
Abstract

This study is focused on the following similarity problem: Given n

data points in a high dimensional feature space. Every data point

pi is the center of a hyper-sphere with radius ri. A query point q is

considered to be similar to a data point pi, if the query point falls

within the sphere of pi. We call such pi a cover point. We suppose to

build an algorithm that returns a cover point if it exists for any given

query.

The solutions that were investigated here are essentially reduc-

tions that can rely on both of the classical near or nearest neighbor

problems. We try several approaches to map our similarity problem

to the near/nearest neighbor problem. The first approach relies on

dividing the data points with respect to their radii. The second ap-

proach named “Separation method“ relies on increasing the distances

of the data points. A third approach is based on preprocessing data

structures that use the spheres of the points. Then based on the clos-

est point to the given query it can return a cover point. The forth

approach tries to generalize the Separation approach using intuitions

from the similarity.

In practice, we use the near neighbor algorithm E2LSH [2] for

solving the mapped problem. All of our approaches based on E2LSH

have typically sub-linear running time on the data points and per-

form significantly better than the naive search and the E2LSH near

neighbor algorithm itself. The additional space requirements of our

methods are linear, and thus applicable. We also developed a specific

version of the Separation method for the l2 norm and, the unit sphere.

This method is the best among our methods for points distributed on

the unit sphere. Finally, We generalize the Separation method for

every possible lp norm, including the “fractional norms“.
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1 Introduction

In this work we develop algorithms for searching neighboring points in high-

dimensional spaces. The problem is motivated by feature matching in com-

puter vision applications. We describe below related background to the cur-

rent problem, the motivation coming from feature matching, and define in

more detail the search problem we deal with.

A classical similarity search problem is also known as the nearest neigh-

bor search (NNs). It involves a collection of objects which are characterized

by a collection of relevant features, and are represented as points in a high

dimensional feature space. Given a query object which is also represented

as a point in the feature space, the problem is to find efficiently its nearest

neighbor point, which represents the most similar object to the query object.

This problem was studied and solved for the low dimensional space case, but

it remains difficult and challenging for the high dimensional space case. The

problem in high dimensional space is of major importance to variety of ap-

plications; including information retrieval, statistics and data analysis, data

compression, pattern recognition, machine learning, and image and video

databases.

Our work is motivated in part by problems arising in recognition and clas-

sification in computer vision. The task of visual classification is the recogni-

tion of an object in the image as belonging to a class of similar objects, such

as a face or a car. To do this we build a database of images relying on a clas-

sification approach using a feature based representation. We will consider in

particular methods that use image fragments as classification features, but

other classification features can be used in a similar manner. The fragments

used for classification are selected from a training set of images based on a

criterion of maximizing the mutual information between the fragments and

the class they represent. They are then stored in a database and used in

the classification of new inputs. Each fragment can be considered as a weak

classifier that has its own detection threshold, selected so as to achieve the
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optimal Separation between class and non-class examples (for more details

see Ullman et al [24, 25]). The present work focus on the case of binary

class vs. non-class classification; further research can extend the approach

to multi class classification problems.

During recognition, the fragments database receives a new image (a typ-

ical size can be ∼ 1000× 1000 pixels), and it is required first, to find image

patches which are similar to the stored fragments. The process starts by

constructing from the new image a large set of image patches (∼ 20 × 20

pixels each). An image of size ∼ 1000× 1000 can produce ∼ 106 patches for

matching. The patches are created by running a window of size ∼ 20 × 20

on the new image. Each possible window defines an image patch, and each

new patch is treated as a query image. We then search the database to find

the stored fragment that is most similar to the query.

This similarity problem can be translated to a search for neighboring

points in a high dimensional attribute space as follows. Each stored fragment

becomes a point in the attribute space together with a sphere with radius

which is equal to its detection threshold. A query point (patch) is considered

similar to a given stored point if their distance is smaller or equal to the point

threshold. We will call our problem the PLDS problem, for Point Location

in Different Sphere (see definition 1 in Section 3.3). One can look at such

a similarity problem as a generalization of the classical similarity problem.

Our problem can also be mapped to the problem called ’near neighbor’. In

this version, the goal is to report all the points within a given radius R (also

called epsilon range search). The mapping is obtained by searching the near

points to the query point using a radius equal to the maximum threshold.

For radii that are significantly smaller than the average inter-point dis-

tance we can rely on the near neighbor search for solving the PLDS problem,

by replacing all the individual radii with the maximum radius in the database,

and then running the near neighbor algorithm on search’s radius equal to the

maximum threshold.
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Our research focuses on the case where the thresholds of the points can

be large compared with the mean inter-point distance, as often happens

with data points, derived from computer vision recognition problems. In

particular, the ratio between the mean inter-point distance and the maximum

threshold can be smaller than 2. Mapping the problem to the near neighbor

search with a radius equal to the maximum threshold gives in this case poor

and unstable improvement (if at all) compared with the naive search. By

naive search, we mean that for each query we search for the cover point of the

query by computing the distances from the query to all the data points one

by one. Since in the worst case there is no cover point, then we will compute

all such distances, the worst case running time in this case is O(dn), where

n is the number of points and d is the dimension.

In such hard cases we develop methods to solve the problem by using

new reduction methods to the near/nearest neighbor problem, which will

significantly improve the running time compared with the naive search. It

seems natural to rely on the near/nearest neighbor in solving the PLDS

problem for two reasons. First, as mentioned before, the two problems have

a similar formulation as searching neighboring points in high dimensional

spaces. Second, the area of NNs search is an active research area, and

therefore if we obtained a successful reduction to NNs, then any future

improvement in the algorithms of NNs will also improve with it the solution

to the PLDS problem.

Since in our applications we do not distinguish between a threshold of a

fragment and a radius of a point, we will alternate freely between the two

terms.

Most of the algorithms in high dimensions solve the nearest neighbor

problem not in an exact manner, but by some approximate solutions e.g. [17,

16, 13, 3, 8]. Most of the cases we will analyze below, the solutions will assume

that we use exact near/nearest neighbor algorithm and not approximated

near/nearest neighbor algorithm(see definition 4 in subsec. 3.3). There are
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two reasons for this use of exact NN algorithms. First, the analysis using

approximated algorithm is fairly straightforward (for example see appendix

B.4), and therefore for simplicity and intuition we prefer the exact algorithm.

Second, algorithms have been recently developed which solve the exact near

neighbor problem with high probability[11]. Thus, the exact analysis by itself

can be used in practical applications.

2 Structure of the Thesis

The rest of this thesis is organized as follows: in the next section we present

the background for our problem such as the ‘curse‘ of dimensionality, the

fractional norms, and definition for our PLDS problem and other related

problems. Then we present a brief overview of the approaches for solving

the near/nearest neighbor problem and the PLDS problem. We also present

the near neighbor algorithm E2LSH that we will use in practice. In sections

{4,5,6,7} we will present the methods that we used to map the PLDS prob-

lem to the NNs problem. The methods are the Direct Multi-level method,

the Separation method, the Intersection method and the Similarity with Vir-

tual Levels method, respectively. In the reminder of this report we present

experimental results and conclusions.

3 Background

3.1 The Curse of Dimensionality

The curse of dimensionality first defined by Bellman [4], refers to the expo-

nential growth of hypervolume as a function of the dimensionality. In the

field of NNs, the term describes the phenomena that the algorithms of NNs

and related problems become less and less efficient as the dimension grows.

More specifically, their space or time requirements grow exponentially with
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the dimension.

The failure to remove the exponential dependence on the dimension, led

many researches to conjecture that no efficient solutions exist for the exact

version of the NNs problem and its related problems, when the dimension is

sufficiently large (see [22]). At the same time, it raised the following question:

Is it possible to remove the exponential dependence on the dimension, if we

allow the answers to be approximate (see definition 4 in 3.3). During recent

years, some algorithms have been developed that indeed show that in many

cases approximation enables a reduction of the dependence on the dimension,

from exponential to polynomial, both in their space and time requirements.

3.2 The Minkowski Norms and the Fractional Norms

All the algorithms we consider use a measure of distance between points

in metric spaces. A common way to measure such distances is based on lp

norms.

The lp norm is used to define distance by:

distdp(x, y) =

[
d∑

i=1

‖ x(i) − y(i) ‖p

]1/p

, (1)

where d is the dimension of the space and p is the parameter of the norm.

For p ≥ 1, they are also called the Minkowski norms (during this work we

assume that p < ∞). These norms were extended by Aggarwal et al [1]

for p such that p ∈ (0, 1), we will call such distance measures the fractional

norms. Note that the fractional norms are not even metric distances in the

mathematical sense as the triangle inequality does not hold. The reason

for this is that the unit sphere under fractional norms is no longer convex

(see fig. 1). This extension was motivated by the need to find suitable

distance measures for high dimensions, since, Beyer et al [5] show, the nearest

neighbor search in high dimensions may be no longer meaningful for most

13
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Figure 1: Unit spheres for l2, l1, l1/2 and l1/3 in two dimensions

of the data distributions and distance measures. The reason is, that as the

dimension increases, the distance to the nearest and farthest neighbor tend to

converge to the same value. Aggarwal et al, showed that using the fractional

norms as the distance measure in high dimensionality keeps a satisfactory

contrast between the data points. Thus, solving the nearest neighbor problem

using a fractional norm gives more meaningful results, also solving clustering

problems give more robust clusters. Therefore, the fractional norms started

to attract interest see e.g. [15],[10]. We will refer to the fractional norms also

as the lp norms with 0 < p < 1.

3.3 Definition of the PLDS and Related Problems

In this section we define formally the PLDS problem, and some related

problems.

The problem that we are dealing with is the following. A set of n points is

given in a space, with a threshold associated with each point. These n points

are also called the data set. We need to find an algorithm that efficiently

finds for a given query point q in the space a data set point that covers it, or
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to report that there is no data set point that covers the query point.

The data point is said to cover the query if the distance between the

query and the data set point is at most equal to the given threshold of the

point. We define our problem formally as follows

Problem definition 1 Point Location in Different Spheres(PLDS) 1

Given n spheres in a d-dimensional space Rd
p, where the distance function

in Rd
p is some lp norm, centered at P = {p1, ..., pn} with radii {r1, ..., rn}

respectively, preprocess the points in P to efficiently answer the following

query: for every query point in Rd
p, if there exist a point pi ∈ P such that

q ∈ S(pi, ri) (sphere centered on pi with radius ri), call pi a cover point and

return it, otherwise return NO.

We will concentrate on the case of l2 norm since most of the applications use

the Euclidian metric as a measurement of the distance.

We next define the Approximate PLDS problem; we will call it the γ −
PLDS problem.

Problem definition 2 Approximate Point Location in Different Spheres(γ−
PLDS)

Given γ > 0 and n spheres in Rd
p centered at P = {p1, ..., pn} with radii

{r1, ..., rn} respectively, preprocess the points in P to efficiently answer the

following query: for every query point in Rd
p, if there exists a point pi ∈ P

such that q ∈ S(pi, ri(1 + γ)) (sphere centered on pi with radius ri(1 + γ)),

then return a single point p′ such that q ∈ S(p′, r′(1 + γ)), otherwise return

NO.

Also we need to define formally the problem of finding nearest neighbor

and near neighbor. The nearest neighbor search is defined formally as follows

1The definition of this problem is a generalization of the definition of Point Location
in Equal Spheres(PLES) problem defined in [16].
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Definition 3 (Nearest Neighbor Search (NNs))2

Given a set P of n points in a space Rd
p, preprocess P so as to efficiently find

the point in P closest to a query point q.

The definition generalizes naturally to the case where we want to return

k > 1 points. The approximate version of the NNs problem is defined as

follows:

Definition 4 (Approximate Nearest Neighbor Search (ε−NNs))

Given ε > 0, we say that a point p ∈ Rd
p is a (1 + ε)-approximate nearest

neighbor of q if dist(p, q) ≤ (1 + ε)dist(p∗, q), where p∗ is the true nearest

neighbor to q.

Almost all the algorithms for proximity in high-dimensional spaces pro-

ceed by reducing the problem to the problem of finding an approximate near

neighbor, which is the decision version of the approximate nearest neighbor

problem. As an example we mention the algorithms in [13] and [16], that use

this reduction to solve nearest neighbor problem. The definition of the near

neighbor problem is given by:

Definition 5 (R-Near Neighbor Problem (R−NN)):

Given a set of points P ⊂ Rd
p and a radius R > 0, construct a data structure

to efficiently answer the following: for a query point q, find all points p ∈ P

such that dist(p, q) ≤ R.

We next define an approximate version of the near neighbor, in this ver-

sion it is sufficient to return a single approximate near neighbor point.

Definition 6 (The (R, c) Near Neighbor, or (R, c)−NN)

Given a set P of n points in space Rd
p and two positive constants R and c ,

design a data structure that supports the following operation: For any query

2Although the term NNs is formally for representing the Nearest Neighbor Search
problem, during this work we will sometimes mean by NNs both the near and the nearest
neighbor search problem.
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q ∈ Rd
p, if there exists p ∈ P such that dist(p, q) ≤ R, find a point p′ ∈ P

such that dist(q, p′) ≤ cR.

3.4 Algorithms for The Near/Nearest Neighbor Prob-

lem

Here we represent briefly the known approaches for solving the NNs(ε −
NNs) problem. As we mentioned before, the nearest neighbor problem is

conjectured to suffer from the curse of dimensionality (see subsection 3.1).

Assume that the number of dimensions is d and the number of points is

n. In particular, the exact NNs problem has a solution with O(dO(1)logn)

query time, using roughly nO(d) space [21]. The exponential dependence of

space and/or time on the dimension has been observed in applied setting as

well. Many popular data structures using linear or near-liner storage and

rely on partitioning the data space (such as KD tree algorithm [7]), exhibit

query time linear in n when the dimension exceeds certain threshold (usually

10-20 dimensions), for more information see [26]. Therefore, Most of the

algorithms in high dimensions are solving the approximate version of the

NNs. Finding solution to ε − NNs for an arbitrary small ε > 0, has been

studied extensively. Arya et al. [3] obtained an algorithm with query time

O(exp(d) · ε−dlogn) and pre-processing time O(nlogn). Clarkson [8] obtained

a different algorithm which improved the dependence on ε in the query time

to O(exp(d) · ε−(d−1)/2). Kleinberg [17] gave an algorithm with O(nlogd)2d

pre-processing and query time polynomial in d, ε and logn, and another

algorithm with pre-processing polynomial in d, ε and n but with query time

O(n + dlog3n).

But again the dependence in d for the query time or the space require-

ments in these approaches is still exponential. The algorithms that have

an exponential dependence on d for their query time or space requirements

suffer from the curse of dimensionality.

Newer Algorithms were developed using a relatively new approach that
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based on what called locally sensitive hashing functions, these algorithms

solve the ε − NNs problem by reducing it to the problem of finding an

approximate near neighbors (see definition 6 of (R, c)−NN ), which is the

decision version of the approximate nearest neighbor problem. The first

algorithms for (R, c) − NN in high dimensions were obtained by using the

technique of random projections. This technique is applicable for the lp

norms, such that p ∈ [1, 2]. The basic locally sensitive hashing functions

work for the hamming space {0, 1}d, and then embedded into the suitable lp

for p ∈ [1, 2]. We mention here the algorithm of Indyk and Motwani [16],

this algorithm uses O(n1+1/ε +dn) pre-processing time and required O(dn1/ε)

query time for ε > 1. An improvement to the query time for the algorithm

to O(dn1/(1+ε)) were done by Gionis et al [13] for any ε > 0, thus its running

time was sub-linear. Recently was developed algorithm based on work of

Datar et al [11], this algorithm solves the exact version of the Near Neighbor

Search. It is based on a new family of hash functions that works directly

on ldp norm for p ∈ (0, 2]. This algorithm were also implemented to the l2

norm and the algorithm package was called the E2LSH − 0.1 [2]. We rely

on this algorithm for our practical implementation, thus, it represented next

subsection. On the other hand, there are only a few studies related to the

PLDS problem. One recent example is a study of multimedia identification,

which was applied for audio fingerprinting by Goldstein et al [14], for more

details and comparing this method with our methods see appendix F.

