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Abstract. We classify the ergodic invariant Radon measures for the horocycle
flow on geometrically infinite regular covers of compact hyperbolic surfaces.

The method is to establish a bijection between these measures and the positive

minimal eigenfunctions of the laplacian of the surface. Two consequences:
if the group of deck transformations G is of polynomial growth, then these

measures are classified by the homomorphisms from G0 to R where G0 ≤ G

is a nilpotent subgroup of finite index; if the group is of exponential growth,
then there may be more than one Radon measure which is invariant under

the geodesic flow and the horocycle flow. We also treat regular covers of finite

volume surfaces.

1. Introduction

Let M be a hyperbolic surface and T 1(M) its unit tangent bundle. The geodesic
flow is the flow gs : T 1(M) → T 1(M) which moves a line element at unit speed
along the geodesic it determines. The (stable) horocycle at a line element ω is
the geometric location of all ω′ ∈ T 1(M) for which d(gsω, gsω′) −−−→

s→∞
0. This

is a smooth curve. The (stable) horocycle flow ht : T 1(M) → T 1(M) moves line
elements along the stable horocycle they determine, in the positive direction.

A famous theorem of Furstenberg [F] says that if M is compact, then h has
a unique invariant probability measure. Variants of this phenomena have been
established for more general geometrically finite hyperbolic surfaces by Dani [D]
and Burger [Bu], for compact Riemannian surfaces of variable negative curvature
by Marcus [Mrc], and for more general actions by Ratner [Rat]. The geometrically
infinite case is still almost completely open.

We restrict our attention to the simplest possible geometrically infinite surfaces,
the periodic surfaces. These are the surfaces of the form

M = Γ\D where {id} 6= Γ C Γ0, Γ0 is a torsion free lattice in Möb(D).

Here and throughout D is the unit disc, and Möb(D) is the group of Möbius trans-
formations which preserve D. M is a regular cover of the finite volume surface
M0 = Γ0\D, and therefore looks periodic. The period of M is M0, and the sym-
metry group of M (relative to M0) is the group of deck transformations (which is
isomorphic to Γ0/Γ). A periodic surface is called cocompact if M0 is compact.
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The symmetry group of a periodic surface is always finitely generated, and any
finitely generated group can be realized as the symmetry group of some cocompact
periodic surface. A periodic surface is called Abelian, nilpotent etc. if its symmetry
group is Abelian, nilpotent etc.

It follows from the work of Ratner [Rat] that the horocycle flow has no finite
invariant measures on periodic surfaces of infinite volume, other than measures
supported on closed horocycles. But it has non–trivial invariant Radon measures,
e.g. the volume measure on the unit tangent bundle.

The ergodic invariant Radon measures (e.i.r.m.’s) for the horocycle flow on a
periodic surfaces have so far only been classified for free Abelian cocompact surfaces.
In this case every homomorphism ϕ : G → R determines a unique (ray of) e.i.r.m.
m s.t. m ◦ dD = eϕ(D)m (D ∈ G) [BL], and every e.i.r.m. arises this way [Sg].

Our aim here is to describe the e.i.r.m.’s for general periodic surfaces. One
of our original aims was to understand how general is the situation that all h–
e.i.r.m.’s are quasi-invariant under all deck transformations. We show below that
although general Abelian and even nilpotent cocompact surfaces have this property,
polycyclic cocompact surfaces of exponential growth do not.

We begin with some remarks on general hyperbolic surfaces M = Γ\D. Every h–
e.i.r.m. on T 1(M) lifts to some Γ–invariant h–invariant Radon measure on T 1(D).
This set can be identified with (∂D × R) × R as follows: Let o ∈ D denote the
origin. For every eiθ ∈ ∂D and z ∈ D let ωθ(z) be the line element based in z which
determines the geodesic which ends at eiθ. The identification is

(eiθ, s, t) 7−→ (ht ◦ gs)(ωθ(o)).

We call (eiθ, s, t) the KAN–coordinates of ω (this is the Iwasawa decomposition).
It is well-known that gs ◦ ht = hte−s ◦ gs. Therefore, in these coordinates

ht(eiθ0 , s0, t0) = (eiθ0 , s0, t0 + t);

gs(eiθ0 , s0, t0) = (eiθ0 , s0 + s, t0e
−s).

It follows that any h–invariant measure m must be of the form dµ(eiθ, s)dt.
If, in addition, m is quasi–invariant with respect to the geodesic flow, then

m◦gs = e(α−1)sm for some α and all s,1 and we can decompose m further into dm =
eαsdν(eiθ)dsdt for some finite measure ν on ∂D. The measure ν is then determined
by the requirements that m be Γ–invariant and h–ergodic. These requirements turn
out to be equivalent to ergodicity and conformality w.r.t. the Γ–action on ∂D (see
[Ba] and below).

This is the approach used by Martine Babillot in [Ba] to classify h–e.i.r.m. which
are quasi–invariant w.r.t. the geodesic flow (for a different approach, see [ASS]).

In general, it is not true that any h–e.i.r.m. is g–quasi-invariant: Take a non-
cocompact periodic surface M with period M0. Since M0 is a non-compact hy-
perbolic surface of finite volume, it has cusps. Every cusp is encircled by closed
horocycles of finite length. These horocycles lift to h-orbits on T 1(M). The lifts
are not necessarily of finite length, but they are always locally finite: The Lebesgue
measure on them is a Radon measure on T 1(M). This measure is h-ergodic and
invariant, but is not g–quasi-invariant. We call these measures trivial h–e.i.r.m’s.

1If m is h–e.i.r.m., then so is m ◦ gs because gs ◦ ht = hte−s ◦ gs. Since m, m ◦ gs are ergodic
and equivalent, they must be proportional. The constant must of the form eβs. Set β = α− 1.



INVARIANT MEASURES FOR THE HOROCYCLE FLOW ON PERIODIC SURFACES 3

Our contribution is to show that the trivial measures are the only obstruction
to g–quasi–invariance:

Theorem 1. Let M be a periodic surface with period M0. Any non-trivial h–
e.i.r.m. on T 1(M) is quasi-invariant w.r.t. the geodesic flow.

Let Γ be a Fuchsian group, and ν some measure on ∂D. We say that ν is Γ–
ergodic, if any Γ–invariant function is constant on a set of full measure. We say that
ν is Γ–conformal (with parameter α) if ν is finite, and dν◦g

dν = |g′|α for all g ∈ Γ
(see [Su3]). Theorem 1 allows us to complete Babillot’s programme and show

Theorem 2. Let M = Γ\D be a periodic surface. If ν is non-atomic, Γ–ergodic,
and conformal with parameter α, then eαsdν(eiθ)dsdt is a Γ–invariant measure
on T 1(D), which projects to a non-trivial h–e.i.r.m on T 1(Γ\D). Any non-trivial
h–e.i.r.m on T 1(Γ\D) is of this form.

Recall that the hyperbolic Laplacian of D is a second order differential operator
on C2(D) s.t. ∆D(f ◦ ϕ) = (∆Df) ◦ ϕ for all ϕ ∈ Möb(D). This determines ∆D up
to a constant, and this constant can be chosen to make ∆H = y2( ∂2

∂x2 + ∂2

∂y2 ) in the
upper half plane model. The invariance property of ∆D means that it descends to
an operator ∆M on M = Γ\D, called the hyperbolic Laplacian of M .

The collection of positive λ–eigenfunctions of ∆M forms a cone. The extremal
rays of this cone are directions generated by the minimal positive λ– eigenfunctions:
the λ–eigenfunctions F for which ∆MG = λG, 0 ≤ G ≤ F ⇒ ∃c s.t. G = cF .

If P (eiθ, z) := 1−|z|2
|eiθ−z|2 (the Poisson kernel), then P (eiθ, z)α is an α(α − 1)–

positive eigenfunction of ∆D (see §5.1). Consequently, any Γ–invariant function
of the form

∑
ckP (eiθk , z)α, ck ≥ 0 defines a positive eigenfunction of ∆M . We

call these eigenfunctions trivial eigenfunctions (see §6.1 for the connection with the
Eisenstein series). As it turns out, in this case eiθk must all be fixed points of
parabolic elements of Γ (see below).

Following Babillot [Ba], we consider the assignment

m = eαsdν(eiθ)dsdt 7−→ Fm(z) :=
∫

∂D
P (eiθ, z)αdν(eiθ). (∗)

Theorem 3. Let M be a periodic surface. The mapping (∗) is a bijection be-
tween the non-trivial e.i.r.m’s of h on T 1(M) and the non-trivial minimal positive
eigenfunctions of ∆M . This bijection satisfies:

(1) m ◦ gs = e(α−1)sm ⇔ ∆MFm = α(α− 1)Fm;
(2) m ◦ dD = cm ⇔ Fm ◦D = cFm for all D in the symmetry group of M .

Remark : Cocompact periodic surfaces have no trivial h–e.i.r.m’s, because compact
surfaces do not admit closed horocycles. They admit no non-trivial positive eigen-
functions for the Laplacian, because uniform lattices have no parabolic fixed points.
Therefore, for cocompact periodic surfaces, all h–e.i.r.m’s are g–quasi-invariant, all
h–e.i.r.m.’s have the form described in Theorem 2, and (∗) is a bijection between the
collection of all h–e.i.r.m’s and the collection of all minimal positive eigenfunctions
of the Laplacian.

Acknowledgments: The authors wish to thank J.-P Conze, Y. Coudene, M. Forester,
L. Flaminio, Y. Guivarc’h, V. Kaimanovich, A. Raugi, and P. Sarnak for helpful
discussions.
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2. Examples

We illustrate these results by examples. We remind the reader that any finitely
generated group is the symmetry group of some cocompact periodic surface. The
classes of examples described below are therefore not empty.

Example 1 (Furstenberg’s Theorem [F]). The horocycle flow of a compact hyper-
bolic surface is uniquely ergodic.

Proof. This is the case when the symmetry group is trivial. Any e.i.r.m. m
corresponds to a function F such that ∆MF = α(α − 1)F where α satisfies
m ◦ gs = e(α−1)sm. Since m is finite (a Radon measure on a compact space),
α must be equal to one. Therefore F is harmonic, whence (by compactness and
the maximum principle) constant. The representing measure of the constant func-
tion is proportional to Haar’s measure dλ. It follows that m is proportional to
esdλ(eiθ)dsdt =volume measure. �

Example 2 (Dani-Smillie Theorem [DS]). The ergodic invariant Radon measures
for the horocycle flow on a hyperbolic surface of finite area are all finite, and consist
of trivial measures and measures proportional to the volume measure.

