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Abstract. We study the asymptotic expansion of the topological pressure
of one–parameter families of potentials at a point of non-analyticity. The
singularity is related qualitatively and quantitatively to non–Gaussian limit
laws and to slow decay of correlations with respect to the equilibrium measure.

1. Introduction

This paper deals with the thermodynamic formalism of countable Markov shifts.
It explores the stochastic implications of non-analyticity for the topological pressure
functional, by pursuing an analogy with the theory of continuous phase transitions.

Continuous phase transitions. A continuous phase transition (sometimes also
called high–order phase transition) is a situation where a thermodynamic quan-
tity varies continuously but not analytically when some external parameter of the
system is changed. The prototypical example is ferromagnetic material at zero
external magnetic field: The magnetic moment per unit volume (‘magnetization’)
decreases continuously as the material is heated, until it completely vanishes at a
certain critical temperature Tc; The derivative of the magnetization with respect
to temperature (‘susceptibility’) diverges at Tc.

Systems undergoing a continuous phase transition develop local long–range or-
der. This order can be described in terms of large fluctuations of thermodynamic
quantities (‘abnormal fluctuations’), and slow decay of correlations (‘infinite corre-
lation length’). See [St] for examples of continuous phase transitions, and [BDFN],
[Hi] for theoretical treatment.

Most thermodynamic quantities can be expressed as partial derivatives of the
Helmholtz or Gibbs Free Energy F . Therefore, a continuous phase transition is
sometimes defined as a situation where the free energy is C1 but not real–analytic.
Physicists have found empirically that the free energy F (t) satisfies an asymptotic
power law close to the critical point: F (t) ≈ Ctα+analytic terms for t = (T−Tc)/Tc
(the ‘reduced temperature’). The parameter α is called a critical exponent.

It is not clear how to define ≈. In this work (as in [Hi]), we formalize ≈ by
stipulating that F (t) = ±tαL(1/t) + analytic terms where L : (c0,∞) → ∞ is a
positive (Borel) function s.t.

L(st)

L(t)
−−−→
t→∞

1 for all s > 0. (1)

In this case L(t) is called slowly varying (s.v.) at infinity, and tαL(1/t) is said to
be regularly varying (r.v.) with index α, see appendix A.
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This interpretation of ≈ is not completely standard, but it is reasonable because
it is equivalent to saying that the singular part F ∗(t) of F (t) scales asymptotically

like a power: F∗(st)
F∗(t) −−−−→

t→0+
sα for all s > 0, compare with [BDFN].1

Continuous phase transitions in dynamical systems. Let T : X → X be
some continuous map on a complete metric separable space X (in most examples
treated below X is not locally compact). The dynamical counterpart to the free
energy is the topological pressure functional φ 7→ Ptop(φ) defined for continuous
φ : X → R s.t. supφ <∞ by

Ptop(φ) := sup
{
hµ(T ) +

∫
φdµ : µ is a Borel probability measure

s.t. µ ◦ T−1 = µ and

∫
φdµ 6= −∞

}
.

Here and throughout hµ(T ) is the metric entropy of µ.
The analogy [Ru] becomes apparent if one thinks of the metric entropy hµ(T )

as of entropy per particle, and of
∫
φdµ as −β×energy per particle with β =inverse

temperature (we describe an example in appendix B). With this interpretation,
maximizing hµ(T ) +

∫
φdµ amounts to minimizing the Helmholtz free energy. The

maximizing measure µ (if it exists) is called the equilibrium measure of φ, and (if
unique) is denoted by µφ.

Definition 1. Let T : X → X be a continuous map of a complete metric separable
space X, and φt : X → R a family of continuous functions, t ≥ 0.

(1) {φt}t≥0 is called regular, if ∃ǫ > 0 s.t. φt has an equilibrium measure µt
for t ∈ [0, ǫ).

(2) {φt}t≥0 is said to undergo a continuous phase transition at 0+, if it is
regular, ∃ǫ s.t. t 7→ Ptop(φt) is C1 on [0, ǫ), but ∄ǫ > 0 s.t. t 7→ Ptop(φt)
extends to a real analytic function on (−ǫ,+ǫ).

(3) {φt}t≥0 is said to exhibit a critical exponent α as t → 0+ if Ptop(φt) =
±tαL(1/t)+ h(t) with h(t) analytic at zero, L(x) s.v. at infinity and either
α 6∈ N or α ∈ N and L(x) 6−−−−→

x→∞
const.

Some people would also include in the definition of a continuous phase transition
cases when Ptop(φt) is equal to two different analytic functions on the two sides of
zero, but is differentiable at zero. We do not treat such cases here.

We focus on one–parameter families of the form φt := φ + tψ. In this case t 7→
Ptop(φ+ tψ) is convex and this imposes restrictions on the sign in front of tαL(1/t),
see below. The dynamical systems we study are assumed to have countable Markov
partitions. This is equivalent to the study of topological Markov shifts.

Topological Markov Shifts. A topological Markov shift (Σ+
A
, T ) with a countable

set of states S and a transition matrix A = (tij)S×S is the set Σ+
A

:= {(x0, x1, . . .) ∈
SN∪{0} : ∀i, txixi+1 = 1} together with the map (Tx)i = xi+1.

1In fact, this interpretation seems to be implicit in many of the manipulations done in the

physical theory of critical phenomena. For example, the standard derivation of the critical expo-
nent identities is done by formal differentiation of a (postulated) asymptotic expansion of the free
energy (see e.g. [BDFN] §1.5.1). However, if α > 0, f(t) ∼ tαL(1/t) and f ′(t) ∼ αtα−1L(1/t),
then L(1/t) must be slowly varying, because of Karamata’s Theorem (appendix A).
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A word (w1, . . . , wn) ∈ Sn is called admissible if twiwi+1 = 1 for all i. A topo-
logical Markov shift is called topologically mixing if for every a, b ∈ S there are
admissible words beginning with a and ending at b of length n for all large n.

A topological Markov shift is endowed with a metric d(x, y) := 2−min{k:xk 6=yk}.
The resulting topology is generated by the basis of cylinders

[a0, . . . , an−1] := {x ∈ Σ+
A

: xi = ai, 0 ≤ i ≤ n− 1}.
A function φ : Σ+

A
→ R is called Hölder continuous if |φ(x) − φ(y)| ≤ Ad(x, y)κ

for some constants A, κ > 0. This condition is too strong for us, because it implies
boundedness. The following notions do not:

(1) φ is locally Hölder continuous if |φ(x)−φ(y)| ≤ Ad(x, y)κ whenever x0 = y0;
(2) φ is weakly Hölder continuous if |φ(x) − φ(y)| ≤ Ad(x, y)κ whenever x0 =

y0, x1 = y1;
(3) φ has summable variations if

∑
n≥2 varkφ <∞ where varkφ := sup{|φ(x)−

φ(y)| : yi = xi (i = 0, . . . , k − 1)}.
Local Hölder continuity is stronger than weak Hölder continuity, and weak Hölder
continuity is stronger than summable variations.

We need the Variational Principle for countable Markov shifts [S1]: Suppose
T : X → X is a topologically mixing topological Markov shift, φ : X → R has
summable variations, and supφ <∞; Then for any state a,

Ptop(φ) = lim
n→∞

1

n
log

∑

Tnx=x
x0=a

exp
n−1∑

k=0

φ(T kx).

The limit on the right hand side is called the Gurevich pressure of φ in honor of B.
Gurevich who proved the variational principle in the case φ ≡ 0 [Gu].2

Program. In the case |S| <∞, Ruelle [Ru] has established the following relation
between the analytic properties of t 7→ Ptop(φ + tψ) and the statistical properties
of the equilibrium measure at t = 0:

Theorem 1 (Ruelle). Suppose (Σ+
A
, T ) is topologically mixing. If |S| < ∞ and

φ, ψ : Σ+
A
→ R are Hölder continuous, then t 7→ Ptop(φ + tψ) is real–analytic, and

admits the expansion Ptop(φ+tψ) = Ptop(φ)+cψt+
1
2σ

2
ψt

2+o(t2), where cψ = Eµφ [ψ]

and 1√
n

(∑n−1
k=0 ψ ◦ T k − ncψ

)
dist.−−−−→
n→∞

N(0, σ2
ψ) w.r.t. µφ.

3

Ruelle has also proved exponential decay of correlations in this case [Ru]. Thus
there can be no phase transitions for short–range interactions when |S| <∞.

Phase transitions are possible for short–range interactions when |S| = ∞. In-
deed, it is well–known that long–range interactions on one–dimensional lattice-gas
models may admit phase transitions, and there are cases when such models can be
recast as short–range interactions on infinite state shifts. See appendix B and [FF],
[Ho],[Lo],[PS],[Wa1], [Wa2], [S2],[S7],[MU2],[Y].

Motivated by the physical analogy described above, we seek a generalization of
theorem 1 which relates singular behavior for Ptop(φ+ tψ) (‘critical exponents’) to

2The variational principle is stated under a stronger condition on φ in [S1], but is true with
practically the same proof under the assumptions stated above.

3Here and throughout, E denotes expectation, N(0, σ2) is the Gaussian distribution, and
dist.
−−−→

means convergence in distribution, see [F], [GK].
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non-Gaussian distributional limit theorems for
∑n−1

k=0 ψ◦T k and to sub–exponential
rates of mixing (‘abnormal fluctuations’ and ‘infinite correlation length’).

Such a relation is mentioned in the physics literature, see [BDFN] for a renor-
malization group approach and Hilfer [Hi] for a probabilistic point of view very
similar to the one we adopt below. Rigorous results are more difficult to find. See
section V.8 in [El] for a discussion of the Ising model.4

2. Statement of Results

Assumptions. Let Gα (0 < α ≤ 2) be the probability distribution with Laplace
transform

∫
R
esξdGα(ξ) = exp[sgn(α − 1)sα] when α 6= 1 and

∫
R
esξdGα(ξ) = e−s

when α = 1. Such distributions exist: When α 6= 1, Gα is the standard spectrally
negative stable distribution of index α, and when α = 1 Gα is the degenerate
distribution concentrated at {−1} (see [Z] for details).

Let (Σ+
A
, T ) be a topologically mixing topological Markov shift with a countable

set of states S and a transition matrix A = (tij)S×S . Our results are simplest to
state when A satisfies the Big Images and Preimages property:

∃b1, . . . , bN : ∀a ∈ S, ∃i, j s.t. tbiatabj = 1. (BIP)

This condition appears naturally in the theory of countable Markov shifts, as a
necessary and sufficient for the existence of Gibbs measures in the sense of Bowen
[S3], [MU1]. (Equilibrium measures may exist in the absence of (BIP), see [S4].)

We can remove the BIP property, at the cost of additional assumptions on φ
and ψ. Define for a state a ∈ S the function ra(x) := min{k : xk = a}, with the
convention min ∅ = ∞. Let µφ be the equilibrium measure of φ (when it exists).
We shall impose the following assumption on φ:

There exists a ∈ S such that Eµφ [ra] <∞. (Φ)

We call a set E ⊆ Σ+
A

bounded, if E ⊆ {x : x0 ∈ S0} for some finite set S0 ⊂ S. We
shall consider functions ψ for which

ψ ∈ L1(µφ), and ψ ≤ Eµφ [ψ] outside a bounded set. (Ψ)

Critical exponents and abnormal fluctuations. Throughout this section let
(Σ+

A
, T ) be a topologically mixing topological Markov shift, and suppose {φ+tψ}t≥0

is a regular family, where φ, ψ are two locally Hölder continuous functions s.t.
supφ <∞, Ptop(φ) <∞ and supψ <∞.

Theorem 2. Assume (Φ) and (Ψ). The following are equivalent for 1 < α < 2:

(1) Critical Exponent: Ptop(φ + tψ) = Ptop(φ) + ct + tαL(1/t) with L(x)
slowly varying at infinity.

(2) Non-Gaussian Fluctuations: 1
Bn

(n−1∑
k=0

ψ ◦ T k − cn
) dist.−−−−→
n→∞

Gα w.r.t. µφ,

where c = Eµφ [ψ], Bn = n
1
α ℓ(n) and ℓ(n) is slowly varying at infinity.

The following theorems treat the case α = 1, 2.

4The case of discontinuous (‘first-order’) phase transitions is more amenable to rigorous treat-

ment. A discontinuous phase transition is characterized by the lack of differentiability of the
free energy. The theory of large deviations can be used to interpret such a singularity as lack of
exponential convergence in distribution of an associated macroscopic quantity to a unique ther-
modynamic value, see Ellis [El].
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Theorem 3. Assume (Φ) and (Ψ).

(1) Taylor Expansion: Ptop(φ+tψ) = Ptop(φ)+ct+ σ2

2 t
2+o(t2) with σ 6= 0 iff

c = Eµφ [ψ] and 1√
n

n−1∑
k=0

(ψ◦T k−c) dist.−−−−→
n→∞

N(0, σ2). In this case ψ ∈ L2(µφ).

(2) Critical Expansion: Ptop(φ+tψ) = Ptop(φ)+ct+ 1
2 t

2L(1/t) with L(x) s.v.

at infinity, L(x) 6→ const iff 1
Bn

(n−1∑
k=0

ψ◦T k−cn
) dist.−−−−→
n→∞

N(0, 1), c = Eµφ [ψ],

and Bn is r.v. of index 1
2 s.t.

√
n

Bn
→ 0. In this case L(x) → ∞.

Theorem 4.

(1) Taylor Expansion: Assume (Ψ). Then Ptop(φ+ tψ) = Ptop(φ)+ ct+ o(t)

with c = Eµφ [ψ], and 1
n

n−1∑
k=0

ψ◦T k −−−−→
n→∞

Eµφ [ψ] µφ–a.s. and in distribution.

(2) Critical Expansion: Assume (BIP). Then Ptop(φ+ tψ) = Ptop(φ) + ct+
tL(1/t) with |L(x)| s.v. at infinity and L(x) 6→ const. iff ψ 6∈ L1(µφ) and

∃Bn r.v. of index 1 s.t. n
Bn

→ 0 and 1
Bn

∑n−1
k=0 ψ ◦ T k dist.−−−−→

n→∞
G1. In this

case L(x) −−−−→
x→∞

−∞.

