") e—overlaps Wi~} ;

(d) Wir € o for allnl, € I s.t. n, <)) <min{Q(x,),e N}

Proof. The general idea is simple: A chart U7 is given by a point z, a matrix
Cy(z), and a real number 7. The spaces of points, matrices and real numbers are
separable, so all that one needs to do is to find a sufficiently dense discrete subset.

But there is a twist: ¥, does not necessarily depend continuously on x, because
x +— Cy(x) is not necessarily continuous. As a result there is no clear connection
between conditions (a), (b), and (c¢), and we are forced to treat them separately.
The following construction will help us to do this. Let

X := M? x (0,00)% x GL(2,R)?,

together with the product topology. Next recall the finite open cover & of M from
§3.1, and let Y C X denote the collection of all (z,Q,C) € X where

o v =(z,f(x), [ (2)), » € NUH(f);

o Q= (Q:(2), Qe(f(2)), Qe(f 1 (2))) (cf. (2.3));

b Q = (GDOOCX($)7 ®D100X(f<x))7 G)Dflocx(f_l(x)))v where DOa Dl; D*l S
9 satisfy (z, f(z), f~1(x)) € Do x Dy x D_j.

Let Vi := {(z,Q,C) €Y :w € NUH;(f),e_(k‘H) < Q.(z) <e D} (k €N).
Y}, is a pre-compact subset of X. To see this, pick some (z,@Q,C) € Y. The vector
z belongs to the compact set M. @ belongs to a compact subset of (0, 00)3 because
by Lemma 2.9 for each i = —1,0, 1,

Fle D < Qo(fi(x) < Fem 0.
C belongs to a compact subset of GL(2,R), because (a) ©p, are isometries; (b)
1O (Fi(2))]| < 1 (Lemma 2.5); and () ||Cy (fi(x))"2[|< (€38 Fek+1)"? by (2.3).5
It follows that Y} is a subset of a compact subset of M3 x (0,00)% x GL(2,R)3.

S5Here we use the obvious observation that {A € GL(2,R) : ||A]|,[|[A~!|| < C} is a compact
subset of GL(2,R) for every C > 0.
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Since Y}, is pre-compact, it contains a finite set Yy p, s.t. for every (z,Q,C) € Y}
there exists some (y,Q’,C’) € Y}, such that for every [i| <1,
(1) d(fi(z), f{(y)) < 3e(2Z) where £(2) is a Lebesgue number of 2.

(2) d(f*(2), /() + 18p 0 Oy (f1(x)) = Op o Oy (f*(y))I| < e~5"*+2) for every
D € 2 which contains f*(x) and f*(y).

(3) €7/ < Qe(f'(2))/Qe(f(y)) < /™.

Define 7 to be the collection of all Pesin charts ¥7! such that for some k,m € N,
x is the first coordinate of some element (z,Q,C) € Yy, and

0<n< Qg(x),e_(mH) <n<e ™2 andnel = {6—55/3 :0=0,1,2,...}.

Part 1. Discreteness.
Proof. Suppose ¥ € of. Choose k,m € N s.t. x is the first coordinate of some
(2,Q,0) € Yim, 0 <1 < Qc(x), and n € [e7™ 72, e7™F?]. Since Yim C Vi,
Q-(v) < e **1 50 k < |log Q.(x)| + 1. It follows that k,m < |logn| + 2, and so
{Wledin>t}< > Yimlx{nel:n>t}
k,m<|log t|+2
The last quantity is finite, because Y} ,, are finite.

Part 2. Sufficiency.

Proof. Suppose x € NUH](f), and n,, € I satisfy 0 < 7, < e=*3Q.(f"(x)) and
e <Ny /Nny1 < €° for all n € Z.

Choose m,,, k,, € Ns.t. g, € [e"™» 7L e=mnH] and Q. (f"(x)) € [e Fn—1, e~ kntl].
Find some element of Y, whose first coordinate is f™(z), and approximate it by
some element of Yy, ., with first coordinate x,, so that for i = —1,0,1,

(An) d(f1(f™(2)), f'(wn)) < 3e(2);

(Bn) d(f*(f"(x)), f' (@) +1©poCy (f1(f™(2))) =OpoCy (fi(zn))|| < e~ 5(mnt?
for every D € & which contains f*(f™(z)), f*(xn);

(Cn) e™*/% < Qa(f1(f"(2)))/Qc(fi(wn)) < /2.
Claim 1. ¥}» € o and \I’Ziﬁ € o foralln), € I, s.t. n, < n), <min{e*n,, Q:(x,)}.

Proof. By construction z, is the first coordinate of an element of Y; ., , and
Nn € [e”™mn=1 emnt1] Since n, < 0l < €0y, 1), € [e7™n 72, e T2]. Tt remains to
check that 7,71}, < Q:(z,). In case of n/, there is nothing to check. In case of 7,,
(C,) with i = 0 says that Q.(z,) > e~*/3Q.(f"(x)) > .

Claim 2. W and \117}’;, @) e—overlap.

Proof. (A,) with ¢ = 0 says that d(f™(z), z,,) is smaller than the Lebesgue number
of 2, so there exists D € & s.t. f*(x),z, € D. (B,) with i = 0 says that

d(f™(x),2) +|©p 0 Cy(f"(x)) = Op 0 Cy ()| < ™5 +2),

Since 1, € [e=(MnH1) e=(Ma=D] e=8mat2) < pipd - Since €75 < Nps1/nn < €,
\IJQT:L,\IJ?Q(I) e—overlap.

Claim. 3. W}, | e-overlaps Wt for i = +1.

Proof. We do the case i = 1 and leave the case ¢ = —1 to the reader.
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Setting ¢ = 1 in (A,,), we see that d(f( 2), f(f(2))) < 3e(2). Setting i =0 in
(Apt1), we see that d(f" ™ (z),zn41) < 2e(2). It follows that there exists some
D e 9 s.t. f(xn)7x77,+17fn+1(x) €D.

By (B,) with ¢ =1 and (Bp4+1) with 4 =0,

d(f(zn), Tnt1) + [|©p o Cx(f(xn» —0Opo Cx(£ﬂ+1)|| <

< (Ad(f (), F(F"(2)) + [OD 0 Cx(f(n)) = Op o Cy (F(F"(2)))II)+

+ (d(f" M (@), 2pg1) + ©p 0 O (f*H () = Op 0 Oy (@nt1)])
< e_S(mn,"rZ) + 6—8(mn+1+2)

8,8 , 8 -8 8ey 4 4 4 4
<e (M +Mny1) <267 (14 €% )0 1M1 < Mng1 M-

It follows that \I/?(L“) e—overlaps \IIZZTQ O

4. e~CHAINS AND AN INFINITE-TO-ONE MARKOV EXTENSION OF f

4.1. Double charts and e—chains. Recall that U7 (0 < n < Q.(z)) stands for
the Pesin chart W, : R,)(0) - M. An e-double Pesin chart (or just “double chart”)
is a pair PP .= (\Ilg , UP") where 0 < p¥, p* < Q.(x).

Definition 4.1. W2'?" — \I/gu’qs means
o WI'N" and \I/'Jil(t;\)qs e—overlap (recall that a A'b := min{a, b});

o WP gnd TP o overlap;
e ¢“ =min{e’p", Q:(y)} and p* = min{e®q®, Q-(z)}.

Definition 4.2. {\Ilpl & Yiez (resp. {\Ilpl P }iso, {\Ilz P }Z<0) is called an e—chain

(resp. positive e—chain, negative e— chaln) if \Ilpl LN \pr’jri Pits for all i. We
abuse terminology and drop the € in “c—chains”.

Let o7 denote the countable set of Pesin charts which we have constructed in
§3.3, and recall that I. = {e=%/3 : k € N}.

Definition 4.3. ¥ is the directed graph with vertices ¥ and edges & where

o V= {UL'P LW € of ptpt € L,p*, p°t < Qo(x)};

o &:={(UL"P W) eV x Y WP Wity
This is a countable directed graph. Every vertex has finite degree, because of the
following lemma, and Proposition 3.5(2):

Lemma 4.4. If U2"P" — W7 then e~ < (q" A q°)/(p* Ap*) < €. Therefore
for every WP"P" € ¥ there are only finitely many \I/gu’qs €V st UPLP \Ifgu’qs
or \Ilgu’qs — PP,

Proof. Since WP"P° — \Ilgu7qs, ¢* = min{ep", Q-(v)}, p* = min{e®q®, Q- ()},
¢°* < Q:(y), and p* < Q(z). It follows that

¢" Ng* _ minfeTp”, Qc(y),q"} _ minfep” ¢°}

p“Ap*  min{p*, e¢*,Qc(z)} min{p* esq*}

Ept . 25

4"“Ng® - min{e’p e} _ a“Ng* min{ep*,q°} —&
So pYApS = mln{p ,e€q®} =e and pUApS 2 min{e2cp¥,ecqs} =€ O
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We establish a connection between the collection of infinite admissible paths on
¢ and the set of orbits of f in NUH;‘?E (f). Note that “most” orbits lie in NUHf(f):
this set has full measure w.r.t. every f—ergodic invariant probability measure with
entropy greater than x.

Proposition 4.5. For every x € NUHf(f), there is a chain {\Iﬂfi”’i}kez C 3(9)

s.t. \IJZEAPZ e—overlaps \IIP}E?QSZ for all k € Z.

The proof relies on two simple properties of chains, which we now describe.

Some terminology: Let (Qi)rez be a sequence in I, = {e=%/3 : ¢ € N}. A
sequence of pairs {(p},p;)}rez is called e-subordinated to (Qr)rez if for every
k€ Za 0< pz»pz < Qk7 pzapz € IEa and

Piy1 = min{epy, Qri1} and p_; = min{epj, Qp—1}-
For example, if {\I/I;E’p k
{Qc (k) ez

Lemma 4.6. Let (Qk)rez be a sequence in I, and suppose qi € I, satisfy 0 < qr <
Qr and e7° < qi/quy1 < €° for all k € Z. There exists a sequence {(p},p})}kez
which is e—subordinated to {Qy}kez, and so that pi A p; > qi for all k.

trez is a chain, then {(p},p;)}rez is e-subordinated to

Proof. The following short proof was shown to me by F. Ledrappier. By the as-
sumptions on g, Qe (Tg—n), Qc(Tprn) > e "qy, for all n > 0, therefore the following
definitions make sense:

pp i=max{t € I, : e "t < Qc(xp_p) for all n > 0};
pr i=max{t € I. : e "t < Q. (xp4n) for all n > 0}.
The sequence {(p}, p}) }kez is e-subordinated to {Q-(xk)} ez O

Lemma 4.7. Suppose {(p¥,ps) }nez is e—subordinated to a sequence {Qntnez C I.
If limsup(p¥ Ap%) > 0 and limsup(p¥ A ps) > 0, then pt (resp. pg ) is equal to @y

n—00 n——oo

for infinitely many n > 0, and for infinitely many n < 0.

Proof. We prove the statement for p¥, and leave the statement for p;, to the reader.
M := sup @, is finite, because @,, € I. for all n. Let p, := p* A p;, and define
m := % min{limsupp_,,limsupp,} and N := [e~!log(M/m)].

n—oo n—oo
There exists infinitely many positive (resp. negative) n s.t. p, > m. We claim

that for every such n, there must exist some k € [n,n+N] s.t. p} = Qx. Otherwise,
by e—subordination,

. N N N
Pran = min{QniN, € ppyin 1} =€ priy_g = =€ py>e py,>em> M,
which is false. O

We can now prove Proposition 4.5: Suppose = € NUHf(f), and recall the
definition of ¢.(-) from Lemma 2.9. Choose ¢, € I.N[e~*/3q.(f"(x)), e5/3q.(f"(x)))].
The sequence {¢y, }nez satisfies the assumptions of Lemma 4.6, therefore there exists
a sequence {(q%, ¢3)}nez that is e-subordinated to {e~/3Q.(f"(x))}nez and that
satisfies ¢ A g}, > qx-

Let ny, := g% Aq. As the proof of Lemma 4.4 shows, e < n,41/n, < €°, so we
may use Proposition 3.5 to construct an infinite sequence Wi € o/ such that
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(a) Win e-overlaps 7 and =% < Q.(f(2))/Qe(zn) < €/3;
(b) \117}’(;“1) e-overlaps \ngﬂ;
(c) \Iln"lzw e-overlaps Wi"~1:
(d) ‘IIZ’:L € o for all ), € I. s.t. n, < 1)y <min{Qc(xy,), e}
Construct a sequence {(p¥, p3 ) }nez which is e—subordinated to { Q. () }nez and
which satisfies pi* A p5 > 0.

Claim 1. \1151{””3 € ¥ for all n.

Proof. Tt is sufficient to show that 1 < % < ef (n € Z), because property (d)

with 7/, := p¥ A p$ says that in this case \Ilgiﬁ P g o/, whence \p’;i’pi ev.
We start by showing that there are infinitely many n < 0 such that p¥ < e®qy.
Since x € NUH;‘Eé (f), limsup gy, limsup ¢, > 0. Therefore by Lemma 4.7, there are

n—oo n——oo

infinitely many n < 0 for which ¢* = e~*/3Q.(f"(x)). Property (a) guarantees
that for such n, ¢ > e™°Q.(x,) > e °pl, whence p¥ < eqp.

If py < eqy, then p | < eqyr |, because

Pp1 = min{e"py, Qc(wni1)} = e min{py, €™ Qc (wni1)}
< e“minfeqy, e P Q(f" T (@)} = eqpyy-

It follows that py < e®q} for all n € Z.

Working with positive n, one can show in the same manner that p;, < e®q; for all
n € Z. Combining the two results we see that pit ApS < (e°gr)A(eq;) =e (qn/\qn)
for alln € Z. Since by construction pj Ap;, > 1, = g Ag;,, we obtain 1 < z:fAZ’; < ef

as needed.

Claim 2. For every n € Z, UorPn \Ili’:;ll Phttand L Pn o overlaps \I/’;c’,i( f)"

Proof. This follows from properties (a), (b), and (c) above, the inequality p% Aps >
Tn, and the monotonicity property of the overlap condition. O

4.2. Admissible manifolds and the graph transform. Suppose z € NUH, (f).
A u-manifold in ¥, is a manifold V* C M of the form

V=W {(F(1), 1)« [t] < g},

where 0 < ¢ < Q.(z), and F" is a C'T8/3—function s.t. |[|[F¥||o < Qc(x).
An s—manifold in ¥, is a manifold V* C M of the form

V=W {(t, P2 (1)) : |t < g},

where 0 < ¢ < Q.(z), and F* is a C'*#/3function s.t. ||[F*||le < Qc(2).

We will use the superscript “u/s” in statements which apply both to the s case
and to the u case. The function F = F*/* is called the representing function of
Vu/s at W,. The parameters of a u/s manifold in ¥, are

o o-parameter: o(V*/°) := || F'||g/3 := | F'l|oc + Holg5(F"), where
Holg 3(F') := sup {M}

[ty —to]B/3
o vy-parameter: y(V¥/) := |F'(0)];
o o-parameter: p(V¥/*) :=|F(0)|;
o g-parameter: q(V*/*) := q.
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A (u/s, 0,7, ¢,q)-manifold in ¥, is a u/s—manifold V*/* in ¥, whose parameters
satisy o(V/*) < o, 7(V*/*) <, o(V¥/*) < o, and ¢*/*(V") = q.

Definition 4.8. Suppose W2 P is a double chart. A u/s—admissible manifold in
PP s a (u/s, 0,7, e, q)-manifold in W, s.t.

U

p*  u—manifolds

p

S

N | =

1 U S — U S
<5, <5 Ap*)P3, o <1073 (p" A p®), andq:{

s—manifolds.

This is similar to but stronger than the admissibility condition in Katok & Men-
doza [KM, Definition S.3.4] or Katok [K1]. The bounds on v and ¢ are distor-
tion compensating bounds: the larger the distortion of the chart, the closer the
u/s—admissible manifolds are to the u/s-axes. These bounds were designed to be
sufficiently strong to imply Proposition 4.11 (4), but also sufficiently lax to remain
invariant under the graph transform (Proposition 4.12 below).

Let F be the representing function of a u/s-admissible manifold in WE"»". If
e < 1 (as we always assume), then the conditions o < %, © < 1073(p* A p*) and
P, p® < Qe (x) force

Lip(F) < e, (4.1)

because for every ¢ in the domain of F, |t| < p*/* < Q.(x) < £*/# and

1

B
u/\ S§
2(19 p*)

30 < ()

Another important fact is that if ¢ is small enough then ||F|s < 1072Q.(7),
because ||F||oo < |F(0)] 4+ max [F'|- p*/* < p+ep®/* < (1073 +)p™/s < 10~ 2p¥/5.

|F'(t)| < |F'(0)| + HSL(F')|t|F < <e (42

Definition 4.9. Let Vi,V be two u-manifolds (resp. s—manifolds) in U, s.t.
q(V1) = q(Va), then dist(Vy, V2) := max |Fy — Fy| where Fy and Fy are the repre-
senting functions of Vi and Vo in U,

Occasionally we will also need the C'-distance defined by
distor (Vi, Vo) := max |Fy — F3| + max |F| — Fj|.

Notice that dist and distc: are defined using the Pesin charts, not the Rie-
mannian metric. Riemannian distances are bounded by a constant times distances
w.r.t. Pesin charts, because Pesin charts take the form ¥, = exp, oC) (z) where
Cy(z) : R? — M is a contraction.

Definition 4.10. Let V* V¥ be a u—manifold and an s—manifold in ¥, with repre-
senting functions Fg, F,,. Suppose V*, V" intersect at a unique point P = U, (u,v),
then £(V*, V") = 4((d\1/a:)(u,v) (Fs’l(U))7 (d\I’w)(u’v) (Ful(v)))'

Remark: Pesin charts preserve orientation, therefore there are only two possible
choices to the pair of directions of V¥, V% at P. Both lead to the same angle, and
this angle is in (0, 7). Thus the angle of intersection is independent of the chart.

Proposition 4.11. The following holds for all & small enough. Let V" be a u-
admissible manifold in WP P" and V* be an s—admissible manifold in WE" " then
(1) V* intersects V* at a unique point P;
(2) P =9, (v,w) with |v], |w| < 1072(p* A p*);
(3) P is a Lipschitz function of (V*,V*®), with Lipschitz constant less than 3;
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(4) Suppose 1 := p* A p®, then the angle of intersection at P satisfies

6_7]5/4 < sin £(V*,V?) 4

— sin L(E%(z),E*(x))
|cos £(V*,V?®) — cos £(E"(z), E(x))] < 2n/%.

< e’

Parts (1),(2), and (3) follow from [KH, Corollary S.3.8]. Part (4) is a distortion
compensating bound, which will be used in the proof of Proposition 6.5 below.
It follows from the assumptions we made on v and o, and is the reason why we
require more from admissible manifolds than Katok & Mendoza did in [KM]. See
the appendix for proofs.

The following result describes the action of f on admissible manifolds. Results of
this type (often called “graph transform” lemmas) are used to prove Pesin’s stable
manifold theorem [BP, chapter 7], [P]. The version below says that the graph
transform preserves admissibility as defined above. The proof is in the appendix.

Proposition 4.12 (Graph Transform). The following holds for all € small enough.
Suppose WP P" \I/gu*qs, and V* is a u-admissible manifold in WP P", then

(1) f(V*) contains a u-manifold vV in \Ilgu’qs with parameters

a(VY) < eVee X[g(V¥) + V]
Y(V") < V5 Xy (V") + 5 (g 1 g*) )
. (4.3)
(VY < eVee™X[p + Va(q" A ¢*)]
g(V*) > min{e™VeeXq(V"), Q=(y)}

(2) f(VY) intersects any s—admissible manifold in \I/gu’qs at a unique point.

(3) V' restricts to a u—admissible manifold in \I/Zu”ls. This is the unique u—
admissible manifold in \Ilgu“f inside f(V™). We call it F,[V"].

(4) Suppose V¥ is represented by the function F. If p := U,(F(0),0), then
flp) € FulV"].

Similar statements hold for the f~'~image of an s—admissible manifold in \I'gu’qs.
Definition 4.13. Suppose \Ilg,u’ps — \Ilgu’qs. The graph transforms are the maps

o F,, which maps a ufadmz'ssible manifold V" in \I/g“vp“’ to the unique u—
admissible manifold in ‘Ilgu’qs contained in f(V™);

e F, which maps an s—admissible manifold V* in \I/gu’qs to the unique s—
admissible manifold in WP"P" contained in f~(V*).

The operators F;, F, depend on the edge \Ilguvps — \Ilgu’qs.

Proposition 4.14. If e is small enough then the following holds. Lett = s, u, then
for any t-admissible manifolds Vi, Vi in WP"P"

dist (F(VY), Fo(Va)) < e X/ dist(V{, V4); (4.4)
dister (Fp(V), Fe(Va)) < e X2 [disten (VY Vy) + (dist(VY, 1/;))5/3]. (4.5)

See [BP, chapter 7], [KM], and the appendix.
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4.3. A Markov extension. Let ¥ := X(¥) denote the topological Markov shift
of two sided infinite paths on the graph G(¥,&):

Y= {(vi)iez : vi € V', v; = viy4q for all i}

We equip ¥ with the metric d(v, w) = exp[— min{k : vy # wg}], and the action of
the left shift map o : X — X, 0 : (v;)iez — (Vit1)icz-

Our aim is to construct a map 7 : ¥ — M with a y—large image s.t. moo = fom.
In fact, the map we construct will be well-defined for all chains.

We begin with some comments on general chains of double charts. Suppose
(vi)iez, vi = \Iﬂ;“’f is a chain, and let V*, be a u—admissible manifold in v_,,. The
graph transform relative to v_,, — v_p,4+1 maps V¥, to a u-admissible manifold
in v_pi1, Fu[V_yn]. Another application of the graph transform, this time relative
t0 V_py1 — V_pyo2, maps F,[V_,] to a u—admissible manifold in v_, 9, which
we denote by F2[V*,]. Continuing this way, we eventually reach a u-admissible
manifold in vy which we denote by F[V*,]. Similarly, any s—admissible manifold
in v, is mapped by n applications of Fs to an s—admissible manifold in vg. The
manifolds F[V*,] and FI'[V;*] depend on (v_y,...,v,).

Let V,, denote a sequence of u/s—manifolds in a chart ¥,. We say that V,, con-
verges to a u/s—manifold V', if the representing functions of V,, converge uniformly
to the representing function of V.

Proposition 4.15. Suppose (v;)icz is a chain of double charts, and choose arbi-
trary u—admissible manifolds V¥, in v_,, and s—admissible manifolds V.7 in v,.
(1) The limits V'[(v;)i<0] = nli_)Ir;Ofg[an], and V*[(v;)i>o] == nll_)n;OfS”[V,ﬂ
exist, and are independent of the choice of V*, and V7.
(2) V*[(vi)i<o] is a u-admissible manifold in vy, and V*[(v;)i>0] is an s-
admissible manifold in vg.
(3) f(V°[(vi)izo]) C Vo[(vit1)izo] and f~1(V*[(vi)i<o]) C V*[(vi-1)i<ol;
(4) Write v; = \I/';::’pf, then

Ve[(vi)izo] = {p € Wuy [Rps (0)] : VE > 0, f*(p) € ¥y, [R10q. (w,)(0)]}
V¥ [(vi)i<o] = {p € Vo [Rpz (0)] : Yk > 0, f*(p) € Us_, [Ri0g. (x_)(0)]}-

(5) The maps (u;)icz — V*[(ui)i<o], V*[(w;)i>o] are Hélder continuous: there
exist constants K > 0 and 0 < 6 < 1 s.t. for every n > 0 and any two
chains w, v, if u; = v; for all |i| < n, then

dister (V*[(ui)i<ol, V*[(vi)i<o]) < KO0™;
diStcl (VS[(UZ')Z'ZQ], VS[(Ui)iz()D < Ko™,

Parts (1)—(4) are a version of Pesin’s Stable Manifold Theorem [P]. The new
twist is that Proposition 4.15 generates local stable manifolds with a definite choice
of size, whereas Pesin’s theorem speaks of a germ of local stable manifolds at a point.
In §8.1 we'll see that for many chains, this size is “almost maximal” and therefore
“almost canonical”. This will be instrumental to the proof of local finiteness.

Part (5) should be compared to Brin’s Theorem on the Holder continuity of the
Oseledets distribution [Bri]. Whereas Brin’s theorem only states Holder continuity
on Pesin sets, part (5) gives Holder continuity everywhere. The secret behind this
“improvement” is the difference between the metric in the symbolic space and the
Riemannian metric of the manifold.
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Proof. We give the proof in the case of u—manifolds. The case of s—manifolds is
symmetric. Before we begin, we mention the following obvious fact: for any double
chart W2"P" and any two u-manifolds Vi, V3 in W2"P"

dist(V7*, V3*) < 2Q.(x) < 1.

Part 1. Existence of the limit.

By Proposition 4.12, F*[V* ] is a u—admissible manifold in vy. By Proposition

4.14, for any other choice of u—admissible manifolds W* _ in v_,,

dist(F V2 ], Fo W, ]) < exp[—%xn] dist(V*,, W ) < exp[—%xn}.

Thus, if the limit exists then it is independent of V*,.

For every m > n, W¥ = Fr "[V* | is a u—admissible manifold in v_,. It
follows that for every m > n, dist(F2[VY,], F[V*,.]) < exp[—3xn]. It follows that
lim F[V*,] exists.

Part 2. Admissibility of the limit.

