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Abstract

We extend Ruelle’s Perron-Frobenius theorem to the case
of Holder continuos functions on a topologically mixing topo-
logical Markov shift with a countable number of states. Let
P(¢) denote the Gurevic pressure of ¢ and let Ly be the
corresponding Ruelle operator. We present a necessary and
sufficient condition for the existence of a conservative mea-
sure v and a continuous function h such that Liv = eP@)y,
Lgh = eP@)h and characterize the case when [ hdv < co. In
the case when dm = hdv is infinite, we discuss the asymptotic
behaviour of L’;s, and show how to interpret dm as an equi-
librium measure. We show how the above properties reflect
in the behaviour of a suitable dynmical zeta function. These
results extend the results of [18] where the case [hdyv < oo
was studied.

1 Introduction and statement of main
results

Let S be a countable set of states and A = (tij)st a matrix of zeroes
and ones. We identify S with N, and induce an order on S. Let
X = {m € SNty L., = 1} and T: X — X be the left shift
(Tz), = z;41. Fix r € (0,1) and set t(z,y) = inf {¢: z; # y;}. We
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endow X with the topology induced by the metric d, (z,y) = rH{=¥).
The cylinder sets

la] = [ao,...,an1]={z € X: Vi z;=a;}

form a base for this topology and generate the corresponding Borel
o-algebra B. Let a be the partition {[a]: a € S}. The elements of
a are called partition sets, and the members of aj™*
cylinders of length n. We denote the length of a cylinder [a] by |a] .

X is called topologically mixing if (X, T') is topologically mixing.
This means that Va,b € S 3N, Vo > Ny [a]NT ™ [b] # ¢. Through-
out this paper, a function ¢: X — R is called locally Holder con-
tinuous (with parameter 7), if it is uniformly Lipschitz continuous

are called

with respect to d, on all cylinders of length 2. This is equivalent to the
requirement that 34 > 0,7 € (0,1) such that Vn > 2 V, [¢] < Ar™
where V,, [¢] = sup{|¢(z) — ¢ (¥)|: 2o = Yo0,-.-,Tn-1 = Yn—1} . This
notion of Holder continuity extends the one considered in [18], where
Vo [¢] < Ar™ was also assumed for n = 1. Indeed, every function
of the form ¢ = ¢(zo, 1) is locally Holder continuous, even when
Vi(¢) = oo (in which case it does not satisfy the condition used in
[18]). A close reading of [18] shows that the seemingly greater gen-
erality does not affect the arguments in sections 1-4 there.

The Ruelle Operator [15] is given by (Lyf) (z) = S,—, e?® f ().
If |[Lgl||,, < oo this is a bounded linear operator on the Banach
space of bounded continuous functions on X. Note that for a count-
able Markov shift the sum which defines Ly may be infinite, in which
case ¢ must be unbounded in order for it to converge. This is not a
problem since local Holder continuity on a non compact space does
not imply boundness.

In this paper the term ‘measure’ refers to any o-finite Borel mea-
sure g which is not trivial in the sense that there is some A € B for
which g (A) > 0. We use the notation u(f) for the integral of the
function f with respect to u, when it exists. The measure po T is
the measure given on cylinders by

(o T)(A) =3 p(T(AN[a]) (1)
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Integrals with respect to p o T' are given by

/fd,uoT Z/ (az) dp (z)

a€S

If p is non singular (i.e. p ~ poT ') then g < poT and the
function g, = du/du o T is well defined p o T' almost everywhere. It
is characterized modu o T by the property that Lig,, acts as the
transfer operator of p, i.e p(@1Lioggps) = (10T - ps) for every
w1 € L™ (p), p2 € L' (u). We will also make use of the measures
p o T™ defined by induction by poT™ = (uo T ') o T.

For every a € S, n € N set Z,(4,a) = TZ e¢"(z)1[a] (z) where

On = Z ¢oT*. It was shown in [18] that if X is topologically mixing

and ¢ is locally Holder continuous then the limit

Pg (¢) = lim ;10g Zn (¢, a)
exists, is independent of a and belongs to (—oo, 00]. If || Lgl||_ < oo
this limit is finite and satisfies

Po () =sw {hu(T)+ [$du e Pr(X) , u(-9) < o0} (2

where Pr (X) denotes the set of all invariant Borel probability mea-
sures. Pg (¢) is called the Gurevic Pressure of ¢, and is a general-
ization of the Gurevic topological entropy (Gurevic [7]). (The above
results were stated in [18] only for locally Hélder continuous func-
tions for which Vi(¢) < oo but are also true, with the same proofs,
without that latter assumption. Indeed, the proofs only require that
Y n>2 Va(@) be finite.)

In [18] a necessary and sufficient condition was given for Ruelle’s
Perron-Frobenius theorem to hold: there exist a positive number A, a
positive continuous function h and a o—finite Borel measure v such
that Lgh = Ah, Lyv = Av, [ hdv = 1 and such that for every cylinder
la], AT L1 =2 b [a] uniformly on compacts. If this is the case,

Ps (¢) = log A and dm = hdv is an invariant probability measure



which can be interpreted as the ‘equilibrium’ measure of ¢ in a certain
sense (see [18] for details).

In this paper we study the case when Ruelle’s Perron-Frobenius
theorem fails. The main theme of this work is that the phenomenol-
ogy of this situation is analogous to that one encounters in the case
of a null recurrent or a transient probabilistic Markov chain (see [6],
[10], [20]). In this situation A™" L} 1[4 —2 0, but there may exist con-

stants a, /" oo for which for every cylinder a' 37, AT L1 v
hv [a] pointwise where Lgh = Ah,Liv = Av, [hdv = oco. In this
case, the measure dm = hdv is an infinite invariant measure which
can be described as the appropriate ‘equilibrium measure’ of ¢. Given
v, the construction of h is done using the techniques of [1] (see also
[2], [13], [21], [22], [28], [29], [30], [31]). The main point of this paper
is the construction of a conformal measure v with respect to which
these methods can be applied.