3.5 Generic locally-sensitive hashing scheme

The description of this subsection and the next one follows [2]. Consider

the space Rd
p with the norm lp, we can use the technique of locally-sensitive

hashing [11] to solve the R−NN problem (definition 5). We define the LSH

for a domain S of points as:

Definition 7 A family H = {h : S → U} is called locally sensitive, if for
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any query point q and data point v in Rd
p, the function p(t) = prH[h(q) =

h(v) : ‖q− v‖p = t] is strictly decreasing in t. In other words, the probability

of collision of points q and v is decreasing with the distance between them.

Thus, if we consider any query point q and any data points v, w such that

v ∈ B(q, R) and w /∈ B(q, R), then p(‖q− v‖p) > p(‖q−w‖p). Intuitively, in

the pre-processing we could hash the data points into some domain U , and

then processing the query will be by computing the hash of q and consider

only the points with which q collides. This way we can find the R − NN

points, but it is not necessary that the running time is efficient.

To achieve the desired running time, we need to amplify the “gap“ be-

tween the collision probabilities for the range [0, R], i.e. where the near neigh-

bor points lie and the range (R,∞). For this purpose we concatenate several

functions h ∈ H. In particular, define a function family G = {g : S → Uk}
such that g(v) = (h1(v), · · · , hk(v)) for some suitable integer k, where hi ∈ H.

For an integer L, the algorithm chooses L functions g1, · · · , gL from G, in-

dependently and uniformly at random. during preprocessing, the algorithm

stores each data point v in buckets gj(v), for all j = 1, · · · , L. To process a

query q, the algorithm searches all buckets g1(q), · · · , gL(q). For each data

point v found in a bucket, the algorithm computes the distance from q to v,

and reports the data point v if and only if, its distance is at most R (i.e. v is

a near neighbor).

3.6 Solution Using Exact Near Algorithm E2LSH

We will represent the algorithm E2LSH (for Exact Euclidean LSH) , we will

use this algorithm as a ’black box’ component to solve the NNs problem.

This algorithm receives three parameters as input. First, R the radius of

searching, such that just points within distances less or equal to R will be

returned. Second, Two point files, one includes the query points and the

other include the data points. The final input is p which is the success
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probability required.

The algorithm E2LSH available at [2] is based on recent work of Datar et al

[11]. The algorithm solves the exact version of the near neighbor search using

the technique of Locally Sensitive Hashing (LSH). It is based on a new family

of hash functions that works directly on ldp norm for p ∈ (0, 2] , without the

need to use any embedding, as in the earlier LSH algorithm (see [13]).

E2LSH solves a probabilistic version of the R-near neighbor problem (see

definition 5), which we call a (R, 1−δ)− near neighbor problem. In this case,

each point p satisfying ‖ q − p ‖2≤ R has to be reported with a probability

at least (1− δ).

The new locality-sensitive hashing scheme [11] solves the approximate ver-

sion of the R-near neighbor problem, called the (R,c)-near neighbor problem

(see definition 6) where c = 1 + ε, ε > 0. In that formulation, it is sufficient

to report with a constant probability any point within the distance of at

most cR from the query q if there is a point in the data set points within

distance at most R from q. For the approximate formulation, the LSH query

time is O(nρ), where ρ < 1/c = 1
1+ε

. Note that for ε > 0 the running time is

sub-linear in n.

To solve the (R, 1−δ) formulation, E2LSH uses the basic LSH scheme to

get all the near neighbors, including the approximate ones, and then drops

the approximate near neighbors by a post-processing step (as was mentioned

in 3.5 ). As a result, the running time of E2LSH depends on the data set

points. more specifically, E2LSH running time depends on the distances of

the points from the query point. It is slower for ”bad” data sets, e.g., when

for query q, there are many points from the data set clustered right outside

the ball of radius R centered at q.

In contrast to the original LSH scheme, E2LSH empirically estimates

the optimal parameters k and L (see 3.5) for the data structure, instead of

using theoretical formulas. E2LSH computes the parameters as a function

of the data set and optimizes them to minimize the actual running time of
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query on the host system.

3.6.1 The Estimated Running Time of E2LSH

Assume R is the search radius of the algorithm, and the data points are at

least within distance cR from the query. The estimated running time for the

E2LSH in the worst case is O(log(1/δ) · O(nρ(c)logn + nρ(c))) ≈ O(log1/δ) ·
O(nρ(c)logn) where ρ(c) < 1/c. This estimation is a coarse estimation but it

is sufficient for our purposes, for more details and more accurate estimation

for the running time see appendix A.

3.6.2 The Near Method

In this section we describe a “naive“ way to use E2LSH to solve the PLDS

problem, which we will call the Near method.

As we mentioned in the introduction above, there is a “naive“ way to use

any near neighbor algorithm which reports all the points within the search

radius, to solve the PLDS problem. This is obtained simply by running the

algorithm on radius R = rmax, where rmax is the maximum radius in the

database, and then performing a post-processing step, which checks for each

point whether it covers the query, and finally returns those points that cover

the query.

The running time for the PLDS using the Near method and the E2LSH

is Time(Near Method)=Time(E2LSH)+Time(post-processing).

The E2LSH will be used below as a ‘building block‘ within a number

of schemes for solving our original PLDS problem. It is therefore useful to

note, in summary, the E2LSH can be applied efficiently with parameters

(c, R) provided that only a small fraction of the points lie inside the sphere

with radius cR around the query point.

The Near method is not always practical, since the maximum radius could

be relatively large. Assume that for the E2LSH algorithm R = rmax, and

that most of the database points are at distance (1 + ε)rmax from the query.
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In order to have good performances using the algorithm, we have to insure

that ε is sufficiently large. Thus, if the maximum radius is relatively large

compared with the distances of most of the points in the database we cannot

obtain good performances. Therefore, the E2LSH algorithm for large radii

is inefficient.

In the next four sections, we present alternative methods we used for

mapping the PLDS problem to the near/nearest neighbor problem which

have advantages over the naive Near method. The methods are called the

Direct Multi-level method, the Separation method, the Intersection method,

and the Similarity with Virtual Levels method.

4 Direct Multi-level Method

The motivation of this method comes from the idea of dividing our original

PLDS problem into several subproblems, which we will call ‘levels‘. Each

one of these subproblems has data points which have almost the same radius,

i.e. they differ by not more than a γ fraction, where γ is the discrimination

parameter which specifies the fraction of mistakes that we allow. We can

consider every subproblem as a nearest neighbor problem and solve it inde-

pendently. In this case we solve the approximate problem, or as we call it

the γ − PLDS problem (see definition 2).

As we show above (in 3.6.2), we can solve the exact version of the PLDS

using a near neighbor algorithm, but the solution may be inefficient in its

running time. As we will see the division of the problem to levels can make

the running time more efficient, but we will need to estimate the number of

levels and the optimal way for division.

The solution obtained by dividing the problem into several subproblems

can be considered as a generalization of the near/nearest algorithm itself,

since after dividing the original problem into different subproblems, each

subproblem will be a new independent near/nearest problem. We can look at
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the regular near/nearest algorithm as a Multi-level method with the number

of levels equals one. Thus, from our point of view, the near/nearest algorithm

is just a special case of the Multi-level method. In the case of using a near

algorithm, we call this special case the Near method (see 3.6.2).

4.1 Multi-level Using a Nearest Neighbor Algorithm

Using a nearest neighbor algorithm under the Multi-level Method requires

a relaxation on the original problem, i.e. it solves the approximate PLDS

problem (γ − PLDS), instead of solving the original PLDS problem.

The basic idea behind this method is to convert the PLDS problem to

a Multi-level NNs problem. This is done by discretizing the interval of the

thresholds I = [rmin, rmax], into several intervals (I1, I2, ..., Ik). Let us call Ri

the maximum threshold in any interval Ii, the value Ri presents the threshold

of level i, where k = dlog(1+γ)(rmax − rmin)e and γ is the allowed fraction of

the solution error.

The threshold in each level is computed as follows: for level i, Ri =

(1+γ)i ·rmin. Therefore, the levels’ thresholds for all the k levels are (rmin(1+

γ), ..., rmin(1+γ)k), where rmin(1+γ)k ≥ rmax. We chose to define the levels

by a multiplicative factor, rather than using intervals of constant size, since

similar for the ε−NNs we are interest in solutions that for any cover point

pi with threshold ri they provide an approximated cover point p′ that its

distance is at most (1 + γ)r′ from the query. To achieve the same accuracy

using a constant level sizes we will need more levels, since we need to take

the size of the smallest level in this scheme as the size for all the levels in the

constant size scheme.

Now we divide the data points of the original problem among the different

levels such that, any point pj belongs to level i, if and only if its threshold

satisfies the restriction Ri−1 < rj ≤ Ri.

In this way each level out of the k different levels has points with thresh-

olds that have similar values, in particular, their thresholds differ by at most
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γ fraction.

Thus, if our applications are not sensitive to γ, then we can consider

each level as a separate NNs problem. We can run now a nearest neighbor

algorithm on every level, but we should use the following strategy for solving

our original problem: on level i, the algorithm will return the closest point if

the distance from the query to this point is at most equal to Ri, and nothing

otherwise.

The algorithm can stop whenever it finds answer on any level, or may

run over all the levels. Thus, the worst case for the running time is when

the algorithm tries all the levels. If the algorithm returns point p′ that has

threshold r′, then the distance of the point p′ from the query point will be at

most r′(1+γ). Therefore, this method actually solves the γ−PLDS problem.

Note: If we use an approximate nearest neighbor algorithm instead of the

exact one, i.e. the one that solves the ε−NNs problem (definition 4), then

we have to take the approximation factor ε into account too. The reason is

that the algorithm in this case can return point p′ that is r′(1 + γ)(1 + ε) far

from the query. Assume that Γ is the allowed error fraction that we need for

our application. In other words, assuming that there exists a cover point for

the query point, we need the returned point p′ from the Multi-level method

to be within distance at most (1 + Γ)r′ (comparing to its threshold r′). To

satisfy this distance condition, we need to determine the number of levels

by determining γ that gives the required Γ. Easy computations show that

γ = Γ−ε
1+ε

guarantees that the final error fraction is at most Γ.

4.2 Multi-level Using a Near Neighbor Algorithm

We recall that the R−NN algorithm should report all the points within any

given search radius R. In this case we can look on the Multi-level method

as a generalization of the Near method (see 3.6.2), since we will divide the

problem into subproblems and we will run the Near method with a suitable
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search radius on each subproblem. In this way we will solve the exact version

of the PLDS problem.

4.2.1 How to Divide

The division of the points into levels here is more flexible than in the case

of the nearest neighbor algorithm. At each level we find all of the near

points inside the search radius and from them by post-processing step we

can find those that cover the query point. As we show in the description of

the Near method, this solves the exact PLDS problem. In reality, each level

is considered as a subproblem of a PLDS problem.

The running time of the Multi-level method using R−NN algorithm in

the worst case is the sum of the running time for all the levels. Assume Tn

is the running time of the R−NN algorithm, and Tp is the running time of

the post-processing step. Thus the running time for any level i is

T (i) = Tni + Tpi. (2)

We conclude from above that any possible division of the interval thresholds

[rmin, rmax] for any number of levels can be performed to solve the exact

version of the PLDS problem. For most of the distributions of the data

points in high dimensionality Tpi is negligible compared with Tni. This is

because that the reasonable size of the maximum threshold rmax is smaller

than the mean distance of the points. Most of the distributions points in

high dimensions have equidistant points with small variance [5]. Thus, the

number of points that are within distance rmax from the query is negligible

for most of the distributions of the points. Furthermore, most of the cases

the levels that have the largest radii will contain a small number of data

points.

We next estimate the best division and the optimal number of levels that

will give us the optimal running time for all of the levels of the Direct Multi-
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level method.

We discuss below the main alternative methods for dividing the points

according to the threshold.

4.2.2 Equal Levels Widths

The simplest way for division is to divide the interval equally. We divide the

data points to the different levels that have equal widths by their thresholds,

i.e. Let us assume that the number of levels is equal to k. First, we need

to determine k, then we compute the width of every level call it ∆ by ∆ =
rmax−rmin

k
. The upper bound threshold in each level is R1, R2, ..., Rk, where

Ri = rmin + i ·∆, so the lower bound threshold is Ri−1 = rmin + (i− 1) ·∆,

for any level i. Note that by this definition Rk = rmax.

For simplicity we assume that the maximum threshold and the minimum

threshold are equal to the upper bound and the lower bound thresholds

respectively in each level.

Now, for any level i, we can run some R − NN algorithm with search

radius Ri. After doing a post-processing step, we can return those points

that cover the query point. We can stop the algorithm on any level that

returns a positive answer. Therefore, running over all the levels gives the

worst case running time.

4.2.3 Power Growth Levels Widths

This division has the property that the widths of the levels are growing as

a power of some base b, where b = (1 + γ) and (γ > 0), such that the

search radius of level i is Ri = bi · rmin, and the width of level number i is

∆i = Ri −Ri−1 = (1 + γ)i · rmin − (1 + γ)i−1 · rmin. It is the same technique

that we used above, for solving the Direct Multi-level based on a nearest

neighbor algorithm (see 4.1).

Unlike the previous case, here we apply an additional heuristic step. Our

heuristic is to take a permutation of the original widths, as follows. Assuming
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that there are k levels and that the original order of the levels widths is

(∆1, ∆2, · · · , ∆k), we suggest to take the permutation (∆k, ∆k−1, · · · , ∆1) as

the new levels widths. The number of levels k will be determined empirically

by optimizing the function of the running time of the algorithm for all the

different levels. The running time of the R −NN algorithm is usually very

dependent on the search radius R and the number of points n. Note that the

search radius of the R−NN algorithm equals to Ri the maximum threshold

at level i. Using the permutation above means that the levels with the larger

radius R will also have a smaller interval, and therefore a smaller number of

points in them. Assume that i, and j are any two levels with Ri,Rj being their

maximum thresholds and ∆i,∆j being their widths respectively. Assume also

that Ri is smaller than Rj. Our heuristic comes from the intuition that taking

∆i larger than ∆j in this case improves the running time of the Multi-level

method.

4.2.4 Searching for the Best Intervals Division

Here we will use a more general way to find the best division of the radii

range to intervals, by searching for it within different possible values for the

base interval b and possible values for k that determine the number of levels.

We suggest here a way to determine the widths of the levels and the number

of the levels independently. by finding both the optimal b and the optimal k

will improve the running time of the Direct Multi-level method.

For applying the search we try several relevant values for b (say b = 0.5

to b = 2, with the step 0.1). We similarly try several relevant values for

k (say k = 1 to k = 25) for each such b. We calculate for the value ∆ =
rmax−rminPk

i=1 bi
for each b and for each k. Further, we determine the widths of

the levels as follows; ∆k = b1 · ∆, ∆k−1 = b2 · ∆ ,...,∆1 = bk · ∆, where

Ri = rmin +
∑i

j=1 ·bk−j−1∆.

Note that if the base b > 1 then we will have a power growth levels widths

such that ∆i > ∆j for i > j, if the base b = 1 then we will have equal levels
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widths, and if b < 1 then ∆i < ∆j. Thus, this divisions generalize the idea

of both of the divisions that we have suggested earlier.

4.2.5 The Running Time Using E2LSH

In practice we will use as a ‘black box‘ the E2LSH near algorithm which

reports the near points with high probability. In the Multi-level case we fix

the search radius of the algorithm at each level to be equal to the maximum

threshold for the level, i.e. to be equal to Ri for each level i.

As we have shown earlier, the running time for each level is the sum of

two parts, Tn the near algorithm time, and Tp the time of post-processing.

We assume as above that Tp is negligible compared with the Near time Tn,

This is for two reasons. First, the high dimensionality of the points causes

that most of the points are equidistant, a reasonable size to the maximum

threshold rmax is significantly smaller than the mean distance of the points.

Second, The post-processing time becomes large when the Near computa-

tion finds many irrelevant points within the search radius. This happens

with higher probability when the radius R increases. However, by our choice

of intervals, the number of points in the intervals usually go down with the

radius. As a result, we found that the post-processing time Tp is usually

negligible compared with the near neighbor time Tn. We therefore, chose

to determine the optimal number of levels by experimental optimization of

the running time of the near algorithm Tn for all the levels. The experimen-

tal optimization does not require the application of the E2LSH algorithm,

but an empirical evaluation of an equation we derive next for the expected

running time.

Assume that R is the radius of search and that the distances of most of

the points from the query point are at least (1 + ε)R. Let c = (1 + ε), and

the maximum radius Rk of level k equals to rmax. The E2LSH algorithm
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running time can be estimated as (see subsection 3.6.1)

O(log1/δ) ·O(dnρ(c)logn) ≈ O(log1/δ) ·O(dn
1
c logn).