Proof. Dani and Smillie proved this by showing that non-periodic horocycle orbits
are equidistributed. We deduce it from theorem 3, and the fact that the minimal
positive eigenfunctions in this case are either trivial, or constant (see §6.1). �

Example 3 (Kaimanovich’s Theorem [Kai1]). The volume measure on a periodic
surface is h–ergodic iff all bounded harmonic functions on the surface are constant
(the Liouville property).

Proof. Kaimanovich proved this for all hyperbolic surfaces [Kai1]. We explain how
his result fits with ours in the periodic case. Let M be a hyperbolic periodic surface
with symmetry group G and period M0. The volume measure on T 1(D) is of the
form dm = esdλ(eiθ)dsdt, where λ is Haar’s measure on ∂D. Haar’s measure is Γ–
conformal of parameter 1. By theorem 2, it is ergodic iff m is an e.i.r.m., in which
case (by theorem 3) Fm(z) =

∫
∂D P (eiθ, z)dλ(eiθ) ≡ 1 is minimal. This shows: The

volume measure is ergodic iff 1 is a minimal harmonic function. But 1 is minimal
exactly when all bounded harmonic functions are constant. �

Example 4 (The strong Liouville property). The volume measure on a periodic
surface is the unique g–invariant h–e.i.r.m. on M iff all positive harmonic functions
on the surface are constant (the strong Liouville property).

Proof. g–invariant h–e.i.r.m’s are necessarily non-trivial, and therefore correspond
to minimal positive harmonic functions. The volume measure corresponds to the
constant function. �

Example 5 (Nilpotent surfaces). Let M be a cocompact periodic surface with nilpo-
tent symmetry group G. Every homomorphism ϕ : G → R determines an h–e.i.r.m.
measure m (unique up to a constant) such that m ◦ dD = eϕ(D)m for every D ∈ G,
and every h–e.i.r.m. is of this form.

Proof. This is because the minimal positive eigenfunctions for a cocompact nilpo-
tent surface form a family {tFϕ : t > 0, ϕ : G → R is a homomorphism}, where
Fϕ ◦ D = eϕ(D)Fϕ for all D ∈ G (see §6.2). This example strengthens the main
result of [Ba] by removing the g–quasi-invariance assumption. �
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Example 6 (Polynomial growth). Let M be a cocompact periodic surface of poly-
nomial growth2. The symmetry group of M contains a finitely generated normal
nilpotent subgroup N of finite index, and the rays of h–e.i.r.m.’s on T 1(M) are in
bijection with the homomorphisms from N to R.

Proof. Let M be a periodic cocompact surface of polynomial growth with period
M0 and symmetry group G. Let F0 ⊂ M be one of the connected preimages
of M0 under the covering group which project to M0 bijectively. The collection
{D ∈ G : F 0 ∩D(F 0) 6= ∅} is a finite set of generators for G. Let | · | be the word
metric w.r.t. to this set of generators. Then

]{D ∈ G : |D| ≤ n} × vol(F0) ≤ vol{p ∈ M : d(p, F0) ≤ (n + 1) · diam(M0)}.
Therefore, G has polynomial growth. By Gromov’s theorem [Gr], G contains a
nilpotent subgroup N0 of finite index. The group N :=

⋂
g∈G g−1N0g is normal

and nilpotent. By Poincaré’s theorem ([Ro], theorem 1.3.12) N0 has finite index in
G, because the intersection which defines it has a finite number of different terms.
Since N has finite index in G and G is finitely generated, N is finitely generated
(see e.g. [Ro], theorem 6.1.8).

We claim that there is a compact hyperbolic surface M1 such that M is a nilpo-
tent surface with period M1 and symmetry group N (we thank Y. Coudene for this
observation). This finishes the proof, by reducing Example 5 to Example 4.

Write M0 = Γ0\D, M = Γ\D, and G = Γ0/Γ. Since N C G, N = Γ1/Γ for some
ΓCΓ1CΓ0. It follows that M is regular cover of M1 := Γ1\D, and the group of deck
transformations of this cover is Γ1/Γ ≡ N . To see that M1 is compact, note that
it is a finite cover of M0, because |Γ0/Γ1| = |(Γ0/Γ)/(Γ1/Γ)| = |G/N | < ∞. �

Remark : This shows that the h–e.i.r.m.’s on a cocompact periodic surface of
polynomial growth can be naturally parameterized as a d–parameter family with
d = rank(N/[N,N ]) (where the rank of the finitely generated Abelian group
A = N/[N,N ] is the d in A/Tor(A) ' Zd).

Example 7 (Polycyclic surfaces). Cocompact polycyclic surfaces which are not
virtually nilpotent are Liouville, but not strongly Liouville.3 Therefore,

(i) The volume measure on T 1(M) is a g–invariant h–e.i.r.m.;
(ii) There are other g–invariant h–e.i.r.m.’s., and these measures are not quasi–

invariant w.r.t. all deck transformations.

Proof. A cocompact polycyclic surface has the Liouville property (Kaimanovich
[Kai2]), and we saw that this implies (i). If M is not virtually nilpotent, then it
is not of polynomial growth. Polycyclic groups are linear, therefore the work of
Bougerol & Élie [BE] provides a non–constant positive harmonic function F on M .

Any positive harmonic function is the barycenter of minimal positive harmonic
functions, so it is possible to find a non–constant minimal positive harmonic func-
tion F0.

2A Riemannian surface is said to be of polynomial growth, if the volume of balls of radius R
is O(Rδ) for some δ as R →∞.

3G is polycyclic if ∃Gi C G s.t. {1} = G0 C · · ·C Gn = G and Gi/Gi−1 are cyclic. Polycyclic
groups are characterized as the solvable groups all of whose subgroups are finitely generated. G is

virtually nilpotent if ∃NCG nilpotent such that |G/N | < ∞. Finitely generated virtually nilpotent

groups are characterized as the groups of polynomial growth: if Λ is a finite set of generators,
then |Λn| = O(nα) for some α.
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The measure m0 which corresponds to F0 is g–invariant, because F0 has eigen-
value zero. We claim that it cannot be quasi-invariant w.r.t. all deck transfor-
mations. The horocycle flow commutes with all deck transformations. If m were
quasi–invariant w.r.t. all deck transformations, then m0 ◦ dD = eϕ(D)m0 with
ϕ : G → R a homomorphism (equivalent ergodic invariant measure are propor-
tional). Any homomorphism into R must vanish on [G, G]. Going back to F0 we
see that F0 ◦D = F0 for all D ∈ [G, G]. It follows that F0 descends to a positive
harmonic function on M/[G, G]. But this cocompact surface is Abelian (its sym-
metry group is G/[G, G]) and all positive harmonic functions on Abelian surfaces
are constant [LS], a contradiction. �

Example 8 (The Thrice Punctured Sphere). Working in the upper half plane H,
define Γ(2) := {ϕ(z) = az+b

cz+d :
(

a b
c d

)
∈ SL(2, Z),

(
a b
c d

)
=

(
1 0
0 1

)
mod2}.

(1) M0 = Γ(2)\H is a finite volume hyperbolic surface, and is homeomorphic
to the sphere minus three points, which correspond to three cusps;

(2) Suppose G is a group generated by two elements, and G 6∼= F2. There exists
a periodic surface MG with period M0 and symmetry group ∼= G;

(3) The e.i.r.m.’s for h : T 1(MG) → T 1(MG) consist of trivial measures, and
of the measures given by theorems 2 and 3.

Remark. A theorem B.H. Neumann says that there are uncountably many non-
isomorphic groups with two generators, see e.g. [Ro].

Proof. The topological description of M0 can be found in [Kat], page 141. It is
a classical fact due to Klein that Γ(2) is a free group on two generators. If G is
generated by two elements, then there is a surjective homomorphism H : Γ(2) → G,
and Γ := ker(H) is a normal subgroup of Γ(2). If G 6∼= F2, then H is not an
isomorphism, so Γ 6= {id}. The surface M := Γ\H is then a periodic surface with
symmetry group Γ(2)/ ker(H) ∼= Im(H) = G. Parts (2) and (3) follow. �

3. Generalities on Möbius transformations, Fuchsian groups, and
orbit cocycles

3.1. The Bowen–Series map. Fix a Fuchsian group Γ0 s.t. Γ0\D has finite
volume. Let Par(Γ0) denote the collection of all fixed points of parabolic g ∈ Γ0.
Bowen and Series constructed in [BS] a countable partition {Ia}a∈S of ∂D into arcs
with disjoint interiors, a generating set {ga}a∈S ⊂ Γ0, and fΓ0 : ∂D → ∂D with the
following properties:
(Orb) fΓ0 is (almost) orbit equivalent to Γ0: For all except finitely many (ξ, η) ∈

(∂D)2, ∃m,n > 0 s.t. fm
Γ0

(ξ) = fn
Γ0

(η) ⇔ ∃g ∈ Γ0 s.t. ξ = g(η).
(Res) fΓ0 |int(Ia) = ga|int(Ia) (a ∈ S).
(Mar) {Ia}a∈S is a Markov partition: fΓ0(Ia) ∩ Ib 6= ∅ ⇒ f(Ia) ⊇ Ib.

(Tr) fΓ0 is topologically transitive. In particular, for every a, b ∈ S there exists
some n such that fn

Γ0
(Ia) ⊇ Ib.

(Fin) If Par(Γ0) = ∅, then S is finite. Otherwise, ∃S0 ⊂ S finite s.t. the forward
fΓ0–orbit of every x ∈ ∂D\Par(Γ0) enters

⋃
a∈S0

Ia\Par(Γ0) =: Λ infinitely
many times.

(BD) For any finite set S0 as in (Fin), let fS0 : Λ → Λ be the first return map:
fS0(x) = f

ϕ(x)
Γ0

(x) where ϕ(x) := min{n ≥ 1 : fn
Γ0

(x) ∈ Λ}. There exists N

such that inf |(fN
S0

)′| > 1 and sup |f ′′S0
/f ′2S0

| < ∞ (Adler’s condition).
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Every word a = (a0, . . . , an−1) ∈ Sn determines a set

[a] :=
n−1⋂
k=0

f−k
Γ0

(Iak
).

This set, called a cylinder (of length n), is an arc. If it is nonempty, we say that a
is admissible.

Condition (Res) shows that any admissible word a = (a0, . . . , an−1) determines
an element ga ∈ Γ0 such that ga = fn−1

Γ0
|[a] = gan−2 ◦ · · · ◦ga0 if n ≥ 2, or ga := id, if

n = 1. Condition (Mar) implies that ga maps [a] onto Ian−1 . The content of (BD)
is that if a0, an−1 ∈ S0, then this is done with uniformly bounded distortion: There
exists a modulus of continuity ω(δ) −−−→

δ→0
0 such that for any cylinder [a],∣∣∣log g′a(ξ1)− log g′a(ξ2)

∣∣∣ ≤ ω(|ga(ξ1)− ga(ξ2)|) whenever ξ1, ξ2 ∈ [a]. (1)

(see [Ad]). In particular, there exists a constant B0 (independent of a or n) s.t.

