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ABSTRACT. We classify the ergodic invariant Radon measures for the horocycle
flow on geometrically infinite regular covers of compact hyperbolic surfaces.
The method is to establish a bijection between these measures and the positive
minimal eigenfunctions of the laplacian of the surface. Two consequences:
if the group of deck transformations G is of polynomial growth, then these
measures are classified by the homomorphisms from Gg to R where Go < G
is a nilpotent subgroup of finite index; if the group is of exponential growth,
then there may be more than one Radon measure which is invariant under
the geodesic flow and the horocycle flow. We also treat regular covers of finite
volume surfaces.

1. INTRODUCTION

Let M be a hyperbolic surface and T (M) its unit tangent bundle. The geodesic
flow is the flow ¢° : T*(M) — T'(M) which moves a line element at unit speed
along the geodesic it determines. The (stable) horocycle at a line element w is
the geometric location of all w’ € T (M) for which d(g°w, gw’) — O This

is a smooth curve. The (stable) horocycle flow ht : T*(M) — T*(M) moves line
elements along the stable horocycle they determine, in the positive direction.

A famous theorem of Furstenberg [F| says that if M is compact, then h has
a unique invariant probability measure. Variants of this phenomena have been
established for more general geometrically finite hyperbolic surfaces by Dani [D]
and Burger [Bu], for compact Riemannian surfaces of variable negative curvature
by Marcus [Mrc], and for more general actions by Ratner [Rat]|. The geometrically
infinite case is still almost completely open.

We restrict our attention to the simplest possible geometrically infinite surfaces,
the periodic surfaces. These are the surfaces of the form

M =T\D where {id} #T' < Ty, Iy is a torsion free lattice in Mob(D).

Here and throughout D is the unit disc, and M6b(D) is the group of Mobius trans-
formations which preserve D. M is a regular cover of the finite volume surface
My = T'o\D, and therefore looks periodic. The period of M is My, and the sym-
metry group of M (relative to M) is the group of deck transformations (which is
isomorphic to I'y/T"). A periodic surface is called cocompact if My is compact.
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The symmetry group of a periodic surface is always finitely generated, and any
finitely generated group can be realized as the symmetry group of some cocompact
periodic surface. A periodic surface is called Abelian, nilpotent etc. if its symmetry
group is Abelian, nilpotent etc.

It follows from the work of Ratner [Rat] that the horocycle flow has no finite
invariant measures on periodic surfaces of infinite volume, other than measures
supported on closed horocycles. But it has non—trivial invariant Radon measures,
e.g. the volume measure on the unit tangent bundle.

The ergodic invariant Radon measures (e.i.r.m.’s) for the horocycle flow on a
periodic surfaces have so far only been classified for free Abelian cocompact surfaces.
In this case every homomorphism ¢ : G — R determines a unique (ray of) e.i.r.m.
m s.t. modD = e?P)m (D € G) [BL], and every e.i.r.m. arises this way [Sg].

Our aim here is to describe the e.i.r.m.’s for general periodic surfaces. One
of our original aims was to understand how general is the situation that all hA—
ei.r.m.’s are quasi-invariant under all deck transformations. We show below that
although general Abelian and even nilpotent cocompact surfaces have this property,
polycyclic cocompact surfaces of exponential growth do not.

We begin with some remarks on general hyperbolic surfaces M = I'\D. Every h—
eir.m. on T*(M) lifts to some I'-invariant h—invariant Radon measure on T (D).
This set can be identified with (9D x R) x R as follows: Let o € D denote the
origin. For every e?’ € 9D and z € D let wy(2) be the line element based in z which
determines the geodesic which ends at e'’. The identification is

(€, 5,t) = (h' 0 g°)(we(0)).

We call (€%, s,t) the K AN —coordinates of w (this is the Iwasawa decomposition).
It is well-known that ¢° o ht = h'®" " o g°. Therefore, in these coordinates

ht(61907807t0) = (ewO?SOatO + t)7
gs(eieo, s0,t0) = (ewo,so + s,tpe”?).

It follows that any h-invariant measure m must be of the form du (e, s)dt.

If, in addition, m is quasi-invariant with respect to the geodesic flow, then
mog® = e V%m for some « and all s,' and we can decompose m further into dm =
e**dv(e??)dsdt for some finite measure v on 9. The measure v is then determined
by the requirements that m be I'-invariant and h—ergodic. These requirements turn
out to be equivalent to ergodicity and conformality w.r.t. the I'-action on 9D (see
[Ba] and below).

This is the approach used by Martine Babillot in [Ba] to classify h—e.i.r.m. which
are quasi-invariant w.r.t. the geodesic flow (for a different approach, see [ASS]).

In general, it is not true that any h—e.i.r.m. is g—quasi-invariant: Take a non-
cocompact periodic surface M with period My. Since My is a non-compact hy-
perbolic surface of finite volume, it has cusps. Every cusp is encircled by closed
horocycles of finite length. These horocycles lift to h-orbits on T1(M). The lifts
are not necessarily of finite length, but they are always locally finite: The Lebesgue
measure on them is a Radon measure on T%(M). This measure is h-ergodic and
invariant, but is not g—quasi-invariant. We call these measures trivial h—e.i.r.m’s.

1f m is h—e.i.r.m., then so is m o g° because g° o ht = ht¢” " 0 g°. Since m, mo g° are ergodic
and equivalent, they must be proportional. The constant must of the form e®s. Set 8 = a — 1.
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Our contribution is to show that the trivial measures are the only obstruction
to g—quasi—-invariance:

Theorem 1. Let M be a periodic surface with period My. Any non-trivial h—
e.i.r.m. on TY(M) is quasi-invariant w.r.t. the geodesic flow.

Let T" be a Fuchsian group, and v some measure on dD. We say that v is I'—
ergodic, if any I'-invariant function is constant on a set of full measure. We say that
v is T'—conformal (with parameter «) if v is finite, and % =|¢g|*forallg eT
(see [Su3]). Theorem 1 allows us to complete Babillot’s programme and show

Theorem 2. Let M = T'\D be a periodic surface. If v is non-atomic, I'—ergodic,
and conformal with parameter o, then e**dv(e')dsdt is a T'—invariant measure
on TY(D), which projects to a non-trivial h—e.i.r.m on T*(I'\D). Any non-trivial
h—e.i.r.m on TY(T'\DD) is of this form.

Recall that the hyperbolic Laplacian of D is a second order differential operator
on C?(D) s.t. Ap(fop) = (Apf)o ¢ for all ¢ € Méb(D). This determines Ap up
to a constant, and this constant can be chosen to make Ay = yQ(aa—:2 + 86722) in the
upper half plane model. The invariance property of Ap means that it descends to
an operator Ay; on M =T'\D, called the hyperbolic Laplacian of M.

The collection of positive A—eigenfunctions of Aj; forms a cone. The extremal
rays of this cone are directions generated by the minimal positive A— eigenfunctions:
the A—eigenfunctions F' for which Ay;G = \G,0< G < F = Jest. G =cF.

If P(e',z) := ‘;i;‘_zjz (the Poisson kernel), then P(e®, 2)* is an a(a — 1)-
positive eigenfunction of Ap (see §5.1). Consequently, any I'-invariant function
of the form 3 ¢, P(e%,2)®, ¢ > 0 defines a positive eigenfunction of Ay, We
call these eigenfunctions trivial eigenfunctions (see §6.1 for the connection with the
Eisenstein series). As it turns out, in this case e’ must all be fixed points of
parabolic elements of T' (see below).

Following Babillot [Ba], we consider the assignment

m = e**dv(e?)dsdt — F,(z) := / P(e?, 2)*dv(e"). (%)
oD
Theorem 3. Let M be a periodic surface. The mapping (*) is a bijection be-
tween the non-trivial e.i.r.m’s of h on T*(M) and the non-trivial minimal positive
eigenfunctions of Apr. This bijection satisfies:
(1) mog® =el@V3m & AyF, = ala—1)F,;
(2) modD =cm < F,, oD = cF,, for all D in the symmetry group of M.

Remark: Cocompact periodic surfaces have no trivial h—e.i.r.m’s, because compact
surfaces do not admit closed horocycles. They admit no non-trivial positive eigen-
functions for the Laplacian, because uniform lattices have no parabolic fixed points.
Therefore, for cocompact periodic surfaces, all h—e.i.r.m’s are g—quasi-invariant, all
h—e.i.r.m.’s have the form described in Theorem 2, and (%) is a bijection between the
collection of all h—e.i.r.m’s and the collection of all minimal positive eigenfunctions
of the Laplacian.

Acknowledgments: The authors wish to thank J.-P Conze, Y. Coudene, M. Forester,
L. Flaminio, Y. Guivarc’h, V. Kaimanovich, A. Raugi, and P. Sarnak for helpful
discussions.
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2. EXAMPLES

We illustrate these results by examples. We remind the reader that any finitely
generated group is the symmetry group of some cocompact periodic surface. The
classes of examples described below are therefore not empty.

Example 1 (Furstenberg’s Theorem [F]). The horocycle flow of a compact hyper-
bolic surface is uniquely ergodic.

