CONTINUOUS PHASE TRANSITIONS FOR DYNAMICAL
SYSTEMS

OMRI SARIG

ABSTRACT. We study the asymptotic expansion of the topological pressure
of one—parameter families of potentials at a point of non-analyticity. The
singularity is related qualitatively and quantitatively to non-Gaussian limit
laws and to slow decay of correlations with respect to the equilibrium measure.

1. INTRODUCTION

This paper deals with the thermodynamic formalism of countable Markov shifts.
It explores the stochastic implications of non-analyticity for the topological pressure
functional, by pursuing an analogy with the theory of continuous phase transitions.

Continuous phase transitions. A continuous phase transition (sometimes also
called high—order phase transition) is a situation where a thermodynamic quan-
tity varies continuously but not analytically when some external parameter of the
system is changed. The prototypical example is ferromagnetic material at zero
external magnetic field: The magnetic moment per unit volume (‘magnetization’)
decreases continuously as the material is heated, until it completely vanishes at a
certain critical temperature T,.; The derivative of the magnetization with respect
to temperature (‘susceptibility’) diverges at T.

Systems undergoing a continuous phase transition develop local long—range or-
der. This order can be described in terms of large fluctuations of thermodynamic
quantities (‘abnormal fluctuations’), and slow decay of correlations (‘infinite corre-
lation length’). See [St] for examples of continuous phase transitions, and [BDFN],
[Hi] for theoretical treatment.

Most thermodynamic quantities can be expressed as partial derivatives of the
Helmholtz or Gibbs Free Energy F. Therefore, a continuous phase transition is
sometimes defined as a situation where the free energy is C' but not real-analytic.
Physicists have found empirically that the free energy F'(¢) satisfies an asymptotic
power law close to the critical point: F'(t) =~ Ct®+analytic terms for t = (T—T¢) /T
(the ‘reduced temperature’). The parameter « is called a critical exponent.

It is not clear how to define ~. In this work (as in [Hi]), we formalize =~ by
stipulating that F(t) = £t“L(1/¢) + analytic terms where L : (¢, 00) — oo is a
positive (Borel) function s.t.

L(st

L((St)) —— 1forall s > 0. (1)
In this case L(t) is called slowly varying (s.v.) at infinity, and t*L(1/t) is said to
be regularly varying (r.v.) with index «, see appendix A.
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This interpretation of ~ is not completely standard, but it is reasonable because

it is equivalent to saying that the singular part F*(t) of F(t) scales asymptotically
like a power: 1;*((55) — s for all s > 0, compare with [BDFN].!
t—0

Continuous phase transitions in dynamical systems. Let T : X — X be
some continuous map on a complete metric separable space X (in most examples
treated below X is not locally compact). The dynamical counterpart to the free
energy is the topological pressure functional ¢ +— Piop(¢) defined for continuous
¢: X — Rs.t. supop < oo by

Piop(¢) := sup{h,(T) + /(bd,u : it is a Borel probability measure

st. poT 1t =y and /¢du #* —oo}.

Here and throughout h,(7T") is the metric entropy of f.

The analogy [Ru] becomes apparent if one thinks of the metric entropy h,(T")
as of entropy per particle, and of f odp as —(xenergy per particle with 3 =inverse
temperature (we describe an example in appendix B). With this interpretation,
maximizing h,(T) + f ¢dyp amounts to minimizing the Helmholtz free energy. The
maximizing measure p (if it exists) is called the equilibrium measure of ¢, and (if
unique) is denoted by 4.

Definition 1. Let T : X — X be a continuous map of a complete metric separable
space X, and ¢y : X — R a family of continuous functions, t > 0.

(1) {@t}i>0 is called regular, if Je > 0 s.t. ¢y has an equilibrium measure pi
forte0,€).

(2) {¢+}t>0 is said to undergo a continuous phase transition at 0%, if it is
regular, 3e s.t. t — Piop(¢r) is C1 on [0,¢€), but Pe > 0 s.t. t — Pyop(dy)
extends to a real analytic function on (—e, +e).

(3) {Pt}i0 is said to exhibit a critical exponent a as t — 07 if Pyop(dy) =
+t*L(1/t) + h(t) with h(t) analytic at zero, L(x) s.v. at infinity and either
a¢g¢NoraeN and L(z) mconst.

Some people would also include in the definition of a continuous phase transition
cases when Py, () is equal to two different analytic functions on the two sides of
zero, but is differentiable at zero. We do not treat such cases here.

We focus on one-parameter families of the form ¢, := ¢ + ti. In this case t —
Piop(¢+t1) is convex and this imposes restrictions on the sign in front of t*L(1/t),
see below. The dynamical systems we study are assumed to have countable Markov
partitions. This is equivalent to the study of topological Markov shifts.

Topological Markov Shifts. A topological Markov shift (Z‘Af, T) with a countable
set of states S and a transition matriz A = (t;;)sxs is the set X} = {(zo,21,...) €
SNUAOY Vi, 440, = 1} together with the map (Tz); = @41.

I fact, this interpretation seems to be implicit in many of the manipulations done in the
physical theory of critical phenomena. For example, the standard derivation of the critical expo-
nent identities is done by formal differentiation of a (postulated) asymptotic expansion of the free
energy (see e.g. [BDFN] §1.5.1). However, if @ > 0, f(t) ~ t*L(1/t) and f'(t) ~ at®*~1L(1/t),
then L(1/t) must be slowly varying, because of Karamata’s Theorem (appendix A).
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A word (wy,...,w,) € S™ is called admissible if t,,,, ., = 1 for all i. A topo-
logical Markov shift is called topologically mizing if for every a,b € S there are
admissible words beginning with ¢ and ending at b of length n for all large n.

A topological Markov shift is endowed with a metric d(x,y) := 2~ @ir{ker#yx},
The resulting topology is generated by the basis of cylinders

[ag, -\ an—1] ::{er;{:xizai, 0<i<n-—1}.

A function ¢ : ¥ — R is called Hélder continuous if |¢(z) — ¢(y)| < Ad(z,y)"
for some constants A, x > 0. This condition is too strong for us, because it implies
boundedness. The following notions do not:

(1) ¢ is locally Holder continuousif |¢p(z)—¢(y)| < Ad(z,y)"™ whenever zg = yo;
(2) ¢ is weakly Hélder continuous if |¢(x) — ¢(y)| < Ad(z,y)" whenever zy =
Yo, T1 = Y15
(3) ¢ has summable variationsif ) -, varp$ < oo where vary¢ := sup{|¢p(z)—
o) yi=x (i=0,....k—1)}.
Local Hélder continuity is stronger than weak Holder continuity, and weak Holder
continuity is stronger than summable variations.

We need the Variational Principle for countable Markov shifts [S1]: Suppose
T : X — X is a topologically mixing topological Markov shift, ¢ : X — R has
summable variations, and sup ¢ < oo; Then for any state a,

n—1
o1
Piop(¢) = lim —~log > expy_¢(T"x).
Trr=x k=0
Tro=a
The limit on the right hand side is called the Gurevich pressure of ¢ in honor of B.
Gurevich who proved the variational principle in the case ¢ = 0 [Gu].2

Program. In the case |S| < oo, Ruelle [Ru] has established the following relation
between the analytic properties of ¢ — Piop(¢ + t3) and the statistical properties
of the equilibrium measure at ¢t = 0:

Theorem 1 (Ruelle). Suppose (S1,T) is topologically mizing. If |S| < oo and
¢, : E;{ — R are Hélder continuous, then t — Py,,(¢ + t1) is real-analytic, and
admits the expansion Pyop(¢+1t)) = P,g(,][,(gi))—|—c¢,t—|—%012111524_0(152)7 where ¢y, = E,,, [1]
and ﬁ (ZZ;& poTk— ncw> % N(0,07) w.rt. pg.
Ruelle has also proved exponential decay of correlations in this case [Ru]. Thus
there can be no phase transitions for short-range interactions when |S| < co.

Phase transitions are possible for short-range interactions when |S| = oco. In-
deed, it is well-known that long-range interactions on one-dimensional lattice-gas
models may admit phase transitions, and there are cases when such models can be
recast as short-range interactions on infinite state shifts. See appendix B and [FF],
[Hol,[Lo],[PS],[Wal], [Wa2], [S2],[S7],[MU2],[Y].

Motivated by the physical analogy described above, we seek a generalization of
theorem 1 which relates singular behavior for Pop (¢ + t1) (‘critical exponents’) to

2The variational principle is stated under a stronger condition on ¢ in [S1], but is true with

practically the same proof under the assumptions stated above.

3Here and throughout, E denotes expectation, N(0,0?) is the Gaussian distribution, and dist,

means convergence in distribution, see [F], [GK].
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non-Gaussian distributional limit theorems for EZ;& 1poT* and to sub-exponential
rates of mixing (‘abnormal fluctuations’ and ‘infinite correlation length’).

Such a relation is mentioned in the physics literature, see [BDFN] for a renor-
malization group approach and Hilfer [Hi] for a probabilistic point of view very
similar to the one we adopt below. Rigorous results are more difficult to find. See
section V.8 in [El] for a discussion of the Ising model.*

2. STATEMENT OF RESULTS

Assumptions. Let G, (0 < a < 2) be the probability distribution with Laplace
transform [; e*¢dGo(§) = exp[sgn(a — 1)s*] when o # 1 and [, €¢dGq (&) = e*
when o = 1. Such distributions exist: When « # 1, G, is the standard spectrally
negative stable distribution of index «, and when a@ = 1 G, is the degenerate
distribution concentrated at {—1} (see [Z] for details).

Let (E;{, T) be a topologically mixing topological Markov shift with a countable
set of states S and a transition matrix A = (¢;;)sxg. Our results are simplest to
state when A satisfies the Big Images and Preimages property:

3b1,...,by :Va € S, Fi,j s.t. tbiatabj =1. (BIP)

This condition appears naturally in the theory of countable Markov shifts, as a
necessary and sufficient for the existence of Gibbs measures in the sense of Bowen
[S3], [MU1]. (Equilibrium measures may exist in the absence of (BIP), see [S4].)

We can remove the BIP property, at the cost of additional assumptions on ¢
and . Define for a state a € S the function r,(x) := min{k : z = a}, with the
convention min @ = co. Let py be the equilibrium measure of ¢ (when it exists).
We shall impose the following assumption on ¢:

There exists a € S such that E,, [r,] < oc. (®)

We call a set £ C E;{ bounded, if E C {x : xo € So} for some finite set Sy C S. We
shall consider functions ¢ for which

¢ € L' (pg), and ¢ < E,, [¢] outside a bounded set. ()

Critical exponents and abnormal fluctuations. Throughout this section let
(35, T) be a topologically mixing topological Markov shift, and suppose {¢-+t1}:>0
is a regular family, where ¢,v are two locally Holder continuous functions s.t.
sup ¢ < 00, Piop(¢) < 0o and sup ¢ < oo.

Theorem 2. Assume (®) and (V). The following are equivalent for 1 < a < 2:
(1) Critical Exponent: P,,,(¢ + t¢)) = Pi,p(¢) + ct + t*L(1/t) with L(x)
slowly varying at infinity.
n—1 .
(2) Non-Gaussian Fluctuations: 35— (Y ¢ oT* —cn) sl Gy wert, s
" k=0 n—00
where ¢ = E,, [¢], B, = n=f(n) and {(n) is slowly varying at infinity.

The following theorems treat the case a =1, 2.

4The case of discontinuous (‘first-order’) phase transitions is more amenable to rigorous treat-
ment. A discontinuous phase transition is characterized by the lack of differentiability of the
free energy. The theory of large deviations can be used to interpret such a singularity as lack of
exponential convergence in distribution of an associated macroscopic quantity to a unique ther-
modynamic value, see Ellis [El].
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Theorem 3. Assume (®) and (P).