1
B0

≤

∣∣∣∣∣g′a(x)
g′a(y)

∣∣∣∣∣ =

∣∣∣∣∣ (fn−1
Γ0

)′(x)

(fn−1
Γ0

)′(y)

∣∣∣∣∣ ≤ B0 for all x, y ∈ [a].

Properties (Orb), (Res), (Mar), and (Tr) are proved in [BS]. Property (BD) is also
proved in [BS], although it is stated there in a slightly weaker form. The proof of
(Fin) is sketched in the appendix.

3.2. The Busemann function and the Poisson kernel. Define two functions
aθ(z1, z2), bθ(z1, z2) (0 ≤ θ < 2π, z1, z2 ∈ D) such that

ωθ(z2) = haθ(z1,z2) ◦ gbθ(z1,z2)(ωθ(z1)).

The action of Möb(D) on T 1(D) in the KAN–coordinates is then

g(eiθ, s, t) =
(
g(eiθ), s + bθ(g−1o, o), t + e−saθ(g−1o, o)

)
(g ∈ Möb(D)). (2)

The function bθ(·, ·) is called the Busemann function (some authors use this name
for −bθ(·, ·)). The function aθ(·, ·) is not important in our context.

The geometric meaning of the Busemann function is explained by the identity
bθ(z1, z2) = lims→∞ d

(
gsωθ(z1), gsωθ(z2)

)
. It immediately follows that bθ(x, y) +

bθ(y, z) = bθ(x, z), and that bg·θ(g(z), g(w)) = bθ(z, w) for all g ∈ Möb(D) (where
g · θ is an angle such that g(eiθ) = eig·θ).

We now explain the potential theoretic meaning of the Busemann function, fol-
lowing [Kai2] and [F]. The harmonic measures of D are dλz(eiθ) = P (eiθ, z)dλ(eiθ)
where λ is the normalized Haar measure of ∂D, and P (eiθ, z) = 1−|z|2

|eiθ−z|2 is the Pois-
son kernel. The harmonic measures satisfy λz ◦ g−1 = λg(z) (g ∈ Möb(D)).4 The
Busemann function satisfies bθ(z1, z2) = − log dλz1

dλz2
(eiθ).5 In particular:

bθ(g−1o, o) = − log |g′(eiθ)|. (3)

4Every f ∈ C(∂D) determines an harmonic function F (z) =
R

fdλz with boundary values f .
Since g ∈ Möb(D), F ◦ g is harmonic, with boundary values f ◦ g. Thus,

R
fdλg(z) = F (g(z)) =R

f ◦ gdλz =
R

fdλz ◦ g−1. Since f was arbitrary, the identity must hold.
5The following argument is from [Kai2]: hθ(z1, z2) := − log

dλz1
dλz2

(eiθ) satisfies hθ(x, z) =

hθ(x, y) + hθ(y, z) and hgθ(gx, gy) = hθ(x, y) for all g ∈ Möb(D). All such functions must be

proportional to the Busemann function. Checking specific points we see that hθ = bθ.
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3.3. The limit set. The limit set of a Fuchsian group Γ (acting on D) is the set

Λ := {z : z is an accumulation point of Γw for some w ∈ D}.

The limit set is subset of ∂D. It is characterized as the smallest non–empty Γ–
invariant subset of ∂D. In particular, Λ is is equal to the set of accumulation points
of any single Γ–orbit, and Γ acts minimally on its limit set (see [Be]).

A Fuchsian group is called non-elementary if its limit set contains more than two
points. In this case it must be uncountable [Be]. A Fuchsian group is said to be of
the first kind if Λ = ∂D.

Any torsion free lattice in Möb(D) is of the first kind [Be]. Any non–trivial
normal subgroup Γ of a group of the first kind Γ0 is again of the first kind: The
limit set of Γ is invariant under Γ0, because Γ C Γ0. Since Γ 6= {id}, this set is
non–empty, and therefore (being a closed Γ0–invariant set), must contain the limit
set of Γ0. But this set is ∂D, by assumption.

3.4. Translation lengths. Recall that id 6= g ∈ Möb(D) is called hyperbolic if it
has two fixed points in ∂D. In this case one of these points is repelling, the other
is attracting, and the geodesic which connects them – called the axis of g – is left
invariant by g. A hyperbolic Möbius transformation moves the points on its axis a
fixed (hyperbolic) distance. This distance is called the translation length of g, and
is given by τ(g) :=

∣∣log |g′(p)|
∣∣ where p is one of the fixed points of g.6

Define for a torsion free Fuchsian group Γ

τ(Γ) := {τ(g) : g ∈ Γ is hyperbolic}.

This set is also called the length spectrum of Γ\D, because it is equal to the collection
of lengths of closed geodesics on Γ\D. We need the following two properties of τ(Γ):

(FI) If Γ0\D has finite volume, then τ(Γ0) intersects any compact interval at
most finitely many times (see §6.4). Clearly, every subgroup Γ ≤ Γ0 inherits
this property.

(NA) If Γ is Fuchsian and non-elementary, then τ(Γ) generates a dense subgroup
of R (Guivarc’h & Raugi [GR], Dal’bo [Da2]). This, in particular, is the
case for non-trivial normal subgroups of lattices (which as mentioned above
are of the first kind, whence non-elementary).

3.5. The orbit equivalence relation. Let X be a complete metric separable
space, and suppose G is a countable discrete group which acts on X in a continuous
way. The orbit equivalence relation of G is

G = G(G) := {(x, y) ∈ X ×X : ∃g ∈ G s.t. y = g(x)}.

An orbit cocycle is a Borel function Φ : G → R with the cancellation property:
Φ(x, y) + Φ(y, z) = Φ(x, z). Automatically, Φ(x, x) = 0 and Φ(x, y) = −Φ(y, x).

A G-holonomy is a bi-measurable bijection between Borel sets dom(κ), im(κ) ⊂
X Borel s.t. for all x ∈ X,

(
x, κ(x)

)
∈ G. Such maps take the form x 7→ gx(x)

where gx ∈ G depends on x measurably. The following fact is standard: If m is
G–invariant, then m ◦ κ|dom(κ) = m|dom(κ) for all G–holonomies.

More generally, let (X,F) be a complete metric separable space with its Borel σ–
algebra. A countable Borel equivalence relation is an equivalence relation G ⊂ X×X

6One way to prove this is to note that any hyperbolic g ∈ Möb(D) is conjugate to z 7→ kz
(k > 0) on {z : Re(z) > 0}. This isometry has translation length | log k|.
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with countable equivalence classes which forms a Borel subset of X ×X. The G–
holonomies are defined as before. A Borel measure on X is called G–invariant
if it is invariant under all G–holonomies, and G–ergodic if every Borel function
which is invariant under all holonomies is a.e. equal to a constant. In the case of
the orbit equivalence relation of a countable group, these definitions coincide with
the usual definition for ergodicity and invariance w.r.t. a group action. (In fact,
any countable Borel equivalence relation is the orbit equivalence relation of some
countable group of Borel automorphisms [FM].)

Suppose m is a Borel measure on (X,F). Some care is needed in discussing
‘almost everywhere’ statements in G, because an equivalence relation usually has
zero measure w.r.t. m ×m. A property P (x, y) of pairs (x, y) ∈ X × X is called
Borel, if {(x, y) ∈ G : P (x, y) holds} is a Borel subset of X ×X. A Borel property
is said to hold m–almost everywhere in G, if the set

{x ∈ X : P (x, y) holds for all y s.t. (x, y) ∈ G}
has full measure. The Borel measurability of sets of this form is proved in [FM].

4. Proof of Theorem 1

Fix two Fuchsian groups Γ,Γ0 such that {id} 6= ΓCΓ0 and Γ0 is a lattice. Let m0

be a Γ–invariant measure on T 1(D) which descends to a non–trivial h–e.i.r.m. on
T 1(M) where M = Γ\D. We have already remarked that in the KAN–coordinates,
any h–invariant measure is of the form dm(eiθ, s)dt. By (2), m0 is Γ–invariant iff
m is left invariant by the following Γ action on ∂D× R:

g : (eiθ, s) 7→
(
g(eiθ), s + bθ(g−1o, o)

)
=

(
g(eiθ), s− log |g′(eiθ)|

)
(4)

It is also easy to see that the condition that m0 descends to an h–ergodic measure
is equivalent to saying that m is ergodic with respect to the Γ action (4).

Abusing notation we denote the action gs : (eiθ0 , s0) 7→ (eiθ0 , s0 + s) by the
symbol reserved for the geodesic flow, and set Hm := {s ∈ R : m ◦ gs ∼ m}. This
is a closed subgroup of R, and our goal is to show that Hm = R. This suffices,
because m ◦ gs ∼ m iff m0 ◦ gs ∼ m0.

4.1. Two Lemmas. Let Nε(·) denote the ε–neighborhood of a set, and Γ, Γ0, and
m be as above. We assume throughout that m0 projects to a non-trivial measure
on T 1(Γ\D).

Lemma 1 (Holonomy Lemma). Let [a] ⊂ ∂D be a cylinder and I be a compact
interval such that m([a]× I) 6= 0. For every τ0 ∈ τ(Γ) and ε > 0, there exists a 1−1
measure preserving Borel κ such that κ([a]× I) ⊂ [a]×Nε(I + τ0) modm.

Proof. The non–triviality of m0 implies that m(Par(Γ0) × R) = 0: Otherwise, by
ergodicity, m is supported on a set of the form {(g(eiθ0), s0− log |g′(eiθ0)|) : g ∈ Γ}
for some parabolic fixed point eiθ0 and some s0 ∈ R. This means that m0 is carried
by the Γ–images of a single horocycle whose line elements determine geodesics
which terminate at eiθ0 . Such horocycles project to one closed horocycle on Γ0\D,
in contradiction to the non-triviality assumption.

Let S0 ⊂ S be the finite set given by (Fin), and assume w.l.o.g. that S0 contains
the first symbol a0 of [a] (otherwise add this symbol to S0). We claim that ∃a ∈ S0

such that the fΓ0–orbit of a.e. ξ ∈ ∂D enters Ia infinitely many times:7 There

7More precisely: if Ωa ⊂ ∂D is the set of points with this property, then m[(Ωa × R)c] = 0.
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is certainly an a ∈ S0 such that this happens with positive measure, because by
(Fin) and the previous paragraph a.e. orbit enters

⋃
a∈S0

Ia infinitely often, and
this union is finite. Now, the event we are describing is fΓ0–invariant, therefore by
(Orb) Γ0–invariant, whence (since Γ ⊂ Γ0) Γ–invariant. Since m is ergodic, this
event must have full measure.