We proceed to make our statements more precise. Set

ACHED IR ESD S
Tre==x Tre=z
zo=a TO=Q;T] .y Tpn—1Fa

We introduce the following definition, in analogy with the theory of
Markov chains:

Definition 1 Let X be topologically mizing and ¢ be locally Holder
continuous with finite Gurevic pressure log A. ¢ s called:

1. recurrent if for some (hence all) a € S > A"Z, (¢,a) = o,
and transient otherwise.

2. positive recurrent if it is recurrent and for some (hence all')

a€S YnA"Z:(p,a) < o

3. null recurrent if it is recurrent and for some (hence all) a € S

S nA""Z; (¢,a) = co.

!The independence of positive recurrence and null recurrence from the choice
of a follows from theorem 1 below



The notion of positive recurrence was given a different, though equiv-
alent, definition in [18]. The equivalence follows from theorem 1 be-
low. It can be easily verified that if ¢ = ¢ (zo, 1) then recurrence,
positive recurrence and null recurrence are equivalent to the matrix
(e"s("’j))sxs being R-recurrent, R-positive and R-null in the termi-

nology of Vere-Jones [24], [25]. The main results of this paper are
contained in the following theorem:

Theorem 1 Let X be topologically mizing and ¢ locally Holder con-
tinuous with finite Gurevic pressure. ¢ is recurrent iff there exist
A > 0, a conservative measure v, finite and positive on cylinders, and
a positive continuous function h such that Lyv = Av and Lyh = Ah.
In this case A = exp Pg (¢) and Ja,, /' oo such that for every cylinder
[a] and z € X

L Nk 7k

— >3 (Lhlw) (2) =3 R (@) v [d] (3)

n k=1
where {a,} satisfies a, ~ (f[a] hdu)_l SE_ A Z (4, a) for every

a € S. Furthermore,

1. if ¢ is positive recurrent then v (h) < 0o, a, ~ n-const, and for
every [a] A" L1y — hv [a] /v (k) uniformly on compacts.

2. if ¢ is null recurrent then v (h) = 00, a, = o(n), and for every
la] AT L1 — 0 uniformly on cylinders.

Remark 1. In the case when ¢ depends on a finite number of
coordinates, this theorem can be derived from the work of Vere-Jones
on countable matrices ([24],[25]). The case when ¢ depends on an
infinite number of coordinates, however, requires techniques which
are essentially different. The main new ingredient in the proof is a
tightness argument (see proposition 2).

Remark 2. It follows from the proof that log h,log ho T are both
locally Hoélder continuous (in particualr h is uniformly bounded away
from zero and infinity on partition sets). It follows from (3) that v
and h are uniquely determined up to a multiplicative factor.



Remark 3. The measure dm = hdv is invariant and conserva-
tive, and its transfer operator is given by Tf = AR Ly (Rf). Tt
follows from local Hélder continuity and results in [1] that dm is ex-
act, pointwise dual ergodic and that for dm, every cylinder [g] is a
Darling-Kac set with an exponential continued fraction mixing re-
turn time process. See [1], [2] for definitions and a survey of limit
theorems for such measures m.

We now show how to formulate the results of theorem 1 in terms
of suitable dynamical zeta functions.

Assume that X is topologically mixing and that ¢ is locally Holder
continuous such that ||L4l|| < oo. In this case, by the results of
[18], Pg(¢) is finite and (2) holds. Recall that Ruelle’s dynamical

zeta function [15] is given by

(0 e (3 22, 0)

where Z,, (¢) = Yacs Zn (¢,8) = Ypng—y e?(®). The radius of con-
vergence of ( is equal to e F(%) where P (¢) :7}i_>—nolo Llog Zn (9) -

If S is finite, P (¢) = Pg (¢) whence { is holomorphic in [|z]| <
e P] where P = sup {h, + p(#)} (in this case X is compact so ¢ is
bounded and the condition u(—¢) < oo in (2) is empty). It is also
known that in this case ¢ has a simple pole in e~ % [15].

If S is infinite P (¢$) may be strictly larger than P (for examples in
the case ¢ = 0 see [7] and [16]). Therefore, the disc of convergence of
¢ may be strictly smaller than {z: |z| < e_P}. We are naturally led
to the consideration of the following local dynamical zeta func-
tions defined for each a € S

()= o (3020 (6.0)

Note that at least formally, { = [[,cs (a- The radius of convergence of
(, is independent of a, and is equal to e F6(#) where Py (¢) satisfies
(2). Obviously, ¢, has a singularity in e~Fe(#),

As the following corollary shows, the behavior of {, near this sin-
gularity determines the recurrence properties of ¢ (this is similar to
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the role of generating functions in renewal theory [6]). The following
corollary is obtained from theorem 1.

Corollary 1 Let X be topologically mizing and ¢ locally Holder con-
tinuous such that ||Lgl|| < oo. Fiz a € S and let R = e Pa(®) pe
the radius of convergence of (,.

1. ¢ is recurrent iff (log () (R) = oco. In this case, if dm = hdv
is the corresponding invariant measure and {a,} is a return
sequence of m, then

m [a]

R

(log ¢a)' (£) ~ (1 - %) ni:jl e R™" as t /R

2. ¢ is positive recurrent iff there exists C, > 0 such that (log (,)' ~
Co(1—t/R)™" ast / R. In this case C, = eF(®)m [a] where

m is the equilibrium probability measure of ¢.

3. ¢ is null recurrent iff (log () = o(1/(1 —t/R)) ast /' R and

¢ s recurrent.

It follows from the corollary that in the positive recurrent case

1 mla](140(1)) P
_ —Pg(4)
Ca(t) = (l—ePG(¢)t) as t Ne
where m is the equilibrium probability measure of ¢. If S is finite,
we retrieve the well known property of {( = [[,cs{, that (,(¢) =

~(rel) as t /" e Fe®) (in fact e Po(®) is a sim-
ple pole [15]). In broad terms, the degree of singularity for the full

zeta function is distributed among the various local zeta functions
according to the equilibrium measure.