(1) Taylor Expansion: Py, (¢+t1)) = Pyop(p)+ct+ %2t2+0(t2) with o # 0 iff
n—1 .
c=E,,[Y] and % 3 (0T —c) st N(0,0?). In this case ¢ € L*(pg).
k}ZO n—oo
(2) Critical Expansion: Py, (¢+t1)) = Pop(¢)+ct+5t2L(1/t) with L(z) s.v.

n—1 .
at infinity, L(x) # const iff g— (> voT*—cn) st N(0,1), c=E,,[¢],
n k=0 n—oo
NG

and By, is r.v. of index & s.t. %~ — 0. In this case L(z) — oo.

Theorem 4.

(1) Taylor Expansion: Assume (¥). Then Piop(¢+ 1) = Piop(d) + ct + o(t)
n—1
withc =E,,[¢], and L 3 poTH —— E,,, [] py—a.s. and in distribution.
E—0 n—oo

(2) Critical Expansion: Assume (BIP). Then Piop(¢+1t1h) = Prop(¢) +ct +
tL(1/t) with |L(z)| s.v. at infinity and L(z) /> const. iff ¥ & L' (ug) and

B, r.w. of index 1 s.t. g~ — 0 and Bi 22;31/) o Tk st Gi. In this

case L(r) —— —o0.
r—00

To understand the previous results, it is useful to think of ¢, := Zz;é oTF as
of a ‘macroscopic’ quantity with average (at equilibrium) nlE,, [¢]. In the absence
of a phase transition, one expects the fluctuations of 1, about its average to be
of order y/n. The previous results say that in the presence of a continuous phase
transition with critical exponent a@ < 2, the fluctuations are of order B, with
B, > /n (compare with [Hi]).

Remark: Theorems 2, 3, 4 remain true if the pair of conditions (®) and () is
replaced by (BIP). Under this new set of assumptions:

(1) Theorem 2 is also valid for 0 < o < 1, except that in this case E,, [1)] = —oo,
the slow variation of L(x) should be replaced by the slow variation of — L(z),
and c¢ can be set to zero (because ct = o(t*L(1/t)), ecn = o(By));

(2) Case (1) of theorem 3 holds iff ¥» € L?*(ue) and 9 is not a measurable
coboundary [AD], [Gou2], and case (2) of theorem 3 holds iff 1 & L?(ug)
(see theorem 5 below);

(3) Case (1) of theorem 4 holds iff ¢ € L' ().

When do different systems exhibit the same asymptotic expansion? In
order to answer this question, one needs to clarify what properties of ¢ and p4 are
captured by a and L(z). The following is motivated by [AD], [GK].

Theorem 5. Let (EX,T) be a topologically mizing topological Markov shift with
the BIP property, and suppose ¢, are locally Hélder continuous s.t. sup ¢ < oo,
Piop(@) < 00, supy) < 0o and s.t. ¢ has an equilibrium measure. The following are
equivalent for L(x) s.t. |L(x)| is s.v. at infinity and 0 < a < 2:
(1) Critical Exponent: Pi,p(¢ + t90) = Piop(¢) + ct +t*L(1/t)[1 + o(1)] as
t — 0+;
(2) Domain of Attraction: One of the following holds as x — oo

(a) 0<a<2,a#l and pugltp < —x] ~ —Nﬁ;ja)L(x);
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(b) a =1 and either 1 € L*, and then L(x) = E., Y] —c+o(l), ory & Lt
and then L(x) ~E, [¢ V (=2)];
(¢) a =2 and either 1) € L%, and then L(z) = 3%+ 0(1) for some o € R;
or & L?, and then L(z) ~ 1E,, [¥*1]y<a]-
f(@)

Here f(z) ~ g(x) means oo —— landaVb:= max{a,b}.

Remark 1: The implication (2) = (1) follows from theorem 2 and the work of
Aaronson & Denker [AD] who showed that (2) implies a distributional limit theo-
rem. We give an alternative proof below.

Remark 2: Theorem 5 enables one to construct an abundance of v’s for which
{¢ + ty}1>0 has a critical exponent. These ©’s are of course unbounded. Indeed,
by [S3], in the BIP case Piop(¢+1t1)) is real-analytic whenever Py, (¢+t1)) < oo for
all ¢ in some two-sided neighbourhood of zero (e.g. bounded ’s). For shifts without
the BIP property, critical exponents are possible for ¢ bounded (see below).

Remark 3: The following generalization of theorem 5 to general shifts is a direct
consequence of the discussion at the beginning of section 4 and theorem 8 there. Let
(ng T') be a topologically mixing topological Markov shift, and suppose {¢+t1}i>0
is a regular family, where ¢, are two locally Holder continuous functions s.t.
Piop(¢) < 00, sup ¢ < o0, and sup ¢ < oo. We assume (¥) (but do not assume (P)
or (BIP)). Let A be the bounded set mentioned in (¥), and define

r—1

i=14- 21/) oT*, where r(x) :=inf{n >1:T"z € A}.

k=0
Then Piop(¢p + t¢)) = Piop(¢) + ct + t*L(1/t)[1 + o(1)] for 1 < o < 2 with L s.v
at infinity iff 1 satisfies the domain of attraction condition of theorem 5 w.r.t. the
normalized restriction of s to A. The random variables ¢ can be thought of as
sums over ‘weakly correlated blocks’, see [Hi], [FF] and appendix B.

This explains why in the non-BIP case even bounded i’s may satisfy non-
Gaussian limit laws: @ may have a heavy tail, even if ¢ does not, because r may
have a heavy tail (of course (®) must fail in this case).

Returning to the case treated in theorem 5, we note that the domain of attrac-
tion condition is phrased in terms of ¥ alone, and is not an asymptotic property

n—1

of Y 10Tk as n — oco. Of course the thermodynamic limit is still present in the
k=0

form of the equilibrium measure ji4. But in the BIP case the equilibrium measure

satisfies certain a priori uniform bounds which allow one to deduce the following
thermodynamic-limit—free necessary condition for the existence of a critical expo-
nent. Choose some z, € ¥} s.t. z, starts at a (a € S).

Corollary 1. Under the assumptions of theorem 5, Piop(¢ + 1)) = Piop(d) + ct +
t*L(1/t) with |L(x)| s.v. at infinity and o € (0,2) \ {1} implies:

1
Z e?@a) < —|L(z)| as x — oo.
a€S:p(ze)<—x r

Here and throughout f(z) < g(x) as * — oo means: IM such that )

for all x large enough.

L
M
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Critical exponents and slow decay of correlations. The covariance of two
square integrable functions f, ¢ defined on a probability space (X, B, u) is

Covu(f,9) :=/fgdu—/fdu/gdu~

The following result says that under certain assumptions, the existence of a critical
exponent implies that the decay of correlations is sub-exponential, as expected from
the analogy described in the introduction. We need a strengthening of (¥):

Y€ L' and Je > 0 s.t. ¢ < E,,[¥] — € outside a bounded set. (2)

Theorem 6. Let (Z"A{',T) be a topologically mixing topological Markov shift, and
suppose {¢ + t}i>0 is a regular family, where ¢, 1 are locally Hélder continuous
functions s.t. sup@ < 00, Piop(¢) < 00, ||[¢]le < 00, and ¢ satisfies (). If
Piop(¢ 4+ 110) = Prop(d) + ¢t +t*L(1/t) with 1 < o < 2 and L is s.v. at 0o, then

L(n
COV%(faQOTn) = no&i /fdﬂ¢/9d,“¢ as n — o0

for all f, g locally Holder continuous with bounded support and positive expectation.

3. PROOFS FOR SHIFTS SATISFYING THE BIP PROPERTY

Standing Assumptions. In this section we give the proofs of theorems 2, 3, 4
and 5 in the case of topologically mixing countable Markov shifts with (BIP). Our
assumptions on ¢ and v are that they are locally Holder continuous, bounded from
above, and that Pop(¢) < co. We do not assume (®), (¥) or that {¢ + t¢}i>0 is
regular. We do assume that ¢ has an equilibrium measure.®

Our results remain unchanged if we add to ¢ a term of the form h —hoT + ¢
with h bounded (locally) Holder continuous and ¢ € R. It is always possible, by
means of such h and ¢, to change ¢ so that Py, (¢) =0, sup ¢ < 0, and

Z e®W) =1 for all z.

Ty=x

This is Lemma 1 in [S2] (the boundedness of h is proved for systems with the
BIP property in [S3]). Henceforth, we assume that ¢ satisfies these additional
assumptions.

Distributional Limit Theorems and Laplace Transforms. We shall study
the distributional limit behaviour of X, := B%l (ZZ;& hoTk— cn) by analyzing

the behaviour of its Laplace transform E,,, [e**"]

Proposition 1. Let X, X,, be random variables such that for some w > 0, E(e!X»),
E(e'X) are finite for all 0 <t < w. The following are equivalent:

(1) E(etXr) —— E(e!X) for all 0 < t < to and some to > 0;
dist.

(2) X, 2=, X
Proof. See e.g. Martin—-Lof [ML]. O

5In fact, this assumption can be removed as well: locally Hélder potentials with finite pressure
on shifts with (BIP) always have Gibbs measures [S3], and everything we say below holds with
1¢=Gibbs measure of ¢.
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Nagaev’s Method [N]. This is a method for analyzing the Laplace (or Fourier)
transform of the distribution of the sum of dependent identically distributed random
variables. We need it to analyze the distribution of 1, := ¥+ oT + - +poT" !
with respect to ps. The idea is to construct a family of operators R; such that

E,,[e""] = E,,,[R}1].

and use operator theory to analyze the right hand side, see Nagaev [N] and Aaron-
son & Denker [AD)].

In order to construct R;, we recall some facts on the structure of equilibrium
measures for countable Markov shifts. It was proved in [S4] and [BS] that the
equilibrium measure ;14 must be of the form hdv where h is a positive continuous
function and v is a positive measure such that Rjv = ePror (@) and Ryh = ePor(®)p,
where Ry is Ruelle’s operator:

(Rof)(z) = Y e*Wf(y).

Ty=z

It is also known that h is, up to a constant, the unique positive continuous function
such that Roh = ef*» (@)} Since by our assumptions on ¢ Piop(¢) =0 and Ryl =
> Ty—s e?®) = 1, we must have h = const., whence 4 is a constant times v. Tt
follows that Rjug = pg. In particular, E,, [RoF] = E,,[F] for every bounded
continuous function F'. Now define the operators

Rtf = RO [ew’f].

A calculation shows that RP1 = RI[e*¥»1]. Passing to expectations with respect
to g, we see that B, [e""] = B, [Rf(e™)] = E,, [R'1] as required.

Next we seek a Banach space £ such that R; : £ — £ has good spectral prop-
erties. Such a space was found by Aaronson and Denker [AD]. We review their
construction.

Recall the metric d(z,y) on X}, and fix some x > 0 such that ¢,¢ are both
Holder continuous with exponent x with respect to d. Define £ to be the space of
functions f : ZZ{ — R such that

11z = [l + Df < 50, where Df = sup{W x4y, 70— 0}

This is a Banach space with respect to || - || 2.

Proposition 2 (Aaronson & Denker). Suppose EZ{ has the BIP property, and let
¢, be two locally Hélder continuous functions such that sup¢ < Pp(¢p) = 0,
Rol =1, supy < 0o, and ¢ has an equilibrium measure puy. Then:

(1) Boundedness: R:(L) C L and R; : L — L are bounded linear operators
for allt > 0.

(2) Spectral Gap: Ry = P+ N where PRy = RyP, P2= P, NP= PN =0
and the spectral radius of N is less than one. P is given by Pf :=E, [f].

(3) Continuity: |R, — Rs|| = O (|t — s| + E,,, (|1 — el"=#I¥)) for 0 <t,s <1,
where || - || s the operator norm.

(4) Differentiability: if E,, [[¢|] < oo, then t — R, is continuously differen-
tiable on [0,d0) for some &g > 0. The derivative is R} : f — Ry(yf) (right
derivative is meant at 0).