Proof. This is the case when the symmetry group is trivial. Any eir.m. m
corresponds to a function F such that Ay F = ala — 1)F where a satisfies
mo ¢g® = e Vsm. Since m is finite (a Radon measure on a compact space),
« must be equal to one. Therefore F' is harmonic, whence (by compactness and
the maximum principle) constant. The representing measure of the constant func-
tion is proportional to Haar’s measure d\. It follows that m is proportional to
e*d\(e'?)dsdt =volume measure. (]

Example 2 (Dani-Smillie Theorem [DS]). The ergodic invariant Radon measures
for the horocycle flow on a hyperbolic surface of finite area are all finite, and consist
of trivial measures and measures proportional to the volume measure.

Proof. Dani and Smillie proved this by showing that non-periodic horocycle orbits
are equidistributed. We deduce it from theorem 3, and the fact that the minimal
positive eigenfunctions in this case are either trivial, or constant (see §6.1). O

Example 3 (Kaimanovich’s Theorem [Kail]). The volume measure on a periodic
surface is h—ergodic iff all bounded harmonic functions on the surface are constant
(the Liouville property).

Proof. Kaimanovich proved this for all hyperbolic surfaces [Kail]. We explain how
his result fits with ours in the periodic case. Let M be a hyperbolic periodic surface
with symmetry group G and period My. The volume measure on T (D) is of the
form dm = e*d\(e?)dsdt, where ) is Haar’s measure on OD. Haar’s measure is I'-
conformal of parameter 1. By theorem 2, it is ergodic iff m is an e.i.r.m., in which
case (by theorem 3) Fy,,(2) = [, P(€",2)d\(e") = 1 is minimal. This shows: The
volume measure is ergodic iff 1 is a minimal harmonic function. But 1 is minimal
exactly when all bounded harmonic functions are constant. O

Example 4 (The strong Liouville property). The volume measure on a periodic
surface is the unique g—invariant h—e.i.r.m. on M iff all positive harmonic functions
on the surface are constant (the strong Liouville property).

Proof. g-invariant h—e.i.r.m’s are necessarily non-trivial, and therefore correspond
to minimal positive harmonic functions. The volume measure corresponds to the
constant function. O

Example 5 (Nilpotent surfaces). Let M be a cocompact periodic surface with nilpo-
tent symmetry group G. Fvery homomorphism ¢ : G — R determines an h—e.i.r.m.
measure m (unique up to a constant) such that modD = e?Plm for every D € G,
and every h—e.i.r.m. is of this form.

Proof. This is because the minimal positive eigenfunctions for a cocompact nilpo-
tent surface form a family {tF, : t > 0,¢ : G — R is a homomorphism}, where
F,oD = e¥\P)F, for all D € G (see §6.2). This example strengthens the main
result of [Ba] by removing the g—quasi-invariance assumption. [
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Example 6 (Polynomial growth). Let M be a cocompact periodic surface of poly-
nomial growth®. The symmetry group of M contains a finitely generated normal
nilpotent subgroup N of finite index, and the rays of h—e.i.r.m.’s on T*(M) are in
bijection with the homomorphisms from N to R.

Proof. Let M be a periodic cocompact surface of polynomial growth with period
My and symmetry group G. Let Fy C M be one of the connected preimages
of My under the covering group which project to My bijectively. The collection
{D e G:FynD(Fy) # @} is a finite set of generators for G. Let | - | be the word
metric w.r.t. to this set of generators. Then

#{D € G:|D| <n} xwvol(Fy) <wol{p € M :d(p,Fy) < (n+1)-diam(My)}.

Therefore, G has polynomial growth. By Gromov’s theorem [Gr], G contains a
nilpotent subgroup Ny of finite index. The group N := ) e g 1 Noyg is normal
and nilpotent. By Poincaré’s theorem ([Ro], theorem 1.3.12) Ny has finite index in
G, because the intersection which defines it has a finite number of different terms.
Since N has finite index in G and G is finitely generated, N is finitely generated
(see e.g. [Ro], theorem 6.1.8).

We claim that there is a compact hyperbolic surface M; such that M is a nilpo-
tent surface with period M; and symmetry group N (we thank Y. Coudene for this
observation). This finishes the proof, by reducing Example 5 to Example 4.

Write My =To\D, M =T\D, and G =T/T. Since N <G, N =T1/T for some
<l <. It follows that M is regular cover of M; := I'1\D, and the group of deck
transformations of this cover is 'y /T' = N. To see that M; is compact, note that
it is a finite cover of My, because |I'g/T'1| = [(Ty/T")/(I'1/T)| = |G/N| < 0. O

Remark: This shows that the h—e.i.r.m.’s on a cocompact periodic surface of
polynomial growth can be naturally parameterized as a d—parameter family with
d = rank(N/[N,N]) (where the rank of the finitely generated Abelian group
A= N/[N,N]is the d in A/Tor(A) ~ Z%).

Example 7 (Polycyclic surfaces). Cocompact polycyclic surfaces which are not
virtually nilpotent are Liouville, but not strongly Liowville.> Therefore,

(i) The volume measure on T*(M) is a g—invariant h—e.i.r.m.;
(ii) There are other g—invariant h—e.i.r.m.’s., and these measures are not quasi—
invariant w.r.t. all deck transformations.

Proof. A cocompact polycyclic surface has the Liouville property (Kaimanovich
[Kai2]), and we saw that this implies (i). If M is not virtually nilpotent, then it
is not of polynomial growth. Polycyclic groups are linear, therefore the work of
Bougerol & Elie [BE] provides a non—constant positive harmonic function F on M.

Any positive harmonic function is the barycenter of minimal positive harmonic
functions, so it is possible to find a non—constant minimal positive harmonic func-
tion Fj.

2A Riemannian surface is said to be of polynomial growth, if the volume of balls of radius R
is O(RY) for some 6 as R — co.

3@ is polycyclic if 3G; <G s.t. {1} =Go <+ <A1Gpn = G and G;/G;_1 are cyclic. Polycyclic
groups are characterized as the solvable groups all of whose subgroups are finitely generated. G is
virtually nilpotent if 3N <G nilpotent such that |G/N| < co. Finitely generated virtually nilpotent
groups are characterized as the groups of polynomial growth: if A is a finite set of generators,
then [A™| = O(n®) for some a.
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The measure mgy which corresponds to Fj is g—invariant, because F has eigen-
value zero. We claim that it cannot be quasi-invariant w.r.t. all deck transfor-
mations. The horocycle flow commutes with all deck transformations. If m were
quasi—invariant w.r.t. all deck transformations, then mg o dD = e? P with
¢ : G — R a homomorphism (equivalent ergodic invariant measure are propor-
tional). Any homomorphism into R must vanish on [G,G]. Going back to Fy we
see that Fypo D = F for all D € [G,G]. Tt follows that Fy descends to a positive
harmonic function on M/[G,G]. But this cocompact surface is Abelian (its sym-
metry group is G/[G, G]) and all positive harmonic functions on Abelian surfaces
are constant [LS], a contradiction. O

Example 8 (The Thrice Punctured Sphere). Working in the upper half plane H,

define D(2) i= {p(2) = 224 (21 ) € SL2.2), (21) = (4 ) mod2).

(1) My =T'(2)\H is a finite volume hyperbolic surface, and is homeomorphic
to the sphere minus three points, which correspond to three cusps;

(2) Suppose G is a group generated by two elements, and G % Fy. There exists
a periodic surface Mg with period My and symmetry group = G;

(3) The e.i.r.m.’s for h : T*(Mg) — TY(Mg) consist of trivial measures, and
of the measures given by theorems 2 and 3.

Remark. A theorem B.H. Neumann says that there are uncountably many non-
isomorphic groups with two generators, see e.g. [Ro].

Proof. The topological description of My can be found in [Kat], page 141. It is
a classical fact due to Klein that I'(2) is a free group on two generators. If G is
generated by two elements, then there is a surjective homomorphism H : I'(2) — G,
and T' := ker(H) is a normal subgroup of I'(2). If G % Fy, then H is not an
isomorphism, so I" # {id}. The surface M := I'\H is then a periodic surface with
symmetry group I'(2)/ker(H) =2 Im(H) = G. Parts (2) and (3) follow. O

3. GENERALITIES ON MOBIUS TRANSFORMATIONS, FUCHSIAN GROUPS, AND
ORBIT COCYCLES

3.1. The Bowen—Series map. Fix a Fuchsian group Ty s.t. To\D has finite
volume. Let Par(T'g) denote the collection of all fixed points of parabolic g € T'y.
Bowen and Series constructed in [BS] a countable partition {1, }4es of OD into arcs
with disjoint interiors, a generating set {gq }acs C T'o, and fr, : 0D — 0D with the
following properties:

(Orb) fr, is (almost) orbit equivalent to I'g: For all except finitely many (£,7n) €
(D)%, 3m,n >0 s.t. fF1(€) = fit (n) < 3g € Tg s.t. €= g(n).

(Res) frolint(1.) = galint(r,) (@ € 5).

(Mar) {Is}ees is a Markov partition: fr,(Io) N1Ip # @ = f(I,) 2 Ip.

(Tr) fr, is topologically transitive. In particular, for every a,b € S there exists
some n such that f7 (1,) 2 1.