Write vg = ¥2"?" | and let F,, denote the functions which represent F*[V* ] in
vg. Since F'[V* ] are u—admissible in vy, for every n,

o [[Fllgss < 5
o [IF,(0)] < 5(p Ap*)P7%
o |F,(0)] <1073(p“ A p®).
Since F[V* ] —— V*[(v;)i<0], Fn —— F uniformly on [—p*, p“], where F
n—o0 - n—oo

represents V*[(v;)i<o]-
By the Arzela—Ascoli Theorem, 3ny 1 oo s.t. F) —> G uniformly, where

|Gllg/3 < 5. Thus F,, (t) = f t)dt — F +f G(t

whence F is differentiable, and F "=G. We also see that {F,’L} can only have one
limit point. Consequently, F), — F’ uniformly.

It follows that || F'||/5 < 1, |F’( )| < L(p* Ap*)P/3, and |F(0)] < 1073 (p" Ap®),
whence the u—admissibility of V* [(Uz)zgo]

Part 3. Invariance properties of the limit.
Let V¥ := V¥[(v;)i<0] = Hm FJ[V¥ ], and W* := V¥[(v;_1)i<o] = Um F V¥, _4].
dist (V*, Fu (W) < dist(V", FiH (V) + dist(Fp (V2,), Fat (V2 1))
+ dist(F (V) Fu(WH)

< dist(V*, F (V) + e 30X digt (Ve | Fu (VY 1)) +e” 2Xdlbt(]:n( 1), W

—n

The first and third summands tend to zero, by the definition of V* and W*. The
second summand tends to zero, because dlst(Vl‘n,}"u(V,iLl)) < 2Q:(z) < 1. Tt
follows that V* = F,(W%) C f(W“)

Part 4. Suppose v; = \Ifﬁ”’f, then

V' ={p € Uy [Rpy (0)] : Yk > 0, f~(p) € Vs, [Ri0g. (1) (0)]}-
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u S
The inclusion C is simple: Every u—admissible manifold W in \Ilgg Pi s con-

tained in W, [R,«(0)], because if W is represented by the function F' then any

(3

p=,,(v,w) in W satisfies |w| < p¥, and
o] = |F(w)| < [F(0)] + max | F'| - [w| < ¢ +efw| < (107° +&)p} < p}'.

Applying this to V* := V*[(v;)i<0], we see that for every p € V¥, p € Wy, [R,u(0)],
and by part 3 for every k > 0

F7Ep) € F7R V™) SV (vick)izo] € Wor, [Rpr (0)] € Wa [Riog. (x_s)(0)].
‘We have C.

We prove 2. Suppose z € Wy [Rpu (0)] and f~%(2) € Uy, [Rigg. (»_,)(0)] for all
k > 0. Write z = ¥, (vo, wp). We show that z € V* by proving that vy = F(wy),
where F' is the function which represents V*.

Introduce for this purpose the point z = U, (To, Wp), where Wy = wp and Ty =
F(w). For every k >0, f~%(2), f%(2) € Vo_,[Ri0g.(z_,)(0)], the first point by
assumption, and the second point because f~%(z) € f~*(V%*) C V¥[(vi—r)i<o]. It
is therefore possible to write

f_k(z) = \I/wfk(v—kvw—k) and f_k(z) = \Illfk(ﬁ—k’w—k) (k > 0)7

where |v_g]|, |lw_g|, [T_k|, [W_k| < 10Q.(x_j) for all k > 0.

Proposition 3.4, in its version for f~!, says that for every k > 0, f! =

T—k—1T—k

Wl of toW, , can be put in the form

L () = (A7 + g (0,w), By w + g8 (v, w)),

T_k—1T—k

where |Ay| < e X/2) |By| > eX/2, and MaXR,o6_(, ) HVgl(k)H < € (provided ¢ is
small enough).

Let Av_j = v_p —U_f and Aw_j = w_ — W_g. Since for every k < 0,
(k=1 w_p—1) = fo ' o, (g w_p) and (V_p—1, W_k—1) = fo o, Uk, W_p),
[Av 1| > ALY |Av_g| — max [[Vg{” || - (|Av_g| + |Aw_])

> (X2 — &)|Av_i| — e|Aw_y].
[Aw_ 1] < B [Aw_ k| + max [[Vg" || - (|Av_ ] + |Aw )
< (e7X2 o) Aw_i| + e|Av_yg].
Write for short ay, := |Av_g| and by, := |[Aw_g|. If we assume, as we may, that ¢ is

so small that e X/2 + £ < e=X/3 and eX/2 — ¢ > eX/?’7 then we obtain
apy1 > e ay — eby,
b1 < €_X/3bk + eay.

By definition, by = 0.

Suppose ¢ is so small that e X/ 4+ ¢ < 1 and eX/3 — ¢ > 1. We claim that
ar < agy1 and by < ag for all k. For k = 0, this is because by = 0. Assume by
induction that ar < ag41 and by < ag, then

bry1 < e X3 +eay < (673 4 )ay < ay, < apia

3 3
appo > X Papy — by > (X — 2)agsr > apsr.
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We see that apy1 > (eX/3 — ¢)ay, for all k, whence ap > (eX/3 — €)Faqg. Either

ag = 0 or ax —— 0o But ar = [v_ —7_k| < 20|Q-(x_1)| < 20¢, s0 ag = 0. Since
— 00

ap =0, vg = Ty, and therefore F(wy) = F(wp). Thus z = U, (F(wq),wo) € V.
Part 5. Holder continuity of u — V*[(u;)iez]: If two chains v = (v;)iez, w = (w;)icz
satisfy v; = w; for i = —N, ..., N, then dist(V*[(vi)i<o], V*[(w;)i<o]) < e~z VX,

Given n > N, let V" be a u-admissible manifold in v_,,, and let W* be a
u—admissible manifold in w_,,.

Let F£(V*)) (resp. Ft(W¥,)) denote the result of applying F,, £ times to V%,
using the path u_, — -+ = u_p 4 (resp. using w_,, = -+ = W_p4¢).

Fr=N(ve ) and FP~N(W¥, ) are u—admissible manifolds in v_ (= w_x). Let
Fn, Gy be their representing functions. Admissibility implies that

”FN - GN”oo < HFN”oo + ||GN||oo <2Q:.<1
[Fy — Gxlloo < 1 Fnlloo + 1GN lloo < 28 < 1.

Represent F—*[V% | and FP—*[WY, ] by functions F), and G. By(4.5),
1Fre1 = Grilloo < €2 By = Gilloo (4.6)

1F—y = Gioilloo < e2(IF = Gilloo + 2] Fi — Gll&%).- (4.7)

Iterating (4.6) starting at k = N and going down, we get || Fiy — Gi|loo < e~ 2XN—F)

whence dist(F2[V* ], FPW*,]) < e~ 2XN. Passing to the limit n — oo, we get

dist(V*[(vs)i<o], V¥ [(wi)i<o]) < e~ 3NX

Now substitute || Fj, — Gilloo < e 2XN=K) in (4.7), and set ¢, := ||F} — G4 loo,
0 := e X/2 and 6 := e~ 57X then cp_1 < b1 (ckx + 20 7F). Tt is easy to see by
induction that for every 0 < k < N,

co < Ofcr + 200103 " + 077103 M 4+ 0,057,
We now take kK = N, paying attention to the inequalities 61 < 6 and cy < 1:
co <O +2NOY < (2N +1)6Y.

It follows that distor (F2[VY ], FRW®,]) < 2(N + 1)0Y. In part 2, we saw that
Fnve ] and Fr{W®, ] converge to V%[(w;);<o] in C. Therefore if we pass to the
limit as n — oo, we get distor (V¥[(v;)i<o], V¥(wi)i<o]) < 2(N + 1)8Y. Now pick
two constants 6 € (f2,1) and K > 0 s.t. 2(N + 1)0Y < K6V for all N > 0. O

Theorem 4.16. Given a chain of double charts (v;)icz, let w(v) :=unique inter-
section point of V*[(v;)i<o] and V°[(v;)i>0).

(1) 7 is well-defined and moo = fom;

(2) m:X — M is Hélder continuous;

(3) (%) > 7w(T#) D NUHf(f), therefore ©(X) and (X%) have full probability

w.r.t. any ergodic invariant probability measure with entropy larger than x.

Proof. Proposition 4.11 guarantees that « is well defined for every chain.
Part 1. moo = fom.

Suppose v is a chain, and write v; = \Ilgi: P and z = 7(v). We claim that

() € Vo [Ro oy Q)] (k € 2). (4.8)
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For k = 0, this is because z € V*[(v;);>0] and V*[(v;);>0] is s—admissible in \Iﬂ;ﬁ”’g.
For k > 0, we use Proposition 4.15 part (3) to see that

ffz) e fk(VS[(Uz’)z'zo]) C V2 [(vigr)ixo0)-

Since V*[(vi+)i>o0] is an s—admissible manifold in \Ilg’z Pk fh (2) € ¥4 [Rg. (2,)(0)].
The case k < 0 can be handled in the same way, using V*[(v;)i<o]. Thus z = 7 (v)
satisfies (4.8).

Any point which satisfies (4.8) must equal z, because by Proposition 4.15 part
(4), it must lie on V*[(v;)i<o0] N V*[(v;)i>0]. So (4.8) characterizes 7(v).

It is now a simple matter to deduce that w(c(v)) = f(r(v)): f*[f(7(v))] =
[T (v)] belongs to Wy, [Rq. (2y.,)(0)] for all k, and this is the condition which
characterizes w(ov).

Part 2. 7 is Holder continuous.

We saw that u — V*[(u;)i<0] and u — V*[(u;)i>0] are Hélder continuous (Propo-
sition 4.15). Since the intersection point of an s—admissible manifold and a u ad-
missible manifold is a Lipschitz function of these manifolds (Proposition 4.11 (3)),
7 is also Holder continuous.

Part 3. w(X) has full probability with respect to any ergodic invariant probability
measure with entropy larger than y.

We prove that 7(X) D NUHf(f). Suppose x € NUHf (f). By Proposition 4.5,

. P PR DL DR Phiy1:Phy1 Di Dy
there exist U,2""F € ¥ s.t. Uk — W VPR for g1l k. and s.t. UhLE"F e—overlaps
k k k+1 9 k

\I!?;f:g)’“ for all k € Z. By Proposition 3.2(1), this implies that

FH@) = W) (0) € Ua, [Rpunps (0)] C Vo, [Rg. () (0)] for all k € Z.

Thus z satisfies (4.8) with v = (\Ilgfu ,pf)iez. It follows that z = w(uv).

In fact this argument proves something stronger, that will be of use to us later.
Looking closely into the proof of Proposition 4.5, we see that the chain we con-
structed above satisfies the property pi* A pf > e~*/3q.(f*(x)). By the definition
of NUHf(f)7 there exist sequences iy, jy T oo for which pi Ap; and p%; ApZ.
are bounded away from zero. By the discreteness property of &7 (Proposition 3.5),
\1122.“” " must repeat some symbol infinitely often in the past, and (possibly a different
symbol) in the future. Thus the above actually proves that

m(3#) > NUHZ(f), (4.9)
where I# = {veX:Jv,we ¥, Ing,my T 0o s.t. vy, =v, and V_p,, = w}. ([l

4.4. The relevant part of the extension. We cannot rule out the possibility that
some of the vertices in ¥ do not appear in the coding of any point in NUH, (f).
Such vertices are called irrelevant. More precisely,

Definition 4.17. A double chart v = WP P" is called relevant if there exists a chain
(vi)iez s-t. vo =v and w(v) € NUH, (f). A double chart which is not relevant, is
called irrelevant.

Definition 4.18. The relevant part of 3 is Xy := {v € ¥ : v; is relevant for all i}.

Yrer is the topological Markov shift corresponding to the restriction of the graph
G(7, &) to the relevant vertices.
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Proposition 4.19. Theorem 4.16 holds with ¥..; replacing 3.

Proof. All the properties of 7 : X,..; — M are obvious, except for the statement
that w(X7,) D NUH#(f), where X7, := 2# N Z,.

rel
Suppose p € NUHf(f), then the proof of Theorem 4.16 shows that Jv € X7 s.t.
m(v) = p. Since NUHf(f) is f-invariant and forw = moo, (o' (v)) = fi(p) €

NUHf(f), so v; is relevant for all ¢ € Z. It follows that v € Zfil. ]

The proposition shows that we do not need the irrelevant vertices to code a
x—large set of orbits. Henceforth we assume w.l.o.q. that all irrelevant vertices
have been removed from ¥, and we set X2 := X,..;. This is needed for the proof of
Proposition 7.3 below.

Part 2. Regular chains which shadow the same orbit are close
5. THE INVERSE PROBLEM FOR REGULAR CHAINS

In the previous section we constructed a map 7 from the space of chains to M,
and showed that every z € NUHf( f) takes the form x = m(v) for some chain
v € ©#. In principle, there could be infinitely many chains v s.t. 7w(v) = . We ask
what one can say about the solutions v to the equation 7(v) = x.

Under the additional assumption that one of the pre-images of x is regular (see
below), we shall see that the coordinates v; of v are determined “up to bounded
error”. Here is the precise statement:

Definition 5.1. A chain (v;);cz is called regular if every v; is relevant (see §4.4),
and if there are v,u s.t. for some ng,my T 00 V_pm, =1u, Uy, =0 for all k.

Every element of ¥# is regular, because of the convention stated in §4.4 .

Theorem 5.2. The following holds for all € small enough. Suppose (Qg?’pf)iez,
(\I/;f’qf)iez are regular chains s.t. w[(wizj”’f)iez} = W[(‘Ilgg’qf)iez], then for all i,
(1) d(zi,yi) <e;
(2) (\117;1 oW, )(u) = (=1)%u+c,+A;(u) for allu € R.(0), where o; € {0,1},
¢; is a constant vector s.t. ||¢;|| < 107 (q* A q5), and A; is a vector field
s.t. Ai(0) =0 and ||(dA:)y|| < &€ on R(0);
(3) pf/at',pi/ai € le VE e V).

The proof of Theorem 5.2 is long, so we broke it into several sections (§6,7,8).
Here is an overview. Suppose (W5 1)z, (Ul %), 7 are two chains in ©# s.t.

rl(V2 " iea) = (W ien] = (5-1)

We want to show that ¥, is close to ¥, for all i.

Equation (5.1) implies that fi(x) is the intersection of a u-admissible and an
s—admissible manifold in ng’p:, therefore (Proposition 4.11), fi(z) = U, (vi, w;)
where |v;], |w;| < 1072(p¥ A pf). By construction, Pesin charts are 2-Lipschitz,
therefore d(f%(x),x;) < 50~ (p¥ A p$). Similarly d(f%(x),y;) < 5071(g" A ¢*). Tt
follows that d(z;,y;) < 25~ max{p? Aps,q* A ¢} < e for all i € Z.

Assume without loss of generality that € is smaller than the Lebesgue number
of the cover 2 which we had constructed in §3.1, then x;,y; belong to the same
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element D; of . This allows us to write
U, = exp,, 0¥y, 0 Cy,
Uy, = exp,, oy, o Cy,

where 9, : R? — T,,M (z; = ;,y;) are the isometries we constructed in §3.1, and
Cy,,Cy, € GL(2,R) are given by C\(x;) = U5, 0 Cy, and C,(y;) = Y,, 0 Cy,.

Let z; = x;,y;, then Cy(z;) is the unique linear operator which maps el =
(3) to sy(2:)7te(2:), and €2 = (9) to uy(z)"te*(z;). Writing as usual a(z;) =
(e (4), €%(2)), we see that

_ sx(2i) 71 uy(zi) 7t cosa(z)

Cei = R, < 0 Uy (2;) " sina(z;) > ’ (5.2)
where R, is the unique orientation preserving orthogonal matrix which rotates e!
to the direction of ¥ '(e*(2;)) (2 = «4,¥;). Some terminology:
z; are called position parameters,
R,, and a(z;) are called azes parameters,
Sy (2i), uy (2;) are called scaling parameters,
(p¥,pg) are called window parameters.

The proof is done by comparing the parameters of \Iﬂ;?”’ " to those of \I'gg’qf.

The comparison of the position parameters had already been done above. We
record the conclusion for future reference:
Proposition 5.3. Let (Wii"pf)iez, (\Ilgg’qf)iez be two chains s.t. ﬂ[(\lfgz’pf)iez] =
T[(y " )iezl, then d(w, i) < 257" max{p} Ap,qf Nai} (i € Z).
Regularity is not needed here. We shall make use of it when we analyze the scaling
parameters and the window parameters.

6. AXES PARAMETERS

Let (\Ifﬁ”’f)iez, (\I/Z’?’qf)iez be two chains s.t. w[(qfﬁ”‘”f)iez] = W[(\I/Z;’q;)iez].
We compare R, to Ry, and a(z;) to a(y;). The analysis relies on a special property
of V*[(zk)k<i] and V*[(zk)k>i] (2 = xk,yx), which we call “staying in windows”.
We begin by discussing this property.

6.1. Staying in windows.

Definition 6.1. Let V* be a u-admissible manifold in the double chart W2"P", V'
stays in windows if there is a negative chain (V5" )< with W50 = WP™P" and
u—admissible manifolds W in \Iff;j*”? s.t. f‘“'(Viu) C W foralli <O0.

(3

Definition 6.2. Let V* be an s—admissible manifold in the double chart ¥P ",
V* stays in windows if there is a positive chain (V5" );>o with WEP° = gpp
and s—admissible manifolds W§ in Whi P s.t. fi(V) C W7 for all i > 0.

If v is a chain, then V;* := V¥[(vk)r<i] and V;® := V*[(vk)k>:] stay in windows,
because f~F(V;*) C Vi, and f*(V;*) C V., for all k > 0 (Proposition 4.15).

The following proposition says that s/u—admissible manifolds which stay in win-
dows are local stable/unstable manifolds in the sense of Pesin [P]:

Proposition 6.3. The following holds for all € small enough. Let V* be an admis-
sible s—manifold in \I/g“’f, and suppose V*° stays in windows.
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(1) For every y,z € V5, d(f*(y), f*(2)) < e~ 2" for all k > 0.
(2) Foreveryy € V*, let e*(y) denote the positively oriented unit tangent vector
to V* at y, then ||dffe®(y)]l pr(y) < 6||C’X(x)71||e’%kx for all k > 0.

(3) Jloglldfye® (W)l pr(y) —log ldffes (2)ll o () | < Q= (2)"/* (y,2 € V*,k > 0).
The symmetric statement holds for u—admissible manifolds which stay in windows:
replace the s—tags by u-tags, and f by f~ L.

The proof is modeled on the proof of Pesin’s Stable Manifold Theorem [BP,
chapter 7]: f™:V*® — f*(V*®) is given in coordinates by
\I/;nl ° fn o \IJCEO = fwnflwn ©---0 fIOII'

Since V' stays in windows, the orbits of points in V* remain in the “windows” where
fziziss 18 close to a linear hyperbolic map. One can then prove the proposition by
direct calculations. See the appendix for details.

Proposition 6.4. The following holds for all ¢ small enough. Let V* (resp. U®)
be an s—admissible manifold in \Iﬂz’u’ps (resp. in \Ilgu’qs). Suppose V' U?® stay in
windows. If x =y then either V*,U® are disjoint, or one contains the other.

The same statement holds for u—admissible manifolds.
See the appendix for a proof.
6.2. Comparison of «a(z;) to a(y;).
Proposition 6.5. Let (\ng’pf)iez, (\Ilgg’qf)iez be chains s.t. ﬂ[(@i;’pf)iez] =
T[(UE %)Yz, then for alli € Z
(1) e VF < Shale) ¢ o2
ino(yi)
(2) |cosa(x;) —cosaly;)| < e
Proof. Write v; = \I'f;z’pf, u; = \If;f’qf, x = ﬂ'[(@i?’pf)iez] = w[(\llg’j’qf)iez}, and
Vi = Vol(vi)izi] Vi = V¥ {(0i)i<k] B3 = Ty Vol
Ve o= V*[(us)izk] Vo= V¥ [(us)i<k] B3/ o= Tpug) Vil ™.
We claim that
(i) livrlisolip % log de}’k(z)yH <0on B, \ {0} and E;, \ {0},
(i) limsup ;; log [|dffy . wll > 0 on By, \ {0} and By, \ {0}.
n—oo
We give the details for E;Z{u The case of EZ,{“ is identical.
Part (i) follows from Proposition 6.3 (2), applied to V. and V2 .

The proof of (ii) is slightly more complicated. Suppose w € E} \ {0}, then w is
tangent to V;“ at f¥(z). For every n, f*™"(z) = w[(vi4itn)icz] € V3

Thtn’
)= (@) e Fr Vi
It follows that df. , w € Tyrrn [V, 1\ {0}

We apply Proposition 6.3 (2) in its version for u—admissible manifolds to the
manifold V;ZM and the vector df}?,c(w) w. This gives the estimate

lawll = [[df 7% (g lf Feay][| < 672" X(|Co (@hgen) T - lldf iy
< 66_%"XQ€(xk+n)_1||df'?k(m)w|| (definition of Q)

SO
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_ln U S — n
< 6e” 2 (Pl ADFpn) ldf Fi gyl
< 6e™ 2N (i A ) T |df iy 0] (Lemma 4.4).

Thus [|df e, wll > Lezmxtns(pu A ps)||w|. Part (ii) follows.

T

By (i) and (i), E5,, By, = {w € Tpr(m)M : limsup 5 log||dffs, w| < 0}. For
n—oo

reasons of symmetry, EY , EY = {w € Ty, M : limsup * log ||df 7./} w]|| < 0}. It
n—oo

Tk fF(z)=

follows that £ = Ej and E; = EJ .
s a result, , = ,V.i'). By Proposition 4.11 sin Vi) =

A It, L(V; , V2 LV V). By P ition 4.11 sin £(V7 , V3
=@ APD" gin a(z,) and sin LV, Vi) = e @7 gin a(yy,). Since pt A ps <
Qe(x;) <38 and ¢ A ¢ < Qe(yi) < e3/8, e=2"" < sina(xy)/sina(yr) < e’
Similarly one sees that | cos a(xy) — cos ayy)| < 4¢3/, and the proposition follows
for all € so small that 4e3/4 < \/e. O

The proof actually gives the following stronger estimates, which we will serve
their purpose as distortion compensating bounds in §9 below.

Lemma 6.6. Under the assumptions of the previous proposition,

w A s\B/4 wA s\B/4 c ) w A s\B/4 w A s\B/4
—(p¥ ApS —(g¥ NG sin a(z U A S UGS .
1) e (pi'AP7) (@i g™ < Sinagyz; < e@iApi) (g Ag)T

(2) Jcosa(z;) — cosays)| < A[(pE A ps)P/ 4+ (g A gg)?].

6.3. Comparison of R;, to R,,.

Proposition 6.7. The following holds for all € small enough. For any two chains
(W2 " )iez and (P, )iez, if 7[(Vai ™ )icz] = w[(V5 " icz], then for all i

R;lle _ (71)0'1 Id+ < €11 €12 > 7
‘ €21 €22

where o; € {0,1} and |eji| < [(P¥ A D3PS + (¢ A qf)P°) < E.

Proof. In order to keep the notation as light as possible, we only do the case i = 0,
and write qfﬁﬁ’pg = ‘Ilgu’ps , \yiﬁ’pg = \I/gu’qﬂ, p:=p*Ap® and q := ¢“ A ¢*. We
also set as usual v; = \ng’pf and u; = \Ilgit’qf.

Let z = w[v] = mw[u]. The manifold V*[(v;);>0] inherits an orientation from the
chart ¥,.. Let e2(z) denote the positively oriented unit tangent vector to V*[(v;);>0]
at z. The manifold V*[(u;);>0] inherits an orientation from the chart ¥,. Let
€;(z) denote the positively oriented unit tangent vector to V*[(u;);>0] at 2. Since
T.V*[(vi)iez] = T-V*[(u;)iez] (see the proof of Proposition 6.5), e (2) = +e; (2).

We write z and e2(z), e’ (z) in coordinates in ¥, and ¥,

&y
s [(d¥.)¢]a 1
e z = ‘1/$(£) and gm(Z) = m, where g S RlO*Qp(Q)a a = (a)’ and
la| < p?/? (see Proposition 4.11 and (4.2)).
[(d¥y)q]b
2 = ¥,(n) and gi(2) = zwoygy Where 1 € Rig—z4(0), b = (3), and

|b] < g%/ (see Proposition 4.11 and (4.2)).
Since €5 (2) = *e;(2), there is a non-zero (signed) scalar A such that

Cra = A(dexp, Oﬁm)ng]_l[(d €XDPy Oﬁy)Cyg]Cybv (6.1)
where C,, C, are given by (5.2).
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Claim 1. Cra < R, (Oi 6/4) and Cyb x R (Oi 5j4) Here @ o b means that @ = tb

for some t # 0, and a £ ¢ means a quantity in [a —ca+d.

Proof. Ca — <5><(~”C)1 +uy ()7 COSa(:c)a)

(x)~Lsina(z)a

14|y (2)~ 1||'|a|> 1
, because u, > 1 and s, = ||Cy(x) e’ (x)]|
<0i||0 (@)= - |al * * .
1+ p?/ /3 /12, 8/4 P
<0:|: 5/4 ) because |a| < p?/? < Q,(x)"/“pP* < Te@

Similarly, Cyb < R, (éigiﬁ)

Claim 2. There exists a constant J > 1 (which only depends on M) s.t. for all
D e -@7 T,y € D’ and ||M1H’ HMQH < 27

H[(depr Oﬁw)wl]_l[(deXPy Oﬁy)wg] - Id” < J(d(x,y) + |lw; — wsl))-

Proof. Let J; denote a common Lipschitz constant for the maps

(w,w) — (dexp,, Uy )w
on D x By(0) for all D € 2. Let Jy denote the maximum over D € Z of
sup{||(d exp,, 0¥w)x' || : w € D, [Jw|| < 2}. The claim holds with J := JiJo + 1.
Claim 3. R, ((1)) +e&, x Ry ((1)) +&, where ||g, || and ||g,|| are less than 3. (p?/*+¢%/%).