CONTINUOUS PHASE TRANSITIONS FOR DYNAMICAL SYSTEMS 9

Proof. The BIP property implies that any equilibrium measure py of a locally
Hélder continuous potential ¢ has the Gibbs property: 3G = G(¢) such that

G Yuglwo, ... xn_1] < e < Guglzo, ..., 2n 1], (ze€Xf)

where ¢, ;= ¢+ ¢oT + -+ ¢oT" 1 [S3]. Thus e¢’ < Guglzol-

Fix some bounded Lipschitz function F : (—oo,supt] — R with Lipschitz con-
stant Lip(F'), and define the linear operator Ry : f +— Ro[F o1 - f]. We need
the following estimate: For some constant M independent of F', and D,[F o] :=

SHP{M ‘T # Y, T,Y € [a’]}u

IRF| < M( wo[IF1 0]+ pgla]D FOW) (2)

a€sS

To prove this, we must estimate | Rp fl|oo, D[Rr f] for f € L. Fix z,y such that
T = Yo, and let P(xo) := {a € S : taz, = 1}. Then

|Ref(z) = Refy)l < Y e?@)1— @) =2)| | F(y(ax)) f(az)| +

a€P(xo)

+ Y WP (ax)) — F((ay))||f(az)]
a€P(xo)

+ Y @ P (ay))||f (az) — flay))-
a€P(xo)

If ¢(ax) # ¢(ay) then
11— elar)—olay)]
|¢(ax) — ¢(ay)|

|

1_
< sup{li

|1 — eflan)=dlay)| < Dod(ax, ay)™ <

19| < Ded(ax,ay)”} Déd(azx, ay)™ < Kd(z,y)"

with (for example) K = D¢ - sup{‘l%ses‘ : |6] < D¢}. Re-define K if necessary
to guarantee K > 1. It is now straightforward to deduce, using the inequality
ZaGP(zo) e?(a) < @3, that

D(Rrf) < 2K | fllcllRo(|F| 0 9) e + Gl flle Y nola] Da(F 0 4)).

a€sS
It is also clear that || Rp flleo = [[Ro[F 09 - f]llo < [[Ro(|F| 0 ¥)[locll fllz. Thus

IRl < 3K|[Ro([F| 0 %) oo + G Y _ pola]Da(F o).
acs
We proceed to estimate ||Ro(|F| o )]s
Ro(|Flo)(z) < G Y pgla ln]le|O1/f+Da(|F|01/f))

a€P(xg)

G<u¢|F| I+ pslalD FO¢)>

a€S

Recalling that K > 1, we obtain (2) with M :=3KG.
Note that for every a, Do (|F| o 9) < Lip(F)D, so

IRpl < M (Ey,[|F| o ¢] + Lip(F)Di)) .

IN
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The boundedness of R; is the special case with F(£) = e'¢. The spectral gap
of Ry follows from the Ionescu-Tulcea Marinescu theorem and the mixing of p,
as in [AD]. The modulus of continuity of ¢ — R; is obtained by observing that
R; — R, = Rp with F(§) = €€ — e%¢.

Differentiability is more difficult. We begin with the continuity of t — R} (defined
in part (4)). Write (R}, — R})f = Rp,(f), where Fj,(§) = e*¢(e"¢ — 1). We fix
t > 0 and show that the norm of this operator tends to zero as h — 0, using (2):

(1) Eu,[|[Fn o 2] — 0 because FJ, o 9 P 0 pointwise and |Fj, o 9| is

uniformly bounded for |h| < 5.
(2) >, nglalDa(Fp o) P 0: By the mean value theorem

Do(Fy 0 t)) < D - sup{|Fy(2)] : = € (inf y[a], sup[a]) }.

The right hand side converges to zero as h — 0, and is uniformly bounded

(as a function of a) for all |h| < § (direct calculation). The result follows

from the bounded convergence theorem.
It follows from (2) that |Rp, || PR 0, whence the continuity of R; for ¢ > 0.
The continuity from the right at ¢ = 0 can be proved by repeating the previous
argument with ¢ = 0 and A — 07. The only difference is that now instead of the
bounded convergence theorem one has to use the dominated convergence theorem,
the integrability of |t/|, and the uniform boundedness of "%, e!¥t1) for 0 < h,t < 1.

We prove the differentiability of R;. Set Fj(§) := &h_l — & We have:

Riin — Ry
h

It is easy to check that e¥ € £ and that | fe'¥||z < || f|lclle'¥||z. Consequently

- R;) f = Ri ().

Rivp — R
H t+h t _ R,Ig

h

<lle"llcIRrll = O <Eu¢[|Fh(¢)|] + > pglalDa(F OU))) :

a€S

By the mean value theorem, the following inequality holds on [a]: D, (F} o ¢) <
Drp|eh¥tvariy) _ 1| Consequently,

Rt — Rt var
HJFT ~ R =0 (E%HFh(W” +E,, [JehvTvany) _ 1”) '
Now |F},| 0 is dominated by a constant times 1+ |¢|, and |e™(¥+va11¥) _ 1| is uni-
formly bounded for 0 < h < 1. Therefore, if ¢» € L', then Hw R — 0

To see the limit as h — 0~ (when ¢t > 0), write 7 = ¢ —|h|, 7+ |h| = t and repeat
the previous argument with 7 for ¢, using the continuity of ¢ — R} and the fact
that the big Oh in the previous equation is uniform on a neighbourhood of t. [

Spectral gaps are stable under small perturbations [Ka]. Therefore, there ex-
ists an open neighbourhood U of Ry in Hom(L, L) (the space of bounded linear
operators on £ over C) and analytic maps A : U — C, P, N : U — Hom(L, £) s.t.

R=XR)[P(R) + N(R)]
RP(R) = P(R)R = A\(R)P(R)
P(R)N(R) = N(R)P(R) =0
P(R)? = P(R), dimIm[P(R)] = 1

forall R € U,
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and such that the spectral radius of N(R) is uniformly smaller than one.

Proposition 3. Under the standing assumptions of this section, there exists eg > 0
and €(t) ——0st. for all 0 <t <eg B, [e] = [+ O(e(t))] exp[nProp (¢ + t1))]
t—0

uniformly in n, where ¥, = EZ;& o Tk,

Proof. Fix €y > 0so small that 0 <t < ¢ implies that R; € U and that the spectral
radius of NV, is less than 6 < 1. This is possible, because ¢t — R; is continuous.
For such t’s A(t) := A(R:), P: := P(R:) and N; := N(R;) make sense, and depend
continuously on ¢. In particular, E, [P;1] o Eu E,,[P1] =E,,[1] = 1. Making ¢

smaller, if necessary, we ensure that E,,, [P;1] # 0 for all 0 < ¢ < €.
Now define h; := P;1/E,,[P;1]. Recalling that Rjug = iy, we see that

/\(t)n:/)\(t)"htdugb:/R?htd,Ugb:

— / Ryle"h]dug = E,, [e™"] + / et (hy — 1) dpg.
Now | [ e (hy — 1)dpg| < E,, [e""]||hy — 1|, so
A" = [1+O(lhe = 1] £)|Ep, [e"7].
We show that ||h: — 1|z — 0. Clearly
t—0
[Pl =1+ 1 - Ey, (P1)] 2||1fle
By, (Pe1) ~ Ky, (P1)
The spectral gap of Ry implies that |P(R;) — P(Rp)|| = O(||R: — Rol|) as t — 0T,
so by the previous proposition,
I =1 = O (1t + By, (11 = e¥])) . (3)
The bounded convergence theorem now shows that ||h; — 1]| 2 ot 0. We deduce:
t—
Je(t) P 0 such that E, [e"] = [1 4+ O(e(t))]A(t)".
t—

We show that A(t) = exp[Pio p(¢ +ty)]. Consider the indicator function 1;4) of
[a] for some a € S s.t. pgla] # 0 (in fact every a € S has this property). Since

14 € £, Pyl ﬁ Plyy = E,,[1a] # 0. Thus P11, > 0 for all ¢ small enough.
Fix some z, € [a]. The commutation relations between Ry, P, and N; imply that
(Ri'1(a)(za) = AM8)" [Pl (o) +N{ L g)[(2a) = A()"[Pr1(g)(za)+0(1)] ~ A()" Pl () (wa)-

We see that for every z, € [al,

[he =12 < 1P(R:) — P(Ro)-

1 1
log A(t) = lim - log(R}1(4))(74) = lim —log Z e“b"(y”w"(y)l[a] (y) =

n—oo N,
T”y Ta
= fim L1 (2)Ft¥n(2)q
nin;on Ongz []( )

where the last transition is because the local Holder continuity of ¢ and v allows us
to change each y € T7"(x,)N[a] into z(y) = (Yo, -, Yn—1;Y0s - - - s Yn—1; - - -) without
affecting the limit. By the variational principle of [S1], log A(t) = Piop(¢p+typ). O
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Now that we have related E[e/¥"] to Piop (¢ + 1)) we can proceed as in the case
of i.i.d’s (see e.g. [F]). It is convenient to start with theorem 4, part 1.

Proof of Theorem 4 part 1 for shifts satisfying (BIP). We continue to as-

sume w.l.o.g. that ¢ < Piop(¢) =0, >y, e®?W) =1 and Rjuy = jus. Subtracting

a suitable constant from v if necessary, we also assume w.l.o.g. that sup¥ < 0.
Recall the notation Ry, A(t), hy from the proof of proposition 3. We have:

AMt)—1= /Rthtdu¢ —1= /Ro(e“/’ht)du¢ - /htdu¢ =

_ / (" — Dhedpg = By, [ — 1] + By, [ — 1)(he — 1)].

Now |E,, [(e" —1)(h¢ — 1)]] < [Epi, [ —1]] - |he — 1]|oe = 0(E ., [e" —1]), because
e’ — 1 doesn’t change sign and because ||h; — 1||oo < ||ht — 1]|z — 0 (see the proof
of proposition 3). We conclude that A(t) — 1 = [1+ o(1)]E,,, [e® — 1].

We have seen in the proof of proposition 3 that A(t) = exp Piop(¢p + t3). Since
Piop(¢ +tp) =0(1) ast — 0T,

Pop(p+ty) =1+ 0(1)](6Pﬁ0p(¢+w) — 1) =[1+40(1)]E,, [e" —1], ast — 0T. (4)

It follows that Piop (¢ +t1p) = ct+o(t) iff By, [e" —1] = [ct+o(t)][L+o(1)], as t —
0", which (upon division by ¢ and some rearrangements) is equivalent to

e —1
t—0+ By (Tw) - C

lim
It is not difficult to see, using ¢» < 0, that the limit is equal to E,[¢)]. We conclude
that Piop(¢ + 1)) = ct +o(t) iff € L' and ¢ = E,,, [¢].
In this case % ZZ;& YpoTF ——E, W] pg—almost surely and in distribution,

because of the ergodicity of py [BS] and the Birkhoff ergodic theorem. This proves
the ‘Taylor expansion’ case of theorem 4 (in the extended form described by the
remark after theorem 4).

Proof of Theorem 2 for shifts satisfying (BIP). We keep the standing as-
sumptions of this section. Assume first that Pop(¢+t1) = ct+t*L(1/t) with |L(z)]
slowly varying at infinity and 0 < a < 2, @ # 1 (we are also considering 0 < o < 1
because of the remark after theorem 4). Since for every continuous function f and
constant C, Piop(f + C) = Piop(f) + C, we can normalize ¢ to make ¢ = 0. The
asymptotic relation becomes Pyop (¢ + t¢) = t*L(1/t).

"\L(fn)\

Construct B,, — oo such that o ——— 1. Here is how to do this: The

n n—oo
function f(z) := x/|L(z)| is regularly varying at infinity with index a > 0, and
therefore admits a regularly varying asymptotic inverse g(z) (see appendix A). By
definition, (f o g)(x) ~ (go f)(z) ~ x as x — o0, so B, := g(n) is as required (it
tends to infinity, because it is regularly varying with index 1/a > 0).
Assume for the moment that the sign of L(x) converges to sgn(a—1) as z — oc.
Proposition 3 and the expansion of Piop(¢ + t0) imply that

E,.,[e"F5] = [1 4+ O(c(4))] explnPop(¢ + 7=¢)] =
— [1 —I—O( ( t tanL(Bn) L(By,/t)

€ B_n))] exp[ Be  L(Bn) ] exp[sgn(a - 1)ta]'

n—oo
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The last expression is the Laplace transform of G, and so, by proposition 1 (whose

dist.

conditions hold because supy < o0), BLQ/Jn ——— (4. Finally we observe that
n n—

when « > 1, theorem 4 part 1 applies, and gives E,,[¢] = c.