From our experiments the parameter δ is not affect at all the optimal num-

ber of levels, we also plan to use a fixed δ for our experiments. Thus, for

optimizing the number of levels we can use the following estimation to the

running time.

O(dnρ(c)logn) ≈ O(dn
1
c logn).

We took a coarse estimation for c, such that we took as c, the ratio between

the mean inter-point distance and the radius search R. The estimation for

the Multi-level can be derived from this estimation as follows. Assume that

Ri is the search radius at level i and that the distances of most of the points

from the query point are at least ciRi. We can then estimate ci as

ci =
cRk

Ri

, (3)

where Rk is the maximum threshold in the database and Ri is the maximum

threshold in level i. For the k levels we can estimate the running time as

O(d
k∑

i=1

n
ρ(ci)
i · logni), (4)

where ni is the number of points at level i that can be computed by

simply counting all the points at the different levels given their thresholds.

Alternatively, we can estimate the number of points at each level if we can

estimate the thresholds distribution of the points.

Optimizing k, the number of levels, cannot be done analytically, but it can

be solved experimentally by computing a reasonable number of possibilities

and then taking k, the number of levels, to be the one with the minimal
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estimated running time (a reasonable check is from k=1 to 25 levels ). This

can be done efficiently using equations (3) and (4) above.

The only value that we have to estimate is the value of ε. In most cases it

is straightforward task to estimate ε for two reasons. First, as was mentioned

in [9], the distribution of distances between a query point and the data set

points in most cases does not depend on the specific query point, but it is

an intrinsic properties of the data set. Second, it was shown in [5] that most

data set distributions have distances between the data points that tend to

be equal in high dimensions. In other words, the variance of the distances

decreases as the dimensionality increases. As discussed further below, the

value of ε can then be estimated from the variance of the inter-point distance

of points chosen randomly in a high-dimensional space.

We found in simulations that the number of optimal levels depends on

the following three factors: ε, the number of points n and the support of

the thresholds distribution. Increasing ε causes that the number of levels

decreases. On the other hand, increasing n causes the optimal number of

levels to increase but it increases very slowly. Increasing the support of the

thresholds distribution Increases the optimal number of levels. The number

of optimal levels is more sensitive to ε than to n. Considering our data points

that have minimum threshold 0.1 and maximum threshold of 0.9, For large

value of ε (larger than 1 for number of data points n ranges from 10000 to

100000 points ) the optimal number of levels almost does not depend on the

number of the points an it is one. For small values of ε the optimal number

of levels is more depend on the number of data points n, but it is increasing

very slowly when n increases (a reasonable number of levels in this case is

∼ 5). A coarse estimation of the number of levels is sufficient to our purposes,

since we notice that the running time function is not sensitive to the number

of levels k. Thus, one can easily find an estimation of the optimal number of

levels for a given ε value, that can work almost optimally for different number

of data points.
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4.2.6 Comparing the Different Divisions Using E2LSH

The Multi-levels scheme with equal intervals (see 4.2.2) improves the running

time compared with the single-level Near method considerably in the cases

when the maximum threshold is large, i.e. when ε is small. We try also the

power law for the interval division (see 4.2.3) for our experiments on data

points that have a uniform distribution on the unit sphere. The improvement

is slightly better for the algorithm running time compared with the equal

interval method, if the distribution of the thresholds is normal. We noticed

also that if the number of levels is large then the power width levels are more

robust and close to the real optimal. We can find almost the best division by

searching the possible intervals divisions (see 4.2.4). But the improvement

using the division we find by searching is small and sometimes negligible

compared with the previous two schemes. For our experiments, we will not

use the search scheme since it will take quadratic running time O(b · k) to

the computer to find the optimal division, where k is the level numbers and

b is the power of the level width. The previous two methods take linear time

of O(k) to find their optimal division, thus we prefer to use them.

Next we will present our second method which is based on reduction

from the PLDS problem to the near/nearest neighbor problem called the

Separation method.

5 The Separation Method

In this section we suggest a reduction from the PLDS to the near/nearest

neighbor problem, by using an additional dimension. The reduction works

theoretically for every lp norm such that 0 < p < ∞.

The method proceeds by adding a single dimension to the original space.

The reduction guarantees that points which cover the query in the original

space are included in the ball of radius rmax(maximum threshold) centered

at the query point in the new space, while points that do not cover the query

31



lie outside this ball. We call this reduction the Separation method.

5.1 Solving the Problem in lp Norm

Our original similarity problem is as follows: we are given a data set of

P = {(p1, r1), · · · , (pn, rn)}, where the pi are d dimensional points and the

ri are their corresponding radii spheres. A query point q is considered to be

similar to a data set point pi if the point q falls within the sphere of point pi.

We show that this similarity problem becomes a standard nearest neigh-

bor problem, if we map it to a new problem of (d+1) dimensions, by adding

a new dimension for every data point. The value of the new dimension for a

point pi is a function of its radius ri. This applies to cases where the lp norm

is used as a measurement of the distance, for both the Minkowiski norms

(1 ≤ p < ∞) and the fractional norms (0 < p < 1) (see 3.2).

More precisely, assume rmax is the maximum radius in the data set, then

every data point pi with coordinates {p(1)
i , · · · , p

(d)
i } in the original space,

will have the coordinates {p(1)
i , · · · , p

(d)
i , f(ri)} in the new space. The query

point that originally had the coordinates {q(1), · · · , q(d)} becomes the point

with coordinates {q(1), · · · , q(d), 0} in the new space. The f(ri) is given by,

f(ri) = (rp
max − rp

i )
1/p. (5)

Following this embedding, our original similarity problem becomes a clas-

sical nearest neighbor problem.

Formally, we define disti, and dist′i as the distances between pi and q in

the d dimensional space (Rd
p) and in the new d+1 dimensional space (R

(d+1)
p )

respectively.

We can compute dist′i using disti by,

dist′i =

[
d+1∑
j=1

| p(j)
i − q(j) |p

]1/p

= (distpi + (rp
max − rp

i ))
1/p. (6)
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Lemma 8 For any lp norm (∞ > p > 0), we use for each point i, the

function f(ri) (5) as a value for the new dimension. If we assume that pj is

a cover point and pk is a non-cover point, then in the new space R
(d+1)
p , their

distances necessarily satisfy that, dist′(pj, q) ≤ rmax and dist′(pk, q) > rmax.

Proof. In the original space pj covers the query q, and pk does not cover the

query q. Thus, distj = disti(pj, q) ≤ rj and distk = dist(pk, q) > rk.

Now from eq.(6) we have in the (d + 1) dimensional space,

dist′j = (distpj + (rp
max − rp

j ))
1/p,

dist′k = (distpk + (rp
max − rp

k))
1/p.

Since distj is at most rj and distk is at least (rk + δ) for some δ > 0,

dist′j ≤ (rp
j + rp

max − rp
j )

1/p = rmax,

dist′k > (rp
k + rp

max − rp
k)

1/p = rmax,

so the claim follows.

Corollary 9 For any query, assume pn is the nearest neighbor point in the

new space R
(d+1)
p . The distance of pn satisfies dist′(pn, q) ≤ rmax if and only

if there exists a cover point among the original data set points.

Proof. It follows directly from lemma 8 above.

We succeeded theoretically to cluster the points into two groups, the

“good“ points are inside the ball with radius rmax centered at the query

point and the “bad“ points are outside this ball (see fig. 2). But in practice,

for most of the nearest neighbor algorithms we need to ensure a reasonable

distance between the nearest point and the approximated nearest points.

Thus, if the distances between the points included in the ball and the points

clustered right outside of it are very small, it will be difficult to apply the

NNs algorithm and its performances will decrease.
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From our analysis above, we conclude that points in the original space

Rd
p that have distances from the query point larger than rmax will have larger

distances in the new space R
(d+1)
p , hence those points are not problematic.

Furthermore, for most of the near/nearest algorithms this property improves

the performance of the algorithm. In the same way the points that have

originally distances less or equal to rmax from the query point, will also have

larger distances in R
(d+1)
p , but their distances are affected by two factors. The

first factor is the ratio between rmax and r̃ (where r̃ is the smallest radius

among the points that are originally inside the ball B(q, rmax)). The second

factor is the parameter p of the lp norm. If one of these factors is large, then

those points will be close to the boundary of the ball B(q, rmax) in the new

space.

In the following lemma we show the relation between the parameter p of

the lp norm and the distances of the points. More specifically, we will show

that the separation between the points included inside the ball B(q, rmax)

and those outside it improves as we decrease the parameter p of the norm lp.

In other words, in general “bad“ points get further distance from the query

point, and “good“ points get closer to the query point as p decreases.

We also show that the critical points for nearest neighbor algorithms are

those that are originally included in the ball B(q, rmax). Such points have

large affect on our separation.

Lemma 10 For any data point pi (such that ri < rmax) in the space Rd
p, if

the parameter p of the norm converges to infinity, then the distance of pi in

the new space R
(d+1)
p , dist′i (eq. 6) converges to the maximum of {disti, rmax}.

And if p converges to zero ,then dist′i converges to the value disti
ri
· rmax,

where disti is the distance of pi in the original space Rd
p.

Proof. Let us assume that p → ∞ ,and that ri < rmax (for ri = rmax

it is immediate, and it always converges to disti), assume without loss of

generality that rmax ≥ disti (i.e. the points are originally included in the ball
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Figure 2: Simulation of distances for 250 points around the query point in l2 norm.
The left plot displayes distances of points in 1024 dimensions of image fragments of size
32 × 32. The right plot displays the distances of the points after running the Separation
method. The circle simulates the ball with the maximum radius, the red point represents
the query, the black points represent the cover points and the others are non-cover points.

B(q, rmax) ), then

limp→∞dist′i = limp→∞(distpi + rp
max − rp

i )
1/p = rmaxlimp→∞(1 + xp − yp)1/p,

where x =
disti
rmax

≤ 1 ,y =
ri

rmax

< 1, we can write it as

rmax · e
1
p
limp→∞ln(1+xp−yp) = rmax · e0 = rmax.

since limp→∞ln(1 + xp − yp) < ln(2).

For the second part (p → 0)

limp→0dist′i = limp→0(distpi + rp
max − rp

i )
1/p = elimp→0 1

p
·ln(distpi +rp

max−rp
i ).

Now by using Lhopital’s rule on the power of e we can continue the analysis...

We used Matlab to calculate the limit above, without any conditions on

rmax, disti and ri and got that the limit is disti
ri
· rmax.

The lemma above shows that in spite of the success to Separation implied by

the clustering, this clustering is getting worse as the parameter of the norm p
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increases. We conclude from the lemma and from our empirical simulations,

that points that are originally outside the ball (q, rmax) will increase their

distances if we decrease the parameter p of the norm lp. Furthermore, for

the points that originally have distance less or equal to rmax, we conclude

that if the parameter p of the lp norm satisfies that 0 < p < 1 i.e. if we

use the fractional norms, then the separation between points inside the ball

B(q, rmax) and those that are outside it, is satisfactory also for large ratios

between rmax and r̃.

For p increasing beyond 1, we start to notice that the separation is getting

worse. From our observation, we notice that when p increases the points are

getting closer and closer to the boundary of the ball B(q, rmax) from both

sides. If p becomes very large then this reduction is not practical any more for

nearest neighbor algorithms (see fig. 15). But for near neighbor algorithms it

is still practical, especially since it is known that for most of the data points

distributions there is a small fraction of points that have distances less or

equal to rmax in high dimensional spaces, for a reasonable size of rmax (see

[5]).

We conclude that using the fractional norms give us better clustering

between the “good“ points and the “bad“ points, for solving the PLDS

problem. This conclusion gives another evidence to Aggarwal et al’s work [1]

showing that using fractional norms as distance measures in high dimensions

gives more meaningful nearest neighbors search. Here we showed that using

fractional norms is also more robust for solving our problem the PLDS

problem as it make more robust clustering. We hope also that the large

distances between the points inside the ball B(q, rmax) and those outside it

using the fractional norms, will improve sufficiently also the running time

of our methods compared with using the Euclidean norm. In this work we

will not try in practice our methods under the fractional norms since to our

knowledge there is no algorithm for the NNs problem that works for the

fractional norms in practice. But theoretically, the E2LSH algorithm can
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be implemented for such norms. Therefore, we expect that in the future we

will have algorithms for fractional norms that works in practice.

For our present applications, we are interested in particular in the l1 norm

(p = 1) where the performance of the reduction is satisfactory, and the l2

norm (p = 2), where the performance is worse than in l1 norm, but still good

enough for the cases where the ratio between rmax and r̃ is not very large.

We conclude that in the cases where the ratio between rmax and r̃ is very

large, and a nearest neighbor algorithm is to be used, it will be helpful to

divide the problem into several levels, such that at every level we will have

suitable ratio between the radii (see 5.3).

when using the near neighbor algorithm, the situation will be more robust

and it will not face such problems, in general.

Next we will describe the Separation algorithm that rely on the Separation

method.

5.1.1 The Separation Algorithm

• Pre-processing:

1- Run the Separation method above and reduce the problem from d di-

mensional PLDS problem to (d + 1) dimensional NNs problem. By

substituting (rp
max− rp

i )
(1/p), in the new dimension for every data point

pi.

• Query processing using a nearest neighbor algorithm

Extend the query to (d+1) dimensions by substituting zero in the new

dimension. Run the NNs algorithm on the data points on the new

space. If the returned point have distance less or equal to rmax then

return it as answer (based on cor. 9), otherwise return ’No cover points

in the data set’.

• Query processing using a near neighbor algorithm

Extend the query to (d + 1) dimensions by substituting zero in the
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new dimension. Run the R − NN algorithm on the new points on

radius rmax, return the points that returned by the near algorithm as

an answer (based on lemma 8). If no points returned, return ’No cover

points in the data set’.

We described above how the Separation method works, and discussed its

properties. Next we will analyze the running time of E2LSH algorithm using

the Separation method.

5.1.2 Time Analysis of the Separation Method using E2LSH

If we assume that R is the search radius of the algorithm, then the running

time of E2LSH is estimated as O(1/δ)O(dnρ(c)logn), where we assume that

most of the points are at distance not less than cR (see 3.6.1).

• The running time of the Near method is

Time(Near method)=Time(E2LSH)+Time(post-processing)

=O(1/δ)O(dnρ(c)logn) + Time(post− processing), where ρ(c) < 1
c
.

• The running time of the Separation method is

Time(Separation method)=O(1/δ)O((d + 1)nρ(c2)logn), where ρ(c2) <
1
c2

and c2 > c.

• In general cp for the lp norm is increasing as p decreases.

Note that the fact that c2 > c improves the running time of the Separation

method comparing to the Near method. For more details and to estimate c2

(or cp for any lp norm) see appendix B.1.

We analyzed above the running time of the algorithm using the Separation

method. We also compared the running time to the ”naive” Near method

running time. Next we will address a special application of the Separation

method for data points that are distributed on the unit sphere.
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5.2 The Separation method for the Unit Sphere

Here we address a special case Separation method applied specifically to data

points that are distributed on a sphere and using the l2 norm. We will restrict

the discussion to the unit sphere.

In our similarity applications coming from computer vision, we are in fact

interested in points distributed on the unit sphere. The similarity measure-

ments for our data in computer vision problems is generally the Normalized

Cross Correlation (NCC). Translating this to the classical l2 norm causes the

data points to be mapped to the unit sphere. We need such a translation

since most of the algorithms that deal with nearest neighbor search or sim-

ilarity assume the use of the Minkowski norms as a distance measurement.

In particular, most of the algorithms use the l2 norm.

Thus, we will analyze here a special Separation method for the case of

a data set distributed on the unit sphere, and the l2 norm as our distance

measurement.

Assume p is some data point with threshold r, and q is a query point in

the original space Rd
p. Consider the Separation method above (see section 5)

then we can look on the points p′ = {p, f(r)}, p′′ = {p, 0}, and q′′ = {q, 0}
as the vertices of a triangle in the new space R

(d+1)
p (see figure 3). Note that

this triangle does not necessarily have Euclidian geometric properties under

any lp norm, we use it just to make our motivation to the Separation on the

unit sphere method clearer.

Assume that the data set points are in a d dimensional l2 normed space,

then the unit sphere centered at the origin lies on (d− 1) dimensional space.

Our data points that are distributed on the unit sphere lie on a (d − 1)

dimensional space.