Proof. Cy(+) is a contraction, so [|C¢ — Cyn|| < [I<[| +[[n]l < 1072(p+q). Also, by
Proposition 5.3, d(z,y) < 257 (p + q). Therefore, by Claim 2,

[(dexp, o¥z)c. (2)¢]™ [(deXpy oly)c.(yyn] = 1d+E

where E is a matrix s.t. ||E| < J(p + ¢). The claim follows from (6.1) by direct
calculation.

We can now prove the proposition. R, and R, are rotation matrices, therefore
R, 'R, is a rotation matrix. The problem is to estimate the angle. Claim 3 allows

us to write
1 1
() e (o) 5t e (62

T Since ||, < 3J(pP/* + ¢7/4) < 6734,

lc| € [e=107VE e107VE] at least provided ¢ is small enough.

Since R, and R, are orthogonal matrices, the vector on the right-hand side of
(6.2) is a unit vector. Put it in the form (—1)7°(cos@,siné) where o¢ € {0,1} and
0 € (=%,%), then

o (BB el el

L—leall = lel=Hleall /1= lleall = lel~Hleal
3J(1+ el07Ve)

1—6J(1 4 el0/VE)e3/4

Since p, ¢ < €%/#, if ¢ is small enough, then this is less than p®/54¢%/5 < 2¢3/5 < \/e.
It follows that (—1)7°R, 'R, is a rotation by angle less than pPo 4¢P < e, O

where ¢ is a scalar s.t. |c| =

0+ %),
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7. SCALING PARAMETERS

7.1. The s, and u, parameters of admissible manifolds. In §2.1 we defined
5y (-) on NUH, (f). We now extend this definition to all points lying on s—admissible
manifolds V* which stay in windows.

Suppose y € V*. If y € NUH, (f) define e°(y) as in §2.1, and note that by
proposition 6.3(2), e®(y) is tangent to V* at y. Motivated by this, we define e*(y)
for y ¢ NUH, (f) to be one of the two unit tangent vectors to V* at y (it doesn’t
matter which), and then we let

2

sy(y) = V2 (Z e%xdf;es(y)|?k(y)> € (V2,0q].
k=0

Similarly, for any u—admissible manifold V* which stays in windows, and any
y € V* we define e*(y) as in §2.1 when y € NUH, (f), and we let ¢“(y) be one of
the two unit tangent vectors to V" at y when y € NUH, (f). Then we let

1
0 2
ux(y) = V2 (Z e%wfy’“eu<y>||?k<y)> € (V2,00).
k=0
Although these numbers depend on y, they are not very sensitive to its value: by
Proposition 6.3 part 3, for any pair of points y, z in the same s—admissible manifold,
if s, (y) is finite then s, (z) is finite, and
eTVE <5, (y) /sy (2) < eVE.
A similar statement holds for u,—parameters on u—admissible manifolds.
Definition 7.1. Let V* be an s—admissible manifold in ‘I”;u’ps with representing
function F®. Let V* be a u—admissible manifold in \Ifgu’pé with representing function
F“. If V® and V" stay in windows, then
(1) 5, (V?), the sy—parameter of V°, is s, (p) where p := U,(0, F*(0)),
(2) uy (V") the uy—parameter of V%, is uy(q) where q := ¥ (F*(0),0).
Lemma 7.2. The following holds for all € small enough. Suppose \I/g;“vp“ — \Ilgu’qs,

and let V* be an s—admissible manifold in \Pgu’qs which stays in windows. If
54 (V?®) < 0o then sy (Fs(V*)) < oo, and for every p > exp(1/e),

Vs s Vs _ 4 _ 4
SX( ) c [p SX(]:( )) c [P 1€Q5(a:)ﬁ/ , pe Qg(x)ﬂ/ ) (71)
Sx(y) Sx(x)

A similar statement holds for u—admissible manifolds in \P?;“%PS and Fy.

-1

;P =

Note that the ratio bound in (7.1) improves.
Proof. Suppose V¢ is represented by the function G, and U?® := F,[V?] is repre-
sented by the function F. Let p := ¥, (0, F(0)) and ¢ := ¥, (0, G(0)).

Suppose s, (V?®) < oo, then s,(¢) < co. By Proposition 4.12(4) (in its version
for s-manifolds), f~'(¢q) € U*. Since U® is one-dimensional, df -1y e*(f~'(q)) =

+||df -1 (f @)l - €°(q), and so

s (fHq)? =2 (1 + Ze%xlldfé"_ldff1(q>€s(f_l(q»|?k—l<q>>

k=1
=24 e™X|Jdf -1 (e* (T (@)2 - 5x(q)* < oo
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Since f~1(q) € U*, 5, (U*) < e¥es,(f 7! (q)) < oc.
Next assume that s, (V*) is finite, and

-1

sx (V)
sx(y)

€lp 0l

where p > exp(y/€). Since s, (U®) = s,(p),

sx(U®) _ sx(0) s (f @) s (f'(w)
sy(@) s (f7Ha) sy (f7Hy)  sxla)

The three terms are well-defined and finite, because (proceeding from right to left):

e 5,(z),s,(f1(y)) are well-defined and finite, because z,y € NUH, (f);
e 5, (f7(q)) is finite by the argument at the beginning of the proof;
o 5,(p) < oo, because s, (p) = Sy (Us) < 0o (see above).

(7.2)

The first factor in (7.2) belongs to [e‘Qs(m)BM, le(I)ﬁM] by Proposition 6.3(3).
The third factor in (7.2) takes values in [e’Qi(“")ﬁM,eQi(z)ﬁM] because ¥2"P" —
\I!Zuvqs, see Lemma 3.3. To prove the proposition, it is enough to show that

L. )8/ 5y (f7'(q) <ol—30_(3)8/4
5C pBQ:(2)"7] < s (1) < pexp[—3Q(z)""]. (7.3)

We begin with some identities. We omit the tags of the Riemannian norm, to
avoid heavy notation. Since df -1 (,ye*(f(y)) = £|df -1 (f W)l - € (),

s (f7Hy)* =2 (1 + ie%"lldff_ldff1(y)e“’(f_1(y))||2>
=2+ 62"1;;(111)2IIdff—l(y>§S(f’1(y))H2- (7.4)

Similarly, df -1(e*(f (@) = £l df 1> (f (@)l - €*(q), so

sx(f7H(@)? = 2+ X5y (0)?df -1 (€ (F ()

< 24 26 () e (P @) 2 o 209 = 2T )

< (24 PPl e U W)

X exp (2 |log|df f-1(ye”(f " (9))]| — log IIdff—l(y>€S(f1(y))|||>'

‘We obtain the estimate

si(f71@)* _ [ 2+ P75 ()l df - (e’ (F 7 W)
sy(f71()? = ( 2+ ey (Y)?[ldf -1 (e (fF~Hy)I1? ) g

X exp (2 |log [ldf i-1.(qye” (f (@)l = log lldf s-1¢yye* (F~ ()| |> :

(7.5)

Call the first factor I and the second factor II.
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Analysis of 1.

1= p2 o 2(/)2 — ]‘)
24 e2Xsy (y)?[|df p-r e (f 1 (W) II?
2 2(p* - 1)
=p°—————=, by (74
s YT
—2e9/8 2 -1
< p?— ¢ 2 g 1), because U7 ) = exp[+£%/#] by Lemma 3.3
sy () sy ()
26—286/B(1 _p—2)
<p*l1- , since s, (z) = ||Cy (z) e (z)| < ||C,(z) 7!
P < ||OX($)_1||2 X( ) H X( ) 7( )H H X( ) H
c1/2

< p? <1 — ||C><(95)_1||2) for all € small enough, because p > eve.

By the definition of Q. (z),

1/2

m > Q.(2)/% = Q.(x)~P/12Q.(x)P/* > e~ 1AQ. ()P4,
X

cl/2

In particular, for all € small enough, TCe@=TE > 7Q.(x)? /4, and by the inequality
X

l—z<e®for0<z<1,1<p?exp[—7Q.(x)?/4].

Analysis of I1. Since f is a C'*#-diffeomorphism, (p,7) + dfpU can be written

in coordinates as a linear map of the coordinates of ¥, with coefficients which are

S-Holder continuous functions of the coordinates of p. Since [[e*(-)|| = 1 and ||df]|
is uniformly bounded, there exists a constant Ky = Ko(f) so that

I < exp |:KOdM(f_1(Q)7 F1 W)’ + Kodru (es(f_l(q»ves(f_l(y)))} ;

where dp; and drps are the Riemannian distance functions on M and T'M.
Since f is a C'*# diffeomorphism and e*(-) are unit vectors, there is another
constant H; (which only depends on f), such that

ITI < exp {HldM(q,y)B + Hidrym (es(Q)a@S(?J))B} .

We estimate d(q,y). By definition ¢ = ¥, (0, G(0)) and y = ¥, (0,0). Since Pesin
charts have Lipschitz constant smaller than or equal to 2,

d(g,y) < 2G(0)] <2-107%(¢" A g*) 21077 e*(p" A p*)
(see Lemma 4.4). In particular, d(q,y) < Q.(z).

We estimate drar(e®(g), e°(y)). By the definition of ¥,,, e(y) is the normaliza-
tion of (d\I/y)Q((l)) = (dexp,)o [Cx(y) ((1))] , and e*(q) is the normalization of

(d¥y)(0,6(0)) (G,l(o)) = (dexpy) e, () (,2) {Cx(y) (G/l(o)ﬂ '

It is not difficult to see using the admissibility of V* and Lemma 4.4 that |G(0)| <
Qe(z) and |G'(0)| < Q.(x)?/3. Since Cy(y) is a contraction, p exp, is smooth,
and d(q,y) < Q<(x), there exists a constant Gy (which only depends on the smooth-
ness of the exponential function) such that dras(e*(q),e®(y)) < GoQa(z)?/3.

We see that 1T < exp[(H; + H1Go)Q.(x)?/3]. Tt follows that for all ¢ sufficiently
small, IT < exp[Q.(x)?/4].
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Summary. Combining the estimates of I and II, we find that

sy (f'(q))
sy (f~1(y))

The other half of (7.3) is proved in a similar way. First, one proves that

s (f @) _ (24P 2 W) lldf p-r e (F T W)
sy (f71()? - ( 2+ ey (y)?lldf p-r e (F~H )12 > g

xexp( 2 [tog [df -1 (gy” (" ()| — log 1df ;- y)es(fl(y))ll|),

and then one analyzes the two terms as before. O

< pexp[—SQe(I)ﬁM].

7.2. Comparison of s, (x;), u, (z;) to sy (yi), uy (yi)-

Proposition 7.3. The following holds for all € small enough. For any two regular
chains (Wz: "™ )iez, (V5" iez, if 7[(V2) " )iez] = 7[(Py: " )iez], then

e Ve < M < e'VE and e *VE < M < etveE for alli e Z.

5x(vi) = ux(yi)
Proof. Write v := (W2 P1);cp, u = (W ’ql)zezv and p := 7(v) = W(ﬂ)o
Let Vi@ := Vo[(vi)izk], Vi == V¥ [(vi)i<k], Ui = V3[(wi)izl, Ug = V*{(ui)i<k]-

We claim that it is enough to prove that

SX(Vk,S)7 UX<V]:), SX(Uli)7 uy (U3) c [e—\/57€\/§]' (7.6)
Sxy(@r) " ux(zr) " s (yr)  ux(yr)
Here is the reason. The manifolds V;? stay in windows and contain f*(p), therefore
by Proposition 6.3(3) s, (V;?)/sx(f*(p)) € [e”VE, eVE]. The same argument applies

s u u sx (Vi uy (V3! sy (U uy (Ug —\e €
to UE, Vit Ut 50 53555 it sipons ey € [eY% ¢¥¥). Decompos-

: sx(ze) _ sx(zk) sx (Vi) . sx(FF () | s (UR) ; :
ing Sx(y:) = SX(V;Z) TGy SX(U;) Cw ey, we see that (7.6) implies that

sy (wr)/5y (y) € [e4VE, e2VE]. Similarly, u, (1) /uy (yx) € [e~2VE, e2VE].

We show that s, (V) /sy (o) € [e”VE, eVE]. The other parts of (7.6) are proved
in the same way, and are left to the reader.

We are assuming that v is regular, therefore there exists a relevant double chart
v and a sequence ng T 00 s.t. vy,, = v for all k. Write v = \Iﬂ;"vps.

Claim 1. There exists some p > exp(y/¢) which only depends on v such that
sy (Vi) /sx(@n,) € [p~, p] for all k.
Proof. By convention v is relevant (see §4.4). Choose a chain w s.t. wg = v
and w := m(w) € NUH,(f). Let W* := V*[(w;)i>o]. This manifold has a finite
s,—parameter, because s, (W?) < eVes, (w) and w € NUH, (f) so s, (w) < co. Let
sx(W?) _sx(2)
Po = ma’X{ ) s aexp(\/g) .
sx(@) " sx (W)
W?# is an admissible manifold in v,, = v. By Proposition 4.15, if we take W?*

at vp,,, and apply to it the graph transform Fs njys — ng times using the path
(Ungs -+ Vny ), then the resulting manifold

Wi = e ]
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is an s—admissible manifold in vy, , which converges to V,;, . By Lemma 7.2,

sy (W7) ~1
B ot pul. (7.7)
sx(x)
The convergence of W; to V7 means that if W/ is represented in vy, = grp”
by the function Fy, and V7 is represented in U2"P" by F, then ||Fy — F|oo - 0.
—00

In fact, since sup ||Fy||3/3 < oo, we have the stronger statement that

|Fe = Flloo + | Ff = Floc —>0,

see part 2 of the proof of Proposition 4.15. Therefore, if £ := ¥, (0, F(0)) and
o= U;(0, £,(0)), then & o §and (&) —— e(&)-

Fix some N large and ¢ > 0 small. Since df is continuous, there exists ¢ so large
that

2 2

N N
V2D e dflet (F NG | <€ V2| DY ePXldfL e’ (£ ()1 e,)
j=0 §=0

The expression on the right is smaller than €%s, (W}), and therefore by (7.7), smaller
than e®pgsy (). Since this is true for all N and 6, s, (V,5 ) < po - 85 (2).

Recalling that z,, = x and that s,(V;5 ) > v/2, we see that sy (V5 )/sy(@n,) €
[V2/55(2), po]. The claim follows with p = pg - s, ().

Claim 2. sy (V§)/sx(z0) € [exp(—+/€), exp(y/€)].
Proof. Fix k large. By claim 1,

SX(V’rfk) —1
——<€lp .0l
SX(xnk)
By Proposition 4.15 (3), Fs(V;;.) = V7, _;, and by Lemma 7.2, the bounds for
sy (V2 sy (V2
siEx"*‘; improve. We ignore these improvements and write % € [p~,pl.
n ny—

Sx(vsk—2)

Another application of Fy gives P C— € [p7!

,p]. Continuing this way, we
eventually reach the index nx_1 + 1 and the bound
Sx(VnSk,IH)

SX(xnk—l"rl)

elp!

v
Since x,, = x, the next application of Fs; improves the ratio bound by at least

exp[ Qe () /4]:

S
SX(Vnk’I) 6 [p_ler(w)ﬁﬂl’pe_QE(I)ﬂ/4].

Sx (xnk—l )
We repeat the procedure by applying Fs ng—1 — ng—s + 1 times, whilst ignoring
the potential improvements of the error bounds, and then applying Fs once more
and arriving at

ﬂ c [p7162Q5(:L’)W4’pef2Qa(z)W4].
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We are free to choose k as large as we want. If we make it so large that
explkQ-(x)?/4] > pexp(—+/E) , then eventually we will reach a time ny, when
the ratio bound is smaller than or equal to exp(/2):

SX(VS )
— 2= € [exp(—Ve), exp(Ve)].

nko
Sx (xnko )
This is the threshold of applicability of Lemma 7.2. Henceforth we cannot claim

that the ratio bound improves. On the other hand it is guaranteed that the ratio
bound does not deteriorate. Therefore, after additional ny, iterations, we obtain

X0) ¢ [oxp(—+/E), exp(y/E)] as desired. -

sx (o)

8. WINDOW PARAMETERS
8.1. e—maximality. Let v = (\Ilil:’pf)iez,g = (\Ilg;:’qf)iez be two regular chains
such that w[v] = 7wlu]. We compare p¥ to ¢, and p; to ¢f. The idea is to use
regularity to see that the g—parameters of V*[(v;)i<o] and V*[(v;);>0] are “almost
maximal” in a certain sense that we describe below.

But first, some notation and terminology: (a) a positive or negative chain is
called regular, if it can be completed to a regular chain (equiv. every coordinate is
relevant, and some double chart appears infinitely many times); (b) if v is a double
chart, then p*(v) and p*(v) means the p* and p* in v = W2 ",

Definition 8.1. A negative chain (v;)i<o is called e-maximal if it is regular, and
p"(v0) > e~ Vp" (u)

for every reqular chain (u;);cz for which there is a positive reqular chain (v;);>o

s.t. W[(Ui)iEZ] = '/T[(ui)iEZ]-

Definition 8.2. A positive chain (v;);>0 is called e-maximal if it is reqular, and
P (vo) > e~ VEp* (ug)

for every regular chain (u;);ez for which there is a negative regular chain (v;)i<o

S.1. 7'('[(’()1')1'62] = W[(ui)iez].

Proposition 8.3. The following holds for all € small enough: for every regular
chain (vi)iez, (vi)i<o and (v;);>0 are e-mazimal.

Proof. The proof is made of several steps.

Step 1. The following holds for all € small enough: Let u and v be two regular chains
s.t. wlu] = 7v]. I ug = U2P" and vy = \I/Zu’qs7 then Q. (x)/Q-(y) € [e~ V%, eVe).

Proof. Propositions 6.5 and 7.3 say that S29E) ¢ [c=VE Ve x() ¢ [o—4vE c4VE),

sin a(y) * sy (y)
Uy (T _ z)~ ! .
and ﬁgy; € [e*V%, e*VE]. By Lemma 2.4 Hg’;gy%”; € [exp(=5vE), exp(5y/2)],

whence Qc(2)/Q<(y) € [exp(=% Ve — §¢),exp(FVE + 5¢)]. If £ is small enough,
then Q:(2)/Q<(y) € lexp(—/2), exp(V/e)].

Step 2. The following holds for all € small enough: Every regular negative chain
(v3)i<o 8:t. vg = W P" where p* = Q. () is e-maximal, and every regular positive
chain (v;)i>0 s.t. vg = U2"P" where p° = Q. (x) is e maximal.

Proof. Suppose (v;)i<o is regular, and vy = TP"P" where p* = Q.(x). We show
that (v;)i<o is e-maximal.
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Suppose (v;);ez is a regular extension of (v;);<o and let (u;);ez be some regular
chain s.t. 7[(w;)iez] = 7[(vi)iez]. Write ug = w47, We have to show that
p* > e~ VEg". Indeed, by step 1, p* = Q-(z) > e~ V2Q.(y) > e~ Vequ.

The proof of the second half of step 2 is similar, and we therefore omit it.

Step 3. Let (v;);<o be a regular negative chain and suppose vg — v1. If (v;)i<0 is
e-maximal, then (v;);<1 is e-maximal. Let (v;);>0 be a regular positive chain, and
suppose v_1 — vg. If (v;);>0 is e-maximal, then (v;);>_1 is e-maximal.

Proof. Let (v;);<o be an e-maximal regular negative chain, and suppose vy — v;.
We prove that (v;)i<1 is e-maximal.
Suppose (u;)iez, (vi)i<1 are regular and there is an extension of (v;)i<1 to a

reglﬂal‘ fhzgnn (Ui)iGZ s.t. W[(UiJrl)iez] = 7r[(ui+1)iez]. We write v; = \Ilgi Pi s
u; = WE% and show that pi > e~ Vegu.
Since 7[(vit1)iez] = T[(wit1)iez] and T oo = fom, w[(vi)icz] = 7[(wi)icz]-

€
Therefore, since (v;)i<o is e maximal, p§ > e~ VEq¥. Also, by step 1, Q.(z1) >
e~ VEQ.(y1). Tt follows that

pt = min{epy, Q- (1)} (v — v1)
> min{e® - e~ %qg, e %Qe(yl)}
= ¢ Ve min{e®qy, Q-(y1)} = e Vg (. up — w).

This proves the part of step 3 dealing with negative chains. The case of positive
chains is similar, and we leave it to the reader.

Step 4. Proof of the proposition.

Suppose (v;)iez is a regular chain, and write v; = Wﬁg’p:. Since (v;);ez is a chain,
{(p¥, pi)}iez is e-subordinated to {Q.(7;) }iez. Since (v;)iez is regular, lim sup(pj' A

i—+oo
p;) > 0, therefore by Lemma 4.7, pi! = Q.(z,) for some n < 0 and p; = Q- (x,) for
some £ > 0.

By step 2, (v;)i<n is an e-maximal negative chain, and (v;);>, is an e-maximal
positive chain.

By step 3, (v;)i<o is an e-maximal negative chain, and (v;);>0 is an e-maximal
positive chain. [
8.2. Comparison of p?/ * to qf /%, We can now easily compare the window pa-
rameters of all regular chains with the same 7w image.

Proposition 8.4. Let (\I/%’p:)iez and (\Ilgib’qf)iez be two regular chains such that

T[(U5 " )iez] = m{(WE " Vieal, then pl/q¥,pi/a} € [exp(—</E), exp(YE)] for all
1€ 7.

Proof. By Proposition 8.3 (\Ilij:’pf)igo is e-maximal, so p§ > e_3 %q}i. (\I'g;:’qf)igo
is also e-maximal, so g > e~ Vepy. Tt follows that py/q} € [e™ Ve eVZ]. Similarly,
p/a € e V5, e V). . .

Working with thg shif;ced sequences (U5 P40,y and (Wpth %+8) 00 we obtain
PR/ gk i af € lem VE e VA O
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9. PROOF OF THEOREM 5.2

Parts (1) and (3) of the theorem are handled by Propositions 5.3 and 8.4, so we
focus on part (2).

Suppose ﬂ[(qlig’pf)iez] = W[(\Ilgg’qf)iez] where (wi{f’pf)iez and (\Ilg;’q"s)iez are
regular chains. We compare ¥, and ¥,,. Write, as in §5, ¥,, = exp,, o, o Cy,
and ¥, = exp,, ody, o Cy,. We also let p; := pi" Ap;j and ¢; :== ¢;' A g}

Claim 1. C,'Cp, = (=1)?" Id +E where 0; € {0,1} and E is a matrix all of whose
entries have absolute value less than 7,/e.

Proof. By (5.2) and Proposition 6.7,

) __sx(Wi) _
C;ICmi = ( Sxéyz) tan a(y;) )RyilRmi ( SX(.%‘i) 1 uX(aji) 11COSCY(3;‘) >

% 0 Uy (z;) ! sina(x;)
(i) _
o sx(wi) _t:lfa(yi) o n o sx(@i)™h uy(z) 7t cosalzy)
B ( 0 e e 0 uy(w)'sina(z) )
, ' B/5 13/5
where 0; € {0,1} and E' = (g;5)2x2 and |e;;| < p} < y/E.

We call the contribution of (—1)7¢ Id the “main term , and the contribution of
E’, the “error term”.

Main term: This equals (—1)7

sy (@) ux(%)sma(yq
0 ux (yi) sina(wi)
Uy (x4) sin a(y;)

Proposition 7.3 says that jig?; and - E ‘g belong to [exp(—4+1/2), exp(4y/€)], and
Proposition 6.5 says that 3= 32;; € [exp( VE),exp/z]. Tt follows that the (1,1)
and (2,2) terms of the main term are, up to a sign (—1)%¢, in [exp(—5+/2), exp(5+/€)].

We bound the (1,2) term: Since u, (y;) > v/2 > 1 and % < 1Cy (i)~ | v
(Lemma (2.4)),

sx (i) sx(yi) sin[a(yi)—a(=i)] )

55 1) sinla(ye) — o)) e
denlaty) oLl] < o) - fsnfa(u) - ateo)

<NCx ()~ pr - (Isina(ys) — sina(x)] + | cos ays) — cos aay)]).

By Lemma 6.6, if € is small enough,

+q).

s (yi) sinfa(ys) — “(xi)]’ < IC () e - 65

uy () sin a(y;)
By Proposition 8.4, p; < e\%qi, therefore
!t < @V 1)) < 2g)7 < 2Q0(9) P < 20w T IR

(s

Since HCX(')ilnFr Uy (5 )mna(y )

that the main term equals (—1)7 Id +(m;;)2x2 where |m;;| < 64/€.

2 (va) sinfaly;) ~o(z,)] ‘ < /g, for all £ small enough. We see

FError term: This is

(0 E ) (e ) (9w

sin a(y;)
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Every entry of the product matrix is the sum of four products, each consisting
of three terms, one for each matrix.

The term from the left matrix is bounded by ||C (y;)~!||F» (Lemma 2.4). The
term from the middle matrix is bounded by

P+ al < gl (14 e V) < 2Qu ()P0,

The term from the right matrix is bounded by one. The product of these terms is
bounded by 4/|Cy (y;) | rr - 2Q-(y;)?/% - 1. By the definition of Q. (y;), this is less
than 8¢%/° < (/&

Combining the two estimates we see that every entry of C, 'C,, — (=1)71d is
less than 7,/¢ in absolute value.

Claim 2. .1 oW, is well defined on R.(0).

Proof. We use the constants L1, ..., Ly introduced in the proof of Proposition 3.2,
and the ball notation of §2.3. We assume that e satisfies (3.2).

