CORRECTIONS TO 'CONTINUOUS PHASE TRANSITIONS FOR DYNAMICAL SYSTEMS'

OMRI SARIG

Proposition 1 in [S] should read

Proposition 1. Let X, X_n be random variables such that for some $\omega > 0$, C > 0, $\mathbb{E}(e^{tX_n}), \mathbb{E}(e^{tX}) \leq C$ for all $0 \leq t \leq \omega$. The following are equivalent:

(1)
$$\mathbb{E}(e^{tX_n}) \xrightarrow[n \to \infty]{} \mathbb{E}(e^{tX})$$
 for all $0 \le t \le t_0$ and some $t_0 > 0$;

(2)
$$X_n \xrightarrow[n \to \infty]{dist} X$$
.

The difference with [S] is that there, the proposition is stated erroneously under the weaker assumption that $\mathbb{E}(e^{tX_n}), \mathbb{E}(e^{tX})$ are finite for all $0 \le t \le \omega$, with [ML] as the reference.

The implication $(1) \Rightarrow (2)$ does hold under this weaker assumption, as shown in [ML]. But the implication $(2) \Rightarrow (1)$ (which is not asserted in [ML]) is false, as demonstrated by the example $X := N(0,1), X_n := X + n^3 1_{[n \le X \le n+1]}$.

To see that $(2) \Rightarrow (1)$ when $\sup_n \mathbb{E}(e^{tX_n}) \leq C$ for all $t \in [0, \omega]$, observe that (2) implies that for all $t \in [0, \omega/2]$, $Y_n := e^{tX_n} \xrightarrow[n \to \infty]{\text{dist}} e^{tX}$, and $\mathbb{E}(Y_n^2) \leq C$. Thus $\mathbb{E}(Y_n) \xrightarrow[n \to \infty]{\text{mode}} \mathbb{E}(Y)$ and we obtain (1) with $t_0 := \omega/2$.

The implication $(2)\Rightarrow(1)$ is used once in $[\mathbf{S}]$, on page 644. The setting is as follows (see $[\mathbf{S}]$ for notation and terminology): ϕ, ψ are real valued locally Hölder continuous functions on a topologically mixing countable Markov shift with the BIP property, and

$$X_n := \frac{\psi_n}{B_n}$$
, where $\psi_n := \sum_{k=0}^{n-1} \psi \circ T^k$ and T the left shift map, and $B_n \to \infty$

$$X:=G_{\alpha}, \text{ where } G_{\alpha} \text{ is the distribution s.t. } \mathbb{E}(e^{tG_{\alpha}})=e^{\operatorname{sgn}(\alpha-1)t^{\alpha}} \quad (0<\alpha\leq 2).$$

It is assumed that $\sup \phi$, $\sup \psi < \infty$, $P_{\text{top}}(\phi) = 0$, and that $X_n \xrightarrow[n \to \infty]{\text{dist}} X$ w.r.t. μ_{ϕ} , the equilibrium (or Gibbs) measure of ϕ .

We claim that in this context it is always the case that $\mathbb{E}(e^{tX_n}) \leq C$ on some non-trivial interval $[0, \omega]$, so that the proofs done in [S] remain valid.

The key is proposition 3 in [S], which says that $\exists \epsilon(t) \xrightarrow[t \to 0^+]{} 0$ and $\epsilon_0 > 0$ such that for all $0 \le t \le \epsilon_0$ the following holds uniformly for all n:

$$\mathbb{E}_{\mu_{\phi}}[e^{t\psi_n}] = [1 + O(\epsilon(t))] \exp[nP_{\text{top}}(\phi + t\psi)]. \tag{1}$$

If $P_{\text{top}}(\phi + t\psi)$ vanishes on some interval $[0, \omega]$, then (1) implies that $\mathbb{E}_{\mu_{\phi}}[e^{t\psi_n}] \leq 1 + \text{const} \cdot \epsilon(t)$ for all n so large that $t/B_n \leq \min\{\omega, \epsilon_0\}$, and we are done.