(Fin) If Par(T'y) = @, then S is finite. Otherwise, 35Sy C S finite s.t. the forward
fro—orbit of every € 0D\ Par(I'y) enters | J I,\Par(Ty) =: A infinitely
many times.

(BD) For any finite set Sy as in (Fin), let fs, : A — A be the first return map:
fso(z) = flfo(z)(ac) where p(z) := min{n > 1: f{ () € A}. There exists N
such that inf |(f§ )| > 1 and sup |f§ /f&| < co (Adler’s condition).

a€Sy
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Every word a = (ag, ...,an,—1) € S™ determines a set
n—1
—k
la] == () fr" (a).
k=0

This set, called a cylinder (of length n), is an arc. If it is nonempty, we say that a
is admissible.

Condition (Res) shows that any admissible word a = (ag, ..., an—1) determines
an element g, € I'g such that g, = flilo_lhg] = Ja,_, 0" 0gaif n > 2, or g, :=1id, if
n = 1. Condition (Mar) implies that g, maps [a] onto I,, ,. The content of (BD)
is that if ag, an—1 € So, then this is done with uniformly bounded distortion: There
exists a modulus of continuity w(d) -~ 0 such that for any cylinder [a],

log g4 (€1) — 10g 4 (€2)| < w(lga(€1) — ga(&2)]) whenever &1,6& € la]- (1)

(see [Ad]). In particular, there exists a constant By (independent of g or n) s.t.

1 |a@| |ese
Bo ~ |aa(y)| | (A ()
Properties (Orb), (Res), (Mar), and (Tr) are proved in [BS]. Property (BD) is also

proved in [BS], although it is stated there in a slightly weaker form. The proof of
(Fin) is sketched in the appendix.

< By for all z,y € [a].

3.2. The Busemann function and the Poisson kernel. Define two functions
ag(z1,22),b9(21,22) (0 <6 < 2w, 21,29 € D) such that

wy(z2) = h*05172) 0 gh0(5122) (g (27)).
The action of Mob(D) on T*(D) in the K AN—coordinates is then
g(e?,s,t) = (g(eie), s+byg(g " 0,0),t+ e *ag(g o, 0)) (g € Mob(D)).  (2)

The function by (-, -) is called the Busemann function (some authors use this name
for —bg(-,-)). The function ag(-,-) is not important in our context.

The geometric meaning of the Busemann function is explained by the identity
bg(21,22) = limsﬂood(gswg(zl),gsw(,(@)). It immediately follows that bg(x,y) +
bo(y, z) = bg(x,2), and that by.4(g(2), g(w)) = be(z,w) for all g € Méb(D) (where
g -0 is an angle such that g(e*) = ¢%9'9).

We now explain the potential theoretic meaning of the Busemann function, fol-
lowing [Kai2] and [F]. The harmonic measures of D are d\,(e??) = P(e, z)d\(e®)
\;;‘j‘:lz is the Pois-
son kernel. The harmonic measures satisfy A, o g~ = Ay(,) (9 € M8b(DD)).* The

Busemann function satisfies by(z1, z2) = —log ﬁi(ew).f’ In particular:
Z2

by(g~"0,0) = —log|g'(¢")]. (3)

where ) is the normalized Haar measure of D, and P(e?, 2) =

4Every f € C(0D) determines an harmonic function F(z) = [ fd\. with boundary values f.
Since g € Mob(D), F o g is harmonic, with boundary values f o g. Thus, [ fdXg.) = F(g(2)) =
J fogdr: = [ fdr.og~1. Since f was arbitrary, the identity must hold.

21 (&) satisfies hg(z,2) =
22

ho(x,y) + ho(y,2) and hgg(gx,gy) = hg(z,y) for all g € Mob(D). All such functions must be
proportional to the Busemann function. Checking specific points we see that hg = bg.

5The following argument is from [Kai2]: hg(z1,22) := —log Zi
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3.3. The limit set. The limit set of a Fuchsian group I (acting on D) is the set
A :={z: z is an accumulation point of T'w for some w € D}.

The limit set is subset of dD. It is characterized as the smallest non-empty I'-
invariant subset of . In particular, A is is equal to the set of accumulation points
of any single I'-orbit, and T' acts minimally on its limit set (see [Be]).

A Fuchsian group is called non-elementary if its limit set contains more than two
points. In this case it must be uncountable [Be]. A Fuchsian group is said to be of
the first kind if A = 9.

Any torsion free lattice in Mo6b(D) is of the first kind [Be]. Any non—trivial
normal subgroup I' of a group of the first kind I'y is again of the first kind: The
limit set of I' is invariant under I'y, because I' < T'g. Since I" # {id}, this set is
non—empty, and therefore (being a closed T'p—invariant set), must contain the limit
set of I'yg. But this set is ), by assumption.

3.4. Translation lengths. Recall that id # g € Méb(D) is called hyperbolic if it
has two fixed points in 0. In this case one of these points is repelling, the other
is attracting, and the geodesic which connects them — called the axis of g — is left
invariant by g. A hyperbolic Mdbius transformation moves the points on its axis a
fixed (hyperbolic) distance. This distance is called the translation length of g, and
is given by 7(g) := [log|g’(p)|| where p is one of the fixed points of g.°

Define for a torsion free Fuchsian group I'

7(T') :={7(g) : g € T is hyperbolic}.

This set is also called the length spectrum of T\D, because it is equal to the collection
of lengths of closed geodesics on I'\D. We need the following two properties of 7(I'):

(FI) If T'o\D has finite volume, then 7(I'g) intersects any compact interval at
most finitely many times (see §6.4). Clearly, every subgroup I' < Ty inherits
this property.

(NA) If T is Fuchsian and non-elementary, then 7(I") generates a dense subgroup
of R (Guivarc’h & Raugi [GR], Dal’bo [Da2]). This, in particular, is the
case for non-trivial normal subgroups of lattices (which as mentioned above
are of the first kind, whence non-elementary).

3.5. The orbit equivalence relation. Let X be a complete metric separable
space, and suppose G is a countable discrete group which acts on X in a continuous
way. The orbit equivalence relation of G is

6 =6(G) ={(r,y) e X xX:JgeGst. y=gx)}

An orbit cocycle is a Borel function & : & — R with the cancellation property:
O(z,y) + ®(y, 2) = ®(x, z). Automatically, ®(z,z) =0 and ®(z,y) = —D(y, ).

A &-holonomy is a bi-measurable bijection between Borel sets dom(k),im (k) C
X Borel s.t. for all z € X, (z,x(z)) € . Such maps take the form z — g,(z)
where g, € G depends on = measurably. The following fact is standard: If m is
G—invariant, then m o K|gom(x) = M|dom(x) for all &-holonomies.

More generally, let (X, F) be a complete metric separable space with its Borel o—
algebra. A countable Borel equivalence relation is an equivalence relation ® C X x X

60ne way to prove this is to note that any hyperbolic g € Mob(D) is conjugate to z — kz
(k> 0) on {z: Re(z) > 0}. This isometry has translation length |log k|.
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with countable equivalence classes which forms a Borel subset of X x X. The &-
holonomies are defined as before. A Borel measure on X is called &—invariant
if it is invariant under all &—holonomies, and &—-ergodic if every Borel function
which is invariant under all holonomies is a.e. equal to a constant. In the case of
the orbit equivalence relation of a countable group, these definitions coincide with
the usual definition for ergodicity and invariance w.r.t. a group action. (In fact,
any countable Borel equivalence relation is the orbit equivalence relation of some
countable group of Borel automorphisms [FM].)

Suppose m is a Borel measure on (X,F). Some care is needed in discussing
‘almost everywhere’ statements in &, because an equivalence relation usually has
zero measure w.r.t. m X m. A property P(z,y) of pairs (z,y) € X x X is called
Borel, if {(z,y) € & : P(x,y) holds} is a Borel subset of X x X. A Borel property
is said to hold m—almost everywhere in &, if the set

{z € X : P(z,y) holds for all y s.t. (z,y) € &}

has full measure. The Borel measurability of sets of this form is proved in [FM].

4. PROOF OF THEOREM 1

Fix two Fuchsian groups I', T'g such that {id} # I'<aT'g and Ty is a lattice. Let mg
be a I'-invariant measure on 7" (D) which descends to a non—trivial h—e.i.r.m. on
T'(M) where M = I'\D. We have already remarked that in the K AN—coordinates,
any h-invariant measure is of the form dm(e®,s)dt. By (2), mg is T-invariant iff
m is left invariant by the following I" action on 0D x R:

g:(e”.5) = (9(e), 5+ bo(g"0,0)) = (g9(e”), s —log|g'(e)]) (4)
It is also easy to see that the condition that mg descends to an h—ergodic measure
is equivalent to saying that m is ergodic with respect to the I' action (4).

Abusing notation we denote the action g* : (¢, sq) +— (e, 59 + s) by the
symbol reserved for the geodesic flow, and set H,, := {s € R: mo g°* ~ m}. This
is a closed subgroup of R, and our goal is to show that H,, = R. This suffices,
because m o g* ~ m iff mg o g° ~ myg.

4.1. Two Lemmas. Let N.(-) denote the e-neighborhood of a set, and T, Ty, and
m be as above. We assume throughout that mg projects to a non-trivial measure
on THT\D).

