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Abstract

We study the analyticity of the topological pressure for some one-
parameter families of potentials on countable Markov shifts. We relate
the non-analyticity of the pressure to changes in the recurrence properties
of the system. We give sufficient conditions for such changes to exist and
not to exist. We apply these results to the Pomeau-Manneville map, and
use them to construct examples with different critical behavior.!

1 Introduction

A well known theorem of Ruelle [Ru2, Rul] states that for every topologically
mixing topological Markov shift X with a finite number of states, the topological
pressure Pi,, is analytic on the space of Holder continuous functions. That
is, V¢,v € C(X) Holder continuous, t — Piop(¢ + 1) is real analytic in a
neighborhood of ¢ = 0 (whence for every t). In ferromagnetism, this is sometimes
interpreted as ‘lack of phase transitions’ (see [E]).

If the number of states is countable, this theorem is no longer true. [S3]
contains an example of a ¢ which depends on a finite number of coordinates
(‘finite range potential’) for which Py.p(¢ +t¢) has a positive Lebesgue measure
set of critical points. Other finite range examples with critical behavior can be
found in [Hof], [Lo], [W1], [W2]. Infinite range examples include the Pomeau-
Manneville map (see e.g. [PM], [Lo]) and the Farey map [PS] (see also [LSV]).

The purpose of this paper is to study critical phenomena for some smooth
one-parameter families of infinite range potentials on countable Markov shifts.
The critical phenomena we consider are non-analyticity of the pressure, changes
in the existence of an equilibrium measure, and changes in its finiteness, when
it exists.
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It was observed in [S2], that there are three modes of recurrence for poten-
tials on countable Markov shifts: positive recurrence, null recurrence and tran-
sience. Positive recurrent potentials admit finite equilibrium measures. Null
recurrent potentials admit conservative infinite equilibrium measures. Tran-
sient potentials do not have conservative conformal measures. A change in the
mode of recurrence of a one-parameter family affects, therefore, the existence
or finiteness of the equilibrium measure.

We show that a change in the mode of recurrence is also related with non-
analyticity of the pressure, and give conditions governing the existence of such
changes (theorems 2 and 3). We use these results to derive some of the proper-
ties of the Pomeau-Manneville map, and show that all systems with the same
symbolic structure have similar properties. This explains why the Pomeau-
Manneville map has the same critical behavior as that of the examples consid-
ered in [PS], [Lo], [W1] and [W2] (theorem 5). We also construct examples
with different critical behavior, using the methods of [S3]. Among these ex-
amples is a potential which is ‘intermittent’ (i.e. admits infinite conservative
equilibrium measure) for a whole interval of ‘temperatures’ (example 4). This
is different than the Pomeau-Manneville example, which is intermittent only for
a specific ‘temperature’.

The structure of the paper is as follows. Section 2 contains a survey of
relevant results on the thermodynamic formalism of countable Markov shifts.
Section 3 contains the statement of our main results, theorems 2, 3 and 4.
Section 4 contains an application of these results to the study of the renewal
shift and the closely related Pomeau-Manneville map. Section 5 contains other
examples. Section 6 contains the proof of theorem 2. Section 7 contains the
proof of theorems 3 and 4.

2 Survey of the thermodynamic formalism for
countable Markov shifts

In this section we survey some results from [S1, S2] concerning the thermody-
namic formalism of some infinite range potentials on countable Markov shifts.
For a survey on finite range potentials see [GS].

2.1 Basic Definitions and notational conventions

Let S be a countable set and A = (tij)s><s a matrix of zeroes and ones with no
columns or rows which are all zeroes. Let X be the set

Xi={oe SN 4y, =1, vi>0}
endowed with the relative product topology, which is also given by the base of

cylinders
[@0, ... an_1]={z€eX :z;=a;,0<i<n-1}



where n € N and ag,...,an_1 € S. An admissible word is a @ € 8™ such that
l[a] # 0. Its length is |a| = n. Let T': X — X be the left shift (Tz); := zi41. The
topological dynamical system (X, T) is called a (one sided) topological Markov
shift. We say that X is topologically mixing if (X, T') is topologically mixing.
The members of S are called the states of the shift, and the matrix A is called
the transition matriz. The sets [a] where @ € S are called the partition sets.

Let ¢ : X — R be some real function (also called potential). The variations
of ¢ are Vu(¢) := sup{|¢(z) — o (y)| : 2,y e X, 2 =y, 0< i< n—1}. $is
said to have summable variationsif Y, ., Vo (4) < oco. ¢ is called weakly Hélder
continuous (with parameter 6) if there exist A > 0 and 8 € (0,1) such that for
all n > 2, V,.(¢) < A6™. Note that in both cases the quantification begins with
n = 2 so ¢ may be unbounded or may satisfy V;(¢) = oo.

For every ¢ with summable variations we associate the corresponding Ru-
elle operator [Ru2] (Lyf) (2) := ZTy:I e?W) f(y). If [[Lol]loo < oo this is a
bounded operator on the Banach space Cp(X) = {f € C(X) : ||fllec < o0}
(complex valued functions). One checks that (Lgf)(m) = ZT,,y:I e® ) f(y)
where ¢y, := ZZ;S ¢ o Tk.

We use the following notational conventions. All logarithms are natural
logarithms. The indicator functions of sets A C X are denoted by 14, and
1 := 1lx. @ = B*"b means that B > 1, a,b > 0 and B™"b < a < B"b;
an < b, means that ABVn, a, = Bilbn; @n X b, means that 3¢ # 0 such that
an /by — ¢; and a,, ~ b, means that a, /b, — 1.

2.2 Pressure and Recurrence

Let a € S be some fixed state and set pq(z) := 1[4)(z) inf{n > 1: T"(z) € [a]}
(where inf () := oo and 0- 0o = 0). Set

Zu($,0):= Y e i(a) and Z;(d,0):= Y e, _pi(2)

Trr=x Trr=x

It is known that if X is topologically mixing, ¢ has summable variations? , and

[[Lyl||oo is finite then the following limit exists, is finite and is independent of
the choice of a € §

P&(9):= lim log Zu(4,a) (1)

Pg(#) is called the Gurevic pressure of ¢ ([S1], [G2], [G1]) and satisfies the
following variational principle

Po(#) = sup { )+ [odu: wePnx) 5 - [odu< oo}

?the following results, including theorem 1 below, were stated in [S1] and [S$2] under
stronger continuity assumptions on ¢, but the proofs given there are also valid for ¢ with
summable variations.




where Pr(X) is the set of T-invariant Borel probability measures.

Let A := exp[Pg(¢)]. We say that ¢ is recurrent if for some a € S,
Y us1 A " Zn(¢,a) diverges and transient if it converges. We say that ¢ is
positive recurrent if it is recurrent and Y1 A" Z($,a) < oo and null re-
current if it is recurrent and ), o, nA""Z} (_¢>, a) = oo. It turns out that these
definitions do not depend on the choice of a € § and that [S2]:

Theorem 1 Let X be a topologically mizing countable Markov shift, and let ¢
be some real function on X with summable variations. If ¢ has finite Gurevic
pressure, then ¢ is recurrent if and only if there exist A > 0, a conservative
measure v finite and positive on cylinders, and a positive continuous function h
such that Lyv = Av and Lyh = Ah. In this case X = exp P (¢) and there exist
an T 00 such that for every cylinder [a] and z € X

n

AF (k1) (=) — h(z)v]a]

1
Qanp P n— 00

-1
The sequence {an n>o0 satisfies an, ~ (f[a] hdu) Sr 1 A %72 (4,a) for every

a € 5. Furthermore,

1. if ¢ is positive recurrent then v(h) < o0, an, & n, and for every [a]
)\_"Lgl[ﬂ — hvla] uniformly on compacts, where h is normalized so
n— oo

that v(h) = 1.

