

CORRECTIONS TO INVARIANT MEASURES AND ASYMPTOTICS FOR SOME SKEW PRODUCTS

J. AARONSON, H. NAKADA, O. SARIG, R. SOLOMYAK

Corollaries 2.7 and 2.8 in [ANSS] need correction. In the proof of 2.7, it is wrongly stated a) that ν must be non-atomic, and b) that m is locally finite. The following gives correct versions. References not listed here are listed in [ANSS].

2.7 Corollary. *Suppose that Σ is a mixing SFT and that $f : \Sigma \rightarrow \mathbb{Z}^d$ ($d \geq 1$) has finite memory. If $\nu \in \mathcal{P}(\Sigma)$ is S_A^f -invariant, ergodic, and with $U := \text{supp } \nu \subseteq \Sigma$ clopen and $\nu \circ \tau_U \sim \nu$, then $\nu \propto \mu_\alpha|_U$ for some homomorphism $\alpha : \mathbb{Z}^d \rightarrow \mathbb{R}$. If (in addition) $f\Sigma \rightarrow \mathbb{Z}^d$ is aperiodic, then $U = \Sigma$.*

Proof Since ν is finite and τ_U -non-singular, it is non-atomic and the unique τ_{ϕ_f} -ergodic, invariant measure m on $\Sigma \times \mathbb{Z}^d$ so that $m(A \times \{0\}) = \nu(A)$ is locally finite.

In case f is aperiodic, theorem 2.2 shows that $m = m_\alpha$, $U = \Sigma$ and $\nu = \mu_\alpha$ for some homomorphism $\alpha : \mathbb{Z}^d \rightarrow \mathbb{R}$.

Otherwise (see e.g. proposition 5.1 in [Pa-S] for $d = 1$) there is a subgroup $\mathbb{F} \subset \mathbb{Z}^d$ and

$$(\spadesuit) \quad f = a + g - g \circ T + \bar{f}.$$

where $a \in \mathbb{Z}^d$, $\bar{f} : \Sigma \rightarrow \mathbb{F}$ aperiodic and $g : \Sigma \rightarrow \mathbb{Z}^d$ both with memory no longer than that of f .

Thus $m \circ \pi^{-1}$ (where $\pi(x, z) := (x, z - g(x))$) is locally finite, $\tau_{\phi_{\bar{f}}}$ -ergodic, invariant and supported on $\Sigma \times (z_0 + \mathbb{F})$ (some $z_0 \in \mathbb{Z}^d$). The result now follows from the aperiodic case. \square

Remarks

1) In the situation of corollary 2.7, the ergodic decomposition of μ_α ($\alpha : \mathbb{Z}^d \rightarrow \mathbb{R}$ a homomorphism) is $\{[g \in b + \mathbb{F}] : b \in \mathbb{Z}^d\}$ (where g is as in (\spadesuit)). The proof of this uses [G-H] as in the proof of ergodicity in the aperiodic case.

2) Suppose that Σ is a mixing SFT and that $\nu \in \mathcal{P}(\Sigma)$ is S_A^+ -invariant and ergodic, then (for $s \in S$) $N_s := \sum_{n=0}^{\infty} 1_{[s]} \circ T^n$. is S_A^+ -invariant, whence constant ν -a.e.. Call $s \in S$ *ephemeral* if $1 \leq N_s < \infty$ ν -a.e., and *recurrent* if $N_s = \infty$ a.e.. Let S_∞ and S_e denote the collections of recurrent and ephemeral states (respectively). Evidently $S_\infty \neq \emptyset$ and $N := \sum_{f \in S_e} N_f$ is constant and finite ($N := 0$ if $S_e = \emptyset$).