Lemma 1 (Holonomy Lemma). Let [a] C ID be a cylinder and I be a compact
interval such that m([a] x I) # 0. For every 7o € 7(T") and € > 0, there exists a 1-1
measure preserving Borel & such that £([a] X I) C [a] X N¢(I + 79) mod m.

Proof. The non—triviality of mg implies that m(Par(T'g) x R) = 0: Otherwise, by
ergodicity, m is supported on a set of the form {(g(e'%), s —log |¢’(¢?)|) : g € T}
for some parabolic fixed point €% and some sy € R. This means that my is carried
by the 'images of a single horocycle whose line elements determine geodesics
which terminate at ¢?®°. Such horocycles project to one closed horocycle on T'y\D,
in contradiction to the non-triviality assumption.

Let So C S be the finite set given by (Fin), and assume w.l.o.g. that Sy contains
the first symbol ag of [a] (otherwise add this symbol to Sy). We claim that Ja € Sy
such that the fr,—orbit of a.e. £ € JD enters I, infinitely many times:” There

"More precisely: if Qq C ID is the set of points with this property, then m[(2, x R)¢] = 0.
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is certainly an a € Sy such that this happens with positive measure, because by
(Fin) and the previous paragraph a.e. orbit enters |J,cg, 1o infinitely often, and
this union is finite. Now, the event we are describing is fr,—invariant, therefore by
(Orb) T'p—invariant, whence (since I' C T'g) I'-invariant. Since m is ergodic, this
event must have full measure.

Now fix some [a], ], 7p,€ as in the statement. By the definition of 7(I"), there
is g € T’ hyperbolic with attracting fixed point £+ and repelling fixed point £~
such that |¢/(¢7)] = |¢/(€1)|7! = e™. We may assume w.l.o.g. that £+ € int([,).
Otherwise, choose some h € T' such that h(¢) € int(I,) and work with hogoh™!
(such h exists because I is of the first kind, and such groups act minimally on D).

If the repelling fixed point of g also lies in int(I,), divide I, into two intervals
I}, I such that ¢+ € int(IF). Otherwise, set I = I,, I; = @. We can always
make sure that the point p, which separates I} from I satisfies m({p,} x R) = 0,
because there are at most countably many p,’s for which this is false.

Observe that gt1(IF) C IF (any hyperbolic isometry contracts intervals which
contain its attracting fixed point but not its repelling fixed point). Therefore, if

_fele) cers
) {g%&) cel,,

than v(I,) C I, and |/ (£F)] = e~ ™.

Fix ¢ (to be determined later) and set [a%] := ¢g™*(IF). We claim that almost
every fr,—orbit enters [a}] U [a*] = ~*(1,) infinitely many times.

Assume by way of contradiction that this is not the case. In this case the function
N (&) := 1 (&) max{n : f (£) € v*(I)} U {0} is finite for m-a.e. (&, s).

By choice of a, the fr,—orbit of a.e. £ enters I, infinitely many times. Denote
these times by n1(£) < na(§) < ---, and consider the maps x; defined as follows:

For every &, let [, ..., &y, (¢)] be the cylinder which contains £. Then

Ki(€) = (D eortn o) T 07 0 FE D o

For every &, ki(§) = g¢(§) or ggl(f) for some g € T’ (which depends on ¢ but is
constant on [, . .., &, (e)]), because of (Res) and the normality of I in I'g. Abusing
notation, we define x;(§) to be g (§) or (ggl)'(é) (depending on whether x;(§) =
ge(§) or ggl(f)), and define for ¢ larger than the length of [a]

Rt (ew, s) (lii(em),s — log ‘f‘i;‘(ew)|)~

(i) R; is injective, because k; is injective (it is piecewise injective and the images
of the pieces are disjoint).

(ii) ; is measure preserving, because it is a holonomy of the orbit relation of
the action of " on 9D x R.

(i) IMy such that k;i(Ja] x I) C [a] X Nag(I), because the chain rule and
(1) show that |s'(€)] = BE |y (n)| for some 7 € I,, and this is uniformly
bounded away from zero and infinity.

(iv) For a.e. (&,8) € [a] x I, k;i(§,s) € [N > ] x N, (I), because by construc-
tion, N(%i(£)) > ni(€) > i.

Now, [N > i] x Ny, (I) is a decreasing sequence of sets whose intersection is negligi-
ble (because N < oo a.e.). These are subsets of the finite measure set [a] x Ny, (1),
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so their measure must tend to zero. By (iv), (m o %;)([a] x I) —— 0. But this
71— 00

contradicts (ii).

Therefore, for any ¢, the orbit of a.e. ¢ € [a] enters v*(I,) infinitely often. It
follows that [a] is (up to measure zero) of the form

o] = Hp,]n £l (7' 1)
i=1

where [p | are cylinders of length ¢; +1 and fléo[g | = I,. Define a map « on [a] by

%

£ —1 l;
iy st rern = (role )™ 070 Irglp,)-

(i) s is injective and k[a] C [a]: Indeed, x maps [p | N flffi (7*I,) bijectively

onto [p] N fr (7" 1) € [p,] N " (7).
(ii) k is a holonomy of the T' action on OD: This is because of (Res) and the
normality of I in T'g

(iii) sup |log |&'| + 70| - 0 on [a]. See below.

Before checking (iii), we explain how it can be used to complete the construction.
Fix, using (iii), ¢ large enough that |log |'| + 79| < €. As before,

7 (e, 5) — (k(e"), s —log |k ("))
makes sense, is measure preserving, and maps [a] x I into [a] X N(I + 719).

We check (iii). Observe first that each [p | starts with ag and recall that ag € So.
By the chain rule for every § € [p.] N fr_f‘ (v*IF) there are &1,& € [p,JN fl ()
(same sign for both) and & € 7¢I, such that

w2 e el
[(FE) (€)1 1 (65)]
Now |ffi (&1) — fii (&2)] < |/*IF|. Writing w.(8) for the moduli of continuity of
log || and using (1) , we see that

[log |"(€)| + 70| < w(V*IF]) + we (V' IF])

(where the sign is decided according to the half of I, which contains fléo (€)). Since
V(1) P 0, the result follows. O
—00

Lemma 2. For every £ € 0D, m({{} x R) = 0.

Proof. The non-triviality of mg implies that m(Par(I'y) x R) = 0, because of the
discussion at the beginning of the proof of Lemma 1. It is therefore enough to
consider £ € 0D\ Par(T'g) and show m({¢} xR) = 0. Assume by way of contradiction
that there is a £ € 9D \ Par(Tg) for which this is false.

Define 7(§) := {£7(9) : g € I, g(§) = &} = {log|g'(§)| : g € T, g(§) = &L
This is a proper definition because any g € I which fixes £ is hyperbolic, otherwise
¢ € Par(Ty).

The set 7(§) forms a subgroup of R. This subgroup is closed, because 7(§) C
7(T'), and 7(T') intersects any compact interval at most finitely many times (FT).
As mentioned in §3.4, 7(I") is not contained is a closed (proper) subgroup of R.
Therefore, 7(£) € 7(T).
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Fix some 79 € 7(I') \ 7(£), and let € := 1d(m9,7(£)). Choose some compact
interval I of length e such that m({£} x I) # 0. Consider the sequence of cylin-
ders [&,...,&n—1] which contain £. By the holonomy lemma, there exist measure—
preserving injections &, defined on [&,...,&,] such that

E"([f()?"'afnfl] X I) C [507"'5577,71] X NE(I+TO)-

The proof the holonomy lemma shows that we can choose %, to be of the form
(€, 5) — (kn(e?), s —log|k! (e%)|) with &, piecewise hyperbolic Mébius transfor-
mation. As before, k], can be defined unambiguously.

By construction, log|x},(§)| is 2e—close to (—79), and therefore does not belong
to 7(€). It follows that x,(§) # & Since by construction k,(§) — &, the set
{kn(&)}n>1 is infinite.

Hence, there are infinitely many pairwise disjoint sets in the list {%,,({{} % 1) }r>1-
These sets have measure m({&} x I) # 0, because %, is measure preserving. But
this is impossible, because they are all subsets of the set 9D x N (I 4 79), and this
set has finite measure because of the Radon property. (]

4.2. Proof of Theorem 1. . Let mg,m and H,, be as in the previous section.

Step 1. There exists a Borel measurable v : 9D — R such that m is carried by the
set {(e?,s) : s —u(e?) € H,,}.

Proof. Let & denote the orbit equivalence relation of the action of I' on JD:
& :={(n) €dDxID:3g el st. n=yg(&)}.

Let Ag C 0D be the collection of all points which are fixed by some id # g € T
Define & : & — R by

(I)(eml 6i92) — b91 (9_107 O) et & Ao and etfz = g(eiel)v gel
’ ' 0 otherwise.

Using the various properties of the Busemann function, it is not difficult to see that
this is a &—cocycle, i.e.
O(z,y) + Py, 2) = ®(x, z) for all &-equivalent z,y, z € ID.

The set of fixed points Ag X R is ['-invariant. It is clear that the orbit equivalence
relation of T on (0D x R) \ (Ap x R) is the same as
6 = {((z,5),(2,s") : (z,2") € & and s’ — 5 = D(z,2')}.