We can take advantage of this fact and instead of adding a new dimension

as we do in the general case (section 5), we can use the space Rd
2 itself for

re-mapping the data points and achieve separation. We will also use the fact

that Rd
2 is a Hilbert space. First we define a re-mapping of a boundary point
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p''={p,0} q''={q,0}

p'={p,f(r)}

dist

dist'

Figure 3: The general Separation method. The red point is the query point q represented
in the new space as q′′, the green point is a data point p represented in the new space as
p′′, and the blue point p′ represents the new position of the data point p after applying
the Separation method.

pi. Consider the two-dimensional plane πpi
that contain the following three

points: the query q, the boundary point pi itself, and the origin
−→
0 (see figure

4). Note that the geometric properties (the edges lengths, and the values of

the angels) are invariant under rotation, i.e. are invariant for any query point

on the unit sphere that are within a distance ri from the data point pi. We

assume that (0 < ri < 2), thus γ shown in figure(4) is in the interval (π
2
, π),

γ < π since ri < 2, and γ > π
2

since if γ = π
2

then α should be zero.

The Separation method in this case can be applied by multiplying every

point pi that lie on the unit sphere by a suitable value that we call ratioi.

Ratioi is a function of the radius of pi and the maximum radius.

This Separation method has the same properties of the general Separation

method, in the sense that points that cover the query will lie inside of the

ball B(q, rmax), and points that do not cover the query will lie outside this

ball. In addition, any boundary point pi that lies originally on the boundary

of the ball B(q, ri), i.e. its distance from the query equals its radius, will lie

on the boundary of the ball B(q, rmax), after applying the method.
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p'i

q

pi

Figure 4: The Separation method for the unit sphere applied for a boundary point.
This figure shows the two-dimensional plane πpi . The black point is the origin, the red
point is the query point q, the green point represents a boundary point pi, and the blue
point represents the new position of the boundary point p′i after applying the Separation
method.

To achieve the properties above, ratioi should satisfy the following: as-

sume that distio is the distance from the origin to the point pi. Since the Rd
2

space for the l2 norm is a Hilbert space, we can compute the angle α from

figure (4), using the following cosine rule on the triangles

r2
i = 1 + 1− 2 · cos(α)

The new distance from the origin dist′io given by

dist′io = distio + y = 1 + y. (7)

Note that,

r2
max = 1 + dist′2io − 2dist′io · cos(α). (8)
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Thus,

ratioi =
dist′io
distio

= 1 + y =
2 · cos(α) +

√
(−2 · cos(α))2 − 4(1− r2

max)

2
.

The multiplication of any boundary point pi by its corresponding ratio

ratioi increases its distance from the origin by ratioi. This causes the bound-

ary point to lie on the boundary of the ball B(q, rmax), i.e. the distance of

the point from the query point will be rmax.

The same computation is suitable for non-boundary points i.e. for points

that their distance from the query is not equal their thresholds. For any

point pk we first assume that pk is a boundary point and then compute its

ratio. Relying on this assumption, the use of the ratio computed this way

satisfies the request that the points that cover the query will lie inside the

ball B(q, rmax), and points that do not cover the query lie outside the ball

B(q, rmax).

We recall that a data point pk is considered to be a ‘cover‘ point to the

query q if q is inside the ball B(p, rk), and ‘non-cover‘ point if the query is

outside that ball.

Lemma 11 For a query q, applying the Separation method causes that any

point pk on the unit sphere which is originally cover the query lies inside the

ball B(q, rmax), while if pk is originally a non-cover point for q then it will

lie outside B(q, rmax).

Proof. See appendix B.2.

The above lemma implies that if distk = rk, then dist′k = rmax (boundary

point case), and if distk is smaller or larger than rk, then dist′k is smaller or

larger than rmax, respectively.

This method performs better than the general Separation method using

the l2 norm, for points that are distributed on the unit sphere (see experi-

ments in section 8). This is because, we do not need to add a new dimension

to the original points. Furthermore, the new distances from the query for
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both the cover points and the non-cover points are somewhat larger than

the distances in the case of the general Separation method. Increasing the

distances improves the running time of the E2LSH algorithm. Another ad-

vantage of using this method compared with the general case Separation

method is that it is intuitively simpler and easier to observe.

5.3 Combining Multi-level and the Separation Method

We can combine both the Multi-level approach and the Separation method

together for the original data points. Such combining improve the running

time of the Direct Multi-level method, for more details see appendix B.3.

We suggested above a reduction form the PLDS problem to the near/nearest

neighbor problem, which works for every lp norm. The method accomplishes

that all the points that cover the query point are within distance rmax from

it, and all the points that do not cover the query have distances greater than

rmax from it. We also showed how we can use the near neighbor E2LSH

algorithm to solve the PLDS problem, and how this reduction can improve

the running time of E2LSH. Next, we introduce another way that uses a re-

duction from the PLDS problem to the NNs problem called the Intersection

method.

6 The Intersection Method

The intersection method is a reduction of the PLDS problem to the nearest

neighbor problem, which also uses information from the balls of the data

points. Suppose that q is a query point, and pi is a data point that covers

q within its radius ri, pi is the point we want to find. Assume that the

nearest neighbor to q is a different data point, denoted by N . If we search

the nearest neighbor of q, we will retrieve N rather than pi. The essence of

the intersection method is to create a data structure, using a pre-processing
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stage, by which the point N will ’point’ to the correct point pi. The method

uses two basic facts:

1- If the nearest point has a distance greater than rmax then no point

covers the query.

2- If there is a point pi that covers the query and has radius ri, then the

point pi with radius 2 · ri must also cover N , the nearest point to the

query.

This is true because dist(pi, N) ≤ dist(pi, q) + dist(q, N) ≤ 2 · ri. There-

fore, fact (2) above assumes that the distance’s measurement satisfies the

triangle inequality.

6.0.1 Description of the Algorithm

In the pre-processing step we save for each data point pk a list of data points

that are candidates for being cover points for any query that return pk as

its nearest neighbor, call it listk. The candidates associated with a point pk

are all the data points that cover the point pk if we double their thresholds

(see figure 5 in this figure pk = N). In the query step, we first use a nearest

neighbor algorithm to find the closest point N to the query q, then we can find

a cover point if it exists by scanning the candidates list of N and computing

their distances from the query. If we did not find a cover point among the

candidates list of N , we conclude that there is no cover point in the database

for the given query.

For the pseudo-code of the algorithm see appendix C.1.

6.0.2 Time Analysis

We next examine the running time of the intersection method when we use

a nearest neighbor algorithm.
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Figure 5: The point q is the query, N is its nearest neighbor, and pi is a cover point to
q with radius ri.

The pre-processing step running time is O(dn2) time, since in order to

build the list of any data point pi in the database we need to run over all the

other data points in the database and compute their distances from pi.

Call the NNs algorithm that we use A, the query processing time is equal

to the time that the algorithm A takes to find the nearest neighbor point.

In addition, we need to take into account the time to go through the data

structure of the nearest neighbor point. Assume that the size of listi that

corresponds to the point pi is Si. If Smax = {maxSi : 1 ≤ i ≤ n}, then in

the worst case the time of the query is T = Time(A) + d · Smax.

Note that by using this method we can retrieve all of the points that cover

the query point, since all of them must be included in the list of the nearest

neighbor point.

The algorithm is efficient if Si is sufficiently small compared with n

(i.e. Si << n) for most of the points in the data set, namely most of the

data points have thresholds that are at least twice smaller than the mean

inter-point distance.
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6.0.3 Space Analysis

We will discuss the space requirement for the Intersection method in addition

to the space used by the nearest neighbor algorithm.

Our pre-processing stage requires in the worst case O(n2) space, in ad-

dition to the space used by the nearest neighbor algorithm. This space is

used for building the data structure list for all the data set points. This is

the worst case requirement, when each data point is included in all of the

other points extended spheres. Therefore, it saves all of the data points in

each list of the data points. In such a case, the running time algorithm is

worse than the naive search and it is better to use another approach. The

query processing step in this case includes running over all the n points and

computing all the distances from the query point.

In the average case, the space requirements by the intersection method is

O(n), since the space that the data structure listi of point pi uses should be

O(Si), if we assume as above that Si is the size of listi. Thus, all the data set

points need O(Ŝ · n) space, where Ŝ is the average list size and Ŝ is assumed

to be small compared with n.

6.0.4 Using the E2LSH Algorithm

The intersection method above uses a nearest-neighbor computations. For

the other methods we have used in practice the E2LSH, which as a near

neighbor algorithm. A question that arises is whether we can use the same

E2LSH also as an efficient nearest neighbor algorithm?

We can find the nearest point by using a binary search on radius of search

R of the R − NN algorithm E2LSH. The Intersection method is efficient

using a R − NN algorithm if we run it on data points with a meaningful

NNs, namely, there is a sufficient contrast between the distances of the data

points from the query point. In particular, the closest point distance from the

query is small compared with most of the points and the maximum threshold.

Most of the meaningful data sets in high dimensions are clustered data set
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points or data points with implicitly low dimensionality[5]. For more details

see appendix C.2.

In the next section, we will present our fourth and last method for reducing

the PLDS problem to the NNs problem, called the Similarity method.

7 Similarity Method with Virtual Levels

The basic idea of the similarity method is to use an additional dimension to

increase the similarity (or reduce the relative distance) between the query

and points with large radius. Points with a large radius are more likely to

be missed by a search method that looks for near neighbors, compared with

points with a small radius. The similarity method tries to offset this ’disad-

vantage’ of points with large radii. This is obtained by a way of normalizing

the distances relative to the radii: the distances of the points from a poten-

tial query increased for all the points, but the additional distance for each

point is relative to its radius, therefore, points with small radii will increase

there distances more than points with large radii. This method is based on

generalizing the idea of the Separation method, and considering the l2 norm.

Another way of looking at the approach is as a tradeoff between distance

and radius: We search for the data point that is as close as possible to the

query point in the original space, and at the same time has the largest possible

radius. The tradeoff between the original features and the new radius feature

can be changed by a parameter α. The value of the additional dimension

(d + 1) that we add to the points is α · ri for each point pi in the data set,

and α · rmax for the query point. Determining the value of α is critical for

the algorithm, since α is the parameter that controls the tradeoff between

the original distance and the effect of the radius. If α is very large, then the

property of the radius in the new space (R
(d+1)
p ) becomes important, and the

most similar points to the query are those points with the maximum radius,

even if the points are not close enough to cover the query point. On the other
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hand, if a small α is chosen, then the additional dimension has a negligible

effect on the similarity. Therefore, the most similar points in this case are

those closest to the query in the original space. It is clear that these points

do not necessarily cover the query point.

Ideally, we would like the selected α to satisfy one of the following prop-

erties:

• The first cover point must lie within the most similar k points in the

new space (R
(d+1)
p ), for some constant k with a high probability.

• The cover points must lie inside some ball in the extended space with

a radius R (for some R) centered at the query point, and there are no

non-cover points inside this ball.

We chose to focus on the second property because this property gives us the

opportunity to use a near neighbor algorithm.

Unfortunately, the requirement above cannot be satisfied efficiently by

just substituting a suitable parameter α for the additional dimension. The

requirement forces α to be a function of the radius ri for any point pi. This

complicates the problem of similarity for the new space R
(d+1)
p , since we will

have a different parameter αi for each different data point pi. Theoretically

this implies that the query point should have in its added dimension the

parameter α̂, which should equal all the αis at the same time. Obviously,

this requirement cannot be satisfied, and therefore, we should build for each

different radius in the data set a special query, and then run all of these

queries instead of the single original query. However, this will be of course a

highly inefficient solution to our problem.

To avoid the problem above we make a discretization of the thresholds

interval values [rmin, rmax] to k intervals with (R1, ..., Rk), as the maximum

thresholds in all the intervals, and then producing for each original query, k

new queries. Each new query corresponds to one interval from the set above.

The value of the additional dimension of query number i corresponding to
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interval number i has the value α(Ri) · Ri. We will call this extension the

Virtual Levels.

We presented above the motivation and a basic use of the Similarity

method. We will show examples how we can apply the notion above, by

producing some queries in the new space R
(d+1)
p to each single query in the

original space Rd
p. This extension is called the Virtual Levels and is presented

in appendix D.1.

8 Experiments

The experiments below were done using the following methods: the Near

method, the Direct Multi-level method, the Exponential Direct Multi-level

method, the Separation method (both one level and Multi-level), the Separa-

tion method for the unit sphere (both for one level and Multi-level) and the

Similarity with Virtual Levels method. The difference between the Direct

Multi-level method and the Exponential Direct Multi-level method is in the

way we divided the levels. The divisions were the equal widths division and

the power growth division, respectively (see 4.2).

Our experiments were done on synthetic data points that we produced

randomly on the unit sphere. The reason that we did not use a real data set

from vision problems is that currently we do not have a sufficient number of

fragments for our experiments. For most of the experiments we produced 128

dimensional data points which were uniformly distributed on the unit sphere.

Producing d-dimensional points distributed uniformly on the unit sphere can

be done efficiently by picking the d different coordinates as i.i.d. random vari-

ables distributed according to the standard normal distribution N(0, 1), and

then normalizing the vector to have a unit length [23]. For the Intersection

method we used clustered data points on the unit sphere which we also pro-

duced synthetically. We chose points with 128 dimensions compatible with

the number of dimensions commonly used by the SIFT descriptor [20] which
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is a useful representation for matching image fragments.

In all of our experiments we used the E2LSH algorithm as our R −
NN algorithm. As we mentioned before this algorithm find the near points

with probability (1 − δ). We set the percentage of false negatives that we

can tolerate up to 10% (i.e. δ = 0.1). Consequently, at least 90% of the

points that cover the queries will be detected by the E2LSH. In practice,

for the ”hardest” data points of the Separation method on the unit sphere

for example, the E2LSH algorithm miss 81 cover points from 1000 cover

points. Therefore, 91.9% of the cover data points were detected in the worst

case. In addition, we present below, the worst case running time since we

assumed that we always run over all the levels. Running all over the levels

will find all the cover points for any given query. However, If it is sufficient to

return a single cover point for each query, then the average running time is

sufficiently larger using the Multi-levels methods, since then we can stop the

search in any level we find a cover point. We also did not take into account

the post-processing time for the methods that need a post-processing step,

since in the case of uniformly distributed data, the post-processing time is

negligible compared with the time of E2LSH. If we run our methods on a

clustered data, then the post-processing time may be larger. in this case,

the Separation method offers an advantage, since it does not need a post-

processing step (see sec. 5).

The first experiment is for points uniformly distributed on the unit sphere

with 128 dimensions (figure 7). The points are almost equidistant. To es-

timate this distance, assume in general points distributed on a sphere with

radius a in d dimensions, and µ, σ2
d are the mean distance and the vari-

ance, respectively. We can estimate the mean distance µ and the variance

σ2
d for points uniformly distributed on sphere as the following µ =

√
2a and

σd = a√
2d

where d is the dimensionality of the data points [18]. Thus, we

estimate the mean distance of points distributed on the unit sphere as
√

2,

and σd for our data is σd ≈ 0.0625. The points thresholds were taken to be
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Figure 6: Distances between a query point and 10000 data points with 128 dimensions.
The points are uniformly distributed on the unit sphere.

normally distributed with a mean value that equals 0.5 and a variance that

equals σ2
th = 0.01 (σth = 0.1). Thus, the maximum threshold rmax is some

value that generally belongs to the interval [0.9, 1]; the minimum threshold

rmin usually belongs to the interval [0.1, 0.2]. These are somewhat challeng-

ing assumption, since the thresholds can be relatively large compared with

the inter-point distances.

If most of the points are at distance of no less than crmax = (1 + ε)rmax

from the query, then we can estimate the running time of the E2LSH as

O(dn
1
c )(see 3.6.1). We recall here that the E2LSH does not need c as an

input, but we will estimate it here to make our discussion clearer. We need

also to estimate coarsely it c for optimizing the number of levels for the

Multi-level methods. But in reality, we used the ratio between the mean

distance and the maximum threshold as an estimation for c for optimizing

the number of levels. From our observation, we can estimate the distribution

of distances of the data points from a typical query, as a normal distribution

(figure 6). Therefore, We compute crmax as follows: crmax ≈ µ−3σd = 1.226.

The number of data points varied in this experiment from 10000 to 100000

with steps of 10000. For this experiment we tried 100 different queries. The

running time is the average running time of those 100 different queries.