Now fix some [a], I, τ0, ε as in the statement. By the definition of τ(Γ), there
is g ∈ Γ hyperbolic with attracting fixed point ξ+ and repelling fixed point ξ−

such that |g′(ξ−)| = |g′(ξ+)|−1 = eτ0 . We may assume w.l.o.g. that ξ+ ∈ int(Ia).
Otherwise, choose some h ∈ Γ such that h(ξ+) ∈ int(Ia) and work with h ◦ g ◦ h−1

(such h exists because Γ is of the first kind, and such groups act minimally on ∂D).
If the repelling fixed point of g also lies in int(Ia), divide Ia into two intervals

I+
a , I−a such that ξ± ∈ int(I±a ). Otherwise, set I+

a = Ia, I−a = ∅. We can always
make sure that the point pa which separates I+

a from I−a satisfies m({pa}×R) = 0,
because there are at most countably many pa’s for which this is false.

Observe that g±1(I±a ) ⊂ I±a (any hyperbolic isometry contracts intervals which
contain its attracting fixed point but not its repelling fixed point). Therefore, if

γ(ξ) :=

{
g(ξ) ξ ∈ I+

a

g−1(ξ) ξ ∈ I−a ,

than γ(Ia) ⊂ Ia and |γ′(ξ±)| = e−τ0 .
Fix ` (to be determined later) and set [a`

±] := g±`(I±a ). We claim that almost
every fΓ0–orbit enters [a`

+] ∪ [a`
−] = γ`(Ia) infinitely many times.

Assume by way of contradiction that this is not the case. In this case the function
N(ξ) := 1[a](ξ) max{n : fn

Γ0
(ξ) ∈ γ`(Ia)} ∪ {0} is finite for m–a.e. (ξ, s).

By choice of a, the fΓ0–orbit of a.e. ξ enters Ia infinitely many times. Denote
these times by n1(ξ) < n2(ξ) < · · · , and consider the maps κi defined as follows:
For every ξ, let [ξ0, . . . , ξni(ξ)] be the cylinder which contains ξ. Then

κi(ξ) := (fni(ξ)
Γ0

|[ξ0,...,ξni(ξ)])
−1 ◦ γ` ◦ f

ni(ξ)
Γ0

|[ξ0,...,ξni(ξ)].

For every ξ, κi(ξ) = gξ(ξ) or g−1
ξ (ξ) for some gξ ∈ Γ (which depends on i but is

constant on [ξ0, . . . , ξni(ξ)]), because of (Res) and the normality of Γ in Γ0. Abusing
notation, we define κ′i(ξ) to be g′ξ(ξ) or (g−1

ξ )′(ξ) (depending on whether κi(ξ) =
gξ(ξ) or g−1

ξ (ξ)), and define for i larger than the length of [a]

κi : (eiθ, s) 7→ (κi(eiθ), s− log |κ′i(eiθ)|).

(i) κi is injective, because κi is injective (it is piecewise injective and the images
of the pieces are disjoint).

(ii) κi is measure preserving, because it is a holonomy of the orbit relation of
the action of Γ on ∂D× R.

(iii) ∃M0 such that κi([a] × I) ⊂ [a] × NM0(I), because the chain rule and
(1) show that |κ′(ξ)| = B±

0 |γ′(η)| for some η ∈ Ia, and this is uniformly
bounded away from zero and infinity.

(iv) For a.e. (ξ, s) ∈ [a]× I, κi(ξ, s) ∈ [N ≥ i]×NM0(I), because by construc-
tion, N(κi(ξ)) ≥ ni(ξ) ≥ i.

Now, [N ≥ i]×NM0(I) is a decreasing sequence of sets whose intersection is negligi-
ble (because N < ∞ a.e.). These are subsets of the finite measure set [a]×NM0(I),
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so their measure must tend to zero. By (iv), (m ◦ κi)([a] × I) −−−→
i→∞

0. But this

contradicts (ii).
Therefore, for any `, the orbit of a.e. ξ ∈ [a] enters γ`(Ia) infinitely often. It

follows that [a] is (up to measure zero) of the form

[a] =
∞⊎

i=1

[p
i
] ∩ f−`i

Γ0
(γ`Ia)

where [p
i
] are cylinders of length `i + 1 and f `i

Γ0
[p

i
] = Ia. Define a map κ on [a] by

κ|
[p

i
]∩f

−`i
Γ0

(γ`Ia)
= (f `i

Γ0
|[p

i
])−1 ◦ γ ◦ f `i

Γ0
|[p

i
].

(i) κ is injective and κ[a] ⊂ [a]: Indeed, κ maps [p
i
] ∩ f−`i

Γ0
(γ`Ia) bijectively

onto [p
i
] ∩ f−`i

Γ0
(γ`+1Ia) ⊂ [p

i
] ∩ f−`i

Γ0
(γ`Ia).

(ii) κ is a holonomy of the Γ action on ∂D: This is because of (Res) and the
normality of Γ in Γ0

(iii) sup |log |κ′|+ τ0| −−−→
`→∞

0 on [a]. See below.

Before checking (iii), we explain how it can be used to complete the construction.
Fix, using (iii), ` large enough that | log |κ′|+ τ0| < ε. As before,

κ : (eiθ, s) 7→ (κ(eiθ), s− log |κ′(eiθ)|)

makes sense, is measure preserving, and maps [a]× I into [a]×Nε(I + τ0).

We check (iii). Observe first that each [p
i
] starts with a0 and recall that a0 ∈ S0.

By the chain rule for every ξ ∈ [p
i
]∩ f−`i

Γ0
(γ`I±a ) there are ξ1, ξ2 ∈ [p

i
]∩ f−`i(γ`I±a )

(same sign for both) and ξ3 ∈ γ`Ia such that

|κ′| = |(f `i)′(ξ1)|
|(f `i)′(ξ2)|

|γ′(ξ3)|
|γ′(ξ±)|

e−τ0 .

Now |f `i

Γ0
(ξ1) − f `i

Γ0
(ξ2)| ≤ |γ`I±a |. Writing ω±(δ) for the moduli of continuity of

log |γ′±| and using (1) , we see that∣∣log |κ′(ξ)|+ τ0

∣∣ ≤ ω(|γ`I±a |) + ω±(|γ`I±a |)

(where the sign is decided according to the half of Ia which contains f `i

Γ0
(ξ)). Since

|γ`(I±a )| −−−→
`→∞

0, the result follows. �

Lemma 2. For every ξ ∈ ∂D, m({ξ} × R) = 0.

Proof. The non-triviality of m0 implies that m(Par(Γ0) × R) = 0, because of the
discussion at the beginning of the proof of Lemma 1. It is therefore enough to
consider ξ ∈ ∂D\Par(Γ0) and show m({ξ}×R) = 0. Assume by way of contradiction
that there is a ξ ∈ ∂D \ Par(Γ0) for which this is false.

Define τ(ξ) := {±τ(g) : g ∈ Γ, g(ξ) = ξ} = {log |g′(ξ)| : g ∈ Γ, g(ξ) = ξ}.
This is a proper definition because any g ∈ Γ which fixes ξ is hyperbolic, otherwise
ξ ∈ Par(Γ0).

The set τ(ξ) forms a subgroup of R. This subgroup is closed, because τ(ξ) ⊆
τ(Γ), and τ(Γ) intersects any compact interval at most finitely many times (FI).
As mentioned in §3.4, τ(Γ) is not contained is a closed (proper) subgroup of R.
Therefore, τ(ξ) ( τ(Γ).
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Fix some τ0 ∈ τ(Γ) \ τ(ξ), and let ε := 1
4d(τ0, τ(ξ)). Choose some compact

interval I of length ε such that m({ξ} × I) 6= 0. Consider the sequence of cylin-
ders [ξ0, . . . , ξn−1] which contain ξ. By the holonomy lemma, there exist measure–
preserving injections κn defined on [ξ0, . . . , ξn] such that

κn([ξ0, . . . , ξn−1]× I) ⊂ [ξ0, . . . , ξn−1]×Nε(I + τ0).

The proof the holonomy lemma shows that we can choose κn to be of the form
(eiθ, s) 7→ (κn(eiθ), s− log |κ′n(eiθ)|) with κn piecewise hyperbolic Möbius transfor-
mation. As before, κ′n can be defined unambiguously.

By construction, log |κ′n(ξ)| is 2ε–close to (−τ0), and therefore does not belong
to τ(ξ). It follows that κn(ξ) 6= ξ. Since by construction κn(ξ) → ξ, the set
{κn(ξ)}n≥1 is infinite.

Hence, there are infinitely many pairwise disjoint sets in the list {κn({ξ}×I)}n≥1.
These sets have measure m({ξ} × I) 6= 0, because κn is measure preserving. But
this is impossible, because they are all subsets of the set ∂D×Nε(I + τ0), and this
set has finite measure because of the Radon property. �

4.2. Proof of Theorem 1. . Let m0,m and Hm be as in the previous section.

Step 1. There exists a Borel measurable u : ∂D → R such that m is carried by the
set {(eiθ, s) : s− u(eiθ) ∈ Hm}.

Proof. Let G denote the orbit equivalence relation of the action of Γ on ∂D:

G := {(ξ, η) ∈ ∂D× ∂D : ∃g ∈ Γ s.t. η = g(ξ)}.

Let Λ0 ⊂ ∂D be the collection of all points which are fixed by some id 6= g ∈ Γ.
Define Φ : G → R by

Φ(eiθ1 , eiθ2) :=

{
bθ1(g

−1o, o) eiθ1 6∈ Λ0 and eiθ2 = g(eiθ1), g ∈ Γ
0 otherwise.

Using the various properties of the Busemann function, it is not difficult to see that
this is a G–cocycle, i.e.

Φ(x, y) + Φ(y, z) = Φ(x, z) for all G–equivalent x, y, z ∈ ∂D.

The set of fixed points Λ0 ×R is Γ–invariant. It is clear that the orbit equivalence
relation of Γ on (∂D× R) \ (Λ0 × R) is the same as

GΦ := {
(
(x, s), (x′, s′)

)
: (x, x′) ∈ G and s′ − s = Φ(x, x′)}.

Since Λ0 is countable, m(Λ0 × R) = 0. Therefore, since m is Γ–invariant and
ergodic, m is GΦ–invariant and ergodic.