To understand the previous results, it is useful to think of ψn :=
∑n−1

k=0 ψ ◦T k as
of a ‘macroscopic’ quantity with average (at equilibrium) nEµφ [ψ]. In the absence
of a phase transition, one expects the fluctuations of ψn about its average to be
of order

√
n. The previous results say that in the presence of a continuous phase

transition with critical exponent α ≤ 2, the fluctuations are of order Bn with
Bn ≫ √

n (compare with [Hi]).

Remark: Theorems 2, 3, 4 remain true if the pair of conditions (Φ) and (Ψ) is
replaced by (BIP). Under this new set of assumptions:

(1) Theorem 2 is also valid for 0 < α < 1, except that in this case Eµφ [ψ] = −∞,
the slow variation of L(x) should be replaced by the slow variation of −L(x),
and c can be set to zero (because ct = o(tαL(1/t)), cn = o(Bn));

(2) Case (1) of theorem 3 holds iff ψ ∈ L2(µφ) and ψ is not a measurable
coboundary [AD], [Gou2], and case (2) of theorem 3 holds iff ψ 6∈ L2(µφ)
(see theorem 5 below);

(3) Case (1) of theorem 4 holds iff ψ ∈ L1(µφ).

When do different systems exhibit the same asymptotic expansion? In
order to answer this question, one needs to clarify what properties of ψ and µφ are
captured by α and L(x). The following is motivated by [AD], [GK].

Theorem 5. Let (Σ+
A
, T ) be a topologically mixing topological Markov shift with

the BIP property, and suppose φ, ψ are locally Hölder continuous s.t. supφ < ∞,
Ptop(φ) <∞, supψ <∞ and s.t. φ has an equilibrium measure. The following are
equivalent for L(x) s.t. |L(x)| is s.v. at infinity and 0 < α ≤ 2:

(1) Critical Exponent: Ptop(φ + tψ) = Ptop(φ) + ct + tαL(1/t)[1 + o(1)] as
t→ 0+;

(2) Domain of Attraction: One of the following holds as x→ ∞
(a) 0 < α < 2, α 6= 1 and µφ[ψ < −x] ∼ − x−α

Γ(1−α)L(x);
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(b) α = 1 and either ψ ∈ L1, and then L(x) = Eµφ [ψ]−c+o(1), or ψ 6∈ L1

and then L(x) ∼ Eµφ [ψ ∨ (−x)];
(c) α = 2 and either ψ ∈ L2, and then L(x) = 1

2σ
2 + o(1) for some σ ∈ R;

or ψ 6∈ L2, and then L(x) ∼ 1
2Eµφ

[
ψ21[|ψ|≤x]

]
.

Here f(x) ∼ g(x) means f(x)
g(x) −−−−→

x→∞
1 and a ∨ b := max{a, b}.

Remark 1: The implication (2) ⇒ (1) follows from theorem 2 and the work of
Aaronson & Denker [AD] who showed that (2) implies a distributional limit theo-
rem. We give an alternative proof below.

Remark 2: Theorem 5 enables one to construct an abundance of ψ’s for which
{φ + tψ}t≥0 has a critical exponent. These ψ’s are of course unbounded. Indeed,
by [S3], in the BIP case Ptop(φ+tψ) is real–analytic whenever Ptop(φ+tψ) <∞ for
all t in some two-sided neighbourhood of zero (e.g. bounded ψ’s). For shifts without
the BIP property, critical exponents are possible for ψ bounded (see below).

Remark 3: The following generalization of theorem 5 to general shifts is a direct
consequence of the discussion at the beginning of section 4 and theorem 8 there. Let
(Σ+

A
, T ) be a topologically mixing topological Markov shift, and suppose {φ+tψ}t≥0

is a regular family, where φ, ψ are two locally Hölder continuous functions s.t.
Ptop(φ) <∞, supφ <∞, and supψ <∞. We assume (Ψ) (but do not assume (Φ)
or (BIP)). Let A be the bounded set mentioned in (Ψ), and define

ψ := 1A ·
r−1∑

k=0

ψ ◦ T k, where r(x) := inf{n ≥ 1 : T nx ∈ A}.

Then Ptop(φ + tψ) = Ptop(φ) + ct + tαL(1/t)[1 + o(1)] for 1 < α ≤ 2 with L s.v

at infinity iff ψ satisfies the domain of attraction condition of theorem 5 w.r.t. the
normalized restriction of µφ to A. The random variables ψ can be thought of as
sums over ‘weakly correlated blocks’, see [Hi], [FF] and appendix B.

This explains why in the non–BIP case even bounded ψ’s may satisfy non-
Gaussian limit laws: ψ may have a heavy tail, even if ψ does not, because r may
have a heavy tail (of course (Φ) must fail in this case).

Returning to the case treated in theorem 5, we note that the domain of attrac-
tion condition is phrased in terms of ψ alone, and is not an asymptotic property

of
n−1∑
k=0

ψ ◦ T k as n→ ∞. Of course the thermodynamic limit is still present in the

form of the equilibrium measure µφ. But in the BIP case the equilibrium measure
satisfies certain a priori uniform bounds which allow one to deduce the following
thermodynamic-limit–free necessary condition for the existence of a critical expo-
nent. Choose some xa ∈ Σ+

A
s.t. xa starts at a (a ∈ S).

Corollary 1. Under the assumptions of theorem 5, Ptop(φ+ tψ) = Ptop(φ) + ct+
tαL(1/t) with |L(x)| s.v. at infinity and α ∈ (0, 2) \ {1} implies:

∑

a∈S:ψ(xa)<−x
eφ(xa) ≍ 1

xα
|L(x)| as x→ ∞.

Here and throughout f(x) ≍ g(x) as x→ ∞ means: ∃M such that 1
M ≤ f(x)

g(x) ≤M

for all x large enough.
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Critical exponents and slow decay of correlations. The covariance of two
square integrable functions f, g defined on a probability space (X,B, µ) is

Covµ(f, g) :=

∫
fgdµ−

∫
fdµ

∫
gdµ.

The following result says that under certain assumptions, the existence of a critical
exponent implies that the decay of correlations is sub-exponential, as expected from
the analogy described in the introduction. We need a strengthening of (Ψ):

ψ ∈ L1 and ∃ǫ > 0 s.t. ψ ≤ Eµφ [ψ] − ǫ outside a bounded set. (Ξ)

Theorem 6. Let (Σ+
A
, T ) be a topologically mixing topological Markov shift, and

suppose {φ + tψ}t≥0 is a regular family, where φ, ψ are locally Hölder continuous
functions s.t. supφ < ∞, Ptop(φ) < ∞, ‖ψ‖∞ < ∞, and ψ satisfies (Ξ). If
Ptop(φ+ tψ) = Ptop(φ) + ct+ tαL(1/t) with 1 < α < 2 and L is s.v. at ∞, then

Covµφ(f, g ◦ T n) ≍
L(n)

nα−1

∫
fdµφ

∫
gdµφ as n→ ∞

for all f, g locally Hölder continuous with bounded support and positive expectation.

3. Proofs for shifts satisfying the BIP property

Standing Assumptions. In this section we give the proofs of theorems 2, 3, 4
and 5 in the case of topologically mixing countable Markov shifts with (BIP). Our
assumptions on φ and ψ are that they are locally Hölder continuous, bounded from
above, and that Ptop(φ) < ∞. We do not assume (Φ), (Ψ) or that {φ + tψ}t>0 is
regular. We do assume that φ has an equilibrium measure.5

Our results remain unchanged if we add to φ a term of the form h − h ◦ T + c
with h bounded (locally) Hölder continuous and c ∈ R. It is always possible, by
means of such h and c, to change φ so that Ptop(φ) = 0, supφ ≤ 0, and

∑

Ty=x

eφ(y) = 1 for all x.

This is Lemma 1 in [S2] (the boundedness of h is proved for systems with the
BIP property in [S3]). Henceforth, we assume that φ satisfies these additional
assumptions.

Distributional Limit Theorems and Laplace Transforms. We shall study

the distributional limit behaviour of Xn := 1
Bn

(∑n−1
k=0 ψ ◦ T k − cn

)
by analyzing

the behaviour of its Laplace transform Eµφ [e
tXn ]:

Proposition 1. Let X,Xn be random variables such that for some ω > 0, E(etXn),
E(etX) are finite for all 0 ≤ t ≤ ω. The following are equivalent:

(1) E(etXn) −−−−→
n→∞

E(etX) for all 0 ≤ t ≤ t0 and some t0 > 0;

(2) Xn
dist.−−−−→
n→∞

X.

Proof. See e.g. Martin–Löf [ML]. �

5In fact, this assumption can be removed as well: locally Hölder potentials with finite pressure
on shifts with (BIP) always have Gibbs measures [S3], and everything we say below holds with
µφ=Gibbs measure of φ.
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Nagaev’s Method [N]. This is a method for analyzing the Laplace (or Fourier)
transform of the distribution of the sum of dependent identically distributed random
variables. We need it to analyze the distribution of ψn := ψ+ψ ◦T + · · ·+ψ ◦T n−1

with respect to µφ. The idea is to construct a family of operators Rt such that

Eµφ [e
tψn ] = Eµφ [R

n
t 1].

and use operator theory to analyze the right hand side, see Nagaev [N] and Aaron-
son & Denker [AD].

In order to construct Rt, we recall some facts on the structure of equilibrium
measures for countable Markov shifts. It was proved in [S4] and [BS] that the
equilibrium measure µφ must be of the form hdν where h is a positive continuous

function and ν is a positive measure such that R∗
0ν = ePtop(φ)ν and R0h = ePtop(φ)h,

where R0 is Ruelle’s operator:

(R0f)(x) =
∑

Ty=x

eφ(y)f(y).

It is also known that h is, up to a constant, the unique positive continuous function
such that R0h = ePtop(φ)h. Since by our assumptions on φ Ptop(φ) = 0 and R01 ≡∑
Ty=x e

φ(y) = 1, we must have h = const., whence µφ is a constant times ν. It

follows that R∗
0µφ = µφ. In particular, Eµφ [R0F ] = Eµφ [F ] for every bounded

continuous function F . Now define the operators

Rtf := R0[e
tψf ].

A calculation shows that Rnt 1 = Rn0 [etψn1]. Passing to expectations with respect
to µφ, we see that Eµφ [e

tψn ] = Eµφ [R
n
0 (etψn)] = Eµφ [R

n
t 1] as required.

Next we seek a Banach space L such that Rt : L → L has good spectral prop-
erties. Such a space was found by Aaronson and Denker [AD]. We review their
construction.

Recall the metric d(x, y) on Σ+
A
, and fix some κ > 0 such that φ, ψ are both

Hölder continuous with exponent κ with respect to d. Define L to be the space of
functions f : Σ+

A
→ R such that

‖f‖L := ‖f‖∞ +Df <∞, where Df := sup{ |f(x) − f(y)|
d(x, y)κ

: x 6= y, x0 = y0}.

This is a Banach space with respect to ‖ · ‖L.

Proposition 2 (Aaronson & Denker). Suppose Σ+
A

has the BIP property, and let
φ, ψ be two locally Hölder continuous functions such that supφ ≤ Ptop(φ) = 0,
R01 = 1, supψ <∞, and φ has an equilibrium measure µφ. Then:

(1) Boundedness: Rt(L) ⊆ L and Rt : L → L are bounded linear operators
for all t ≥ 0.

(2) Spectral Gap: R0 = P +N where PR0 = R0P , P 2 = P , NP = PN = 0
and the spectral radius of N is less than one. P is given by Pf := Eµφ [f ].

(3) Continuity: ‖Rt −Rs‖ = O
(
|t− s| + Eµφ

(
|1 − e|t−s|ψ|

))
for 0 ≤ t, s ≤ 1,

where ‖ · ‖ is the operator norm.
(4) Differentiability: if Eµφ

[
|ψ|
]
<∞, then t 7→ Rt is continuously differen-

tiable on [0, δ0) for some δ0 > 0. The derivative is R′
t : f 7→ Rt(ψf) (right

derivative is meant at 0).
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Proof. The BIP property implies that any equilibrium measure µφ of a locally
Hölder continuous potential φ has the Gibbs property: ∃G = G(φ) such that

G−1µφ[x0, . . . , xn−1] ≤ eφn(x) ≤ Gµφ[x0, . . . , xn−1], (x ∈ Σ+
A
)

where φn := φ+ φ ◦ T + · · · + φ ◦ T n−1 [S3]. Thus eφ(x) ≤ Gµφ[x0].
Fix some bounded Lipschitz function F : (−∞, supψ] → R with Lipschitz con-

stant Lip(F ), and define the linear operator RF : f 7→ R0[F ◦ ψ · f ]. We need
the following estimate: For some constant M independent of F , and Da[F ◦ ψ] :=

sup{F (ψ(x))−F (ψ(y))
d(x,y)κ : x 6= y, x, y ∈ [a]},

‖RF ‖ ≤M

(
Eµφ [|F | ◦ ψ] +

∑

a∈S
µφ[a]Da(F ◦ ψ)

)
. (2)

To prove this, we must estimate ‖RF f‖∞, D[RF f ] for f ∈ L. Fix x, y such that
x0 = y0, and let P (x0) := {a ∈ S : tax0 = 1}. Then

|RF f(x) −RF f(y)| ≤
∑

a∈P (x0)

eφ(ax)|1 − eφ(ay)−φ(ax)| · |F (ψ(ax))f(ax)| +

+
∑

a∈P (x0)

eφ(ay)|F (ψ(ax)) − F (ψ(ay))||f(ax)|

+
∑

a∈P (x0)

eφ(ay)|F (ψ(ay))||f(ax) − f(ay)|.

If φ(ax) 6= φ(ay) then

|1 − eφ(ax)−φ(ay)| ≤ |1 − eφ(ax)−φ(ay)|
|φ(ax) − φ(ay)| Dφd(ax, ay)

κ ≤

≤ sup{ |1 − eδ|
δ

: |δ| ≤ Dφd(ax, ay)κ}Dφd(ax, ay)κ < Kd(x, y)κ

with (for example) K = Dφ · sup{ |1−eδ|
δ : |δ| ≤ Dφ}. Re-define K if necessary

to guarantee K > 1. It is now straightforward to deduce, using the inequality∑
a∈P (x0)

eφ(ax) ≤ G, that

D(RF f) ≤ 2K‖f‖L‖R0(|F | ◦ ψ)‖∞ +G‖f‖L
∑

a∈S
µφ[a]Da(F ◦ ψ).