2. if ¢ is null recurrent then v(h) = oo, an = o(n), and for every [a]
)\_"Lgl[ﬂ tends to zero uniformly on cylinders.

It is easy to check that hdv is T-invariant, that h is bounded away from zero
and infinity on partition sets and that V,(logh) < > 45, .1 Vi(¢). It is also
clear from the convergence part of the theorem that v and h are unique up to
a multiplicative constant. As a corollary we obtain,

Lemma 1 Let X be topologically mizing and let ¢ be a function with summable
variations and finite Gurevic pressure. Then there exist two continuous func-
tions ¢' and ¢ such that ¢’ <0, Pg(¢p')=0and ¢’ = ¢+ —poT — Pg(¢).
The function ¢ is bounded on partition sets. If ¢ is recurrent then Lyl =1,
and if ¢ is transient then Lyl < 1. If ¢ is weakly Holder continuous then so
are ¢' and .

Proof. Set X := exp Pg(¢). Assume that ¢ is transient. Fix some state a € S
andset h:=3 o, )\_"Lgl[a]. By transience, topological mixing and summable
variations k is finite. Also, if ¢ is weakly Holder, then so are log h and log hoT'. It
is easy to check that A= Lyh < h. Set ¢ :=logh and ¢’ := ¢+¢p—poT — Pg(p).
Clearly, Lyl < 1 whence ¢’ < 0 as required. The case when ¢ is recurrent is
handled by replacing h in the last argument by the h given by theorem 1 (see
[Wal] for a similar normalization procedure). O



3 Statement of main results

We recall the well-known process of inducing in the context of topological
Markov shifts (see [S2] and [A] section 1.5). Fix some state a € S. Set

S:={la:la >1; a=aiff i =0; [g,a] £ 0}, X := 5 and et

T : X — X be the left shift. For every ¢ : X — R set
Pa—1
¢ = (Z ¢>oTk) o
k=0

where 7 : X — [a] is given by 7([ao], [¢1], - - ) := (@0, @y, - - -)- The pair (X, ¢) is
called the induced system and & is called the induced potential (on [a]).

Induced systems are in many cases easier to handle than the original systems,
as shown by the following example. A system (X, ¢) is called Bernoulli if X =
SNU{O} and if ¢(z) = ¢(zo). A potential is called Markov if ¢(z) = ¢(zo, 1)
If ¢ is a Markov potential, then (X, ¢) is a Bernoulli system.?

If ¢ is weakly Holder continuous, so is ¢. Summable variations alone, how-
ever, is not enough: ¢ may not have summable variations, even if ¢ does. The

existence of pressure, however, is always guaranteed:

Lemma 2 Let X be topologically mizing and let ¢ : X — R be some function
with summable variations. Let a € S be some fized state and let X and ¢ be
the induced system and induced potential. Then the following limit exists for all
[a] € S (although it may be infinite) and is independent of the choice of [a]:

Po(F) = lim, = log Zu (3, a])

n— 00

Proof. Follows from the proof of theorem 1 in [S1] and the standard estimation

Vald+ 0T +...460T" 1< T, Vilgl. O

To state our main results, we need the following definition.

Definition 1 Let X be topologically mizing and let ¢ : X — R have summable
variations and finite Gurevic pressure. Fiz a € S and let (X, 5) be the induced
system. Set pil¢] := sup{p : Pe(¢ +p) < oo}. The a-discriminant of ¢ is
Aqu[¢] :=sup{Pg(¢ + p) : p < P;[¢]} < oco.

As we shall later see (section 6, proposition 3),

Ag[¢] = Pa(é + p3[4)) (2)
3This is also true for the larger class of potentials ¢ for which Ja € § such that o(z) =
&(zo, ..., ‘D‘Pa(r)) as long as the inducing is done with respect to [a]. The state a can be viewed

as a ‘gap’ between non-interacting clusters of interacting particles. Analogous potentials are
studied in a different mathematical setting in [FF].



Both A,[¢] and p}[¢] are determined by > €™ Z(¢, a) in the following way. Let
R be the radius of convergence of this series. Then

A,[g] —log ¥ R*Z;(4,a)

k=1

<D Vi(9) (3)

pi[$] = — limsup %log Z: (¢, a) (4)

n— 00

Both relations follow from the stronger statement (section 6, proposition 3):

Pa(¢+p)—logy_e*Z;(¢,a)
k=1

< Z V(o) (5)

Note that when ¢ is a Markov potential, both (5) and (3) are equalities (because
for Markov potentials » ., Vi(¢) = 0). Our basic result is:

Theorem 2 (Discriminant theorem). Let X be a topologically mizing count-
able Markov shift and let ¢ : X — R be some function with summable variations
and finite Gurevic pressure. Let a € S be some arbitrary fized state.

1. The equation Pg(¢ + p) = 0 has a unique solution p(¢) if Ag[¢] > 0, and
no solution if A,[¢] < 0. The Gurevic pressure of ¢ is given by

—p(¢) Aqfp] >0
Pg(¢) = (6)
—pa[¢] Aafg] <0

2. ¢ is positive recurrent if Ag[d] > 0 and transient if Ay[¢] < 0. In the case
A[p] =0, ¢ is either positive recurrent or null recurrent.

Theorem 2 should be understood in the context of one-parameter families of
potentials. Given such a family {¢s}, let {Ag} be the corresponding omne-
parameter family of discriminants. When Ag changes sign, {¢s} changes its
recurrence properties and the case in (6) changes. A change in the mode of
recurrence implies, by theorem 1, a change in the qualitative properties of the
equilibrium measure (existence and finiteness). A change of case in (6) may
imply non-smoothness for 8 +— Pe(¢g). This suggests that the search for critical
phenomena for one-parameter families may be done by studying the sign changes
of the discriminant. This can sometimes be done with the aid of (3), as we shall
see in sections 4 and 5. The proof of theorem 2 is given in section 6.

We now discuss the case when the discriminant does not change sign and
remains positive. Let ¢ be some function with summable variations and finite
pressure. We say that ¢ is strongly positive recurrent if for some state a € §

Ag[p] >0



(This generalizes the notion of stable positivity for Markov potentials discussed in
[GS].) The Discriminant Theorem implies that every strongly positive recurrent
function is positive recurrent. The opposite statement is false (example 2 below).

We are interested in differentiability of the pressure functional, i.e. in the
existence of directional derivatives %|t:0 P (¢ + tp). We restrict ourselves to
the following set of directions:

Dir(¢) := {¢ : ZVn(lﬁ) < oo, Je>0st. V|| <e, Pglp+ty) < oo}
n=2

The following theorem completes theorem 2 by saying that if the discriminant is
positive, then there is no critical phenomena of the sort that can be encountered
when A changes sign. Its proof of is given in section 7.

Theorem 3 Let X be a topologically mizing and ¢ be a weakly Holder contin-
uous function such that Pg(¢) < oo. If ¢ is strongly positive recurrent then
Vi € Dir(¢) weakly Hélder continuous, Je > 0 such that ¢ + t3p is positive
recurrent for all |t| < € and such that t — Pg(¢ +1t1) is real analytic in (—¢,€).