We now explain why sgn[L(z)] —= sgn(a—1). Recalling the definition of the
topological pressure, we observe that ¢(t) := t*L(1/t) = Piop(¢ + t3p) is convex
on [0,00). If & > 1, then (0) = 0 and ¢’ (0) = 0 (the right-derivative at zero).
Convexity forces ¢ to be non-negative, whence L(z) > 0 for all > 0. Since L(x)
is eventually non-zero (its absolute value is assumed to be slowly varying), it is
eventually positive. If on the other hand 0 < a < 1, then for any ¢

Ptop((b + t(lﬂ - CO)) = Ptop(¢ + t'@[]) — cot =
— LA/ — oL/t L/0] = L[ + (1))

If ¢y > sup, then Piop(¢p + t(¢) — cp)) < Piop(¢) = 0. This forces L(1/t) to be
eventually negative. This completes the proof of (1) = (2).

We prove the other direction. Assume Bi(wn —cn) (dist. G, for B, regularly
n n— o0

varying with index 1/« and ¢ € R. Again, we can subtract a constant from % to
make ¢ = 0. Our objective is then to show that Pyop(¢) = t*L(1/t) with |L(z)]
slowly varying.

Proposition 1 says that E,, [et%] — exp[sgn(a — 1)t*]. Combining this with
Proposition 3 gives, since B,, — o0,

77,11—>Ir;o nPiop (¢ + BLHQ/’) = sgn(a — 1)t (5)

on some one—sided right neighbourhood of 0. Applying the sufficient condition for
regular variation of appendix A with f(z) := |Piop(¢ + 29|, a, = n and b, = By,
we conclude that Piop(¢ + tip) = tPL(1/t), with |L(z)| slowly varying at infinity
and some p > 0. By (5), p = a. O

Proof of Theorem 4 part 2 for shifts satisfying (BIP). We keep the standing
assumptions of this section. Suppose Piop(¢+t¢) = ct+tL(1/t) with |L(z)| slowly
varying at infinity and L(z) /4 const.

Changing ¢ by a constant, we arrange for supv < 0. Equation (4) holds, and

leads to ¢+ L(1/t) = [1 + o(1)]E,,, (8“:—1;11#) o E,,[¥]. Since L(x) # const.,

we must have E,,, [1)] = —oo, whence L(z) — —oo0.
As in the proof of theorem 2, we construct B,, regularly varying of index 1 such

that % — 1, and observe using proposition 3 that E,, [e B ¥n] —— et
n n—oo

The limit is the Laplace transform of G;. It follows that Biwn _dist. | G1. Note

" n—00

that n/B,, — 0, because |L(z)| — oco. This proves (=).

To see (<) assume that ﬁ—" =t @y with B, r.v. of index one such that
n. n—oo

n/B, — 0. Arguing as in the proof of theorem 2, we deduce that Py, (¢ + t9)) =
tL(1/t) with |L(x)| slowly varying at infinity such that %ﬁw —— 1. Since

n—oo

n/B, — 0, L(z) + const. O
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Proof of Theorem 3 for shifts satisfying (BIP). We keep the standing as-
dist.

sumptions of this section. Assume first that B%Wn —cn) — N(0,1) for some

B,, regularly varying of index % (this includes the case B,, = o04/n). Subtracting a
suitable constant from i we may assume w.l.o.g that ¢ = 0 (of course we can no
longer assume that sup ¢ < 0).

The Laplace transform of N(0,1) is est’ Arguing as in the proof of theorem 2,
we obtain (since Piop(¢) = 0)

1
Puopl6 -+ 1) = L2L(1/1) ©
with L(z) s.v. at infinity such that % — 1L
If B, ~ oy/n, then L(B,) —— o2, and if \/n/B,, — 0, then L(B,,) —— oo.

The same limits must hold for L(z) as £ — oo, because of the regular variation of
By, and L(x) (use the uniform convergence theorem for slow variation in appendix
A). This proves (<) in parts (1) and (2).

We prove (=). It is enough to treat the case

Piop(¢ + 1) = %t2L(1/t)

with L(z) = 02 + o(1) or with L(x) /4 const., L slowly varying (we can always
reduce to this case by subtracting ¢ from ). Note that Pi,(¢ + 1) = o(t),
whence by theorem 4 for systems with BIP, ¢ € L' and E,,[¢] = 0.
As before, the asymptotic expansion above implies the existence of B,, regularly
varying of order % such that E%‘/’n it N(0,1), and B,, is determined up to
n n—
asymptotic equivalence by the condition % —— 1. In the Taylor expansion

case L(z) = 0? +0(1), so B,, ~ oy/n. In the critical expansion case, L(z) # const.
We shall see in the next section that this happens iff ¢» ¢ L? and L(z) — oo. In

particular g—f — 0, and L(z) — const. can only happen if ¢ € L?. O

Proof of Theorem 5. We keep the standing assumptions of this section, and
begin with the direction (1) = (2).

Case 1. 0 < o < 1.

In this case (1) can be rewritten as Pyop(¢p + 1) = t*L(1/t)[1 + o(1)], because
Piop(¢) = 0 (standing assumptions) and ct = o(t*L(1/t)). We assume without loss
of generality that supy < 0 (otherwise subtract a suitable constant ¢y from ¢ and
pass from L(x) to L(z) — cot'™* ~ L(x)). We saw in the proof of theorem 2 that
L(z) is eventually negative.

Since supy < 0, (4) holds, and so

1—E,,[e"] ~t*|L(1/t)| as t — OT. (7)
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Write 1 —E,,, [e®] = E,, [l —e ] = fooo(l — e '")dF (x), where F(z) := pg||1)] <
x| is the distribution function of [¢|. Now®

/Ooo(l —e "YdF(z) = t/oo /x e~ WdydF (x)
= o[ [ ey arwa = / (1~ F(y))dy.

Consequently, [~ e~dU(y) ~ t*~!|L(1/t)| where U(y) := [;[1 —

By Karamata’s Tauberian theorem this is equlvalent to U(x) ~ F(27o¢) |L( )| as
x — 00. The monotone density theorem of appendix A applies; Differentiating, we
obtain 1 — F(x) ~ F(””l;_aa)w(xﬂ as  — 00, which is case (2) (a) in theorem 5.

Case 2. a =1

According to Theorem 4 and the remark immediately following it, either ¢ € L*
and then L(z) = E,,[¢] — ¢+ o(1), or ¢ ¢ L' and then L(z) —— —oo. In the

first case there is nothing further to prove, so we focus on the second.

In this case the asymptotic expansion of the pressure becomes Piop(¢ + t9)) ~
tL(1/t), because Piop(¢p) = 0 and ct = o(tL(1/t)). As before, we may assume
w.l.o.g. that supt < 0, and this gives us (4) with o = 1

Again, Karamata’s Tauberian Theorem leads to U(z) = [;'[1— F(y)]dy ~ |L(z)|
with F'(+) the distribution function of |¢)|. We now observe that

/01[1 — F(t)]dt = /O (/too dF(y)) dt =

— [ [ lstiendtdbo) = [ @npiF) =B, (vl 71,
0 0 0

where a Ab := min{a, b}. We obtain E,,, [|1)| Az] ~ |L(z)|. Since L(z) is eventually
negative and sup ¢ < 0, case (2)(b) follows.

Case 8. 1 < a <2.

By theorem 4, in this case ¢ € L* and ¢ = E,, [¢]. Assume w.l.o.g. that E,, [¢)] = 0.
We are left with the expansion Piop(¢ + t¢) = t*L(1/t)[1 4+ o(1)]. As in the proof
of theorem 2, L(x) must be eventually positive.

Proposition 2 says that ¢ — R; is differentiable on [0, dp) for some Jy > 0, that
its derivative there is R} : f +— R(f), and that this derivative converges to R{, as
t — 0%. Make &y smaller, if necessary, to ensure that P;1 > 0 for 0 < ¢t < §g. This
is possible, because P;1 — P31 = 1 uniformly.

Since P, = P(R:) and P(-) is analytic close to Ry, t — P;1 is differentiable
on [0,dp) and its derivative is continuous from the right at zero. It follows that
t — hy = P1/E,,[P1] is differentiable on [0,do) and that its derivative, which we
denote by hj}, satisfies hj} o £0+ hy.

Differentiation of Rih; = A(t)h; gives: Ro[e®¥hy]+ Ro[e®Vh}] = N (t)he + A(t)R,.
Taking expectations on both sides, we obtain after some re-organization:

et?

By 6] = N(0) + (N0 — B, 1)+ 68, [

6Here and throughout Lebesgue-Stieltjes integrals are used with the convention f: = f(a b
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Add E,, [e"4(1 — hy)] to both sides to get:

_ oty
mwﬂw—Xm+@m—nmwm+ﬂwﬁsz%+ww

Since sup ¢ < oo, | 1;5w Yh} + etwwl%ﬂ is dominated by some constant times |1

Since ¢ € L', E,,, %whg + ewwl—tht] —— —2E,,, [Whg). Tt follows that

t—0t

1—hy
n .

By, €] = N (t) + (A(t) — 1) (Ep, [h0] 4 0(1)) — 2tE,,, [¥hg] +o(t).  (8)
Recalling that A(t) = exp Piop(¢ + 1) = exp([1 + o(1)][t*L(1/t)), we see that
At) — 1 ~t*L(1/t).

Now A(t) — 1 is convex, because Piop(¢ + t1)) is convex. Therefore, its derivative is
monotonic, and the Monotone Density Theorem (appendix A) applies; Differenti-
ating, we get X (t) ~ at®"1L(1/t). Plugging these relations into (8) gives

E,, "] = at® T L(1/t)(1+ o(1)) l<a<?2
P T 2t (L(1/1) — By [0hh]) + ot) + o(tL(1/t) =2,

When «a = 2, this relation implies (since E,,, [¢] = 0)

9)

(1 4+ o)L/ ~ By 0] = By, [e4] +0(1)
— lE [etw;l .¢2] +o0(1) —— EE [¥?]
2 el to+ 2 TV

eti}wfl is positive and uniformly bounded on [¢) # 0] when 0 < ¢ < 1. We

see that L(z) — const. or L(z) — oo according to whether ¢ € L? or not.

Consider first the case @ = 2 and ¢ € L2 In this case L(z) — const. This
constant is non-negative, otherwise Piop(¢ + t0) = t2L(1/t)[1 + o(1)] is not convex
(see the proof of Theorem 2). We denote it by 102, and recognize the the first half
of (2)(c) in Theorem 5.

Next assume that o = 2 and ¢ ¢ L2, or that 1 < a < 2. In these cases, (9)
becomes E,,, [e"1)] ~ at®"1L(1/t) (when a = 2 this is because L(z) — 00).

We wish to differentiate this asymptotic relation. In order to do this we first
need to check that E,,[e'¥1)] has a monotonic derivative on some interval (0, ).
To see this, we use the dominated convergence theorem to see that for every ¢t > 0

because

e —1
- =E,,[e"?].

EEW [e"y] = L }113}) ey
This function is convex. Therefore, it is monotonic on (0,d) for some § > 0, and
the monotone density theorem is applicable. Differentiating, we have

Eu,[e"9?] ~ a(a — 1)t 2L(1/t), as t — 0.

The right-hand-side diverges at zero; It follows that E,,[¢?] = oo for a € (1,2).
Since sup ¥ < oo, E,,, [e!¥?] ~ E,,, [e"1¥19?] as t — 0T, and we obtain:

E,, le "Ny ~ ala — 1)t 2L(1/t), as t — 0.
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Setting F'(z) := pe[|¥| < x], we rewrite this in the form

ala — Dt 2L(1/t) ~ /OOO e " ?dF(z) = /OOO e 'd (/Om y2dF(y)) :

By Karamata’s Tauberian Theorem:

¢ a(a — 1) —a
/0 y2dF(y) ~ m$2 L(z), as x — oo.