It is also clear that ‖RF f‖∞ = ‖R0[F ◦ ψ · f ]‖∞ ≤ ‖R0(|F | ◦ ψ)‖∞‖f‖L. Thus

‖RF‖ ≤ 3K‖R0(|F | ◦ ψ)‖∞ +G
∑

a∈S
µφ[a]Da(F ◦ ψ).

We proceed to estimate ‖R0(|F | ◦ ψ)‖∞:

R0(|F | ◦ ψ)(x) ≤ G
∑

a∈P (x0)

µφ[a]
(
inf
[a]

|F | ◦ ψ +Da(|F | ◦ ψ)
)

≤ G

(
Eµφ [|F | ◦ ψ] +

∑

a∈S
µφ[a]Da(F ◦ ψ)

)
.

Recalling that K > 1, we obtain (2) with M := 3KG.
Note that for every a, Da(|F | ◦ ψ) ≤ Lip(F )Dψ, so

‖RF ‖ ≤M
(
Eµφ [|F | ◦ ψ] + Lip(F )Dψ

)
.



10 OMRI SARIG

The boundedness of Rt is the special case with F (ξ) = etξ. The spectral gap
of R0 follows from the Ionescu-Tulcea Marinescu theorem and the mixing of µφ,
as in [AD]. The modulus of continuity of t 7→ Rt is obtained by observing that
Rt −Rs = RF with F (ξ) = etξ − esξ.

Differentiability is more difficult. We begin with the continuity of t 7→ R′
t (defined

in part (4)). Write (R′
t+h − R′

t)f = RFh(f), where Fh(ξ) = etξξ(ehξ − 1). We fix
t > 0 and show that the norm of this operator tends to zero as h→ 0, using (2):

(1) Eµφ [|Fh ◦ ψ|] −−−→
h→0

0 because Fh ◦ ψ −−−→
h→0

0 pointwise and |Fh ◦ ψ| is

uniformly bounded for |h| < t
2 .

(2)
∑

a µφ[a]Da(Fh ◦ ψ) −−−→
h→0

0: By the mean value theorem

Da(Fh ◦ ψ) ≤ Dψ · sup{|F ′
h(z)| : z ∈ (inf ψ[a], supψ[a])}.

The right hand side converges to zero as h→ 0, and is uniformly bounded
(as a function of a) for all |h| < t

2 (direct calculation). The result follows
from the bounded convergence theorem.

It follows from (2) that ‖RFh‖ −−−→
h→0

0, whence the continuity of R′
t for t > 0.

The continuity from the right at t = 0 can be proved by repeating the previous
argument with t = 0 and h → 0+. The only difference is that now instead of the
bounded convergence theorem one has to use the dominated convergence theorem,
the integrability of |ψ|, and the uniform boundedness of ehψ, etψtψ for 0 < h, t < 1.

We prove the differentiability of Rt. Set Fh(ξ) := ehξ−1
h − ξ. We have:

(
Rt+h −Rt

h
−R′

t

)
f ≡ RFh(e

tψf).

It is easy to check that eψ ∈ L and that ‖fetψ‖L ≤ ‖f‖L‖etψ‖L. Consequently
∥∥∥∥
Rt+h −Rt

h
−R′

t

∥∥∥∥ ≤ ‖etψ‖L‖RFh‖ = O

(
Eµφ [|Fh(ψ)|] +

∑

a∈S
µφ[a]Da(Fh ◦ ψ)

)
.

By the mean value theorem, the following inequality holds on [a]: Da(Fh ◦ ψ) ≤
Dψ|eh(ψ+var1ψ) − 1|. Consequently,

∥∥∥∥
Rt+h −Rt

h
−R′

t

∥∥∥∥ = O
(
Eµφ [|Fh(ψ)|] + Eµφ [|eh(ψ+var1ψ) − 1|]

)
.

Now |Fh| ◦ψ is dominated by a constant times 1 + |ψ|, and |eh(ψ+var1ψ) − 1| is uni-

formly bounded for 0 < h < 1. Therefore, if ψ ∈ L1, then
∥∥∥Rt+h−Rth −R′

t

∥∥∥ −−−−→
h→0+

0.

To see the limit as h→ 0− (when t > 0), write τ = t−|h|, τ + |h| = t and repeat
the previous argument with τ for t, using the continuity of t 7→ R′

t and the fact
that the big Oh in the previous equation is uniform on a neighbourhood of t. �

Spectral gaps are stable under small perturbations [Ka]. Therefore, there ex-
ists an open neighbourhood U of R0 in Hom(L,L) (the space of bounded linear
operators on L over C) and analytic maps λ : U → C, P,N : U → Hom(L,L) s.t.

R = λ(R)[P (R) +N(R)]
RP (R) = P (R)R = λ(R)P (R)
P (R)N(R) = N(R)P (R) = 0

P (R)2 = P (R), dim Im[P (R)] = 1

for all R ∈ U,
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and such that the spectral radius of N(R) is uniformly smaller than one.

Proposition 3. Under the standing assumptions of this section, there exists ǫ0 > 0
and ǫ(t) −−−−→

t→0+
0 s.t. for all 0 ≤ t ≤ ǫ0 Eµφ [e

tψn ] = [1 +O(ǫ(t))] exp[nPtop(φ+ tψ)]

uniformly in n, where ψn :=
∑n−1
k=0 ψ ◦ T k.

Proof. Fix ǫ0 > 0 so small that 0 ≤ t ≤ ǫ0 implies that Rt ∈ U and that the spectral
radius of Nt is less than θ < 1. This is possible, because t 7→ Rt is continuous.
For such t’s λ(t) := λ(Rt), Pt := P (Rt) and Nt := N(Rt) make sense, and depend
continuously on t. In particular, Eµφ [Pt1] −−−−→

t→0+
Eµφ [P1] = Eµφ [1] = 1. Making ǫ0

smaller, if necessary, we ensure that Eµφ [Pt1] 6= 0 for all 0 < t < ǫ0.
Now define ht := Pt1/Eµφ [Pt1]. Recalling that R∗

0µφ = µφ, we see that

λ(t)n =

∫
λ(t)nhtdµφ =

∫
Rnt htdµφ =

=

∫
Rn0 [etψnht]dµφ = Eµφ [e

tψn ] +

∫
etψn(ht − 1)dµφ.

Now |
∫
etψn(ht − 1)dµφ| ≤ Eµφ [e

tψn ]‖ht − 1‖L, so

λ(t)n = [1 +O(‖ht − 1‖L)]Eµφ [e
tψn ].

We show that ‖ht − 1‖L −−−−→
t→0+

0. Clearly

‖ht − 1‖L ≤ ‖Pt1 − 1‖L + |1 − Eµφ(Pt1)|
Eµφ(Pt1)

≤ 2‖1‖L
Eµφ(Pt1)

‖P (Rt) − P (R0)‖.

The spectral gap of R0 implies that ‖P (Rt) − P (R0)‖ = O(‖Rt −R0‖) as t→ 0+,
so by the previous proposition,

‖ht − 1‖L = O
(
|t| + Eµφ(|1 − e|t|ψ|)

)
. (3)

The bounded convergence theorem now shows that ‖ht− 1‖L −−−−→
t→0+

0. We deduce:

∃ǫ(t) −−−−→
t→0+

0 such that Eµφ [e
tψn ] = [1 +O(ǫ(t))]λ(t)n .

We show that λ(t) = exp[Ptop(φ + tψ)]. Consider the indicator function 1[a] of
[a] for some a ∈ S s.t. µφ[a] 6= 0 (in fact every a ∈ S has this property). Since

1[a] ∈ L, Pt1[a]
L−−−−→

t→0+
P1[a] = Eµφ [1a] 6= 0. Thus Pt1[a] > 0 for all t small enough.

Fix some xa ∈ [a]. The commutation relations between Rt, Pt and Nt imply that

(Rnt 1[a])(xa) = λ(t)n[Pt1[a]+N
n
t 1[a]](xa) = λ(t)n[Pt1[a](xa)+o(1)] ∼ λ(t)nPt1[a](xa).

We see that for every xa ∈ [a],

log λ(t) = lim
n→∞

1

n
log(Rnt 1[a])(xa) = lim

n→∞
1

n
log

∑

Tny=xa

eφn(y)+tψn(y)1[a](y) =

= lim
n→∞

1

n
log

∑

Tnz=z

eφn(z)+tψn(z)1[a](z),

where the last transition is because the local Hölder continuity of φ and ψ allows us
to change each y ∈ T−n(xa)∩[a] into z(y) = (y0, . . . , yn−1; y0, . . . , yn−1; . . .) without
affecting the limit. By the variational principle of [S1], logλ(t) = Ptop(φ+ tψ). �



12 OMRI SARIG

Now that we have related E[etψn ] to Ptop(φ+ tψ) we can proceed as in the case
of i.i.d’s (see e.g. [F]). It is convenient to start with theorem 4, part 1.

Proof of Theorem 4 part 1 for shifts satisfying (BIP). We continue to as-
sume w.l.o.g. that φ ≤ Ptop(φ) = 0,

∑
Ty=x e

φ(y) = 1 and R∗
0µφ = µφ. Subtracting

a suitable constant from ψ if necessary, we also assume w.l.o.g. that supψ < 0.
Recall the notation Rt, λ(t), ht from the proof of proposition 3. We have:

λ(t) − 1 =

∫
Rthtdµφ − 1 =

∫
R0(e

tψht)dµφ −
∫
htdµφ =

=

∫
(etψ − 1)htdµφ = Eµφ [e

tψ − 1] + Eµφ [(e
tψ − 1)(ht − 1)].

Now |Eµφ [(etψ − 1)(ht− 1)]| ≤ |Eµφ [etψ − 1]| · ‖ht− 1‖∞ = o(Eµφ [etψ − 1]), because

etψ − 1 doesn’t change sign and because ‖ht− 1‖∞ ≤ ‖ht− 1‖L → 0 (see the proof
of proposition 3). We conclude that λ(t) − 1 = [1 + o(1)]Eµφ [etψ − 1].

We have seen in the proof of proposition 3 that λ(t) = expPtop(φ + tψ). Since
Ptop(φ+ tψ) = o(1) as t→ 0+,

Ptop(φ+ tψ) = [1 + o(1)]
(
ePtop(φ+tψ) − 1

)
= [1 + o(1)]Eµφ [e

tψ − 1], as t→ 0+. (4)

It follows that Ptop(φ+ tψ) = ct+o(t) iff Eµφ [e
tψ−1] = [ct+o(t)][1+o(1)], as t→

0+, which (upon division by t and some rearrangements) is equivalent to

lim
t→0+

Eµφ

(
etψ − 1

tψ
ψ

)
= c.

It is not difficult to see, using ψ < 0, that the limit is equal to Eµφ [ψ]. We conclude

that Ptop(φ+ tψ) = ct+ o(t) iff ψ ∈ L1 and c = Eµφ [ψ].

In this case 1
n

∑n−1
k=0 ψ ◦ T k −−−−→

n→∞
Eµφ [ψ] µφ–almost surely and in distribution,

because of the ergodicity of µφ [BS] and the Birkhoff ergodic theorem. This proves
the ‘Taylor expansion’ case of theorem 4 (in the extended form described by the
remark after theorem 4).

Proof of Theorem 2 for shifts satisfying (BIP). We keep the standing as-
sumptions of this section. Assume first that Ptop(φ+tψ) = ct+tαL(1/t) with |L(x)|
slowly varying at infinity and 0 < α < 2, α 6= 1 (we are also considering 0 < α < 1
because of the remark after theorem 4). Since for every continuous function f and
constant C, Ptop(f + C) = Ptop(f) + C, we can normalize ψ to make c = 0. The
asymptotic relation becomes Ptop(φ+ tψ) = tαL(1/t).

Construct Bn → ∞ such that n|L(Bn)|
Bαn

−−−−→
n→∞

1. Here is how to do this: The

function f(x) := xα/|L(x)| is regularly varying at infinity with index α > 0, and
therefore admits a regularly varying asymptotic inverse g(x) (see appendix A). By
definition, (f ◦ g)(x) ∼ (g ◦ f)(x) ∼ x as x → ∞, so Bn := g(n) is as required (it
tends to infinity, because it is regularly varying with index 1/α > 0).

Assume for the moment that the sign of L(x) converges to sgn(α−1) as x→ ∞.
Proposition 3 and the expansion of Ptop(φ + tψ) imply that

Eµφ [e
t ψn
Bn ] = [1 +O(ǫ( t

Bn
))] exp[nPtop(φ+ t

Bn
ψ)] =

= [1 +O(ǫ( t
Bn

))] exp[tα nL(Bn)
Bαn

L(Bn/t)
L(Bn) ] −−−−→

n→∞
exp[sgn(α− 1)tα].
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The last expression is the Laplace transform of Gα, and so, by proposition 1 (whose

conditions hold because supψ < ∞), 1
Bn
ψn

dist.−−−−→
n→∞

Gα. Finally we observe that

when α > 1, theorem 4 part 1 applies, and gives Eµφ [ψ] = c.
We now explain why sgn[L(x)] −−−−→

x→∞
sgn(α−1). Recalling the definition of the

topological pressure, we observe that ϕ(t) := tαL(1/t) = Ptop(φ + tψ) is convex
on [0,∞). If α > 1, then ϕ(0) = 0 and ϕ′

+(0) = 0 (the right-derivative at zero).
Convexity forces ϕ to be non-negative, whence L(x) ≥ 0 for all x > 0. Since L(x)
is eventually non-zero (its absolute value is assumed to be slowly varying), it is
eventually positive. If on the other hand 0 < α < 1, then for any c0

Ptop(φ+ t(ψ − c0)) = Ptop(φ + tψ) − c0t =

= tαL(1/t)[1 − c0(1/t)
α−1/L(1/t)] = tαL(1/t)[1 + o(1)].

If c0 > supψ, then Ptop(φ + t(ψ − c0)) < Ptop(φ) = 0. This forces L(1/t) to be
eventually negative. This completes the proof of (1) ⇒ (2).

We prove the other direction. Assume 1
Bn

(ψn − cn)
dist.−−−−→
n→∞

Gα for Bn regularly

varying with index 1/α and c ∈ R. Again, we can subtract a constant from ψ to
make c = 0. Our objective is then to show that Ptop(φ) = tαL(1/t) with |L(x)|
slowly varying.