1— ePG(¢)t)

In section 2 we apply theorem 1 to the theory of equilibrium states
by describing the measure dm = hdv as an equilibrium measure in
a certain weak sense, when it is infinite. Section 3 contains a proof
of theorem 1.

Notational Convention: We use the following short hand nota-
tion for double inequalities: Ya,b>0 B >1 a= B*'b < B1b<
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a < Bb. We write a = AT B*'b for a = (AB)jEl b, and a = A**b for
a=(49)"s.

Acknowledgments. This paper constitutes a part of a Ph. D.
thesis which was prepared in the Tel-Aviv university, under the in-
struction of Jon Aaronson. I would like to express my gratitude to
Jon Aaronson for his support and encouragment, and for many con-
versations and useful suggestions.

2 Application to the theory of equilib-
rium states

Let X be topologically mixing and ¢ be a locally Holder continuous
function with finite Gurevic pressure. Assume ¢ is recurrent. Let
A, v, h denote the eigenvalue, eigenmeasure and eigenfunction given
by theorem 1. It is easy to verify that the measure dm = hdv is an
invariant conservative measure. This is a Gibbs measure for ¢ in
the following sense: Va,b€ S dMgy, > 1 such that for m—almost all
reX

) = M _ MEL gbnl(®)-nPc(#)
Ath (T”m) Z0,Tn
(4)

This is weaker than the Gibbs property used by Bowen in [5], be-

m (Lo, .., Tn1|Tn, Tni1,- -

cause the bound M,, ., may depend on . To prove (4), check that
the transfer operator of m is given by Tf = A7'h™'Ly (hf) and that
E.(f|T"B) = (T”f) o T™. The rest follows by direct computa-
tion from the fact that h is bounded away from zero and infinity on
partition sets. Note that if ¢ is null recurrent, m is infinite.

We want to describe the measure m as a solution of a suitable
variational problem. This was done for the positive recurrent case in
[18] so we focus on null recurrent potentials. For such potentials m
is infinite and the notion of entropy requires explanation.

We recall the definition given in [11], following the approach of [3].
Let (X, B, u,T) be an ergodic probability preserving transformation.
For every measurable set with positive measure A one can define the



induced transformation T4: A — A by Tuz = T%4(®)z where
wa(z) = inf{n > 1: T"z € A} (the Poincaré Recurrence theorem
guaranties that ¢4 < oo almost everywhere on A). It is known that
the probability measure p4 (E) = pu(E N A)/p(A) is Ty-invariant
and ergodic, and that its entropy is given by the Abramov Formula
[4]:
hu (T) = p(A) by, (Ta)

If p 1s infinite, ergodic and conservative, the same method of induc-
ing applies (in this case Poincareé’s theorem is replaced by the con-
servativity assumption). Applying the Abramov formula to T4, g
as induced versions of T4up one sees that

0<u(A),u(B)<oo = w(A)hu, (T4) = #(B)hyp (T5).

Thus, the number p (A) h,, (T4) is independent of the choice of A €
B (as long as 0 < p(A) < oo) and may therefore be used as the
definition of the entropy of the infinite conservative ergodic measure
L.
Example 1. (Krengel [11]) Let (p;;) be a null recurrent irre-
ducible stochastic matrix and (p;) its stationary vector. Let p be
the corresponding invariant infinite Markovian measure. Then h, =

— Dst PsPst 108 Pt
For examples arising from interval maps, see [21].

Theorem 2 Let X be topologically mizing and ¢ a recurrent locally
Holder continuous function with finite Gurevic pressure.

1. For every conservative ergodic tnvariant measure p which is
finite on partition sets, if p(Pg(¢p) — @) < oo then h,(T) <

1 (Pe(4) — ).

2. Let h and v be as in theorem 1 and set dm = hdv. If
m (Pg (¢) — ¢) < oo then hy, (T) = m (Pe (¢) — ¢).

Proof. Without loss of generality assume that Pg (¢) = 0 (we can
always pass to the potential ¢ — Pg (¢)). Fix some invariant measure
p which satisfies the assumptions of the theorem and choose some
partition set A of (finite) positive measure.
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Let pa be the probability measure pa (E) = p (AN E) /u(A). Let
Ty: A — A be the induced map Tyz = T¢4(®)z where ¢, (z) =
lainf{n > 0: T"z € A}. Then p4 is T4 invariant. Let

S: ={[a] C A: A appears only once in a and [a, A] # g} .

This is a generating Markov partition for T4 (pa (U?) = 1 by conser-

.. — — Nu{o} —
vativity). Set X = (S) and let m: X — A C X be the natural

injection 7 ([a], [a],...) = (a;1; @y;...). For every p as in the above set
I = paomw. It is easy to check that the map m: X — X is a measure
theoretic isomorphism between the systems (A,B N A, pa,Ta) and

(7,8(7),ﬁ, T) where T: X — X is the left shift. Let ¢: X — R
be the induced version of the potential ¢ given by

Ez(f ¢on)o7r

This is a locally Holder continuous function (in fact, it even satisfies
that V; (5) < oo, since if zg = [a] € S then 7 (z) € [a, 4]). The
proof of local Holder continuity is standard, and is therfore omitted.
Let Lz denote the Ruelle operator of 9, Lzf = Y5, e?W) f (y).
Set v =vomand h = how. We claim that Lfgﬁz v,Lgh = h. To
see this note that
dm

log p— =¢+logh—loghoT

(because f +— h™'Ly(hf) acts as the transfer operator of m). Let

m 4 denote the normalized restriction of m to A and Mm@ = m4 o 7.
Then since Ty = T%4

dm pa—1 )
logm: ;(ﬁoT —|—1Ogh—10ghOTA
whence i
™ _ — —
logdmoT:qﬁ—l—logh—loghOT. (5)
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Since m is T invariant, my is T4 invariant. It follows that 7 is T
invariant whence Lj,g5l = 1 where g = log dm/dm o T . Tt follows
from (5) that