Suppose v € R.(0). By Proposition 5.3, d(z;,y;) < 25~ (p; + i), and by Propo-
sition 8.4, p; < eV%q;, so d(x;,y;) < g;- By the definition of Ly (page 13),

d((expg, 00z, )(Cr,v), (expy, 00Uy, )(Cr,v)) < Lid(wi,y;) < Ligi-

Therefore, V., (v) € B := Br, 4, (exp,, 00y, (Cy,v)).
As in the proof of Proposition 3.2, exp;i1 is well defined on B, and has Lipschitz
constant at most Lz there, so

exp,' (B) C BY 1,4, (04, (C,0).

It follows that W, (v) € exp,, [exp, ' (B)] C exp,, [BY ., (94,(Cy,0))] = ¥y,
where E := C\(y:) ' [BY 1,,, (94 (C,v))] C BLlLs”CJiIHQi(O?;:lCziy)'
We now use the inequalities ¢; < Q. (y;) < €3/8||Cy (y:) 71| ~! and (claim 1)

[E]a

ICy, Coy = (=1)7 1A || < |y Cay = (=1)7 1d || < 14v/E.

These give £ C B, pye0/0414y5)u) ((-1)7'0) € Brpges/at1ayzfof+ o) (Q)- Since
v € R.(0), for all € small enough

L1 Lse®P 4 14/2||v|| + ||u|| < (L1Lae® + 14v/E 4+ 1)V2e < 2 < (M),

where r(M) is given in (2.1). It follows that £ C B, (0).

We just showed that for every v € R.(0), ¥y, (v) € ¥y, [Brar)(0)]. In other
words, ¥, [R-(0)] C Wy, [By(ar(0)]. By the definition of r(M), ¥, : B.(ar)(0) — M
is a diffcomorphism onto its image. It follows that ¥, ! o W, is well defined and
smooth on R.(0).

Claim 8. .1 oW, (v) = (=1)7'v + ¢; + Ai(v) where o; € {0,1}, ¢; is a constant
vector s.t. ||¢;|| < 1071g;, and A;(+) is a vector field s.t. A;(0) = 0 and ||(dA;).]| <

e on R:(0).

Proof. Choose o; as in claim 1. One can always put @;1 o WU, in the form

U, oWy, (v) = (—1)7u+¢ + Ai(v)
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where ¢; := (¥, 1o W,,)(0) and A;(v) := (¥, 0¥y, )(v) — (¥,
Ai(v) = [Cy 10,  expytexp,, U2, Ca (1) — ¢ = (—1)7'n

—=1(9=1 -1 —1 i
=C,, (U, exp,. exp, Uz, —1d)Cp,o+ (C, Cp, — (=1)7" 1d)v — ¢;

i

—1/9-1 1 g-1 -1 —1 o
= ny1 (ﬂy XDy, _ﬁzm €XPg, )(\Ilivz (Q)) + (CyL CZL - (_1) Id)y - G-

It is clear that A;(0) = 0, and that for all v € R.(0)
IdA)u]l < 1CH - 11} expy v, ) — A5 expr D, @ I ([d%s, )]
+ G, Cr = (=) 1A |
< 2G4, expy v, ) — A5 expr D, | +14VE
< 2[|C | - Lad(wi, yi) + 14VE,
where Ls is a common Lipschitz constant for the maps = — 9, exp;! from D to
C?*(D,R?) (D € 2). As we saw above, d(z;,y;) < gi < 53/'8\\07;1H_1, whence
1(dA)o|| < 2L2e%7 + 141/2.
This is smaller than /¢ for all £ small enoughu. . o
Finally we estimate ¢;. Let z := fi(n[(Vhi " )iez]) = fA(n[(VE ¥ )icz]). This

is the intersection of a u—admissible manifold and an s-admissible manifold in
Wi " therefore by Proposition 4.11, fi(z) = W5 "' (¢), for some ¢ € Ryg-2,,(0).

Similarly, fi(z) = % % (1), for some 1 € Ryg-2,,(0). It follows that

n= (0, o We)(Q) = (~1)7¢ + ¢ + Ai(Q),
and consequently [¢;[| < [[nll + [IC]] + [|A:(O)]]-
Now [|¢] < 1072y2p; < 1072v/2eV%¢;, n < 10724/2¢;, and by the bound on

ldAl, 1A (O] < ell¢]]. Tt follows that ||c,|| < 107 1g;. U

Low,,)(0)— (~1)% .

Part 3. Markov partitions and symbolic dynamics
10. A LOCALLY FINITE COUNTABLE MARKOV COVER

10.1. The cover. In §4 we constructed a countable Markov shift ¥ with countable
alphabet 7', and a Holder continuous map 7 : ¥ — M which commutes with the
left shift o : ¥ — X, so that 7(X) has full measure w.r.t. any ergodic invariant
probability measure with entropy larger than y. Moreover, if®

»# = {u € ¥ : uis a regular chain}

={veX:Iv,we¥ Ing,mi T 00 s.b. vy, =0V, V-, =w},

then m(X#) > NUHZ (f), therefore 7(X#) has full probability w.r.t. any ergodic
invariant probability measure with entropy larger than y.

In this section we study the following countable cover of NUHf( h):
Definition 10.1. 2 :={Z(v) : v € ¥}, where Z(v) := {n(v) : v € ¥#, vy = v}.

This is a cover of NUHf (f). The following property of % is the hinge on which
our entire approach turns (see §1.5):

6This uses the convention from §4.4 that every element of ¥ is relevant.
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Theorem 10.2. For every Z € %, |{Z' € & : Z' N Z # @}| < 0.
Proof. Fix some Z = Z(W2"P"). 1If 7' = Z(\I/gu’qs) intersects Z, then there must

exist two chains v,w € # st. vy = VP gy = \I/g“'*qs, and 7(v) = 7(w).
Proposition 8.4 says that in this case

g" > e VepU and ¢° > e VEpr.
It follows that Z’ belongs to {Z(\Ilguﬂs) : \Ilguﬂs eV, ¢“Ag® > e VE(pt A p®)).
By the definition of 7', this set has cardinality less than or equal to
U7 € o iy > e VE@U AP} x [{(q%q°) € I x I : ¢ Ag® > ™ VE(p" Ap®)}].
This is a finite number, because of the discreteness of &7 (Proposition 3.5). g

10.2. Product structure. Suppose z € Z(v) € Z, then Jv € X% st. vy = v
and 7(v) = z. Associated to v are two admissible manifolds in v: V*[(v;):<o] and
V*[(vi)i>o0] (Proposition 4.15). These manifolds do not depend on the choice of v:
if w € ¥# is another chain s.t. wy = v and 7(w) = z, then

V¥ [(wi)i<o] = V*[(vi)i<o] and V*[(wi)i>o0] = V*[(vi)ixol,

because of Proposition 6.4 and the equalities p*/*(wg) = p*/*(vo) = p*/*(v). We
are therefore free to make the following definition:

Definition 10.3. Suppose Z = Z(v) € Z. For any x € Z:
(1) V(x, Z) := V*[(vs)ix0) for some (every) v € $# s.t. vg =v and 7(v) = .
Wo(z,2) =V, Z)NZ.
(2) V¥, Z) := V*[(vi)i<o] for some (every) v € X% s.t. vg = v and 7(v) = x.
Wz, Z) =V, Z)N Z.

It is important to understand the difference between V*/%(z, Z) and W*/*(z, Z).
Whereas V*/#(z, Z) are smooth manifolds, W*/*(z, Z) could in principle be totally
disconnected. Whereas V%/*(z, Z) extend all the way across U, [Ryu/s(0)] (assum-
ingv = WP"P") WU/3(z, Z) are subsets of the much smaller set ¥, [R10-2(punp)(0)],
because every point in W*/*(z, Z) is the intersection of an s-admissible manifold
in v and a u—admissible manifold in v (Proposition 4.11).

Proposition 10.4. Suppose Z € % . For every xz,y € Z, V¥(x,Z) and V*(y, Z)
are either equal or they are disjoint. Similarly for V(x,Z) and V*(y,Z), for
W(x,Z) and W*(y, Z), and for W*(x,Z) and W*(y, Z).

Proof. The statement holds for V*/* because of Proposition 6.4. The statement for
W"/$ is an immediate corollary. O

Proposition 10.5. Suppose Z € % and x,y € Z, then V*(x,Z) and V*(y, Z)
intersect at a unique point z, and z € Z. Thus W"(x, Z) N W*(y, Z) = {z}.

Proof. Write Z = Z(v) where v € ¥. V¥(z, Z) is a u—admissible manifold in v, and
V#(x,Z) is an s—admissible manifold in v. Consequently, V*(z, Z) and V*(x, Z)
intersect at a unique point z (Proposition 4.11).

We claim that z € Z. There are chains v,w € % s.t. vg = wo = v and so that
Vi(z,Z) = V¥[(vs)i<o] and V3(z, Z) = V¥[(w;)i>0]. Define u = (u;)icz by

(3 ’LSO
U; = . .
w; >0
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It is easy to see that u € X% and ug = v, therefore m(u) € Z. By definition,
{m(w)} = V*[(ui)i<o]"V?[(ui)izo] = V*[(vi)i<ol NV [(wi)izo] = V*(z, Z2)NV*(y, Z).
It follows that z = 7(u) € Z. O

Definition 10.6. The Smale bracket of two points x,y € Z € Z is the unique
point [z,ylz € W' (x, Z) N W*(y, Z).

This definition is motivated by [Sm] (see also [B4, chapter 3]).

Lemma 10.7. Suppose xz,y € Z(vg) and f(x), f(y) € Z(v1). If vo — v, then
F([2 9] 200)) = [f (@), fW)] Z(01)-

Proof. Write Y = Z(vg), Z = Z(v1), and w := [z,y]y. By definition
{fw)} = fIW* (@, Y)Wy, Y)] C [V, V)N fIV*(y,Y)]. (10.1)

Claim: f[V*(y,Y)] € V*(f(y), Z) and f[V*(2,Y)] D V*(f (), Z).

Proof. Since f(y) € Z(v1) = Z, V* :=V*(f(y), Z) is an s—admissible manifold in
v1, and this manifold stays in windows. Applying the graph transform (Proposition
4.12) we see that f~1[V*(f(y), Z)] contains an s—admissible manifold F,[V*] in vg.
Since V*® stays in windows, Fs[V*] stays in windows.

Since F;[V?] is s—admissible in vy, it intersects every u—admissible manifold in
vo. The larger set f~1(V*) intersects V%(y,Y) at a unique point (Proposition 4.12
(2)). This point must be y, so Fs[VE]NV*(y,Y) = {y}, whence Fs[V*] 3 .

This means that F,s[V?*] intersects V*(y,Y). These manifolds are s—admissible
in vy, and they stay in windows. Since they intersect, they are equal. It follows
that f=1(V*) D F,[V?®] = V3(y,Y), whence f[V*(y,Y)] C V¥, which is the first
half of the claim. The other half of the claim is proved in the same way.

Returning to (10.1) we see that f(w) € f[V*(x,Y)]NV*(f(y), Z). By the second
half of the claim,

V@, Y0V (f(y), 2) 2 V(£ (), 2) NV (f(y), Z2) 3 {lf(2), fF(y)lz},
[f

]
thus f[V¥ (2, )] NV3(f(y),Z) > f(w),[f(z), f(y)]z. But Proposition 4.12 part
(2) says that f[V¥(z,Y)] intersects V*(f(y), Z) at a single point. It follows that
I

f(w) = [f(2), f(y)]z- -

Occasionally we will need to form the Smale bracket of points belonging to
different elements of Z:

Lemma 10.8. The following holds for all € small enough: Suppose Z,Z' € %. If
ZNZ' + @, then for anyx € Z andy € Z', V¥(x, Z) and V*(y, Z') intersect at a
unique point.

We do not claim that this point is in Z or Z’. The proof is in the appendix.

10.3. The symbolic Markov property.

Proposition 10.9. If z = 7[(v;)icz] where v € $%, then fW*(z,Z(vo))] C
We(f(x), Z(v1)) and f=HW(f(z), Z(v1))] € W*(z, Z(v0)).
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Proof. We prove the inclusion for the s—manifolds. The case of u—manifolds follows
by symmetry.

Step 1. fIW*(x, Z(vo))] € V*(f(x), Z(v1)).

By definition, Ws(:c,Z(vo ) C Vi(x,Z(vg)) = V¥
F(V2[(vi)izo]) € Vo[(vig1)izol. Since f(z) = 7]
equal to V*(f(z ),Z v1)). Thus f[W?*(x, Z(vo))] C
Step 2. f[W*(z, Z(vo))] C Z(v1).
Suppose y € W#(z, Z(vg)).
e Since y € Z(vo), Y € Wuo[Rio-2(ppnps) (Q)] (it is the intersection of a u and
an s—admissible manifold in wp).
e Since y € V* [(’UZ)Z>0] fF(y) € VE[(vigr)izo] C Vo, [Ro. (2y)(0)] for all k >
0, where vy = \I/p’“’pk
e Since y € Z(vg), Jw € ¥# st. wy = vg and y = 7(w) € V¥[(w;)i<o]-
It follows that f~*(y) € V*[(wi—k)i<o] C ¥y_,[Rq.(y_»)(0)] for all k > 0,

u s

where w; = Wi %

o] By Proposition 4.15,
ez], the last manifold is

(vZ)Z
() Z(v1)).

( i+1)i
V(s

i 1 <0 u s
Writing u; = v Z._ and u; = U, we see that u € X%, ug = vg, y €
v, 1>0
Wy [Rppnps (0)], and f*(y) € U, [Rg._(2,)(0)] for all k € Z. By Proposition 4.15
part (4), y = w(w). It follows that f(y) = wlo(u)] € Z(u1) = Z(v1). O

Lemma 10.10. Suppose Z,Z' € & and Z N 7' # .

(1) If Z = Z(W5 ") and 7' = Z(WiES), then Z C Wy [Rysngs (0)].
(2) Foranyz € ZNZ', W*(x,Z) C V¥(x,Z") and W5(x,Z) C V5 (x,2").

See the appendix for the proof.

11. A COUNTABLE MARKOV PARTITION

In the previous section we described a locally finite countable cover % of NUHf (f)
by sets equipped with a Smale bracket and satisfying the symbolic Markov property.
Here we produce a pairwise disjoint cover of NUHf( f) with similar properties.

Sinai and Bowen showed how to do this in the case of finite covers [Sil], [B4].
Thanks to the finiteness property of 2, their ideas apply to our case almost without
change. The only difference is that in our case, the sets Z € 2 are not the closure
of their interior, and therefore we cannot use “relative boundaries” and “relative
interiors” of Z € % as done in [Sil] and [B4]. The price is that we cannot claim
that the coding we get is one-to-one almost everywhere.

11.1. The Bowen—Sinai refinement. Write & = {71,275, Zs,...}. Following
[B4], we define for every Z;,Z; € & s.t. Z;NZ; # &,

Ty ={ve Z; W2, Zi)NZ; # @, Wi(x,Z;) N Z; # @},
T4 ={ve Zi: W'z, Z)NZ; # @, W*(x,Z;) N Z; = 2},
T2 ={xeZ W'z, Zi)NZ;j =@ , W(z,Z;) N Z; # &},
T7°% ={xeZ W', Z)NZ; =@, W(z,Z;) N Z; = @}

Let J := {Ti‘;ﬁzz‘,jeN,Ziij #£ 0, a€{u,o},8 € {s,a}}.
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Notice that T4 = Z;, therefore .7 covers the same set as 2, namely m(X7%).
Another useful identity is T;}S = Z; N Z;. The inclusion D is trivial. To see C
suppose x € T;%°. Choose somey € W"(z, Z;)NZ;, theny € Z;NZ;, so W*(z, Z;) =
W*(y, Z;) C V*(y,Z;) (Lemma 10.10). Similarly, for every z € W*(x, Z;) N Z;,
W*(z,Z;) C V3(z,Z;). It follows that

{a} =Wz, Z;) "\ W*(z, Z;) CVy, Z;) N V(2,Z;) C Zj,
whence z € Z; N Z;.

Definition 11.1. For every x € w(3%), let R(z) := (T € 7 : T > z}, and set
% = {R(z): x € m(X#)}.

Proposition 11.2. Z is a countable pairwise disjoint cover of NUHf(f).

Proof. We prove that & is countable by observing that thanks to Theorem 10.2,
R(x) is a finite intersection of elements of 7. Since 7 is countable, there are at
most countably many finite subsets of .7, and therefore at most countably many
different R(x)’s.

Next we claim that Z covers NUHf(f). Every x € T € 7 belongs to R(x) € Z,
so UZ = J 7. We saw above that for every Z; € 2, T** = Z;. Consequently,
UZ =UZ = n(Z#). Since 7(3#) D NUHf(f) (see the proof of Theorem 4.16),
X covers NUHZ‘f (f).

It remains to prove that Z is pairwise disjoint. We do this by proving that R(x)
is the equivalence class of z for the following equivalence relation on | J Z:

xrE€EZ & yez
x~yiffvVZz, 2 e &, | Wz, 2)NZ' +2 < W4y, Z)
We(x,2)NZ' 2 < Wi(y,Z)

So for every z,y € |JZ, either R(z) = R(y), or R(z) N R(y) =
Part 1. If x ~ y, then € R(y).

Nz #o | (11.1)
Nz +o
%)

If x ~ gy, then = and y belong to exactly the same elements of . So R(z) = R(y).
Part 2. If z € R(y), then z ~ y.

Fix some Z; € 2. We claim that x € Z; < y € Z;. Recall that Z; = T}4*.

If y € Z;, then T} is one of the sets in the intersection which defines R(y).
Consequently, x € R(y) C T4 = Z;, and = € Z;.

Next suppose = € Z;. Pick some Zj € % which contains both x and y (any k
s.t. T,?f > y will do, because for such k£ Zx D R(y) > x,y). Since y € Zj and
ZyNZ; #+ D,y € T,?{B for some «, 3. By the definition of R(y), R(y) C T,?f,
whence z € T,‘jf. But z € Z, N Z; = T}, so necessarily (o, ) = (u,s). Thus
y € T = Z, N Z; C Z;. This completes the proof that x € Z; & y € Z;.

Next we show that if « € R(y), then W*(z, Z;)NZ; # @ © W"(y, Z;,)NZ; # @.
If W(z,Z;) N Z; # @, then x € T}3", where * stands for s or @. In particular

x € Z;. By the previous paragraph, y € Z;, and as a result y € TZ‘;‘B for some

a, . Therefore x € R(y) C Tf;ﬁ, and since 77" N Tg* = g, a = u. It follows

that y € T}%*, whence W*(y, Z;) N Z; # & as required. The other implication is
trivial: If W*(y, Z;,) N Z; # @, then y € T%*, whence x € R(y) C T%*, and so

ij 1y 0
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The proof that if z € R(y), then W*(z,Z,) N Z; # @ < W*(y, Z;) N Z; # @ is
exactly the same. ([

Lemma 11.3. Z is a locally finite refinement of % :

(1) foreveryReE Z and Z € &, if RNZ # & then R C Z;
(2) for every Z e %, {R€ #:Z D R| < .

Proof. Suppose RNZ # @ andlet xt € RNZ. If Z = Z;, then Z = T}}°. Since
x€Z,R=R(z) CT4 =2;=Z, whence R C Z.

We turn to the second part. If R C Z, then R is the intersection of a subset of
T(2) =T € 7T’ NZ # @} WT2PNZ +# @, then Z,NZ +# @, Z;NZ; # 2,
and {«, 8} C {u,s,@}. By Theorem 10.2, there are finitely many possibilities for
Z;, and therefore also finite many possibilities for Z;. Thus 7 (Z) is finite.

Since 7 (Z) is finite, and any R C Z is the intersection of a subset of 7 (Z),
HRe % :RcC Z}| <217 < 0. O

11.2. Product structure and hyperbolicity.

Definition 11.4. For any R € Z and x € R, let
W?(x, R) := ﬂ{WS(I, Zi)N Tf;ﬁ : Ti';ﬁ € 7 contains R},
W*(z, R) := ﬂ{W“(z, Zi) N Tf;ﬁ : T;jﬁ € J contains R}.

Proposition 11.5. Suppose R € # and x,y € R.
(1) W*(x, R),W*(xz,R) C R and W"(z, R) N W*(x, R) = {x}.
(2) Either W"(z, R),W"(y, R) are equal, or they are disjoint. Similarly for
Wé(z,R) and W*(y, R).
(3) W¥(x, R) and W*(y, R) intersect at a unique point z, and z € R.
(4) If &,m e W (x, R), then d(f™(&), f™(n)) — 0. If ¢&,n € W*(z, R), then

d(f="(&), [~ () — = 0.
Proof. Suppose R € #Z and z,y € R.

Part (1). By definition, W*/*(z, R) C ﬂ{Tfj‘B € g TS’B D R} = R. Tt follows
that W*/*(x, R) C R.

If z € R, then for every TZ‘;"B € 7 which contains R, 2 € W*/*(x,Z;)N R C
Wl (z, Z;) N Tf;ﬁ. Passing to the intersection, we see that = € W*/%(z, R). Thus
x € Wx,R) N W?3(z,R). On the other hand for every Z; O R, W*5(x,R) N
W¥(z,R) C W"(z, Z;) "W*(z, Z;) = {x}, so W¥(z, R) N W*(z, R) = {z}.

Part (2). Suppose W"(z, R) N W¥(y, R) # &, then W"(x,Z;) N W"(y, Z;) # &
for every ¢ s.t. there is some Tgﬁ € 7 which contains R. By Proposition 10.4,
W(x, Z;) = W¥(y, Z;), whence W(x, Z;) N T5}" = W*(y, Z;) N T;}°. Passing to
the intersection, we see that W"(z, R) = W"(y, R). Similarly, one shows that if
We(z, R) N W*(y, R) # @, then W?*(x, R) = W*(y, R).

Part (3). For every Tf;ﬁ € 7 which covers R and for every z € R, let

W™z, T3P) = W"(2, Z;) N T30° and W (2, T7) = W (2, Z,) N T1°.

v Hig ' Hig
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Fix z,y € R. For every Ti‘;ﬁ €  which contains R, W*(xz, Z;)N\W*(y, Z;) = {2}
where z; := [z,y]z,. By Proposition 104, W¥(z;, Z;) = W¥(z, Z;) and W*(z;, Z;) =

We(y, Z;). Tt follows that z; € T” , whence

W (2, T57) N W (y, T37) = {2}

) (%]
Since z; = [x,y]z,, 2z is independent of j, a, and 8. In fact z; is also independent
of i: If T,Zf €  also covers R, then x,y € Z; N Z and so

{zi} = W" (2, Z)) "\W*(y, Zi) C V*(x, Zi) N V3(y, Zi)
{zi} = W"(x, ZK) "Wy, Zy,) C VY (x, Z;) N V3(y, Z;) (Lemma 10.10).

Since V¥(z, Z;) N V*(y, Z;) is a singleton, z; = 2.

Denote the common value of z; by z, then W“(x,Tgﬁ) NWe(y,T;; ) = {2} for
all Tgﬁ € .7 which cover R. Passing to the intersection, we obtain that W*(z, R)N
W#(y, R) = {z}. By part (1) of the lemma, z € R.

Part (4). Fix some Z € % such that R C Z, then © = w(v) where v is a reg-
ular chain such that Z := Z(vg). By construction, W5(x, R) C V*[(v;);>0] and
W (z, R) C V¥[(v;)i<0]. Part (4) follows from Proposition 6.3(1). O

Recall the definition of the Smale bracket (Definition 10.6). In the course of the
proof we showed the following:

Lemma 11.6. Suppose R € Z and x,y € R. Let [z,y] denote the unique element
of W¥(xz, R) " W*(z, R), then [z,y] = [x,y]z for any Z € & which contains R.

11.3. The Markov property. Z satisfies Sinai’s Markov property [Sil):
Proposition 11.7. Let Ry, Ry € Z. If ©x € Ry and f(x) € Ry, then
fIW* (2, Ro)] € W*(f(x), R1) and [~ {W*"(f(z), R1)] C W"(z, Ro).

Proof. The proof is an easy adaptation of an argument in [B4, pages 54,55], except
that our “rectangles” R € Z are defined differently. We give all the details to
convince the reader that everything works out as it should.

It is enough to show that f[W?*(z, Ry)] C W*(f(x), Ry1): the statement for W™
follows by symmetry.

Suppose y € W*(x, Ry). We prove that f(y) € W*(f(z), R1) by checking that
for every Tio;-ﬁ € 7 which covers Ry, f(y) € W5(f(z), Z;) N Tlo;ﬂ

That f(y) € W*(f(x), Z;) can be shown as follows. Since Tg covers Ry, gﬁ
contains f(z). Thus f(x) € TO‘B C Z;. Write Z; = Z(v) and f(z) = n(ov) where
v € N7 satisfies v; = v. Slnce for=moo, x = 7(v) € Z(vg). It follows that
Z(vg) 2 R(x) = Ry, whence y € WS(I,R()) C W#(x,Z(vp)). By the symbolic
Markov property (Proposition 10.9),

FW?(z, Z(vo))] € W?[f(x), Z(v1)],
s0.14) € IV Roll € V"o, Z(00)] € W (1(@), Z(00) = (12, ).

It remains to prove that if y € W?*(x, Ry), then f(x) € < fly) € Tf;ﬁ
Since y € W*(x, Ry) & W#(x, Ry) = W*(y, Ry), this is equlvalent to showing that
if W#(z, Ro) = W*(y, Ry), then for every Z;,Z; € & st. Z;NZ; # O,

o f(z)eZ;, & fy) € Z;;
i Ws(f(il,'), Zi) n Zj # 9 = Ws(f(y)v Zl) N Zj 7£ a5
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o WU(f(x), Zi)NZ; # @ = W"(f(y), Zi) N Z; # B.
We only prove =. The other implication follows by symmetry.