For the methods that use a single level, we use the maximum threshold
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Figure 7: The running time for several methods compared with the naive search. The x
axis represents the number of points, and the y axis represents the improvement compared
with the naive search. The points have 128 dimensions, uniformly distributed on the unit
sphere and have thresholds that are normally distributed according to N(0.5,0.1).
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as the search radius for the E2LSH algorithm. These methods are con-

sequently more affected by the value of the maximum threshold. Most of

the non-monotonic ‘zigzag‘ changes in the result graph are because of the

changing value of the maximum threshold; these changes are more drastic

and noticeable for the methods using a single level. The methods that use

Multi-level succeed in making this zigzag changes less noticeable. thus, multi

levels are more robust when we use the E2LSH algorithm.

We see that the direct use of the standard Near search is only slightly

better than a naive search that simply test all the points in the data set.

The simplest form of the separation method performs only twice better than

the Near method. The Multi-level version of the same method performs

significantly better than the single level version. The other methods also

provide a significant advantage, reducing the running time by a factor of to

15 − 25, for 100000 points with 128 dimensions. We can also see that the

relative advantage increases systematically with the number of points, this

is due to the fact that the E2LSH has a typically sub-linear running time.

There are other factors that can amplify the non-monotonic zigzag chang-

ing phenomena. One is the fact that E2LSH is a randomized algorithm which

chooses its hash functions randomly causing some choices to be more (or less)

successful for our specific data set points and queries. The most important

factor is that the E2LSH algorithm attempts to approximate the optimal

number and the optimal widths of its hash functions in its pre-processing

step, depending on both the data set points and the queries set (see [2]).

This optimization step is done within a memory bound, and this bound

sometimes causes inaccurate optimizations. An example of unsuccessful op-

timization of E2LSH because of the memory bound was noticed using the

Separation method for the unit sphere for data sets with 90, 000 and 100, 000

points, we therefore removed these two points from the figures.

The second experiment was similar to the first one; the only difference

was that we fixed an upper bound to the maximum threshold, which we
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took to be 0.9. Since σd = 0.0625; thus the ratio crmax = (1 + ε)rmax ≈
µ − 3σd = 1.226 as before, and therefore c = 1.363. The running time

was computed by averaging the running time of 100 different queries. The

main observed difference in the result was that the changes for the methods

that uses a single level were more smooth and robust, since the maximum

threshold was bounded (figure 8). The non-monotonic change for the Multi-

levels Separation method for the unit sphere is since the optimal number of

levels for this method is small (two or three levels). If the optimal number of

levels is small and the interval of the radii ([rmin, rmax]) is changing with the

number of points then this cause non-monotonic changes for the running time.

This changes are more noticeable since we divided the interval according to

the power growth levels widths (see 4.2.3).

The third experiment was as follows. The number of the points was fixed

to 50, 000, and they are uniformly distributed on the unit sphere, as in the

first experiment. The thresholds were normally distributed, and we varied

the average threshold from 0.1 to 0.9 with steps of 0.2 and with a variance

of 0.01 (σth = 0.1). The running time is the average time for answering 100

different queries.

In this experiment we examined the improvement of our methods com-

pared with the Near method (using the basic E2LSH) and the naive search,

by varying the average threshold of the normally distributed thresholds (see

figures 9,10). For the applications coming from computer vision, we are in-

terested in the case where the average threshold equals about 0.5. For this

average value we have sufficient improvement compared with both of the

Near method and the naive search. The case of the average thresholds being

equal to 0.9 is unrealistic and represents a very difficult case, since the max-

imum threshold in this case is generally more than 1.2 (the mean distance

of the points is
√

2 ≈ 1.4); however most of our methods are slightly better

than the naive search even in this case. On the other hand, for the average

threshold equals to 0.6, the Near method is already worse than the naive
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search.

The fourth experiment is the same as the first experiment, but the thresh-

olds are uniformly distributed in the interval [0.1, 0.9] and the points are

uniformly distributed on the unit sphere. We noticed that the performance

of our methods in this case are twice as bad as the case of the normally

distributed thresholds (see figure 11).

As we note in appendix F the improvement of our methods for the run-

ning time increases with the dimensionality. We call this phenomena the

‘benefit of dimensionality‘. The reason for such a phenomenon is that the

algorithm of E2LSH is sensitive to the distances of the data points from the

query point. The distances of the points turn to be more and more uniform as

function of the dimensionality, in other words the variance of the distances σ2
d

gets smaller as the dimensionality increases [5]. Consequently, for very high

dimensions the improvement of the running time because of this phenomena

becomes less noticeable. One can notice the improvement in running time

that this phenomena causes for the E2LSH algorithm. Our methods fur-

ther amplify this improvement, such that it can become very helpful in real

applications. Next, we experimented with data points distributed uniformly

on the unit sphere with 500 dimensions. We used in this experiment our

Separation method on the unit sphere (see figure 12); the number of points

was varied from 10000 to 50000 points, and the running time was computed

as the average of 100 different queries. The result show that the improve-

ment in running time was about twice compared with data points with 128

dimensions (figure 8). In this case rmax = 0.9 and σd ≈ 0.031, therefore

crmax ≈ µ− 3σd ≈ 1.32 thus c ≈ 1.466, note that this is larger than c in the

case of 128 dimensions, where it was 1.363.

The final experiments used the Intersection method. The points in this

case were clustered on the unit sphere, such that each cluster contains 100

points. Such clustered data points can arise naturally in practical applica-

tions. We varied the number of clusters from 100 to 1000 clusters. The clus-
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ters were built by 1000 points uniformly distributed on the unit sphere with

thresholds that are normally distributed according to N(0.4, 0.1), an upper

bound of 0.8 and a lower bound of 0.2. For each cluster we produced points

by the following procedure. We randomly chose a point from the cluster from

the points that we already computed. We then computed a random vector

with a distance from this point distributed according to N(0.4, 0.1), with an

upper bound of 0.5 and a lower bound of 0.2. The new point is the normalized

sum of the chosen point and the random vector. The diameter of each cluster

is at least one. We examined two distributions of thresholds for the same

data points set. In figure (13) the thresholds of the points are found from the

distribution N(0.1, 0.1) in the same way (with upper bound 0.8 and a lower

bound 0.2, thus most of the thresholds have value in the interval [0.2, 0.3]);

the maximum threshold in the data set is 0.7. In figure (14) the thresholds

where chosen from the distribution N(0.5, 0.1) with upper bound equal to

0.9 and lower bound equal to 0.01. The running time was computed by 100

different queries such that 10% of the queries were chosen randomly on the

unit sphere, i.e. generally they are not within any cluster, and the remaining

90% of the queries were chosen to be included within some cluster, by choos-

ing the query in the same way as we choose the data points included in each

cluster. We also took to account the post-processing step for the Intersection

method. The improvement in the running time is significant compared with

the Near method and to the naive search. The post-processing step could

be large for clustered data. The Separation method have advantage over the

other methods in that it does not need any post-processing step. In the first

experiment we chose small radii (the average in the interval [0.2, 0.3]) com-

pared with the maximum threshold (0.7). The Separation method benefit

from this distribution of thresholds. For example, the Separation method

for the unit sphere has improvement of ∼ 60 times better than the naive

search. This improvement was less dramatic when the average threshold was

0.5. There is an important advantage of the Intersection method over all
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the other methods, in that its improvement is not depend very much on the

thresholds distribution, if we satisfy the request that most of the data points

thresholds are at least twice smaller than the mean inter-point distance. con-

sequently, assume that the inter-point distance is at least twice larger than

the maximum threshold. If all the thresholds equal the maximum threshold

the Intersection method will still have an efficient running time. On the other

hand all the other methods running time will not be better than the running

time of the Near method.

9 Conclusions

We examined in this work the problem of PLDS, which is a variation of

the near-neighbor and nearest-neighbor problems studied in the past. For

these previous problems, efficient methods have been developed in the past,

which improve significantly the search time compared with the naive search

approach. In practice, this solutions are for the approximated version of

the problems and/or solves the problems with constant probability. The

solution for the PLDS problem (definition (1) subsection 3.3), in cases where

the spheres are significantly small compared with the average inter-point

distance, can be obtained efficiently enough by directly using a near neighbor

algorithm, which reports every point in any given radius (we called this the

Near method). The search will use a near-neighbor algorithm with search

radius equal to rmax, the maximal radius of the stored data points. When the

spheres are relatively large, then the solution using a near neighbor algorithm

is inefficient, sometimes even compared with the naive search.

Our aim in this work was to solve more efficiently the PLDS problem,

especially for relatively large spheres. The problem is motivated in part by

problems arising in computer vision classification, where different data points

may have different radii.

Our solutions are, in general, reductions from the PLDS to the classical
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near and nearest neighbor problems, which work well in both theory and

practice. In the section below we briefly list the solutions we have developed

and their main properties.

A simple and natural extension of previous near-neighbor methods is the

approach we called the Direct Multi-level method. The idea is to divide the

problem into several sub-problems with a suitable accuracy such that we can

solve every sub-problem independently. Within each sub-problem the search

radius is assumed to be fixed, and therefore we no longer confront the problem

of different search radii. As it turns out, a simple application of the Multi-

level method with fixed intervals does not produce a significant improvement.

We therefore developed a more efficient variation of the method that divides

the range of radii in an optimal manner.

The second solution, which works theoretically for every norm lp, for the

Minkowski norms (p ≥ 1), and for the fractional norms (0 < p < 1) (see

subsection 3.2), is to separate the data points by their thresholds and their

distances from the query into two groups. The “good“ points, which cover

the query point will become included inside the sphere with a radius equal

to the maximum threshold, centered at the query point. The “bad“ points,

which do not cover the query, will end up outside this sphere. We therefore

call this method the Separation method.

The third method is to build a data structure for each data point, where

we store during a pre-processing step all the candidates to cover the point in

question. Relying on finding the nearest neighbor to the query, we can find

all the cover points to the query from the data structure that corresponds

to the nearest point. This method is called the Intersection method. The

fourth method is based on a similar idea to the Separation method; it was

developed to generalize the Separation method and to improve its running

time for the l2 norm. The basic idea underlying this method is to rely on

similarity indexing in high-dimension feature space, so that the radius sphere

of the data points will be considered as a new feature for comparing points.
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This is implemented by discretizing the thresholds interval and Separating

the data points to the different intervals by adding distances related to their

thresholds in a new dimension. During search, we build from the original

query point a new query, one for each discrete interval. This was called the

Similarity with Virtual Levels method.

All the methods described above rely on the availability of a near-neighbor

or nearest-neighbor computation. We next discuss the relationship between

the PLDS methods and specific types of near and nearest neighbor algo-

rithms.

If we use a nearest neighbor algorithm for solving the PLDS problem,

then the solution by the Direct Multi-level and the Virtual Levels methods

are applicable to the approximate version of the problem (γ−PLDS see def-

inition 2). In contrast, the solution using the Separation and the Intersection

methods are applicable to the exact version of the PLDS problem. The use

of a near neighbor algorithm solves the exact version of the PLDS problem

for all the different methods. The solution based on the Intersection method

cannot directly use the near-neighbor algorithm, unless the near neighbor

algorithm is used to find the nearest neighbor, by a binary search (see table

(1) for summary of our conclusions).

The discussion so far assumed the availability of a near-neighbor algo-

rithm, but did not depend on a particular form of the algorithm. In practice,

we used in all our simulations the near neighbor algorithm known as E2LSH

for solving the mapped R − NN problem. Next, we will analyze how the

different methods improve the running time for solving the PLDS problem.

The E2LSH running time is not affected by the distribution of the data

points. The main factor that determine its running time is the distances

of most of the data points from the query, compared with the radius of

search (We called this ratio c). The running time of this algorithm can be

estimated approximately as O(dn1/c), where n is the number of points and d

is the dimension. The main advantage of our methods over the Near method
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Method A nearest neighbor
algorithm solves

A near neighbor al-
gorithm solves

Special assumptions

Direct Multi-level
method

γ − PLDS PLDS

Separation method PLDS PLDS
Separation for the
unit sphere

PLDS PLDS Works just for points
distributed on the
unit sphere and the
l2 norm

Intersection Method PLDS Does not fit 1-Most of the thresh-
olds of the data
points are at least
twice smaller than
the mean inter-point
distance
2- It improve the run-
ning time compared
with a R − NN al-
gorithm just for clus-
tered data points or
implicitly with low
dimensionality.

Similarity method
with Virtual Levels

γ − PLDS PLDS For a NNs algo-
rithm, the mini-
mum threshold is
sufficiently large
compared with the
width of the levels.

Table 1: Summary of the methods.
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(using directly the E2LSH) is that our methods increases the effective value

of c. Increasing the value of c is obtained based on two factors. First, by

reducing the size of the search radius for large number of points, as done

by all of the Multi-levels methods, and by the Intersection method. Second,

by increasing the distances of the points from every potential query, as done

by the Separation methods, and the Similarity with Virtual Levels. We can

attribute each improvement in the running time to one of the two factors

above, or to both, as the Multi-level Separation methods uses both of the

above factors.

We next discuss how the different methods use these two factors. It is

obvious that the first factor is used by the Multi-levels scheme applied to

the Direct Multi-level, the Separation, and the Virtual Levels methods. The

Intersection method is also based on the first factor, by assuming that the

NN point distance is sufficiently smaller than most of the other points, and

consequently choosing a small search radius compared with the maximum

radius. The methods that rely on the second factor uses the ‘gap‘ between

the maximum threshold and the thresholds of most of the data points to

increase the distances of most of the points from any potential query. In

reality, both of the factors above depends on the ‘gap‘ between the maximum

threshold and the average threshold. In the extreme case, all of the radii will

be equal to the maximum threshold. In this case, all of the methods except

the Intersection method will not perform better than the Near method. Thus,

we conclude that the support of the radii distribution is important to increase

the ratio c. From the analysis above and from the experiments, the running

time of the three methods mentioned is better for radii distributions that

are similar to normal distribution than ‘harder‘ radii distribution such as

uniform distribution (see figures 8 and 11).

From the analysis above we conclude that the most important factor for

the running time is the value of the ratio c. Thus, it is not important if the

data points are clustered or not, or if the data points lie on a unit sphere
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or within the volume; if the distribution of the points provides a sufficient

ratio c, then it will run sufficiently fast compared with the naive search. The

clustered data set are important for the Intersection method, since it provide

the necessary assumption to improve the intersection running time. This

assumption is that the nearest neighbor is usually sufficiently closer to the

query than the other data points. The Separation methods shows advantage

over other methods on clustered data, since the post-processing step could

be large for clustered data, and the Separation methods does not need any

post-processing step like the other methods.

In contrast to most of the algorithms that suffer from the ’curse of di-

mensionality’ (see subsection 3.1) in high dimensions, the use of the E2LSH

algorithm under our methods gives us an important benefit in high dimen-

sionality. As was noted in section 8 the improvement of the running time of

our methods increases with the dimensionality for the same radii distribu-

tion. The dimensionality of the data points also serves to improve the ratio

c. It is known that all of the data points distributions tend to have more

equidistant distances between the data points as the dimension increases [5],

and therefore the distances of the close data points to the query increases.

Thus, the ratio between the radius search and the distances of the points c

increases. This improve the running time of the E2LSH algorithm, but the

improvement using our methods is more noticeable.

We present next the performances of the different methods using the

E2LSH. Assume that for our solution it is sufficient to find a single cover

point to the query. Thus, running on all over the levels for the methods uses

the Multi-level scheme is the worst case running time. The improvement in

the worst case by using the Direct Multi-level method was sufficient com-

pared with the naive search. We noticed that there is no reasonable way of

dividing the data points according to their thresholds that can case a drastic

improvement compared with dividing the thresholds interval equally. The

improvement using the Separation method for the l2 norm was almost twice
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better than the Near method, this improvement is insufficient by itself for

our purposes, we therefore combined the Separation method with the idea of

dividing the problem into different intervals, resulting in what we called the

Multi-level Separation method. Using this combined method we got an addi-

tional improvement over the Direct Multi-level method. We also developed a

special Separation method for the case where the data points are distributed

on the unit sphere (as our vision data points are distributed on the unit

sphere). We obtained in this case a significant improvement: even without

using division into intervals, the performance was better than the Multi-level

Separation method. If we also apply the division strategy to the Separation

method on the unit sphere, the method becomes more robust and it gives

better performances. We called this combination the Multi-level separation

method for the unit sphere. We conclude from our experiments that this

combined method was the best method for data points distributed on the

unit sphere (normalized data points).