The cocycle reduction theorem of [Sg] constructs u : ∂D → R Borel such that

Φ(eiθ1 , eiθ2) + u(eiθ1)− u(eiθ2) ∈ Hm m–a.e. in GΦ.

This implies that F : ∂D×R → R/Hm, F (eiθ, s) := s−u(eiθ)+Hm is GΦ–invariant,
and therefore (by ergodicity) constant almost everywhere. It now remains to modify
u by a constant to ensure that F = Hm almost everywhere.

Step 2. The function u(eiθ) of the previous step can be made essentially bounded.

Proof. Hm is a closed subgroup of R, so it is either equal to R, cZ or {0}. In the
first case there is nothing to prove. In the second case, one can choose v = u mod c.
It remains to treat the case Hm = {0}. In this case, m is supported on the graph
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of u, {(eiθ, u(eiθ)) : 0 ≤ θ < 2π}. We claim that u is then automatically essentially
bounded.

Assume by way of contradiction that ess sup |u| = ∞. In this case there are
intervals I, J , τ0 ∈ τ(Γ), and ε > 0 s.t. m(∂D× I) 6= 0,m(∂D× J) 6= 0, I ∩ J = ∅
and Nε(I + τ0) ⊂ J .8

Define two measures on ∂D by µI(E) := m(E × I), µJ(E) = m(E × J). These
measures are mutually singular: Indeed, s = u(eiθ) m-a.e., so u(eiθ) ∈ I µI–a.e.
and u(eiθ) ∈ J µJ–a.e. Since I ∩ J = ∅, µI ⊥ µJ .

Since µI ⊥ µJ , there exists some cylinder [a] such that µI [a] > 2µJ [a]: Indeed,
the collection of all Borel sets which satisfy the opposite inequality is a monotone
class. If it contains all cylinders, then it must contain all Borel sets (because the
cylinders generate the Borel sets). But this implies that µI ≤ 2µJ in contradiction
to µI ⊥ µJ .

By the definition of [a], µI , and µJ , m([a]× I) > 2m([a]× J). We now obtain a
contradiction: Let κ be a measure preserving injection κ : [a]×I ↪→ [a]×Nε(I+τ0) ⊆
[a]× J . Then 2m([a]× J) < m([a]× I) = (m ◦ κ)([a]× I) ≤ m([a]× J), and 2 < 1
or 0 < 0.

Step 3. After the change of coordinates ϑ(eiθ, s) =
(
eiθ, s − u(eiθ)

)
, m takes the

form dm ◦ϑ−1 = eλsdν(eiθ)dmHm
(s) where λ ∈ R, mHm

is Haar’s measure on Hm,
and ν is a finite measure on ∂D which is equivalent to a Γ–ergodic Γ–conformal
measure with parameter λ.

Proof. We have seen that m is supported on {(eiθ, s) : s−u(eiθ) ∈ Hm} with u(eiθ)
Borel. It follows that m ◦ ϑ−1 is carried by ∂D ×Hm. If we choose an essentially
bounded version of u, then m ◦ ϑ−1 is Radon.

Since m is ergodic and gs commutes with the Γ–action, m ◦ gs is also Γ–ergodic
and invariant. It is therefore either proportional to m, or singular w.r.t. m. It
follows that ∃λ such that for all s ∈ Hm, m ◦ gs = eλsm. Since ϑ and gs commute,
we also have m◦ϑ−1 ◦gs = eλsm◦ϑ−1 for all s ∈ Hm. Consequently, e−λsdm◦ϑ−1

is invariant w.r.t. translations in Hm. It is not difficult to deduce from this and
the fact that e−λsm ◦ϑ−1 is supported in ∂D×Hm, that e−λsdm ◦ϑ−1 = ν×mHm

with some measure ν on ∂D.
This measure must be finite, because m ◦ ϑ−1 is Radon. For every g ∈ Γ, m is

g–invariant, and therefore m ◦ ϑ−1 is ϑ ◦ g ◦ ϑ−1–invariant. Comparing this with
the formula, m ◦ ϑ−1 = eλsν ×mHm

we see that

dν ◦ g

dν
(eiθ) = |g′|λ e−λu

e−λu◦g

Therefore eλuν is Γ–conformal with parameter λ (this is a finite measure because
ess sup |u| < ∞ and ν(∂D) < ∞.)

Step 4. Hm = R, which proves the theorem.

Proof. Assume by way of contradiction that Hm 6= R. Since this is a closed
subgroup of R, Hm = cZ for some c.

8To see this pick some τ ∈ τ(Γ) and observe that the partition ∂D×R =
U

k∈Z ∂D× [kτ, kτ +τ)

contains at least two non–adjacent ‘tiles’ which carry some measure (otherwise m is supported

inside a bounded set, which is impossible because m is carried by the graph an unbounded func-
tion). If these intervals are [kiτ, kiτ + τ) where k1 < k2, then take ε = τ/2, I = [k1τ, k1τ + τ),
J = Nε([k2τ, k2τ + τ)) and τ := (k2 − k1)τ (this is the translation length of the (k2 − k1)–power
of the Γ–isometry with translation length τ).
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By the theorem of Guivarc’h, Raugi, and Dal’bo mentioned in §3.4, τ(Γ) gen-
erates a dense subgroup of R, and therefore there must be some τ0 ∈ τ(Γ) \ cZ.
Set ε0 := 1

2d(τ0, cZ), and fix some u0 such that A := [|u − u0| < ε0
6 ] has positive

measure. We construct a Borel set A0 and G–holonomy κ such that A0 ⊆ A and
ν(E) 6= 0, where

E := A0 ∩ κ−1A0 ∩
[
|Φ(ξ, κξ) + u(ξ)− u(κξ)− τ0| < ε0

]
.

Sets of this form appear in the theory of essential values (see [Sch], [Kai1]).
Before constructing A0, we show how to use its existence to derive the contra-

diction which proves the step. If κ(eiθ, s) = (κ(eiθ), s + Φ(x, κx)), then

(ϑ ◦ κ ◦ ϑ−1)(E × {0}) ⊆ ∂D×Nε0(τ0) ⊂ (∂D×Hm)c.

Since ϑ ◦ κ ◦ ϑ−1 preserves the measure m ◦ ϑ−1,

0 6= ν(E) = (m ◦ ϑ−1)(E × {0}) ≤ (m ◦ ϑ−1)[(∂D×Hm)c] = 0,

a contradiction.

The construction of A0: Fix ε > 0, to be determined later. There exists a cylinder
of positive measure [a] such that ν(A∩ [a]) ≥ (1−ε)ν[a]: Indeed, ∃U ⊇ A open with
ν(A) ≥ (1 − ε)ν(U) (regularity of Borel measures). Now ν has no atoms (because
m({ξ} × R) = 0 for all ξ ∈ ∂D). Therefore, every open set is a countable disjoint
union of cylinders up to a set of measure zero. One of these sets must satisfy the
desired inequality.

By the choice of u0, m
(
[a]×N ε0

6
(u0)

)
6= 0. Construct a GΦ–holonomy κ s.t.

κ
(
[a]×N ε0

6
(u0)

)
⊆ [a]×N ε0

3
(u0 + τ0).

Any GΦ–holonomy is of the form (ξ, s) 7→ (κξ, s + Φ(ξ, κξ)) where κ is a G–
holonomy. We must have

κ[a] ⊆ [a] and |Φ(x, κx)− τ0| <
ε0

2
.

Set A0 := [a] ∩A. We claim that if ε is small enough, then ν(A0 ∩ κ−1A0) 6= ∅.
We begin with an estimate of the Radon–Nikodym derivative of κ on A0. The
Γ–invariance of m is equivalent to its GΦ–invariance, and this translates to the
GΦu–invariance of m ◦ ϑ−1, where Φu(ξ1, ξ2) := Φ(ξ1, ξ2) + u(ξ1) − u(ξ2). Since
m ◦ ϑ−1 = eλsν × mHm

, this forces dν◦κ
dν (ξ) = e−λΦu(ξ,κξ) = e±2‖λu‖∞e−λΦ(ξ,κξ).

Therefore, on A0 ⊂ [a]

dν ◦ κ

dν
≥ e−2‖λu‖∞− |λ|ε0

2 −|λ|τ0 =: δ0.

It follows that ν(κA0) =
∫

A0

dν◦κ
dν dν ≥ δ0ν(A0) ≥ δ0(1− ε)ν[a], since by construc-

tion ν(A0) ≥ (1− ε)ν[a]. It follows that

ν(A0) + ν(κA0) ≥ (1− ε)(1 + δ0)ν[a] −−−→
ε→0

(1 + δ0)ν[a],

so we can choose ε small enough so that the left hand side is strictly larger than ν[a].
But A0, κ(A0) ⊆ [a], so necessarily ν

(
A0 ∩ κ(A0)

)
6= 0. Since κ is non–singular,

ν
(
A0 ∩ κ−1(A0)

)
= ν ◦ κ−1

(
A0 ∩ κ(A0)

)
6= 0.

Finally, we observe that if ξ ∈ A0 ∩ κ−1A0, then ξ, κ(ξ) ∈ A = [|u − u0| < ε0
6 ]

and so |Φ(ξ, κξ) + u(ξ)− u(κξ)− τ0| ≤ |Φ(ξ, κξ)− τ0|+ |u− u0|+ |u0 − u ◦ κ| < ε0.
It follows that ν(E) 6= 0. �
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5. Proof of Theorems 2 and 3

5.1. λ–Potential Theory. It is known that ∆DP (eiθ, z)α = α(α − 1)P (eiθ, z)α

for all 0 ≤ θ < 2π.9 It turns out that if α ≥ 1/2, then this is a complete family of
minimal eigenfunctions for the eigenvalue α(α− 1) ([Kar], [Su1]):

Theorem 4 (Karpelevich). Any positive eigenfunction F : D → R of ∆D has
eigenvalue λ ≥ −1

4 , and admits a unique representation of the form

F (z) =
∫

∂D
P (eiθ, z)αdν(eiθ)

where ν is a finite measure on ∂D, α(α− 1) = λ, and α ≥ 1
2 . Any (positive) finite

Borel measure on ∂D arises this way.

The following lemma is from [Su1] (see also [Ba]):

Lemma 3. Let ν be a finite Borel measure on ∂D, and set dm = eαsdν(eiθ)dsdt,
F (z) :=

∫
∂D P (eiθ, z)αdν(eiθ). If g ∈ Möb(D) acts on T 1(D) by (2) and on ∂D and

D in the standard way, then
(1) dν◦g

dν = |g′|α ⇐⇒ m ◦ g = m;
(2) dν◦g

dν = |g′|α =⇒ F ◦ g = F , and if α ≥ 1
2 then this is an ⇔.