Otherwise, since $t \mapsto P_{\text{top}}(\phi + t\psi)$ is convex, there is some $\omega_1 > 0$ such that $t \mapsto P_{\text{top}}(\phi + t\psi)$ is finite, strictly monotonic, and continuous on $[0, \omega_1]$. Let σ

denote the sign of this function on $(0, \omega_1]$. Define B_n^* as the (unique) solution of

$$nP_{\text{top}}(\phi + \frac{\omega_1}{B_n^*}\psi) = \sigma$$

(such a solution exists for all n large enough). Obviously $B_n^* \to \infty$.

By (1), $\sup_n \mathbb{E}_{\mu_{\phi}}(e^{t\psi_n/B_n^*})$ is uniformly bounded on $[0, \omega_1]$. We will show that $M := \sup_n [B_n^*/B_n] < \infty$. This implies that $\sup_n \mathbb{E}_{\mu_{\phi}}(e^{t\psi_n/B_n})$ is uniformly bounded on $[0, \omega_1/M]$, and again we are done.

Suppose by way of contradiction that $\exists n_k$ such that $B_{n_k}^*/B_{n_k} \to \infty$, whence $M := \sup[B_n^*/B_n] < \infty$.

The functions $f_{n_k}(t) := nP_{\text{top}}(\phi + t\psi/B_{n_k}^*)$ are convex, and uniformly bounded on $[0, \omega_1]$ (with values between 0 and α). Choose a subsequence $f_{n_{k_\ell}}$ which converges on every rational point in $[0, \omega_1]$. By convexity, the sequence $f_{n_{k_\ell}}$ must converge everywhere on $[0, \omega_1)$. The limit f(t) is convex, finite, continuos, monotonic, and non-constant, because f(0) = 0 and $f(\omega_1) = \sigma$.

By (1), $\mathbb{E}_{\mu_{\phi}}[e^{t\psi_{n_{k_{\ell}}}/B^*_{n_{k_{\ell}}}}] \to \exp[f(t)]$ on $[0,\omega_1]$, and $\sup_n \mathbb{E}_{\mu_{\phi}}[e^{t\psi_{n_{k_{\ell}}}/B^*_{n_{k_{\ell}}}}]$ is uniformly bounded on $[0,\omega_1]$. It follows that $\psi_{n_{k_{\ell}}}/B^*_{n_{k_{\ell}}}$ converges in distribution to a distribution with Laplace transform $\exp[f(t)]$ (see e.g. [ML], Lemma C1). Since f(t) is non-constant, the limiting distribution is not degenerate. Call it F, and choose some $x \neq 0$ such that 0 < F(x) < 1. Since $\frac{1}{B_n}\psi_n \to G_\alpha$ and $B^*_{n_k}/B_{n_k} \to \infty$,

$$G_{\alpha}(\infty) \text{ or } G_{\alpha}(-\infty) \xrightarrow[\ell \to \infty]{} \mu_{\phi} \left[\frac{\psi_{n_{k_{\ell}}}}{B_{n_{k_{\ell}}}} \le \frac{B_{n_{k_{\ell}}}^*}{B_{n_{k_{\ell}}}} x \right] = \mu_{\phi} \left[\frac{\psi_{n_{k_{\ell}}}}{B_{n_{k_{\ell}}}^*} \le x \right] \xrightarrow[\ell \to \infty]{} F(x).$$

But $F(x) \neq 0, 1$, so it cannot equal $G_{\alpha}(\infty)$ or $G_{\alpha}(-\infty)$. This contradiction shows that there is no subsequence n_k such that $B_{n_k}^*/B_{n_k} \to \infty$.

References

- [S] O. Sarig: Continuous phase transitions for dynamical systems. Commun. Math. Phys. 267, 631–667 (2006).
- [ML] A. Martin-Löf: Mixing properties, differentiability of the free energy and the central limit theorem for a pure phase in the Ising model at low temperature. Comm. Math. Phys. **32** (1973), 75–92.

Mathematics Department, Pennsylvania State University, University Park, PA 16802, U.S.A.

 $E\text{-}mail\ address\text{:}\ \mathtt{sarig@math.psu.edu}$