Proposition 1 says that Eµφ [e
t ψn
Bn ] → exp[sgn(α − 1)tα]. Combining this with

Proposition 3 gives, since Bn → ∞,

lim
n→∞

nPtop(φ+ t
Bn
ψ) = sgn(α− 1)tα (5)

on some one–sided right neighbourhood of 0. Applying the sufficient condition for
regular variation of appendix A with f(x) := |Ptop(φ+ 1

xψ)|, an = n and bn = Bn,
we conclude that Ptop(φ + tψ) = tρL(1/t), with |L(x)| slowly varying at infinity
and some ρ > 0. By (5), ρ = α. �

Proof of Theorem 4 part 2 for shifts satisfying (BIP). We keep the standing
assumptions of this section. Suppose Ptop(φ+ tψ) = ct+ tL(1/t) with |L(x)| slowly
varying at infinity and L(x) 6→ const.

Changing ψ by a constant, we arrange for supψ < 0. Equation (4) holds, and

leads to c+ L(1/t) = [1 + o(1)]Eµφ

(
etψ−1
tψ ψ

)
−−−−→
t→0+

Eµφ [ψ]. Since L(x) 6→ const.,

we must have Eµφ [ψ] = −∞, whence L(x) → −∞.
As in the proof of theorem 2, we construct Bn regularly varying of index 1 such

that n|L(Bn)|
Bn

→ 1, and observe using proposition 3 that Eµφ [e
t
Bn

ψn ] −−−−→
n→∞

e−t.

The limit is the Laplace transform of G1. It follows that 1
Bn
ψn

dist.−−−−→
n→∞

G1. Note

that n/Bn → 0, because |L(x)| → ∞. This proves (⇒).

To see (⇐) assume that ψn
Bn

dist.−−−−→
n→∞

G1 with Bn r.v. of index one such that

n/Bn → 0. Arguing as in the proof of theorem 2, we deduce that Ptop(φ + tψ) =

tL(1/t) with |L(x)| slowly varying at infinity such that n|L(Bn)|
Bn

−−−−→
n→∞

1. Since

n/Bn → 0, L(x) 6→ const. �
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Proof of Theorem 3 for shifts satisfying (BIP). We keep the standing as-

sumptions of this section. Assume first that 1
Bn

(ψn − cn)
dist.−−−−→
n→∞

N(0, 1) for some

Bn regularly varying of index 1
2 (this includes the case Bn = σ

√
n). Subtracting a

suitable constant from ψ we may assume w.l.o.g that c = 0 (of course we can no
longer assume that supψ < 0).

The Laplace transform of N(0, 1) is e
1
2 t

2

. Arguing as in the proof of theorem 2,
we obtain (since Ptop(φ) = 0)

Ptop(φ+ tψ) =
1

2
t2L(1/t) (6)

with L(x) s.v. at infinity such that nL(Bn)
B2
n

−−−−→
n→∞

1.

If Bn ∼ σ
√
n, then L(Bn) −−−−→

n→∞
σ2, and if

√
n/Bn → 0, then L(Bn) −−−−→

n→∞
∞.

The same limits must hold for L(x) as x → ∞, because of the regular variation of
Bn and L(x) (use the uniform convergence theorem for slow variation in appendix
A). This proves (⇐) in parts (1) and (2).

We prove (⇒). It is enough to treat the case

Ptop(φ+ tψ) =
1

2
t2L(1/t)

with L(x) = σ2 + o(1) or with L(x) 6→ const., L slowly varying (we can always
reduce to this case by subtracting c from ψ). Note that Ptop(φ + tψ) = o(t),
whence by theorem 4 for systems with BIP, ψ ∈ L1 and Eµφ [ψ] = 0.

As before, the asymptotic expansion above implies the existence of Bn regularly

varying of order 1
2 such that 1

Bn
ψn

dist.−−−−→
n→∞

N(0, 1), and Bn is determined up to

asymptotic equivalence by the condition nL(Bn)
B2
n

−−−−→
n→∞

1. In the Taylor expansion

case L(x) = σ2 + o(1), so Bn ∼ σ
√
n. In the critical expansion case, L(x) 6→ const.

We shall see in the next section that this happens iff ψ 6∈ L2 and L(x) → ∞. In

particular
√
n

Bn
→ 0, and L(x) → const. can only happen if ψ ∈ L2. �

Proof of Theorem 5. We keep the standing assumptions of this section, and
begin with the direction (1) ⇒ (2).

Case 1. 0 < α < 1.

In this case (1) can be rewritten as Ptop(φ + tψ) = tαL(1/t)[1 + o(1)], because
Ptop(φ) = 0 (standing assumptions) and ct = o(tαL(1/t)). We assume without loss
of generality that supψ < 0 (otherwise subtract a suitable constant c0 from ψ and
pass from L(x) to L(x) − c0t

1−α ∼ L(x)). We saw in the proof of theorem 2 that
L(x) is eventually negative.

Since supψ < 0, (4) holds, and so

1 − Eµφ [e
tψ] ∼ tα|L(1/t)| as t → 0+. (7)
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Write 1−Eµφ [e
tψ] = Eµφ [1−e−t|ψ|] =

∫∞
0

(1−e−tx)dF (x), where F (x) := µφ
[
|ψ| ≤

x
]

is the distribution function of |ψ|. Now6

∫ ∞

0

(1 − e−tx)dF (x) = t

∫ ∞

0

∫ x

0

e−tydydF (x)

= t

∫ ∞

0

∫ ∞

0

e−ty1[y<x]dF (x)dy = t

∫ ∞

0

e−ty(1 − F (y))dy.

Consequently,
∫∞
0 e−tydU(y) ∼ tα−1|L(1/t)| where U(y) :=

∫ y
0 [1 − F (x)]dx.

By Karamata’s Tauberian theorem this is equivalent to U(x) ∼ x1−α

Γ(2−α) |L(x)| as

x→ ∞. The monotone density theorem of appendix A applies; Differentiating, we

obtain 1 − F (x) ∼ x−α

Γ(1−α) |L(x)| as x→ ∞, which is case (2) (a) in theorem 5.

Case 2. α = 1

According to Theorem 4 and the remark immediately following it, either ψ ∈ L1

and then L(x) = Eµφ [ψ] − c + o(1), or ψ 6∈ L1 and then L(x) −−−−→
x→∞

−∞. In the

first case there is nothing further to prove, so we focus on the second.
In this case the asymptotic expansion of the pressure becomes Ptop(φ + tψ) ∼

tL(1/t), because Ptop(φ) = 0 and ct = o(tL(1/t)). As before, we may assume
w.l.o.g. that supψ < 0, and this gives us (4) with α = 1.

Again, Karamata’s Tauberian Theorem leads to U(x) =
∫ x
0 [1−F (y)]dy ∼ |L(x)|

with F (·) the distribution function of |ψ|. We now observe that
∫ x

0

[1 − F (t)]dt =

∫ x

0

(∫ ∞

t

dF (y)

)
dt =

=

∫ ∞

0

∫ ∞

0

1[t≤x]1[t<y]dt dF (y) =

∫ ∞

0

(x ∧ y)dF (y) = Eµφ
[
|ψ| ∧ x

]
,

where a∧b := min{a, b}. We obtain Eµφ
[
|ψ|∧x

]
∼ |L(x)|. Since L(x) is eventually

negative and supψ < 0, case (2)(b) follows.

Case 3. 1 < α ≤ 2.

By theorem 4, in this case ψ ∈ L1 and c = Eµφ [ψ]. Assume w.l.o.g. that Eµφ [ψ] = 0.
We are left with the expansion Ptop(φ + tψ) = tαL(1/t)[1 + o(1)]. As in the proof
of theorem 2, L(x) must be eventually positive.

Proposition 2 says that t 7→ Rt is differentiable on [0, δ0) for some δ0 > 0, that
its derivative there is R′

t : f 7→ Rt(ψf), and that this derivative converges to R′
0 as

t → 0+. Make δ0 smaller, if necessary, to ensure that Pt1 > 0 for 0 < t < δ0. This
is possible, because Pt1 → P01 ≡ 1 uniformly.

Since Pt = P (Rt) and P (·) is analytic close to R0, t 7→ Pt1 is differentiable
on [0, δ0) and its derivative is continuous from the right at zero. It follows that
t 7→ ht ≡ Pt1/Eµφ [Pt1] is differentiable on [0, δ0) and that its derivative, which we

denote by h′t, satisfies h′t
L−−−−→

t→0+
h′0.

Differentiation of Rtht = λ(t)ht gives: R0[e
tψψht]+R0[e

tψh′t] = λ′(t)ht+λ(t)h′t.
Taking expectations on both sides, we obtain after some re-organization:

Eµφ [e
tψψht] = λ′(t) + (λ(t) − 1)Eµφ [h

′
t] + tEµφ

[
1 − etψ

tψ
ψh′t

]
.

6Here and throughout Lebesgue-Stieltjes integrals are used with the convention
R b

a
=

R

(a,b].
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Add Eµφ [e
tψψ(1 − ht)] to both sides to get:

Eµφ [e
tψψ] = λ′(t) + (λ(t) − 1)Eµφ [h

′
t] + tEµφ

[
1 − etψ

tψ
ψh′t + etψψ

1 − ht
t

]
.

Since supψ <∞, |1−etψtψ ψh′t + etψψ 1−ht
t | is dominated by some constant times |ψ|.

Since ψ ∈ L1, Eµφ

[
1−etψ
tψ ψh′t + etψψ 1−ht

t

]
−−−−→
t→0+

−2Eµφ [ψh
′
0]. It follows that

Eµφ [e
tψψ] = λ′(t) + (λ(t) − 1)

(
Eµφ [h

′
0] + o(1)

)
− 2tEµφ [ψh

′
0] + o(t). (8)

Recalling that λ(t) = expPtop(φ+ tψ) = exp
(
[1 + o(1)]tαL(1/t)

)
, we see that

λ(t) − 1 ∼ tαL(1/t).

Now λ(t)− 1 is convex, because Ptop(φ+ tψ) is convex. Therefore, its derivative is
monotonic, and the Monotone Density Theorem (appendix A) applies; Differenti-
ating, we get λ′(t) ∼ αtα−1L(1/t). Plugging these relations into (8) gives

Eµφ [e
tψψ] =

{
αtα−1L(1/t)(1 + o(1)) 1 < α < 2

2t
(
L(1/t) − Eµφ [ψh

′
0]
)

+ o(t) + o(tL(1/t)) α = 2.
(9)

When α = 2, this relation implies (since Eµφ [ψ] = 0)

(1 + o(1))L(1/t) − Eµφ [h
′
0ψ] =

1

2t
Eµφ [e

tψψ] + o(1)

=
1

2
Eµφ

[etψ − 1

tψ
· ψ2

]
+ o(1) −−−−→

t→0+

1

2
Eµφ [ψ

2],

because etψ−1
tψ is positive and uniformly bounded on [ψ 6= 0] when 0 < t < 1. We

see that L(x) → const. or L(x) → ∞ according to whether ψ ∈ L2 or not.
Consider first the case α = 2 and ψ ∈ L2. In this case L(x) → const. This

constant is non-negative, otherwise Ptop(φ+ tψ) = t2L(1/t)[1 + o(1)] is not convex
(see the proof of Theorem 2). We denote it by 1

2σ
2, and recognize the the first half

of (2)(c) in Theorem 5.
Next assume that α = 2 and ψ 6∈ L2, or that 1 < α < 2. In these cases, (9)

becomes Eµφ [e
tψψ] ∼ αtα−1L(1/t) (when α = 2 this is because L(x) → ∞).

We wish to differentiate this asymptotic relation. In order to do this we first
need to check that Eµφ [e

tψψ] has a monotonic derivative on some interval (0, δ).
To see this, we use the dominated convergence theorem to see that for every t > 0

d

dt
Eµφ [e

tψψ] = Eµφ

[
lim
h→0

etψψ
ehψ − 1

h

]
= Eµφ [e

tψψ2].

This function is convex. Therefore, it is monotonic on (0, δ) for some δ > 0, and
the monotone density theorem is applicable. Differentiating, we have

Eµφ [e
tψψ2] ∼ α(α − 1)tα−2L(1/t), as t→ 0+.

The right-hand-side diverges at zero; It follows that Eµφ [ψ
2] = ∞ for α ∈ (1, 2).

Since supψ <∞, Eµφ [e
tψψ2] ∼ Eµφ [e

−t|ψ|ψ2] as t→ 0+, and we obtain:

Eµφ [e
−t|ψ||ψ|2] ∼ α(α− 1)tα−2L(1/t), as t→ 0+.
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Setting F (x) := µφ[|ψ| ≤ x], we rewrite this in the form

α(α− 1)tα−2L(1/t) ∼
∫ ∞

0

e−txx2dF (x) ≡
∫ ∞

0

e−txd

(∫ x

0

y2dF (y)

)
.

By Karamata’s Tauberian Theorem:
∫ x

0

y2dF (y) ∼ α(α − 1)

Γ(3 − α)
x2−αL(x), as x→ ∞.

When α = 2 (and ψ 6∈ L2), we obtain

L(x) ∼ 1

2

∫ x

0

y2dF (y) =
1

2
Eµφ [ψ

21[|ψ|≤x]],

and we recognize case (2)(c) of theorem 5. When 1 < α < 2, Feller’s theorem
(appendix A) gives 1 − F (x) ∼ − 1

Γ(1−α)x
−αL(x) as x → ∞. Observing that

1 − F (x) = µφ[ψ < −x] for all x > supψ, we recognize case (2)(a) in theorem 5.

We now assume part (2) in theorem 5, and prove part (1). As explained before,
this follows from Aaronson & Denker in [AD] and theorems 2, 3, and 4, but we
include the proof anyway, because it is much simpler than in the more general case
they treated (more on this below).

Suppose first that 0 < α < 1, and assume w.l.o.g that supψ < 0. Reversing the

steps of the proof of case 1 above, we see that µφ[ψ < −x] ∼ x−α

|Γ(1−α)| |L(x)| implies

that Eµφ [e
tψ − 1] ∼ tα|L(1/t)| as t → 0+. This implies the desired expansion of

Ptop(φ+ tψ) because of (4).
Now assume that α = 1. If ψ ∈ L1 and L(x) = Eµφ [ψ] − c + o(1), then the

expansion of Ptop(φ+ tψ) follows from the version of theorem 4 for shifts satisfying
(BIP). If ψ 6∈ L1 and L(x) ∼ Eµφ [ψ∨(−x)] as x→ ∞, then necessarily |L(x)| → ∞.
This allows us to assume w.l.o.g. that supψ < 0, because a subtraction of a
constant from ψ does not affect the statements Ptop(φ+ tψ) = tL(1/t)[1 + o(1)] or
L(x) ∼ Eµφ [ψ ∨ (−x)]. We can now reverse the steps of the proofs of case 2, and

then of case 1, to obtain
∫∞
0

(1 − e−tx)dF (x) ∼ t|L(1/t)|. This, by (4), implies the
desired expansion of Ptop(φ+ tψ).