The case ¢y = ¢ is particularly interesting, as it appears in the study of the
one-parameter family {8¢}s>g,.* If Pg(Bo¢) < oo, then Pg(B¢) < oo for all
B > Bo, because by lemma 1, ¢ is cohomologous to a non-positive function.

Therefore, V8 > o, ¢ € Dir(8¢). This may not be true for 8 = Bo:

Example 1 Let X = NNU{% and ¢(z) := — log (zo(log 220)?). Then Pg(B¢) <
oo for B> 1, and Pg($) = oo for B < 1.

Proof. Pg(B¢) =log ;- 1/[kP(log 2k)?#]. |
Corollary 1 Let X be a topologically mizing and ¢ be weakly Hélder continuous

function such that Pg(¢) < oo and ¢ € Dir(¢). The following conditions are
equivalent:

1. ¢ s strongly positive recurrent.

2. for every weakly Hélder continuous ¢ € Dir(p) there exists € > 0 such
that ¢ + 1v is positive recurrent for every real t such that |t| < €.

3. for everya € S Ay[¢] > 0.

Proof. The first statement implies the second by theorem 3. The third state-
ment trivially implies the first. It remains to show that the second statement
implies the third. Assume that the second statement is true, but that the third
statement is false. Then for some a € S, A,[¢] is not positive. Since by our
assumptions ¢ is positive recurrent, A,[¢] cannot be negative, so A,[¢] = 0. Set
Y := 1[4]. Since ¥y = 1 on X, Ag[¢] =t. This contradicts the second statement
because if ¢ < 0 then ¢ + £1 is transient. a
We remark that the assumptions of theorem 3 can be weakened:

4Such families appear in models for systems whose inverse temperature 8 is changed [E].



Theorem 4 Let X be a topologically mizing and ¢ be a function with summable
variations, such that Pg(¢) < 0o, Ag[¢] > 0 and such that the induced potential
on a, ¢, is weakly Holder. Then Vi € Dir(¢) such that ¢ is weakly Holder
continuous, 3¢ > 0 such that ¢+t is positive recurrent V|| < €, and such that
t— Pg(¢ + ty) is real analytic in (—¢,¢).

In section 7 we prove this stronger version.

4 The renewal shift

The examples studied in [PM],[Hof],|GW], [W1],[W2], [PS] and [Lo] share
the same critical behavior: for some potential ¢, the function 8 — Pg(B¢) has
one point of non-differentiability 8., and is constant for 8 > 8.. A close look
at these examples shows that they can be represented as different potentials on
the same countable Markov shift, the renewal shift. This is the shift with set of
states S := N U {0} and transition matrix (¢;;)sxs whose 1 entries are ¢oo, to;
and ¢;;_1 (¢=1,2,3,...). The main result of this section is

Theorem 5 Let X be the renewal shift and let ¢ : X — R be a function with
summable variations such that sup ¢ < oo and such that ¢ is weakly Holder
continuous. Then there exists 0 < B, < oo such that:

1. B¢ is strongly positive recurrent for 0 < 8 < B, and transient for 8 > (..

2. Pa(B¢) is real analytic in (0,8:) and linear in (B;,00). It is continuous
but not analytic at B, (in case B < o0).

3. Set A, = eSPi9n(2)2€l0n=1,.0l} gnd let R(B) be the radius of conver-
gence of Fg(€&) := Y. o, AP¢™. If Fg(R(B)) is infinite for every (B then
Be = oco. If 38 > 0 such that Fg(R(B)) < 1 then B, < co.

Proof. It is easy to check that X it topologically mixing. Also, S¢ has finite
pressure for all 8 > 0, since Pg(B¢) < log||Lgsl|| < log(2¢?P#). One can
easily check that for every function f, n € N and 8 > 0

Z,(B£,0) = Z,(£,0) and p;[Bf] = Bp;|S] (7)

Henceforth (X, ¢) denotes the induced system on [0], P(8) := Pg(B¢) and
A[B] := Aolf4]. - o
If p§[¢] = oo then A[B] = sup{Pg(¢ + p) : p < o0} = oo because Pg(¢ + p) >
Pg(a)—l—p. In this case parts 1 and 2 follow with 8. = oo from theorem 4 and the
discussion after theorem 3. We therefore restrict ourselves to the case p%[¢] < oo.
Without loss of generality, assume that pj[¢] = 0 (else pass to ¢ + p{[¢] and
use (4)). By (7), p;[B¢] = 0 for all B > 0, whence by (2)

A[B] = Pc(B$) (8)



As before, if A[S] > 0 for every 8, parts 1 and 2 follow with 8. = co. Assume
38 > 0 such that A[B] < 0 and set B, := inf{B8 > 0 : A[B] < 0}. Note that
Be > 0 because according to (3) and (7)

AlB >10g2("”0 175 (4, 0) ) —ﬂZV o oo

We claim that A[B] — —oo as § 1 +oo. Fix some fo such that A[Gy] < 0.
By (8) Bo¢ has finite pressure, whence by lemma 1, Bo¢ is cohomologous to
¥ + Pg(Bo$) where ¥ is weakly Holder continuous (1n X) such that L 1<1.

Since ¢ has summable variations, Vl(a) < oo. It follows from lemma 1 that

Vi(¢¥) < oo as well. By (8), for all £ > 1,

A[tBo] = Pe(tPo¢) = Pc(ty) +tPc(Bod)
Since Pg(Bod) = A[Bo] < 0, we have for all ¢ > 1,

AltBo] < Pa(ty) < log||Ly;1llw

By construction, Lal < 1. Therefore, since every z € X has more than one

pre-image, 1 is strictly negative. It follows from this and Vl(E) < oo that
||LW1||oo — 0 as ¢ T co. This implies that A[8] —+ —o0 as 8 1 oco.

We show that A[S] < 0 in (B¢, +o0). By the definition of 8, there are
Bn | Bc such that A[B,] < 0. By what we just showed there are 8], 1 oo such
that A[B,] < 0. By (8) A[B] = Pg(B4), so A[B] is convex in (Bn,B.).
convexity, A[B] < 0 in (Bn,B,]- Since B, | B: and B, T oo, A[A] is strictly
negative in (8., +00).

We have shown that A[8] < 0 in (B, 00). It is obvious that A[S] > 0 in
(0,8.). Part 1 now follows from the discriminant theorem.

We prove part 2. The analyticity of P(8) in (0,8.) follows from theorem 4
and that fact that P(8) < oo. The discriminant theorem and (7) imply that
VB > B, Pa(B9) = pil89) = Bril4] and VB € (0,5.), Pa(B8) > pilBd] =
Boi[¢]. Thus Pe(B¢) is linear in (8., 00), but not in (0, 00). This implies that
Be is a point of non-analyticity. The continuity of P(3) in 8. follows from the
convexity of this function.

To prove part 3, recall that A[B] > 0 for 8 > 0 small, and note that by (8)

that log Fg(R(B)) — B 3=, Va($) < A[B] < log Fy(R(B)). =

Example 2 B.¢ can be positive recurrent, null recurrent or transient.

Proof. Let {f,}n>1 be a sequence such that f, > 0 and log f, = o(n). Set
® =51 Lom 1108 fu- Then, Z;(#,0) = fu, po[¢] = 0 and 3, 5, Va($) =0,
whence by (2), Ao[B¢] = log Zn21 fB. Let ((s) := Zn21n_s.