Since Ag is countable, m(Ag x R) = 0. Therefore, since m is I'-invariant and
ergodic, m is ®g—invariant and ergodic.
The cocycle reduction theorem of [Sg| constructs w : 9D — R Borel such that

(e %) +u(e) — u(e?) € H,, m-a.c. in &g.
This implies that F': IDxR — R/H,,, F(e¥,s) := s—u(e?)+ H,, is g-invariant,

and therefore (by ergodicity) constant almost everywhere. It now remains to modify
u by a constant to ensure that F' = H,, almost everywhere.

Step 2. The function u(e®) of the previous step can be made essentially bounded.

Proof. H,, is a closed subgroup of R, so it is either equal to R, ¢Z or {0}. In the
first case there is nothing to prove. In the second case, one can choose v = umod c.
It remains to treat the case H,,, = {0}. In this case, m is supported on the graph
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of u, {(e?,u(e’?)) : 0 < 0 < 2r}. We claim that u is then automatically essentially
bounded.

Assume by way of contradiction that esssup |u| = oco. In this case there are
intervals I, J, 7o € 7(T'), and € > 0 s.t. m(OD x I) Z0,m(0D x J)#0,INJ =0
and N(I +79) C J.®

Define two measures on 0D by pr(E) := m(E x I), uj(E) = m(E x J). These
measures are mutually singular: Indeed, s = u(e’®) m-a.e., so u(e’) € I pr-a.e.
and u(e®) € J py-a.e. Since INJ =@, ur L py.

Since pur L py, there exists some cylinder [a] such that ur[a] > 2ps[a]: Indeed,
the collection of all Borel sets which satisfy the opposite inequality is a monotone
class. If it contains all cylinders, then it must contain all Borel sets (because the
cylinders generate the Borel sets). But this implies that p; < 2p; in contradiction
to pr L .

By the definition of [a], pr, and py, m([a] x I) > 2m([a] x J). We now obtain a
contradiction: Let & be a measure preserving injection % : [a]xI — [a] X N.(I+79) C
[a] x J. Then 2m([a] x J) < m([a] x I) = (mo®)([a] x I) <m([a] x J), and 2 < 1
or 0 < 0.

Step 3. After the change of coordinates ¥J(e?,s) = (6“9, s — u(ew))7 m takes the
form dm o9~ = e**dv(e?)dmy,, (s) where A € R, mp, is Haar’s measure on H,,,

and v is a finite measure on JD which is equivalent to a I'-ergodic I'-conformal
measure with parameter .

X
X

Proof. We have seen that m is supported on {(e?, s) : s —u(e'’) € H,,} with u(e')
Borel. It follows that m o 9! is carried by 0D x H,,. If we choose an essentially
bounded version of u, then m o ¥~ is Radon.

Since m is ergodic and g® commutes with the I'-action, m o g° is also I'-ergodic
and invariant. It is therefore either proportional to m, or singular w.r.t. m. It
follows that 3\ such that for all s € H,,, mo g = e m. Since ¥ and ¢° commute,
we also have mod~log® = e*mod~! for all s € H,,. Consequently, e”**dm o9 ~!
is invariant w.r.t. translations in H,,. It is not difficult to deduce from this and
the fact that e=**mo9~! is supported in 9D x H,,, that e"**dmod~! = v xmpg,,
with some measure v on JD.

This measure must be finite, because m o ¢¥~! is Radon. For every g € ', m is
g-invariant, and therefore m o 9~1 is 9 o g o ¥~ '~invariant. Comparing this with
the formula, m o9~ = e*v x my, we see that

dvog gy n €
dT(el ) =14l o—Auog

Therefore e*v is I'-conformal with parameter A (this is a finite measure because

esssup |u| < co and v(9D) < 0.)
Step 4. H,, = R, which proves the theorem.

Proof. Assume by way of contradiction that H,, # R. Since this is a closed
subgroup of R, H,, = ¢Z for some c.

8To see this pick some 7 € 7(I') and observe that the partition 9D x R = Wrez OD X [kT, kT +7)
contains at least two non—adjacent ‘tiles’ which carry some measure (otherwise m is supported
inside a bounded set, which is impossible because m is carried by the graph an unbounded func-
tion). If these intervals are [k;T, k;T + 7) where k1 < kg, then take e = 7/2, I = [k17, k17 + 7),
J = Nc(lka7, ko + 7)) and 7 := (k2 — k1)7 (this is the translation length of the (k2 — k1 )—power
of the I'-isometry with translation length 7).
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By the theorem of Guivarc’h, Raugi, and Dal’bo mentioned in §3.4, 7(T") gen-
erates a dense subgroup of R, and therefore there must be some 79 € 7(T") \ cZ.
Set £ := $d(0,¢Z), and fix some ug such that A := [lu — uo| < 2] has positive
measure. We construct a Borel set Ay and &—holonomy « such that Ag C A and
v(E) # 0, where

E:=AgNk " Ag N [|@(&, kE) + u(€) — u(ké) — o] < eo].

Sets of this form appear in the theory of essential values (see [Sch], [Kail]).
Before constructing Ag, we show how to use its existence to derive the contra-
diction which proves the step. If &(e??, s) = (k(e?), s + ®(x, kx)), then

(WoRod ) (E x {0}) CID x N, (10) C (0D x H,,)°.
Since ¥ o & 0o 9! preserves the measure m o 91,
0# v(E)=(mod™")(E x {0}) < (mod™)[(OD x Hy )] =0,
a contradiction.

The construction of Ag: Fix € > 0, to be determined later. There exists a cylinder
of positive measure [a] such that v(ANJa]) > (1—¢)v[a): Indeed, U O A open with
v(A) > (1 —e)v(U) (regularity of Borel measures). Now v has no atoms (because
m({&} x R) = 0 for all £ € 9D). Therefore, every open set is a countable disjoint
union of cylinders up to a set of measure zero. One of these sets must satisfy the
desired inequality.

By the choice of ug, m([a] x Neo (ug)) # 0. Construct a g—holonomy & s.t.

)
7 ([a] x Neo (u ) C la] x Nz (ug + 7).

0
Any Bg-holonomy is of the form (&,s) — (K€, s + ®(&,kE)) where x is a G-
holonomy. We must have

kla] C [a] and |®(z, kx) — 10| < %0.

Set Ag := [a] N A. We claim that if € is small enough, then v(Ag N k=1 Ag) # @.

We begin with an estimate of the Radon—-Nikodym derivative of k on Ay. The

I'-invariance of m is equivalent to its Bg—invariance, and this translates to the

B4, —invariance of m o 9~!, where ®,(£1,&) = ®(&1,&) + u(éy) — u(&s). Since

mo ¥l = eMv x my,,, this forces eE(¢) = e PulEnr) = eE2[Aulloc g=AP(E:1E),
Therefore, on Ag C [a]

d €
% > g2l =B — A0 . 5
It follows that v(kAp) = on d’;s" dv > dov(Ag) > do(1 — €)v]al, since by construc-

tion v(Ag) > (1 — e)v[a]. Tt follows that
v(Ag) +v(kAg) > (1 —&)(1 + do)v]al — (1 + do)val,

so we can choose € small enough so that the left hand side is strictly larger than v|a].
But Ao, x(A4o) C [a], so necessarily v(Ag N K(Ag)) # 0. Since x is non-singular,
v(AgN K™ (Ag)) =vor (Ao NK(Ay)) # 0.

Finally, we observe that if £ € Ag N k™' Ay, then &, k(§) € A = [Ju — ug| < 2]
and so |®(&, k) + u(§) — u(kE) — 10| < |P(E, KE) — 70| + |u — ug| + |ug — wo k| < &q.
It follows that v(E) # 0. O
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5. PROOF OF THEOREMS 2 AND 3

5.1. >-Potential Theory. It is known that ApP(e?,2)* = a(a — 1)P(e?, 2)*
for all 0 < 0 < 27.2 Tt turns out that if a > 1/2, then this is a complete family of
minimal eigenfunctions for the eigenvalue a(o — 1) ([Kar], [Sul]):

Theorem 4 (Karpelevich). Any positive eigenfunction F' : D — R of Ap has
eigenvalue X > —3, and admits a unique representation of the form

F(z) = /m P(e?, 2)%dv(e'?)

where v is a finite measure on 0D, oo — 1) = X, and a > 5. Any (positive) finite
Borel measure on 0D arises this way.

The following lemma is from [Sul] (see also [Bal]):

Lemma 3. Let v be a ﬁmte Borel measure on D, and set dm = e**dv(e*?)dsdt,
= [op P(e?, 2)*dv (™). If g € Mob(D) acts on T*(D) by (2) and on OD and
D n the standard way, then
(1) G2 =191 = mog=m
(2) d;zg =|¢|*= Fog=F, and if o >  then this is an <.