Step 1. f(x) € Z; = f(y) € Z;.

If f(z) € Z;, then f(z) € T4® = Z;. Thus T%* D R(f(z)) = R1. We saw above
that if Tgﬁ covers Ry, then f(y) € W*(f(x), Z;). Applying this to T%*, we see that
fly) e W*(f(x), Z) C Zi.

Step 2. W*(f(x), Zi)NZ; # @ = W*(f(y), Z:;) N Z; # @.

Write Z; = Z(v). Since f(z) € Z;, f(x) = w[ov] where v € ¥# and v; = v.
Since fom = woo, z = w(v). By the symbolic Markov property, f[W?*(z, Z(vy))] C
We(f(z), Z(v1)) = W*(f(x), Z;). Since x = w(v), x € Z(vg), whence Ry = R(z) C
Z(vg). Consequently,

f(y) € fFIW*(y, Ro)| = fIW?*(x, Ro)] (by assumption)
C [IW?(z, Z(v))] € W*(f(2), Z(v1)) = W*(f(2), Zi)-

Since f(y) € W=o(f(x),Z;), W*(f(y),Z;) = W*(f(x),Z;). It is now clear that

Step 3. W(f(2). Z) N Z; # 2 = W*(f(y). Z:) N Z; # 2.

In order to reduce the number of indices, we write Z; = Z, Z; = Z*. We pick
some f(z) € W*(f(x),Z) N Z*, and show that W*(f(y),Z) N Z* > f(w) where
w := [y, z]y for some suitable Y € & that we proceed to construct.

Since f(z) € Z, there exists v € X% such that m(ov) = f(x) and Z = Z(vy).
Let Y := Z(vg), then x = w(v) € Y. By assumption, R(z) = Ry = R(y), therefore,
x ~ y in the sense of (11.1). Since x € Y and y ~ 2z, y € Y.

By construction, f(z) € Z* so there exists v* € % such that m(ov*) = f(z) and
Z* = Z(vy). Let Y* := Z(v}), then z = w(v*) € Y*. By the symbolic Markov prop-
erty, = € fWU(f(), 2)] = £ W (F(@), Z(m)] © Wiz, Z(vo)) = Wz, V).
Thus z € W"(z,Y)NY*. In particular, z € Y N Y™,

Since y,z € Y, the Smale bracket w := [y, z]y is well defined. We show that
f(w) € WH(f(y), 2) 1 2.

By construction, w = [y, z]y. Since f(y) € Z (by Step 1), f(z) € Z (by choice),
and Y = Z(vg), Z = Z(v1) and vy — v1 (by construction), we have by Lemma 10.7
that £(w) = £(g,v) = [F@), F(2)]2 € WH(£(3), 2).

Next recall that W"(z,Y) N Y™ is non-empty (it contains z). Since z ~ y,
W¥(y,Y)NY™ is non-empty. Pick some ¢y’ € W*(y,Y)NY™*. Since ¢,z € Y NY™,
we have by Lemma 10.10 that

{w}=W"W" Y)NW*(Y) VU, Y )NV (2, Y*) ={[y, 2]y+ }

Thus w = [/, 2]y € W5(2,Y*). Now Y* = Z(v§), Z* = Z(vy) and z = 7(v*),
therefore by the symbolic Markov property,

f(w) € fIV*(2,Y")] c W2(f(2), 2%) C Z7.

It follows that f(w) € Z*. This completes the proof of Step 3. The proposition
follows from the discussion before Step 1. (]
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12. SYMBOLIC DYNAMICS

12.1. A directed graph. In the previous section we constructed a Markov parti-
tion & for f. Here we use this partition to relate f to a topological Markov shift.

~

The shift is (%) where ¢ is the directed graph with vertices ¥ := % and edges
& :={(R1,Rs) €% : Ri,Ry € ¥ s.t. Ry f'(Ry) # @}

If (Ry,R2) € gg, then we write Ry — R».

For every finite path Ry, — Rmy1 — -+ — Ry in 9, let [Rum, ..., Ra] =
l+n—m

N f*(Rism—¢). In particular,

k=¢

n

m[Rma“'aRn] = m fﬁk(Rk)'

k=m
Lemma 12.1. Suppose m < n and R,, = Ry41 — -+ — R, is a finite path on
Y, then m[Rm, ..., Ry] # 2.
Proof. We use induction on n.

If n = m, then the statement is obvious.

Suppose by induction the statement is true for n — 1, and let R,, — --- = R,,_1
be a path on 4. By the induction hypothesis, ,,[Rpm, ..., Rn—1] # &, therefore
there exists a point y € ﬂz;ln f~®(Ry). Since R,,_; — R, there exists a point
2 € R, 1N f~Y(R,). Let  be the point such that

{7 H@)y = W (" (y), Rue1) N W (2, Ryo).

We claim that © € ,,[Rm,...,Ry]. This follows from the Markov property
(Theorem 11.7):

o ["(x) € Ry, because f"(x) € fW*(z, Rn-1)] C W*(f(2), Rp) C Rn;
e f"~!(z) € R,_1 by construction;
o f"72(x) € R,_a, because f*1(x) € W(f" (y), Rn_1) C Rp_1 s0

P73 @) € FHWH( N (W), Ru1)] C WH(F" 2 (y), Ru—2) C Rya.
o f"73(x) € Ry_3, because f"*(x) € W*(f"?(y), Rn_2) s0
73 (@) € fFHW(F" 2 (y), Ru—2)] € W“(f"3(y), Rn—3) C Ry_s.

Continuing this way, we see that f"*(z) € R, _ forall 0 <k <n —m. (]

We compare the paths on 9 to the paths on ¢ (the graph we introduced in
§4). Recall the map 7 : X — M from Theorem 4.16, and define for any finite path
Uyp —> *++ — Uy 0N Y,

Zmn(Omy oy 0n) = {7(w) cw e X7 w; = v; for alli=m,...,n}.

Lemma 12.2. For every infinite path --- — R; — Riy1 — -+ in & there ex-
ists a chain (v;)iez € X such that for every i, R; C Z(v;), and for every n,
nlRenyo oy Ry CZ_ (Vg ooy ).
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Proof. Fix, using Lemma 12.1, points y, € _,[R—p, ..., Ryl

Pick some vy € ¥ st. Ry C Z(vg). Since y, € Rg, there is a chain v =
(vfn))iez € ¥# such that v(()n) = v and y,, = 7[p™)].

For every |k| < n, ff(y,) = w[oF(™)] € Z(v (n)) therefore Z(vlgn)) covers
R(f*(y,)). Since, by construction, f*(y,) € Ry, R(f*(yn)) = Rg. It follows that
Ry, C Z(v{") for every k = —n, ..., n.

Every vertex in the graph ¢ has finite degree (Lemma 4.4). Therefore, there
are only finitely many paths of length & on & which start at vg. As a result, every
set of the form {v,g") : n € N} is finite. Using the diagonal argument, choose a
subsequence n; T co s.t. for every k the sequence {v,(cni)}i21 is eventually constant.
Call the constant wvy.

The sequence v := (vg)gez is a chain, and Ry C Z(vg) for all k € Z. We claim
that ,[R_pn,...,Rn] C Z_p(v_n,...,v,) for all n.

Suppose y € _,[R_p, ..., Ry]. Since f"(y) € R, and R,, C Z(v,), there exists a
chain w € % s.t. f"(y) = 7[o™(w)] and w,, = v,,. Since f"(y) € R_,, and R_,, C
Z(v_y), there exists a chain u € X# s.t. f~"(y) = w[oc"(u)] and u_,, = v_,. Let

U 1< —n
a=(a;)iez where a;, =< v; -n<i<n

w; 1> N.

For every k, f*(y) € Z(a), because

o for all k < —n, f*(y) € V¥[(wi)i<k] C Z(w;) = Z(as),

e forall —n < k <n, ff(y) € R C Z(vx) = Z(az),

e for all k > n fE(y) € Vo[(w;)isk] C Z(w;) = Z(a;).
Writing a; = \Iﬂ;?”’f, we see that y € U, [Rg_(4,)(0)] for all i € Z. By Proposition
4.15 part 4, y € V*[(ai)i<o] N V*[(as)i>0], so y =w(a) € Z_p(v_p, ..., Upn). O

Proposition 12.3. Fvery vertex ofg? has finite degree.

Proof. Fix Ry € Z. We bound the number of paths R_1 — Ry — R;.

Consider all the possible paths v_1 — vog — v; on ¥4 s.t. _1[R_1,Ro, R1] C
Z_1(v_1,v0,v1). There are finitely many possibilities for vy, because any two pos-
sible choices wvo,v( satisfy Z(vg) N Z(v) D Ro # @, and Z has the finiteness
property (Theorem 10.2). Since every vertex of ¢ has finite degree, there are also
only finitely many possibilities for v_; and v;. By Lemma 11.3(1), R; C Z(v;)
(li] <1). By Lemma 11.3(2) the number of possible R_1, Ry or Ry is finite. O

12.2. The Markov extension. Let
S = 5(9) = {(Ri)icz € #* : R; — Ryyy for all i € 7).

Abusing notation, we denote the left shift map on 5 by o, and the natural metric
on X by d(-,-): d(z,y) = exp[—min{|k| : zx # yx}]. Since every vertex of ¢ has
finite degree, S is locally compact. Define as before

S# = {(Ri)icz : IR, S € #,Iny,, my, t 0o s.t. Ry, = R and R_,,, = S}.

Clearly $# contains every periodic point for 0. By Poincaré’s Recurrence Theorem,
every o—invariant probability measure on S s supported on S#.
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The Markov extension 7 : ¥ — M is not finite-to-one. Our aim is to construct
a finite-to-one Holder continuous map 7 : ¥ — M which intertwines o and f, and
such that %(i) (and even 7(X#)) has full probability w.r.t any ergodic invariant
probability measure with entropy larger than x.

We start with the following simple observation:

Lemma 12.4. There exist constants C and 0 < 0 < 1 s.t. for every (R;)icz € i,
diam(_p[Ry, ..., Ry]) < CO™.
Proof. Recall that 7 : ¥ — M is Holder continuous, therefore there are C' and
0 <0 < 1s.t. for every v,u € X, if v; = u; for all |i| < n then d(7(u), 7(v)) < CO™.
By Lemma 12.2 there exists a chain (v;);cz € ¥ s.t.

nlReny- s Ry CZ_ (Vg ooy 0p).

The diameter of Z_,(v_p,...,v,) is less than or equal to C6™. Therefore the
diameter of _,[R_p,..., Ry] is less than or equal to C6". O

Suppose (R;)icz € i, and let Fy, := _,[R_pn,..., Ry] (closure in M). Lemmas
12.1 and 12.4 say that {F,},>1 is a decreasing sequence of non—empty compact
subsets of M, whose diameters tend to zero. It follows that (,,>1 Fn consists of a
single point. We call this point 7T[(R;)iez]: -

{%[(Ri)iez]} = m fn[anv RN Rn}
n=0
Theorem 12.5. 7 : X — M has the following properties:
(1) Too=formy
(2) 7 is Holder continuous;
(3) 7(Z) > F(E#) O NUHf(f), therefore the image of T has full measure w.r.t
every ergodic invariant probability measure with entropy larger than x;

Proof. The commutation relation is because for every R = (R;);cz in f],

{rlo@))} = (| —lBons1s- Buga] O () —n—2[Ron—1,-. . Rupa]
n=0 n=0
= () FMBer) =) FCn[BE-N,- Bx])
n=0k=—n—2 =0

oo

N
ﬂ f <,N[R,N, ey RN]> , because f is a homeomorphism
N=0

=f ( ﬂ N[RN,...,RN]> , because f is a bijection

= F (=) = {FI=(R)}.

The Holder continuity of 7 is because if R, S € S and R; = S, for all |i| < N,
then 7(R),7(S) € _n[R—nN, ..., Rn], whence by Lemma 12.4
d(7(R),7(S)) < diam(_n[R_n, ..., Ry]) < COV.

Finally we claim that 7(3) and 7#(5#) contain NUHf (f). Suppose z € NUHf(f).
By Theorem 4.16, 7(X#) D NUHf(f), therefore there exists a chain v € ¥# s.t.
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7(v) = . ¥# is o-invariant and fow = mo 0, so fi(x) € ©(X#) for all i € Z.
The collection Z covers 7(X%), therefore for every i € Z there is some R; € Z s.t.
fi(z) € R;. Obviously R; — R;11, so R := (R;)icz belongs to . Also,

o0

S m —7L[R—n7~--aRn]

n=0

(even without the closure), so z = 7(R). It follows that 7(X) D NUH;?é (f).

We claim that the sequence R which was constructed above belongs to f)#, and
deduce that 7(S#) > NUH#(f).

The sequence v is in X# by construction, therefore there exists v and wu s.t.
v; = u for infinitely many negative ¢, and v; = v for infinitely many positive <.

The sets R; and Z(v;) intersect, because they both contain fi(x). By Lemma
11.3, R; C Z(v;) for all i € Z. It follows that there are infinitely many negative ¢
s.t. R; C Z(u), and infinitely many positive ¢ s.t. R; C Z(v).

The sets Z(w) == {R € #: R C Z(w)} (w = u,v) are finite (Lemma 11.3).
Therefore Iny, 1T oo and IR € #Z(v) s.t. R,, = R for all k, and Imy T oo and
3S € Z(u) s.t. R_,, =S for all k. Thus R € S# as required. O

The following result is not needed for the purposes of this paper, but we antici-
pate some future applications.

Proposition 12.6. For every « € %(i), ToM = E*(x) ® E"(z) where
(a) Timsup L log [l oy < 3 on B*()\ {0};
(b) timsup & log |47 vl -+ ) < —¥ on E*(a)\ {0},

The maps R — E*/*(7(R)) are Hélder continuous as maps from S to TM.

Proof. Suppose z = #(R) where R € 5. By Lemma 12.2, there is a chain (v;);ez
st. R; C Z(v;) for alli and _,[R_p,..., Ry C Z_p(v_p,...,v,) for every n. Then
f™(x) € Z(vy,) for all n. Every element of Z(v,,) is the intersection of s/u—admissible
manifolds in v, so if v, = \Ilié’pi, then Z(v,) C V., [Rps apu (0)] (Proposition 4.11
(2)). By Proposition 4.15 (4), z € V*[(vi)i<o] N V*[(vi)i>0]-

Let E*(z) := T, V?®[(vi)i>o0] and E*(z) := T, V*[(vi)i<o]- These spaces satisfy (a)
and (b), because they are tangent to admissible manifolds which stay in windows
(Proposition 6.3). This definition of E*(z), E*(z) is independent of the choice of
(vi)iez, because there can be only one decomposition of T, M into two spaces which
satisfy (a) and (b).

Suppose ¢ = w(R) and y = 7(S) where R; = S; for i = —N,..., N, and let
v = (v;);ez be as before. The argument in the first paragraph shows that x = 7 (v).
We claim that y = w(w) where w is a chain s.t. w; = v; for all |i| < N.

By assumption, y € _,[S_n,...,9n] = —n[R-N,..., BN] C Z_n(v_N,...,ON),
(n)
vertex of ¢ has finite degree, each of the sets {wgn) :n € N} is finite. It follows

that there is a convergent subsequence w () k—> w. The limit is a chain w s.t.
—00

so y = limm(w™) where w™ € ¥ satisfy w;"’ = v; for all |i| < N. Since every

y =m(w) and w; = v; for all |i| < N.



54 OMRI M. SARIG

Write vy = \Ilfg‘z’pé, and let F,, Fs be the representing functions in ¥,, for
V¥[(vi)i<o], V*[(vi)i>0]- Let Gy, G5 be the representing functions for V*[(w;)i<o],
Ve[(wi)izol-

The intersection of the (vertical) graph of F, and the (horizontal) graph of Fj
is the point £ € R? s.t. W,y (§) = x. The intersection of the vertical and horizontal
graphs of G,, and G is the point n € R? s.t. ¥, (1) = y. By Proposition 4.11 and
the uniform hyperbolicity of f in coordinates, ||€ — n| < KON (py A pg) for some
global constants K > 0,60 € (0, 1). -

By admissibility, F,,, Fs, G4, Gs have ngélder exponent at most % This im-
plies |F1(¢1) — GL(m)|, |FL(&) — GL(m)| = O(BFNQ.(w)%). Tt follows that

distrgs (Te[graph(Fy)], Ty [sraph(Gy)]) = O(035N Q. (z0)5).

E*(x), E*(y) are the images of Té[graph(FS)] and Tﬂ[graph(Gs)] under d¥, . By
Lemma 2.9(2), distya (E* (), B5(y)) = O(035Y). Similarly, distya (E*(z), E“(y))
= O(03°N). All implied constants are uniform, so R — E*/*(7(R)) are Hélder
continuous. 0

12.3. The extension is finite-to-one. Say that R, R’ € Z are affiliated, if there
exist Z,7' € ¥ st. RCc Z, R CcZ',and ZNZ' # @. For every R € #Z, let

N(R):=|{(R',Z') e # x Z : R is affiliated to R and Z’ contains R'}|.
Lemma 12.7. N(R) < co.

Proof. Suppose R € #. The set A(R) :={Z € & : Z D R} is finite, because if
Y € & contains R then every Z € A(R) intersects Y, and the number of such Z is
finite (Theorem 10.2).

Since A(R) is finite, B(R) := {Z' € 2 : 3Z € A(R) s.t. Z' N Z # @} is finite
(Theorem 10.2). For every Z' € B there are at most finitely many R’ € Z s.t.
R’ C Z' (Lemma 11.3). Therefore, C(R) := {R' € # : R, R’ are affiliated} is
finite. It follows that N(R) =} p co(r) [AR')| < 0. O

Theorem 12.8. Fvery x € %(i#) has a finite number of T—pre-images. More
precisely, if x = T(R) where R; = R for infinitely many i < 0 and R; = S for
infinitely many i > 0, then |77 (z)] < py (R, S) := N(R)N(S).

Proof. The proof is based on an idea of Bowen’s [B3, pp. 13-14] (see also [PP,
page 229]), who used it in the context of Axiom A diffeomorphisms. We show that
the product structure described above is sufficient to implement his argument in
our setting.

Suppose x € %(i#), then x has a T—preimage R € T s.t. R; = R for infinitely
many negative ¢, and R; = S for infinitely many positive i. Let N := N(R)N(S)
and assume by way of contradiction that there are N 41 different points in 52 whose
image under 7 is equal to z. Call these points RY) = (jo))iez (j =0,...,N).
Assume w.l.o.g. that E(O) = R.

By Lemma 12.2 there are chains v() = (vgj))iez € X s.t. for every n
L RD)C Z_, (09, o). (12.1)

—n

RY) ¢ Z(vD) and _,[RY)

—ny -

Claim 1. W(Q(j)) =z for every 0 < j < N.
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The following inclusions hold:

€ () Z-nY),....09) c () Z-n@Y), . 0),  (12.2)
=0 n=0
=7(RY) e () -alRY),....RY] C ﬂ Z_n 9 o).
n=0
Since 7 is Holder continuous, diam {Z n(v (f,)l, . USS))] — 0, so m(vW)) =gz
n oo

Claim 2: Suppose i € Z, then Rgo)’ ceey RZ(.N) are affiliated.

Thus Z(v (0)) ..,Z(vI(N)) have a common intersection. Since R(]) C Z(v J)),
REO), ey REN) are affiliated.
Claim 3: There exist k,£ > 0 and 0 < j1,j2 < N such that
o (RY) o RP) £ (RYY, - RV,
° R(jllﬂ) — R(Jz) and R(h) _ R§j2);
v(—Jllf) _ 'U(_j2) (Jl) véjz).

Proof. By (12.2) z = n(vW)) € N0y Z_n(v @ 7(3)), so fi(z) € Z(v l(J)).
(

and v,

Proof. We are assumlng that RY) are different, therefore there exists some m such
that the words ( R%)) (0 < j < N) are different.

We are assuming that Rgo) equals R for infinitely many negative i, and equals
S for infinitely many positive i. Choose k,¢ > m s.t. R(_Oli = R and REO) = S. The
words (R(j,l, e Ry)) (0 < j < N) are different.

By claims 1 and 2, R(j,)C are all affiliated to Rg)f = R, and by (12.1) R(_],)f C

Z(v (])) therefore |{( R(J,)C (J)) :j=0,...,N}| < N(R). In the same way, one can
show that [{(RY),0") : j =0,...,N}| < N(S). It follows that

777’747"'7

[{(RY),vY); RY, gf)) :j=0,...,N}| < N(R)N(S) = N.
By the pigeonhole principle, at least two quadruples coincide, proving the claim.

a Q(Jl) and b — v(]2)
abndwewriteA,k:B,k::B,Ag:Bg::fLa,k—b;€ :b, —bg—.a.By
Lemma 12.1, there are two points

To ease up the notation, we let A := ﬂ(jl), B = B(” a:

TA € _k[A_k,...,Ag] and zp € _k[B_k,...,Bg].

By definition, f=*(z4), f*(zp) € B C Z(b) and f*(za), f'(zg) € A C Z(a).
Define two points z4, zp by the equations

FE(za) eWH(f " (ap), B)NW(f " (24), B);
filzp) € WH(f (xp), A) N W*(f (2a), A).

Claim 4. za # 2.
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Proof. By construction, f~%(z4) € W¥(f~*(za), A_1). By the Markov property
(Theorem 11.7),

T za) € FIVE(F M (@a), Amp)] C WE(F T (@), Apra)
FE2(2a) € FIWS(F 5 (@A), Ak )] C WP (FTHF2 (@), Anro)

and so on. It follows that f~%(z4) € _r[A_4,..., Ag]. Similarly, if we start from
fi(zB) € Wu(f*(xp), By) and apply f~! repeatedly, then the Markov property will
give us that f~%(zg) € _x[B_x,..., B
But (A_y,...,A) = (RY), ..., Ry 2 (RY2) . RU?))=(B_y,...,By), and
the elements of % are pairwise disjoint, so _g[A_g,..., A N _k[B_g,..., B =2
and z4 # zp.
Claim 5. z4 = zp (a contradiction).
Proof. We saw above that f=%(z24) € _k[A_k,..., Ad], f%(2B) € _k[B_k, ..., B
In particular, f~*(zp) € B_x = B C Z(b) and fZ(ZA) €Ay =AC Z(a).
Construct chains o, 3 € ¥# such that z4 = 7(a) , ay = a and zp = 7(B) , B_i =
b. Define a sequence ¢ by B

Bi i< —k
ci=1<a; —-k+1<i</i-1
(67 ZZK

This is a chain because S_; = b= a_j, and oy = a = ap. This chain belongs to ©#,
because a, 8 € 7. We write ¢; := \1121 Pi

We claim that f ¥(za), f%(2B) € V*[(¢;)i<—k). Note firstly that both points
belong to W*(f~*(xg), B): f~*(24) by definition, and f~*(zp) because f*(zp) €
Wu(f*(xp), Be). Since B C Z(b),

W*(f *(xp),B) C V*(f "(xp), Z(b)) = V*[(Bi)i<—k] = V*[(¢i)i<—k]-

It follows that f=*(z4), f~*(z2p) € V“[( i )i<—k)-
This together with the fact that f=%(z ~k(2p) € Z(b) = Z(c_x) implies that

0 f
fi(za), fi(2B) € Z(c;) C Uy, |R peaps (0)] for all i < —k. (12.3)
Similarly, one can show that f*(z4), f¢(25) € V*[(¢i)i>¢], whence
fi(za), fi(zB) € Z(c;) C ¥y [R, unps (0)] for all i > £. (12.4)

Using the inclusions f=%(24) € _k[A_g,..., Ad, f7%(2B) € _k[B_k,..., B (see
the proof of claim 4), we see that if —k < i < ¢ then fi(za), fi(z5) € A; U B;.
Therefore fi(z4), f{(z5) € Z(a;) U Z(b;). The sets Z(a;), Z(b;) intersect, because
by claim 1 fi(z) = n[o*(a)] = w[o?(b)] € Z(a;) N Z(b;). Thus by Lemma 10.10,

fi(za), ' (2B) € Z(a;) U Z(b;) C Wy, [Rg.(2,)(0)] for all —k <i< (. (125)

In summary, f*(za), f*(2B) € e, [Rq. (2:)(0)], where ¢; = \Iﬂ;?’pf is a chain. By
Proposition 4.15(4), za4, z5 € V*[(¢i)i<o] NV *[(¢;i)i>0]. So z4 = 7(c) = zp, and the
claim is proved.

The contradiction between claims 4 and 5 shows that x cannot have more than
N pre-images. (I
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13. INVARIANT MEASURES

Let 0 : & — % denote the finite-to-one Markov extension of f which we con-
structed in part 3. We compare the invariant Borel measures of o : S — ¥ to the
invariant Borel measures of f : M — M. We restrict our attention to measures
whose entropy is larger than y.

Proposition 13.1. Suppose [i is an ergodic Borel probability measure on fl, then
p:=pon ! is an ergodic Borel probability measure on M, and h,(f) = hz(o)

Proof. 1t is clear that u is well-defined, ergodic and invariant.
By Poincaré’s Recurrence Theorem (applied to f1) there is a vertex R € # s.t.

YT:={Re3:3ng,mytoost. Ry, R_m, =R}

has full measure with respect to fi. The map @ : T — M is bounded-to-one (the
bound is ¢, (R, R)). Finite extensions preserve entropy, so h,(f) = hz(o). O

~

The other direction, “every invariant measure p supported on 7(X) lifts to an
invariant measure on i”, is less clear.” Lifting measures to Markov extensions
is a difficult issue in general, and it has received considerable attention (see e.g.
[Hof1],[Kel],[Bru],[BT],[PSZ|,[Bu2],[Z]). But our case is very simple, because
our Markov extension is finite-to-one.