1. Positive recurrence. Set f, := ﬁ Then Ag[Bé] = log[¢(38)/¢(3)P]
whence 8. = 1. Note that A¢[B:¢] = 0 whence Pg(B:.¢) = —p;[B:4] = 0.
It also follows that B.¢ is recurrent. Positive recurrence follows from

> s ne~"Pe(#) Z*(4,0) = S us17/(¢(3)n3) < co. Note that B.¢ is pos-

itive recurrent but not strongly positive recurrent.
2. Null recurrence. The same calculations with f, = 1/({(2)n?) then B.¢.

3. Transience. Set f, := C/n[log(2n)]? where C is a constant such that
Yons1fn = % Similar calculations show that Ag[8¢] is infinite for 8 < 1
and Ag[B¢] < —log2 for 8 > 1. Thus 8. = 1 and B¢ is transient. a

For an example of the possible applications of theorem 5, consider the Pomeau-
Manneville map T : [0,1] — [0, 1] given by T(z) = z + z'7*(mod 1) where the
value of T at its discontinuity is 0, 7(1) = 1 and s > 0 [PM]. The following
proposition, is a generalization of results which are known for f = —log|T"| (see
[PM] and [Lo]) to other potentials, whose equilibrium measure is not necessarily
equivalent to Lebesgue’s measure.

Proposition 1 (The Pomeau—Manneville Model). Let T be the Pomeau-
Manneville map and let f : [0,1] — R be C[0,1] N C(0,1] such that f'(z) ~
caz® ! as 2\, 0, where c £ 0 and a > 0. Set

P() = sup { () 4.8 [ g m & Pr(0,1)s — [ fdm < 003 mi0} = 0}

1. There ezists 0 < B, < oo such that P(8) is real analytic in (0,8.) and
linear in (B;, 00). It is continuous but not real-analytic at B..

2. B. is finite if and only if o < s and ¢ < 0. In particular, it is finite for
fi=—logT.

Proof. It is common knowledge that T' can be described symbolically as a
renewal shift. We check that the symbolic representation of f has summable
variations and apply theorem 5. To do this we recall some facts on the natural
Markov partition of T (see [I], lemma 4.8.6 in [A] and [T1]).

Define by induction ¢o := 1 and ¢, = cpy1 + ci'_'l'_sl Rewriting this as ¢;{; =
cn’(L+cpy1) =ci*(1+ sc;, 1 +o(cy41)) we see that ¢, 1, —c,*
cn ~ (sn)~1/%. Tt follows from the recursive relation which defines {c,} that

~ s whence

1

Cp — Cpy1~ (sm)i+17s
Set I[n] := (cnt1,cn] and Iao,...,an_1] := Z;é T~ *I[ax]. One checks that

TI[0] = (0,1] and TI[n + 1] = I[n], whence I[ao,...,an_1] is not empty if and
only if (ag,...,an—1) is an admissible word of the renewal shift.

10



Claim 1. The diameter of I[ao,...,an—1] satisfies for every € > 0

1
|I[a0,...,an_1]|20(m) (9)

Proof. By the previous discussion,
Iao, ..., an_1] = I[ao,.--;@n-1;@n_1—1,...,0]

so we may assume that a,_1 = 0. Set M := 1+sup{ai} and N := |{k : ax = 0}/
Since (ag,...,an—1) is admissible with respect to the transition matrix of the
renewal shift, M N > n. Thus, for every 8 € (0, 1) either M > nf or N > nl=A.

Set my, := [nf] + 1. If M > n® then for some power k, T*I[ag,...,an_1] C
I[m,] whence since TV > 1 |I[ag,...,0n-1]] < [I[mn]| = ¢m, — Cm,+1 =
O(n=PU+1/s)) 1f N > n'=F then for every z € I[ao,...,an_1]

n—1 N
™ ()= || T"(T%2) > [ inf T
@) = [ 7@ > ot 7))
whence for 6 := 1/inf, ¢ o) T"(x)
[Ilao,...,an—1]| < 6V (10)

Since # < 1 and N > n'~# we have again that I[ag, ..., @,_1] = O(n=A(+1/5)),
Since 3 € (0,1) was arbitrary, the claim is proved.

Let (X, o) be the renewal shift and 79 : X — [0, 1] be the map defined by

the equation {mo(z)} = NusollZoy s Zn1] = Nu>ol[Tos.- ., Zn—1]. By (9)
7o is well defined. It is easy to check that mgo o =T o m, that my is 1-1 and
that 7T0(X) = [0, 1] \ Unon_n{O}

Claim 2. Let f be C[0,1]NC*(0,1] in [0,1] such that f'(z) ~ caz®~?! asz |0,
where ¢ £ 0 and a > 0. Then ¢ := f omo has summable variations and ¢, the

induced potential on [0], is weakly Holder continuous.

Proof. Fix z,y € [ao, . ..,0n—1] where without loss of generality a,_1 = 0. Fix
€ > 0 (to be determined later). Then there exists £ € I[ao, ..., an_1] such that

6(2) — $(u)| = 7(©)] - lao, .., ann]| = O (nL:T)

Since £ € Ifag, ..., an-1] C (€ay+1,Ca, ), and since by the structure of the renewal
shift ag < n — 1, we have that £~ = O(1 + ¢2~!) whence

14+ n—(a—l)/s
Vo(¢) =0 (W)
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If & > 1 the nominator is bounded and choosing € < 1/(2s) we see that V,(¢)
is summable. If @ < 1 then the nominator is O(n(l_“)/s) and we have that
Vu(¢) = O(n=(t+a/s=€)) Choosing € < a/s we see the 3. V,,(¢) is summable.
In any case, ¢ has summable variations. The weak Holder continuity of ¢ can
be proved in a similar way.

Claim 3. P(8) = Pg(B¢) where ¢ := f o mo.

Proof. Since sup f < oo and Vz [T~ 'z| = 2, ||Lgsl||lec < oo. It follows as in
([S1], theorem 3) that

Po(89) = sup{hu(o) + 8 [ dadu: wePo(X) 5 - [gdu< oo}

(the argument there works also for functions with summable variations).
The claim follows because m <> momg is a 1-1 onto correspondence between

the sets of measures which define P(8) and Pg(8¢).

Claims 2 and 3 show that we can apply theorem 5 to ¢ = fomg and deduce the
existence of B.. We check the conditions for the finiteness of 8.. Let A, be as in
theorem 5. Since ¢ has summable variations, 4, = exp fn(d,) where d,, € I[0]
are defined by T(dn) = c,. It is easy to check that d, | c1, whence A, =
exp Y p_; f(ck). Without loss of generality, f(0) = 0 (addition of constants
does not affect the finiteness of 5.). Then by the assumptions on f, f(z) ~ cz®.
Since cx ~ (sk)~%, f(ck) ~ c(sk)~*/*. Thus Sohoq flex) = cfln e~ sdg. Tt
follows that there exist constants K1, K2, K3, K4 such that

"1 "1
Kiexp Kz,ﬁc/ ——dz ) < AQ < K3exp K4,Bc/ ——dz
1 ze/s — — 1 ze/s

Let Fg(§) and R(B) be as in theorem 5. Using the above,

1. If @ > s then A2 < 1 for every B > 0. In this case Fg(R(B)) = oo for
every 3, so 8. = oo.

2. If @ = s then K n¥2P¢ < AB < K3nK+Pe Tt follows that R(B) = 1 and
that F(R(B)) is infinite for every 3 if ¢ > 0, and F(R(fB)) ﬂ—) 0ife<0.
— 00

Thus for @ = s, if ¢ > 0 then B, is infinite, and if ¢ < 0 then 8, < co.