Proof. By (3), 4m29 — ¢obs(g 00 )d”g =|g'(¢* )\*O‘%. This proves part (1).

dm
To prove part (2), we use the harmomc measures A, from §3.2. Writing for

g € Mob(D), P(e?,gz)d\ = A\g. = A\, 0 g™t = P(g e, 2)dX o g71, we see that

drog™! P(e" ) gz) R
0 = —=F—(e") = S ——2"" for all g € Mob(DD).
|(g )(6 )‘ d)\ (e ) P(gflew,z) or a ge Ob( ) (5)
It follows that
Flo) = [ Pegarante”) = [ PloTie 2 g Y | dn(e)
oD oD

- / P(e?,2)%)(g™1 0 g|*dv o g(c)
oD

. d .
- / P(ew,z>°‘|g’|*“ﬂdu<e“’>
- a

Comparing this with F(z) = [, P oD e? 2)*dv(e?) we see (by the uniqueness part
of theorem 4) that whenaz ;,Fog_Flﬁ’%:m’\o‘. O

5.2. Proof of Theorem 2. We divide the proof into two parts:

Part 1. Any non-trivial h—e.i.r.m. lifts to a measure of the form e**dvrdsdt, where
v is non-atomic, ['-ergodic, and I'-conformal with parameter a.

Proof. Let mg be a I'-invariant measure on 7" (D) which descends to a non-trivial
h—eirm. on TH(T\D). By theorem 1, mg is quasi-invariant under the geodesic
flow. As explained in the introduction, this forces mq to take the following form in
the K AN-coordinates: dmg(e?,s,t) = e**dv(e?)dsdt.

142
1=2 maps

9f(z) = Im(2)® is a a(a — 1)—eigenfunction of Ay = yQ((,?a—;2 + ;—:2). Now ¢(z) =1
D isometrically onto H, so f o ¢ is a a(a — 1)—eigenfunction of Ap. Calculating, we see that
fop= Re[%]o‘ = P(1,2)*, so P(e"?, ) is a a(a — 1)-eigenfunction for § = 0. But for every 0
Jpg € Mb(D) s.t. P(ei?,.) = P(1,-) o pg so P(e'?, ) is a a(a — 1)—eigenfunction for all 6.
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Since mg is Radon, v is finite. Lemma 2 shows that v is non-atomic. Since
mg is T—invariant, v is I'—conformal with parameter o (lemma 3). Finally, v is
ergodic under the action of T' on dD: Any F(e’) is h-invariant on T(D) (it is
independent of ¢ in the K AN—coordinates). If it is I'-invariant, then it descends
to an h-invariant function on 7% (I'\ID), and therefore must be constant (ergodicity
on THT\D)).

Part 2. If v is non-atomic, I'-ergodic, and I'-conformal measure with parameter
«a on JD, then dmg := e**dvdsdt descends to a non-trivial h-e.i.r.m. measure on

TH(T\D).

Proof. As before mg is h—invariant and I'-invariant, and therefore descends to an
h—invariant Radon measure on 7 (I'\ID). This measure is non-trivial, otherwise v
would have to be supported on Par(T") and would therefore have to be atomic. But
h—ergodicity is not clear.

It is enough to show that du := e**dvds is ergodic w.r.t. the action (4) of T" on
0D x R. Indeed, any h-invariant function on 7*(D) is of the form F(e*,s), and
this descends to a function on the surface iff F' is invariant under the action (4).

Observe that p is I'invariant. Let du = fY pydm(y) be the ergodic decom-
position of p w.r.t. the I'-action. For a.e. y, p, is a I'-invariant Radon mea-
sure on dD x R. Consequently, m, = p, X dt is a I'-invariant Radon measure
on (0D x R) x R ~ T'(D), and therefore descends to an h-invariant measure on
TY(I'\D). This measure is h-ergodic, because of the ergodicity of fi,.

It is also non-trivial for a.e. y. Otherwise, there would be a positive measure set
of y’s for which m,(Par(I'y) x R x R) # 0. This can only happen if mq(Par(I'g) x
R x R) # 0, in which case v[Par(I'g)] # 0. But this is impossible, because Par(T'y)
is countable, and v is non-atomic.

We may now appeal to part (1) and see that m, = e®v*dv,dsdt, where v, is a I'-
ergodic and I'-conformal measure of parameter «,. It follows that u, = e“v*dv,ds.
The identity

p=e*pog® = / el %0, d(y)
Y

in the limit sy — £oo shows that o, = « for ma.e. y € Y. Consequently,
almost all the v,’s are I'-conformal with parameter . But v = fy vydm(y) and v
was assumed to be ergodic, so almost all the v, must be equal (uniqueness of the
ergodic decomposition [Sch]). It follows that almost all the p, are equal, and this
can only happen if y itself is ergodic.

By the discussion at the beginning of the proof, this implies that mq descends
to an h—ergodic measure. O

5.3. Proof of Theorem 3. Now that theorems 1 and 2 are proved, we can simply
follow that argument of [Ba], making the suitable adjustments from the nilpotent
case discussed there to the general case.

We start with some general comments on non-trivial normal subgroups I' of
lattices Ty in Mob(D). Any I'-conformal measure has parameter larger than or
equal to 6(T"), the critical exponent of the Poincaré series of I' (Sullivan [Sul],
theorem 2.19). If {id} # I' < T, then §(I) > 36(I'g) (Roblin [Rob], theorem
2.2.1). The critical exponent of a lattice is equal to one ([Sul], theorem 2.17).
Therefore: any I'-conformal measure has parameter > %
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Theorem 2 says that every non-trivial h—e.i.r.m. is of the form e®*dv(e?®)dsdt
with v non-atomic I'-conformal and ergodic with parameter o. F,(z) defined by
(%) is a well-defined a(ov—1)—eigenfunction of Ap (theorem 4). By lemma 3 part (2),
it is I—invariant, and therefore descends to an a(a — 1) eigenfunction on M = T'\D.

We claim that this eigenfunction (which we also denote by F),) is minimal.
Suppose F;,, dominates another positive a(« — 1)—eigenfunction F. Then F,, is the
average of the two positive eigenfunctions F,,, + F. If vy are the I'-conformal finite
measures on 0 which represent these functions as in theorem 4, then %(’4 +v_)
is another representation of F,,. But the representing measure of F), is unique
(because o > %)7 SO v = %(u+ + v_). The T'-ergodicity of v forces vy to be
proportional, so 3¢ > 0 s.t. F = cF,,, proving the minimality of F,,.

This shows that (x) is a well-defined map from the collection of h-e.i.r.m. into
the collection of minimal eigenfunctions of Aj;. This map is an injection because
of theorem 4 and the inequality o > %

To see that it is a surjection, start with a minimal non-trivial eigenfunction
of eigenvalue A, and let F be its lift to an eigenfunction on D. Write F(z) =
Jop P(€%, 2)*dv(e) where A = a(o — 1), a > 3, and v is some finite measure on
0D. By lemma 3 part (2), v is I'-conformal with parameter a. Now v must be
I—ergodic, otherwise F' is not minimal. It follows from theorem 2 part (1) that
dm = e“*dvdsdt is a non-trivial h—e.i.r.m. such that F,, = F.

We have established the bijection (*) proclaimed in Theorem 3. Property (1) in
the statement of this theorem can be checked by direct computation. Property (2)
is proved by realizing the deck transformations as elements of Ty (every coset of T'
corresponds to one deck transformation), and proceeding as in Lemma 3. O

6. APPENDIX: PROOF OF SOME AUXILIARY RESULTS

6.1. Classification of positive eigenfunctions for surfaces of finite area.
Let T' be a lattice in M6b(D), and set M := I'\D. We know from §5.3 that the
positive eigenfunctions of A on I'\ID have eigenvalue a(a — 1) with a > §(T"), where
5(T") is the critical exponent of T'. The critical exponent of a lattice is equal to one;
therefore all the relevant eigenvalues are non-negative.

Step 1. Every positive eigenfunction with eigenvalue zero is constant.

Proof. Let F(z) be a positive function such that Ay F = 0. Fix some p € M, and
denote by B; the Brownian motion on M started at p. It is a standard fact that
F(By) is a martingale. Consequently, F(B;) converges almost surely. On the other
hand, it is known that the Brownian motion on a surface of finite area is recurrent
[Su3]; therefore if F'(z) must be constant.

Step 2. The number of minimal positive eigenfunctions with a fixed positive eigen-
value is equal to the number of the cusps. These eigenfunctions are trivial.

Proof. Denote the cusps of M by C1,...,Cy. Fix A > 0. We construct for every ¢
a trivial A-eigenfunction E; which tends to infinity at C; and to zero at C; (j # 1)
(compare with the spectral Eisenstein series on the modular surface [Sk]).
Working in the upper half plane, we assume without loss of generality that C; is
at infinity (otherwise pass to a conjugate of I'). Let I'; C T be the stabilizer of oc.
This is an infinite cyclic group of the form T'; := {z — 2z + kb : k € Z}, with b real.
Let s > 1 be the solution larger than one of s(s — 1) = \. Noting that I'; preserves
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the imaginary part, we define Im[I";y - 2] := Im[y(z)], and set

Ei(z) := Z [Im(T; - 2)]°.

Tyyel;\I

The series converges absolutely (see §1.4 in [Sk]), and:

(1) E; is a T'—invariant positive A—eigenfunction, because of '-equivariance and
Ap(Im)* = [1(F + 42)ly” = A(Im2)*.