The Intersection method, which uses E2LSH as an implicitly nearest

neighbor algorithm, improved the running time of the problem compared

with the Near method (E2LSH itself), if the data points that were used have

a meaningful nearest neighbor to the query. Namely, if the closest point has

a significantly smaller distance than the majority of the other data points in

the data set. In high dimensionality, data points with a meaningful nearest

neighbor naturally occur for clustered data points, or for data points lying

on lower dimensional sub-space[5]. For our experiments we used clustered

data points, and obtained consistent and significant improvement compared

with the basic E2LSH algorithm (see results in sec. 8).

Our final method, the Similarity with Virtual Levels using E2LSH, also

improved the running time, but in most cases the improvement was not better

than the Direct Multi-level method, and sometimes even worse.

In all the cases where we divide the data points into intervals, we take

the number of levels that empirically optimizes the running time of the al-
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gorithm, based on an estimation of the worst case running time. The query

running time relying on E2LSH for a reasonable thresholds sizes is sub-

linearly related to the number of the data points in all of the methods. The

space requirements were at most linear in the number of data points n, if

we consider the additional space needed by the different methods (without

the space needed by E2LSH). The space requirement for the Intersection

method is O(n2) in the worst case, but when the Intersection method is in

fact practical, then its space requirement is only O(n).

Next, we present the benefit of the Separation method using fractional

‘norms‘ and propose future approaches related to the fractional norms. The

solution that the Separation method obtained for the fractional norms was

better than the solution for the Minkowski norms, since the distances between

the good points and the bad points becomes larger in general when the pa-

rameter of the norm p gets smaller. As a result, we obtain better Separation

between cover and non-cover points for the fractional norms. This solution

is important for two reasons. First, it has been shown that the fractional

norms serve as better distance measurements for high dimensions compared

with the Minkowski norms for the nearest neighbor and the clustering prob-

lems [1], and we have shown here that this is the case also for the PLDS

problem. Second, the algorithms for the NNs improve in term of running

time if we increase the distances of most of the data points from the query

point. Consequently, the fact that non-cover points increase their distances

from the cover points and the query, can improve the running time of the

algorithm. A future research direction of interest would be to check whether

the Separation method using the fractional norms, with similarity relying

on a suitable NNs algorithm that supports such norms, will have a better

running time compared with the Separation method using the Minkowiski

norms. Such an algorithm can be from the family of LSH methods, which

are known theoretically to support the use of any fractional norm (see [11]).
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A The Running Time of E2LSH

We estimate below the running time of E2LSH algorithm. The technique

used in the algorithm is suitable to any norm lp in the interval p ∈ (0, 2],

however, current implementations of the algorithm apply the technique only

using the l2 norm (for more details and analysis see [11]). First we present

the running time for the algorithm using the basic LSH scheme for solving

the (R, c)−NN problem (definition 6 in subsection 3.3 ). For a domain S of

a set of points with distance measure D, an LSH family is defined as follows:

Definition 12 A family H = {h : S → U} is called (r1, r2, p1, p2) sensitive

for D if for any v, q ∈ S

• if v ∈ B(q, r1) then PrH[h(q) = h(v)] ≥ p1,

• if v /∈ B(q, r2) then PrH[h(q) = h(v)] ≤ p2

In order to have a description for how a LSH family can be used to solve

the (R, c) − NN problem with constant probability see [11]. The running

time for the basic scheme for solving the (R, c) − NN problem in constant

probability is:

• Consider L is the number of hash functions used and k is the width of

each hash function (see L, k in subsection 3.5). For any lp such that

p ∈ (0, 2] there exists an algorithm for (R, c)−NN under Rd
p which uses

O(dn+nL) space, with query time O(dL) for the distance computations

and O(dkL) for the evaluations of the hash functions, where L = nρ,

ρ = ln1/p1
ln1/p2

and k = log1/p2n.

• For the l2 norm assume that R is the search radius for the algorithm,

and most of the points are within distance at least cR from the query

point. The query time is O(dnρ(c)logn), where ρ(c) < 1/c (for c ∈ (1, 10]

the inequality is strict).
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We can use the basic scheme of LSH to solve the R−NN problem (definition

5, subsection 3.3), for more details see subsection 3.6. The solution for the

R − NN problem and the l2 norm is called E2LSH. Next, we present an

estimation to the running time for the E2LSH that is sufficient for our

purposes.

• As we mention before the E2LSH can fail to find any point included

in his radius of search R with probability δ. Consider L is the number

of hash functions used and k is the width of each hash function, the

running time of the E2LSH algorithm is O(dkL) + O(dL) where L =

d logδ
log(1−pk

1)
e . The k value is experimentally optimized by the E2LSH

algorithm to minimize the running time (for more details see [2]). For

our analysis we will take the value of k = log1/p2n above from the LSH

basic scheme for solving the (R, c)−NN problem. For this value of k

we estimate L as ( log(1/δ)

pk
1

) (since log(1 + x) ≈ x for small xs), thus the

estimated running time is at most

O(dkL) + O(dL) ≈ O(dk · log(1/δ)

pk
1

) + O(d
log(1/δ)

pk
1

)

= O(log(1/δ) · log1/p2n · d(
1

p1

)log1/p2
n) + O(log(1/δ) · d(

1

p1

)log1/p2
n)

Note that ( 1
p1

)log1/p2
n = e

ln1/p1·lnn
ln1/p2 = n

ln1/p1
ln1/p2 , thus will have the estima-

tion for the running time,

O(log(1/δ) · dnρlog1/p2n) + O(log(1/δ) · dnρ)

= O(log1/δ) ·O(dnρlog1/p2n + dnρ)

Note that in the worst case the running time of the E2LSH is very

similar to the running time of the basic LSH for solving the (R, c)−NN

problem.
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In practice for the E2LSH package and by special assumptions on

the distribution of picking the hash functions the running time can be

estimated in the worst case more accurately by

O(log(1/δ) · d√nρlog1/p2n) + O(log(1/δ) · dnρ)

= O(log1/δ) ·O(d
√

nρlog1/p2n + dnρ) (9)

Such that computing p2 in the l1 norm is as follows: p2 = 2 tan−1(r/c)
π

−
1

π(r/c)
ln(1 + (r/c)2). Computing p2 for the l2 norm is as follows: p2 =

1−2norm(−r/c)− 2√
2πr/c

(1−e−(r2/2c2)), where norm(.) is the cumulative

distribution function (cdf) for a random variable that is distributed as

N(0, 1). the value of p1 can be obtained by substituting c = 1 in

the formulas above (for more details see [11] and [2]). We use eq.(9)

to make more accurate optimizations for the number of levels for the

Multi-level methods.

B More Analysis for the Separation Method

B.1 Time analysis restricted to E2LSH

We will analyze the running time of the algorithm E2LSH when we run it on

our reduced data using the Separation method. We will compare the running

time using the Separation method against the Near method (3.6.2).

Note that the E2LSH algorithm running time is sensitive to the distances

of the data set points from the query point(see 3.6.1). If we guarantee that

most of the points are within distance at least cR from the query point

(assuming c = (1 + ε) for ε > 0), then the algorithm will run in time at most

O(log1/δ)O(dnρ(c)logn), on radius of search equal to R, where ρ(c) < 1
c

(see

appendix A).

The Separation method improves the E2LSH algorithm running time,

since it makes the distances from the query in the (d + 1) dimensional space
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larger than the original distances in the d-dimensional space.

Assume that we can guarantee that most of the points in the d-dimensional

space are within distance of at least (1+ ε)rmax. For any point pi within dis-

tance disti from the query point in the original space, we will have in l2 norm

the distance dist′i =
√

dist2i + (r2
max − r2

i ) in the new space (see eq.(6)).

Thus most of the distances of the points in the new space will guarantee

that, dist′i = (1 + ε + ξi)rmax , where 1 + ε + ξi =

√
(1 + ε)2 + 1−

(
ri

rmax

)2

(note that for the l1 norm ξi = 1− ri

rmax
).

After running the Separation method reduction, we will run the E2LSH

algorithm on radius R = rmax on the data points in the new space (Rd+1
2 ),

as we mentioned in the algorithm above (see 5.1.1). This way we find all the

points that covers the query in the original space (Rd
2), since they must lie

inside the ball of radius R = rmax in the new space (Rd+1
2 ).

We can assume that the majority of the points have radii around some

average, call it the average radius r̂. This is very natural assumption since in

most real problems the radii are normally distributed or similar to normally

distributed. Our data from real computer vision problems satisfies this as-

sumption. Relying on this assumption most of the data set points will have

distances that can be estimated as dist′ = c2rmax = (1 + ε + ξ̂)rmax, in the

new space ,where

c2 = 1 + ε + ξ̂ ≈ dist′

rmax

=

√
(1 + ε)2 + 1−

(
r̂

rmax

)2

(10)

Hence, the query running time of the Separation algorithm will be O(1/δ)O((d+

1)nρ(c2)logn) ≤ O(1/δ)O((d + 1)n
1
c2 ).

From eq.(6) and the above analysis

cp = 1 + ε + ξ̂ ≈ dist′

rmax

=

(
(1 + ε)p + 1−

(
r̂

rmax

)p)1/p

(11)
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for any norm lp (0 < p < ∞). Note that similar to the E2LSH algo-

rithm there theoretically exists an LSH algorithm based on the same hash-

ing scheme [11] for every norm lp such that p ∈ (0, 2). From Lemma(10)

and our analysis of the Separation method the distances from the query of

the non-cover points are getting larger as the norm’s parameter p decreases.

Thus, cp from eq.(11) is getting larger as p decreases, Thus, the ratio of

the running time improvement is getting larger as the norm’s parameter de-

creases. Intuitively, since the LSH algorithm is sensitive to the distances of

the data points from the query point, and the Separation method make this

distances further larger for “small“ norms, hence, if we use “small“ norms

then the improvement in running time of this small norms is larger compar-

ing to “larger“ norms. However, this does not mean that in practice it is

faster to use a “small“ norm instead of the l2 norm, since we do not know if

the LSH algorithm for such “small“ norms is as efficient as E2LSH or not,

as there is no practical version of such LSH algorithms.

B.1.1 Conclusions and important points

• The running time of the Near method is

Time(Near method)=Time(E2LSH)+Time(post-processing)

=O(1/δ)O(dnρ(c)logn) + Time(post− processing), where ρ(c) < 1
c
.

• The running time of the Separation method is

Time(Separation method)=O(1/δ)O((d + 1)nρ(c2)logn), where ρ(c2) <
1

c+ξ̂
.

• We conclude that the Separation method reduction improves the run-

ning time of the PLDS using the E2LSH algorithm, since the Sep-

aration method increases the distances of the non-cover points from

the query, furthermore the Separation method does not need a post-

processing.

• The ratio between the distances of most of the points and the maximum
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threshold cp is larger for ‘small‘ lp norm. Therefore, the ratio of the

improvement of the running time is better if we use ‘small‘ lp norms.

• The E2LSH is a randomized algorithm that find the near points with

high probability (see 3.6). Note that the probability of finding a cover

point when we use E2LSH algorithm is the same guaranteed proba-

bility 1− δ by the algorithm for finding a near point within the search

radius R = rmax. This is because in the new space the cover points are

still inside the Ball B(q, rmax).

• For any constant δ the running time of the E2LSH using the Separation

method is theoretically always sub-linear, also in the cases that the

running time of E2LSH on the original data points is linear. More

specifically, if there is no guarantee that most of the points are within

distance rmax(1 + ε) (i.e. most of the points are originally inside the

ball B(q, rmax) ), then the running time of the E2LSH algorithm on

the original space is O(dnlogn) but in the new space it is less than

O((d + 1)n
1
c logn).

This true since for any non-cover point pj, its original distance must

satisfy distj = (1 + γj)rj for some γj > 0, thus its new distance is

dist′j =
√

((1 + γj)rj)2 + r2
max − r2

j from eq.(6) therefore,

cj =
dist′j
rmax

=

√
1 + (2γj + γ2

j )
(

ri

rmax

)2

.

Assume that most of the radii are around the average radius r̂, we can

estimate c above by

√
1 + (2γ̂ + γ̂2)

(
r̂

rmax

)2

. Where γ̂ estimates the

average γ of all the non-cover points, note that c > 1.

B.2 The Separation Method for the Unit Sphere

In the following we prove lemma 11 from subsection 5.2. We represent the

lemma here
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For a query q, applying the Separation method causes that any point pk

on the unit sphere which is originally cover the query lies inside the ball

B(q, rmax), while if pk is originally a non-cover point to q then it will lie

outside B(q, rmax).

Proof. We consider the boundary point pi (its radius equal its distance from

the query) with the radius ri see figure (4).

Assume that for any point pk, distk and dist′k are the distances from

the query point before and after using the Separation method, respectively.

Assume also dist′ko is the new distance of pk from the origin. assume that pk

is any point such that its radius equal to the radius of the boundary point pi

i.e. rk = ri. If pk is a boundary point then like the point pi above and from

equation (8) we have that dist′k = r2
max = 1 + dist′2ko − 2dist′ko · cos(α).

Note that pk in the extreme case equal to the query, and in the other

extreme case has distance 2 from the query. Thus, αk belongs to the inter-

val [0, π], and the cosine function in this interval is a decreasing monotone

function.

Assume first the extreme cases i.e. before applying the Separation method

pk = q then after applying the Separation method we have from the case of

the boundary point the distance of pk is equal to y, thus included in the ball

B(q, rmax). On the other hand, if pk has originally distance 2 from the query

then its new distance will be 2 + y thus not included in the ball B(q, rmax).

Most of the cases distk satisfies 0 < distk < 2 thus αk belongs to (0, π).

Assume pk is a cover point then, distk < rk and the angle between the

data point and the query satisfies αk < α (α from fig. 4). Considering

equation (8) will have that dist′k = 1 + dist′2ko − 2dist′ko · cos(αk). Note that

−2dist′ko · cos(αk) < −2dist′io · cos(α) since dist′ko = 1 + y = dist′io and

−cos(αk) < −cos(α) in the given interval, thus dist′k < rmax.

The proof for the case that pk is non-cover point is in the same way.
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B.3 Combining Multi-level and the Separation Method

In some cases we need to divide our original PLDS problem into several

subproblems and then solve every subproblem independently. This can be

used to improve the running time when the maximum threshold is large

compared with the inter point distances (see Multi-level 4.2), or to improve

the running time if we use the approximate nearest neighbor algorithm and

the ratio between the maximum threshold and the minimum threshold is

large (see appendix B.4).

The Separation method was presented above (see 5) as a reduction from

the PLDS problem to the NNs problem both in theory and in practice.

Hence, the closest point to the query after we run the Separation method

must cover the query point if it is within distance rmax from the query, and

every point included in the ball B(q, rmax) must cover the query point (see

lemma 8 and cor. 9). Thus, it does not matter which algorithm we use for

solving the NNs problem, either the nearest or the near neighbor algorithm;

the Separation algorithm can solve the exact version of the PLDS problem.

Further, in both of these cases we do not need a post-processing step at all.

Thus, the only reason that we divide the problem into subproblems is to

optimize the running time of the algorithm. Therefore, we can divide the

problem into levels without any restriction other than the running time.

B.3.1 How to divide

As we showed when we described the Direct Multi-level method, in the case

that we used a near neighbor algorithm, we chose three different ways to

divide the problem (see 4.2). We will try all of them here, hoping that it will

improve the running time.
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B.3.2 Comparing the Different Divisions Using the E2LSH

The behavior of the Multi-level Separation method is similar to that of the

Direct Multi-level method. Although they behave similarly, the improvement

in the running time using the Separation method is greater than in the case

of the Direct Multi-level method in all of the three divisions. On the other

hand, the number of levels that optimize the running time of the Multi-

level Separation method is slightly smaller than the number of levels in the

case of the Direct Multi-level. The improvement in the power growth level

widths division way for the Multi-level Separation method compared with

the equal levels widths division way is not large. Similarly, the improvement

using search growth level widths division way compared with the power Level

widths division way is small or sometimes negligible.

B.3.3 The Running Time Using E2LSH

We determine the number of levels by experimentally optimizing the running

time. The analysis here is very similar to the analysis in the case of the Direct

Multi-level method. If we assume as before that most of the points are at

distance no less than ciRi from the query, where Ri is the radius of search in

level i, then the estimation of ci is a little different from the previous method,

and it is as follows:

Previously we showed in (5.1.2) that for the Separation method, using just

one level such that, c2rmax = (1 + ε + ξ̂)rmax, where c2 is the ratio between

the distances of most of the data points and the radius of search R = rmax.