3. If @ € (0,5) and @ := 1 — (/s) then for some constants C4q, C3, Cs, C4,
C1eC2Pn" < AP < (C3eC4P"". Since a < 1, R(B) = 1 for every B. Tt
follows that if ¢ > 0 then F(R(B)) = oo for every 3, and if ¢ < 0 then
F(R(B)) ﬂj) 0. Thus for 0 < @ < s, if ¢ > 0 then B, is infinite and if

¢ < 0 then S, is finite.

Thus 8. < oo if and only if 0 < o < s and ¢ < 0. a
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5 Other Examples

In this section we construct examples whose critical behavior is different than
that of potentials on the renewal shift. Our constructions are based on the tools
of [S3] which we now explain. We say that a one parameter family of functions
Fg(€) is an exponent power series if it is of the form Fg(€) = Zn7k>0a5k£"
where anr > 0. Clearly, if Fg and Gy are exponent power series, then so are
FgGg, Fg o Gg and c1Fg + c3Gpg where ¢y, c; are positive integers. We say
that an exponent power series Fg is aperiodic if the power expansion of Fg
contains two co-prime powers of {. We say that Fj is adequate if it is of the
form cP€ + £2Gp(€) where ¢ > 0 and G is an exponent power series.

The following theorem was essentially proved in [S3]. We include its proof
for completeness.

Theorem 6 For every adequate exponent power series Fg there exists an irre-
ducible topological Markov shift X and o Markov potential ¢ = ¢(zo, 1) such
that for all B, Pc(B¢ + p) = log Fg(e?). If Fg is aperiodic, X is topologically
mizing.

Proof. Write .
Fp(e)=cPe+ > ey al,
k=1

n=2

where 0 < N, < co. Let 5 be a countable set indexed in the following way

oo N,
S:={a}u |J [J{bar(1), ..., bur(n— 1)}

n=2k=1

Let (i;)i,jes be the transition matrix whose non zero entries are exactly La,bur (1))
b ()bnre(i+1)1 Lonr(n—1)a for all m, k> 1land ¢ = 1,...,n—1 with the addition of
taq if and only if ¢ # 0. Let X be the corresponding topological Markov shift.
Define ¢(z) by ¢(z) := logans if € [a, bur(1)], ¢(z) := loge if z € [a,a] and
#(z) := 0 otherwise. One checks that

Fg(€) = €"Z;(B4,a)

n=1

whence by (5) and the fact that Vk > 2 Vi(¢) = 0, Pg(B¢ + p) = log Fg(e?).
Note that X is irreducible, because all states connect to @ and a connects to all
states. It is topologically mixing if and only if there are two words of co-prime
lengths which connect a to a. This can be easily seen to be equivalent to the
aperiodicity of > €™ Z;; (8¢, a), hence to that of Fg. a

The following example shows that {8¢}s50 can change from recurrent to
transient an infinite number of times. (This is different than the example with
infinite number of non differentiability points in [S3], which is always transient.)

13



Example 3 There exists X topologically mizing and ¢ = ¢(zo, 1) such that
for some B, | 0, B¢ is recurrent in (Bi11,B8:) for i even and transient for i odd.

Proof. Consider the following sequence of numbers

N, = 2 ( 2n — 2 )
n n — ].
A calculation with Stirling’s formula shows that N, ~ 7~ 1/2n=3/2222-1 Ap.

other calculation shows that

e 1L 2n — 2 1 /( 2n
g (000) - (7)) ay
Multiplying both sides of (11) by 4™ we see that N, are all natural numbers.
Summing both sides of (11) over n we see that >, ., N,4™" = %

Fix some 3, | 0 with the property that 291/‘9"_< oo for all 8 € (0,1) (e.g.

Brn := 1/n). Set an(B) := —2(%)‘9/‘9" and p(B) := [[,,51(1 + an(B)). Then for
all 8 > 0, p(B) is well defined, non zero for 8 & {Bn }» and satisfies

p(B) =1+ a1(B) + 1+ c1(B)] az(B) + ...

where the convergence on the right is absolute. Collecting summands with the

same sign write p(8) = A(8) — B(B) where A(8) = > af and B(B) = }_ b2 for
some an, by, > 0. If B € (Bi41,B:) then B> B, iff n >4+ 1 whence

sgn (A(B) — B(B)) = sgn (H(1—21_ﬂ/ﬂ") II (1—21_‘9/‘9")) = (-1)’

n=1 n=1+1

Thus, A(B) > B(B) iff ¢ is even.
Now construct X and ¢ = ¢(zo, 1) such that Pg(B8¢ + p) = log Fg(eP)
where Fg(£) is the exponent power series

Fy(€) = 8A(B)B(B)E* + ) NuB(B)"¢"

Since N,, =< n‘f,% the radius of convergence of Fg(£) is R(8) = 1/4B(8) whence

A[B4] = log Fs(R(B)) = log (8%[2753()[3) + 2 Nn4‘")

whence A,[B¢] = log %(1 + A(B)/B(B)). This is positive iff A(8) > B(8). Thus
B¢ is recurrent for 8 € (Bit1,5:) and % even, and transient for 8 € (Bit1,05:)
and ¢ odd. ad
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We have seen that for potentials ¢ on the renewal shift, 8¢ can be null
recurrence for at most one value of 8 (the critical point). Our next example
shows that for other topological Markov shifts null recurrence can occur in an
entire interval. A trivial example would be a Markov shift for which the potential
¢ = 0 is null recurrent. We therefore restrict ourselves to examples where ¢ is
not cohomologous to a constant.

Example 4 There exist a topologically mizing topological Markov shift X and
a function ¢ = ¢(zo, 1) not cohomologous to a constant such that B¢ is null
recurrent for every (3.

Proof. Let N, be as in example 3 and set fz(p) := 2°(e? + €?). Construct X
topologically mixing and ¢ = ¢(zo, 1) such that

Pe(B¢ +p) = log (2 > Nufs (p)")

n=2

Since N,, < 4"n~3/2, p*[8¢] is determined by the equation fe(pilBd]) =1/4. It
follows from this that A,[8¢] = 0. By the Discriminant theorem, for all 8 8¢ is
recurrent and Pg(B¢) = —p[B4]- It also follows that ¢ is not cohomologous to
a constant, since Pg(¢) is not a linear function of 3 (it is given by the equation
sl Pa(88)] = 1/4).

We show that B¢ is null recurrent for all 8. Since V2(¢) = 0, Pg(B¢ + p) =
log}",. 5. €""Z; (B¢, a) whence

o0 d [ o0

S et 09 7 50,0) = L ool 2yl 3 v
n=1 dp P=p; n=2
and this diverges, because N, =< 4"n~3/2, ad

Our last example shows that all modes of recurrence can co-exist for interval
ranges of inverse temperatures.

Example 5 There ezist X topologically mizing and ¢ = ¢(zo, 1) such that for
some 1 < B1 < B2 < o0, B¢ is null recurrent for B € (1,51), positive recurrent

for B € (B1,B2) and transient for 8 € (B2, 00).

Proof. Fix some positive ap, ~ 1/[2n(logn)?] such that a; = 3, 3, 5 an = 1
and set A(B) = Y512, Fp(€) i= Yy 51 ab A(B)"E"H and )

Gp(€) = Fp(2Fp(£))

This is an adequate aperiodic exponent power series. Let X and ¢ be the
corresponding shift and potential.