Now suppose that 1 < α < 2 and µφ[ψ < −x] ∼ − x−α

Γ(1−α)L(x). Since supψ <∞,

this implies that ψ ∈ L1, ψ 6∈ L2, and that µφ[|ψ| > x] ∼ − x−α

Γ(1−α)L(x). We

subtract a constant from ψ to ensure that Eµφ [ψ] = 0 (this does not affect the
previous assertions). Reversing the asymptotic analysis in case 3, we see that
Eµφ [e

−t|ψ||ψ|2] ∼ α(α−1)tα−2L(x), whence Eµφ [e
tψψ2] ∼ α(α−1)tα−2L(x) (these

quantities diverge because ψ 6∈ L2, and differ by O(1) because supψ < ∞). In-
tegrating this relation (using Eµφ [ψ] = 0) we deduce Eµφ [e

tψψ] ∼ αtα−1L(1/t) as

t→ 0+. By (8)

λ′(t) ∼ αtα−1L(1/t)

(all terms on the right hand side of (8) are O(t) except λ′(t).) Integrating once more
gives by Karamata’s theorem λ(t) − 1 ∼ tαL(1/t). Since λ(t) = expPtop(φ + tψ)
and Ptop(φ) = 0, this implies Ptop(φ+ tψ) = tαL(1/t)[1 + o(1)].

Suppose α = 2, ψ 6∈ L2, and L(x) ∼ 1
2Eµφ [ψ

21[|ψ|≤x]]. By Karamata’s Tauberian

theorem,
∫∞
0 e−txx2dF (x) = 2[1+o(1)]L(1/t) as t→ 0+, where F (x) = µφ[|ψ| ≤ x].
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Integrating both sides w.r.t. t over (t0,∞) gives

∫ ∞

0

e−t0xxdF (x) = 2

∫ ∞

t0

[1 + o(1)]L(1/t)dt ≡ 2

∫ 1/t0

0

[1 + o(1)]L(s)

s2
ds.

It follows that

Eµφ
[
|ψ|
]

= lim
t0→0+

∫ ∞

0

e−t0xxdF (x) = 2

∫ ∞

0

[1 + o(1)]L(s)

s2
ds <∞,

where the last integral converges at infinity because of the slow variation of L. Now
that we know that ψ ∈ L1 we can assume w.l.o.g that Eµφ [ψ] = 0 (the reader can

check that Eµφ [(ψ − c)21[ψ≤x+c]] is still asymptotic to L(x)).

The reader may verify that Eµφ [e
tψψ2] ∼ Eµφ [e

−t|ψ|ψ2] as t → 0+, using

the assumptions supψ < ∞ and Eµφ [ψ
2] = ∞. We have already seen that

Eµφ [e
−t|ψ|ψ2] = 2[1 + o(1)]L(1/t) as t → 0+, because of Karamata’s Tauberian

theorem, and so Eµφ [e
tψψ2] ∼ 2L(1/t) as t → 0+. Integrating this gives (since

Eµφ [ψ] = 0), Eµφ [e
tψψ] ∼ 2tL(1/t) as t→ 0+. We can now deduce the asymptotic

expansion of Ptop(φ+ tψ) from (8) as before.

It remains to treat the case α = 2 and ψ ∈ L2. Without loss of generality,

Eµφ [ψ] = 0. We must prove that Ptop(φ + tψ) = σ2

2 t
2 + o(t2) for some σ ∈ R.

Define L(x) by the relation

Eµφ [e
tψψ] = 2t

(
L(1/t) − Eµφ [ψh

′
0]
)
.

By (8), λ′(t) = 2t
(
L(1/t) + 1−λ(t)

2t

(
Eµφ [h

′
0] + o(1)

)
+ o(1)

)
. Recalling that λ(t) =

expPtop(φ + tψ) and that Ptop(φ + tψ) = o(t) by theorem 4 and the assumption
Eµφ [ψ] = 0, we deduce that

λ′(t) = 2tL(1/t) + o(t).

Next, observe that L(x) −−−−→
x→∞

1
2Eµφ [ψ

2]+Eµφ [ψh
′
0] =: 1

2σ0, because 1
tEµφ [e

tψψ] =

Eµφ [
etψ−1
tψ · ψ2] → Eµφ [ψ

2] by the dominated convergence theorem. Consequently,

λ′(t) = σ0t+ o(t).

Integrating over (0, t] gives λ(t)−1 = σ0

2 t
2 +o(t2). Now λ(t)−1 = ePtop(φ+tψ)−1 ∼

Ptop(φ+ tψ), so also Ptop(φ+ tψ) = 1
2σ0t

2 + o(t2). The convexity of the topological

pressure forces σ0 to be non-negative. We may therefore write σ0 = σ2 for some
σ ∈ R, and (1) is proved. �

Final Remarks. Our analysis is simplified by the assumption that supψ < ∞.
This assumption allows us to use Laplace transforms rather than Fourier transforms
as in [AD], and this enables us to use the full force of the theory of regular variation.
It is likely that supψ < ∞ can be relaxed to the (more cumbersome) assumption
that ∃t > 0 for which Eµφ [e

tψ] < ∞ (I did not check). It makes no sense to go
further and consider ψ without exponential moments, because for such ψ’s the
BIP property implies Ptop(φ + tψ) = ∞ for all t > 0, and critical exponents are
meaningless.
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4. Inducing

Every countable Markov shift induces a topological Markov shift with the BIP
property, in a sense that is explained below. The proof of theorems 2, 3, and 4 for
systems without the BIP property uses this technique to reduce the general case to
the BIP case. In this section we explain how to relate information on distributional
convergence and asymptotic expansions for the pressure for the original system to
that for the induced system.

Inducing. Let (X,B,m) be a probability space, and T : X → X a measurable
map. Assume that T is probability preserving and ergodic. Fix some A ∈ B with
positive measure. By Poincaré’s Recurrence Theorem, the following functions are
finite almost everywhere:

r(x) := min{n ≥ 1 : T n(x) ∈ A};

ϕ(x) := 1A(x)min{n ≥ 1 : T n(x) ∈ A}.
The induced map onA is TA(x) := Tϕ(x)(x), defined on the measure space (A,BA,mA)
where BA := {E ∈ B : E ⊆ A} and

mA(E) := m(E|A) ≡ m(E ∩A)

m(A)
.

The following facts are classical (we are assuming that m is ergodic and invariant):

(1) mA is ergodic and invariant w.r.t. TA;

(2) Kac’ Formula:
∫
X
fdm =

∫
A

(∑ϕ−1
k=0 f ◦ T k

)
dm. In particular, EmA [ϕ] =

1/m(A);
(3) Abramov’s Formula: hm(T ) = m(A)hmA(TA).

Inducing Distributional Limit Theorems. Let T be an ergodic probability
preserving transformation on a standard probability space (X,B,m), fix a set of
positive measure A ∈ B, and define r(x), ϕ(x), (A,BA,mA, TA) as above. Set:

ϕn := 1A(x)
n−1∑

k=0

ϕ ◦ T kA

rn := r + ϕn−1 ◦ T r.
Melbourne & Török [MT] related the Central Limit Theorem for Birkhoff sums
of TA to that for Birkhoff sums of T (see also Gouëzel [Gou2]). The following
theorem generalizes their result to other distributional limit theorems:

Theorem 7. Suppose ∃Bn s.t. 1
Bn

[ϕn − n/m(A)] is tight on (A,BA,mA). Set

ψ :=
∑ϕ−1

k=0 ψ ◦ T k. If Bn is regularly varying of index 0 < ρ 6= 1, and ψ ∨ 0 ∈ L1

or ψ ∧ 0 ∈ L1, then the following are equivalent:

(1) 1
Bn

n−1∑
k=0

ψ ◦ T kA converges in distribution on (A,BA,mA);

(2) 1
Bn

n−1∑
k=0

ψ ◦ T k converges in distribution on (X,B,m).

If ∃ǫ0 > 0 s.t. 1
n1−ǫ0

[ϕn − n
m(A) ] is tight on (A,BA,mA), then the conclusion holds

for ρ = 1.
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Proof. We assume w.l.o.g. that T is invertible (otherwise, pass to the natural
extension of T ). Of course, if T is invertible, then TA is invertible. Invertibility
allows us to define:

ψn :=





∑n−1
k=0 ψ ◦ T k n > 0

0 n = 0

−ψ|n| ◦ T n n < 0

and ψn :=





∑n−1
k=0 ψ ◦ T kA n > 0

0 n = 0

−ψ|n| ◦ T nA n < 0.

With these conventions, ψn+m = ψn + ψm ◦ T n on X , and ψn+m = ψn + ψm ◦ T nA
on A for all m,n ∈ Z.

Given x ∈ A, let n[x,N ] be the unique integer such that ϕn[x,N ](x) ≤ N <

ϕn[x,N ]+1(x) (this makes sense almost everywhere in A). Note that
ϕn[x,N ](x)

n[x,N ] ≤
N

n[x,N ] <
ϕn[x,N ]+1(x)

n[x,N ] . By the ergodic theorem, ϕℓ
ℓ −−−→

ℓ→∞
EmA [ϕ], and by Kac’

formula EmA [ϕ] = 1/m(A). It follows that

n[x,N ] ∼ NA := [Nm(A)] almost everywhere, as N → ∞.

Here is an outline of the proof. We start, as in [MT], from the following identity
on A:

ψN
BN

=
BNA
BN

[
ψNA
BNA

+
1

BNA

(
ψn[x,N ] − ψNA

)]
+

1

BN
ψN−ϕn[x,N ](x)

◦ Tϕn[x,N ](x).

(10)

We shall prove below that
BNA
BN

→ m(A)ρ (step 1), 1
BNA

(
ψn[x,N ] − ψNA

)
dist.−−−−→
n→∞

0

on (A,BA,mA) (step 2), and 1
BN

ψN−ϕn[x,N ](x)
(Tϕn[x,N ]x)

dist.−−−−→
n→∞

0 on (A,BA,mA)

(step 3). This implies that 1
BN

ψN converges in distribution on (A,BA,mA) iff
1
BN

ψN converges in distribution on (A,BA,mA). Eagleson’s theorem on distribu-

tional convergence implies that 1
BN

ψN converges in distribution on (A,BA,mA) iff

it converges in distribution on (X,B,m) (step 4). The theorem follows.

Step 1.
BNA
BN

−−−−→
N→∞

m(A)ρ.

Proof. Use the uniform convergence theorem for slow variation (appendix A).

Step 2. If (1) or (2) in theorem 7 hold, then WN := 1
BNA

(
ψn[x,N ] − ψNA

)
dist.−−−−→
N→∞

0

on (A,BA,mA). (This is a generalization of Lemma 3.4 in [MT].)

Proof. Set m0[x,N ] := n[x,N ] −NA and m[x,N ] := m0[T
−NA
A x,N ]. By step 1, it

is enough to show that 1
BN

ψm0[x,N ](T
NA
A x)

dist.−−−−→
N→∞

0 on A. This the same as

1

BN
ψm[x,N ]

dist.−−−−→
N→∞

0 on A, (11)

because TA is measure preserving.

Case 1. ψ ∈ L1.

Suppose first that
∫
ψdm 6= 0. By Kac’ formula, if ψ ∈ L1(X), then ψ ∈ L1(A)

and
∫
X ψdm = m(A)

∫
A ψdmA. By the ergodic theorem, ψN

N , ψNN converge point-
wise, whence in distribution, to their means. These means are different (otherwise
m(A) = 1 and there is nothing to prove). Therefore, if lim sup

n→∞
n
Bn

= 0 then (1) and
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(2) both hold, and if lim sup
n→∞

n
Bn

> 0,
∫
ψ 6= 0,

∫
ψ 6= 0, then both (1) and (2) fail.

We may therefore restrict ourselves to the case
∫
ψ =

∫
ψ = 0, 0 < ρ ≤ 1 (if ρ > 1

then n
Bn

→ 0).
Fix some N0 and ǫ > 0 to be determined later.

mA

[
1
BN

|ψm[x,N ]| > t
]

≤ mA

[
m[x,N ] ≤ N0,

1
BN

N0∑

k=−N0

|ψ| ◦ T k > t

]
+

+mA

[
m[x,N ] ≥ N0, |m[x,N ]

BN
| · | 1

m[x,N ]ψm[x,N ]| > t
]

≤ mA

[
N0∑

k=−N0

|ψ| ◦ T k > tBN

]

+mA

[
m[x,N ] ≥ N0, | 1

m[x,N ]ψm[x,N ]| > ǫ
]

+mA

[
|m[x,N ]

BN
| > t/ǫ

]
.

The first summand is o(1) as N → ∞. The second summand can be made less than

ǫ by choosing N0 sufficiently large, because ψℓ
ℓ −−−→

ℓ→∞
EmA [ψ] = 0 almost surely,

whence uniformly outside a set of measure ǫ. Since m[·, N ], m0[·, N ] are equal in
distribution on (A,BA,mA), this leaves us with

mA

[
1
BN

|ψm[x,N ]| > t
]
≤ o(1) + ǫ+mA

[
|m0[x,N ]

BN
| > t/ǫ

]
as N → ∞.

Since ǫ is arbitrary, (11) reduces to the tightness of m0[x,N ]
BN

.

When ρ ∈ (0, 1) we argue as follows. By the definition of m0[x,N ] and n[x,N ],
m0[x,N ] > tBN ⇔ n[x,N ] > [tBN ] +NA =: αN (t) ⇒ ϕαN (t) < N . Therefore,

mA

[
m0[x,N ]

BN
> t

]
≤ mA[ϕαN (t) < N ] =

= mA



ϕαN (t) − αN (t)
m(A)

BαN (t)
< βN (t)



 , where βN(t) :=
N − αN (t)

m(A)

BαN (t)
.