The estimation of c2 is as follows, c2 = 1 + ε + ξ̂ =

√
(1 + ε)2 + 1−

(
r̂

rmax

)2

(see eq.(10)), and r̂ is the average threshold.

For the Multi-level case, we simply assume that Ri is the maximum

threshold in level i, we estimate the average threshold in level i as Ri−∆i/2,

where ∆i is the width of level i (see 4.2.1). Assume Ri is the radius of search

for the algorithm in level i. Similar to eq.(3) we can estimate the ci for level
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i as

ci = 1 + ε + ξ̂ =

√
(1 + ε)2(

rmax

Ri

)2 + 1−
(

Ri −∆i/2

Ri

)2

. (12)

This estimation is only used for the general Separation method. The es-

timation of ci for the Separation method on the unit sphere (subsection 5.2)

is different. Similar to eq.(4) we can optimize the number of levels using the

following estimated running time for k levels

O((d + 1)
k∑

i=1

logni · nρ(ci)
i ), (13)

where ni as usual is the number of points at each level. For optimizing the

Separation method on the unit sphere we used more accurate function of

the running time for more details see appendix A. Note that as the number

of levels increases, the running time of the Multi-level Separation method

converges quickly to the running time of the Direct Multi-level method (this

can be observed by simulating the running time and the number of levels).

Thus, the number of levels that optimize the Separation method running

time is less than the number of levels in the case of the Direct Multi-level

method.

B.4 The Separation Method Using an ε − NNs Algo-

rithm

As was mentioned in subsection 3.1, the problem of finding the nearest neigh-

bor point exactly in high dimensions is conjectured to suffer from the curse

of dimensionality. Thus, most of the algorithms were developed to solve the

approximation version of the problem (the ε−NNs). Here, we will analyze

the Separation method using the approximate nearest algorithm in the l1

and the l2 norms.

First, we will present the case of solving the exact PLDS problem, using
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an approximate nearest neighbor algorithm. Next, will present the case of

solving the approximated problem (γ − PLDS).

B.4.1 Solving the Exact PLDS Using an ε−NNs

Assume that we are trying to solve the exact PLDS problem (and not the

γ − PLDS). To do so we have to ensure that this reduction “takes“ the

points at least as far as rmax · ε from the sphere boundary, with radius rmax

centered at the query in the new space R
(d+1)
p , where (p = 1, 2).

We are interested in points pis that are within distance rmax from the

query in the new space R
(d+1)
p , since these points cover the query in the

original space (see Separation method in section 5).

Assume as before that pj is the nearest neighbor to the query, distj,

and dist′j represents the distances of pj from q in the spaces Rd
p and R

(d+1)
p ,

respectively. If rmax

(1+ε)
≤ dist′j ≤ rmax, then according to the definition of the

ε−NNs, our approximated algorithm finds in the worst case point pk in the

range rmax ≤ pk ≤ (1 + ε)rmax from the query, as an approximate nearest

point. In this case, we concluded that there is no cover point to the query

q in the original space. However, this is a wrong conclusion; therefore, we

should attempt to accomplish that the points that cover the query are within

a distance less than rmax

1+ε
in the original space, to ensure that the algorithm

returns a cover point if it exists.

We now will check in which distance disti point pi should be in the original

space Rd
p, so that its distance in the new space R

(d+1)
p will be less than rmax

(1+ε)
.

For the l1 norm and for any point pi,

dist′i = |disti|+ |rmax − ri|,
rmax

1 + ε
≥ |disti|+ |rmax − ri|.

78



Thus, the original distance should satisfy

disti ≤ ri − εrmax. (14)

For the l2 norm and for any point pi,

dist′i =
√

(disti)2 + r2
max − r2

i ,

rmax

(1 + ε)
≥

√
(disti)2 + r2

max − r2
i .

Thus the original distance should satisfy

disti ≤
√

r2
i − r2

max

(
2ε + ε2

(1 + ε)2

)
. (15)

The inequalities 14 and 15 above show that for solving the exact version of the

PLDS problem, the distances should satisfy such a restriction. We note that

this restriction is less robust if we use the l2 norm. We will call the distances

in the inequalities above (14 and 15) the critical distances. Note that the ratio

between rmax and ri play a major rule in determining the critical distance

from the query. Unfortunately, we noticed that for practical values of ε even

for reasonable ratios between rmax and ri, the critical distance for the l2 norm

is small relative to its threshold ri. Thus, we can get unsatisfactory results

using the l2 norm in the sense that we will miss some cover points. In order

to make this problem less delicate, we need to choose a relatively small ε,

which could has bad performances in practice. A better way to solve this

problem is to use the Multi-level Separation method (see subsection 5.3 and

appendix B.3).

B.4.2 Solving the γ − PLDS Using an ε−NNs

We will now analyze the case of solving the approximated problem (γ −
PLDS). Assume that we allow the approximation factor γ for solving the
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PLDS problem. We need to compute the suitable approximation factor ε

for the ε−NNs algorithm that gives us a suitable γ.

Similar to the analysis above, if the nearest point pj distance in the new

space satisfies rmax

(1+ε)
≤ dist′j ≤ rmax, then according to the definition of ε −

NNs, our approximated algorithm finds in the worst case point pk that

satisfies rmax ≤ pk ≤ (1 + ε)rmax as an approximate nearest point. We

need to ensure that such a point pk has a distance that is at most 1 + γ

fraction of its radius rj, i.e. for the l1 norm and for any point pk that has

dist′k = (1 + ε)rmax,

dist′k = |distk|+ |rmax − rk|,
rmax · (1 + ε) = |distk|+ |rmax − rk|.

Thus, the original distance should satisfy

distk = εrmax + rk.

Thus,

1 + γ ≥ distk
rk

=
ε · rmax + rk

rk

,

and the relation between γ and ε will be

ε = γ
rk

rmax

≥ γ
rmin

rmax

.

To ensure that for points with rmin it satisfies the request, we should take

ε ≤ γ
rmin

rmax

.

For the l2 norm and for any point pk that has dist′k = (1 + ε)rmax,

dist′k =
√

dist2k + (r2
max − r2

k),
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(1 + ε)rmax =
√

dist2k + (r2
max − r2

k).

Thus,

distk =
√

((1 + ε)rmax)2 − (r2
max − r2

k).

The ratio

(1 + γ) =
distk
rk

=

√
((1 + ε)rmax)2 − (r2

max − r2
k)

r2
k

.

Thus 1 + ε satisfies

(1 + ε) =

√
(1 + γ)2 + ( rmax

rk
− 1)2

( rmax

rk
)2

,

also for a smaller 1 + ε value it will work; thus taking

1 + ε =

√
(1 + γ)2(

rk

rmax

)2,

is sufficient. To ensure that for points with rmin it will satisfy the request,

we should take

ε ≤ γ
rmin

rmax

.

Hence, both in the case of the l1 norm, and the l2 norm if we take the

approximation factor to the ε−NNs algorithm to be ε = γ rmin

rmax
, then we will

satisfy the request that if there exists a point pj such that q ∈ B(pj, rj(1 +

γ)), then the approximated nearest algorithm will return pk such that q ∈
B(pk, rk(1 + γ)).

Note that in the case of the l2 norm we can take a larger ε value that

satisfies the goal (we can take 1 + ε =

√
(1+γ)2+( rmax

rk
−1)2

( rmax
rk

)2
).
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Thus, for solving the γ−PLDS problem, the l2 norm has a larger ε value

for the ε−NNs than the l1 norm.

C Intersection Method

C.1 The Algorithm

• Pre-processing the points of the data structures

1- Prepare for every point pi in the data set one data structure; call it

listi.

2- For i=1 until n

3- For j=1 until n

4- If (i 6= j) then

a- Find distij */distance between the points pi, pj*/

b- If (distij ≤ 2 · rj) */(if pi will be the nearest point, then every

point that covers the query with rj must also cover pi with

2rj) */

then save the index (j) in listi.

5- End if

6- End for

7-End for

• Query Processing

1- Assume that q is the query point. Run a nearest neighbor algorithm

and assume that pm (for some m) is the nearest neighbor found by the

algorithm.
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2- If d(q, pm) > rmax

then return ‘No cover points in the data set‘

else

If there is any point whose index is stored in listm that covers the query

point, then return it as the answer.

If no point from listm covers the query return ‘No cover points in the

data set.‘

C.2 Analysis When Using the E2LSH

Practical approach: we have available a near neighbor algorithm; how can

we use it as a nearest neighbor algorithm? We will not use a real nearest

algorithm but instead, we plan to use the near neighbor algorithm E2LSH

(section 3.6) because of its efficient performance. We can find the nearest

point to the query by searching the near points within a reasonable distance

R returned by the R − NN algorithm. The only problem remaining is to

determine R, the suitable search radius of the algorithm. In order to make

the Intersection method using E2LSH efficient, the nearest neighbor point

distance to the query should be significantly smaller than the maximum

threshold rmax. Therefore, in most of the cases we do not need to run the

algorithm E2LSH with a large search radius R (that equals rmax) just for

the purpose of finding the nearest neighbor point.

Thus, the Intersection method, using the E2LSH algorithm as a “near-

est“ neighbor algorithm, gives good performances for situations where the

nearest neighbor point is meaningful, i.e. for clustered data points or when

the underlying dimensionality of the data points is much lower than the ac-

tual dimensionality (for more details see [5]). We will focus on clustered

data points in our experiments, such that we require that with a high prob-

ability the query point falls within one of the data clusters. This situation

is perfectly realized in the classification problem, where data naturally falls
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into discrete classes or clusters in some potentially high dimensional feature

space. It is one of the few realistic situations where the nearest neighbor

point is considered to be meaningful [5].

Thus, in real applications involving classifications, the data points are

usually clustered or are implicitly in low dimensionality.

Finding the suitable search radius R for the E2LSH algorithm is an easy

task, since in high dimension the distance of the nearest neighbor can usually

be predicted. In most cases we succeed in finding the nearest neighbor the

first time, but if we fail we can use a binary search on R in the interval of

thresholds values [rmin, rmax] until we find the nearest neighbor point. It is

obvious that the probability of finding a cover point, if it exists using E2LSH

under the Intersection method, is at least, as the probability of finding a near

point using E2LSH algorithm (1− δ).

C.2.1 The Running Time Using the E2LSH

Assume that Si is the size of listi for any point pi. The worst case running

time is less than O(log(rmax− rmin) · Time(E2LSH)) + d ·Smax, where Smax

is the size of the maximum list .

The log term appears since in the worst case we will fail to find the

nearest neighbor, and we will therefore need to change the search radius,

using a binary search until we reach the maximum radius rmax.

D Similarity with Virtual Levels

D.1 The Virtual Levels

Here, we show how we can apply the Similarity method in practice. First,

we will discretize the thresholds interval values to several sub intervals, then

we will virtually classify the data set points with respect to the additional

dimension by their thresholds. Consequently, we will have virtual levels, for
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which every one of them has its maximum radius.

D.1.1 How to apply the method.

We analyze the method for the l2 norm only, since we are interested in the

l2 norm for our applications.

First, we will discretize the interval [rmin, rmax] where rmin and rmax are

the minimum and the maximum radii in the data set, respectively. Assuming

that k is the number of discrete intervals, we will have the values R1, R2, ..., Rk

as the maximum discrete radii, where the discretization step ∆ = (rmax −
rmin)/k and Ri = rmin + i ·∆.

Now, for every value of Ri we produce a query point qi such that in its

additional dimension we substitute the value α(Ri) ·Ri, where α(Ri) will be

represented later. Assume the original query q = {q(1), q(2), · · · , q(d)} then

query qi satisfies,

qi = {q(1), q(2), · · · , q(d), α(Ri) ·Ri}. (16)

On the other hand, we need to find the optimal value for k, which also will

be discussed later.

We consider any point pj such that its radius rj satisfies Ri−1 < rj <= Ri

as belonging to the virtual level numbered i, we substitute the value α(Ri)·rj

in its additional dimension. If pj = {p(1), p(2), · · · , p(d)} in the original space

then in the new space pj satisfies,

pj = {p(1), p(2), · · · , p(d), α(Ri) · rj}. (17)

We can show that if the point pj is a cover point then it is included in the ball

with radius Ri centered at qi. Furthermore, a negligible amount of non-cover

points with radii belong to the interval [Ri−1, Ri] will be included in the ball

B(qi, Ri).
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Lemma 13 Assume we take α(Ri) =
√

(2Ri −∆)/∆ for each data point

pj included in virtual level numbered i i.e. whose radius rj ∈ (Ri−1, Ri]. We

claim that each point belongs to virtual level i, that covers the original query

q in the original space Rd
2 is included within the ball with radius Ri centered

in the query qi in the new space R
(d+1)
2 .

Proof. Assume that distj is the distance of the point pj in the original space

from the query point, and dist′j is the distance of pj from the query qi in the

new space.

In the worst case, pj is a level boundary point; we define a level boundary

point as a boundary point whose radius is smaller or equal (larger or equal) to

the minimum (maximum) threshold in the level. This means that its radius

rj = Ri−1 = Ri − ∆ (or rj = Ri), and its distance from the query in the

original space Rd
2 equals its radius. (Note that if rj = Ri−1, then pj does not

belong to level i but for our analysis we assume that it is the case). We need

to satisfy for each cover point in the original space Rd
2, which included in the

current level i in the new space R
(d+1)
2 the following.

If pj covers q in the original space Rd
2 =⇒ pj ∈ B(qi, Ri) in the new space

R
(d+1)
2 , then

dist′j =

√√√√
d+1∑

k=1

| p(k)
j − q

(k)
i |2 ≤ Ri,

from eq.(16), and eq.(17)

dist′j =
√

dist2j + (α(Ri) ·Ri − α(Ri) · rj)2 ≤ Ri.

In the worst case pj is a level boundary point; the interesting case is when

rj = Ri −∆,

dist′j =
√

(Ri −∆)2 + (α(Ri)(Ri − rj))2 ≤ Ri,
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√
(Ri −∆)2 + α2∆2 ≤ Ri,

(Ri −∆)2 + α2∆2 ≤ R2
i ,

α(Ri) ≤
√

(2Ri −∆)/∆.

Therefore, if we assume equality in the last inequality, we will get that level

boundary points fall on the boundary of Ri

We can show in the same way as in lemma (13) above, that any point

pj such that rj ∈ (Ri, Ri+1], i.e. pj belongs to the next virtual level (i + 1),

included in the current ball B(qi, Ri), if and only if, pj is a cover point for

the original query.

Thus, “bad“ points that belong to a higher virtual levels cannot be in-

cluded in the current ball B(qi, Ri).

We showed above that every point in the current virtual level i, which

covers the query in the original problem, must lie inside the ball with radius

Ri centered at qi.

In the next lemma we show that if we make ∆ significantly small compared

with the minimum threshold rmin, then a negligible amount of points that

belong to the current level and do not cover the original query lie inside the

ball B(qi, Ri). More precisely, if pj included in the ball B(qi, Ri) then the

ratio between its distance and its radius is at most
√

1 + Ri·∆
2(Ri−∆/2)2

.

Lemma 14 Any non-cover point pj that belongs to the current level i, i.e.

rj ∈ (Ri−1, Ri], is not included in the ball B(qi, Ri) in the new space R
(d+1)
2 ,

If the ratio
distj
rj

satisfies
distj
rj

≥
√

1 + Ri·∆
2(Ri−∆/2)2

, where distj is the distance

of pj from the original query in the original space Rd
2.

Proof. Assume pj is not a cover point, such that rj = Ri − ∆̃, where

0 < ∆̃ ≤ ∆, and distj = Ri + γ (such that −∆̃ < γ). Consider that

∆̃ = β ·∆, where 0 < β ≤ 1.

We will check when the point pj is on the boundary of B(qi, Ri) in the

worst case.
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dist′j =

√√√√
d+1∑

k=1

| p(k)
j − q

(k)
i |2 = Ri,

from eq.(16),and eq.(17)

dist′j =
√

dist2j + (α(Ri)Ri − α(Ri)rj)2,

dist′j =
√

(Ri + γ)2 + (α(Ri)β∆)2 = Ri.

From lemma(13) α(Ri) =
√

(2Ri −∆)/∆, thus

(Ri + γ)2 + (
2Ri −∆

∆
)β2∆2 = R2

i .