Z e(E—I—logE—logﬁoT)(y) -1

Ty==
whence L$E = h. We show that Lfgﬁ = v. Without loss of generality,
dv = h 'dm (the only difference is a normalizing constant). Using

(5) and the fact that Liog5 acts as the transfer operator of m, we have
that for every f € L' (v)

/Lgfdv:/ﬁ_ll;gfdm: /Llogg (A7 f) dm = /fdv
as required.
It follows from theorem 1 and the relations Lgﬁ = h, Lfgﬁ =v
and 7(%) = v(14h) < oo that ¢ is positive recurrent and that

Pg (E) = 0. Since h = hom and 7 (X) C A, h is uniformly bounded
away from zero and infinity. It follows that HL$1H < 00. By (2),

sup {hu (T) + /Ed,u: pis T invariant, p (7) =1 pu (—5) < oo}
re(d) -1

Since for every conservative invariant (possibly infinite) ergodic mea-
sure p such that p(A) < oo and p(—¢) < co the measure g = pgom
i1s a T invariant ergodic probability measure such that

pa—1

p(A)a (=) == [ 3 goT du=p(-¢) <oo

we have that h, (T) + p(¢) = u(A) {hg (T) +z (E)} <0.

We now assume that g = m and that m (—¢) < oo, and show
that hn, (T') + m (¢) = 0. X clearly satisfies the big images property:

dby,...,by € S such that for every a € S there is some b; such
that [a,b;] is not empty (in fact for every a,b € S [a,b] is non
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empty). Since h is uniformly bounded away from zero and infinity,
m is a Gibbs measure for ¢ in the sense of Bowen [5]: there is some
global constant M > 1 such that for every ay,...,a, ; € S and
zClag,...,8,1] CX

may, ..., 8, 1] = M*! expzz::a(Tkm) (6)

(see [18], theorem 8). Let & = {[Q] ta € ?} denote the natural par-
tition of X. By the continuity properties of ¢ and by (6)

Hem (@) =-3_ .;mla]logT|d]

= /¢dm tlog M

whence Hz (@) < oo. Since @ is a generator with finite entropy, we

have by the Rokhlin formula [14] that

o (T) :—/1ogdn_i"_ZTdm:—/$dm:—ﬁ/¢dm

Multiplying both sides by m (A) we have that h,, (T) = —m (¢) as
required. §

Remark 4. It follows from the proof that m is the unique up to a
constant conservative ergodic invariant measure such that Hg (@) <
oo and hy, (T') = m (Pg (¢) — ¢), since by a trivial generalization of
an argument of Bowen’s if there exists a probability measure which
1s Gibbs in the sense of Bowen, with a generator which has finite
entropy, then this measure is the unique solution of the variational
problem (see [5]).

The problem with the last theorem is that frequently both h,, (T')
and m (Pg (¢) — ¢) are infinite. In this situation, the sum h,, (T') +
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m (¢ — Pg (4)) is meaningless. The following theorem completes our
discussion by treating this case as well.
Set
I, =~ 1glog u ([a]] T7'B)
a€sS
This is well defined for every g which is finite on partition sets. The
following theorem generalizes theorem 7 in [18] (see also [12],[26],[28]).

Theorem 3 Let X be topologically mizing and ¢ locally Holder con-
tinuous with finite Gurevic pressure. Assume that ¢ s recurrent, let
h and v be as in theorem 1 and set ¢' = ¢+ logh —logh o T. Then
for every conservative invariant measure p which s finite on parti-
tion sets, I, + ¢' — Pg (¢') is one sided integrable with respect to p
and

o0 < [(Lu+ ¢~ Pa(¢) du<o. (7)

if p ~ poT, the integral in (7) is equal to zero iff p is proportional
to hdv.

Proof. Fix a conservative invariant measure pu, finite on partition
sets, and set g, = dp/dpoT where poT is given by (1). Recall that
the transfer operator of p is given by Liog,, and that E, (f|T7'B) =

(Llogg“f) oT. It follows that

Iy = —loggy

Set g = A 'e®?h/h o T where A = exp P (¢). One checks that
Yry—z 9 (y) = Land that Y7, gu (y) = 1 for p almost all z € X (the
first equality follows from the equation Lyh = Ah; the second follows

from the identity p (f > Ty—z u (y)) = u (Llogg“ (f o T)) = u(f)
which is satisfied for every f € L' (u)).

We show that I, + ¢’ — Pg (¢') is one sided integrable. We use
the notation ¥* = %l and show that (I, + ¢ — Pg (¢) )t s
integrable. Fix a sequence of measurable sets A4, /* X such that
0 < p(A4,) < co. Fix an arbitrary integrable function f > 0. Set
Agin = AnN[s < g/g. < t]. Using the inequality logz < z — 1 we
see that for every s,t,n,
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| ¢ —Pe(¢)" foTdu=

= /(—10g gu+1logg)t 14, foTdy

= / log (9/9)]" 1a,enf o T dp

_l_
/ (i - ]‘) ]‘Astnf © le'l’
Iu "
_l_
/f © T ) EF/ (i - 1) ]‘As,t,n
9u

N /fOT > gu(y)lAs,t,n(y)(g(y) —1)+du

IN

T_lB) du

Ty=T= 9u (y)
= [T Y T () Io () — 5 ()

The last integrand is bounded by f o T. Since this is true forall
s,t,n the integral p [(Iu + ¢ — Pg (¢'))+} is finite. This implies that
I, + ¢ — P (¢') is one sided integrable. Applying the same calcu-
lation to I, + ¢’ — Pg (¢') rather than (I, + ¢' — Pg (¢'))" yields the

inequality

[ foT (Ut ¢~ Pe(#) dp
<[FoT 3 Laun W)19(6) ~ 0 (v)] di

The integrand on the left is bounded in absolute value by the inte-
grable function f o T'. Its pointwise limit when s — 0,¢,n — o0 is
zero, because Y. r,_7, (9 (¥) — 9. (y)] = 0. We may therefore apply
the dominated convergence theorem and deduce