But BN is regularly varying of index ρ ∈ (0, 1), so βN (t) −−−−→
N→∞

− t
m(A)ρ+1 . Using

this, and the assumption that 1
BN

[ϕN−N/m(A)] is tight, it is easy to see to see that

for every ǫ > 0, ∃t so large that mA

[
m0[x,N ]
BN

> t
]
< ǫ for all N . A similar estimate

of mA

[
m0[x,N ]
BN

< t
]

for t≪ 0 finishes the proof of tightness when ρ ∈ (0, 1).

Now suppose ρ = 1. Let ǫ0 be as in the statement of the theorem. Repeating
the same argument, we see that

mA

[
m0[x,N ]

BN
> t

]
≤ mA[ϕαN (t) < N ] =

= mA


ϕαN (t) − αN (t)

m(A)

αN (t)1−ǫ0
< γN (t)


 , where γN (t) :=

N − αN (t)
m(A)

αN (t)1−ǫ0 .
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Calculating, we see that

γN =
Nm(A) − [tBN ] −NA

m(A) ([tBN ] +NA)
1−ǫ0 ∼ −tBNN N ǫ0

m(A)
(
tBNN +m(A) + o(1)

)1−ǫ0
.

Since BN is regularly varying of index 1, BN/N is slowly varying. It follows that
γn is minus a regularly varying sequence of index ǫ0 > 0, whence γN → −∞. Since

1
N1−ǫ0

[ϕN − n/m(A)] is tight, by assumption, we get mA

[
m0[x,N ]
BN

> t
]
→ 0 for all

t > 0. A similar argument shows that mA

[
m0[x,N ]
BN

< t
]
→ 0 for all t negative, and

we obtain the tightness of m0[x,N ]
BN

when ρ = 1. (11) follows.

Case 2. ψ 6∈ L1.

We prove (11) when ψ 6∈ L1. By our assumptions one of ψ∨0, ψ∧0 is integrable.
Without loss of generality,

∫
ψ ∨ 0 <∞ and

∫
ψ ∧ 0 = −∞.

By the ergodic theorem ψN
N , ψNN −−−−→

N→∞
−∞ almost surely, so either (1) and (2)

are both false or N/BN → 0. We restrict ourselves to this case. By the ergodic

theorem, ψN
BN

= (ψ∧0)N
BN

+ o(1) and
ψN
BN

= (ψ∧0)N
BN

+ o(1). We may therefore also
assume without loss of generality that ψ ≤ 0.

We begin by showing that if (1) or (2) holds, then
ψN
BN

is tight. When (1) holds,

this is clear, so suppose (2) holds. In this case ψN
BN

is tight, and since ψ doesn’t
change sign,

mA

[∣∣ψN
BN

∣∣ > t
]

≤ mA

[∣∣ψϕn[x,N ]+1

BN

∣∣ > t
]

≤ mA

[
ϕn[x,N ]+1 ≤ 2N and

∣∣ψ2N

BN

∣∣ > t
]

+mA

[
ϕn[x,N ]+1 > 2N

]

≤ 1

m(A)
m
[∣∣ ψ2N

B2N

∣∣ > t BNB2N

]
+mA

[
ϕn[x,N ]+1

NA
− 1

m(A) >
1

m(A)

]
.

BN is regularly varying, so B2N

BN
−−−−→
N→∞

2ρ. ψN
BN

is tight, so we can make the first

summand uniformly small by choosing t large. The second summand tends to zero

as N → ∞, because by the ergodic theorem
ϕn[x,N ]+1

NA
∼ ϕn[x,N ]+1

n[x,N ]+1 −−−−→
N→∞

1
m(A) a.e.,

whence
ϕn[x,N ]+1

NA
− 1

m(A)

dist.−−−−→
N→∞

0. This proves tightness.

Next we observe that m0[x,N ]
BN

dist.−−−−→
N→∞

0 on A, because |m0[x,N ]| ≤ n[x,N ] +

NA ≤ N [1 + m(A)] and N/BN → 0 by assumption. Since m0[·, N ] m[·, N ] are

equal in distribution w.r.t mA, m[x,N ]
BN

dist.−−−−→
N→∞

0 on A.

Since the sign of ψ is constant, for every ǫ > 0

mA

[∣∣ψm[x,N ]

BN

∣∣ > t,m[x,N ] < 0

]
≤

≤ mA

[
m[x,N ]
BN

∈ [−ǫ, 0],
∣∣ψ−m[x,N ]◦T

m[x,N ]
A

BN

∣∣ > t

]
+mA

[∣∣m[x,N ]
BN

∣∣ ≥ ǫ
]

≤ mA

[∣∣ψ[ǫBN ]◦T
−[ǫBN ]

A

[ǫBN ]

∣∣ > t/ǫ

]
+mA

[∣∣m[x,N ]
BN

∣∣ ≥ ǫ
]

= mA

[∣∣ψ[ǫBN ]

[ǫBN ]

∣∣ > t/ǫ

]
+mA

[∣∣m[x,N ]
BN

∣∣ ≥ ǫ
]
, because mA ◦ T [ǫBN ]

A = mA.
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mA

[∣∣ψm[x,N ]

BN

∣∣ > t and m[x,N ] ≥ 0

]
≤

≤ mA

[
0 ≤ m[x,N ]

BN
≤ ǫ and

∣∣ψm[x,N ]

BN

∣∣ > t

]
+mA

[
m[x,N ]
BN

≥ ǫ
]

≤ mA

[∣∣ψ[ǫBN ]

[ǫBN ]

∣∣ > t/ǫ

]
+mA

[
m[x,N ]
BN

≥ ǫ
]
;

Putting this all together, we get

mA

[∣∣ψm[x,N ]

BN

∣∣ > t

]
≤ 2mA

[∣∣ψ[ǫBN ]

[ǫBN ]

∣∣ > t/ǫ

]
+ 2mA

[∣∣m[x,N ]
BN

∣∣ ≥ ǫ
]
.

Fix δ > 0. Since
ψk
Bk

is tight, there exists ǫ so small that the first summand is less

than δ for all N . Since m[x,N ]
BN

dist.−−−−→
N→∞

0, there exists N0 s.t. the second summand

is less than δ for all N > N0. We deduce that mA

[∣∣ψm[x,N ]

BN

∣∣ > t
]
< 2δ for N large

enough, proving (11) in case 2.

This completes the proof of step 2.

Step 3. 1
BN

ψN−ϕn[x,N ](x)
(Tϕn[x,N ](x)x) −−−−→

N→∞
0 in distribution on (A,BA,mA).

Proof. We thank the referee for the following short argument. Recall the definition
of r from the beginning of section 4, and set S(x) := T−1

A (T r(x)(x)) (x ∈ X). Then

|ψN−ϕn[x,N ](x)
(Tϕn[x,N ](x)x)| ≤ Ψ(TNx), where Ψ(x) :=

ϕ(Sx)∑

k=0

|ψ(T kSx)|.

Now 1
BN

Ψ ◦ TN dist.−−−−→
N→∞

0 on (X,B,m), because m ◦ T−1 = m and BN → ∞. It

follows that 1
BN

Ψ ◦ TN dist.−−−−→
N→∞

0 on (A,BA,mA).

Steps 1–3 and (10) show that ψN
BN

converges in distribution on (A,BA,mA) iff
ψN
BN

converges in distribution on (A,BA,mA).

Step 4. ψN
BN

converges in distribution on (A,BA,mA) iff ψN
BN

converges in distribution

on (X,B,m), and the limiting distribution is the same.

Proof. Eagleson proves that if Xi is a stationary ergodic stochastic process and
Yn := 1

Bn
(X1 + · · · +Xn) converges in distribution for some Bn ↑ ∞ on (Ω,F , µ),

then Yn converges in distribution to the same limit on (Ω,F , µ′) for all µ′ ≪ µ
([Ea], theorem 4). This proves (⇐).

To see the other direction, assume ψN
BN

converges in distribution on (A,BA,mA),

and consider the following decomposition on (X,B,m) in the limit N → ∞:

ψN
BN

= 1[r<N ]

{
ψN
BN

◦ T r +

(
ψr
BN

− ψr◦T−N

BN
◦ TN

)}
+ 1[r≥N ]O

( |ψ|r
BN

)

= 1[r<N ]
ψN
BN

◦ T r +O

( |ψ|r
BN

)
+O

( |ψ|r◦T−N ◦ TN
BN

)
.
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The big-Oh terms converge to zero in distribution, and 1[r<N ] converges a.s. (whence

in distribution) to 1. The m–distribution of ψN
BN

◦ T r is equal to the m ◦ (T r)−1–

distribution of ψN
BN

. Since m ◦ (T r)−1 ≪ mA, ψN
BN

◦ T r converges in distribution on

(X,B,m) to its mA–distributional limit. (⇒) follows. �

Remark: The proof shows that the distributional limit of ψN
BN

is a m(A)ρ–scaled

version of the distributional limit of ψN
BN

, see Step 1.

Inducing Asymptotic Expansions. Throughout this section, let (Σ+
A
, T ) be a

topologically mixing countable Markov shift with set of states S, and let A ⊂ S be
some finite union of states.

Define ϕ(x) and TA(x) := Tϕ(x)(x) as above. The resulting map can be given
the structure of of countable Markov shift as follows:

(1) States : S := {[a, ξ1, . . . , ξn−1, b] : a, b ∈ A, n ≥ 1, ξi 6∈ A for all i} \ {∅};
(2) Transition matrix : A = (t[a],[b])S×S with t[a],[b] = 1 iff the last symbol in a

is the first symbol in b.

We call this shift the induced shift (on A), because it is conjugate to the induced
map. The conjugacy is π : Σ+

A
→֒ A given by

π([a(1), ξ(1), b(1)], [a(2), ξ(2), b(2)], . . .) = (a(1), ξ(1), a(2), ξ(2), a(3), . . .).

It is easy to verify that the induced shift satisfies the BIP property.

Every f : Σ+
A
→ R induces a function f : Σ+

A
→ R by f :=

(∑ϕ−1
k=0 f ◦ T k

)
◦ π.

We call this function the induced function (by f). Define

HA := {f : Σ+
A
→ R|f has summable variations, sup f <∞ and

f is locally Hölder continuous}.

It is easy to see that HA contains all weakly Hölder continuous functions which are
bounded from above.

Theorem 8. Suppose φ, ψ ∈ HA, and that ψ satisfies (Ψ) with respect to a finite
set of states A. If {φ+ tψ}t≥0 is regular and Ptop(φ) = Eµφ [ψ] = 0, then

Ptop(φ+ tψ) =
1 + o(1)

µφ(A)
Ptop(φ + tψ) as t→ 0+,

where µφ is the equilibrium measure of φ.

Lemma 1. If f : Σ+
A
→ R belongs to HA, then

(1) varn(f) ≤∑∞
k=n+1 vark(f);

(2) If, in addition, Ptop(f) <∞, then sup f − Ptop(f) <∞;

(3) If, in addition, f has an equilibrium measure µ, then Ptop(f − Ptop(f)) = 0,

and µ(E) := (µ◦π)(E)
µ(A) is an equilibrium measure for f − Ptop(f).

Proof. Suppose x, y ∈ Σ+

A
agree on the first n symbols, and write x = π(x), y =

π(y). Since ϕ◦π is constant on partition sets in Σ+

A
, ϕ(x) = ϕ(y) = n0. One checks

that x, y ∈ Σ+
A

agree on the first ϕ(x) + ϕ(TAx) + · · ·ϕ(T n−1
A x) + 1 symbols (the
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one at the end is because of the last symbol of the last cylinder). We see that x, y
agree on (at least) the first n0 + (n− 1) + 1 = n0 + n symbols, and so

|f(x) − f(y)| ≤
n0−1∑

k=0

∣∣f(T kx) − f(T ky)
∣∣ ≤

n0+n∑

k=n+1

vark(f).

Part (1) follows.
To see part (2), construct a finite set of admissible words {wab : a, b ∈ A} of

length nab (as words in the alphabet S) such that wab starts with a and ends with
b. Such words exist because of the topological mixing of Σ+

A
. Set

C := sup{|(f − Ptop(f))nab(x)| : x ∈ [wab], a, b ∈ A}.
By part (1), C <∞.

We show that sup f − Ptop(f) ≤ C +
∑∞

n=2 varn(f) =: C0. Otherwise ∃x ∈ Σ
A

+

for which f − Ptop(f)(x) > C0. By part (1),

f − Ptop(f) > C on the partition set which contains x.

Denote this partition set by [x0], write x0 = [b, ξ, a], and consider the point
z := (x0, wab, x0, wab, x0, wab, . . .). This is a periodic point of order 1 + nab, and

(f − Ptop(f))1+nab(z) > C − C = 0.

Write z = π(z). Then for some N , TN(z) = z and
∑N−1

k=0 [f(T kz)−Ptop(f)] > 0.

The measure µ := 1
N

∑N−1
k=0 δTkz is T –invariant, has zero entropy, and satisfies

hµ(T ) +

∫

Σ+
A

[f − Ptop(f)]dµ =
1

N

N−1∑

k=0

[f(T kz) − Ptop(f)] > 0.

It follows that hµ(T )+
∫
fdµ > Ptop(f), in contradiction to the definition of Ptop(f).

Part (2) is proved.
Before proving part (3), we recall from [BS] that µ[a] 6= 0 for any state a ∈ S

and every equilibrium measure µ of a potential with summable variations on a
topologically mixing shift. Therefore, µ is well defined.

Next we note that µ is shift invariant, because µ|A is TA–invariant. The formulæ
of Kac and Abramov and the conjugacy between TA and the induced shift give

Ptop(f − Ptop(f)) ≥ hµ◦π−1(TA) +

∫
f − Ptop(f)dµ =

=
1

µ(A)

[
hµ(T ) +

∫
f − Ptop(f)dµ

]
= 0.

The other inequality is more delicate, because it is not true that every TA–invariant
probability measure is induced by a T –invariant probability measure: We can only
guarantee this for TA–invariant measures for which ϕ is integrable.

To deal with this difficulty, we note that since f − Ptop(f) has summable varia-

tions (part 1) and is bounded from above (part 2), then Ptop(f − Ptop(f)) is equal

to the Gurevich pressure of f − Ptop(f). Therefore, by theorem 2 of [S1],

Ptop(f − Ptop(f)) = sup{hm(T ) +

∫
f − Ptop(f)dm : m has compact support }.

For such measures ϕ ◦ π is essentially bounded, whence integrable. Therefore

Ptop(f − Ptop(f)) is achieved as a supremum over invariant measures which are
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induced by shift invariant measures on Σ+
A
. Such measures ν satisfy

hν◦π−1(TA) +

∫

Σ+

A

f − Ptop(f)dν =
1

ν(A)

[
hν(T ) +

∫

Σ+
A

f − Ptop(f)dν

]
≤ 0.

