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Abstract. This work describes a method that combines face detection,
localization, part interpretation and recognition, and which is capable
of learning from very limited data, in a semi-supervised or even fully
unsupervised manner. Current state-of-the-art techniques for face de-
tection and recognition are subject to two major limitations: extensive
training requirement, often demanding tens of thousands of images, and
detecting faces without explicitly detecting relevant facial parts. Both of
these limitations hinder the recognition task, since for a specific face the
number of available examples is usually small, and because the strongest
cues for identity lie in the specific appearance of facial parts. The pro-
posed method alleviates both these limitations by effective learning from
a small training set and by detecting the face through, and together
with, its main parts. This is obtained by a novel unsupervised training
method, which iterates phases of part geometry and part detector learn-
ing, to incrementally learn an object category from a set of unlabeled
images, containing both class and non-class examples given in unknown
order. We tested our method on face detection and localization tasks
both in a set of ’real life’ images collected from the web as well as in
LFW and MIT-CMU databases. We also show promising results of our
method when applied to a face recognition task.

1 Introduction

The focus of this work is on a method that combines face detection (’what
is it?’), localization (’where is it?’), part interpretation (’where are the facial
parts?’) and recognition (’who is it?’), and which is capable of learning from
very limited data, in a semi-supervised or even fully unsupervised manner. The
method was developed for general object detection and localization and in this
work we extend and apply it to the task of detecting and localizing faces. In
addition, we extend it to perform the recognition task.

The face detection and localization problem has a long history in the lit-
erature, but a significant dividing line was the influential work by Viola and
Jones [1]. Based on a survey by [2], before [1] the state-of-the-art methods for
face detection were divided into several approaches: knowledge-based [3], feature
invariant [4], template matching [5], and appearance based [6–8]. Following [1]
the focus of face detection approaches turned towards efficient real-time face
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detection. In [1], the face is represented by a cascade of linear classifiers each
using simple low-level ’Haar features’ and trained using boosting methods [9].
Currently, many state-of-the-art face detectors are variants of the approach in
[1], with different improvements and extensions. For example, [10] extend the
set of Haar features, [11] improve feature computation efficiency and introduce
a coarse-to-fine technique, [12] improve the optimization of the cascade, [13]
offer an alternative to the boosting technique used in [1] and provide efficient
methods for multi-view detection, and [14] suggest an improved set of low-level
features and improve the computational efficiency. Currently, the best results
were reported by [14].

Despite all the developments listed above, there are still two main limitations
shared by current state-of-the-art face detection techniques. These limitations
are especially relevant if one wants to extend such techniques to face recognition.
The methods based on [1] usually have an extensive training requirement. For
instance [13] train on 75,000 face examples, and [14] have around 23,000 faces and
30,000 non-faces in their training set. While general face examples are abundant,
this is usually not the case for face recognition tasks, where only a handful of
images may be available for a specific individual. The second limitation is non-
specificity to facial parts. The Haar-like features based methods detect faces
without explicitly detecting facial parts and thus are capable of face detection
and localization, but are not suited for recognizing and discriminating between
different shapes of face parts such as eyes, nose, ears, mouth, chin and etc. The
ability to detect specific facial parts plays a key role in face recognition task,
as the distinction between two individuals is often based on fine differences in
specific face parts appearance such as types of nose, eyes, hair, etc.

The proposed method addresses both of these limitations. It is capable of
learning from a small number of examples, even in the challenging unsupervised
setting, in which the object examples appear at unknown locations and only
in an unknown subset of the training images. The subset of images containing
class examples may even be as small as 10% of the training set. In addition, our
method is part-based, meaning that the object is detected through first detecting
its parts. The parts and their spatial configuration are learned automatically.
Moreover, each part is represented by a (learned) set of its so-called semantic
equivalents. For example, the nose part is represented by a set of image fragments
representing the nose viewed with varying poses, illuminations, and other types
of variations. These semantic equivalents are learned without supervision, and
they are combined using an efficient representation (the CNOR model below) to
form a robust detector for a corresponding part.