[FoTl+¢ — Pe(¢)] du <o0.
Since f was arbitrary, (7) follows.
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Assume that g ~ poT. We show that the integral in (7) is
equal to zero if and only if dy is proportional to hdv. If du is
proportional to hdv the integrand in (7) is identically zero because
then I, = —logg where g = A"'e®h/h o T (this follows from the
fact that the transfer operator of any measure proportional to hdv
is given by f — A'h™'L, (hf)). We show the reverse implication.
Assume that p is such that g ~ g o T and that there is an equality
in (7). A close inspection of the proof shows that this is possible
only if log(g/g,) = (9/9.) —1 p almost everywhere. This is possible
only if g, = g mod p. Since p ~ p o T, this implies that g, = g
mod poT. It follows that Lig4 is the transfer operator of . Consider
the function ¢ =logg = ¢+logh—loghoT —log A. This is a locally
Holder continuous function (because by remark 2 after theorem 1
log h, log h o T' are both locally Holder continuous). It is also clear
that Lyl = 1, Lyu = p whence 1 is recurrent. Since it is also true
that L} (hdv) = Lj., (hdv) = hdv we have by the convergence part
of theorem 1 that g and hdv are proportional. g

3 Proof of Theorem 1

This section is devoted to the proof of theorem 1. Throughout the
proof we assume that X is a topologically mixing countable Markov
shift and that ¢: X — R is locally Holder continuous with finite
Gurevic pressure. Set

Bi=exp >, Vau(¢) (k=1,2,...)
n=k+1

Local Holder continuity implies that Vo > 1 B, < oo and B, \ 1.
The following inequality will be used constantly:

Lo =Yo,++&pn_1 =Yn_1 > Vm<n—1 ( efm(®) — B,f_lme"s'"(y))

(8)

A frequently used corollary is that Vz, € [a],
Zn (¢7 a’) = Bitl (Lgl[a]) (ma)
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The reader should note that assumption that the Gurevic pres-
sure is finite implies that all of the Z, (¢, a) are finite (because by
local Holder continuity 3C > 1 such that Vm,n C~™Z, (¢,a)™ <
Zimn (¢, a)). This assumption also implies that the L} are all defined
on bounded functions supported inside a finite union of partition sets.

3.1 Existence of v

Proposition 1 If there exists A > 0 and a conservative o— finite
measure v which is finite on some cylinder such that Liv = Av then

& is recurrent and X = efe(9),

Proof. Choose a cylinder [b] with finite positive measure. It easy
to verify that A™*Ly acts as the transfer operator of v whence by
conservativity 3,51 A" L3l = oo v -a.e. on [b] (see [2]). Thus, for
v—almost all z € [b]

> AT Zn (6,b0) > Byt Y AT (L) (2) = oo
n=1 n=1

We show that A = ePe(®) It follows from what we just proved
that A < ef6(®) because the radius of convergence of the series

kst Ze (¢, bo) 2 is e Pe®) . Consider Z, (¢,b) = Tnz e (@) 1y (z) .

By local Holder continuity,

A" Zn (4,0) < By < B

1
S /@ (A Lply) dv

By topological mixing and local Holder continuity n~'log Z, (¢,b) —
P (¢), whence A > eF6(®)

Proposition 2 If ¢ is recurrent there exist A > 0 and a conservative
measure v, finite and positive on cylinders, such that Liv = Av.

Proof. Fix a € S, set A = e9(%) and let a, = Y7_, A% 7, (¢, a).
For every y € X let 8, denote the probability measure concentrated
on {y}. Fix a periodic point z, € [a] and set for every b € S



Clearly v5(X) = V5([b]) = =S p  A7F (L’;l[b]) (z4). It follows from
local Holder continuity, topological mixing and the definition of the
Gurevic pressure that for every b € S

0 < lim u,‘;(X)<M Vz(X)<oo

n—oo T n—oo

(It is enough to show that a ! >% , A™*Z, (4,b) is bounded away
from zero and infinity for every b. To see this note that C, ¢ such
that Z, (¢,b) < CZny.(¢,a) and that Vk A™*Z; (¢,a) < 2B;. The
last inequality follows from A~*™ 7. (¢,a) > B{™ ()\_ka (9, a))m.)

We show how to choose a subsequence {my},, such that for every
be S, {V;k} 1s w* convergent, and show that the non trivial measure
v given by V;k N 1/|[b] satisfies Lzv = Av. Since X is not compact,

: b . .
to do this we have to prove that {mG }k21 are all tight | i.e.,

VbVe > 0 3F = F,, compact such that Vn 1/2 (Ff)<e

It follows from the topological mixing of X that if {1/2} o is tight

for some b, then it is tight for every b. Therefore, we may restrict
ourselves to the case b = a and set v2 = v,.

Step 1. We show that Y o1 A" Z; (¢,a) < oo. To see this, set
T (z) =1+ Xs1 Zi (¢,a) 2" and R (z) = Spsy Zf (¢, a) 2. Tt is not
difficult to verify that Vz € (0,A7!), T(z) — 1 = Bf*R(2)T ().
Therefore Vz € (0,A7!) R(z) < B? whence R(A™!) < oo.

Step 2. Set

z € [a]
0 z ¢ [a) (%)

 (2) = { inf {n > 1: T"z € [a]}

where inf ¢ = co. Define by induction 7, (z) = 7 (T"l(z)"'"""""—l(z)m)
if 7—1(z) < 00 and 7, () = oo else. Note that 7, > 0 only if zo = a.
For every sequence of natural numbers {n;},,, set

R({n;}) ={z € [a]: Vi 7 (z) <n;}.