Indeed, suppose p is an ergodic f—invariant probability measure on M s.t.
hu(f) > x. Define a measure ji on S by

i) = [ (i 3 16 )duta). (13.1)

#(R)=2

Proposition 13.2. Suppose p is an ergodic f—invariant Borel probability measure
on M s.t. h,(f) > x.

(1) pis a well-defined o—invariant Borel probability measure on s
(2) Almost every ergodic component [i of [i is an ergodic c—invariant probability
measure such that fio 7! = p and hyz(o) = h,(f).

Proof. The first thing to do is to verify that the integrand in (13.1) is measurable.
We recall some basic facts from set theory (see e.g. [Sr, §4.5, §4.12]): Let X,Y be
two complete separable metric spaces.
(I) F: X —Y is Borel iff graph(F') is a Borel subset of X x Y.
(I) Suppose F' : X — Y is Borel and countable-to-one (i.e. F~(y) is finite or
countable for all y € Y'). If E C X is Borel, then F'(F) C Y is Borel.

(III) Lusin’s Theorem: Suppose B C X x Y is Borel. If B, := {y : (z,y) € B}
is finite or countable for every xz € X, then B is a countable disjoint union
of Borel graphs of partially defined Borel functions.

Since h,(f) > X, p is carried by 7(X#). Since 7 : ¥# — M is finite-to-one,

7(X#) is Borel. Henceforth we work inside 7(%#).

Step 1. x — |77 1(x)| is constant on a Borel set Q s.t. p(2) = 1.

Proof. Since Too = fo7 and f is a bijection, z +— |77 !(z)| is f-invariant.
We show that the restriction of z — |7~1(z)| to 7(X#) is Borel measurable. The
claim will then follow from the ergodicity of u.

7,u o7 does not work: it is not even o—additive.
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Graphs of Borel functions are Borel, therefore B := {(7(R),R) : R € S#} is a
Borel subset of M x 3. R

By Lusin’s theorem, there exist partially defined Borel functions ¢, : M, — %7
s.t. M, are pairwise disjoint Borel subsets of M and B = {(z,p,(z)) : © €
M, n € N}. In particular, 7= 1(z) = {p;(x) : i € Ns.t. M; > x}. The graphs of
¢, are pairwise disjoint, so i # j = ¢;(x) # ¢;(x). Consequently,

7N z)| = Z 1o, (z) on 7(5#).

Since M; are Borel,  — |71 ()| is Borel on 7(5#).

Step 2. Let T := 7-1(Q2) and let N denote the number of pre-images of points
x € Q. There exists a Borel partition T = h—)f\il T, such that 7 : T, — Q is
one-to-one and onto for every i.

Proof. This is a consequence of Lusin’s Theorem.

Let By = {(7(y),y) : y € 7 *(Q)}. Each z—fibre of B; has N elements. By
Lusin’s Theorem By = |4, graph(y,) where ¢, : M, — S are Borel. Q =
W1 M.

Define ¢ : @ — S by 11 = ¢; on M; \ Uj<; M; (i € N), then ¢; is Borel
and 1 (z) € 77 1(x) for all . Since 7 o ¢y = Id, 1, is one-to-one. It follows that
T :=1(Q) is Borel, and 7 : T1 — Q is one-to-one and onto.

Now take By := Bj \ graph ;. Each z—fibre of By has N — 1 elements, and By
is disjoint from graph(v1). Apply the previous process to Bs to obtain Yy. After
N steps, we are done.

Step 3. The restriction of the integrand in (13.1) to € is Borel measurable.

Proof. Every x € Q has exactly N pre-images, one in every T;. It follows that for
every Borel set F C 3,

N
1 1
m Z lp(y) = N Z 1z(mn1,) () on Q.
i=1

%(g):z
Since 7 is one-to-one on Y;, T(ENY;) is a Borel set. It follows that the right-hand-

side is Borel measurable.

Step 4. [ is an invariant Borel probability measure such that 1o 7! = p and
hii(a) = hu(f)-
Proof. We saw that i(E) is well-defined for all Borel sets E C 5. This set function

is obviously o—additive, and it is clear that ﬁ(f)) = 1. Thus p is a Borel probability
measure.

This measure is o—invariant, because

it B) = [ (i X 1sto@))duta)

#(R)=z

[ (g X 166 )dute) (Foo = fom)

R(oR)=f(z)
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- /M (l’ﬁ—l(lf(a:))l > 1E(S>) dp(z)

#(S)=f(a)
=(E) (poft=p).

It is a lift of u because

~i~—1 _ 1 T x) = x x) = .
168 = [ (i 3 1) )dute) = [ 1s@dute) = ue)

7 (R)==

Finally zt and p have the same entropy, because 7 is N—to—one on a set of full
measure, and finite extensions preserve entropy.

Step 5. Almost every ergodic component of i satisfies 1o 771 = p and hy(o) =
P ()

Let o = [ fiydv(y) be the ergodic decomposition of fi, then = fio 7~ fuy
7~ 'dy,. Each of the measures fi, o7~ ! is f-invariant. Since y is ergodlc Qyom ! =
w for a.e. y.

The equality of the entropies follows as before from the fact that finite extensions
preserve entropy. O

Part 4. Appendix: Proofs of standard results in Pesin Theory

Proof of Theorem 2.3 This is an adaptation of the proof of Theorem 3.5.5 in
[BP]. The idea is to evaluate A, (z) := C\(f(z))~! o df, o Cy(z) on the standard
basis of R?.

We start from the identity df, E°(z) = E°(f(x)). Both sides of the equation are
one-dimensional, therefore df,e®(x) = %£|dfze®(2)| f(2)€’(f(x)). It follows that

Ax(@)er = sy (@) O (f(2) 7" 0 dfu]e’ ()

)~
(

= iy () (0)] ) () 7 ()
-+ 2 e @)l e

We see that e, is an eigenvector of A, (z) with eigenvalue

(@)
T @

Similarly, e, is an eigenvector of A, (x) with eigenvalue

uy (f(2))
uy ()

Ax () ldfze® (@)l f(a)- (A1)

i (@) 1= £ 2L af e () . (A.2)
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We estimate the eigenvalues:

sx(@)? =2 | df*)oe (@)1 i) > 2D EX(AFF)oe” (@)1
k=0 k=1

=230 PO ) gy () oo
k=0

= 2l|dfue’ (@)1 @) Y E XN sy (F @) o o)
k=0

= X[ dfoc ()| (255 (f ().

. — = z))? s
Rearranging terms, we find that e=2X > %dewg (x)||?(x) = Ay (z)?%. Tt follows

that |\, (z)| < e™X. Similarly, one shows that |u, ()] > eX.

Since f is a diffeomorphism, the number My := max{||df,||,||df; | : = € M}
is well defined and finite. It is easy to see that M; > 1. By [KH, Cor. 3.2.10],
htop(f) < 210g Mf.

By definition of s, (z), and the identity df,e®(z) = £||dfze’(x)[le’(f(z)),

sy(@)? =2 (1 3 erX||df;f@§es<f<x>>|§k(x>||dfxes<x>i)
k=1

<2 (1 + X M7 Z 62}”‘||df}€(x)€s(f($))||?fk+1(z)>

k=0
<24 eQXMstX(f(gc))2
< (M? + D)5y (f(2)? (7 sy > V2 and x < hiop(f) < 2log My).
Therefore by (A.1)
A(@)] > (1 + MY T2 |dfoe® (@) 5y = My H(L+ M) 2, (A.3)
Similarly, one can bound |, (z)| from above by a function of M;. O

Proof of Lemma 2.4 We put the standard basis e; = ((1)),22 = ((1)) on R?, and
the basis e*(z), e*(x)* on T, M, where v* denotes the unique vector s.t. the signed
angle from v to v* is 7/2. The linear map C, (z) : R? — T, is represented in these
bases by the matrix

( s (@)1 (@) cosalz) >

0 Uy (z) "t sina(x)
Inverting, we find that Cy(z)~! : T,,M — R? is represented by
( sy(@) —sy(2)/tana(e) )
0 Uy (z)/ sin () ’
The lemma follows by direct calculation, using the fact that the Frobenius norm of

a linear map represented by a matrix (a;;) is equal to (> a?j)l/Q. O

Proof of Lemma 2.5 Define an inner product (:, ): on T, M by the conditions
() le* @)z = sx(z), (b) lle"(@)]; = ux(x), and (c) ("(x),€*(x)); = 0 (compare
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with [BP, §3.5.1]). The inner product || -
every £,m1 € R

||z satisfies || - |[|X > || - ||z, because for

lee* () +net(2) 5 = /€y (@) + Puy(@)2 > VA + ) (2 sy > V)
> le] + [l = 1€€° (@) 1o + Ine® @) > e (@) + e (@)l

C@) G)lle < N0 @) G = ll€sy(2) 7 e (@) + nuy(2) e (@)]15 = VE + 12
The lemma follows. O
Proof of Lemma 2.6 Let A, (z) := C\(f(z))~! odf, o Cy(x). Extend A, to a
cocycle AY" using the identities A{) := A, and A" (2) = AU (f7(2)) AW (2).
The extension is unique, and is given by A;n)(x) = O\ (f™(x))tdfrCy (z).
Theorem 2.3 says that A, (z) is a diagonal matrix with entries in [C'f_l, Cy] for

every x € NUH, (f). In particular, log||A§<1)H and log||(A§(O))’1H are uniformly
bounded on NUH, (f), whence absolutely integrable w.r.t any ergodic invariant
probability measure with entropy larger than y. This allows us to apply the Multi-
plicative Ergodic Theorem to A;") w.r.t. every ergodic invariant probability mea-
sure with entropy larger than y.

Let NUH! +(f) denote the set of points x € NUH,(f) for which for every y €
{fF(x): ke Z} there is a decomposition T,R* = E (y) ® E¥(y) so that

):
(1) Ex(y) = span{ey ()}, ey ) =1, lim Llog AL (y)es (y)] < O;
(2) Ex(y) = span{er(y)} lex(v)l = 1, lim Lo A% (y)ex(y)] > 0;
(3) lim Llog|sinay(f"(y)] =0, where ay(y) = £(e} (1), €2(y));

(4) A @EL )] = By (f()) and A w)[E2 ()] = EX(F(0).

By the discussion above, NUHL( f) has full measure w.r.t. to any ergodic invariant
probability measure with entropy larger than x.

Let NUH] (f) denote the subset of NUHL (f) which consists of all points z for
which there exist a sequence ny 1 oo s.t. Cy (f™*(x)) P Cy(z) and a sequence

my § —oo s.t. Oy (f*(x)) PR Cy(z). By the Poincaré Recurrence Theorem,
bde el

every invariant probability measure which is carried by NUHL( f) is carried by
NUH, (f), so NUH (f) has full measure w.r.t. to every ergodic invariant measure
with entropy greater than y.

Applying the Multiplicative Ergodic Theorem to the cocycles df, and A&n)(x)
on NUH] (f), we obtain the existence of the following limits:

lim —loglldfy Cx(2)e;ll fn(ay , lim — 10g||C (f™"(@)) 7y Cr()eill.  (A4)

n—
Let ng 1 0o be a subsequence for which C, (f™*(z)) P Cy (). The norms of
—00
Cy (f™(x)) and Cy (f™(x))~! are bounded along this sequence, so
ICx (£ (@) ~Hdf = Cx ()| =< Ildfz O (2)e].

We see that the limits in (A.4) agree. As aresult E}(z) = Rx{0}, EY(r) = {0} xR,
and = has Lyapunov exponents log A(z) and log u(x) w.r.t. A;”).
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Let Ay (z) := < )\(Ox) M?ﬂﬁ) ) , then the limits (A.4) mean that

(AL (@) Ay ()~ =" —— 1.

n—=£oo
Similarly, if A(x) is the linear operator s.t. A(x)e®(z) = A(x)e’(z) and A(x)e*(z) =

u(@)e"(x), then
I(dfr A )™)Y ——s 1.

n—s4oo
Since Ay (#) = Cy(2) ' A2)Cy (x) and AL (2) = Oy (S (@) o df 0 Cy(a),
IO (™ (@) V™ = [|AYY (@) Co ()~ ) HIM ™
= [ AL (2)Cy () "M A(w) " CO() - O ()™ - M) (df) 1M
< [JAP (@) A (@) T I Co ) T (g A ) ) T
Thus lim sup%log HCX(f”(x))*lH < 0. On the other hand C, is a contraction

(Lemma 2.5), so [|Cy(f™(z))~'||'/™ > 1, whence liminf £ log ||Cy (f™(x))~!|| > 0.
The first part of the Lemma is proved.

We prove the second part of the Lemma: < log |[Cy(f™(2))e; | fn() —— 0.

n—+oo
We do this for ¢ = 1, and leave the case ¢ = 2 to the reader. Since the A&")(.) is
diagonal, A;") (z)e, is proportional to e¢;. The multiplicative ergodic theorem for
A;”) (z) says that A§§”( )e; = £A(z)™ explo(n)]e;, therefore

im (|G (M @)enllfy = M) lim O @) ALY (@)en 1,
=)™t lim u(df:>cx<x>glllfn?x>
_ -1 m)es ()| =
= M)t Tim [l(df)e (@), =

proving that %log ICx(f™(x))er | 7 (2 T> 0.

+o0
Finally, we prove that *log]|det Cy(f"(z))] — 0. We begin with some

general comments on determinants.

Suppose L : V — W is a linear operator between two 2-dimensional vector
spaces with inner product. The determinant of L can be defined as det(L®) for
some (every) isometry © : W — V. The following fact holds:® If u,v span V, then

sin £(Lu, L) _ [lul|||v||det L

= . A5
s d(wo)  |LullTe] (45)
It follows that | det L| = HI”ﬂ”ul‘llﬁU”I :Eigﬁfflv)l (u, v independent).

Applying this to L = AX with u = e, v = e,, and to L = df” with u = e*(z),
v = e¥(z), we find that

1
lim log | det A(" ()] =log AMx) +log pu(z) = thIzl — log | det df}|.
n—+oo n

n—too N
8Proof: Let wy, wy denote the volume 2—forms on V, W, then wy (u,v) = ||u|||v|| sin £(u, v)
and wyy (u, v) = |Jul|||v] sin £(u, v). Since wy (Lu, Lv) is also a 2—form on V, and any two 2—forms

on V are proportional, ¢ s.t. ww (Lu, Lv) = cwy (u,v). Evaluating on an orthonormal basis of
V', we find that ¢ = det L. Consequently, ||Lu||||Lv|| sin £(Lu, Lv) = det L||ul|||v|| sin £(u, v).
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Since |det A (z)] = | det Cy (f™(2))| 7| det df™|| det Cy ()],
Llog | det Cy (f"(x))] —— 0 as required. O
n—o0

Proof of Lemma 2.9 Parts (1) and (3) are obvious, and part (4) is a consequence
of Lemma 2.6 and the estimate Q.(f"(x)) =< [|Cy(f™(x))~!||~'¥/#. For part (6),
define ¢.(z) on NUH*(f) by the formula

The sum converges because 1 log Q.(f*(z)) P 0, and it is easy to check that
—+oo
ge(z) behaves as required, see [BP, Lemma 3.5.7].
It remains to prove parts (2) and (5). First we prove the following claim.

Claim. There exists a constant C, which only depends on M, f and x, such that
CH < IO (f(@)HI/NCx (=)~ < C on NUH,(f).

Proof. By Lemma 2.4 it is enough to show that

sxof uxof [sinaof]
b

s U ’ sin o
X X

are uniformly bounded away from zero and infinity on NUH, (f).

The following quantity is well defined and finite, because f is a diffeomorphism
and M is compact:

Fo := max{|df. ||, [|df; ], | det(df, )], | det(df; )| - @ € M}
Notice that Fy > 1.

Equation (A.1) makes it clear that %((;))) = F\(2)] € [(CrFy) Y, CrFy)
on NUH, (f). Similarly, % takes values in [(CyFp)~t,CrFy] on NUH,(f).
Finally, by (A.5) and the fact that e*/*(f(x)) have the same direction as df,e®/* ()
up to a sign,

[sina(f(2)] _ [sin (e (f(2). " (f(2)] _ | det dfs |
|sina(z)] |sin £(e*(2), e*(2))| dfoes (@)l df e ()|
[ -3

Fy?, F§]. The claim follows.

The last quantity takes values in

Part (5) follows directly from the claim. For part (2), we start by noting
that Q:(z) < 63/5||CX($)_1||;i2/ﬁ < 3/8||Cy(z) 71|72, therefore also Q.(z) <
(e3/BC12/B) || O\ (fF (z)) 1| 712, If € is small enough then e'/#C12/8 < 1, and the
proof of part (2) is complete. O

Proof of Theorem 2.7 What follows is based on [BP, Theorem 5.6.1].
Recall the following basic fact from differential geometry [Sp, chapter 9]: Every
p € M has an open neighborhood W), and a positive number r > 0 s.t.
(1) any ¢,¢' € W), are connected by a unique geodesic of length less than r;
(2) for each ¢ € W), exp, maps BZ(0) C T, M diffeomorphically onto an open
set U, 2 W), in a 2-bi-Lipschitz way, and d(exp,)o = Id;
(3) forevery q,q' € Wp, there is a unique vector v(q,q’) € T,M s.t. |[v(q,q')|lq <
r and exp,[v(q,q')] = ¢';
4) (q,4') = v(g.q) is a well-defined C*° map from W, x W), to M.
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Since M is compact, there exist positive constants r(M), p(M) s.t. for every
p € M, exp, maps Bf ( M)(Q) C T,M diffeomorphically onto a neighborhood of
B,y (p) € M, in a 2-bi-Lipschitz way. Let

ro = min{1,r(M), p(M)}

= T0[Lip(f) + Lip(F )] (4.6)

Note that ry < 1.

Suppose ¢ < r9/5. By the definition of Q. (), Q.(z) < €3, s0 10Q.(z) < ro/V/2.
By Lemma 2.5, C (z) maps Rigq, () (0) contractively into B, (0). Therefore ¥, =
exp,, oCy (x) maps Ryoq, (z)(0) diffeomorphically in a 2-Lipschitz way into M. The
first part of the theorem is proved.

Next we show that f, := \I/;(lw) o foW, is well defined on Ry¢q,_ (1) (0) and establish
its properties.

Since exp, is 2-Lipschitz, Cy (z) is a contraction, and 10Q.(x) < ro/V/2,

U, maps R, (2)(0) diffeomorphically into By, ().

It follows that f o W, maps Rigq,(x)(0) diffeomorphically into Barip(f)yr, (f(2)),
which by the definition of ro is a subset of B, (f(z)), whence a subset of
exXP ¢ () [Bf(M) (0)]. It follows that f, := \I/;(lx) o f oW, is well defined, smooth
and injective on Rygg, (2)(0).

For every p € M, exp,(0) = p and d(exp, )o = Id. It easily follows that f.(0) = 0,
and (dfy)o = Cy(f(x)) ' o(df)s o Cy(x). By Theorem 2.3, this is a diagonal matrix
with diagonal elements A(z) = A.(z), B(z) = p(z), and C;l < JA(z)| < e7X,
eX < |B(x)| < Cy.

We compare f, to its linearization at 0 by analyzing

re(w) == fa(w) — (dfa)o(w).
By assumption f is C'*58, so there is a constant L s.t. for all u,v € R, (0),
||d(exp;(1x) ofoexpm)ﬁ—d(exp;(lm) ofoexp,)u|| < L|lu—v]||?. For every u,v € R,,(0),
1(dre)u = (dra)ll = [ (F@) dlexp7,, of o exp,)o, 1y (@)
— C(f()Md(expy L, of 0 exD,) o (1 Cr (@)
= ||Cx(f($))_1[d(expj7(1m) of oexp,)c, (z)u
— d(expyl of 0 exD, )0 (@ Cu(@)]
< NC(F @) M- ZICk @)1 [l = wll” - [ Cx ()]
< (IC(f@) M- Lllw = 2] 72) - lu = o] (- Oy (@) < 1).
If u,v € Ripg.(2)(0), then the term in the brackets is smaller than
IC (f (@) 7| - L(20V2Qx ().

Plugging in the definition of Q.(z) from (2.3), and recalling that ||C\(-)7|| > 1
(because Cy(-) is a contraction), we see that the term in the brackets is smaller
than 308/2Le3/2. Thus, if € < % -3078/2L1, then

I(dre)e — (dra)oll < gellu—vl?? (w0 € Rigg.@)(0))-
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Since (dry)o = 0, we have that [|(dry)u| < %ngHﬁ/z on Rypg_(2)(0). Now
Q-(r) < %8, 50 |Jul| < (10v2)Q.(z) < 15¢3/8. If e < 1578/3  then |ju| < 1, so

H(dr1>MH < %5 on RIOQE(I)(Q)-
Since 7, (0) = 0, we have by the mean value theorem that
r2(w)|| < ellull < §& on Rigg. (2)(0)-

In summary, if € is small enough, then the C'*+#/2-distance between r, and 0
on Rygq, ()(0) is less than . This shows that the C'*+P/2_distance between f, and
(dfz)o on this set is less than .

The treatment of f ! is similar, and is left to the reader. O

Proof of Proposition 4.11 The proof of parts (1),(2) and (3) of the proposition
is taken from [KM]. Part (4) is new, but routine.

Assume that 0 < & < 1. Write V¥ = U, {(F(w),w) : |w| < p*} and V* =
U, {(v,GW)) : |v|] < p°}, and let n = p* A p°. Note that n < e, and that
|F(0)],]G(0)] <1073 and Lip(F), Lip(G) < ¢, see (4.1).

The maps H = F, G are contractions (with Lipschitz constant less than ¢), and
they map the interval [—~1072n,1072y)] into itself, because for every [t| < 1072,

|H(t)| < |H(0)| + Lip(H)[t| < 10*n+e-102n = (107 +£)102n < 10~ 2y
It follows that G o F is a e?-contraction of [—1072n,10725] into itself. By the
Banach Fixed Point Theorem, G o F has a unique fixed point: (G o F)(w) = w.

Let v := F(w). We claim that V*, V* intersect at P := ¥, (v, w).

e P c V" because v = F(w) and |w| < 1072y < p¥;
e P €V because w = (G o F)(w) = G(v), and |[v| < |F(0)| 4+ Lip(F)|w| <
1073n +e-1072n < 1072 < p°.
We also see that |v|, |w| < 1072.

We claim that P is the unique intersection point of V* and V*. Let £ := p" V p*
and extend F, G (arbitrarily) to e-Lipschitz continuous functions F,G: [ &, & —
[—Q-(z),Q(x)]. Let V* and V* denote the u/s—sets represented by F,G. Any
intersection point of V* V¢ is an intersection point. of V“ Vs, Such points take
the form P = W, (v, @) where 0 = F(w) and @ = G(¥). Notice that @ is a fixed
point of G o F. The same calculations as before show that G o F' contracts ¢, ¢]
into itself. Such a map has a unique fixed point, therefore w = w, whence P=P.

Next we show that P is a Lipschitz function of V*, V*. Suppose V;*, V* (i = 1,2)
are represented by F; and G; (i = 1,2) respectively. Let P; denote the intersection
points of V* N V2. We saw above that P, = ¥, (v;, w;) where w; is a fixed point
of Gjo F; : [-1072,1072] — [-10727,107%y]. The maps f; := G; o F; are

e2—contractions of [—~10727,10~2y)] into itself, therefore

w1 — wa| = [ f{(w1) = f3 (w2)| < [fr(f7 (w1)) = fa (S (wn))]

+ 1 f2(f7Hwr)) = fo 3 (wa))]
<\ f1 = falloo + €27 (wr) = £5 (ws)]
<= falloo(L+ €2 4+ +270) 4 €27 |wy — wy

N

IN

Passing to the limit as n — oo we obtain |w; — wa| < (1 — )7 f1 — fallco-
Similarly, v; is a fixed point of F; o G; : [~10721,1072n] — [-1072n,10~2y], and
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the same argument gives that [v; — va| < (1 —2)7Y|g1 — g2||ce Where g; = F; 0 G;.
Since ¥, is 2-Lipschitz, this means that

d(Pl, PQ) <

2 ([[Gro F1 —Gao Fylloe + [[F1 0 Gy — Fy 0 Gal|oo) -

Now
||F1 (] Gl - F2 OG2||OO S ||F1 OGl - F1 o G2||oo + ||F1 o G2 - F2 OGQ”OO
< Lip(F1)[|G1 = Ga|lee + | F1 — F2loo
|G1 0 Fi = G 0 Fa||oc < Lip(Gh)[[F1 = F2lleo + |G1 — G2l

Since Lip(F;), Lip(G;) < €2, d(P1, Py) < 21(1:;) [dist(V¥, V3*) 4 dist(V, V5)]. The
coefficient is less than 3 for all ¢ small enough. For such e, P is a 3-Lipschitz
function of V%, V*,

Finally, we analyze the angle of intersection at P. We assume throughout that
cissosmallthat 0 <t <e = e"2t < 1—t < 1+t < e?. In what follows we drop
the subscript « in || - ||,.