Let Rp(B) and Re(B) denote the radii of convergence of Fg(£) and Gg(£).
Note that Rp(8) = 1/A(B) and Fg(Rr(B8)) = 1. Let By be the solution of
Rp(B2) = 2. Clearly, Rr(B) < 2 for 8 < B2 and Rp(B) > 2 for 8 > (2. Thus,
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1. if B € (1,Bz) then 2F3(Rr(8)) = 2 > Rp(8) so Ra(B8) = F; '(3Rr(8))-
In this case Gg(Re(B)) = Fs(2- 1Rr(B)) = Fs(Rr(B)) = 1.

2. if B > B, then 2F3(Rr(8)) = 2 < Rr(B) so Rg(B) = Rr(B). In this case
Gp(2Fg(Rr(B)) < Fg(Rr(8)) = L.

Since A,[B8¢] = logGg(Re(B)), B¢ is transient for 8 > B2 and recurrent for
/6 S (L/BZ)

We check positive recurrence and null recurrence for 8 € (1,82). Fix some

B € (1,82). Since Gg(Re(B8)) = 1, A.[B4] = 0 whence e~ Te(F#) = ¢~Pilf9] —
Re(B). Thus >, 5, ne~"Ps(6®) 7* (4, a) = R(B) % R Gp(€). Now, since

®)
Re(B) = F5 ' (3Rr(B)),

%‘ Fy(2F5(€)) = Fj(Re(8)) - 2F)(Ra(B))
¢=Ra(B)

Since Rg(B8) < Rr(B), this is finite iff Fg(RFr(B)) < oo, which is comparable to

 R—— n
A(B) 2 P (log )
This sum is infinite for 8 € (1,2) and finite for 8 € (2,82). (Note that 82 > 2
since a? > 1 whereas a{”> < A(8;) = 1.) O

6 Proof of theorem 2

The proof of theorem 2 is based on a generalization of certain renewal theoretic
ideas. These are presented in the following subsection. The proof of theorem 2
is given in the subsection following it.

6.1 A renewal sequence of operators

Let @ € S be some fixed state. Let Cp[a] be the Banach space Cpla] := {f €
Cp(X) : f(g) = 0 for z ¢ [a]} equipped with the supremum norm. Let
1,0 : Cgla] — Cpg[a] be the operators defined by 1f = f, 0f = 0 Vf € Cglal.
Consider the operators T,,, R, : Cgla] — Cgla] given by Tp := 1, Ro := 0 and

Tof = LlwL}f
Buf = L Lg(flipo=n)

(see also [FL] and [PS].) A direct calculation shows that these operators satisfy
the following ‘renewal equation’ for n > 1,

Tn = RlTn—l + RZTn—Z +...+ RnTO (12)
T, =Thw 1Ri+Th_2Ry+...+THR,
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Set
T,[¢)(z) ;=14 > 2"T, , Ra[gl(z):=) 2"Rn

n=1

These are well defined bounded linear operators on Cgla] for |z| < A~!. To
see this use the summable variations property to prove that ||T,[¢](2)|| =

||Ta[¢](z)1[a]||oo < B ano |2|"Z,(¢,a) where B := exp anz Va(¢), and note
that the radius of convergence of the series Y. z"Z,(¢,a) is A= by (1). In
terms of these generating functions, we can restate (12) in the following form
Viz| < A7,

Ta[$)(2) = [1 - Ra[@](2)] "
It also follows from (12) that for all 2| < A1,

T.[¢](2) =1+ > Ra[g](2)" (13)

Note that (13) is also valid for all z real such that z > A~!, as long as both
sides are applied to positive functions.

For every bounded linear operator S on Cpg[a] let p(S) denote the spectral
radius of S (with respect to the supremum norm), with the convention that
the ‘operator’ Sf = ool[,) has an infinite spectral norm. The following two
propositions relate the renewal sequence to the discriminant.

Proposition 2 Let ¢ denote the induced potential on [a]. Then

Pg(¢ + p) = log p(Ra[4](e"))

Proof. Let 7 : X — [a] be the natural embedding. A calculation shows that
for every p and f € Cgla]

(Ralg](eP)f) om = Lz (f o) (14)

Fix some [a] € S. Since X = ENU{O}, Zn($+ p,]a]) < ||Lng1||oo- The propo-
sition follows from this and (14). a

Proposition 3 Let X be topologically mizing countable Markov shift, let ¢ be
a function with summable variations and finite Gurevic pressure. Let X and
¢ denote the induced pair with respect to a € S. Then Pg(¢ + p) is conver,
strictly increasing and continuous in (—oo, p}[p]]. Also, (2)-(5) hold.

Proof. Fix a € S and set ¥(p) := Pg(¢ + p), p* := p_[$], z := €P and R(z) :=
R,[¢](2). Proposition 2 and summable variations imply that for all z € [a],

1 .
v(p) = lim —log||R(e”)" 1[4l

n—oo 1

1
= lim —log R(e?)"1[q)(z)

n—oo M
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We use this formula to prove that -y is convex, strictly increasing and continuous
in (—o0,p”) and that (5) and (4) hold. The expressions R(eP)™1[4)(x) are convex
in p, since they are of the form Y a;e®® where a; > 0. Thus y(p) is convex in
p, being a limit of convex functions. Clearly, Vp; < p2 < p* and all 0 < f €
Cgla], R(eP?)f > eP>PrR(eP')f. Iterating this and using the above formula
for y(p) we have that y(p) is strictly increasing. It follows that - is finite in
(—o0,p*), whence by convexity it is continuous there. Standard estimations
show that for every 0 < f € Cpgla], R(e?)f = B*! Y on>1Zn(¢,a)f where
B =exp ;5o Vi(¢). Iterating this, and using the above formula for y(p), we
have (5). Clearly, (5) implies (4), so (4) is also proved.

It remains to prove that v(p) is continuous on the left in p*. We prove
this under the assumption that y(p*) < oo (the proof for the infinite case is
essentially the same). By monotonicity, it is enough to prove that for every
€ > 0 there exists p < p* such that y(p) > v(p*) —e. Fix z € [a]. Setting
R(eP) =3, -, €"P R, in the above formula for v, we have

.1 -
v(p) = nli)n;o - log Z Plitotha g L Ri, 1[a)(2) (15)
kEiynkn=1

By the definition of p*, there are N and p and n > log B/¢ such that

N

an :— log Z Plitothn) g o R, 1) > n(y(p") —¢)
Eiyeeokn

By the summable variations property, am, + @m, < @m,+m, + log B for every
my, my. Write m = kn + r where 0 <7 <n — 1. Then

a >kan+a7—(k—|—1)log3 N an logB
- kn+r m—oo 1 n

_m > ) _ 9

— >(p*) — 2¢

whence y(p) > v(p*) — 2e. This proves that v is continuous in (—oo, p*]. This

also implies that (2). This and (5) imply (3). ad
We will need the following version of the Kac formula, whose proof follows

in a standard way from theorem 1 and general results for Markov operators (see

theorem VI.C in [F]).

Lemma 3 Let X be a topologically mizing Markov shift, ¢ some function on X
and a € S some fized state. Let (X,¢) be the induced system on [a], and
assume that both ¢ and ¢ have summable variations. Then ¢ is recurrent
with pressure zero if and only if ¢ is positive recurrent with pressure zero. In
this case, if L;u = v,Lyh = h, L%U = 7, Lah = h then up to a multiplica-
tive constant U = vom, h = hom, v(A) = J (&0 t14) o dy and h =
S, Z;é L’(Z(hal[%:n]) mod v where £ is the operator £(f) := Ly(f - 1))
-1

and hg := 1[,1]%0 T
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6.2 Proof of theorem 2.