(2) E; is trivial and minimal. The map ¢(z) = (1) = oo,
and Im[p(2)] = P(1,2). By (5 ), if I‘D =y 1Fgo and I‘D = cp lI‘zgo7 then
Eiop =3 roserovro l9'(1)°Plg = Jon P( dl/( %), where v is
supported on I'P1. Since 1 corresponds to a cusp, Ez is trivial. Since v is
I'’—ergodic, F; is minimal [Ba].

(3) E;(z) converges to infinity as z — C; and to zero as z — C; for j #i. See
Corollary 3.5 in [Iw].

(4) For every I'—invariant positive A—eigenfunction F, F(z) = O(FE;(z)), as
z — C;. Karpelevich’s Theorem and P(e%,z) < P(1, |z]) = Im ¢(|z|) give
(Fop)(z) < F(p(0))[Im ¢(|2])]* (2 € D). Setting w = ¢(z2), Fo := F(p(0)),
we see that F(w) < Fy[lm ¢(|¢~!(w)])]* (w € H). Noting that w € iRT =
o~ H(w) is positive and real, we see that

1

F(w) < Fy[Ilm w)®* < Fy - E;(w) for all w € iR™.

Now, any {I'z,},>1 which tends to C; is within hyperbolic distance o(1)
from some {T'wy, }»>1 with w,, imaginary. By Harnack’s inequality, F'(I'z,) ~

We now show that any positive A—eigenfunction F' is a convex combintation of
Ey, ..., Eyn. Assume first that F' tends to infinity at each of the cusps.

Every cusp C} is encircled by a one parameter family of closed horocycles. Param-
etrize these horocycle by H;(r) in such a way that H;(r) converge to C; as r — o0
(in the coordinate system of the first paragraph, H;(r) = {T'z: z = x + ir,x € R}).
Let Q, be the the domain obtained from M by cutting the cusps away at H;(r),
i=1,...,N.

The hyperbolic length of H;(r) tends to zero as r tends to infinity. By Harnack’s
inequality, there exists €(r) —— 0 such that for every positive A—eigenfunction h

T—00

h(z) = e**(Mh(w) for all z,w € H;(r). In particular, 3F;(r), E;;(r) such that

F=e*0F(r), B = e E;;(r) on Hj(r).

~ Eui(r)
because F' = O(E;), and 6(r)

N
Zaj(r)Eji (r) = 1—1—204]
j=1

J#i &l

Fi(r)

Define o (r) := 44 and 6(r)
= because F' — oo and E; — 0 at C;. Thus,

.= max{ 2 @) . cj# i} Asr — o0, ay(r) = O(1)
o(1),

Fi(r) = [1+ O(3(r)]* Fi(r).

It follows that F(z) = [1 + o(1)]*? Ej 1 ¢ (r)E;(2) on 98, uniformly in z.
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This implies that F(z) = [1 + o(1)]*! Z;\le a;j(r)E;j(z) on Q, uniformly in 2,
because of the following general fact:

f1, f2 are positive on T'\H -
Apfi = Af1, Aufo=Af2on I\H /= f1 < fo on Q,. (6)
fl S f2 on 697‘

The proof of (6): Karpelevich’s Theorem implies that fi, fo are C%(Q,.). Therefore
u = f] — fo attains its maximum on Q, at some point zy. We claim that u(zp) <0
(proving that fi < fo on Q,.). Otherwise, u(z9) > 0 and zp must be in the interior of
Q.. In the upper half plane model, this implies that 0 < Au(zq) = Im (20)? [tz (20)+
uyy(20)] and so at least one of Uy, uy, is positive at zo. But this is impossible,
because zg is a point of local maximum.

Since «;(r) are positive and uniformly bounded, there exists r,, — oo such that
a;(r,) converges as n — 00, say to «;. Passing to this limit, we see that

N 0o
F(z) = ZaiEi(z) on U Q. =M.
i=1 n=1
This proves that that any positive eigenfunction which explodes at the cusps is a
linear combination with non-negative coefficients of F1,..., En.

For a general positive A—eigenfunction F, we argue as follows: The function
Fy:=F+ Zf\; E; explodes at the cusps, and is therefore a linear combination of
the E;’s. We use this fact to write F(z) = Zf\]:l(ai — 1)E;(z) for some «;. But
a; —1 > 0 are all positive, because if a; —1 were negative, then the limit of the right
hand side as z — C; would have been —oo, whereas the left hand side is positive.

This proves that the cone of positive A-eigenfunctions is spanned by E1,..., Ey.
It follows that there are exactly N minimal positive A—eigenfunctions, and that these
functions are trivial. O

6.2. Classification of positive eigenfunctions for cocompact nilpotent pe-
riodic surfaces [LP]. Let I'y be a torsion free uniform lattice in Mob(D) and
I’ < Ty a non-trivial subgroup such that G := T'y/T is nilpotent. We let G act on
M :=T\D by identifying G with the symmetry group of M.

We show that the set of minimal positive eigenufunctions of Ay, is equal to
{cF, : ¢ > 0, : G — R is a homomorphism}, with F, o D = e?(P)F,, for all
D € G. This is a particular case of the much more general theory developed in
[LP]. The following proof (a combination of ideas from [Mrg], [CG] and [LS]) is
included for completeness.

Step 1. The following holds for all minimal positive eigenfunctions h of the laplacian
of M: hoD x h for all D € Z(G), and ho D = h for all D € Z(G) N [G, G].

Proof. If D € Z(G) and djs denotes hyperbolic distance (on M), then D moves
points on M a bounded distance: Choose Ko C M compact s.t. M = Jpcq D(Ko).
Every z € M can be written as z = Dy(zp) for some zg € Ky, and so
dM(Z,DZ) = dM(DQZQ,DDQZQ) = dM(DQZQ,DoDZO) =
= dp (20, Dzo) < max{dp(w, Dw) : w € Ko},

giving a uniform bound Ry on dp/(z,Dz). Let K be the closed hyperbolic disc
centered at 0 € D with hyperbolic radius Ry. If h is a positive eigenfunction of Ap,
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so is h oy for any hyperbolic isometry «. Choosing an isometry which moves z to
the origin, we see that

WDz) _ (hoy )(yDz) _ {(h 0y 1)(x1)
h(z) (hoy=1)(vz) — (hoy=1)(22)
This supremum is finite by Harnack’s inequality. It follows that for every D € Z(G),
h o D is bounded from above by a multiple of h. By minimality, h o D must be
proportional to h for every D € Z(G).

Let ¢ : Z(G) — R be the proportionality constant. We show that ¢ = 1 on
Z(G)N |G, ], by extending ¢ to a homomorphism A : G — R;.. It will then follow
that c|z@)nja.q) = M z@)nja,q) = 1, because any homomorphism into an abelian
group vanishes on the commutator subgroup.

Following Lyons & Sullivan [LS], fix a right invariant mean M on the space of
bounded functions on G' (an countable amenable group), fix zp € M, and set

log \(D) := M {log m] .
(hoy) (Do)

This well defined, because v — log o) is bounded, by Harnack’s inequality.
It is a homomorphism, because

(h o) (D1D2z0) (hov)(Dizo)
s e e
(hoyo Dl)(Dﬂo)]
(ho~yo Di)(z0)
(h o) (D2azp)
(hov)(20)
= log A(D1) +log \(D3) = log[A(D1)A(Dy)].

121,20 € K,y € Mb'b(D)}.

log A(D1D3) + log

log \(D1) + M {log

log \(D1) + M {log ] (right invariance)

It extends ¢ because for every D € Z(G),

P Ry ) [0} Y LG )
1 [og 2252 | = o o S gt

Step 2. Suppose G is nilpotent. Every positive minimal eigenfunction h of Ay
satisfies h o D = e?(P)h, (D € G) for some homomorphism ¢ : G — R.

Proof. Since G is nilpotent, the sequence G0 := G,GM = [G,G©],G? .=
[G,GM], ... terminates at {id} after a finite number of steps. Let k be the length
of the sequence, i.e., G*=1 £ {id}, G*) = {id}. We argue by induction on k.

If K =1, then [G,G] = {id} and G is abelian. In this case G = Z(G) and the
result follows from step 1.

Next assume that £ > 1 and that the statement holds for £k — 1. Using the
invariance properties of the hyperbolic Laplacian it is easy to check that

Stab(M) :={D € G : ho D = h for all minimal positive eigenfunctions h}

is a normal subgroup of G. The surface M := M /Stab(M) is again a cocompact
periodic surface with symmetry group G/Stab(M).



INVARIANT MEASURES FOR THE HOROCYCLE FLOW ON PERIODIC SURFACES 21

We claim that G/Stab(M) is nilpotent of length k& — 1. Observe that G*~1) ¢
Z(@Q) ([G,G*=V] is trivial) so G*~Y C Z(G)N[G,G] C Stab(M) (Step 1). Thus:

[G/Stab(M)]*~Y = G~V /Stab(M) C Z(G) N [G, G]/Stab(M) = trivial,

proving that G/Stab(M) is nilpotent of length < k — 1.