When o = 2 (and ¢ & L?), we obtain

1 [ 1
L@ ~ 5 [ 4P = R i)

and we recognize case (2)(c) of theorem 5. When 1 < a < 2, Feller’s theorem
(appendix A) gives 1 — F(x) ~ —ﬁx’o‘L(x) as * — oo. Observing that
1 — F(z) = pe[tp < —z] for all x > sup 1), we recognize case (2)(a) in theorem 5.

We now assume part (2) in theorem 5, and prove part (1). As explained before,
this follows from Aaronson & Denker in [AD] and theorems 2, 3, and 4, but we
include the proof anyway, because it is much simpler than in the more general case
they treated (more on this below).

Suppose first that 0 < o < 1, and assume w.l.o.g that supy < 0. Reversing the
steps of the proof of case 1 above, we see that pe[t) < —x] ~ WL)HL(J@M implies
that E,,[e" — 1] ~ t*|L(1/t)] as t — 0F. This implies the desired expansion of
Piop (¢ + t1h) because of (4).

Now assume that a = 1. If ¢ € L' and L(z) = E, [¢] — ¢ + o(1), then the
expansion of Py, (¢ +ty) follows from the version of theorem 4 for shifts satisfying
(BIP). If ¢ ¢ L* and L(z) ~ E,,, [¢V(—x)] as © — oo, then necessarily |L(z)| — oc.
This allows us to assume w.l.o.g. that supy < 0, because a subtraction of a
constant from ¢ does not affect the statements Piop (¢ + ti) = tL(1/t)[1 4 o(1)] or
L(z) ~ E,, [¢ V (—z)]. We can now reverse the steps of the proofs of case 2, and
then of case 1, to obtain fooo(l — e ")dF(x) ~ t|L(1/t)|. This, by (4), implies the
desired expansion of Pop (¢ + t1)).

Now suppose that 1 < o < 2 and pgltp < —zx] ~ —F”fa )L(x). Since sup ¥ < oo,

(1—«
this implies that ¢ € L', ¢ ¢ L? and that ue[l¢)| > 2] ~ —F(ml;_(;)L(:v). We
subtract a constant from v to ensure that E, [¢)] = 0 (this does not affect the
previous assertions). Reversing the asymptotic analysis in case 3, we see that
E,.,[e71YI)[?] ~ a(a— 1)t 2L(z), whence E,,, [e®¥1)?] ~ a(a — 1)t*"2L(z) (these
quantities diverge because ¢ ¢ L?, and differ by O(1) because supy < oc). In-
tegrating this relation (using E,,, [¢/] = 0) we deduce E,,, [e"¢)] ~ at*"*L(1/t) as
t — 0. By (8)
N(t) ~ at* 1 L(1/t)

(all terms on the right hand side of (8) are O(t) except A’(¢).) Integrating once more
gives by Karamata’s theorem A(t) — 1 ~ ¢t*L(1/t). Since A(t) = exp Piop(¢ + t1))
and Pop(¢) = 0, this implies Piop(¢ + t9) = t*L(1/t)[1 4+ o(1)].

Suppose v = 2, ¢ & L?, and L(z) ~ 1E,,, [¢*1}j4<,]. By Karamata’s Tauberian
theorem, [~ e *"2?dF(z) = 2[14+0(1)]L(1/t) as t — 0T, where F(z) = pg[|t)| < x].
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Integrating both sides w.r.t. ¢ over (tg, 00) gives

P et g p ) =9 [ o _y [V oL
/O e~ 107 2 d )_2/ [+ (1)]L(1/t)dt_2/ ds.

2
to 0 S

It follows that

Ep, [|0l] = tolgré+ ; e T rdF(z) = 2/0 Wi%ds < 00,
where the last integral converges at infinity because of the slow variation of L. Now
that we know that ¢ € L' we can assume w.l.o.g that E,,, [¢] = 0 (the reader can
check that E,,, [(¢ — ¢)*1jy<at] is still asymptotic to L(z)).

The reader may verify that E,, [eV¢? ~ E,, [e!¥I4)?] as t — 0F, using
the assumptions supy < oo and E,, [?] = oo. We have already seen that
E., [e"t¥19?] = 2[1 + o(1)]L(1/t) as t — 0T, because of Karamata’s Tauberian
theorem, and so E,, [e"9?] ~ 2L(1/t) ast — 0. Integrating this gives (since
B[] =0), Ey,[e™ 9] ~ 2tL(1/t) as t — 0F. We can now deduce the asymptotic
expansion of Pyop(¢ + t1) from (8) as before.

It remains to treat the case a = 2 and 1 € L2 Without loss of generality,

E,,[¥] = 0. We must prove that Pip(¢ + ty) = ‘772t2 + o(t?) for some o € R.
Define L(z) by the relation

E,.,[e"9] = 2t (L(1/t) — E,, [bhy)) -

By (8), N (t) = 2t (L(l /) + 220 (B, 1] + o(1)) + 0(1)). Recalling that A(f) =
exp Piop(¢ + t1) and that Piop(¢ + t¢)) = o(t) by theorem 4 and the assumption

E,,[¥] =0, we deduce that

N (t) = 2tL(1/t) + o(t).
Next, observe that L(z) — 1E,, [0 +E,, [Yhg] =: 100, because 1E,,, [e™1)] =

E., [e“qu -?] = E,, [¢*] by the dominated convergence theorem. Consequently,

N (t) = oot + o(t).

Integrating over (0,t] gives A(t) — 1 = 212 +0(t?). Now A(t)—1 = efror(@Ht¥) _7 ~
Piop(¢+ 1)), 50 also Piop(¢p+t)) = So0t? +o(t?). The convexity of the topological
pressure forces oo to be non-negative. We may therefore write g = o2 for some
o € R, and (1) is proved. O

Final Remarks. Our analysis is simplified by the assumption that supy < oco.
This assumption allows us to use Laplace transforms rather than Fourier transforms
as in [AD], and this enables us to use the full force of the theory of regular variation.
It is likely that supt < oo can be relaxed to the (more cumbersome) assumption
that 3¢ > 0 for which E,,[e'¥] < oo (I did not check). It makes no sense to go
further and consider ¢ without exponential moments, because for such ’s the
BIP property implies Piop(¢ + t30) = oo for all ¢ > 0, and critical exponents are
meaningless.
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4. INDUCING

Every countable Markov shift induces a topological Markov shift with the BIP
property, in a sense that is explained below. The proof of theorems 2, 3, and 4 for
systems without the BIP property uses this technique to reduce the general case to
the BIP case. In this section we explain how to relate information on distributional
convergence and asymptotic expansions for the pressure for the original system to
that for the induced system.

Inducing. Let (X,B,m) be a probability space, and T : X — X a measurable
map. Assume that T is probability preserving and ergodic. Fix some A € B with
positive measure. By Poincaré’s Recurrence Theorem, the following functions are
finite almost everywhere:

r(x) :=min{n > 1:T"(z) € A};
o(z) :=1g(x)min{n >1:T"(z) € A}.

The induced map on A is Ta(x) := T¥®)(z), defined on the measure space (A, B4, m4)
where B4y :={E € B:E C A} and

m(ENA)
m(A)

The following facts are classical (we are assuming that m is ergodic and invariant):

ma(E):=m(E|A) =

(1) my is ergodic and invariant w.r.t. Ty;

(2) Kac’ Formula: [y fdm = [, (Z}j;ol o Tk> dm. In particular, E,, , [¢] =
1/m(A);

(3) Abramov’s Formula: hy,,(T) = m(A)hm , (Ta).

Inducing Distributional Limit Theorems. Let T" be an ergodic probability
preserving transformation on a standard probability space (X, B, m), fix a set of
positive measure A € B, and define r(z), p(z), (4,84, ma,T4) as above. Set:

n—1
Pn = la(@)) woT}
k=0

Tn = r+p@,_;0T1".

Melbourne & Torok [MT] related the Central Limit Theorem for Birkhoff sums
of T4 to that for Birkhoff sums of T' (see also Gouézel [Gou2]). The following
theorem generalizes their result to other distributional limit theorems:

Theorem 7. Suppose 3B,, s.t. Bin[an —n/m(A)] is tight on (A,Ba,ma). Set

)= Zf;ol o Tk, If B, is reqularly varying of index 0 < p # 1, and ) V 0 € L*
or Y A0 € L', then the following are equivalent:

n—1__
(1) 3= > ¥ o Tk converges in distribution on (A, Ba,ma);
n k:O

n—1
(2) 3= > ¥ oT* converges in distribution on (X,B,m).
n k:O

If 3e0 > 0 s.t. [P, — m?A)] is tight on (A,Ba, ma), then the conclusion holds
for p=1.
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Proof. We assume w.l.o.g. that T is invertible (otherwise, pass to the natural
extension of T'). Of course, if T is invertible, then T4 is invertible. Invertibility
allows us to define:

SiowoTh n>0 SElGoTE n>0
Uy =140 n=0 andan:: 0 n=>0
_"/J\n| o™ n <0 _E‘M oTy n < 0.

With these conventions, ¥y im = ¥y + ¥ 0 T™ on X, and ¢, ,,, = ¥, + ¥, o Ty
on A for all m,n € Z.

Given z € A, let n[z, N] be the unique integer such that @, yj(z) < N <
Prnfz,n]+1(2) (this makes sense almost everywhere in A). Note that %W <
N an[z,N]Jrl(w)
nlz,N| < nlx,N) '

formula E,, , [@] = 1/m(A). Tt follows that

By the ergodic theorem, % —— E,,,[?], and by Kac’

{—00

n[z, N] ~ N4 := [Nm(A)] almost everywhere, as N — oo.

Here is an outline of the proof. We start, as in [MT], from the following identity
on A:

YN By, |Un, 1 (— _ ) 1 _
= - _— _ = T‘pn[m,N](w)_
BN BN BNA + BNA 1/)n[z,N] 1Z)NA + BNT/)N ‘/’n[z,N](LE) o
(10)
We shall prove below that E;AJ’VA — m(A)? (step 1), leV (En[m N = ENA> dist
A ’ n— oo

4, 0 on (A,Ba,ma)

on (A,Ba,ma) (step 2), and ﬁz/}N,gn[I’N](z)(Tan[z,le) —
(step 3). This implies that ﬁ@N converges in distribution on (A,Ba,my) iff
ﬁz/w converges in distribution on (A4, B4, m4). Eagleson’s theorem on distribu-
tional convergence implies that ﬁ@ N converges in distribution on (A, B, m4) iff

it converges in distribution on (X, B, m) (step 4). The theorem follows.

Step 1.

Bn
By o A

Proof. Use the uniform convergence theorem for slow variation (appendix A).
dist.

Step 2. If (1) or (2) in theorem 7 hold, then Wy := ﬁ (En[m N~ EN,J —0
) :

N—o0

on (A,Ba,my4). (This is a generalization of Lemma 3.4 in [MT].)

Proof. Set mg[z, N] := n[z, N] — Na and m[z, N] := mo[T; V4, N]. By step 1, it

is enough to show that ﬁ_mo[z.N] (T ) % 0 on A. This the same as
’ —00

N—o0

1 — ist.
e N] 2 0 on A, (11)
Bn ’

because T4 is measure preserving.
Case 1. v € L".
Suppose first that [¢dm # 0. By Kac’ formula, if ¢y € L'(X), then P € LY(A)

and fX dm = m(A) fA 1dm . By the ergodic theorem, wTN, wTN converge point-

wise, whence in distribution, to their means. These means are different (otherwise

m(A) = 1 and there is nothing to prove). Therefore, if limsup g~ = 0 then (1) and
n—oo
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(2) both hold, and if lim sup 7 >0, S # O,f@ # 0, then both (1) and (2) fail.
We may therefore restrict ourselves to the case [ = f@ =0,0<p<1(fp>1
then Z- — 0).

Fix some Ny and € > 0 to be determined later.