Proof. By (3), dm◦g
dm = eαbθ(g−1o,o) dν◦g

dν = |g′(eiθ)|−α dν◦g
dν . This proves part (1).

To prove part (2), we use the harmonic measures λz from §3.2. Writing for
g ∈ Möb(D), P (eiθ, gz)dλ ≡ λgz = λz ◦ g−1 ≡ P (g−1eiθ, z)dλ ◦ g−1, we see that

|(g−1)′(eiθ)| = dλ ◦ g−1

dλ
(eiθ) =

P (eiθ, gz)
P (g−1eiθ, z)

for all g ∈ Möb(D). (5)

It follows that

F (gz) =
∫

∂D
P (eiθ, gz)αdν(eiθ) =

∫
∂D

P (g−1eiθ, z)α|(g−1)′|αdν(eiθ)

=
∫

∂D
P (eiθ, z)α|(g−1)′ ◦ g|αdν ◦ g(eiθ)

=
∫

∂D
P (eiθ, z)α|g′|−α dν ◦ g

dν
dν(eiθ)

Comparing this with F (z) =
∫

∂D P (eiθ, z)αdν(eiθ) we see (by the uniqueness part
of theorem 4) that when α ≥ 1

2 , F ◦ g = F iff dν◦g
dν = |g′|α. �

5.2. Proof of Theorem 2. We divide the proof into two parts:

Part 1. Any non-trivial h–e.i.r.m. lifts to a measure of the form eαsdνdsdt, where
ν is non-atomic, Γ–ergodic, and Γ–conformal with parameter α.

Proof. Let m0 be a Γ–invariant measure on T 1(D) which descends to a non-trivial
h–e.i.r.m. on T 1(Γ\D). By theorem 1, m0 is quasi–invariant under the geodesic
flow. As explained in the introduction, this forces m0 to take the following form in
the KAN–coordinates: dm0(eiθ, s, t) = eαsdν(eiθ)dsdt.

9f(z) = Im(z)α is a α(α− 1)–eigenfunction of ∆H = y2( ∂2

∂x2 + ∂2

∂y2 ). Now ϕ(z) = i 1+z
1−z

maps

D isometrically onto H, so f ◦ ϕ is a α(α − 1)–eigenfunction of ∆D. Calculating, we see that

f ◦ ϕ = Re[ 1+z
1−z

]α = P (1, z)α, so P (eiθ, ·)α is a α(α− 1)–eigenfunction for θ = 0. But for every θ

∃ϕθ ∈ Möb(D) s.t. P (eiθ, ·) = P (1, ·) ◦ ϕθ so P (eiθ, ·)α is a α(α− 1)–eigenfunction for all θ.
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Since m0 is Radon, ν is finite. Lemma 2 shows that ν is non-atomic. Since
m0 is Γ–invariant, ν is Γ–conformal with parameter α (lemma 3). Finally, ν is
ergodic under the action of Γ on ∂D: Any F (eiθ) is h–invariant on T 1(D) (it is
independent of t in the KAN–coordinates). If it is Γ–invariant, then it descends
to an h–invariant function on T 1(Γ\D), and therefore must be constant (ergodicity
on T 1(Γ\D)).

Part 2. If ν is non-atomic, Γ–ergodic, and Γ–conformal measure with parameter
α on ∂D, then dm0 := eαsdνdsdt descends to a non-trivial h-e.i.r.m. measure on
T 1(Γ\D).

Proof. As before m0 is h–invariant and Γ–invariant, and therefore descends to an
h–invariant Radon measure on T 1(Γ\D). This measure is non-trivial, otherwise ν
would have to be supported on Par(Γ) and would therefore have to be atomic. But
h–ergodicity is not clear.

It is enough to show that dµ := eαsdνds is ergodic w.r.t. the action (4) of Γ on
∂D × R. Indeed, any h–invariant function on T 1(D) is of the form F (eiθ, s), and
this descends to a function on the surface iff F is invariant under the action (4).

Observe that µ is Γ–invariant. Let dµ =
∫

Y
µydπ(y) be the ergodic decom-

position of µ w.r.t. the Γ–action. For a.e. y, µy is a Γ–invariant Radon mea-
sure on ∂D × R. Consequently, my = µy × dt is a Γ–invariant Radon measure
on (∂D × R) × R ' T 1(D), and therefore descends to an h–invariant measure on
T 1(Γ\D). This measure is h–ergodic, because of the ergodicity of µy.

It is also non-trivial for a.e. y. Otherwise, there would be a positive measure set
of y’s for which my(Par(Γ0)× R× R) 6= 0. This can only happen if m0(Par(Γ0)×
R× R) 6= 0, in which case ν[Par(Γ0)] 6= 0. But this is impossible, because Par(Γ0)
is countable, and ν is non-atomic.

We may now appeal to part (1) and see that my = eαysdνydsdt, where νy is a Γ–
ergodic and Γ–conformal measure of parameter αy. It follows that µy = eαysdνyds.
The identity

µ = e−αs0µ ◦ gs0 =
∫

Y

e(αy−α)s0µydπ(y)

in the limit s0 → ±∞ shows that αy = α for π–a.e. y ∈ Y . Consequently,
almost all the νy’s are Γ–conformal with parameter α. But ν =

∫
Y

νydπ(y) and ν
was assumed to be ergodic, so almost all the νy must be equal (uniqueness of the
ergodic decomposition [Sch]). It follows that almost all the µy are equal, and this
can only happen if µ itself is ergodic.

By the discussion at the beginning of the proof, this implies that m0 descends
to an h–ergodic measure. �

5.3. Proof of Theorem 3. Now that theorems 1 and 2 are proved, we can simply
follow that argument of [Ba], making the suitable adjustments from the nilpotent
case discussed there to the general case.

We start with some general comments on non-trivial normal subgroups Γ of
lattices Γ0 in Möb(D). Any Γ–conformal measure has parameter larger than or
equal to δ(Γ), the critical exponent of the Poincaré series of Γ (Sullivan [Su1],
theorem 2.19). If {id} 6= Γ C Γ0, then δ(Γ) ≥ 1

2δ(Γ0) (Roblin [Rob], theorem
2.2.1). The critical exponent of a lattice is equal to one ([Su1], theorem 2.17).
Therefore: any Γ–conformal measure has parameter ≥ 1

2 .
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Theorem 2 says that every non-trivial h–e.i.r.m. is of the form eαsdν(eiθ)dsdt
with ν non-atomic Γ–conformal and ergodic with parameter α. Fm(z) defined by
(∗) is a well–defined α(α−1)–eigenfunction of ∆D (theorem 4). By lemma 3 part (2),
it is Γ–invariant, and therefore descends to an α(α−1) eigenfunction on M = Γ\D.

We claim that this eigenfunction (which we also denote by Fm) is minimal.
Suppose Fm dominates another positive α(α−1)–eigenfunction F . Then Fm is the
average of the two positive eigenfunctions Fm±F . If ν± are the Γ–conformal finite
measures on ∂D which represent these functions as in theorem 4, then 1

2 (ν+ + ν−)
is another representation of Fm. But the representing measure of Fm is unique
(because α ≥ 1

2 ), so ν = 1
2 (ν+ + ν−). The Γ–ergodicity of ν forces ν± to be

proportional, so ∃c > 0 s.t. F = cFm, proving the minimality of Fm.
This shows that (∗) is a well–defined map from the collection of h–e.i.r.m. into

the collection of minimal eigenfunctions of ∆M . This map is an injection because
of theorem 4 and the inequality α ≥ 1

2 .
To see that it is a surjection, start with a minimal non-trivial eigenfunction

of eigenvalue λ, and let F be its lift to an eigenfunction on D. Write F (z) =∫
∂D P (eiθ, z)αdν(eiθ) where λ = α(α − 1), α ≥ 1

2 , and ν is some finite measure on
∂D. By lemma 3 part (2), ν is Γ–conformal with parameter α. Now ν must be
Γ–ergodic, otherwise F is not minimal. It follows from theorem 2 part (1) that
dm = eαsdνdsdt is a non-trivial h–e.i.r.m. such that Fm = F .

We have established the bijection (∗) proclaimed in Theorem 3. Property (1) in
the statement of this theorem can be checked by direct computation. Property (2)
is proved by realizing the deck transformations as elements of Γ0 (every coset of Γ
corresponds to one deck transformation), and proceeding as in Lemma 3. �

6. Appendix: Proof of some auxiliary results

6.1. Classification of positive eigenfunctions for surfaces of finite area.
Let Γ be a lattice in Möb(D), and set M := Γ\D. We know from §5.3 that the
positive eigenfunctions of ∆ on Γ\D have eigenvalue α(α−1) with α ≥ δ(Γ), where
δ(Γ) is the critical exponent of Γ. The critical exponent of a lattice is equal to one;
therefore all the relevant eigenvalues are non-negative.

Step 1. Every positive eigenfunction with eigenvalue zero is constant.

Proof. Let F (z) be a positive function such that ∆MF = 0. Fix some p ∈ M , and
denote by Bt the Brownian motion on M started at p. It is a standard fact that
F (Bt) is a martingale. Consequently, F (Bt) converges almost surely. On the other
hand, it is known that the Brownian motion on a surface of finite area is recurrent
[Su3]; therefore if F (z) must be constant.

Step 2. The number of minimal positive eigenfunctions with a fixed positive eigen-
value is equal to the number of the cusps. These eigenfunctions are trivial.

Proof. Denote the cusps of M by C1, . . . , CN . Fix λ > 0. We construct for every i
a trivial λ–eigenfunction Ei which tends to infinity at Ci and to zero at Cj (j 6= i)
(compare with the spectral Eisenstein series on the modular surface [Sk]).

Working in the upper half plane, we assume without loss of generality that Ci is
at infinity (otherwise pass to a conjugate of Γ). Let Γi ⊂ Γ be the stabilizer of ∞.
This is an infinite cyclic group of the form Γi := {z 7→ z + kb : k ∈ Z}, with b real.
Let s > 1 be the solution larger than one of s(s− 1) = λ. Noting that Γi preserves
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the imaginary part, we define Im[Γiγ · z] := Im[γ(z)], and set

Ei(z) :=
∑

Γiγ∈Γi\Γ

[Im(Γiγ · z)]s.