Let v = (v,w) be the ¥,—coordinates of P (i.e. P = ¥,(v)), and write E* =
E*¢(z), E* = E*(z). The following identities hold:

L(E*, B") = £((d¥s)oe’, (d¥q)oe”), where ¢! = (é) and ¢* = (2)

L(VE V) = L((d¥,)p0°, (dV,),v"), where v° = (G/l(v)) and v" = (Fliw))

It is not difficult to see that the admissibility of V', V* and the inequalities |v], |w]| <
10~2y imply that |F’"(w)|, |G’ (v)| < n?/3.

sin L(V2,V*) _ sin£((dV;),0°,(d¥;),v")
S (FTET) — s (9 et (a0 e - BY (AD),

We begin with the estimate of

sin £(V2, V") sind(v®,0") [[olllv"]] det(d¥a)y, |I(d¥s)oe’ ||l (d¥a)oe?|

sin£ (B2, E) ~ sind(e',€?) e[ det(dW.)g  [[(dWn)po® [(d0,) 0]

First factor: The first factor equals sin £(v®,v*). Using the formula for the sine
of the difference of two angles it is not difficult to see that

' s e # 1 F'(w)
sin £(v*,v") = [o® [0 ]| det( G'(v) 1 ) .

Since |G’ (v)], |F'(w)| < n®/3, the first factor is e£27”"",

Second factor: Since |G'(v)|, |F'(w)| < n®/3, the numerator is et Since the

. . 26/3
denominator is equal to one, the second factor is e "".

Third factor: det(dV,), = det(dexp,)c, ()v-det Cy(z), and det(d¥;)o = det Cy(z),
therefore the third factor is equal to det(dexp,)c, («)o-
The exponential map on M is smooth, and det(dexp,)o = 1, therefore there

exists a constant K7 which only depends on M s.t.
|det[(dexp,)u] — 1| < Killul for all z € M and |[u < 1.

Since Cy(z) is a contraction (Lemma 2.5) and [[v|| < 27, det(dexp,)c, (z)p = 1 £
2K1n. Since 0 < n < ¢, 2K3n < /7 for all € small enough. For such ¢, the third
factor is e*V7 (provided ¢ is small enough).
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Fourth factor: Find a global constant K s.t. ||(Opdexp,), —Id| < Ks|u| for
all z € D € & and |Jul| <1 (cf. §3.1).
Write u = Cy (2)v, and choose some D € 2 which contains W, [Rg_()(0)], then

100 (d¥,),0° — Op(d¥,)eet]| < |Op(d¥,), — Op(d¥,)oll][v”
+ 100 (d¥.)ol[lv® — €'l
< ©p(dexp,)u — 1 [[[[Cy (@) [|°|] (A7)
+2[Cy ()|l — €
< 3Kon + 27][3/3’

because C,(x) is a contraction, ||v|]| < 2n, and v° = (Oigmg). Consequently,
|||(d\Il:,3)EyS|| — H(d\IJI)Qg1||| < (3Ky + 2)775/3. Since also
1(d2)oc’ | = [Cx(@)e! | > 1Cx ()M, (A.8)
(d¥a)ov® |

Taween — 1| < 3Kz +2)[| Oy ()~ /2.
Since 7 < Q. (2) and Q. (2) < £/ C, () 1|~ 12/2,
ICy (@) M [0/ < (| Cy () P12 - Pt < M/ ApPl4, (A.9)

It follows that for all £ small enough, % = exp [ (%nﬂ/ 4)} . How small

depends only on K5, and therefore only on the surface M.
Similarly, one can show that % = exp[+2n?/4], with the result that the

fourth factor is exp[j:%nﬁ/‘l].

Putting all these estimates together, we see that
sin £(V*,V?#)

2
SN 0 ) 4 (902873 4 28/3 Zphla
sin £ (B, B9) eXp[ U IR U

Since 0 < 1 < ¢, for all € small enough, this is """ How small just depends on
Kl, KQ, and ﬁ
Next we estimate | cos £(V*, V") — cos £(E®, E*)|. This is equal to
((d¥s)u%, (d¥0)v")  ((d¥s)ec’, (dWa)oe?)
1(dWs)y0® Hll(d\lf )1) o I(dTL)oet TI(d¥s)oe?|
< 1{(@¥2)p0%, (d0)pv”) | | [|(d% )oe! |[|(dPa)oc”]] 1‘+
= (AW )oe [[(d¥a)oe?l [ I(dWe) s [[[(dW¥e )|
1
d\I]:v vys; d\I/z yu - d\I/x Ogla dqu 0§2
||(d\I! Yo (A% ,)e?| ‘<( )2, ( Ju > <( Joe™ ( o >’
1(@%0) o (A2 )ue]l . | 1(d%a)oe [[1(d¥s)oe?l| ‘+
= (dP)oet [[(dP)oe?ll | I(dWa)or® [[[[(dWa)pv®|
1

* e are) [ ((@¥)u’s (o)) = (@¥r)oc’, (d¥s)oc’)]

By (A.8) and the estimate of the “fourth factor” above, this is smaller than

eSO @) P (@), (d82),2") — ((d¥a)oe', (AT )oe?)| - (A.10)
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Since ©p is an isometry, the difference of the inner products is equal to
‘<6D (dqu)ggsv 6D (d\Ijz)gQu> - <®D(dqjm)Q§17 @D (d\Ijz)QQ2>‘

< |©p(d¥s),v° = Op(d¥s)ge! || - [ (dPs) 0|
+[©p(d¥s)oe' || - [©p(d¥s) 0" — Op(d¥,)oe”
< 3(|0b(dW,),0° — Op(dW.)oe! | + 100 (AW,),0" — Op(dW,)oe?)
< 3(19p(d¥y)ullv* — €' +2[Op(d¥s)y — Op(dP.)ol|
+ [18p(d¥y)u 0" — €2]))
< 320°/3 + 2 2Kon + 29773,
because O is an isometry, ||d¥,[| < 2 on Rg_(,)(0), and [lv*/*—e'/2|| < /3. Thus
|<(d\I/z)QQS7 (d\I/m)Qy“> — <(d\I/I)Qg1, (d\I/x)Qg2>| < K3nP/3, where K5 only depends
on M. It now follows from (A.10) and the inequality n < € that
| cos £(V*, V) — cos L(E*, E)| < 3= P/t || Oy () 1|1% - K/
We now argue as in (A.9) and deduce that
|cos £(V*, V") —cos £(E®, E*)| < (e§53/4 + Ksel/4)pP/4,
This is smaller than 2n?/4, for all £ small enough. (I

Proof of Proposition 4.12 (Graph Transform) The proof is a straightforward
adaptation of the arguments in [KM] and [BP, chapter 7] (see also [P]).

Let V¥ = W, {(F(t),t) : |t| < p"} be a u-admissible manifold in ¥2"P". We
denote the parameters of V¥ by o, 7, ¢, and ¢, and let 1 := p* Ap®. V* is admissible,
SO ) )

0 < 5.7 < 50" e <1070, g = p*, and Lip(F) <, (A.11)
see Definition 4.8 and Equation (4.1).

We analyze Ty := W '[f(V*)] C R? looking for parameterizations of large

u—sub-manifolds. Notice that

Iy = faylgraph(F)],
where fz, = \Il;1 o f oW, and graph(F) := {(F(t),?) : |t| < q}.
Since V* is admissible, graph(F) C Rg_()(0). On this domain, f;, can be
expanded as follows (Proposition 3.4):
fay(u,v) = (Au + h(u,v), Bv + ho(u, v)) (A.12)

where C;l < |A] < e™X, eX < |B| < Cf; and h; are C'+% —functions s.t. |h:(0)] <
en, [Vhi(Q)]| < 0?3, and [Vho(w) - Vhi(w)]| < =llu—v]#/3. Necessarily, | Vhi] <
en®/? + e[V2Q.(2))P/3 < 32Q-(2)P/3 and |h| < en + 32Q-(2)?/3 - Q-(z). Since
n < Q:(x), and Q.(x) < £3/7, the following holds for ¢ small enough:

|Vhi|| < 3¢% and |h;| < £* on graph(F). (A.13)
Using (A.12), we can put I} in the following form:
Ty, = {(AF(t) + hi(F(t), 1), Bt + ha(F(1),1)) : [t| < q}. (A.14)

The idea is to call the second coordinate 7, solve t = (), and substitute the result
in the first coordinate.
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Claim 1. The following holds for all € small enough: Bt + ha(F(t),t) = 7 has a
unique solution t = t(7) for all 7 € [—eX~VEq, eX~VEq], and
(a) Lip(t) < e™**s;
(b) [t(0)] < 2en;
(¢) the C#/3-norm of ' is smaller than |B|~'e%.
Proof. Let 7(t) := Bt + ho(F(t),t). For every |t| < g,
7' ()] = |B| = max [[Vhs| - [[(F'(), )] > |B] = 3e*V1 +¢? (. (A.13),(A.11))

> |B|(1—3e*V1+¢2) (|B]>eX>1)
> e °|B| > 1 provided ¢ is small enough.
It follows that 7 is e~¢|B|-expanding, whence one-to-one.
Since 7 is one-to-one, 77! is well-defined on 7[—¢, g]. We estimate this set. Since
T is continuous and e ¢ B-expanding, 7[—¢,q] D (7(0) — e ¢|Blg, 7(0) + €| B|q).
The center of the interval can be estimated as follows:
7(0)] = [h2(F(0),0)] < [h2(0)] + max [[Vhel| - [F(0)
<en+3¢2-107%) < 2en  (admissibility and (A.13)).
Recall that n = p* A p® < p* = ¢, therefore |7(0)| < 2eq. Since |7/| > e ¢|B|,
7[=4,9] 2 [2¢¢ — e°|Blq, —2eq + ¢7%[Blg] 2 [=(|Ble”" — 2¢)q, (| Ble™" — 2¢)q]
2 [—|Bl(e™" — 2¢)q, [Bl|(e™* — 2¢)q].
Since |B|(e™% — 2¢) > eX(e™2 — 2¢) > X~ VZ for all € small enough, 7! is well
defined on [—eX~Veq, eXx~VZ(].
Since t(-) is the inverse of a |Ble~*—expanding map, Lip(t) < ef|B|~! < e™X*¢,

proving (a).
We saw above that |7(0)] < 2en. For all € small enough, this is (much) smaller
than eX~ V&g, therefore 7(0) belongs to the domain of t. It follows that

[t(0)] = [£(0) — t((0))] < Lip(t)|7(0)] < e™X*< - 2en.
For all € small enough, this is less than 2en, proving (b).
Next we calculate the C#/3-norm of #().

We remind the reader that the C®-norm of ¢ : [—q,q] — R% (0 < a < 1) is
defined by o] = [¢]l + Hola (g), where

Hol, (¢) := sup {HSD(U)SD(U)” cu,v € [—q,q]h diﬂerent} .

lu — vl
The following inequalities are easy to verify:

(HL) [|o-Plla < lellalldlla for all v, ¢ € C¥[—q,q];
(H2) [l¢oglla < |l@lloo + Holo () Lip(g)® for all ¢ a—Holder and g Lipschitz;
(H3) In case dz =1 and [l¢[la <1, [[1/(1+@)[la < (1 = [lfla)~"

Differentiating the identity s = 7(¢(s)) = Bt(s) + ha(F(t(s)),t(s)) w.r.t s, we
obtain after some manipulations

\Oha ohy

t'(s) = B! (1 +B7 - (F(t(s)),t(s)) F'(t(s)) + Blay(F(t(s)),t(s))>_ .
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We write this in the form ¢'(s) = B~*(1+ T(s))~!, where
Ohy ’ 1 Ohsy

gz (L (1(s)), () F'(i(s)) + B~ En (F(t(s)), t(s))-

By (H3), it is enough to find ||T||g/3. Here is the estimation:

T(s):=B'=—=

H % ) t(s)) H H Oha Holg 3(Vhe)[Lip(F o t,1)]%/% - (H2)
B/3
<362 + & [Lip(F)2(Lip(t))? + (Lip(t))?] "/
<32+ e[Ve2 +1(ef|B7H]P3 - (A1), (A13)
< g, provided ¢ is small enough.
H ahQ ), t(s)) H < ¢ (same proof).
B/3

1E" (#())llg /5 < 1 Flloo + |1 F" 1l /3 Lin(8)** (see (H2) above)
<o+ 0-(eX)#/3 <1 provided ¢ is small enough.

Putting these estimates together, we see that || T']|z/3 < 2¢. It now follows from
(H3) that [|t'||s/3 < |B|~'(1 —2¢)~!. This is smaller than €3|B|~" for all & small
enough. This proves (c¢), and completes the proof of the claim.

We now return to (A.14). Substituting ¢ = ¢(7), we find that
Ty > {(G(7),7) : 7] < X Voq},

where G(7) := AF(t(7)) + h1i(F(¢t(7)),t(7)). Claim 1 guarantees that G(7) is well-
defined and C'*+F/3 on [—eX~VEq, eX~VEq]. We find the parameters of G.
Claim 2. For all £ small enough, |G(0)] < e XTVE[p 4+ \/2(¢* A ¢°)], and |G(0)] <
1073(¢" A q°).
Proof. Claim 1 says that [¢(0)| < 2en. Since Lip(F) < ¢, |F(0)| < ¢ and ¢ < 10737,
|F(t(0))| < ¢ + 2¢2n < 1 provided ¢ is small enough. Thus

[G(O)] < |A] - [F(#(0)] + [p1 (F(2(0)), £(0))]
< [Al(p +2¢%n) + (|1 (0)] + max [ Vhy || - [|(F(£(0)), (0))]]]

< |Al(p +26%n) + [en + 36 iP  2en?] (2 IF(0)] < )
< |A] {(p +1(2e” + e+ 3c2V/1 + 42 )} .

Recalling that |A] < e and n = (p* Ap®) < e®(¢" A ¢°) (Lemma 4.4), we see that
|G(0)] < e X[ + 2e(q" A ¢°)] for all € small enough.

Since < 1073(p* A p*) < 1073e (g% A ¢°), |G(0)| < e XTE[1073 + 2¢] (g™ A ¢°).
This is less than 1073(¢g% A ¢*) for all ¢ sufficiently small. The claim follows.
Claim 3. For all € small enough, |G'(0)] < e 2XVE[y 4 #/3(g* A ¢°)P/3], and
G'(0)] < 5(q* A g®)"/2.

Proof. |G'(0)] < [¢'(0)|[JA] - [F'(¢(0))| + [ VA1 (F(£(0)), £(0))[ - [ (F'(£(0)), )], and
e |[t/(0)] < Lip(t) < e~ x*¢ (Claim 1).



SYMBOLIC DYNAMICS FOR SURFACE DIFFEOMORPHISMS 71
o |F/(t(0)] < v+ %55/37)ﬂ/3, because Holg3(F') := sup% <1
and therefore by Claim 1(b)
| (£(0))] < |F'(0)[+H8Lg 5 (F")[#(0)|"/* < y+o-(2em)?/® < 43P /52,
o |[Vhi(F(t(0)),t(0))]| < 3en®/3, because |F(t(0))| < n (proof of Claim 2),
and [t(0)] < 2en (Claim 1), so by the Holder regularity of Vh;,
I B/3
VR (F(1(0)), 40D < [Vha(@)] + & (VIFEO)P + [FO)P)
< enP 1 (P ¥ o) < 3o,
o [[(F'(t(0)), ]| < V1+e2 <2

Putting these estimates together, we see that

2 4
IG'(0)] < e™X*¢| A [’y + geﬁ/ﬁnﬂ/?’ + A7 3enP/3 2}
2
< e xte {7—1— <355/3 + 6C’fs> nﬁ/‘ﬂ ;O <Al < eX
2
< €—2X+E |:’Y+ (355/3_’_60]05) 66,3/3((] Aq° )15’/3:| ...pu /\ps < ee(qu/\qs).

This implies that for all & small enough, |G'(0)] < e™2XT¢ [y + B3 (g% A qs)ﬁ/?’},
which is stronger than the estimate in the claim.

Since v < (p A p® )5/3 and (p* A p®) < e®(¢" A ¢°), we also get that for all €
small enough, |G’( )| < L(g* A g®)P/3, as required.

Claim 4. For all € small enough, |G'||/3 < e”2FVe[o + /e], and |G’ 53 < 3

Proof. Differentiating, we see that G' = t'-[AF ot + % Ohy S (Fot,t)F'ot+ ! I (Fot,t)).
By Claim 1 and its proof

o [[t'llp/s < |B|7'e>

o |[F'ot||g/3 < o, because ||[F'||3/3 < o and t is a contraction,

o |G (Fot,t)lps <e, and |G (Fot,t)]gs <e.
Thus by (H1), [|G'||lg/s < |B|7'e* [|Alo +e0 +¢€]. Since o < 3, eX < |B| < Cy,
and Cf_1 <Al < e, (|G gz < e [o+ 2Ce]  If € is Small enough, then
G l5/3 < e VE[o + Ve, and [|G']|g/3 < 3
Claim 5. For all £ small enough, V* := \I/yA{(G(T),T) s < min{AeX_\/E%QE(y)}}

is a w—manifold in ¥,, the parameters of V* satisfy (4.3), and V" contains a u—
admissible manifold in \Ilgu’qs.

Proof. To see that V* is a u-manifold in ¥, we have to check that G is CH8/3
and [|Gll < Qc(y)-

Claim 1 shows that G is C'T8/3. To see that ||G|loc < Q:(y), we first observe
that for all e small enough, Lip(G) < /&, because

1
|G| <|G'(0)] + Héllg/g,(G/)Qg(y)ﬁ/S <e+ 3¢ < Ve, provided ¢ is small enough.

It follows that [|G|ls < |G(0)] + vEQ-(y) < (1073 + /&)Q:(y) < Q:(v).
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Next we claim that V% contains a u-admissible manifold in \I/Zu*qs. Since
A \Ilgu’qs, q* = min{e®p*, Q- (y)}. Consequently, for every ¢ small enough,

eXTVEG = eXTVEPE S efpt > ¢, (A.15)

so V' restricts to a u-manifold with g-parameter equal to ¢“. Claims 2-4 guarantee
that this manifold is u-admissible in W4"¢", and that (4.3) holds.

Claim 6. f(V*") contains exactly one u—admissible manifold in \Ilgu’qs. This mani-
fold contains f(p) where p = ¥, (F(0),0).

Proof. The previous claim shows existence. We prove uniqueness. By formula
(A.14), any u—admissible manifold in \I/gu’qs which is contained in f(V*) must be
a subset of

U {(AF(t) + ha(F(t),1), Bt + ha(F(t),1)) : [t] < q,[Bt + ho(F(£),1))] < "}
We saw in (A.15) that for all & small enough, ¢* < eX~Veq. By claim 1, the equation
7= Bt + ho(F(t),1)
has a unique solution ¢ = ¢(7) € [—q,q] for all |7| < ¢*. Our manifold must
therefore equal W, {(AF(t(7)) +hi(F(t(7)),t(r)),7) : |7| < ¢"}. This is exactly the

u—admissible manifold that we constructed above.

Let F,[V¥] denote the unique u-admissible manifold in ‘llgu’qs contained in
f(V*). We claim that F,[V*] 3 f(p) where p = U,(F(0),0). By the previous
paragraph, it is enough to check that the second coordinate of ¥, '[f(p)] has abso-
lute value less than ¢". Call this second coordinate 7, then

|7] = second coordinate of f,(F(0),0) = |h2(F(0),0)]

< |ho(0)| + max || Vhal|| - [F(0)| < en+32-1073n < e n < (¢“ A g®) < ¢“.

Claim 7. f(V*) intersects any s—admissible manifold in \Ilg“’qs at a unique point.

Proof. Let W* be an s—admissible manifold in \Ilguﬂs. We saw in the previous claim
that f(V*) contains a u—admissible manifold W* in \Ilguvqs. By Proposition 4.11,
W and W* intersect. Therefore f(V*) and W* intersect at least at one point.

We claim that the intersection point is unique. Recall that one can put f(V%)
in the form

JV*) =V {(AF(t) + ha(F(t),1), Bt + ho(F(t), 1)) : |t] < g}
We saw in the proof of claim 1 that the second coordinate, 7(t) := Bt + ha(F (¢),t),
is a one-to-one continuous map whose image is an interval [a, §] with endpoints
a < —eX Vo < —gv, B> eXVEg > g*. We also saw that |7/| > e ¢|B| > eX "¢,
Consequently, the inverse function ¢ : [a, 8] — [—q, q] satisfies |t'(7)| < 1, and so
f(V*) =9, {(G(r),7) : T € [, f]}, where Lip(G) <e.

Let H : [—¢“,¢"] — R denote the function which represents W* in ¥,, then
Lip(H) < e. Extend it to an e-Lipschitz function on [a, 8]. The extension rep-
resents a Lipschitz manifold W* O W?*. The same argument we used to prove

Proposition 4.11 shows that f(V*) and WU intersect at a unique point. We see
that f(V*) and W* intersect at most at one point.
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This completes the proof of the proposition, in the case of u-manifolds. The case
of s—manifolds follows from the symmetry between s and u—manifolds:
(1) V is a u—admissible manifold w.r.t. f iff V is a an s—admissible manifold

W.I/'.t.'f_l, and the parameters are the same.
(2) WP W ot fff W — WP wort, L O

Proof of Proposition 4.14. We prove the proposition for F,,, and leave the case
of F, to the reader.
Suppose WE" P — \Ilg“’qs, and let V;* be two u-admissible manifolds in W?" ",
We take € to be small enough for the arguments of the previous proof to work.
We saw in the proof of Proposition 4.12 that if V; = U, {(F;(¢),t) : [t| < p“},
then F,[V;] = U, {(Gi(7),7) : |7| < ¢}, where
Gi(r) = AFi(ti(7)) + ha(Fi(ti(7)), ti(7));
ti(T ) is defined implicitly by Bt;(7) + ha(F;(t;(7)),t:(7)) = 7, and |t}] < 1;
C <|A] <e™X, eX < |B| < Cy;
|hZ(Q)| <e(p* Ap*), Holg/3(Vhy) < &, and max ||Vh|| < 3¢2.
In order to prove the proposition, we need to estimate |G1 — Gzl and |G} — G5l
in terms of ||F1 — F3||eo and ||F] — F}]|co-
Part 1. For all € small enough, [|t1 — t2|lc < €l|F1 — F2ll0o-

By definition, Bt;(1) + ha(F;(t;(7)),t;(7)) = 7. Taking differences, we see that

Bl - [t1 — ta| < [ha(Fi(t1),t1) — ha(Fa(t2),t )|
<[]

|F1(t1) — Fa(ta |+ |t1 — to]

< 3¢? (|F1(t1) — Fy(ty)] + |F2(7f1) - F2(t2)| +[t1 — t2])

< 3% (| Fy — Falloo + (Lip(F2) + 1)ty — ta])
< 3 ||Fy — Faloo + 38%(1 4 €)|t1 — ta, see (4.1).
Rearranging terms, and recalling that |B| > eX™¢, we see that

32| F1 — P oo
ex—¢ —3e2(1+¢)’

lt1 —tallo <

The claim follows.
Part 2. For all € small enough, ||G1 — Ga|lec < €™X/2||F} — F|s, whence (4.4).
Subtracting the defining equations for G;, we find that
|G1 = Ga| < [A[ - [Fi(th) — Fa(t2)| + [ha(Fi(t1), t1) — ha(Fa(t2), 2)]
< |A]- |Fi(t) = Fa(to)| + IV [VIFL (1) — Fa(t2) 2 + [t — tof?
< (|A]| + 3¢ |Fy(t1) — Fa(ta)| + 32|t — to]
< (JA] +3¢*)(|F1(t1) — Fo(ta)] + |Fa(tr) — Fa(to)]) + 3|t — to
< (1Al +3e*) (| F1 — Faloo + Lip(F2)[t1 — t2]) + 3¢%[t1 — 1o
< (JA| +3e®) (1 4 + 3% €)||Fy — Falloo, see part 1
< A1 +3Cse*) (1 +e? +36%) | F1 — Falloe
< e X(1+4301e?)(1 4 &% + 36%) || Fi — Faloo-




74 OMRI M. SARIG
It follows that for every e small enough, ||G1 — Galleo < e X/2||Fi — F3|oo-
Part 3. For all € small enough, ||t] — t| < VE(||F] — F3lloo + || F1 — F2H§.f3)

Differentiating both sides of the defining equation of ¢; gives

{B+%}12(F oty t;)F ot; +88}; (F; ot,,t)} 1.

Taking differences, we obtain after some re-arrangement

Oho Ohy
(t) — ){B‘*‘ 9 2(Fyoty,t1)F] oty + ——(F) 0t17t1)} =

Ay
[Oh oh |
— 83:2 (Fyoty,ty) — 63:2 (Fy Otg,tg)_ Floty =1
,6h2 / / / /
—tyg s (Froty o) [(Floti — Fyoty) + (Fyoti —Fpoty)] =11
[Oh oh 1
— t2 _ 8:[/2 (F1 Otl,tl) 8y2 (FQ OtQ,tQ)_ =: III

Since |B| > eX, |F{| < 1 and |Vhal|| < 3¢2,
1) =t < ——— [T+ T 4 111
bo2loe = ox — 6e2 oo
Since I, IT and III involve partial derivatives of ho evaluated at (F; o t;,t;), we
begin by analyzing Vhy(F; o t;,t;). Since Holg,3(Vh;) <,

o [[Vho(Fy oty t1) — Vha(Fyoty,t1)| < el|Fy — Fo||2%;
[ ] thQ(FQOtl,tl) vh2(F2 OtQ,tl)H S 6||t1 —tg”ﬁ/g (because Lip(FQ) < 1);
o || Vho(Fyota,t1) — Vho(Faota,ts)|| < ellts — taf| 213

By part 1, [[t1 — t2]lco < €l|F1 — Fo|loo. It follows that

Vho(Fy oty t1) — Vha(Fy o ta,t2)|| < 3¢||Fy — Fy|?/3.

Using the facts that |t]| < 1, |[F{| < 1, Lip(#:) < 1, and Holg/5(F3) < 1 (see the
definition of admissible manifolds and the proof of Proposition 4.12), we get that

1] < 3e|| Fy — F 8%
11| < 32(|[FY = Fylloo + 12 — tal|2%) < 38| F{ = Fy|oo + 3°(| 1 — F2[|5%;
ITTT| < 3e||Fy — F||%/3.