2.8 Corollary *Suppose Σ is a mixing SFT. If $\nu \in \mathcal{P}(\Sigma)$ is S_A^+ -invariant and ergodic, then \exists a cylinder $f = [f_1, \dots, f_N] \subset \Sigma$ with $f_1, \dots, f_N \in S_e$; a mixing SFT $\Sigma' = \Sigma_{A'} \subset \Sigma \cap S_\infty^N$; a clopen, $S_{A'}^+$ -invariant subset $U \subset \Sigma'$; a homomorphism*

Date: ©28/04/03.

$\alpha : \mathbb{Z}^{S_\infty} \rightarrow \mathbb{R}$ so that

$$\nu = c \sum_{\pi \in S_N, \pi f \cap U \neq \emptyset} \delta_{\pi f} \times \mu|_{T^N \pi f \cap U}$$

where $\pi f := [f_{\pi(1)}, \dots, f_{\pi(N)}]$, $\mu \in \mathcal{P}(\Sigma')$, $\frac{d\mu \circ T}{d\mu} = c' e^{\alpha \circ F^\#}$ and $c, c' > 0$.

Proof

Suppose first that $S_e = \emptyset$. We claim first that ν is the restriction of a Markov measure to a union of initial states. To see this, choose $s \in S_\infty$ with $\nu([s]) > 0$, then $\nu|_{[s]}$ is ergodic, invariant under finite permutations of inter-arrival words, whence by de Finetti's theorem (see e.g. [D-F]) a product measure. By Proposition 15 of [D-F], $\nu|_{[s]}$ is the restriction of a stationary Markov measure to $[s]$, and by S_A^+ -invariance and ergodicity, the transition matrix p does not depend on s , $\nu([s]) > 0$. It follows that $U := \text{supp } \nu = \bigcup_{s \in S_\infty, \nu([s]) > 0} [s]$ is clopen in $\Sigma_{A'}$ ($A'_{s,t} = 1_{[p_{s,t} > 0]}$), and that $\nu \circ \tau_U \sim \nu$ where τ is the adic transformation on $\Sigma_{A'}$. The result in case $S_e = \emptyset$ now follows from corollary 2.7.

In general,

$$x_n \in \begin{cases} S_e & 1 \leq n \leq N := \sum_{f \in S_e} N_f, \\ S_\infty & n > N, \end{cases}$$

$\nu \circ T^{-N}$ is as above. The result follows from this. \square

Remarks

Examples illustrating the various cases of corollary 2.8 can be extracted from [P-S]. Corollary 2.8 now extends the one-sided version of theorem 6.2 in [P-S]. Theorems 2.9 and 2.11 there follow from it (by identification of possible Σ').

REFERENCES

- [ANSS] J. Aaronson, H. Nakada, O. Sarig, R. Solomyak, Invariant measures and asymptotics for some skew products. *Israel J. Math.* **128** (2002), 93–134.
- [D-F] P. Diaconis, D. Freedman, De Finetti's theorem for Markov chains, (French) *Annals Probab.* **8**, no. 8, (1980), 115–130.
- [Pa-S] W. Parry, K. Schmidt, Natural coefficients and invariants for Markov-shifts, *Invent. Math.* **76** (1984), no. 1, 15–32.
- (Jon Aaronson) SCHOOL OF MATHEMATICAL SCIENCES, TEL AVIV UNIVERSITY, RAMAT AVIV, 69978 TEL AVIV, ISRAEL
E-mail address: aaro@math.tau.ac.il
- (Hitoshi Nakada) DEPT. MATH., KEIO UNIVERSITY, HIYOSHI 3-14-1 KOHOKU, YOKOHAMA 223, JAPAN
E-mail address: nakada@math.keio.ac.jp
- (Omri Sarig) SCHOOL OF MATHEMATICAL SCIENCES, TEL AVIV UNIVERSITY, RAMAT AVIV, 69978 TEL AVIV, ISRAEL
E-mail address: sarig@math.tau.ac.il
- (Rita Solomyak) DEPARTMENT OF MATHEMATICS, BOX 354350, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195-4350, USA
E-mail address: rsolom@math.washington.edu