Our method was tested on unconstrained frontal face detection and local-
ization tasks in a challenging set of ’real-life’ images, collected randomly from
the web. The faces are usually small relative to the images, appear at random
locations in the images and exhibit strong scale, lighting, pose and expression
variations. The set also contains partially occluded faces (e.g. by sunglasses or
other objects) and multiple face instances. We also tested detection performance
on the LFW database [15] and detection and localization performance on the
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MIT-CMU dataset [16]. Examples of the output of our method on images taken
from various datasets appear in figure 7. Finally, we applied our method to the
simultaneous object detection, localization and recognition task on a dataset
consisting of the set of ’real-life’ images mentioned above mixed with an addi-
tional set of about 130 images containing a face of a specific person. The person
images also exhibit large scale, pose, lighting, location, expression and occlusion
variations. Our system showed good performance on this combined detection,
localization and recognition task despite being trained on a limited set of only
10 images of the specific individual. Examples of combined person detection and
recognition appear at the bottom row of figure 7. In addition, we tested the con-
tribution of various aspects of the proposed method by removing some of them
and evaluating the performance on the same detection and localization task.

The rest of the paper is organized as follows. Section 2 describes the method
and the learning algorithms used, section 3 provides details of the experimental
validation, and section 4 contains the summary and proposes possible future
research directions.

2 Method

This section presents our method for combined detection, localization, part in-
terpretation and recognition of human faces. The method builds upon and ex-
tends a general method for unsupervised category learning which is presented
in a companion paper [17]. The unsupervised learning algorithm, called Unsu-
pervised Consistency Amplification (UCA) is briefly overviewed in section 2.1
and its extensions introduced for face detection and recognition are described in
section 2.2. For a more detailed description of the UCA algorithm please refer
to [17].

2.1 Unsupervised Consistency Amplification (UCA)

The basic UCA unsupervised training algorithm is described in detail in a com-
panion paper [17], here we give only a brief overview. UCA alternates between
model learning and data partitioning. Given an image set S, an initial model
(learned using initial generic features) is used to induce an initial partitioning by
identifying highly likely class members. The initial partitioning is then used to
improve both the appearance and the geometrical aspects of the model, and the
process is iterated. In this manner the process exploits intermediate classification
results at a given stage to guide the next stage. Each stage leads to an improved
consistency between the detected features and the model, which is why the
process is termed Unsupervised Consistency Amplification (UCA). Each UCA
iteration consists of two phases of learning: the feature learning Appearance-
phase (A-phase) followed by the part model learning Geometry-phase (G-phase).
The approach and the order of the phases are summarized in Figure 1.
Here we briefly describe the phases of the algorithm:
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Fig. 1. Schematic diagram of the UCA algorithm

Initial Appearance-phase: We use a generic codebook of quantized SIFT de-
scriptors of 40 x 40 patches for the initial (appearance) features. This codebook
is computed by a standard technique [18] from all the images in given set S .
The codebook descriptors are compared to the descriptors at all points of all the
images in S and storing the points of maximal similarity (either one or several,
see below) in each image.
Geometry-phase: The detection of parts using the generic features is usually
noisy, due to detections in non-class images, and at some incorrect locations in
the class images. The goal of the geometric part model learning is to both distin-
guish between class and non-class images and between the correct and incorrect
part detections, based on consistent geometric relations between the features.
This is accomplished by the G-phase of the algorithm, which is also used for
the selection of the most useful features and the automatic assignment of each
of their detections in every image in S to either object or background model.
During training, we model the background by a distribution of the same fam-
ily as the class object distribution, which allows preventing from the spurious
geometric consistency on the background to be accounted for by the learned
class model. In our experiments we found that modeling the background distri-
bution is better than assuming it to be uniform. The learned background model
is then discarded after the training and is not used for classifying new images.
Thus, the generative probabilistic model used in the G-phase is a mixture of two
star-models, one for object and the other for background. It is learned without
supervision from all the images in S using a novel probabilistic graphical model
formulation explained in [17]. After the geometric structure has been learned,
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a subset H ⊂ S of images which contain class objects with high confidence is
selected. In these images the object centers and parts are localized.
Appearance-phase: The A-phase constructs the part detectors used as features
by the following G-phase. Each part-detector constructed in the A-phase repre-
sents an object part by extracting several typical appearance patches of the part,
from different images. Part-patches can be extracted, because the locations of
the parts in the images of the subset H are already estimated from the previous
G-phase. An optimal subset of these part patches is learned by a novel proba-
bilistic discriminative model, the Continuous Noisy OR (CNOR), described in
[17]. The model parameters are optimized for part detection in correct location
on faces.
Applying the model to new images: As in [17] we apply the model to new
images by voting for the object reference point from the locations detected by
the learned part detectors. Each part Pi has two learned parameters defining its
spatial location relative to the object reference point - offset µi and covariance
matrix Λi defining the uncertainty region of the offset. Both these parameters are
used during voting. Following the voting, the parts are detected and localized by
back-projection: each part that was detected within one STD from its expected
location is declared as ’detected’. In the current paper we extend the voting
method used in [17] towards multi-scale and multi-object detection. To handle
multiple scales we iterate over candidate horizontal sizes of the face, in our case
from 20 to 150 pixels with 10 pixel increments. The search over different scales
produces only a few false alarms due to high precision of the UCA classifier (see
[17]). We also apply non-maximal suppression to suppress overlapping detections
(bounding boxes) with lower scores. To handle multiple objects we replace the
voting method used in [17]. In [17] only five highest scoring detections of each
part were used in the voting. Since an image may contain more then five faces
(as is the case in many of our examples), we replaced this method by voting
using the entire set of part detections for each part. Given an image, detector
for part Pi is applied to a grid of locations on the image (we used regular grid
with a step of 5 pixels) producing a response map Ri , then Ri is shifted by µi ,
and dilated with Λi and added to a cumulative voting mask. The local maxima
of the voting mask after all part detectors have voted constitute the candidate
locations of the faces. Applying non-maximal suppression on voting masks gath-
ered from all the candidate scales and thresholding the result produces the final
face detections.