So for all € sufficiently small, ||t} — t5 o0 < VE([F] — Fblloc + || F1 — F2||£<{3)

Part 4. ||G} = Ghllos < e™X/2(|F{ = Fylloo + | F1 — F2[I5%).
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By the definition of Gy, G} = tj[AF] o t; + G2 (Fj ot;, ;) F] o t; + G (Fj ot;, 1;)].
Taking differences, we see that

oh oh
|G — Gy| < |th —ty] - ‘AF{ oty + 67;(171 oty,t1)F ot + T;(Fl oty,t1) =T
+ [th] - |A] - (|[F{ ot1 — Fyoty|+ |Fy oty — Fy o to) =:1r
Oh Oh
+ |t T;(Flotlytl)_aixl(FQOtQ,tQ) |Fl oty — I
Oh
+ |t a—xl(FQOtg,tg) |Fl oty — Fy oty =1V’
8h1 ahl
thl | ==(Fyoty,t1) — =—(Fyoty,t =V
+ |t5] ay(lolal) 8y<202’2)

Using the same arguments that we used in part 3, one can show that

U < |[th = thllo (e + 66%) < VE(|IF] = Fylloo + 1F1 — F2]|5%)
' < e™X(|F = Fylloe + lIt1 = £2018%) < e X(1F] = Fylloo + | Fy — F2[|3) (part 1)
III' < 3¢||Fy — F,||/? (see the estimate of T in part 3)
IV < 362 ||F| — Fb|loo + 33| F1 — F||?/® (see the estimate of IT in part 3)
V' < 3¢||Fy — F5||/3 (see the estimate of III in part 3).

It follows that |G} — Ghllee < (67X + 10 4+ &) (| F| — Fil|oo + || F1 — Fo||2*). If
is small enough, then |G} — Ghlloo < e X/2(|F — F|loo + || F1 — F2\|§o/3) O

Proof of Proposition 6.3 The following proof is based on [BP, Chapter 7].
Suppose V? is an s—admissible manifold in \Ifg”»f which stays in windows, then
there is a positive chain (\I/f;u P f)izo s.t. \1/’;50‘ PO — U2"P" and there are s—admissible
manifolds W in WO st FH(VE) Cc W for all i > 0. We write
o V=W, {(t, Fo(t)) : [t| < p°},
o Wi =W, {(t, Fi(t)) : [t] < pj},

o 1 :==pi Ap;.
Admissibility means that ||[F/||z/3 < 3, |F/(0)] < %77?/3 and |F;(0)] < 1073n;. By

Lemma 4.4, e7° < n;/n;41 < €. By (4.1), Lip(F;) < e.

Part 1. If € is so small that e X + 42 < e X/2,
d(f*(y), f5(2)) < 6pge 2 for all k > 0.

then for every y,z € V?,

Proof. Since V* stays in windows, f*(V*) C U, [Rg._(2,)(0)] for all k > 0. There-
fore, for any y, z € V*, one can write f*(y) = ¥y, (y,) and ¥(z) = U, (24), where
Y, = Wk, Fi(yr)), 21, = (21, Fi(z1)) belong to Rq_(x,)(0).

For every k, ka = fwkwk-u(yk) and Zk+1 = fmk$k+1(§k)7 where fwk1k+1 =
V-l ofoW, . By (3.3),

Th41

Jeraper (V,w) = (Apv + hi(v,w), Byw + ha(v,w)) on Rg_(4,)(0),
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where C’f_1 < |Ag| < e7X, eX < |Bg| < Cy, and max ||Vh;|| < 3¢%. Thus

k1 — zisa| <Ax] - lyr — 26 + 3¢ (Jyn — 28] + Lip(Fr)|yx — 21])
< (X +422) |y — 2n| < e 2Ny — 2| <o < e 2RHDX |y — ).
Since Y, Zo are on the graph of an s—admissible manifold in \szgﬁ’p 3, their x—
coordinates are in [—pg, ], so |yo — 20| < 2pg. Thus |yx — 2k < 2e~2FXps. Since
. 1
Y, = W Fi(yr)), 2, = (2k, Fi(21)), and Lip(Fy) < e, ||y, — 2l < 3pge™2*.
. . . 1

Pesin charts have Lipschitz constant less than two, so d(f*(y), f*(2)) < 6pge~2*x.
Part 2. Suppose ¢ is so small that e™X 4 3¢? + 3¢ < e~3X and Cre+ 32 < 1. For
every y € V¥, let e*(y) denote the positively oriented unit tangent vector to V* at

y. If y € V*®, then ||d 565( ) < 66*”“XHC’ (o)~ Y| for all k£ > 0.
Proof. If y € V*, then f*(y) € W C W, [Rq_(2,)(0)]. So dffes(y) = (d¥a, )y, (bk)
where (Z;) is tangent to the graph of Fj. Since Lip(Fy) < 5, |b| < elag| for all k.
The identity (§*+') = (dfwkwk+1)gk (Z:) holds. Since ||Vh;|| < 3¢2,

br41

(%H) o At ge (¥,) aa’;l (y,) (%) B ((Ak + 3e%)ay, £+ 352|bk>
ber1) %’;2 (yk) By + %’;2 (yk) bi)  \(Bp +32)by + 3¢2|ag| )
It follows that |agi1] < (JAk| + 3€? + 3¢3)|ag|. By the bounds on Ay and By, and
the assumption on ¢,
lax| < e_%kx|a0| and |bg| < elag| < e_%kx\a(ﬂ.

Returning to the defining relation dffe’(y) = (AW )y (Z:), and recalling that
|[d¥,, || <2 (Theorem 2.7), we see that ||dfk Sy < 2\[@ 3kX|qq).

Since (30) = (dWa, ), e* (), laol < 1AV, so [|df e’ (y)l| < 2v2e 55 dw ).

For every z, ||d¥ 1|| < 2||Cy(z)7!| because Cy(z)~! maps B3g.((0) into
Byes/6(0) C Bao(0) C Byan(0), provided e < 3p(M), and by the definition p(M)
is so small that ||(dexp;!)y| <2 for all 2 € M and y € B,)(0).

It follows that [|df¥e®(y)]| < 6[|Cy(20) = [le~ 55X,
Part 3. The following holds for all £ small enough: for all y,z € V* and n > 0,
|log [|dfye®(y)|| — log|ldfZe® (2)|l] < Q=(xz0)?/*.
Proof. Call the quantity to be estimated A. For every p € V*,

A (P = A et ()] = e O] - A3 e ()]
S ﬁ ldf e’ (PN - € (F4(0)):

Thus A := [log sy | < z log ldf 7.y (F* W) = log lldf px oy e* (F£ ()] -
We shall estimate the sum term by term, using the Holder continuity of df.

In section 3.1 we covered M by a ﬁnite collection Z of open sets D, equipped
with a smooth map ©p : TD — R? s.t. Op|r,ar : T M — R? is an isometry, and
¥, = Op'[ge : R? = TD has the property that (z,v) + 9, (v) is Lipschitz on
D x By(0). Since f is a C'*A-diffeomorphism and M is compact, df,[v] depends
in a f—Holder way on p, and in a Lipschitz way on v. It follows that there exists a
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constant Hy > 1 s.t. for every D € 9, for every y,z € D, and for every u,v € R?
log [|dfy (9y(w))]| - log IIdfz(ﬁz(v))I‘ < Hy(d(y, 2)° + lu— 1))

Choose Dy, € 2 s.t. Dy > f*(y), f¥(2). Such sets exist provided ¢ is much
smaller than the Lebesgue number of 2, because by part 1 d(f*(y), f*(z)) < 6¢.
Writing Id = Op, o ﬁfk(y) and Id = ©p, o ﬂfk(z), we see that

of length one,

n—1

A<y [log l1df 1) P pr () O (F* (W)) | = log [|df pr (29 g5 (2O e (FF ()]
k=0

S Ho (404 (1), £5(2))° + 190, (£ (3)) — O, (7))
k=0

IN

< Ho(6p)”

n—1
< T 1ot Ho D 100, (FF W) — Op, e’ (A, by part 1. (A.16)

k=0

We estimate Ny := [|©p,e*(f*(y)) — Op,e*(f*(2))||. By definition, e*(f*(y))
and e*(f*(z)) are the positively oriented unit tangent vectors to f*(V*) C Wg, at
f*(y) and f*(z). Defining y, and z, as before, we obtain

N 1
ot ) = el () gy 2 W)
12y, ()| 1@ 0)z, (g (2
We saw in part 1 that [|(d¥,,),"|| and ||(d\IJ$k,);k1H are bounded by 2[|C, (z)) !,

—1||—1.

so the denominators are bounded below by 3||Cy(z) Since for any two

non-zero vectors v, u, ||v/||vll — w/|lull|| < 2[lv — ull/|l2],
@(d\IJ)<1>®(d\IJ)<1>H
DT F ) TP R FL ) ) |

On Dy we can write ¥,, = exp,, oU;, o Cy,, where ¥;, o Cy, = Cy (). Let

1 1
gk = Cx(xk)gk’géﬁ = Cx(xk)gk, and yk = ka (F]::(yk;)) 722 = ka <F]g(2k;)>7

then N < 2/|Cy (@)~ - ||©, (dexp, Ju, 02 (24)] = O, (dexp, g [0 (23]
Since ©p, ¥, are isometries, C, are contractions, ||(dexp,, )u, || < 2, and [F} (yx)—
Fi(z)| < glye — 2l P72,

N < 2/Cy () O, (dexpy, u, [0, ()] — O, (dexpy, u, [0 ()] +
+2/|C (@) - | @ (dexp, Ju, [0, (w1)] = O, (dexp,, Jug [0 ()]
< 2|Cy () M| - lyw — 2]+
+ 2 Ca) - [, (dexp,, Ju, [P (04)] — O, (dexp, Jug [V ()]

We study this expression. In what follows we identify the differential of a linear
map with the map itself.

By construction, the map (z,u,v) — [Op o (dexp,)u] [J2(v)] is smooth on D x
Bs(0) x Bs(0) for every D € 2. Therefore there exists a constant Fy > 1 s.t. for

Ne < 21Cy ()| - \
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every (z,u;,v,) € D x B2(0) x B2(0) and every D € &,
1©p(dexp,)u, [02(01)] = Op(dexp, )u, (Ve ()l < Eo(lluy — wsll + lluy — o).
It follows that

Ny < 201 Coan) - (k= 2417 + Bo (g — ] + 1o — 1)

< 20Cy () 1 (e = 2617 + Bo (Ily, — 2l + Iy — 2177%))
< 6Bo[|C(z) " llly, — 2xlI7® (- Bo > 1)
_ _1g 1k
< 6Eo||Cy (1) 7| (3p5) P2~ 5XF because Iy, — zell < 3pge 2kX (part 1)
< 9By || Clan) | (p5)* P65
By the definition of Q=(), [[Cy(ar) ™" < eV/*Qc(zx) =12 < e/ (pj)=F/12,
and therefore Ny < 9eY/4Ey(ps)~#/12(pg)P/3e~ 5%k Since (Wht ),z is a chain,
pi = min{ep; ,, Q-(x;)} < e°ps,, for all i, whence p§ < e*p;. It follows that for
all e small enough,
N < 964 Ey(pg)P/* exp[— 2 Bxk]. (A.17)
Plugging this in (A.16), we obtain

o IEE W] _ (6 Hopi)™s 9 EoHo )
Sldrre )| S\ T3 1 _e-thx ) W0

i

9836/4E0H0

g =070 B/4

- ( 1 —e o )QE(%) |

The term in the brackets is less than one for every ¢ small enough. How small
depends only on M (through Fjy), f (through Hy and ), and x. |

Proof of Proposition 6.4 We continue to use the notation of the previous proof.

Assume that VSN U® # @. We show that V° C U® or U®* C V*.

Since V* stays in windows, there is a positive chain (‘I’%’p Zf')izo such that
PLIPT — gp"P* and such that for all i > 0, fi(V*) C W# where W is an s
admissible manifold in W% 7'

Claim 1. The following holds for all € small enough. f*(V*®) C ¥, [R%Qs(%)(g)]
for all n large enough.

Proof. Suppose y € V¥, and write as in part 1 of the previous proof, f™(y) =
Wy, (y,) where y = (yn, Fr(yn)) and F, is the function which represents Wy in
¥, . We have Ypir = fanansr (4 ), which implies in the notation of the previous

=N

proof that if € is small enough, then
Ynt1l < [Anl - [yl + [ha(y,)] < 1Anl - [yl 4+ [21(0)] + [VRLI([yn] + [Fn(yn)])
< e X yn| + e 4 3% (lyn] +13) < (7% 4 3% [yn| + 2¢p5,
< (7% 4 3&%)|yn| + 2e min{epd 1, Qc(v,)}
< (7% 4 3% |yn| + 2¢%ep} 1 < €|y + 4ep) 4
We see that |y,| < a, where a,, is defined by induction by

a0 = Q:(20) and a1 = e X %a, + dep} -
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We claim that if ¢ is small enough, then a, < ipr for some n. Otherwise,
py < 4a, for all n, whence an,41 < (e_X/2 + 165)an for all n, which implies that
an < (€72X416¢)"ag. But by assumption, a, > 105 > 1(PLADS) = Te " (py Apg)
(Lemma 4.4), so necessarily e™¢ < e~X/2 4 16¢. If € is small enough, this is false
and we obtain a contradiction. It follows that In s.t. a, < %pfl.

It is clear from the definition of a,,, that if € is small enough then a,, < ipfl ==
any1 < ipfﬂ_l. Thus a, < %pf1 for all n large enough.

In particular, |y,| < iQE(xn) for all n large enough. Since y = (Yn, Fr(yn))
and |F(yn)| < [F(0)] + Lip(Fy)[yn| < (1077 +€)Qc(2n), ”ynH < %Qs(xn) for all
n large enough.

Claim 2. The following holds for all ¢ small enough: f"(U®) C ¥, [Rg_(,)(0)] for
all n large enough.

Proof. U?® stays in windows, so there exists a positive chain {\Ilgg’qf }i>0 such that
\Ilggj’qg = \I/gu’qs and such that for all i > 0, f{(U®) is a subset of an s—admissible
manifold in \I/Z’?’q:.

Let z be a point in U° N V*. By Part 1 of Theorem 6.3, for any w € U*®
d(f"(2), f"(w)) < Ggge™ 2"X. Therefore £ (2), f"(w) € Bo. (z,)+q5 (1n) C Bre(an).
If ¢ < 1p(M) (cf. §2.3), then || exp; }[f"(2)] — expy ' [f™(w)]]| < 12~ 2"Xg§, so

[ [ (2)] = W @)]]] < [[Clan) 7 - 127 27gg.

Since p;, < Qe(n) < | Co () 171 [[WZ ™ (2)] = WL [ (w)]]] < 12(p3) ~Lgge 2.
Since {\I/f;; ’pl}zez is a chain, p; = max{e®pj, , Qc(x;)} < e°pj,, for all i. It
follows that p§ < e™py, whence

ZI/’
" n— 00

||'l’;n1 [f"(2)] = O, f || <12 (p ) PRI L — exponentially fast.
0

Since Q(z,) > (p% Aps) > e ="(py§ A pd), for all n large enough

02 17 )~ A @] < 5 Q)

How large depends only on (p§, py) and ¢.

Since, by claim 1, [[W1(f"(2))|| < £Q<(zy) for all n large enough, we have that
(@ 1(f"(w))|] < Qe(xy) for all n large enough. All the estimates are uniform in
w € U?, so the claim is proved.

Claim 3. Recall that V* is s-admissible in W2"?" and U* is s-admissible in \Ilgu’qs.
If p* < ¢® then V* C U?, and if ¢° < p® then U® C V5.

Proof. W.lo.g. p°® < ¢°. Pick ng s.t. f*(U?), f*(V*) C V., [Ro.(a,)(0)] for all
n > ng, then fo(V*), fro(U%) C W* := VS[(\I'ig’pf)iZnO] (Proposition 4.15 (4)).

Let G denote the function which represents W* in W, then W '[f"(U*®)] and
W H[f™(V*)] are two connected subsets of graph(G). Write

fn(vs) = \Ilwn{(th(t)) S [OZ,B]},
fHU*) =9, {(t,G(t)) : t € [o, 5]}

The manifold f™(V?®) has endpoints A := ¥, (a,G(a)), B := ¥, (8,G(B)), and
the manifold f™(U#) has endpoints A’ := ¥, (o/,G(c)), B’ := ¥, (8',G(8)).
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Since V* and U® intersect, f™(V?®) and f"(U*®) intersect. Consequently, [«, 5]
and [o, '] overlap. We use the assumption that p® < ¢° to show that [«, 5] C
[, 3]

Otherwise a < o’ or 8 > . Assume by contradiction that oo < a’. Then A’ is
in the relative interior of f™(V*®). Since f is a homeomorphism, f~"(A’) is in the
relative interior of V*. Since f~"(A’) is an endpoint of U®, we obtain that U® has
an endpoint at the relative interior of V?.

We now use the assumption that x = y, and view V*® and U® as sub-manifolds
of the chart ¥,. The endpoints of U?® have s—coordinates equal in absolute value to
¢°, and the points on V* have s—coordinates in [—p®, p®]. It follows that ¢° < p®, in
contradiction to our assumption. The contradiction shows that o > «’. Similarly
one shows that 8 < ', with the conclusion that [«, 8] C [¢/, 8]. Tt follows that
(Vo) C f™(U?), whence V2 C U”. O

Proof of Lemma 10.8 Suppose Z = Z(\I/"g@gz’;’p(s))7 AR Z(\Ilg‘g’qé) intersect. We are
asked to show that for every z € Z and y € Z’, V¥(z, Z) and V*(y, Z') intersect at
a unique point. Loosely speaking:

e Since Z, Z' intersect, the parameters of w2070, wgﬁ’qg are close.

e This implies that u—admissible manifolds in \Ilp 070 are very close to being

u—admissible manifolds in \I/qo o

e Therefore they intersect s—admissible in \Ilq" D at a unique point.

The details follow. L
Fix some z € Z N Z’, then there are v,w € X% s.t. vy = WP 4y = \Ilqo’qo,
and z = 7(v) = 7w(w). Write p := p§ A p§ and q := ¢} A ¢5. By Theorem 5.2,
Y/ 15/ 45,p/a € [e” VF,eVF] and
\Il;1 oW, = (—1)7Id4+¢c+ A on R.(0),

0

where o € {0,1}, ¢ is a constant vector s.t. |lc[| < 1071g, and A : R.(0) — R?
satisfies A(0) = 0, and [[(dA),|| < e for all u € R.(0). By the Mean Value
Theorem, |A(w)]| < ¢2]u] for all u € R.(0).

Now suppose z € Z. V¥ := V*(z, Z) is a u—admissible in \I/ﬁ%’p 8, therefore it can
be put in the form V¥%(x,Z) = ¥, {(F(t),t) : |t| < py}, where F : [-p§,p§] — R
satisfies |F(0)] < 1073p, || F|lee < 1072py and Lip(F) < e.

We write V*(z, Z) in U, —coordinates. Let ¢ = (c1,¢2), A = (A1, Ay), then
Vi, Z) = [Wy, 0 (W' 0 Uuy J{(F(2),1) : |t] < pi}

= Uy {(-1)7F(t) + 1 + AL(F(2),1), (=1)7t + c2 + Ao (F(2), 1)) :[¢] < pg}
= Wy, {(F(0) +c1 + Ai(F(8),6).0 + 2 + Ao(F(9).0)) - 9] < i},

=:7(0)

where we have used the transformations 6 := (—1)7t, F(s) == (=1)° (( 1)7s), and
Ai(u,v) == Ay((—1)7u, (—1)°v). Notice that [F(0)| = |F(0)] < 10~3p, ||F||oo =
|Flloo < 1072p% and Lip(F) = Lip(F) < e. Also A(0) = 0 and [|(dA),] =
[(dA)u]l < ¥/ on R-(0).
Let 7(8) := 0 + ¢y + Ay(F(6),6). Assuming ¢ is small enough, we have
o 7/ € [e2VE (2VE;
o [T(0)] < lea] + [A2(F(0),0)] < 1071 + /2 - 1073 < &p (-p < e¥g).
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It follows that 7 is one-to-one, and 7[—p§,py] = [, 5] where a = 7(—p{) and
B = 7(py). It is easy to see that |a + pjj| < %p}j and |5 — p| < %pgz both
quantities are less than |co| 4+ sup Ry (0) \£2|, which is less than %pg provided ¢ is
small enough. It follows that 7[—p§,py] = [, B] D [—2¢, 2q].

Since 7 : [—p§, py] — [, B] is one-to-one and onto, it has a well defined inverse
function 6 : [a, ] — [—pi, p¥]. Let G(s) := F(0(s)) + c1 + Ay (F(8(s)),0(s)), then

Vi, Z) = Uy {(G(5), 8) : s € [, B}

Using the properties of 7, it is not difficult to check that ' € [e=2V% 2V
and |0(0)] = |0(0) — 0((0))] < e2V2|7(0)] < %62‘3/51). It follows that |F(6(0))] <
|F(0)| +£]0(0)] < (1073 + %eg%g)p < 10~2p, whence

|G(0)] < 1072p+107"q + ¥/Ep < min{gp, §a} (- a/p€le V5, e V)
G| < |1 F'|loolt| + 2/ 1+ [F/|2 0] < 2.

It follows that (for all £ small enough) G[—2 D, gp] c - %p, %p]
We can now show that |V (x, Z) N V*(y,Z")| > 1 (compare with [KM, S.3.7]).
Represent

Vo(y, Z') = Wy {(t, H(t)) : [t] < g5}

By admissibility, |[H(0)| < 1073¢ and Lip(H) < e, so H[-2p, 2p] C [-2p, 2p].
It follows that H o G is a contraction of [— %p7 %p] into itself. Such a map has a
(unique) fixed point (H o G)(so) = so. It is easy to see that W, (G(so), s0) belongs
to V¥ (x, Z)NV3(y,Z").

Next we claim that V¥(z,Z) N V*(y, Z') contains at most one point. Extend
G and H to e-Lipschitz functions G, H on [—a,a] where a := max{|al, ||, ¢5}.
By construction, |G(0)] < $a, so Gl-a,a] C [~a,a]. Also |H(0)| < 10~3a, so
H|—a,a] C [~a,a]. Tt follows that H o G is a contraction of [—a, a] into itself, and
therefore it has a unique fixed point. Every point in V¥%(z, Z)NV'* (y, Z') takes the
form ¥, (G(s),s) where s € [a, 5] and s = (H o G)(s) = (H o G)(s). Since the
equation s = (H o G)(s) has at most one solution in [—a,a], it has at most one
solution in [a, 8]. Tt follows that |[V¥%(x, Z) NV *(y, Z")| < 1. O

Proof of Lemma 10.10 We have to show: If Z = Z(\Diéy’pg) and 7' = Z(\Dggy’qg)
intersect, then (1) Z C W, [Rgungs(0)], and (2) for any z € ZNZ', W*(x,Z) C
Vi (x,Z") and Wé(x,Z) C V5(x,Z").

Fix some z € Z N Z'. Write = 7(v), + = n(w) where v,w € ©# satisfy
vy = ‘I’po’p" and wg \I/q"’qb. Write p = pg A pj and q = gy N ¢j- Since
7(v) = 7(w), we have by Theorem 5.2 that p/q € [e~ V5, e V%] and

\If;01 oW, =(-1)7Id4+c+ A on R.(0),
where 0 € {0,1}, ¢ is a constant vector s.t. [[c]| < 107 !¢, and A : R.(0) — R?
satisfies A(0) = 0, and |[(dA),|| < ¢/€ for all w € R.(0). By the Mean Value
Theorem, ||A(u)|| < ¥el||u|| for all u € R.(0).
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Every point in Z is the intersection of a u—admissible and an s—admissible man-
ifold in W50 therefore Z is contained in ¥, [R10-2,(0)] (Proposition 4.11). Thus

Z Wy, [(‘I’y]l © \Ija:o)[Rl()”p(Q)H C Wy, [(\I/g;l © \I/xo)[B\/iJo—?p(Q)”
< \I/yo [B(H \3/5)\/5-10*21)(@)] < q/yo [B(1+ e)v2-10—2¢ %q—FlO*lq(Q)]
c vy, [R(H_ ¥2)v/2-10—2¢ %(H_lo—lq(gﬂ C Wy [Re(0)] (-0 <e<).
This proves the first statement of the lemma.
Next we show that W*(z,Z) C V*(z,Z’). Write v; = \ng’pf and w; = \I/g,g’qf.
Since z = 7(v) and Z = Z(vg), we have by the symbolic Markov property that
FrWe(z, 2)) € We(f* (@), Z(or)) (k2 0).
The sets Z(vy) and Z(wy,) intersect, because they both contain f*(z). By the first
part of the lemma, Z(vy) C Wy, [Rgung: (0)]. Tt follows that
FrW* (@, 2)] € Wy, [Rgpng; (0)] € Wy, [Ro. (41 (0)]
for all k > 0. By Proposition 4.15 part 4, W*(z, Z) C V*[(w;)i>o0] = V*(z, Z"). O

Acknowledgements. This work was partially supported by the NSF grant DMS—
0400687 and by the ERC award ERC-2009-StG n° 239885. The author would like
to thank J. Buzzi, A. Katok, F. Ledrappier, and M. Pollicott for useful discussions.

Note added in proof. Recently Pierre Berger has come up with a construction
of countable Markov partitions for certain Hénon like diffeomorphisms. For these
maps he proved that the measure of maximal entropy is unique [Brg].
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