- No

" [ﬁwm[@mbt} < ma|mle, NI < No,gy D [loTF >t +
L k=—No
mlx,N —
ma [, N] = No, | 2520 - |2k vl > 1
v
< ma| Y [¥loT* >tBy
Lk=—No

+my [m[:b,N] > No, Im%[m,ml > 5}
ma |25 > 1]

The first summand is o(1) as N — oo. The second summand can be made less than

€ by choosing Ny sufficiently large, because % p— E,..[¢] = 0 almost surely,

whence uniformly outside a set of measure e. Since m[-, N|, mg[-, N] are equal in
distribution on (A, B4, m4), this leaves us with

ma | g [Bonge ] > 1] < 0(1) € ma [ 2548 > /] as N - oo,

Since € is arbitrary, (11) reduces to the tightness of M
When p € (0,1) we argue as follows. By the deﬁmtlon of mo[z, N] and n|z, N],

molx, N| > tBn < nlz,N| > [tBy] + Na =t an(t) = Pay @) < N. Therefore,

molz, N _
ma {M > t:| < mA[gaaN(t) < N] =

By
— «a (t) OtN(t)
Pan(t) = mA) N -
=ma Tonl)  mtA) BN (t)| , where On(t) := — m)
BaN(t) BOLN(t)

But By is regularly varying of index p € (0,1), so Bn(t) 5 — (A)ﬂ+1 Using

this, and the assumption that ﬁ [y —N/m(A)] is tight, it is easy to see to see that

molz,N]
Bn

for every € > 0, 3t so large that m4 [ > t} < e for all N. A similar estimate

of ma [%NN] < t] for ¢ < 0 finishes the proof of tightness when p € (0,1).

Now suppose p = 1. Let €y be as in the statement of the theorem. Repeating
the same argument, we see that

molz, N _
ma [M > t:| < mA[QDaN(t) < N] =

By
= an (1) N _ an()
Pan(t) ~ mi\(IA) ~ )
ma o ()0 < n(t)|, where yn(t) an(t)
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Calculating, we see that
Nm(A) — [tBy] — Na —tBx Neo
m(A) ([tBN]+ Na)' ™ m(A) (125 + m(A) +o(1)) .

Since By is regularly varying of index 1, By /N is slowly varying. It follows that
v is minus a regularly varying sequence of index ¢y > 0, whence vy — —oo. Since

IN =

ﬁ[@N —n/m(A)] is tight, by assumption, we get m4 [%NN] > t} — 0 for all

t > 0. A similar argument shows that m4 [%NN] < t} — 0 for all ¢t negative, and

we obtain the tightness of %
N

Case 2. v & L.

We prove (11) when ¢ ¢ L'. By our assumptions one of 1V 0, 1) A0 is integrable.
Without loss of generality, [¢ V0 < oo and [ A0 = —oo.

By the ergodic theorem 2 Ty 60 almost surely, so either (1) and (2)

N> N Noo
are both false or N/By — 0. We restrict ourselves to this case. By the ergodic

theorem, ﬁ—g = % +o(1) and E—jg = (on) + o(1). We may therefore also
assume without loss of generality that ¢ < O
We begin by showing that if (1) or (2) holds, then ¢—z is tight. When (1) holds,

this is clear, so suppose (2) holds. In this case g—i\\’[ is tight, and since ¢ doesn’t
change sign,

when p = 1. (11) follows.

I e
ma Uqé_%‘ > t} < ma U Pnle, N]+1‘ = t}
S ma [@n[mN]+1S2N and|1f32—jvv‘>t}+m,4 |:¢n[m,N]+1>2N:|
K Prlz,N]+1 1 1
< [ Bon | = } Tma [ Na  m(A) ~ m(A)} :
By is regularly varying, so %QJZVV pr 2P, w—z is tight, so we can make the first
— 00

summand uniformly small by choosing ¢ large. The second summand tends to zero
Pnle,N]+1 ~ Prnle,N]+1
A

as N — oo, because by the ergodic theorem e N1

N—oo m(A)

Pnfa,Nl+1 1 dist.
Na m(A) N—o0

Next we observe that %]\;N] =% 0 on A, because |mo[x, N]| < n[z, N] +

whence 0. This proves tightness.

N—oo
Ny < N[1 +m(A)] and N/By — 0 by assumption. Since mg[-, N| m[-, N] are
equal in distribution w.r.t m4, mg’N] 45t 0 on A.

N N—»oo

Since the sign of v is constant, for every € > 0

ma |E%’;N]‘>t,m[:r,N]<0} <
< ma [P € o), [Pt o]y |2 >
< my -‘%|>t/e}+m U%}’VN]‘ZE]
= [ 15 > 7] o |20 2 o] s o TGP =
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ma [|¢”JL3[—TVN]‘ > ¢ and m|x, N] 20} <

IN

{0<m[ mleN] < ¢ and | m[““\>t}+m [t > ]

IN

mAD[ ]|>t/]+mA[m1[9N]2]

Putting this all together, we get

|| B > o] < 2 || > o] + 2ma [ 2520 2 ]

Fix § > 0. Since g’“ is tight, there exists € so small that the first summand is less

than d for all N. Since %NN] dist. 0, there exists Ny s.t. the second summand

N—o0

is less than ¢ for all N > Ny. We deduce that m4 Hw%’;vlvw > t] < 20 for N large
enough, proving (11) in case 2.

This completes the proof of step 2.

Step 3. ﬁwN_an[z,N](m)(Tan[I’N](w) x) — 0 in distribution on (A, Ba,ma).

N—o00
Proof. We thank the referee for the following short argument. Recall the definition
of r from the beginning of section 4, and set S(z) := T (T"®)(z)) (x € X). Then

»(Sz)
UN_5 o (TPl M@ )| < U (TNg), where ¥(z) := P(T*Sz)|.
Pnlz N]( )

Now BL\II oTN ;iSt' 0 on (X,B,m), because moT~! = m and By — oo. It
follows that \If oTN 5, 4 on (A, Ba,ma).

N—o0

Steps 1-3 and (10) show that g—x converges in distribution on (A, B4, m4) iff

w_x converges in distribution on (A, B4, ma).
Step 4. 115_]; converges in distribution on (A, B4, m4) iff g—z converges in distribution
n (X, B,m), and the limiting distribution is the same.

Proof. Eagleson proves that if X; is a stationary ergodic stochastic process and
Y, = B%L(Xl + -+ X,,) converges in distribution for some B,, T co on (2, F, u),
then Y,, converges in distribution to the same limit on (Q,F,u') for all p/ < pu
([Ea], theorem 4). This proves (<).

To see the other direction, assume gN converges in distribution on (A, Ba, ma),
and consider the following decomposition on (X, 8, m) in the limit N — oo:

1/}N 1/}N 1/}7" 1/}roT*N N |1/}|7“
= = 1 oT" + — = oT 1 —_—
By <] {BN <BN By ° +1rzmO By

T roT—N o TN
1[T<N]ZJA\[] TT+O(|1§| )+O<—W)| T >

N By
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The big-Oh terms converge to zero in distribution, and 1}, ] converges a.s. (whence
in distribution) to 1. The m—distribution of 115_]; oT" is equal to the mo (T")~1-

distribution of g—i’,. Since mo (T")"t < ma, ﬁ_]:, o T converges in distribution on
(X, B, m) to its ma—distributional limit. (=) follows. O

Remark: The proof shows that the distributional limit of ﬁ_]:, is a m(A)P-scaled

version of the distributional limit of }é’,—x, see Step 1.

Inducing Asymptotic Expansions. Throughout this section, let (EX,T) be a
topologically mixing countable Markov shift with set of states S, and let A C S be
some finite union of states.
Define ¢(x) and Ta(z) := T¥®)(z) as above. The resulting map can be given

the structure of of countable Markov shift as follows:

(1) States: S :={[a,&1,..,&n_1,b]:a,b €A, n>1, & ¢ Aforalli}\ {@};

(2) Transition matriz: A = (t[q ) 5«5 With tjq ) = 1 iff the last symbol in a

is the first symbol in b.

We call this shift the induced shift (on A), because it is conjugate to the induced
map. The conjugacy is 7 : E% — A given by

It is easy to verify that the induced shift satisfies the BIP property.

Every f : E;{ — R induces a function f : Eg —Rby f:= (Z}j;ol o Tk> oT.
We call this function the induced function (by f). Define

Ha = {f: S} — R|f has summable variations, sup f < co and

f is locally Holder continuous}.

It is easy to see that H 4 contains all weakly Holder continuous functions which are
bounded from above.

Theorem 8. Suppose ¢, € Ha, and that ¢ satisfies (V) with respect to a finite
set of states A. If {¢ + th}i>0 is reqular and Piop(¢) = Ey, [Yp] = 0, then

1+ 0(1)
1 (A)

where 1y is the equilibrium measure of ¢.

PtOP((b + “/’) = Ptop(¢ + t'l/f) ast — O-"_7

Lemma 1. If f : ¥ — R belongs to Ha, then
(1) vara () < Y50 vare(£):
(2) If, in addition, Piop(f) < oo, then sup f — Piop(f) < 00;
(3) If, in addition, f has an equilibrium measure (i, then Pyop(f — Piop(f)) =0,
and (E) := % is an equilibrium measure for f — Piop(f).

Proof. Suppose T,7 € E%‘ agree on the first n symbols, and write T = m(x),7 =
m(y). Since por is constant on partition sets in Eg, o(x) = ¢(y) = no. One checks
that z,y € X} agree on the first ¢(z) + p(Taz) + - (T4 'x) + 1 symbols (the
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one at the end is because of the last symbol of the last cylinder). We see that x,y
agree on (at least) the first ng + (n — 1) + 1 = ng + n symbols, and so

no—1 no+n
7@ —T@ < D [F(TFe) = f(TFy)[ < D vark(f).
k=0 k=n+1

Part (1) follows.

To see part (2), construct a finite set of admissible words {w,;, : a,b € A} of
length n,; (as words in the alphabet S) such that w,, starts with a and ends with
b. Such words exist because of the topological mixing of EX- Set

C = sup{[(f = Prop(f))na, (T)] : T € [wyy],a,b € A}
By part (1), C < oc.
We show that sup f — Piop(f) < C+ 300, var, (f) =: Cy. Otherwise 37 € Tt
for which f — Piop(f)(Z) > Co. By part (1),

f — Piop(f) > C on the partition set which contains Z.

Denote this partition set by [Zo], write To = [b,§,a], and consider the point
Z := (To, Wab, To, Wab, To, Wab, - - -). This is a periodic point of order 1+ ngp, and
(f - Ptop(f))l-l—nab (E) >C-C=0.

Write z = 71(Z). Then for some N, TV (z) = z and Efgv:_ol [f(T*2) = Pop(f)] > 0.
The measure p := % Ziv:_ol drk, is T—invariant, has zero entropy, and satisfies

N-1
D)+ [ 1f = Panlf i = 55 S F(T¥2) = Pag(1)) >0,
A k=0
It follows that h,,(T)+ [ fdu > Piop(f), in contradiction to the definition of Pyop (f).
Part (2) is proved.

Before proving part (3), we recall from [BS] that ula] # 0 for any state a € S
and every equilibrium measure p of a potential with summable variations on a
topologically mixing shift. Therefore, & is well defined.

Next we note that 7 is shift invariant, because u|4 is Ta—invariant. The formulae
of Kac and Abramov and the conjugacy between T4 and the induced shift give

Paop(F= Prop(F)) = hom—1(Ta) + / T~ Pron(F)dri =

- ﬁ [h#(T) +/f - Ptop(f)du] 0.

The other inequality is more delicate, because it is not true that every T s4—invariant
probability measure is induced by a T—invariant probability measure: We can only
guarantee this for T4—invariant measures for which ¢ is integrable.

To deal with this difficulty, we note that since f — Pop(f) has summable varia-
tions (part 1) and is bounded from above (part 2), then Piop(f — Piop(f)) is equal
to the Gurevich pressure of f — Piop(f). Therefore, by theorem 2 of [S1],

Prop(f = Peop([f)) = sup{hm(T') + /f — Piop(f)dm : m has compact support }.