Now pick an arbitrary minimal positive eigenfunction h on M. This function is
stabilized by Stab(M), and therefore projects down to a minimal positive eigen-
function h: M — R. The induction hypothesis implies that hoD o h for all
D € G/Stab(M). Tt follows that ho D o h for all D € G. The proportionality
constant depends multiplicatively on D and is therefore of the form exp ¢(D) where
¢ : G — R is a homomorphism.

Step 3. For every homomorphism ¢ : G — R there exists a positive eigenfunction
F such that FoD = e?(P)F (D € G), and this function is unique up to a constant.
This function is also minimal.

Proof. Fix a homomorphism ¢ : G — R. The existence and uniqueness of F' is
equivalent to the existence and uniqueness of a number o > 1 and a probability
measure v on 0 such that

dvog _ e?T9|g/|* for all g € Tp. (7)
Cdv
Indeed, (7) implies via (5) that F(z) = [,; P(e",2)*dv(e”) is Iinvariant and

FoD =e*P)IF forall D €T /T. In the other dlrectlon, any positive eigenfunction
F' is represented by a I'-conformal measure v on OD with parameter «. This
parameter is at least the critical exponent of I' (Sullivan [Sul]), and for normal
subgroups of torsion free lattices with amenable quotients this critical exponent
is equal to one (Roblin [Rob]). Since a > 1, the representing measure of F' is
unique (theorem 3). It then follows as the proof of lemma 3 that F o D = e?(P)F
(D € Ty/T') implies (7).

Consider the Bowen—Series map fr, : 0D — 0D associated to the action of I'y on
OD (see §3.1). Recall that fr, has a finite Markov partition into intervals {I,}4cs
such that fr,|7, = go where g, € I'g. Define f, to be g; on I,, and set

Pa(e?) = alog|f1, ()] + (T fry(e")).
It is standard to check, using property (Orb) of fr,, that (7) is equivalent to

dvo fr, oo
dv '
The function ¢, is Holder continuous on partition elements. The theory of such
equations is well-understood (see e.g. [Bo]): There exists a unique « for which
such a solution exists, and this solution is unique.*°
Next, we show that the function F' we obtained is minimal. Write F' = [, F,dn(y)
where F} are positive and minimal eigenfunctions (the ‘barycentric representation’).

d
10Ryelle’s Perron-Frobenius theorem provides a unique v such that DZZFO is proportional

to exp ¢o. The proportionality constant is exp Piop(—¢a ), Where Piop(—¢pa) is the topological
pressure of ¢. It is a standard fact that onp(qba) is convex, whence continuous, in a and that

Piop(Pa) P Foo. Consequently, there exists a unique « for which the proportionality
o— oo

constant is equal to one.
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Let ¢, be the homomorphisms associated to F, (Step 2). We have

F e oD p o pn / eleu (D)= D B dr ().
Y
Passing to the limit n — *oo we see that 7 is supported on the components Fy for
which ¢, (D) = ¢(D). Since G is countable, 7 is supported on the set of components
for which ¢, = ¢. But we just proved that all these eigenfunctions are proportional
to F. It follows that F' is minimal. This finishes the proof of Step 3.

Steps 2 and 3 establish the classification of positive minimal eigenfunctions on
cocompact nilpotent surfaces mentioned in example 5. An interesting artifact of
the proof is that the representing measures of these eigenfunctions are (up to density
function) Gibbs measures of the Bowen—Series map. g

6.3. Proof of (Fin). Let R be the Ford fundamental domain of I'y (which consists
of the closure of the set of points which lie on the external side of all isometric circles
of the hyperbolic elements of T'y). This is a a Dirichlet domain for T'g, and as such
is a hyperbolic polygon with finitely many sides s1,51,...,Sn,Sn, and there are
side-pairings gs,, g5, € I'o such that g, (s;) =35, gs,(5:) = s; ([Kat], §3.3, 3.5). As
explained in section 4 of [BS], it is possible to assume without loss of generality
the even corners property: The extension of each of its sides to a complete geodesic
lies entirely inside 7 := {J cp, 9(OR).

We recall the construction of fr, (as described in [Se]). Given a side s of R, let
L(s) denote the complete geodesic which contains s, H(s) the hyperbolic half-plane
on the side of L(s) which does not contain R, and A(s) the boundary of H(s) (an
arc in dD). It is proved in [BS] that no more than two such arcs intersect. The
Bowen-Series map is defined by fr,|as) := gs. This definition is proper only the
part of A(s) which does not intersect other arcs; on the intersections A(s) N A(s'),
fr, is defined to be one of g5, g5 (the choice is arbitrary).

Bowen and Series show that fr (W) C W where W is the set of endpoints of
all complete geodesics in 7 which pass through a vertex of R. We show below
that W partitions D into a finite or countable collection of arcs {I,}q.cs. Since
f(W) C W, this partition satisfies (Mar).

Step 1. The set of accumulation points of W is the set C' of the vertices of R which
lie in 9. In particular:

(1) W partitions 0D into a finite or countable collection of intervals;
(2) If Ty is cocompact, then W, whence S, is finite.

Proof. First observe that every vertex in the interior of D contributes exactly four
points to W. Therefore, if T'y is cocompact, then W is finite (in this case the
fundamental domain has no vertices in 9D).

Another trivial consequence is that the set of accumulation points of W is equal
to the (finite) union over v € C of the set W(v) of accumulation points of the
endpoints of complete geodesics in 7 which pass through v. We prove the step by
showing below that W (v) = {v}.

The vertices in C are divided into vertex cycles: equivalence classes under the
I'-orbit relation. Let v = vg,v1,...,vx be the vertex cycle of v, fix g; € Ty such
that v; = ¢;(v), and let L;, L} be the complete geodesics extending the faces of R
which terminate at v;. Denote the stabilizer of v; in I'g by Stabr,(v;). This is an
infinite cyclic group generated by a parabolic h; € T'y ([BM], Proposition 2.17)
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Any complete geodesic L C T which terminates at v is the g-image (g € T'g) of
L; or L, for some v;. If we decompose g = g; 'h we see that h € Stabr, (v;) = (h;).
It follows that L C Uf:o Urez 97 "hE(Li U L}). Since h; is parabolic, hf(p) — v; as
€| — oo for every p € I, so g; "h'(p) — v for all p € D, proving that W (v) = {v}.

Step 2. Let N.(C) denote the e-neighbourhood of C. For every € > 0, 0D\ N.(C)
is covered by finitely many elements of {I,}.cs.

Proof. The endpoints of {I,},ecs accumulate outside 9D \ N.(C), so the number of
I,,’s which intersect 0D \ N.(C) is finite.

Step 8. Je > 0 s.t. Vo € OD \ Par(I'y), limsup d(f, (z),C) > e.

n—oo
Proof. We begin with the following observations on fr,:

(1) Every v € C has two one-sided neighborhoods .J,, J/, such that the restric-
tion of fr, to each of these neighbourhoods is an element of I'¢;
(2) The absolute value of the derivative of this M6bius transformation is strictly
larger than one, except at v.
Now choose € > 0 smaller than min{diam(J,), diam(J)) : v € C} and min{d(v,?v’) :
v,v" € C,v # v'}. We claim that if 2 € dD and d(fF (), C) < ¢ for all n > 0, then
necessarily x € C.

For every n there exists v, € C such that fp (z) € J,, UJ, . Let K, €
{Jv,, 5, } be the one-sided neighbourhood which contains ff* (z). If we extend
fr, continuously to the endpoints of the K,, from within, and abuse notation by
denoting this extension by fr,, we get

d(fr, (z), ff, (vo)) < € for all n. > 0.

Let k be the length of the vertex cycle of vg. This cycle is exactly {v; f;ol, and
h = frylk,_, 00 frolK, fixes vg. It follows that h is parabolic. Note that |h/| > 1
on Ko\ {vo} (because |ff. | > 1 on K;\ {v;}). Since h is parabolic, its dynamics is
such, that the h—forward orbit of any y € Ko\ {vg} leaves K. But by construction

d(h(x),vo) < € for all n > 0.

Therefore x = vg € C. This proves: If d(ff (x),C) < ¢ for all n > 0, then z € C.
Step 3 follows, because C' C Par(T'g) ([Kat], theorem 4.2.5).

We can now finish the proof of (Fin): Pick € > 0 as in step 3, and choose a finite
So C 8 such that 0D \ N.(C) C U,es, Lo =t A. Every fr,—forward orbit either
hits C and stays there, or leaves N.(C). In the first case, the orbit is contained in
Par(Tg). In the second case, the orbit enters A infinitely many times. [

6.4. Proof of (FI). Suppose I'g\D has finite volume. Any hyperbolic surface with
finite volume has a compact subset F' which is intersected by any complete geodesic
which does not tend to one of the cusps: Such a set can be obtained by cutting
away each of the cusps along a closed horocycle which encircles it.

Let Fy C D be a compact subset of the fundamental region of I'g which contains
the origin o and which projects to F. Let {gn},>1 be an enumeration of the g in
Iy whose axis intersects Fy. Fix some z, € Fy on the axis of g,. Then 7(g,) =
d(zn, gnzn) > d(0, gno) — 2diam(Fy) — o, proving that {7(g,)} intersects any

compact interval finitely many times. Since any g € I'y is conjugate to some g,
7(T'o) intersects any compact interval finitely many times. O
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