17



We show that Ve > 0 3{n;} such that Vn v, (R{n:}°) < ¢ To see
this set

s Vi<m 1j(z) =k}

For {n;},,, such that n; is larger than the period of z,,

=1
o0 1 n
1.:1 a’” k:l Tky:za
Yo=a
o0 1 n
D DD DEP S DI DIl (V53 e (7)
i=1 %1 f=n, +1 Thy=zq k1t thy=F

yo=a k;>n;,N<k

© 1 n
3 —k * * r7k
S Bl Z a_ Z A Z Zkl,...,k,'_l Zk,' Zk,'+1,...,kN
i=1 "™ k=n;+1 ki +..tkn=Fk
k'>n,',N<k
B3 00 oo
-1 ki r7* (k—Fk;) * *
< )X AN Z At > Lk Db
n i=1 k n,-I—l k1-|—-|—kN:k

N<k
< BY Y ahzr [ Ly ARz, (4,q)
i=1 k;=n;+1 On k=k;
< BY Y Az
It remains to apply the previous step and choose n; such that

Z )\ Zk 21, B5

—”z‘l‘l

Step 3. Fix {n;}, such that Vn v, (R {n;}*) < €. For every sequence
of natural numbers {k;} set

SH{k})={z€[a]: Vi 7(z) =k}

18



We show that for every € > 0 there exists a compact set F' C [q]
such that

Vi b <ni = Vo va (FENS{k}) <ewa(S{k}). (10)

This is enough to prove tightness, because (10) implies that for every
n v, (F°) < e(l+v, (R)) and we already know that the total mass of
Vp, 1s uniformly bounded from above. The F' we will construct will be
of the form F' = {z € [a]: Vi z; < N;} where N; € S (we are using
an order on S induced by the identification S ~ N). Clearly, this is
a compact set. We show how to choose {N;}. Set

:Z{e¢k(z):m€[a] s Tre =z ;1 (2) =k ; Elia:z->N}

Obviously, Z; (N) N\, 0 as N " oo. For every ¢, we choose N; in a

way such that for every k < n;
Z5(N;) < 77
= 2iBT

We make sure that {N;} are chosen in an increasing way and that
N1 > sup;5o {24 (i)} (recall that z, was chosen to be periodic, so its
coordinates are bounded).

Fix {k;} < {n;} such that v, (S{k:}) > 0. Fix N = N (n,{k})
such that &y + ...+ ky > n. Since N; > sup {z, ()} > aq,

vn (F°N S {k;})

Vn{me S{k;}:dj € (§ km, i: km) z; > Nj}

m=1 m=1

un{me S{k;}:dj € (S kpm, i: km) z; > Ni}

m=1 m=1
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Tightness i1s proved.
By tightness, there exists a subsequence my such that Vb € §,

V;k - is w*-convergent. We denote its limit by »* and set v =

Sves V0. It is not difficult to check that
V[b 0<wl[b < oo (11)

We show that Liv = Av. By recurrence, a, ,/ oo. A stan-
dard calculation shows that for every [b] and N, v (1[z0<N]L¢1[ﬂ) =
Av (1 21<N]1[J) . It follows from the Lebesgue monotone convergence

theorem that v (L¢1 ) = Av[b]. Since [b] was arbitrary, we have
that Lyv = Av.

We show that v is conservative. One checks that the transfer op-
ertor of vis T = A~ Ly. To prove conservativity it is enough to show
that for some positive integrable function f .5, ka = oo almost
everywhere. Set f = >, g falja) where fo > 0 are chosen so that
v(f) < oo. For every a € S and z € [a]

>N F(LEF) (2) > Bi' fa > A2k (¢,0) = o0
k=1 k=1
Conservativity follows. &

3.2 The Schweiger property

Let X be a topological Markov shift and p be a measure supported
on X such that g ~ poT P and u ~ poT. p is said to have the
Schweiger property (see [1]) if there exists a collection of cylinders

R such that:

1. the members of R have finite positive measures and UR =

X mod v

2. for every [b] € R and arbitrary cylinder [a] if [a,b] # ¢ then

20



3.

there exists a constant C' > 1 such that for every [b] € R of
length n and g x g almost all z,y € [b] x [b]
dp
dyoTn

dp
(2) =0 ———1 (y) (12)
] dp o Ty

Aaronson, Denker and Urbanski proved in [1] that if u has the
Schweiger property, is supported on a topologically mixing topologi-
cal Markov shift, and is conservative then:

1.

2.

p is exact (hence ergodic);

there exists a o-finite invariat measure m ~ p such that log (dﬂ)

is bounded on every B € R.

. every [b] € R is a Darling-Kac set for m with a continued

fraction mixing return time process (see [1] for definitions and
implications).

. m is pointwise dual ergodic: there exist a, > 0 such that

for every f € L' (m)

izn:ka — m(f) a.e.

n—oo
Qn k=1

where 7' is the transfer operator of m.

Rényi’s property states that (12) holds for all cylinders (see [2]). It
follows from local Holder continuity that v satisfies Rényi’s property
with respect to the partition generated by cylinders of length two.
It is not true in general, however, that v satisfies this property with
respect to all cylinders, including those of length one (see example

2 below). In order to obtain information on cylinders of length one
as well, we need the following lemma, which was inspired by [1]. For
every ¢ € S set R. = {[bo,...,bn_1] : n € N | b,_; = c }. Note that
[c] € Re.
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Lemma 1 Let X be topologically mizing and ¢ locally Holder con-
tinuous. Suppose that v is a conservative measure, finite and positive
on cylinders such that Lyv = Av. Then Ve € S there exists a den-
sity function ¢ = ¢'9: X — (0,00) such that dv, = ¢°) dv has the
Schwezger property with respect to R.. q can be chosen to be constant
on partition sets.

Proof. For every 1 < m <n — 1 and [b] of length n set ¢, (b) =
inf {gm (2): @ € [0}, By (8) Vo € [} b (2) = b (20, ., 5 1)
log By_m. Set q(z) = ¢©) (z) = ¢, where

pe{ #0 BT

1 else

and set dv, = gdv. A calculation shows that dv,oT™ = g.oT"dvoT™

whence p
Vc _ qc A_neqsn
dv.oT™ g.oTm

It follows that for every & € [by,...,bn_1] such that b, ; = ¢

dVC qu p —n p
G (®) = e = BT et

Thus (12) is proved.