The series converges absolutely (see §1.4 in [Sk]), and:

(1) Ei is a Γ–invariant positive λ–eigenfunction, because of Γ–equivariance and
∆H(Imz)s = [y2( ∂2

∂x2 + ∂2

∂y2 )]ys = λ(Imz)s.
(2) Ei is trivial and minimal. The map ϕ(z) = i 1+z

1−z maps D onto H, ϕ(1) = ∞,
and Im[ϕ(z)] = P (1, z). By (5), if ΓD := ϕ−1Γϕ and ΓD

i := ϕ−1Γiϕ, then
Ei ◦ ϕ =

∑
ΓD

i g∈ΓD
i \ΓD |g′(1)|sP (g(1), z)s =

∫
∂D P (eiθ, z)sdν(eiθ), where ν is

supported on ΓD1. Since 1 corresponds to a cusp, Ei is trivial. Since ν is
ΓD–ergodic, Ei is minimal [Ba].

(3) Ei(z) converges to infinity as z → Ci and to zero as z → Cj for j 6= i. See
Corollary 3.5 in [Iw].

(4) For every Γ–invariant positive λ–eigenfunction F , F (z) = O
(
Ei(z)

)
, as

z → Ci. Karpelevich’s Theorem and P (eiθ, z) ≤ P (1, |z|) = Im ϕ(|z|) give
(F ◦ϕ)(z) ≤ F (ϕ(0))[Im ϕ(|z|)]s (z ∈ D). Setting w = ϕ(z), F0 := F (ϕ(0)),
we see that F (w) ≤ F0[Im ϕ(|ϕ−1(w)|)]s (w ∈ H). Noting that w ∈ iR+ ⇒
ϕ−1(w) is positive and real, we see that

F (w) ≤ F0[Im w]s ≤ F0 · Ei(w) for all w ∈ iR+.

Now, any {Γzn}n≥1 which tends to Ci is within hyperbolic distance o(1)
from some {Γwn}n≥1 with wn imaginary. By Harnack’s inequality, F (Γzn) ∼
F (Γwn) ≤ F0Ei(Γwn) ∼ F0Ei(Γzn).

We now show that any positive λ–eigenfunction F is a convex combintation of
E1, . . . , EN . Assume first that F tends to infinity at each of the cusps.

Every cusp Ci is encircled by a one parameter family of closed horocycles. Param-
etrize these horocycle by Hi(r) in such a way that Hi(r) converge to Ci as r →∞
(in the coordinate system of the first paragraph, Hi(r) = {Γz : z = x + ir, x ∈ R}).
Let Ωr be the the domain obtained from M by cutting the cusps away at Hi(r),
i = 1, . . . , N .

The hyperbolic length of Hi(r) tends to zero as r tends to infinity. By Harnack’s
inequality, there exists ε(r) −−−→

r→∞
0 such that for every positive λ–eigenfunction h

h(z) = e±ε(r)h(w) for all z, w ∈ Hi(r). In particular, ∃Fj(r), Eij(r) such that

F = e±ε(r)Fj(r), Ei = e±ε(r)Eij(r) on Hj(r).

Define αi(r) := Fi(r)
Eii(r)

and δ(r) := max{Eij(r)
Fi(r)

: j 6= i}. As r → ∞, αi(r) = O(1)
because F = O(Ei), and δ(r) = o(1), because F →∞ and Ej → 0 at Cj . Thus,

N∑
j=1

αj(r)Eji(r) =

1 +
∑
j 6=i

αj(r)
Eji(r)
Fi(r)

Fi(r) = [1 + O(δ(r))]±1Fi(r).

It follows that F (z) = [1 + o(1)]±1
∑N

j=1 αj(r)Ej(z) on ∂Ωr uniformly in z.
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This implies that F (z) = [1 + o(1)]±1
∑N

j=1 αj(r)Ej(z) on Ωr uniformly in z,
because of the following general fact:

f1, f2 are positive on Γ\H
∆Hf1 = λf1, ∆Hf2 = λf2 on Γ\H

f1 ≤ f2 on ∂Ωr

 ⇒ f1 ≤ f2 on Ωr. (6)

The proof of (6): Karpelevich’s Theorem implies that f1, f2 are C2(Ωr). Therefore
u := f1− f2 attains its maximum on Ωr at some point z0. We claim that u(z0) ≤ 0
(proving that f1 ≤ f2 on Ωr). Otherwise, u(z0) > 0 and z0 must be in the interior of
Ωr. In the upper half plane model, this implies that 0 < λu(z0) = Im (z0)2[uxx(z0)+
uyy(z0)] and so at least one of uxx, uyy is positive at z0. But this is impossible,
because z0 is a point of local maximum.

Since αi(r) are positive and uniformly bounded, there exists rn →∞ such that
αi(rn) converges as n →∞, say to αi. Passing to this limit, we see that

F (z) =
N∑

i=1

αiEi(z) on
∞⋃

n=1

Ωrn
= M.

This proves that that any positive eigenfunction which explodes at the cusps is a
linear combination with non-negative coefficients of E1, . . . , EN .

For a general positive λ–eigenfunction F , we argue as follows: The function
F0 := F +

∑N
i=1 Ei explodes at the cusps, and is therefore a linear combination of

the Ei’s. We use this fact to write F (z) =
∑N

i=1(αi − 1)Ei(z) for some αi. But
αi−1 ≥ 0 are all positive, because if αi−1 were negative, then the limit of the right
hand side as z → Ci would have been −∞, whereas the left hand side is positive.

This proves that the cone of positive λ–eigenfunctions is spanned by E1, . . . , EN .
It follows that there are exactly N minimal positive λ–eigenfunctions, and that these
functions are trivial. �

6.2. Classification of positive eigenfunctions for cocompact nilpotent pe-
riodic surfaces [LP]. Let Γ0 be a torsion free uniform lattice in Möb(D) and
Γ C Γ0 a non-trivial subgroup such that G := Γ0/Γ is nilpotent. We let G act on
M := Γ\D by identifying G with the symmetry group of M .

We show that the set of minimal positive eigenufunctions of ∆M is equal to
{cFϕ : c > 0, ϕ : G → R is a homomorphism}, with Fϕ ◦ D = eϕ(D)Fϕ for all
D ∈ G. This is a particular case of the much more general theory developed in
[LP]. The following proof (a combination of ideas from [Mrg], [CG] and [LS]) is
included for completeness.

Step 1. The following holds for all minimal positive eigenfunctions h of the laplacian
of M : h ◦D ∝ h for all D ∈ Z(G), and h ◦D = h for all D ∈ Z(G) ∩ [G, G].

Proof. If D ∈ Z(G) and dM denotes hyperbolic distance (on M), then D moves
points on M a bounded distance: Choose K0 ⊂ M compact s.t. M =

⋃
D∈G D(K0).

Every z ∈ M can be written as z = D0(z0) for some z0 ∈ K0, and so

dM (z,Dz) = dM (D0z0, DD0z0) = dM (D0z0, D0Dz0) =

= dM (z0, Dz0) ≤ max{dM (w,Dw) : w ∈ K0},

giving a uniform bound R0 on dM (z,Dz). Let K be the closed hyperbolic disc
centered at 0 ∈ D with hyperbolic radius R0. If h is a positive eigenfunction of ∆D,
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so is h ◦ γ for any hyperbolic isometry γ. Choosing an isometry which moves z to
the origin, we see that

h(Dz)
h(z)

=
(h ◦ γ−1)(γDz)
(h ◦ γ−1)(γz)

≤ sup
{

(h ◦ γ−1)(z1)
(h ◦ γ−1)(z2)

: z1, z2 ∈ K, γ ∈ Möb(D)
}

.

This supremum is finite by Harnack’s inequality. It follows that for every D ∈ Z(G),
h ◦ D is bounded from above by a multiple of h. By minimality, h ◦ D must be
proportional to h for every D ∈ Z(G).

Let c : Z(G) → R be the proportionality constant. We show that c = 1 on
Z(G) ∩ [G, G], by extending c to a homomorphism λ : G → R+. It will then follow
that c|Z(G)∩[G,G] = λ|Z(G)∩[G,G] = 1, because any homomorphism into an abelian
group vanishes on the commutator subgroup.

Following Lyons & Sullivan [LS], fix a right invariant mean M on the space of
bounded functions on G (an countable amenable group), fix z0 ∈ M , and set

log λ(D) := M

[
log

(h ◦ γ)(Dz0)
(h ◦ γ)(z0)

]
.

This well defined, because γ 7→ log (h◦γ)(Dz0)
(h◦γ)(z0)

is bounded, by Harnack’s inequality.
It is a homomorphism, because

log λ(D1D2) = M

[
log

(h ◦ γ)(D1D2z0)
(h ◦ γ)(D1z0)

+ log
(h ◦ γ)(D1z0)
(h ◦ γ)(z0)

]
= log λ(D1) + M

[
log

(h ◦ γ ◦D1)(D2z0)
(h ◦ γ ◦D1)(z0)

]
= log λ(D1) + M

[
log

(h ◦ γ)(D2z0)
(h ◦ γ)(z0)

]
(right invariance)

= log λ(D1) + log λ(D2) = log[λ(D1)λ(D2)].

It extends c because for every D ∈ Z(G),

log λ(D) = M

[
log

(h ◦ γ)(Dz0)
(h ◦ γ)(z0)

]
=

= M

[
log

(h ◦D)(γz0)
h(γz0)

]
= M

[
log

c(D)h(γz0)
h(γz0)

]
= log c(D).

Step 2. Suppose G is nilpotent. Every positive minimal eigenfunction h of ∆M

satisfies h ◦D = eϕ(D)h (D ∈ G) for some homomorphism ϕ : G → R.

Proof. Since G is nilpotent, the sequence G(0) := G, G(1) := [G, G(0)], G(2) :=
[G, G(1)], . . . terminates at {id} after a finite number of steps. Let k be the length
of the sequence, i.e., G(k−1) 6= {id}, G(k) = {id}. We argue by induction on k.

If k = 1, then [G, G] = {id} and G is abelian. In this case G = Z(G) and the
result follows from step 1.

Next assume that k > 1 and that the statement holds for k − 1. Using the
invariance properties of the hyperbolic Laplacian it is easy to check that

Stab(M) := {D ∈ G : h ◦D = h for all minimal positive eigenfunctions h}

is a normal subgroup of G. The surface M̃ := M/Stab(M) is again a cocompact
periodic surface with symmetry group G/Stab(M).
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We claim that G/Stab(M) is nilpotent of length k − 1. Observe that G(k−1) ⊂
Z(G) ([G, G(k−1)] is trivial) so G(k−1) ⊆ Z(G)∩ [G, G] ⊂ Stab(M) (Step 1). Thus:

[G/Stab(M)](k−1) = G(k−1)/Stab(M) ⊆ Z(G) ∩ [G, G]/Stab(M) = trivial,

proving that G/Stab(M) is nilpotent of length ≤ k − 1.
Now pick an arbitrary minimal positive eigenfunction h on M . This function is

stabilized by Stab(M), and therefore projects down to a minimal positive eigen-
function h̃ : M̃ → R. The induction hypothesis implies that h̃ ◦ D ∝ h̃ for all
D̃ ∈ G/Stab(M). It follows that h ◦ D ∝ h for all D ∈ G. The proportionality
constant depends multiplicatively on D and is therefore of the form expϕ(D) where
ϕ : G → R is a homomorphism.