Passing to the supremum, we get Ptop(f − Ptop(f)) ≤ 0.

In the first part of the proof we saw that hµ◦π−1(TA) +
∫
f − Ptop(f)dµ = 0 for

µ induced by the equilibrium measure of f . Consequently, this is an equilibrium
measure for f − Ptop(f) (by [BS] the only one), and the pressure is zero. �

Proof of Theorem 8. The convexity of Ptop(φ + tψ) and the assumption that
Ptop(φ) = 0 imply that either Ptop(φ + tψ) = 0 on some right neighborhood of 0,
or Ptop(φ+ tψ) 6= 0 for all t 6= 0 small. In the first case the theorem holds trivially
by lemma 1, part (3). We may therefore assume without loss of generality that
Ptop(φ+ tψ) 6= 0 for all t > 0 small.

Recall the definitions of ϕ, Σ+

A
, and of the functions φ, ψ induced by φ, ψ. By

assumption, A is a finite union of states such that ψ ≤ 0 = Eµφ [ψ] outside A. Thus:

supψ <∞.

To see this write ψ =
∑ϕ−1
k=0 ψ◦T k, and observe that the first summand is dominated

by supψ, while the other summands are non-positive (they correspond to the part
of the orbit which lies outside A). Note also that by lemma 1 part (2)

supφ <∞.

Step 1. Ptop(φ+ tψ) > 0 for all t > 0.

Proof. Kac’ formula and the assumption Eµφ [ψ] = 0 imply that Eµφ [ψ] = 0, where

µφ =
µφ◦π
µφ(A) . By lemma 1, Ptop(φ) = 0, and µφ is the equilibrium measure of φ:

µφ = µφ. Consequently Eµφ [ψ] = 0.

By theorem 4 for BIP systems, Ptop(φ + tψ) = o(t) as t → 0+ (note that the
assumptions listed at the beginning of section 3 are satisfied). We see that the
right–derivative of t 7→ Ptop(φ + tψ) at t = 0 vanishes. But t 7→ Ptop(φ + tψ) is

convex, so Ptop(φ+ tψ) ≥ 0 for t ≥ 0.

Lemma 1 tells us that Ptop(φ+ tψ − Ptop(φ+ tψ)) = 0. If Ptop(φ + tψ) were
negative, then by the properties of the topological pressure and since ϕ ≥ 1

0 = Ptop(φ+ tψ − Ptop(φ+ tψ)ϕ) ≥ Ptop(φ+ tψ) + |Ptop(φ + tψ)| > 0.

Therefore Ptop(φ + tψ) ≥ 0 for t > 0. The inequality is strict, otherwise by con-
vexity Ptop(φ+ tψ) vanishes on some right-neighbourhood of 0, in contrary to our
assumptions.

Step 2. Set ft := φ+ tψ and φt := ft−Ptop(ft). The induced potentials φt, ft have

Gibbs measures µft , µφt , and Eµφt [ϕ] ≤ Ptop(ft)
Ptop(ft)

≤ Eµft [ϕ] for all 0 ≤ t ≤ ǫ0.

Proof. Any locally Hölder continuous potential with finite pressure on a shift with
the BIP property has an invariant Gibbs measure [S3]. Therefore, since Σ+

A
has

the BIP property, it is enough to check that ft, φt have finite pressure. They do,
because supψ <∞, Ptop(ft) ≥ 0 (step 1), and Ptop(φ) = 0 <∞ (lemma 1 part 3).
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Fix ǫ0 > 0 such that ft := φ + tψ has an equilibrium measure for 0 ≤ t ≤ ǫ0
(regularity). Fix 0 ≤ t ≤ ǫ0, and consider the function p(s) := Ptop(ft − sϕ) for
s ≥ 0. This is a convex function, and therefore

p′+(0) ≤ p(Ptop(ft)) − p(0)

Ptop(ft)
≤ p′+(Ptop(ft)),

where p′+ denotes one-sided derivative from the right (which can be infinite). The

term in the middle is −Ptop(ft)
Ptop(ft)

(lemma 1, part (3)). Theorem 4 for BIP systems

gives the one-sided derivatives (see the remark after theorem 4):

p′+(0) =
d

ds

∣∣∣∣
s=0+

Ptop(ft + s(−ϕ)) = −Eµ
ft

[ϕ],

p′+(Ptop(ft)) =
d

ds

∣∣∣∣
s=0+

Ptop(φt + s(−ϕ)) = −Eµφt [ϕ].

This completes the proof.

Step 3. Eµft [ϕ] −−−−→
t→0+

1
µφ(A) .

Proof. We work on the BIP shift (Σ+

A
, T ). Define as in section 3 the space L and

the operators R0, Rt corresponding to φ and ψ:

R0(f)(x) :=
∑

Ty=x

eφ(y)f(y) , Rt(f) := R0[e
tψf ].

Here and throughout T denotes the shift on Σ+

A
.

As in the beginning of section 3, we may assume without loss of generality that∑
Ty=x e

φ(y) = 1 (otherwise pass to φ+h−h◦T with some bounded locally Hölder

continuous function h : Σ+

A
→ R, and note that this does not affect µft or µφ).

This reduction allows us to assume that R01 = 1.
By proposition 2 part (3), ‖Rt−R0‖ −−−−→

t→0+
0. It follows that the eigenprojections

Pt := P (Rt) are well–defined for t small, and converge in norm to P0 := P (R0).
The operator Rt is the Ruelle operator of ft. The theory of Ruelle operators for

shifts with BIP says that λ(Rt) = expPtop(ft) and that PtF = ht
∫
Fdνt where νt

is an eigenmeasure of Rt, ht is a positive eigenfunction of Rt, and
∫
htdνt = 1. The

Gibbs measure of ft is htdνt. Consequently,
∫
Fdµft =

Pt[FPt1]

Pt1
for all F ∈ L. (12)

(The RHS is a scalar, because dim Im(Pt) = 1.)
Since Pt → P0 in norm and P01 = 1 (because R01 = 1), Eµ

ft
[F ] −−−−→

t→0+
Eµ

φ
[F ]

for all F ∈ L. In particular, Eµ
ft

[ϕ1[ϕ<N ]] −−−−→
t→0+

Eµ
φ
[ϕ1[ϕ<N ]] for every N ∈ N.

We claim that for every ǫ > 0 there exists N such that Eµ
ft

[ϕ1[ϕ≥N ]] < ǫ for all t in

some one–sided neighbourhood of zero (uniform integrability). This will imply that
Eµft [ϕ] −−−−→

t→0+
Eµφ [ϕ]. Step 3 will then follow from Kac’ formula Eµφ [ϕ] = 1/µφ(A).

To prove uniform integrability, we need the transfer operator of µft , given by

TtF :=
λ(Rt)

−1

Pt1
Rt[FPt1].
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It is straightforward to check, using (12), that Eµft [TtF ] = Eµft [F ] for all F ∈ L.

It follows that for every a ∈ S,

µft [a] = Eµ
ft

[Tt1[a]] = λ(Rt)
−1

∫

T [a]

eft(ax)
(Pt1)(ax)

(Pt1)(x)
dµft(x) ≤

≤
[
e−Ptop(ft)

supPt1

inf Pt1
eDφ+t supψ

]
eφ(z) for all z ∈ [a].

The term in the brackets converges as t→ 0+ (to eDφ), and is therefore uniformly

bounded. The term eφ(z) is bounded by Gµφ[a] where G is as in the proof of
proposition 2. Consequently, there exists some constant C0 such that

µft [a] ≤ C0µφ[a] for all a ∈ S.

Since ϕ is constant on 1–cylinders in Σ+

A
, we obtain Eµft [ϕ1[ϕ≥N ]] ≤ C0Eµφ [ϕ1[ϕ≥N ]]

for all N . The RHS tends to zero as N → ∞, by the dominated convergence theo-
rem. We obtained the uniform integrability of ϕ w.r.t. µft .

Step 4. Eµ
φt

[ϕ] −−−−→
t→0+

1
µφ(A) .

Proof. The proof is essentially the same as in the previous step, except that here
we need to use the perturbation operators

R̃tf := Rt[e
−Ptop(ft)ϕf ]

(the Ruelle operators of φt = ft−Ptop(ft)ϕ). We first claim that ‖R̃t−R0‖ −−−−→
t→0+

0.

We need the following generalization of eq. (2): Let ~ψ = (ψ(1), . . . , ψ(d)) be a
vector of real valued functions on Σ+

A
and F (t1, . . . , td) some real valued function

such that F (~ψ(x)) is well defined for all x ∈ Σ+
A
. Define RF f := R0[F (~ψ)f ]. Then

for some constant M which only depends on φ,

‖RF ‖ ≤M



Eµ
φ

[
|F (~ψ)|

]
+
∑

a∈S

µφ[a]Da[F (~ψ)]



 . (13)

The proof is the same as in the one-dimensional case (as is the constant M).

We now observe that R̃t−R0 = RFt with Ft(ψ, ϕ) = etψ−Ptop(ft)ϕ−1. Therefore,

‖R̃t −R0‖ ≤ M

(
Eµφ

[∣∣etψ−Ptop(ft)ϕ − 1
∣∣
]

+
∑

a∈S

µφ[a]Da[e
tψ−Ptop(ft)ϕ]

)

≤ M
(

Eµφ

[∣∣etψ−Ptop(ft)ϕ − 1
∣∣
]

+ tet supψDψ
)
−−−−→
t→0+

0,

because of the bounded convergence theorem (we are using here the facts that
supψ <∞ and Ptop(ft) > 0).

Now that we know that ‖R̃t − R0‖ −−−−→
t→0+

0 we can proceed exactly as in the

previous step, but with the eigenprojections P̃t := P (R̃t) replacing Pt, to deduce
that Eµ

φt
[ϕ] −−−−→

t→0+
Eµ

φ
[ϕ]. The theorem follows from step 2. �
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5. Proofs for shifts not satisfying the BIP property

Reduction of the General Case to the BIP Case. Let φ and ψ be two locally
Hölder continuous functions bounded from above and assume (Φ), (Ψ), and that
φ+ tψ has an equilibrium measure for 0 ≤ t ≤ ǫ0. We also assume without loss of
generality that Ptop(φ) = 0 and Eµφ [ψ] = 0 (otherwise subtract suitable constants).

Let A ⊂ S be a finite union of states such that ψ ≤ Eµφ [ψ] = 0 outside A. Let
a ∈ S be some state such that Eµφ [ra] < ∞ where ra(x) := min{k : xk = a}.
Without loss of generality, [a] ⊆ A (otherwise add a to A).

Set ϕ(x) := 1A(x)min{k ≥ 1 : T kx ∈ A}, and let TA : A→ A, TA(x) := Tϕ(x)(x)
be the induced map. We have seen that this map can be coded by a topological
Markov shift with the BIP property. Let φ and ψ be as before. These are locally
Hölder continuous functions, and as in the proof of theorem 8,

supφ = supφ− Ptop(φ) <∞;

supψ = supψ − Eµφ [ψ] <∞.

We conclude that Σ+

A
, φ, ψ satisfy the standing assumptions listed at the beginning

of section 3 – the assumptions needed to prove theorems 2, 3, 4 for BIP systems.
In order to pass from the induced system to the original system, we need to

apply theorems 7 and 8. The conditions of theorem 8 are satisfied (by Σ+
A
, φ, ψ);

We check the conditions of theorem 7. The only thing to check is that the tightness
assumption holds in all relevant cases.

If α ∈ (1, 2) one must show that 1
Bn

(ϕn−n/µφ(A)) is tight for any sequence Bn
regularly varying of index 1

α ; If α = 2 one must check tightness for Bn =
√
n or for

Bn s.t.
√
n = o(Bn). (The case α = 1 does not require theorem 7). We show

1

Bn
[ϕn − n/µφ(A)] is tight for all {Bn} positive s.t. lim sup

n→∞

√
n

Bn
<∞. (14)

This covers all possibilities.
Observe that Eµ

φ
[ϕ2] <∞. To see this recall from lemma 1 that µφ = µφ, note

that ra(x) ≥ min{k ≥ 1 : T k(x) ∈ A} =: rA(x), and observe that

Eµφ [ϕ
2] =

∞∑

n=1

n2µφ[ϕ = n] ≤
∞∑

n=1

(
2

n∑

k=1

k

)
µφ[ϕ = n] =

= 2
∞∑

n=1

(∫

[ϕ=n]

ϕ−1∑

k=0

rA ◦ T k
)
dµφ = 2

∫
rAdµφ ≤ 2

∫
radµφ <∞.

It follows that −ϕ satisfies case (2)(c) of Theorem 5. By theorem 3 for BIP systems,
ϕn satisfies the central limit theorem, and (14) follows.

Proof of Theorem 4 for Systems without the BIP Property. It is enough
to treat the case Eµφ [ψ], Ptop(φ) = 0. By Lemma 1, Ptop(φ) = 0 and µφ = µφ. By

Kac’ formula, ψ ∈ L1, and Eµφ [ψ] = 0. We deduce from theorem 4 in the BIP case

that Ptop(φ+ tψ) = o(t). By theorem 8, Ptop(φ + tψ) = o(t). The remaining part
of the theorem is because of the ergodicity of µφ, see [BS]. �
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Proof of Theorem 2 for Systems without the BIP Property. It is enough
to treat the case Eµφ [ψ], Ptop(φ) = 0. Suppose Ptop(φ + tψ) = ct + tαL(1/t) with
c ∈ R, 1 < α < 2 and L(x) slowly varying at infinity. The previous section shows
that c = 0.

By theorem 8 Ptop(φ+ tψ) = 1
µφ(A) t

α[1 + o(1)]L(1/t). L(x) := 1+o(1)
µφ(A) L(x) is

slowly varying at infinity, therefore by theorem 2 for BIP systems, ∃Bn regularly

varying of index α such that 1
Bn
ψn

dist.−−−−→
n→∞

Gα.

Since 1 < α < 2,
√
n

Bn
→ 0, so 1

Bn
[ϕn−n/µφ(A)] is tight. Theorem 7 now implies

that 1
Bn
ψn

dist.−−−−→
n→∞

G∗
α where G∗

α is equal to Gα up to change of scale. Renormalizing

Bn, we obtain (2) in theorem 2, and we proved (1)⇒(2). The other direction is
handled in the same way. �

Proof of Theorem 3 for Systems without the BIP Property. It is enough
to treat the case Ptop(φ),Eµφ [ψ] = 0. We saw above that c = 0.