Throughout the proof let @ and ¢ be fixed. Let T(z) :=
Ro[$](2). Let B := exp} ;s, Vi[¢] and set A 1= Ay[g], +(
and p* := pi[d].

Part 1. proof of (6).

3

S5
[l

g

©-
+

ch

Assume A > 0. According to proposition 3, v is continuous and strictly increas-
ing in (—oo0,p*], v(p*) > 0 and y(p) — —oo. Therefore, there exists a unique
pa(#) for which 7(pa(4)) = 0.

We claim that pa(¢) = —Pe(¢). Fix some p < pa(¢). Since v is strictly
increasing, y(p) < 0, whence p(R(e?)) < 1. By (13), ||T(e?)1[a)llc < 1+
> ||R(e?)™|| < oo whence, by summable variations, Y " Z,(¢$,a) converges.
The radius of convergence of this series is exp[—Pg(¢#)]. Therefore p < —Pg(¢).
Taking p 1 pa(¢) we have p,(¢) < —Pg(¢). Assume by way of contradiction
that Ip.(¢) < p’ < —Pg(¢). Then ||T(ep’)|| < BZe"I"Zn(cﬁ,a) < oo whence
by (13), the series 1+ Y R(ep’)"l[a](m) converges for every z. Summable vari-
ations imply that Yz € [a] and Vn > 1, ||R(e?')*|| < BR(ep’)"l[a](m). Thus
> ||R(ep’)"|| < oo whence p[R(ep’)] < 1, or equivalently, y(p') < 0. This, how-
ever, is impossible because + is strictly increasing, v(ps(¢)) = 0 and p' > p,.(¢).
This proves that ps(¢) = —Pg(¢) and settles (6) for the case A > 0.

Assume now that A < 0. In this case there is no solution for the equation
v¥(p) = 0, because for p < p* ~(p) < A < 0 and for p > p* 7(p) = c0. We
show that in this case Pg(¢) = —p". By (4) and the inequality Z;(¢,a) <
Zn($,a), p* > —Pg(¢). Assume by way of contradiction that p* > —Pg(¢).
Then for every z € [a], T(e”*)l[a](m) > B~'Se™ Z,(4,a) = oo, whence by
(13), 1 + 3 R(eP" ) diverges everywhere on [a]. Thus p[R(eP")] > 1, whence
A =«(p*) > 0 in contradiction to our assumptions. This settles the case A < 0.

Part 2. proof that recurrence is equivalent to A > 0.

Assume that A > 0. By the first part of the theorem y(—Pg(¢)) = 0 so the
spectral norm of R(e~F¢(?)) is equal to 1. Therefore, there exists £ € [0, 27) such
that 1 — eieR(e_PG(¢)) does not have a bounded inverse operator. In particular,
the series 14+, 5, e*¢ R(e~Pe(#))¥ does not converge in the strong norm. It fol-
lows that there exists some £ > 0 such that for every N there exists n = n(N) >
N and g, € Cpgla] such that ||gn||cc =1 and || Y 2,5, e““eR(e_PG(‘/’))kgnHoo > €.
Now, on [a] B

D R(eTTeONF1 > N R(e TN g, > Y e R(e P P))rg, | > 6
k=n k=n k=n

whence || > .5, R(e_PG(‘/’))kl[a]Hoo > ¢ for every n. By the summable varia-
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tions property this is only possible if > R(e_PG(¢))k1[a] diverges on [a] whence
||T(e_PG(‘/’))1[a]||oo = oco. This is equivalent to 3. e *7e(#) 7, (4,a) = oo, s0 ¢
is recurrent.

Assume that A < 0. Set p := p[R(e?")]. Then p = expA < 1. By the
definition of the spectral radius, there exists some C and pg € (p, 1) such that
for every n, ||[R(e? )"||cc < CpP. The renewal equation implies that ||7(e?”)|| <
C/(1 - po). It follows that T(ep*) is bounded, whence Zekp*Zk(d),a) is con-
vergent. By the first part of the theorem, and since A < 0, p* = —Pg(¢). It
follows that ¢ is transient.

Part 3. proof that A > 0 implies positive recurrence.

Assume that A > 0. By what we have just proved ¢ is recurrent. Let v and h
be the eigenmeasure and eigenfunction given by theorem 1, and set dm = hdm.
Recall that m an invariant measure, and that m(X) < oo if and only if ¢ is pos-
itive recurrent. We will prove positive recurrence by showing that m(X) < oco.

Let vg, mq be the measures vq(A4) := v(A N [a])/v][a] and me(A) := m(A N
[a])/m[a]. Let T, := T¥= be the induced transformation. Since m is T-invariant,
myg is Tg-invariant. Note that the transfer operator of T, with respect to v, is
R(A~1). To see this note that Vg € L®(v,),Vf € L'(v,), va[gR(A"1)f] =
Ezozl v {)\_"Lg (g oT™. fl[‘pa:n])} =va(goT, - f).

Set A(z) := [R()\_l)cpa] (z). By Kac’s formula, the fact the R(A~!) acts as

the transfer operator of v, and the boundness of h = #% away from zero and

dv
infinity on partition sets, 3C; > such that

m(X) = / Qo dmg = CE? / Qo dv, = /[a] A(z)dv(z)

Clearly,
A@) =Y A Y O, () = BEY nA " Z;(4,a)
n=1 Try=xz n=1

Since A > 0, p* > —Pg(¢) so A~1 is smaller than the radius of convergence of the
series > 2"Z($,a). It follows that Y nA "Z}(4,a) < co whence ||A(z)||ec <

oo. Since v[a] < o0, m(X) < oo as required. O
7 Proof of theorem 4
In this section we prove theorem 4, a strengthened version of theorem 3.

7.1 Preparatory lemmas

Let X be topologically mixing and let @ € S be some fixed state. Let ¢ be
some function with summable variations and finite pressure and let (X, ¢) be
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the induced system on [a].

For every 7,y € X set £(Z,7) := inf{n > 0:%, £7,}. Fix6 € (0,1) and set
for every function f : X — C , Df := sup{|f(Z) — f(§)|/6'®¥) : T # 5}. Let
L = L(6, a) be the space

L(6,a) :={f € Co(X) : |Ifliz = [Iflloc + Df < 00} (16)

A standard argument shows that £ is a Banach space and that if 1L51]|o0 <
oo then LE(Z) C £ and ||L¢||)5 < oo where B(L) is the space of bounded

operators on L equipped with the strong operator norm. The following lemma
says that the induced system has a spectral gap, and is similar to well-known
results in the theory of interval maps with indifferent fixed points ([T1],[T2],
[A], [ADU], [B], [PS]).

Lemma 4 Let X be topologically mizing, ¢ some function on X anda € S a
fized state. Let (X, ¢) be the induced system on [a] and assume that ¢ is weakly
Hélder continuous with ezponent 8 € (0,1) and that ||L$1||oo < 0o. Then ¢ is

positive recurrent if and only if the spectrum of Ly L(6,a) — L(6,a) consists
of a simple eigenvalue X and a subset of {z : |2| < TA} where 7 < 1. In this
case, X = efel(®),

Proof. Assume that ¢ is positive recurrent with finite pressure and set X :=

exp Pg(#). X has the structure of a full shift. It is known ([S1] section 5, see
also [A] theorem 4.7.7 and [Yu]) that for such systems there exists K > 0 and
€ (0,1) such that for every f € £

< Kt

HX_"(La)"f—ﬁ/de .

where LEE = Xh, L%U = )7 and (h) = 1. This implies the required spectral

property. The opposite direction is trivial, since the spectral property implies

that X_HL% has a non trivial limit (the eigenprojection of X), and this is only
possible if ¢ is positive recurrent with pressure log \. a
Lemma 5 Let X be topologically mizing and let ¢ be a function with summable

variations such that Pg(¢) < oo and Ag[p] > 0. For every ¢ € Dir(¢), Ie > 0
Ar > exp[—Pe(¢)] such that >, -, nr"Z) (¢ + €Y, a) < co.