The training of the G-phase and A-phase probabilistic models was achieved
by applying Expectation Maximization (EM) algorithm [19] and its structure
learning variant [20]. The following section explains how UCA was used in faces
detection, localization, part interpretation and recognition tasks.

2.2 UCA-based face detection and recognition

The model for face detection (for brevity detection = detection + localization +
part interpretation) and recognition is trained in three stages, each stage training
a separate UCA model. In the first stage, M1 - a model for detection is trained on
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Fig. 2. A schematic illustration of the proposed approach showing the inputs and the
outputs of all the training stages

an unlabeled set of mixed face and non-face images in an entirely unsupervised
manner. In the second stage an improved model for detection M2 is trained on
an additional training set, in which the faces are detected using M1. In the third
stage, a model for recognition M3 is trained using several examples of a specific
face to be recognized detected and localized, based on the application of M2.
Stage 1: The first stage is fully unsupervised, its training set consisting of mixed
non-face and face images (faces appear at unknown locations). This stage was
performed in the experiments of [17] and here we use the model it learned (de-
noted M1) for the second stage. Fifty face examples from Caltech faces dataset
were present in the unsupervised training set of the first stage (together with
450 non-face images). In general this stage may be used in cases we train on a
semi-supervised set (having only images that contain the learned object), but
when object examples vary in viewing direction (or other viewing conditions),
e.g. if we get a set of mixed frontal and profile faces. Although it is possible to
try to capture all the viewing directions by a single model, it is clearly harder
and will typically cost in loss of ability to detect facial parts. So in this case it
is beneficial to first apply unsupervised learning to separate different views and
only later to learn a separate model for each view. Experiments along these lines
were performed in [17] for automatically separating different car views.
Stage 2: The second stage is learning an improved model using weak supervi-
sion. The goal of this stage is to improve the performance of the model learned
during the unsupervised stage by providing it with more object (face) examples.
This stage could also be performed by the system in autonomous (unsupervised)
online manner by crawling on web images and detecting instances of the object
using the M1 model. In our case we gave the system 300 additional image exam-
ples randomly chosen from the LFW database and ran the M1 model on them to
detect and localize faces on these images. The output of M1 were face bounding
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boxes detected in the training images. We then train the model M2 using the
UCA method by assuming the output of M1 to be the output of the G-phase
in one of UCA iterations (see section 2.1 for the definition of the G-phase). The
model M2 is then used to perform the face detection and localization in section
3. The second stage can be seen as additional iterations of the UCA method ap-
plied in the first stage. The main difference is that the standard UCA loops over
the same image set over and over again, while in M2 training stage new images
are provided either in a weakly supervised or in online unsupervised manner.
Stage 3: The third stage, training a recognition model for a specific face, is
performed when we receive a (limited) set of examples of a face of a certain
individual (that we wish to recognize in the future) and train a UCA model on
these images. The training examples need not be cropped or aligned and can
exhibit any scale variation, all we require them to be is ’roughly frontal’ (as the
example images in Figure 7). The training is organized along the lines of the
second stage. The resulting model M3 can be used by itself for simultaneous
detection, localization and recognition of a specific person, but it is better used
in conjunction with M2, since M3 had only limited training on the few exam-
ples provided for the specific person. We investigate both of these options in the
section 3.