Obviously for every [b] in R. and for every [a], [, ] is either empty
or in R.. We show that X = JR.(mod v.). Assume this were not
the case. Then Ja € S JA C [a] measurable of positive measure
such that v.(ANUR.) = 0. By topological mixing there exists a
[c] C [¢] such that [¢,a] # ¢. Choose such a ¢ of minimal length.
Set [¢c, A] = [¢] N T7l<lA where |c| denotes the length of [c]. Then
[c, A] # ¢ and

dv, o Tlel
/[E,A] v = v (4) > 0
whence v, [¢, A] > 0. Since |c| is minimal, [¢, 4] C [¢]\T7 (UR.) =
[¢]\ Un>1 T~ ™ [¢] so by conservativity v, [c, A] = 0.

Example 2. Set S = {a,b,1,2,3,...} and A = (t;;)sxs where

t;; = 1 if and only if 2 € {a,b},7 € N or 7 € {a,b},j =1 o0ri =

22



1,7 € {a,b} ori # a,b,1 and j =47 — 1. Set ¢(z) = log ps, = wWhere
Paa =P = foand foralli € N and j € S, pai = fi, poi = fi, pij = 1
where f;, f] will be determined later. Then Z ,(¢,1) = 2o (Frnt
1 k
n—k)fO and

Za(6,1) = Z26 1) + 3. Zo (6 1) Za(6, B)
k=1

Now choose fo = 1/4, f; = C/2¢ and f] = C/4* where C > 0 is a
constant such that 3,5, Z;(¢,1) = 1. It follows from the renewal
theorem that Z,(¢,1) tends to 1/ ,5; nZ:(¢$,1) > 0 as n tends to
infinity. Thus Pg(¢) = 0 and ¢ is positive recurrent. Let v be the
corresponding eigenmeasure (the existence of which is guarantied by
proposition 2). Then there is no density vector {px} such that the
resulting measure satisfies Rényi’s condition because such a vector

must satisfy pr X pak, por Whereas por £ Pok.-

3.3 Existence of h and {a,},,

Proposition 3 If ¢ is recurrent then 3h > 0 and 3 {a,}.. | such that
Lyh = Ah and such that for every cylinder [b] and z € X

LS (241y) (2) — h(@)w[b].

n—oo
Gn k=1

Furthermore, h is bounded away from zero and winfinity on partition
sets, log h,log hoT are locally Holder continuous, and every cylinder
1s a Darling-Kac set for dm = hdv with a continued fraction mizing
return time process.

Proof. Since ¢ is recurrent, there exists a conservative measure v,
finite and positive on cylinders, such that Liv = Av. Fix an arbitrary
c € S and set R, = {[bo,...,bn_1]:n € N,b,_; = c}. By lemma 1
dv. ~ v with the Schweiger property with respect to R. such that
dv./dv is constant on partition sets. By the results cited in the last
section, there exists an exact invariant measure m which is equivalent
to v., hence also to v. Its derivative dm/dv is bounded away from
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zero and infinity on members of R. (because dv./dv is constant on
partition sets). This measure is pointwise dual ergodic: there exist
a, > 0 such that for every f € L' (m)

iE:ka—>/fdm a.e (13)
On f=1 noreo

Set h = dm/dv. Since v is equivalent to m and m is exact, v is
conservative ergodic and can only have one invariant density (up to
a constant). Thus h and m are independent of ¢. It also follows from
(13) that {a,} is independent of ¢ (up to a constant and asymptotic
equivalence). The results of the previous section imply that every
member of R. is a Darling-Kac set for m with a continued fraction
mixing return time process. Since m is independent of ¢ and c is
arbitrary, this is true for every member of |J.c5 R., i.e. for all cylin-
ders. The same reasoning shows that h is bounded away from zero
and infinity on every cylinder. Thus, since v is positive and finite on
cylinders, so is m.

We show that h and {a,} are the required eigenfunction and se-
quence. The transfer operator of dm is given by Tf = A"th7 Ly (RY),
(because dm = h dv and the transfer operator of v is given by A™! Ly).
Thus, for every cylinder [b]

i Z )\_kLil[ﬂ = ih Z Tk (h_ll[ﬂ) . (14)
k=1

an k=1 an

For every cylinder [b] the function h™'1p) is m-integrable (because h
is bounded away from zero on cylinders). Thus (14) implies that for
m—almost every ¢ € X for every cylinder [b]

LA+ (Lhy) (=) — h(z)vlb). (15)

o0
On p—1

Since v is positive on cylinders, and m ~ v, there is a dense set of
points # € X for which (15) is valid for every cylinder [b]. By (8)
Vm > 1Vk V, {log (L’;l[ﬂ)} < log By, and we have that the loga-

rithm of each of the summands in the left hand of (15) is uniformly
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continuous in z. It follows that A has a version for which (15) holds
everywhere for every cylinder [b]. This version must satisfy

Vm > 1V, [log h| < log B, (16)

whence log h,log h o T' are locally Holder continuous. We see, again,
that A is uniformly bounded away from zero and infinity on partition
sets, because the last estimation is also valid for the case m = 1.

It is now possible to show that h is an eigenfunction. Applying L,
on both hands of (15) (and noting that by conservativity a, — 00) it
is easy to see that Lyh < Ah. Set f = h—A~!'L4h. This is a non neg-
ative function which satisfies > ., )\_kL’qﬁf < oo. Since v is ergodic
conservative with transfer operator A~' Ly, this is impossible unless
f =0v —ae. Since f is continuous and v supported everywhere,

f =0 whence Lyh = Ah. 1

3.4 Identification of {a,},

Proposition 4 Let m and {a,} be as in proposition 3. Then for
every a € S

_kZ” (¢7 a’)

a ~o
" m [a] =

Proof. Let T' denote the transfer operator of m. For every cylinder
[a] of length N set Z, (¢,a) = Y np—p e"s"(z)l[ﬂ (z) and choose some
z, € [a]. By (16) for every N > 1 and almost all z, € [q]

X" (¢0) = By (A" L3lia) (2a) = BY ("1 (22)  (17)

By (13)

im B | A 60| - Bmlal (19

n—oco "n—o0 An

The idea is to sum over [a] C [a] and deduce that

lim , lim l Z)\ * 7k (9, )] = Bi?m[a]

" nSoo
n— oo an E—1
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which implies, since N is arbitrary, that both limits coincide and
are equal to m[a]. We need a regularity argument to deal with the
possibility that there may be an infinite number of [a] C [a] such that
la| = N.