For such measures ¢ o 7 is essentially bounded, whence integrable. Therefore
Piop(f — Piop(f)) is achieved as a supremum over invariant measures which are
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induced by shift invariant measures on E;{. Such measures U satisfy

_ 1
hpor—1(Ta) + ) f— Piop(f)dv = @ h,(T) +/E§ f—Pmp(f)dV] <0.

pInx
A

Passing to the supremum, we get Piop(f — Piop(f)) < 0.

In the first part of the proof we saw that hyor-1(Ta) + [ f — Piop(f)dn = 0 for
7 induced by the equilibrium measure of f. Consequently, this is an equilibrium
measure for f — Pop(f) (by [BS] the only one), and the pressure is zero. O

Proof of Theorem 8. The convexity of Piop(¢ + t¢) and the assumption that
Piop(¢) = 0 imply that either Piop(¢ + t) = 0 on some right neighborhood of 0,
or Pyop(¢p+t) # 0 for all ¢ # 0 small. In the first case the theorem holds trivially
by lemma 1, part (3). We may therefore assume without loss of generality that
Piop(é + t1h) # 0 for all ¢ > 0 small.

Recall the definitions of ¢, E;{, and of the functions ¢, induced by ¢, 1. By
assumption, A is a finite union of states such that 1 < 0 = E, [¢] outside A. Thus:

Supa < Q.

To see this write ¢ = Z‘,f;ol 1oT*, and observe that the first summand is dominated
by sup %, while the other summands are non-positive (they correspond to the part
of the orbit which lies outside A). Note also that by lemma 1 part (2)

supa < Q.

Step 1. Piop(¢+tp) >0 for all ¢t > 0.

Proof. Kac’ formula and the assumption E,,, [¢] = 0 imply that Ez[¢)] = 0, where

g = 5 q‘:’(j). By lemma 1, Pyop(¢) = 0, and iy is the equilibrium measure of ¢:

B = pg. Consequently E,_[¢] = 0.

By theorem 4 for BIP systems, Piop(¢ + t1)) = o(t) as t — 0% (note that the
assumptions listed at the beginning of section 3 are satisfied). We see that the
right—derivative of ¢ — Piop(¢ + 1)) at t = 0 vanishes. But ¢ — Piop(¢ + ) is
convex, so Pop (5 + t@) >0fort>0.

Lemma 1 tells us that Piop(¢ + t¢) — Piop(¢ + t1)) = 0. If Piop(¢ + t1p) were
negative, then by the properties of the topological pressure and since ¢ > 1

0= Pt0p(¢+t¢ - Ptop(¢+“/’)90) > Pt0p(¢+t¢) + |Pt0p(¢+“/’)| > 0.

Therefore Piop(¢ + t3p) > 0 for ¢ > 0. The inequality is strict, otherwise by con-
vexity Piop(¢ + ti) vanishes on some right-neighbourhood of 0, in contrary to our
assumptions.

Step 2. Set f; := ¢+t and ¢, := f; — Piop(fi). The induced potentials ¢;, f; have

. Prop (ft
Gibbs measures fiz, g, and E,,_ [¢] < WEB < E#ﬁ[@] for all 0 <t < ep.

Proof. Any locally Holder continuous potential with finite pressure on a shift with
the BIP property has an invariant Gibbs measure [S3]. Therefore, since E;{ has

the BIP property, it is enough to check that fi, b have finite pressure. They do,
because sup ¥ < 00, Piop(fi) > 0 (step 1), and Piop(¢) =0 < oo (lemma 1 part 3).
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Fix g > 0 such that f; := ¢ + t¢) has an equilibrium measure for 0 < ¢ < €
(regularity). Fix 0 < ¢t < ¢, and consider the function p(s) := Pyop(fi — s¢) for
s > 0. This is a convex function, and therefore

p(Pmp(ft)) —p(0)
Ptop(ft)

where p/, denotes one-sided derivative from the right (which can be infinite). The

term in the middle is —QL@ (lemma 1, part (3)). Theorem 4 for BIP systems

gives the one-sided derivatives (see the remark after theorem 4):

_d
T ds

< pi{- (PtOp(ft))a

Prop(Fi + 5(=9)) = ~E,ir_[¢],

s=01

pg-(Ptop(ft)) = %

This completes the proof.
Step 3. E#ﬁ[ga]

?4.(0)

PtOP(E +s(=p)) = _Eua[@]-

s=0"+

1
o+ He(A)”
Proof. We work on the BIP shift (Eg, T). Define as in section 3 the space £ and
the operators Ry, R; corresponding to ¢ and

Ro(f)(@) == Z ?Df(@) , Ri(f) := Role" f].
Ty==
Here and throughout 7' denotes the shift on E%.

As in the beginning of section 3, we may assume without loss of generality that
> Ty—s e?®) = 1 (otherwise pass to ¢+ h— hoT with some bounded locally Hélder
continuous function A : ¥X — R, and note that this does not affect Jig; Or Hg)-
This reduction allows us to assume that Ryl = 1.

By proposition 2 part (3), | R:— Ro|| o 0. It follows that the eigenprojections

P, := P(R;) are well-defined for ¢ small, and converge in norm to Py := P(Ry).

The operator R, is the Ruelle operator of f;. The theory of Ruelle operators for
shifts with BIP says that A\(R;) = exp Piop(f:) and that P,F = h, [ Fdvy where v,
is an eigenmeasure of Ry, h; is a positive eigenfunction of R;, and f hidvy = 1. The
Gibbs measure of f; is hydv;. Consequently,

P[FP,1]

(The RHS is a scalar, because dim Im(P;) = 1.)
Since P; — Py in norm and Pyl = 1 (because Rol = 1), E,,_[F] —— E,_[F]

t—0+
for all F' € L. In particular, E“E[¢1[¢<N}] o Eyz[plip<ni] for every N € N.

We claim that for every € > 0 there exists N such that Euﬁ[‘f’l[sazN}] < eforall tin
some one-sided neighbourhood of zero (uniform integrability). This will imply that

E#ﬁ[@] o Ey.;[]. Step 3 will then follow from Kac’ formula |, _[¢] = 1/pu4(A).
To prove uniform integrability, we need the transfer operator of pig;s given by

A(Ry) ™!

T.F =
t Pl

Ri[FP1].
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It is straightforward to check, using (12), that E#ﬁ[TtF] = E“K[F] for all F' € L.
It follows that for every a € S,

B - P1)(azx)
—la]l =E,. [Ti1,] = M(R 1/ efﬂmi(t du+(z) <
/J’f,[ ] Mft[ t []] ( t) T[a] (Ptl)(.f) :u’fr( )—
< |e=Pon @SR Dgitsun | (36 for a1l 5 € [a].
- inf P11

The term in the brackets converges as t — 0% (to e29), and is therefore uniformly
bounded. The term e?(*) is bounded by Gpgla] where G is as in the proof of
proposition 2. Consequently, there exists some constant Cj such that

pilal < Copgla] for all a € S.

Since ¢ is constant on 1-cylinders in 2%, we obtain E#ﬁ[gal[(pzm] < CoEyug @1y
for all N. The RHS tends to zero as N — oo, by the dominated convergence theo-
rem. We obtained the uniform integrability of ¢ w.r.t. 1y

1

Proof. The proof is essentially the same as in the previous step, except that here
we need to use the perturbation operators

Rtf = Rt[efptc)p(ft)%’f‘]

(the Ruelle operators of ¢; = f;— Prop(f¢)). We first claim that || R, — Ro|| o 0.
t—

We need the following generalization of eq. (2): Let = (M, ... @) be a
vector of real valued functions on ¥} and F(ty,...,t4) some real valued function

such that F(¢)(z)) is well defined for all z € £} Define Ry f := Ro[F(¢)f]. Then
for some constant M which only depends on ¢,

IRe|l < M | By [[F@)] + D pglalDa[F()] | - (13)
a€S

The proof is the same as in the one-dimensional case (as is the constant M).
We now observe that R — Ry = Rp, with F} (E, p) = et =Prop(fi)o 1, Therefore,

Hét _ ROH S M(E#¢ [‘etE*Ptop(ft)‘P _ 1‘:| Z /qu t’¢' Ptop(ft)@])
a€S

M(Eug U th—Piop (ft)e 1” +t6tsup¢D¢) — » 0,

IN

because of the bounded convergence theorem (we are using here the facts that
supt) < oo and Piop(fi) > 0).
Now that we know that ||R: — Ryl —— 0 we can proceed exactly as in the
t—0

previous step, but with the eigenprojections 16,5 = P(INEt) replacing P, to deduce

that E,__[¢] — E,.-[¢]. The theorem follows from step 2. O
t t—0



CONTINUOUS PHASE TRANSITIONS FOR DYNAMICAL SYSTEMS 29

5. PROOFS FOR SHIFTS NOT SATISFYING THE BIP PROPERTY

Reduction of the General Case to the BIP Case. Let ¢ and ¢ be two locally
Holder continuous functions bounded from above and assume (®), (¥), and that
¢ 4t has an equilibrium measure for 0 < ¢t < ¢g. We also assume without loss of
generality that Piop(¢) = 0 and E,,, [¢)] = 0 (otherwise subtract suitable constants).

Let A C S be a finite union of states such that ¢» < E, [¢)] = 0 outside A. Let
a € S be some state such that E,, [r,] < oo where r,(z) := min{k : z = a}.
Without loss of generality, [a] C A (otherwise add a to A).

Set () := 1a(z)min{k > 1:TFz € A},andlet T : A — A, Ta(x) := T (z)
be the induced map. We have seen that this map can be coded by a topological
Markov shift with the BIP property. Let ¢ and ¢ be as before. These are locally
Holder continuous functions, and as in the proof of theorem 8,

sup ¢ = sup ¢ — Prop(¢) < o0;

supy) = supy) — K, [¢)] < oco.

We conclude that E'AT", &, 1 satisfy the standing assumptions listed at the beginning
of section 3 — the assumptions needed to prove theorems 2, 3, 4 for BIP systems.

In order to pass from the induced system to the original system, we need to
apply theorems 7 and 8. The conditions of theorem 8 are satisfied (by E;{, o, );
We check the conditions of theorem 7. The only thing to check is that the tightness
assumption holds in all relevant cases.

If « € (1,2) one must show that Bin(an —n/pe(A)) is tight for any sequence B,
regularly varying of index é; If o = 2 one must check tightness for B,, = 1/n or for
By, s.t. v/n=0(By). (The case a =1 does not require theorem 7). We show

- . i . Vv
—[@, — n/ung(A)] is tight for all {B,} positive s.t. limsup — < oco.  (14)

B’ﬂ n—oo n

This covers all possibilities.
Observe that Eug[ch] < 00. To see this recall from lemma 1 that pz = 7g, note

that r,(z) > min{k > 1: T*(z) € A} =: ra(z), and observe that

n=1 n=1 k=1
3] p—1

:22( ZerTk>d,u¢:2/r,4du¢§2/radu¢<oo_
n=1 [‘/’:"] k=0

It follows that —% satisfies case (2)(c) of Theorem 5. By theorem 3 for BIP systems,
@, satisfies the central limit theorem, and (14) follows.

Proof of Theorem 4 for Systems without the BIP Property. It is enough

to treat the case B, [¢], Pop(¢) = 0. By Lemma 1, Piop(¢) = 0 and g = fig. By
Kac’ formula, ¢ € L', and o [¢] = 0. We deduce from theorem 4 in the BIP case

that Piop(¢ + t9) = o(t). By theorem 8, Piop(¢ + t1)) = o(t). The remaining part
of the theorem is because of the ergodicity of 14, see [BS]. O
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Proof of Theorem 2 for Systems without the BIP Property. It is enough
to treat the case E,, [¢], Piop(¢) = 0. Suppose Piop(¢ + 1) = ct + t*L(1/t) with
ceR, 1 <a<2and L(z) slowly varying at infinity. The previous section shows
that ¢ = 0. _

By theorem 8 Piop(¢p + t9)) = mto‘[l +o(1)|L(1/t). L(z) := %L(m) is
slowly varying at infinity, therefore by theorem 2 for BIP systems, 3B, regularly
varying of index « such that B%L@n (dist. Gq.-

Since 1 < a < 2, g—ﬁ — 0, 50 3-[@, —n/py(A)] is tight. Theorem 7 now implies

that 1 B Un ndi; G}, where G, is equal to G, up to change of scale. Renormalizing

B,,, we obtain (2) in theorem 2, and we proved (1)=-(2). The other direction is
handled in the same way. ([l

Proof of Theorem 3 for Systems without the BIP Property. It is enough
to treat the case Piop(6),Ey, [¢] = 0. We saw above that ¢ = 0.