Figure 2 summarizes the proposed approach. Section 3 describes the experi-
mental validation of our method.

3 Results

To test the proposed method, we applied it to frontal face detection, localization
and recognition tasks in several databases, namely: people-containing images
gathered from Google image search (denoted WEB database); Labeled Faces
in the Wild (LFW) database [15]; MIT-CMU dataset [16]; and a set of un-
constrained images of a person taken under different viewing conditions, and
at different locations and times (denoted PERSON database). The MIT-CMU
dataset combines all the images from tests A, B and C in the dataset description
[16]. The statistics of all the datasets are summarized in Table 1.

–+–162162PERSON

–++511130MIT-CMU

+––1323313233LFW

–++477354WEB

Faces are 
aligned

Has scale 
variations

Has multiple 
people

Faces size
(min – max)

image size
(rows x columns + STD)

# frontal faces# imagesName

220197593626 ��� 1301802031 ���

00250250 ��� 95135�

208227440429 ��� 1682531421 ���

00640480 ��� 1602092836 ���

Table 1. Provides statistics of the datasets used in our experiments
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Fig. 3. Summary of the LFW face detection experiments. Although faces in LFW are of
the same scale, a full method including scale search was applied both to face-containing
and background images

In the first experiment, the model M2 was applied to the face detection task
in the LFW database. Since faces in the LFW are cropped, roughly aligned
and equally scaled, there was no reason to test localization on that database,
although in several dozens of images that we manually checked the localization
was perfect. The LFW database is comprised only of images containing faces
detected by Viola & Jones face detector, so in order to test face detection,
maximal response of the UCA was computed for all images in the LFW and in
additional 916 background images which were a union of the Caltech and Google
background sets. These measurements were used to build the ROC curve for face
detection depicted on Figure 3. The error bars of the ROC were computed by
10-fold cross validation.

In the second experiment we tested the combined detection and localization
performance of our method. To this end, model M2 was applied to the WEB and
MIT-CMU datasets. The results are summarized in ROC curves in Figures 4a
and 4b respectively. We also compared our performance on the WEB database
with the performance of the OpenCV [21] implementation of Viola & Jones face
detector [1] and shown a significant performance gain (see figure 4a). The face
was considered correctly localized if the detected bounding box exceeded the
standard Jaccard index overlap score of 0.5 with the manually marked ground
truth bounding box:

Jaccard Index (BB1, BB2) =
|BB1 ∩BB2|
|BB1 ∪BB2| (1)

In order to test the contribution of various components of our method to
the final performance, Figure 4a also contains ROC curves of performance af-
ter removing different components. Specifically, we tested our method without
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Fig. 4. (a) Summary of the WEB face detection and localization experiments. Ad-
ditionally provides comparison with OpenCV implementation of [1], HOG+SVM and
performance after removing different components of our method. (b) Summary of the
MIT-CMU face detection and localization experiments, ROC curve

using semantic equivalents for part detection (’No semantics’ in the figure), with-
out using the CNOR model for combining the semantic equivalents (’No CNOR
combination’) and without using the learned geometry of parts (’No star geom-
etry’). In all cases, removal of these components resulted in significant drop in
performance. When semantic equivalents were not used for part detection, a sin-
gle best image fragment was chosen to represent the part. When CNOR model
was not used for combining semantic equivalents, they were combined using a
simple summation. When part geometry was not used, the parts were split into
four groups corresponding to the four quarters of the face. The face was then
detected as a combined vote of the four quarter detections, while each of the
quarters was detected by the bag-of-features method. Localizing faces directly
by a bag-of-features of the whole face (without using this four quarters scheme)
failed to produce reasonable results due to the limitation imposed by the overlap
score (eq. 1) and the currently used non-maximal suppression scheme.