Let € > 0 and F = F, be a compact such that m ([a] \F) < e.
We denote by [a] N o) ! the set of all cylinders of length N that are
included in [a]. Then,

1 & 1 &
- Z )\_ka (¢7 a’) = a_ Z )‘_k Z Zk (¢7 Q)
™ k=1 mh=l o falClalnad
1 n
S D AT
k=1 [a]C[alnad’~
[J0F¢¢
Z A~ k Z k (¢7 Q)
n k=1 [a]C[a]nad’~

[a]Ca]\F

Using (16), (17) and the pointwise dual ergodicity of m we have that
for almost every z, € [a]

_Z)\_k Z k(()b)Q)
I R Al
la]Cla]\F
< By — 2,\ LS [h—lL{; (P1a)] (2a)
k=l @Clalnad
_ laclnF
2 i —kp-1T7k
< BYBi- > [A*R1LE (Blpe)] (2a)
n k=1
1 &
< BYBi— > (TMla\r) () g, BiBim ([a]\F)
n k=1
Thus,

1 & 1 &
FORTATO D S ES R AT IRRIs
™ k=1 falclalnag’ L7 k=t
[alnF#¢
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The sum on the right is finite, because F' is compact. It follows from

this and (18) that

lim , im A7, ( = Bi’m 0
i, | 30 B b)) - P R
[a]Cla]nal ~
[alnFe#£2

Letting e tend to zero, and then N tend to infinity we have that the
upper and lower limits coincide and are equal to m [a]. I

3.5 Positive recurrence and Null recurrence

Throughout this subsection we assume that X is topologically mix-
ing, ¢ is locally Holder continuous and recurrent and that A, v and
h are its corresponding eigenvalue, eigenmeasure and eigenfunction
respectfully. As usual, dm = hdv and Tf = AR Ly (hf) is its

transfer operator.

Proposition 5 Under the above assumptions, v(h) < oo iff ¢ is
positive recurrent, and v (h) = oo iff ¢ is null recurrent.

Proof. Fix a € S and let 7 (z) be given by (9). By conservativity,
71 is well defined and finite v—almost everywhere in [a]. Set ¢y =

1[7-1:N]- By (16) VNVYkE>N

(T*n) 1 = BE*A™ Ziy (¢, ) (T* V1) L

Taking limits in both sides, using pointwise dual ergodicity, we see
that
AXNZy (¢,a) = B*m[r, = N] /m|a].

It follows that

o0

1
nA "Z (p,a) = Biz—/ 71 dm.
Z n(¢ ) 1 m[a] fa] 1

n=1

The result follows from the ergodicity and conservativity of m and

the Kac formula fj,, 71 dm =m (X). 1
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Proposition 6 Under the above assumptions, for every cylinder [g]

1. +f ¢ is null recurrent then A™" L3 1[4 —2 0 wunzformly on cylin-

ders whence a, = o(n);

2. if ¢ 1is positive recurrent then A™" (Lgl[ﬂ) (z) — MIJ[Q]

] n—oo V(h)
untformly on compacts whence a, ~ n - const.

Proof. Assume that ¢ is null recurrent and fix some @ € S. Since
Ly 1s positive and h is uniformly bounded away from zero and infinity
on [a], it is enough to show that A™"h~'L} (hl ) —> 0 uniformly
on cylinders. Choose unions of partition sets F, such that F, "X
and 0 < m(F,) < oo. ¢ is null recurrent so m (Fy) ,/ oo. Set
v =14 — 15, -m[a] /m (Fy) . For every b € S the usual estimations
yield (for || - [l =l - ||zt (m))

1

|1 1| < Bf’m—mHl[b]T"l[a] .
< B (hwtmiv], + 2 i)
b
< 2L (Jmsw], + —;;5])

T is the transfer operator of m. Since m (fn) = 0 and m is exact (it
is equivalent to v, and v has the Schweiger property), it follows from

a theorem of M. Lin (see theorem 1.3.3 in [2]) that |T™fy D

0. It follows from this and from the fact that m (Fy) 1T oo that
|17 1
Assume now that ¢ is positive recurrent. Without loss of generality,
assume that v (k) = 1. For every cylinder [a] the family {)\ A J}
is equicontinuous and uniformly bounded on partition sets [b] (by
C th[b]Hoo where C = 1/inf {h(2z): ¢ € [a]}). It follows that every

subsequence has a subsequence of its own which converges uniformly
on compacts. It is enough to show that the only possible limit point is
hv [a], because it will then immediately follow from the equicontinuity

fd 0 as required.
oo
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of {)\_”Lgl[ﬂ }n that this sequence tends uniformly on compacts to
hv [a].

Assume that A7 L3*1j,) tends to ¢ pointwise. Since for every
k A7 Ly¥1;) < Ch and Ch is integrable, we have by the dominated
convergence theorem that

/|go—h1/ [a| dv = lim /\,\—"kLguM — hv [a]| dv

k—o0

_ . A’I’Lk -1 _

= kh_)rglo ‘T (h lg —v [Q])‘ dm
Since m is exact, the last limit is equal to zero and we have that
@ = hv[a] almost everywhere. Since ¢ must be continuous, it must
be equal to hv[a] everywhere. (Note that this argument does not
work if ¢ is null recurrent, because in this case h™'1[, — v [a] is not
integrable.) 1
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