Part 1. Taylor expansion.

By theorem 8, Piop(¢+1t1)) = 3022 +0(t?) iff Piop(d + t9h) = 1 ( )2t2+0(t2).

vV He(A)

.. . 17 dist. o2
Our results for BIP maps say that this is equivalent to \/51/171 — N(0, —H¢(A))
dist.

w.r.t. i,. By theorem 7, this happens iff %wn ——— N(0,0?) (see the remark at

the end of the proof of theorem 7).

We explain why in this case 1) € L?(ug). By theorem 5, 1 € L?*(fz,). When we
proved (14), we saw that (®) = ¢ € L(fi,). Therefore, ¢ —sup ¢ € L%, It follows
that [ 2770 (1) —sup ¥)?oT*dfi,+ positive terms < oo, whence (¢ —sup )2 € L2,
By Kac’ formula, 1) — sup € L?(ug), and so ¢ € L2

Part 2. Critical expansion.

By theorem 8, Piop(¢ + t0) = t2L(1/t) with L(z) slowly varying and not asymp-
totically constant, iff Piop(¢ + t9)) = H((’S) t2L(1/t) with such L. By the BIP
property, this is equivalent to the existence of B, r.v. of index % such that

dlS —. n __ .
+ w L N(0,1), E.;[4¥] = 0, and B—‘C — 0. By (14) B%L[cpn —n/pe(A)] is
tight, so 1/1 (st —= N(0,1) is equivalent to g+, st N(0,1) for B} propor-

tional to B ThlS glves the equivalence in theorem 3, part 2.

To finish the proof, it is enough to observe that the BIP property, the expansion
Piop(d+t)) = 1+?(1)t2L(1/t) and theorem 5 case (2)(c) show that L(z) — oo
whenever it is not asymptotic to a constant. (Il

Proof of theorem 6. Without loss of generality ¢ has zero pressure, and i has
zero expectation (and then Pop(¢+ty) = t*L(1/t)). Fix an arbitrary finite union of
states A so large that ¢ < E,,, [¢)]—e = —e outside A, and let ¢(z) := 1 4(z) min{n >
1:T"(x) € A}. Let ¢ be the induced version of ¢ on A. By theorem 8,

1+ 0(1)

(4] t*L(1/t) as t — oo.

Piop(¢p + tih) =
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Since 1 < a < 2, L(t) must be asymptotically non-negative (see section 3). By
theorem 5, pus(A N [[Pp] > t]) ~ ﬁ_aa)lL(t) as t — oo.
By choice of A, ¢ = 1 + Zf;ll Y o T*, where each summand under the sigma

symbol is less than —e. It follows that (¢ — 1) — [|¥]loe < [¥| < @||9]|- Since
L(x) is slowly varying, L(Az), L(A + z) ~ L(z) as & — oo for all A € RT, and so

J— —Q 7aL
pelo >t < p[|Pl > et —1) = [$lloc] ~ H
_ Capag
nole >t 2 no[[71 > thvll]) ~ PO
Consequently, pgp > n] < Lég).

We now appeal to Gouézel [Goul], Theorem 1.3 (see also [S5]), which says that
in our context for every f,g locally Holder continuous supported inside A with
non-zero expectation

o0

Covy, (frgoT™) ~ Y M¢[s0>k]/fdu¢/gdu¢-

k=n+1

The theorem follows from Karamata’s Theorem. O

APPENDIX A. SLOW AND REGULAR VARIATION

Slow and Regular Variation. A positive function L : (c¢g,00) — R is called
slowly varying (at infinity) if it is Borel measurable and

Lits) v ans>o.

L(t) t—oo
A positive sequence {cy},>1 is called slowly varying (at infinity) if L(t) := cpy is
slowly varying (at infinity).

A positive function f : (cg,00) — R is called regularly varying at infinity with
index a, if f(x) = x“L(x) with L(z) slowly varying at infinity. A positive sequence
{cn}n>1is called regularly varying at infinity with index «, if f(t) := cpy is regularly
varying at infinity with indez a.

For example, logx, 1/Inlnx are slowly varying at infinity, and ® In z(InInx)?,
2*/Inzx are regularly varying with index .

Sufficient Condition for Regular Variation. Let f(z) be a positive continuous

function, and {a,}, {b,} some positive numbers such that limsupb, = oo and
n—oo

lim sup b’g* L = 1. If lim a,f(b,x) exists, is positive, and is continuous on some

n— 00 " n—oo

open interval (a,b) C RT, then f(x) is regularly varying at infinity. ([BGT],
theorem 1.9.2)

The General Form of Regularly Varying Functions. A Borel function f(x)
is regularly varying at infinity with index « iff

du

f(z) =[c+o(1)]x" exp /j e(u); as T — 00,

where ¢ > 0 and ¢(u) —— 0. ([BGT], Theorem 1.3.1)

xr—00
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In particular, any regularly varying function f(x) with index « satisfies f(x) —
oo when o > 0 and f(z) — 0 when a < 0. ([BGT], Proposition 1.5.1).

Uniform Convergence Theorem. If L(t) is slowly varying at infinity, then

LL((t:')) = 1 uniformly on compact subsets of (0,00). ([BGT], Theorem 1.2.1).

Asymptotic Inversion Theorem. If f(x) is regularly varying at infinity with
positive index a, then there exists g(z) regularly varying at infinity with index 1/«
such that (f og)(x) ~ (go f)(x) ~x as x — co. ([BGT], Theorem 1.5.12)

Differentiating Asymptotic Relations: The Monotone Density Theorem.
Suppose U(t) = [, u(y)dy, and L(z) is slowly varying at infinity.
(1) If u(y) is monotone at some interval (0, ) and p > 0, then
U(t) ~t°PL(1/t) as t — 0T implies u(t) ~ pt’ " 'L(1/t) as t — 0.
(2) If u(y) is monotone at some interval (9, 00) and p € R, then
U(x) ~ 2’ L(x) as © — oo implies u(z) ~ px? ' L(z) as 2 — oo.

Here and throughout f(x) ~ 0- g(xz) means f(z) = o(g(z)). ([BGT], Theorems
1.7.2 and 1.7.2b).

Integrating Asymptotic Relations: Karamata’s Theorem. Suppose L(z) is
slowly varying at infinity and locally bounded. Then as z — oo,

x xp-‘,—l
/a tPL(t)dt ~ pyn 1L(gc), for all p > —1

p+1

/ #PLt)dt ~ — 2 L(z), forall p< —1.

p+1
The converse is also true: Any positive locally bounded L(z) for which one of these

relations holds for some p # —1 must be slowly varying. ([BGT], theorems 1.5.11
and 1.6.1).

After a change of variables, Karamata’s theorem implies that if L(x) is slowly
varying at infinity and o > —1, then
14

t
t
“L(1/7)dT ~
/OT (1/7)dr iTa

Conversly, if L satisfies the above, then it must be slowly varying at infinity.

L(1/t)ast —07.

Karamata’s Tauberian Theorem. Let U(z) be a non-decreasing function on R,
which is continuous from the right, and such that U(0) = 0. Suppose L(x) is slowly
varying at infinity, and ¢ > 0, p > 0. The following are equivalent:

cx’

T

L(z), asz — o0

/ e dU(z) ~ —L(1/t), ast— 0%
0 L2

([BGT], theorem 1.7.1).
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Truncated Variance: Feller’s Theorem. Let F(z) be a right continuous prob-
ability distribution function such that F(0) = 0, and set U(z) := [, y*dF(y).
Suppose L(z) is slowly varying at infinity as  — oo, ¢ # 0, and O < p < 2. The
following are equivalent:

U(z) ~ cx’L(x), as x — o0

1- F(z) ~ 20”

2’72 L(x), as x — o0.

(See Feller [F] VIIL.9 for generalizations).

Proof: Start with the identity 1 — F(z) = [°y=2d ([, t?dF(t)) = ["y=2dU(y).
Integration by parts gives:

1—F(w)=y2U(y)] B +2/my’3U(y’)dy-

If U(y) ~ cy”L(y), then U(y~) ~ cy”?L(y). By Karamata’s theorem:

Y=o

o0

1— F(x) = —ca” 2 L(x)[1 + o(1)] + 2¢L(x)[1 + o(1)] / yP3dy =

- Q%wp-%(xm +o(1)].
To see the other direction, integrate by parts U(y f ’ y2dF(y

Y=z

U(x) =y2F(y)] —2 /01 yF(y )dy = 2°F(z) — 2 /01 yF(y )dy =

y=0
21— Fa)] +2 / y[l — F(y)dy.

Now plug into this expression the asymptotic formula for 1 — F'(z) and conclude as
before, using Karamata’s theorem.

APPENDIX B. THE FISHER-FELDERHOFF DROPLET MODEL

We describe a crude simplification of a model in [FF]. A ‘vapor’ close to the
condensation point consists of microscopic droplets. The interaction between par-
ticles in different droplets is negligible, but the interaction between particles in the
same droplet is strong, and long-range.” When two droplets ‘touch’, they become
one. ‘Condensation’ is the appearance of macroscopic droplets.

Here is a lattice-gas model of this situation. Space is discretized and described
by a one—sided one-dimensional string of sites, each of which can be in one of two
states: empty (state ‘0’) or occupied (‘1’). The configuration space is {0, 1}Yo. A
‘droplet’ is a maximal string of occupied sites.

We describe the interaction by prescribing the function

P(x0,w1,...) 1= —PU(xo|w1, 22, . ..)
where (3 is a constant (‘inverse temperature’) and U (zg|z1, 22, . . .) is the energy due

to the interaction of site zero and the other sites.® Note that the energy due to the
interaction between the first n sites and the rest is minus the n—th Birkhoff sum of

"One example of long—range interactions in liquid droplets is ‘surface tension’.
8Tt is useful to think of U(zo|z1,x2,...) as of the energy cost of separating site zero from sites
n, n > 0, and moving it to infinity — that is, if site zero is occupied.
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¢. It follows that the Helmholtz free energy(=Energy — %xEntropy) per site is up
to a constant

n—1
1 1
lim — |— T*dpgy — log—— | =
Jim / k§:0¢o 1o > pglallog

n—cylinders s [Q]

~ (@) + [ 0 ) = (o)

at least when ¢ has an equilibrium measure fi.
Since different droplets do not interact, ¢ takes the form

$(0,%) =0, ¢(1,1,...,1,0,%) := f(n)

for some function f(n). If the interaction is ‘long range’, then this function is not
locally Holder, because the effect of far away sites is not exponentially small.

Consider now the following re-coding of a configuration: (xg,x1,...) — (Yo, ¥1,---),
where z; =0 = y; =0, and x; = 1 = y; = 14+number of occupied sites to the right
of 4 until the first unoccupied site, for example:

(0,1,1,0,0,1,0,1,1,1,0,...) — (0,2,1,0,0,1,0,3,2,1,0,...).
In this coding, the configuration space becomes the renewal shift: the topological
Markov shift with state space NU {0} and transition matrix
1 ¢1=0;
A = (t;;) where t;; =¢1 i>0,7=14—1;
0 otherwise.

In the new coordinates the interaction becomes locally Hélder (‘short range’):

Huorvt,..) = {g@o) & -

Thus a compact shift with a long range potential is recoded as a non-compact shift
with a short range potential.

The critical phenomena for the Fisher—Felderhoff model for various choices of
f(n) is described in [FF] and [Wal, Waz2].
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