Additionally, figure 4a contains an ROC curve of HOG + SVM classifier
implemented along the lines of [22]. HOG descriptors were computed for all the
face bounding boxes detected by M1 in all the images used to train M2. For
these HOG descriptors RBF kernel SVM was trained against HOG descriptors
of maximal score bounding boxes detected by M1 in background images (Caltech
+ Google backgrounds).

In the third experiment combined detection, localization and recognition were
tested on the combination of the PERSON and the WEB datasets. The results
are summarized in figures 5a and 5b. Ten images of a person were used to train
the model M3. The models M2 and M3 were used in a cascade-like sequence.
First, M2 was applied to detect candidate faces in the image and then M3 was
applied to search for the face of the specific person at locations and scales close
to the ones detected by M2. We also tested the combined detection, localization
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Fig. 5. (a) Summary of PERSON face detection and localization experiments. (b)
Summary of PERSON + WEB combined detection, localization and recognition ex-
periments

and recognition using a single model (M3). When used by itself, it produces less
good detection and localization results (see Fig. 5a) due to the limited training
on only 10 images. In figure 5b we also compare our approach to several baseline
approaches. Specifically, we tried to replace the M3 in the M2 → M3 sequence
by Nearest Neighbor PCA, NCC or HOG, all trained on the same 10 images
we used for training M3. As can be seen in Figure 5b, the performance of these
methods is significantly worse. This can be partially attributed to the fact that
these methods try to detect the whole face using a single template, while our
method applies part based detection which, as explained in the introduction, is
more appropriate for the recognition task. Examples of face interpretation, that
is detection of various facial parts, are given in Figure 6.

4 Discussion

This paper presented a method for combined faces detection, localization, part
interpretation and recognition in unconstrained images, where faces may appear
at any image location, scale and under a variety of difficult viewing conditions.
The method shows promising performance in various experiments on different
datasets, superior to several standard baseline methods and the standard im-
plementation of the Viola & Jones face detector. The method requires only a
few images for training and can be trained in a fully unsupervised manner. The
underlying models employed by the method are general and not limited to face
detection.

Even in cases of semi-supervised training, the ability to automatically sep-
arate different object views in a given training set (containing mixed views)
can improve classification performance of the learned models. Moreover, this
ability also facilitates learning part based models that are capable of detecting
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Fig. 6. Examples of detections of several of the (about 50) modeled parts. Yellow star
shows the detected object model center location and the colored boxes show the parts
that were detected by the model

’meaningful’ object parts. Initial experiments performed in [17] for automatic
separation of car views from the PASCAL 2007 dataset, show that our method
has this ability. An interesting future research direction would be learning view-
point invariant part based models for face detection from a mixed set of examples
of different face views. Additional interesting extension may be linking the mod-
els of different views in terms of their detectable parts (such that semantically
equivalent parts from different view models are linked) in order to facilitate
view-invariant part interpretation.

In its current version, the method does not make full use of the detailed part
interpretation obtained during the detection process for the purpose of subse-
quent individual face identification. Since part detection obtained by our method
is usually highly accurate, for each facial part it is possible (in future work) to
build a universal dictionary of part appearances, such as semantic equivalent
image fragments proposed in [23]. Then, one may learn an association between
each of the part appearances and the conditions (lighting, pose, expression, etc.)
under which the part is viewed. Given even a single image of a specific individual,
her facial parts may be detected (by our model) and categorized according to
the learned part appearance dictionaries. Subsequently, when confronted with a
new image of the same individual taken under different conditions, the learned
association between the conditions and the part appearances in the new image
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(known following the detection, localization and part interpretation performed
by our model) could be used to recognize the individual. Some ideas along these
lines were explored in [24] (but without having a method for reliable part in-
terpretation) and extending it might be an interesting future research direction
towards individual recognition under highly varying viewing conditions.
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015803 and ISF Grant 7-0369.
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Fig. 7. Examples of face detection, localization and recognition obtained by our
method. The databases used for experiments are explained in the Results section.
Examples inside the red box are from the WEB database, examples in the green box
are from the MIT-CMU database and blue box contains examples of combined detec-
tion, localization and recognition of a specific person in the PERSON database. The
current algorithm does not use color information, all the color images were processed
in grayscale by the algorithm