Proof. Without loss of generality, Pg(¢) = 0 (else pass to ¢ — Pg(¢)). Since
Ag[p] > 0, Ir > exp[—Pg(4)] = 1 such that ||Ry[4](r)1[4]||co is finite, or equiv-
alently, > o, 7" Z(¢,a) < co. Without loss of generality

1
limsup = log Z, (¢,a) < —logr
n

n— 00

21



Set fo(t) := (1/n)log Z) (¢ + t3,a) and f(t) := limsup,_, ., fn(t). By Holder’s
inequality, f, are convex, whence so is f. Since ¥ € Dir(¢), there is some £ > 0
such that V[t| < 2¢, —oo < f(t) < Pg(¢ + 1) < oo.

By convexity and since f < o0, either f(¢) = —oo everywhere in (—2¢, 2¢), or
|f(t)] < oo everywhere in (—2¢,2¢). In the first case the radius of convergence
of 315,27 Z; (¢ + ty,a) is infinite for ¢ = ¢ and we are done. In the second
case, by convexity and finiteness, f(t) is continuous in (—2¢, 2¢). Thus, since
r was chosen so that f(0) < —logr, there exists ¢’ < ¢ such that V|¢| < 2¢'
f(t) < —logr. It follows that r is strictly smaller than the radius of convergence
of Y5, 28 Z5 (¢ + t, a) for t = +¢’ and again, we are done. O

Recall that function F : C x C — B(L) is called analytic in a neighborhood
of (20, wo) if AF,x € B(L) such that F(z,w) = don k>0(w—w0)k(z—z0)ank and
the series converges in the strong operator norm ina neighborhood of (zg, wo).

Lemma 6 Let X be topologically mizing, let ¢ be some function with summable
variations such that Pg(¢) < oo and let ¢ € Dir(¢). Let a € S be some state
such that Ay[¢] > 0 and assume that ¢ and ¢, the induced potentials on [a], are

weakly Holder continuous with parameter . Then F : C x C — B(L) given by

F(z,w) = Lm is analytic in a neighborhood of (z,w) = (0,e~P(#)),

Proof. Throughout this proof || - || denotes the strong operator norm in B(L).
We assume, without loss of generality, that Pge(¢) = 0 and prove analyticity in
(0,1). For every function g : X — C let M, be the operator Myf = gf. Set

Ay = {z € X : ¢o(7(2)) = n}. This is a union of partition sets in X. Set

R, = LEMlAn' Then,

F(z,w) = Z w"RnMez;

We show that this converges in B(L) in some open ball containing (z, w) =
(0,1). Fix some N and set Ay(z) := e* — (1 +z + ”;—? cery ?V—A,r) Then
Hzn,k>N %w"sznMEk <D s lw™ HR"MAN(ZE) H We estimate the sum-
mands of the last series. B

For every p € S set Qpf(Z) := f(pz). Let A, :={p € S : [p] C An}.
By definition, R"MAN(zE) = ZFEA; QFMAN(zE)J‘ Since for every f,g € L,

If9llz < lIflIzllgllz
| @58,y s < |@re®)| I @pAN D2

It is standard to check that Vz,y € C, |An(z) — An(y)| < |z — y|(el*! + €¥))
and that Vz,y € R, |e® — e¥| < |z — y|(e” + €¥). Using this and the inequality
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|An(z)| < el®l, it is easy to show that there is some constant K; (independent
of n and N) such that V|z| < 1,

METIE]

e B 1N

o,

Summing over all p € A!, and using weak Holder continuity, we have that for
some K independent of n and N,

HR"MAN(J)H < KZy(¢+ 2] - [¢l,a)

Let € > 0 and » > 1 be as in lemma 5. Without out loss of generality re™° > 1
and € < 1. Then for all |2]| < € and |w| < r,

i i |w|:lz|kR"M¢¢;

n=N+1k=N+1

<K Y, "Z(¢+elvla) o 0
n=N+1

whence F(z,w) is analytic in a neighborhood of (0, 1). ad

7.2 Proof of theorem 4

Let ¢ be a function with summable variations and finite pressure and let ¥ €
Dir(¢). Assume that Ja € S such that Ay[¢] > 0 and such that the induced
potentials on [a], ¢, are weakly Holder continuous with exponent 8 € (0,1).
Without loss of generality, assume that Pg(¢) = 0. Set

I'(z,w) := Pg(¢ + 2¢p — w)

By the discriminant theorem, Vz € R, if 3w € R such that I'(z,w) = 0, then
w = Pg($ + z¢). Thus, Pg(¢ + z1) is given implicitly by

(2, Pe(¢+2¢)) =0 (17)

We will show that I' has a complex holomorphic extension to a neighborhood
of (z,w) = (0,0) in C x C, and apply the complex implicit function theorem
([Boch], page 39) to deduce that (17) defines Pg(¢ + 29) real analytically
in a neighborhood of z = 0. (This theorem applies since YA > 0, T'(0, k) <
Pg(¢ — h) = Pg(¢) — h whence T',(0,0) #0.)

By theorem 2 and lemma 3, since Ay[¢] > 0 and Pg(¢) = 0, ¢ is positive
recurrent with pressure zero. By (5), Y. Z;(¢,a) < oo whence ||L$|| < co. By
lemma 4 the spectrum of LE : L — L consists of the simple isolated eigenvalue
1 and a compact subset of {z : |z| < 7} for some 7 < 1. By standard analytic
perturbation theory [Kal, there exists ¢ > 0 such that if || L — LEHB(E) < § then
L has a (unique) simple eigenvalue A(L) of maximal magnitude, this eigenvalue
is simple, has magnitude larger than (1 + 7)/2, and the rest of the spectrum
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is contained in {z : [z| < (1 + 7)/2}. Furthermore, the map L — A(L) is
holomorphic in {L € B(L) : || L — L¢||B < ¢}. By lemma 6, 3¢ > 0 such that

(2, w) — Ly u— is holomorphic in U := {(z,w) € C? :|z|,|w| < €} and such

that || Loo—— ¢||B < 4§ for all |z, |w| < €. In this neighborhood we define

f(z, w) := log A (Lm)

Tis holomorphic in U. For every z,w real such that (z,w) € U, the spectrum

of L¢+ - — consists of a simple eigenvalue A(z,w) and a compact subset of

{A: A< |)\(z w)|}. By lemma4, ¢ + 23 — w is positive recurrent with pressure
logA\(z,w) = I‘(z w). It follows that T is a holomorphic extension of T. This
proves that ¢t — Pg(¢ + t) is real analytic in (—¢, €).

We show that ¢ + t¢ is positive recurrent for [¢| small. Real analyticity
implies continuity, so 3§’ > 0 such that V|t| < &', Pa(é +1¢) € (—5,5). Set
w := —Pg(¢+t9). Then |[w—3| < e whence Pg(¢ + 1ty —w+ 3) =T'(t,w—3) <
0. Since Pg(¢ + t9 + p) is increasing in p, Pe(¢ + ty + (5§ — w)) > (¢, w) = 0
whence Ag[¢ +ty] > 0. O
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