Step 3. For every homomorphism ϕ : G → R there exists a positive eigenfunction
F such that F ◦D = eϕ(D)F (D ∈ G), and this function is unique up to a constant.
This function is also minimal.

Proof. Fix a homomorphism ϕ : G → R. The existence and uniqueness of F is
equivalent to the existence and uniqueness of a number α ≥ 1 and a probability
measure ν on ∂D such that

dν ◦ g

dν
= eϕ(Γg)|g′|α for all g ∈ Γ0. (7)

Indeed, (7) implies via (5) that F (z) =
∫

∂D P (eiθ, z)αdν(eiθ) is Γ–invariant and
F ◦D = eϕ(D)F for all D ∈ Γ0/Γ. In the other direction, any positive eigenfunction
F is represented by a Γ–conformal measure ν on ∂D with parameter α. This
parameter is at least the critical exponent of Γ (Sullivan [Su1]), and for normal
subgroups of torsion free lattices with amenable quotients this critical exponent
is equal to one (Roblin [Rob]). Since α ≥ 1, the representing measure of F is
unique (theorem 3). It then follows as the proof of lemma 3 that F ◦D = eϕ(D)F
(D ∈ Γ0/Γ) implies (7).

Consider the Bowen–Series map fΓ0 : ∂D → ∂D associated to the action of Γ0 on
∂D (see §3.1). Recall that fΓ0 has a finite Markov partition into intervals {Ia}a∈S

such that fΓ0 |Ia = ga where ga ∈ Γ0. Define f ′Γ0
to be g′a on Ia, and set

φα(eiθ) := α log |f ′Γ0
(eiθ)|+ ϕ

(
ΓfΓ0(e

iθ)
)
.

It is standard to check, using property (Orb) of fΓ0 , that (7) is equivalent to

dν ◦ fΓ0

dν
= eφα .

The function φα is Hölder continuous on partition elements. The theory of such
equations is well–understood (see e.g. [Bo]): There exists a unique α for which
such a solution exists, and this solution is unique.10

Next, we show that the function F we obtained is minimal. Write F =
∫

Y
Fydπ(y)

where Fy are positive and minimal eigenfunctions (the ‘barycentric representation’).

10Ruelle’s Perron-Frobenius theorem provides a unique ν such that
dν◦fΓ0

dν
is proportional

to exp φα. The proportionality constant is exp Ptop(−φα), where Ptop(−φα) is the topological
pressure of φα. It is a standard fact that Ptop(φα) is convex, whence continuous, in α and that
Ptop(φα) −−−−−→

α→±∞
∓∞. Consequently, there exists a unique α for which the proportionality

constant is equal to one.
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Let ϕy be the homomorphisms associated to Fy (Step 2). We have

F = e−nϕ(Dn)F ◦Dn =
∫

Y

en[ϕy(D)−ϕ(D)]Fydπ(y).

Passing to the limit n → ±∞ we see that π is supported on the components Fy for
which ϕy(D) = ϕ(D). Since G is countable, π is supported on the set of components
for which ϕy = ϕ. But we just proved that all these eigenfunctions are proportional
to F . It follows that F is minimal. This finishes the proof of Step 3.

Steps 2 and 3 establish the classification of positive minimal eigenfunctions on
cocompact nilpotent surfaces mentioned in example 5. An interesting artifact of
the proof is that the representing measures of these eigenfunctions are (up to density
function) Gibbs measures of the Bowen–Series map. �

6.3. Proof of (Fin). Let R be the Ford fundamental domain of Γ0 (which consists
of the closure of the set of points which lie on the external side of all isometric circles
of the hyperbolic elements of Γ0). This is a a Dirichlet domain for Γ0, and as such
is a hyperbolic polygon with finitely many sides s1, s1, . . . , sn, sn, and there are
side-pairings gsi

, gsi
∈ Γ0 such that gsi

(si) = si, gsi
(si) = si ([Kat], §3.3, 3.5). As

explained in section 4 of [BS], it is possible to assume without loss of generality
the even corners property: The extension of each of its sides to a complete geodesic
lies entirely inside T :=

⋃
g∈Γ0

g(∂R).
We recall the construction of fΓ0 (as described in [Se]). Given a side s of R, let

L(s) denote the complete geodesic which contains s, H(s) the hyperbolic half-plane
on the side of L(s) which does not contain R, and A(s) the boundary of H(s) (an
arc in ∂D). It is proved in [BS] that no more than two such arcs intersect. The
Bowen–Series map is defined by fΓ0 |A(s) := gs. This definition is proper only the
part of A(s) which does not intersect other arcs; on the intersections A(s) ∩A(s′),
fΓ0 is defined to be one of gs, gs′ (the choice is arbitrary).

Bowen and Series show that fΓ0(W ) ⊆ W where W is the set of endpoints of
all complete geodesics in T which pass through a vertex of R. We show below
that W partitions ∂D into a finite or countable collection of arcs {Ia}a∈S . Since
f(W ) ⊆ W , this partition satisfies (Mar).

Step 1. The set of accumulation points of W is the set C of the vertices of R which
lie in ∂D. In particular:

(1) W partitions ∂D into a finite or countable collection of intervals;
(2) If Γ0 is cocompact, then W , whence S, is finite.

Proof. First observe that every vertex in the interior of D contributes exactly four
points to W . Therefore, if Γ0 is cocompact, then W is finite (in this case the
fundamental domain has no vertices in ∂D).

Another trivial consequence is that the set of accumulation points of W is equal
to the (finite) union over v ∈ C of the set W (v) of accumulation points of the
endpoints of complete geodesics in T which pass through v. We prove the step by
showing below that W (v) = {v}.

The vertices in C are divided into vertex cycles: equivalence classes under the
Γ–orbit relation. Let v = v0, v1, . . . , vk be the vertex cycle of v, fix gi ∈ Γ0 such
that vi = gi(v), and let Li, L

′
i be the complete geodesics extending the faces of R

which terminate at vi. Denote the stabilizer of vi in Γ0 by StabΓ0(vi). This is an
infinite cyclic group generated by a parabolic hi ∈ Γ0 ([BM], Proposition 2.17)
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Any complete geodesic L ⊂ T which terminates at v is the g–image (g ∈ Γ0) of
Li or L′i for some vi. If we decompose g = g−1

i h we see that h ∈ StabΓ0(vi) = 〈hi〉.
It follows that L ⊂

⋃k
i=0

⋃
`∈Z g−1

i h`
i(Li ∪ L′i). Since hi is parabolic, h`

i(p) → vi as
|`| → ∞ for every p ∈ ∂D, so g−1

i h`(p) → v for all p ∈ ∂D, proving that W (v) = {v}.
Step 2. Let Nε(C) denote the ε–neighbourhood of C. For every ε > 0, ∂D \Nε(C)
is covered by finitely many elements of {Ia}a∈S .

Proof. The endpoints of {Ia}a∈S accumulate outside ∂D \Nε(C), so the number of
Ia’s which intersect ∂D \Nε(C) is finite.

Step 3. ∃ε > 0 s.t. ∀x ∈ ∂D \ Par(Γ0), lim sup
n→∞

d(fn
Γ0

(x), C) > ε.

Proof. We begin with the following observations on fΓ0 :
(1) Every v ∈ C has two one-sided neighborhoods Jv, J ′v such that the restric-

tion of fΓ0 to each of these neighbourhoods is an element of Γ0;
(2) The absolute value of the derivative of this Möbius transformation is strictly

larger than one, except at v.
Now choose ε > 0 smaller than min{diam(Jv), diam(J ′v) : v ∈ C} and min{d(v, v′) :
v, v′ ∈ C, v 6= v′}. We claim that if x ∈ ∂D and d(fn

Γ0
(x), C) ≤ ε for all n ≥ 0, then

necessarily x ∈ C.
For every n there exists vn ∈ C such that fn

Γ0
(x) ∈ Jvn

∪ J ′vn
. Let Kn ∈

{Jvn , J ′vn
} be the one-sided neighbourhood which contains fn

Γ0
(x). If we extend

fΓ0 continuously to the endpoints of the Kn from within, and abuse notation by
denoting this extension by fΓ0 , we get

d(fn
Γ0

(x), fn
Γ0

(v0)) ≤ ε for all n ≥ 0.

Let k be the length of the vertex cycle of v0. This cycle is exactly {vi}k−1
i=0 , and

h := fΓ0 |Kk−1 ◦· · ·◦fΓ0 |K0 fixes v0. It follows that h is parabolic. Note that |h′| > 1
on K0 \ {v0} (because |f ′Γ0

| > 1 on Ki \ {vi}). Since h is parabolic, its dynamics is
such, that the h–forward orbit of any y ∈ K0 \{v0} leaves K0. But by construction

d(h`(x), v0) < ε for all n ≥ 0.

Therefore x = v0 ∈ C. This proves: If d(fn
Γ0

(x), C) ≤ ε for all n ≥ 0, then x ∈ C.
Step 3 follows, because C ⊂ Par(Γ0) ([Kat], theorem 4.2.5).

We can now finish the proof of (Fin): Pick ε > 0 as in step 3, and choose a finite
S0 ⊂ S such that ∂D \ Nε(C) ⊂

⋃
a∈S0

Ia =: Λ. Every fΓ0–forward orbit either
hits C and stays there, or leaves Nε(C). In the first case, the orbit is contained in
Par(Γ0). In the second case, the orbit enters Λ infinitely many times. �

6.4. Proof of (FI). Suppose Γ0\D has finite volume. Any hyperbolic surface with
finite volume has a compact subset F which is intersected by any complete geodesic
which does not tend to one of the cusps: Such a set can be obtained by cutting
away each of the cusps along a closed horocycle which encircles it.

Let F0 ⊂ D be a compact subset of the fundamental region of Γ0 which contains
the origin o and which projects to F . Let {gn}n≥1 be an enumeration of the g in
Γ0 whose axis intersects F0. Fix some zn ∈ F0 on the axis of gn. Then τ(gn) =
d(zn, gnzn) ≥ d(o, gno)− 2diam(F0) −−−−→

n→∞
∞, proving that {τ(gn)} intersects any

compact interval finitely many times. Since any g ∈ Γ0 is conjugate to some gn,
τ(Γ0) intersects any compact interval finitely many times. �
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