Part 1. Taylor expansion.

By theorem 8, Ptop(φ+tψ) = 1
2σ

2t2+o(t2) iff Ptop(φ+ tψ) = 1
2

(
σ√
µφ(A)

)2
t2+o(t2).

Our results for BIP maps say that this is equivalent to 1√
n
ψn

dist.−−−−→
n→∞

N(0, σ2

µφ(A) )

w.r.t. µφ. By theorem 7, this happens iff 1√
n
ψn

dist.−−−−→
n→∞

N(0, σ2) (see the remark at

the end of the proof of theorem 7).

We explain why in this case ψ ∈ L2(µφ). By theorem 5, ψ ∈ L2(µφ). When we

proved (14), we saw that (Φ) ⇒ ϕ ∈ L2(µφ). Therefore, ψ − supψ ∈ L2. It follows

that
∫ ∑ϕ−1

k=0 (ψ−supψ)2 ◦T kdµφ+positive terms <∞, whence (ψ − supψ)2 ∈ L2.

By Kac’ formula, ψ − supψ ∈ L2(µφ), and so ψ ∈ L2.

Part 2. Critical expansion.

By theorem 8, Ptop(φ + tψ) = t2L(1/t) with L(x) slowly varying and not asymp-

totically constant, iff Ptop(φ+ tψ) = 1+o(1)
µφ(A) t

2L(1/t) with such L. By the BIP

property, this is equivalent to the existence of Bn r.v. of index 1
2 such that

1
Bn
ψn

dist.−−−−→
n→∞

N(0, 1), Eµφ [ψ] = 0, and
√
n

Bn
→ 0. By (14) 1

Bn
[ϕn − n/µφ(A)] is

tight, so 1
Bn
ψn

dist.−−−−→
n→∞

N(0, 1) is equivalent to 1
B∗

n
ψn

dist.−−−−→
n→∞

N(0, 1) for B∗
n propor-

tional to Bn. This gives the equivalence in theorem 3, part 2.
To finish the proof, it is enough to observe that the BIP property, the expansion

Ptop(φ+ tψ) = 1+o(1)
µφ(A) t

2L(1/t), and theorem 5 case (2)(c) show that L(x) → ∞
whenever it is not asymptotic to a constant. �

Proof of theorem 6. Without loss of generality φ has zero pressure, and ψ has
zero expectation (and then Ptop(φ+tψ) = tαL(1/t)). Fix an arbitrary finite union of
statesA so large that ψ < Eµφ [ψ]−ǫ = −ǫ outsideA, and let ϕ(x) := 1A(x)min{n ≥
1 : T n(x) ∈ A}. Let ψ be the induced version of ψ on A. By theorem 8,

Ptop(φ+ tψ) =
1 + o(1)

µφ(A)
tαL(1/t) as t→ ∞.



CONTINUOUS PHASE TRANSITIONS FOR DYNAMICAL SYSTEMS 31

Since 1 < α < 2, L(t) must be asymptotically non-negative (see section 3). By

theorem 5, µφ(A ∩ [|ψ| > t]) ∼ t−α

|Γ(1−α)|L(t) as t→ ∞.

By choice of A, ψ = ψ +
∑ϕ−1

k=1 ψ ◦ T k, where each summand under the sigma

symbol is less than −ǫ. It follows that ǫ(ϕ − 1) − ‖ψ‖∞ ≤ |ψ| ≤ ϕ‖ψ‖∞. Since
L(x) is slowly varying, L(λx), L(λ + x) ∼ L(x) as x→ ∞ for all λ ∈ R+, and so

µφ[ϕ > t] ≤ µφ
[
|ψ| > ǫ(t− 1) − ‖ψ‖∞

]
∼ ǫ−αt−αL(t)

|Γ(1 − α)| ,

µφ[ϕ > t] ≥ µφ
[
|ψ| > t‖ψ‖∞]

]
∼ ‖ψ‖−α∞ t−αL(t)

|Γ(1 − α)| .

Consequently, µφ[ϕ > n] ≍ L(n)
nα .

We now appeal to Gouëzel [Gou1], Theorem 1.3 (see also [S5]), which says that
in our context for every f, g locally Hölder continuous supported inside A with
non-zero expectation

Covµφ(f, g ◦ T n) ∼
∞∑

k=n+1

µφ[ϕ > k]

∫
fdµφ

∫
gdµφ.

The theorem follows from Karamata’s Theorem. �

Appendix A. Slow and Regular Variation

Slow and Regular Variation. A positive function L : (c0,∞) → R is called
slowly varying (at infinity) if it is Borel measurable and

L(ts)

L(t)
−−−→
t→∞

1 for all s > 0.

A positive sequence {cn}n≥1 is called slowly varying (at infinity) if L(t) := c[t] is
slowly varying (at infinity).

A positive function f : (c0,∞) → R is called regularly varying at infinity with
index α, if f(x) = xαL(x) with L(x) slowly varying at infinity. A positive sequence
{cn}n≥1 is called regularly varying at infinity with index α, if f(t) := c[t] is regularly
varying at infinity with index α.

For example, log x, 1/ ln lnx are slowly varying at infinity, and xα lnx(ln lnx)2,
xα/ lnx are regularly varying with index α.

Sufficient Condition for Regular Variation. Let f(x) be a positive continuous
function, and {an}, {bn} some positive numbers such that lim sup

n→∞
bn = ∞ and

lim sup
n→∞

bn+1

bn
= 1. If lim

n→∞
anf(bnx) exists, is positive, and is continuous on some

open interval (a, b) ⊂ R+, then f(x) is regularly varying at infinity. ([BGT],
theorem 1.9.2)

The General Form of Regularly Varying Functions. A Borel function f(x)
is regularly varying at infinity with index α iff

f(x) = [c+ o(1)]xα exp

∫ x

1

ǫ(u)
du

u
as x→ ∞,

where c > 0 and ǫ(u) −−−−→
x→∞

0. ([BGT], Theorem 1.3.1)
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In particular, any regularly varying function f(x) with index α satisfies f(x) →
∞ when α > 0 and f(x) → 0 when α < 0. ([BGT], Proposition 1.5.1).

Uniform Convergence Theorem. If L(t) is slowly varying at infinity, then
L(ts)
L(t) −−−→

t→∞
1 uniformly on compact subsets of (0,∞). ([BGT], Theorem 1.2.1).

Asymptotic Inversion Theorem. If f(x) is regularly varying at infinity with
positive index α, then there exists g(x) regularly varying at infinity with index 1/α
such that (f ◦ g)(x) ∼ (g ◦ f)(x) ∼ x as x→ ∞. ([BGT], Theorem 1.5.12)

Differentiating Asymptotic Relations: The Monotone Density Theorem.
Suppose U(t) =

∫ x
0 u(y)dy, and L(x) is slowly varying at infinity.

(1) If u(y) is monotone at some interval (0, δ) and ρ ≥ 0, then

U(t) ∼ tρL(1/t) as t→ 0+ implies u(t) ∼ ρtρ−1L(1/t) as t→ 0+.

(2) If u(y) is monotone at some interval (δ,∞) and ρ ∈ R, then

U(x) ∼ xρL(x) as x→ ∞ implies u(x) ∼ ρxρ−1L(x) as x→ ∞.

Here and throughout f(x) ∼ 0 · g(x) means f(x) = o(g(x)). ([BGT], Theorems
1.7.2 and 1.7.2b).

Integrating Asymptotic Relations: Karamata’s Theorem. Suppose L(x) is
slowly varying at infinity and locally bounded. Then as x→ ∞,

∫ x

a

tρL(t)dt ∼ xρ+1

ρ+ 1
L(x), for all ρ > −1

∫ ∞

x

tρL(t)dt ∼ − xρ+1

ρ+ 1
L(x), for all ρ < −1.

The converse is also true: Any positive locally bounded L(x) for which one of these
relations holds for some ρ 6= −1 must be slowly varying. ([BGT], theorems 1.5.11
and 1.6.1).

After a change of variables, Karamata’s theorem implies that if L(x) is slowly
varying at infinity and α > −1, then

∫ t

0

ταL(1/τ)dτ ∼ t1+α

1 + α
L(1/t) as t→ 0+.

Conversly, if L satisfies the above, then it must be slowly varying at infinity.

Karamata’s Tauberian Theorem. Let U(x) be a non-decreasing function on R,
which is continuous from the right, and such that U(0) = 0. Suppose L(x) is slowly
varying at infinity, and c > 0, ρ ≥ 0. The following are equivalent:

U(x) ∼ cxρ

Γ(1 + ρ)
L(x), as x→ ∞

∫ ∞

0

e−txdU(x) ∼ c

tρ
L(1/t), as t→ 0+.

([BGT], theorem 1.7.1).
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Truncated Variance: Feller’s Theorem. Let F (x) be a right continuous prob-
ability distribution function such that F (0) = 0, and set U(x) :=

∫ x
0 y

2dF (y).
Suppose L(x) is slowly varying at infinity as x → ∞, c 6= 0, and 0 < ρ < 2. The
following are equivalent:

U(x) ∼ cxρL(x), as x→ ∞

1 − F (x) ∼ cρ

2 − ρ
xρ−2L(x), as x→ ∞.

(See Feller [F] VIII.9 for generalizations).

Proof : Start with the identity 1 − F (x) =
∫∞
x y−2d

(∫ y
0 t

2dF (t)
)

=
∫∞
x y−2dU(y).

Integration by parts gives:

1 − F (x) = y−2U(y)

]y=∞

y=x

+ 2

∫ ∞

x

y−3U(y−)dy.

If U(y) ∼ cyρL(y), then U(y−) ∼ cyρL(y). By Karamata’s theorem:

1 − F (x) = −cxρ−2L(x)[1 + o(1)] + 2cL(x)[1 + o(1)]

∫ ∞

x

yρ−3dy =

=
cρ

2 − ρ
xρ−2L(x)[1 + o(1)].

To see the other direction, integrate by parts U(y) =
∫ x
0 y

2dF (y):

U(x) =y2F (y)

]y=x

y=0

−2

∫ x

0

yF (y−)dy = x2F (x) − 2

∫ x

0

yF (y−)dy =

= −x2[1 − F (x)] + 2

∫ x

0

y[1 − F (y−)]dy.

Now plug into this expression the asymptotic formula for 1−F (x) and conclude as
before, using Karamata’s theorem.

Appendix B. The Fisher–Felderhoff droplet model

We describe a crude simplification of a model in [FF]. A ‘vapor’ close to the
condensation point consists of microscopic droplets. The interaction between par-
ticles in different droplets is negligible, but the interaction between particles in the
same droplet is strong, and long–range.7 When two droplets ‘touch’, they become
one. ‘Condensation’ is the appearance of macroscopic droplets.

Here is a lattice–gas model of this situation. Space is discretized and described
by a one–sided one-dimensional string of sites, each of which can be in one of two
states: empty (state ‘0’) or occupied (‘1’). The configuration space is {0, 1}N0. A
‘droplet’ is a maximal string of occupied sites.

We describe the interaction by prescribing the function

φ(x0, x1, . . .) := −βU(x0|x1, x2, . . .)

where β is a constant (‘inverse temperature’) and U(x0|x1, x2, . . .) is the energy due
to the interaction of site zero and the other sites.8 Note that the energy due to the
interaction between the first n sites and the rest is minus the n–th Birkhoff sum of

7One example of long–range interactions in liquid droplets is ‘surface tension’.
8It is useful to think of U(x0|x1, x2, . . .) as of the energy cost of separating site zero from sites

n, n > 0, and moving it to infinity – that is, if site zero is occupied.
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φ. It follows that the Helmholtz free energy(=Energy – 1
β×Entropy) per site is up

to a constant

lim
n→∞

1

n



−
∫ n−1∑

k=0

φ ◦ T kdµφ −
∑

n–cylinders

µφ[a] log
1

µφ[a]



 =

= −
(
hµφ(T ) +

∫
φdµφ

)
= −Ptop(φ),

at least when φ has an equilibrium measure µφ.
Since different droplets do not interact, φ takes the form

φ(0, ∗) = 0 , φ(1, 1, . . . , 1︸ ︷︷ ︸
n

, 0, ∗) := f(n)

for some function f(n). If the interaction is ‘long range’, then this function is not
locally Hölder, because the effect of far away sites is not exponentially small.

Consider now the following re-coding of a configuration: (x0, x1, . . .) 7→ (y0, y1, . . .),
where xi = 0 ⇒ yi = 0, and xi = 1 ⇒ yi = 1+number of occupied sites to the right
of i until the first unoccupied site, for example:

(0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, . . .) 7→ (0, 2, 1, 0, 0, 1, 0, 3, 2, 1, 0, . . .).

In this coding, the configuration space becomes the renewal shift: the topological
Markov shift with state space N ∪ {0} and transition matrix

A = (tij) where tij =





1 i = 0;

1 i > 0, j = i− 1;

0 otherwise.

In the new coordinates the interaction becomes locally Hölder (‘short range’):

φ̃(y0, y1, . . .) =

{
f(y0) y0 6= 0;

0 y0 = 0.

Thus a compact shift with a long range potential is recoded as a non-compact shift
with a short range potential.

The critical phenomena for the Fisher–Felderhoff model for various choices of
f(n) is described in [FF] and [Wa1, Wa2].
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ing of the manuscript and for many valuable suggestions, and Michael Fisher and
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[Gu] B. M. Gurevič: Topological entropy of a countable Markov chain. Dokl. Akad. Nauk

SSSR 187 715–718 (1969).
[Hi] R. Hilfer: Classification theory for anequilibrium phase transitions. Phys. Rev. E 48

(4) 2466–2475 (1993).
[Ho] F. Hofbauer: Examples for the non–uniqueness of the equilibrium states. Trans. AMS

228 223–241 (1977).
[Ka] T. Kato: Perturbation theory for linear operators. Reprint of the 1980 edition. Classics

in Mathematics. Springer-Verlag, Berlin, 1995.
[Ke] M. Keane: Strongly mixing g-measures. Invent. Math. 16 (1972), 309–324.
[Lo] A.O. Lopes: The Zeta function, non–differentiability of pressure, and the critical

exponent of transition. Adv. Math. 101 no. 2, 133–165 (1993).
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