This is true if γ satisfies

γ1,2 = −Ri ±
√

R2
i − 2βRi∆̃ + ∆̃2.

The worst case for the parabola under the square root is when β = 1
2
, then,

γ1,2 = −Ri ±
√

(Ri − ∆̃)2 +Ri∆̃︸ ︷︷ ︸
”the bad term”

.

The ratio between the distance and the radius in the worst case (β = 1
2
) is

distj
rj

=
Ri + γ

Ri − ∆̃
= ±

√
1 +

Ri ·∆
2(Ri −∆/2)2

,
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which is logical just for a positive term, thus

distj
rj

=

√
1 +

Ri ·∆
2(Ri −∆/2)2

.

Now we need to show that “bad“ points from other virtual levels cannot

be included in the ball B(qi, Ri) in the current virtual level i.

Lemma 15 If pj does not cover the original query in the original space Rd
2,

and rj ∈ (Rk−1, Rk], i.e. pj belongs to the virtual level number k, then pj is

not included in the ball B(qi, Ri) that corresponding to virtual level i, in the

new space R
(d+1)
2 , where i 6= k.

Proof. Assume that dist′j is the distance of the point pj from the query qi

in the new space, and distj is as usual the original distance of pj from the

original query.

Since pj belongs to the kth virtual level, then rj = Rk − ∆̃, where ∆̃ =

β ·∆, and 0 < β ≤ 1.

Assume without loss of generality that i > k. Then we need to show that

dist′j =

√√√√
d+1∑
t=1

| p(t)
j − q

(t)
i |2 > Ri,

from eq.(16), and eq.(17)

dist′j =
√

dist2j + (α(Ri)Ri − α(Rk)rj)2 > Ri,

Since α(Ri) > α(Rk) and Ri > rj, then

√
dist2j + (α(Ri)Ri − α(Rk)rj)2 >

√
dist2j + (α(Ri)Ri − α(Ri)rj)2.
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Note that distj > rj = Rk − ∆̃; hence, we have

dist′j >
√

(Rk − β∆)2 + (α(Ri)(Ri − (Rk − β∆)))2.

Since i − k ≥ 1 then in the worst case Rk = Ri−1 = Ri − ∆, i.e. level k in

the worst case is just level (i− 1). Thus,

√
(Ri + (−β − 1)∆)2 + (α(Ri)(β + 1)∆)2 ≥ Ri.

Finally, we find that α(Ri) should satisfy

α(Ri) ≥
√

2Ri − (β + 1)∆

(β + 1)∆
.

Note that for the given values of β,

√
2Ri − (β + 1)∆

(β + 1)∆
≤

√
2Ri −∆

∆
.

We substituted for α(Ri) the value
√

2Ri−∆
∆

(see lemma 13). Therefore, we

satisfied the request above that bad points from other virtual levels are not

included in the current virtual level i. In this way, we can guarantee that

any “bad“ point included in virtual level k cannot be include in B(qi, Ri) the

ball in the current virtual level i.

D.1.2 The Virtual Levels Algorithm

a- Virtual Levels Using a Nearest Neighbor Algorithm

Assume that we use a nearest neighbor algorithm for solving the sim-

ilarity problem in the new space R
(d+1)
2 . The algorithm returns the

closest point as a cover point in any level i, if the distance of the clos-

est point in the new space R
(d+1)
2 is smaller than Ri, where as above,

Ri is the maximum threshold in level i.
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In this scenario the problem that we solve is the γ − PLDS problem

(see definition 2 section 3.3), and not the exact PLDS. Assume that

the point pj belongs to virtual level i, such that its distance in the

original space Rd
2 satisfies rj ≤ distj ≤

(√
1 + Ri·∆

2(Ri−∆/2)2

)
· rj. This

point is not a cover point but it can be included in the ball B(qi, Ri)

(see lemma 14). Thus, in some cases it can be chosen as the closest

neighbor point.

Assume 1 + γ =
(√

1 + R1·∆
2(R1−∆/2)2

)
, and that we have k virtual levels

and R1 = rmin + ∆. Note that γ depend on rmin, in other words, the

approximation factor γ is determined by the value of rmin. In the worst

case rmin = 0, then 1 + γ =
√

1 + ∆2

∆2/2
=
√

3, regardless of the value

of ∆, i.e. regardless of the number of Virtual Levels used. If rmin > 0,

then the ratio between ∆ and rmin determines the value of γ.

Any point pj that satisfies distj ≤ (1+γ)rj can be chosen as the nearest

neighbor point. In this case the solution is for the γ − PLDS problem

and not for the exact PLDS problem, similar to the case of the Direct

Multi-level method. It can be easily shown that for a large enough

rmin, and for the same number of levels, the γ value in the case of the

Virtual Levels method are much smaller than the γ value in the case

of the Direct Multi-level method. Thus, in this case the virtual levels

method solves γ − PLDS with greater accuracy.

The Algorithm

• Pre-processing

1- Choose k, the number of levels that gives the required approxi-

mation factor γ (see lemma 14).

2- Create the Virtual Levels as follows. Compute (R1, ..., Rk), where

Ri = rmin + i · ∆ and ∆ = rmax−rmin

k
. Add for every data point

a new dimension such that, for any point pj that has a threshold

rj ∈ (Ri−1, Ri], we substitute in the new dimension the value
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α(Ri) ·rj (see eq. 17), such that α(Ri) =
√

2Ri−∆
∆

(see lemma 13).

In this case we say that the point pj belongs to Virtual Level i.

• Query processing

1- Build k queries q1, q2, · · · , qk using the original query and an ad-

ditional dimension, where the value α(Ri) · Ri is substituted for

the additional dimension for every query qi (see eq. 16), such that

(1 ≤ i ≤ k).

2- For every query from step (1), run a nearest neighbor algorithm. If

the distance of the closest point from the query qi in the new space

is smaller or equal to Ri, return it as a cover point. Otherwise, if

all the queries have negative answers, then return ‘NO cover point

for the original query‘.

b- Virtual Levels Using a Near Neighbor Algorithm

Assume that the near neighbor algorithm reports all the points within

radius R, for any given R. Using the R − NN algorithm solves the

exact PLDS problem.

The Algorithm

• Pre-processing

1- Choose k, the number of levels that gives the required ∆ for op-

timizing the near neighbor algorithm running time.

2- The same as step (2), in the pre-processing of the nearest neighbor

algorithm above.

• Query processing

1- Build k queries q1, q2, · · · , qk using the original query and an addi-

tional dimension, where the value α(Ri) ·Ri is substituted for the

additional dimension for every query qi , such that (1 ≤ i ≤ k).
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2- For query number i from step (1) run a R − NN algorithm on

a search radius equal to Ri. From the points that the algorithm

returns if any cover the original query, then return it as a cover

point. If we fail to find a cover point in all the Virtual Levels

(i.e. for all the k queries), then return ‘NO cover point for the

original query‘.

Note: As we mentioned in the case of the Direct Multi-level method

(sec. 4), and the case of the Separation method (sec. 5), using the

Virtual Levels method with a post-processing step, based on a R−NN

algorithm solves the exact PLDS problem.

Thus, as we did for the previous methods, we can choose the optimal

number of levels as the value that optimize the running time function

of the R−NN algorithm that we use.

D.2 Virtual Levels Using the E2LSH

As we showed in the algorithm above, each data point, say pj, has a new

dimension, which we substitute for it the term α(Ri) · rj. We also showed

that every query point qi corresponding to level i has the value α(Ri) ·Ri in

its new dimension ,see eq.(16),and eq.(17).

The running time of the E2LSH algorithm depends on the distances of

the data points from the query point. Assume pj is any data point that

belongs to level i. Since E2LSH is sensitive to the distances, we found it

very useful to add to the value of the new dimension (d + 1) for the point

pj, in addition to the term above, the term (i ·Divide). The term (Divide)

is some constant that is related to the intermediate distances between the

points. It is obvious that the term (i ·Divide) should be also added to the

value of the new dimension of the query qi for every (1 ≤ i ≤ k). Doing this

improves the running time of the Virtual Levels in the case where we use the

near neighbor algorithm E2LSH for the similarity.
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The running time of the Virtual Levels using the constant (Divide) in

this case is somehow similar to the running time of the Multi-level Separation

method. Therefore, as we showed using the Multi-level Separation method

(sec. 5.3), the optimal number of levels using the Separation method is almost

the same as using the Direct Multi-level method. The optimal number of

levels for the Virtual Levels can be determined in the same way. We can use

the optimal value of the Multi-level Separation method as an estimation to

the optimal value of the number of levels for the Virtual Levels method.

E Comparing the Different Methods

This section compares the different methods with one another, for solving

the PLDS problem, and determining the running time and the storage space

required.

Each method previously mentioned has its unique main idea that it used

to solve the problem; the Direct Multi-level method relies mainly on dividing

the data set points. The Separation method mainly reduces the PLDS

problem to the NNs problem by changing the distances. In contrast, the

Intersection method relies heavily on the mean inter-point distance compared

with the radii; the radii used should be at least twice as small as the mean

inter-point distance. The Similarity with Virtual Levels method works by

producing many queries instead of the original query, then classifies the data

points to virtual levels by increasing their distances.

If a NNs algorithm is used, the methods that are used to solve the exact

version of the PLDS problem are the Separation method and the Intersection

method. The Direct Multi-level and the Virtual Levels methods solve the

γ − PLDS problem and not the exact PLDS, but there is a difference

between the approximation factor γ in these two methods.

If a R − NN algorithm is used, then all of the methods will solve the

exact PLDS problem. But the Separation method is the only method that
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does not need a post-processing step.

E.1 Comparing the Running Time

To compare the performances of the methods using the E2LSH algorithm

see section 8. In general, it is difficult to compare the running time of these

methods, since the running time is different for different NNs algorithms.

It is possible that we would prefer a specific method for a particular NNs

algorithm and another method for other algorithm. This depends on the

properties and the performance of the algorithm using the specific method.

Sometimes it depends also on the data set distances and the radii distribu-

tions. However, generally methods that increase the distances of the data

points from the query points relative to the radius search (such as the Sep-

aration method) are better for the near neighbor algorithms, and methods

that increase the distances of the approximate nearest neighbor points from

the nearest neighbor point (such as the Direct Multi-level method) are better

for the nearest neighbor algorithms.

E.2 Comparing the Storage Space Required

Here we determine the space requirements for the methods without con-

sidering the NNs algorithm that we use. We assume that the same NNs

algorithm is used as a black box for all the different methods.

The additional space that we need for the Separation method is O(n),

since we need for every point (and for the query) just one additional di-

mension. In addition, the Similarity with Virtual Levels method needs O(n)

additional space for the same reason. Assume k is the number of virtual lev-

els, we also need space to the k new queries but we assume that the number

of levels is negligible compared with n.

In the case of the Direct Multi-level method we do not need any additional

space, just O(1) space for maintaining information about the levels.

95



For the Intersection method, if we assume that the average number of

points that is saved in the data structure lists is O(m), then the additional

space that we need is O(mn) for all the data points. In the worst case m = n,

but the worst case is not practical at all, since in this case the algorithm has

a worse running time than the naive search algorithm, and we do not have

any interest in running the Intersection method in such cases.

E.3 Comparing the Methods for Dynamic Databases

Dynamic databases are databases that support Inserting/Deleting points.

Here we discuss two questions “Is it possible to support a dynamic database

by our methods? “, and “What are the ‘costs‘ of supporting inserting/deleting

using the different methods mentioned above? “

Our discussion is on the level of the methods themselves, and assuming

that they are using as a black box the same NNs algorithm, we will not

discuss the inserting/deleting for the black box NNs algorithm itself.

Theoretically, all of the methods above can support inserting/deleting

points. But they differ by the cost of these operations. Inserting a new point

using the Direct Multi-level method is performed easily by entering the new

point at its suitable level corresponding to its radius, if its radius is within the

interval [rmin, rmax]. If its radius is not belonging to the interval [rmin, rmax],

then we have to build a new level for the new point and change rmax or rmin,

respectively. A Similar analysis can be done to the Virtual Levels method,

but in addition, if we build a new virtual level, then we need to create also

a new query for this virtual level.

The way we insert a point in the case of the Multi-level Separation method

(or the one level Separation method) is also similar to the way we insert a

new point using the Direct Multi-level method. If the one level Separation

method is used and the new point radius is bigger than rmax, then we have

also to change the value of the additional dimension (d+1), for all the points

in the database to a new value related to the new maximum radius. This
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change may cost O(n) operations.

In the case of deleting points from the database, it may need O(n) op-

erations in the three methods above, since we need to search the database

(at least one level) for that point. On the other hand, if the points have in-

dices that can be used as ID numbers, then the deletion may cost just O(1)

operations. Deleting may cause the number of levels to collapse, since one

level may become empty after the deletion. Similarly to the case of inserting,

sometimes there is a need to change the additional dimension of the one level

Separation method. This occurs when we delete the last point, which has a

radius that equals to the maximum radius.

For inserting/deleting operations analysis using the Intersection method,

see subsection E.3.1.

E.3.1 Inserting and Deleting for the Intersection Method

Does the Intersection method support inserting new points and deleting

points from the data set?

Assume that the number of points that are stored in every data structure

point list is small compared with n, the number of data points. consequently,

if most the data points have radii that are sufficiently small compared with

the mean inter-point distance, then we can perform insertion of a new data

point pn+1 in O(n) time. The reason is that we have to run all over the data

points and check whether the new point ball with twice its radius includes

other data points, and store it in every data structure list whose correspond-

ing data point included.

Similarly, if we want to delete some data set point pi, it will take O(n)

time for the analogous reason that we have to run over all the points and

check their lists to delete the point pi if it is found there.

If in our application the insert operations are significantly greater than

the delete operations, then we can just mark the point that we need to

delete with some special flag, and then simply ignore it during the running
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application.

F Related Work

Some researchers in computer vision who had faced a similar problem in

their databases regarding recognition, approached the problem essentially by

reducing the number of queries. Given the new image for recognition, they

do not build a query from every possible patch of the new image, but rather

run an algorithm that computes a small number of feature points from the

new image. In this way they drastically reduce the number of queries to the

image database (see [12, 20]).

We chose to find an algorithm that reduces the running time of each

query such that the overall running time of all the queries is reduced by a

large amount. Our solution is based on the near/nearest search problem.

Indexing similarity in high dimensions is an active research field. Thus,

we can find numerous works for the nearest neighbor search and for the near

neighbor search, some of which rely on partitioning the space, for example

the KD tree, the SR tree, the X tree, and the TV tree [19] (for a survey

see [7]). Recently, approaches were developed based on the locally sensitive

hash functions such as [16, 13, 11] (see subsection 3.4 of the background).

Although there is a vast amount of literature on algorithms for the NNS

(ε-NNS), there are only a few studies related to the PLDS problem. One

recent example is a study of multimedia identification, which was applied

for Audio Fingerprinting by Goldstein et al, [14]. The motivation for this

work was to find matches to small parts of songs, which they called audio

fingerprints, from other fingerprints stored in the database. Similar to our

problem, in their database every fingerprint has a threshold.

These thresholds define the d-dimensional spheres centered at the finger-

prints, which they called hyper-spheres. They approximate the hyper-spheres

by circumscribing or non-circumscribing hyper-rectangles.
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They use non-circumscribing hyper-rectangles if some false negative re-

sults are allowed. For efficiently solving the rectangles search problem, they

use bit vector indices. Let us assume that we give every database point

an integer number as an ID. A bit vector for some dimension is a vector

that corresponds every database point ID to a bit of binary value, whose

value determines whether the projection of the rectangle in that dimension

intersects the query or not. More precisely, each dimension is partitioned

into several intervals, and for every interval a corresponding bit vector is de-

fined. Each bit of such a vector corresponds exactly to one rectangle from the

data set; thus, the vector length is equal to the number of data points (n).

Further, each bit vector determines which rectangle projections overlap its

corresponding interval and which do not by fixing zero/one values for every

bit.

This technique partitions the queries per dimension, such that each par-

tition contains all the IDs of the hyper-rectangles that overlap the query

partition description in that dimension. The bit vector indices are just a

way of compressing those rectangle ID lists, so that the lists can be inter-

sected efficiently, considering that AND and OR are very fast operations in

the computer.

The main advantage of using our methods comparing to this technique is

that the running time of our methods based on the E2LSH algorithm solve

the PLDS problem in typically sub-linear time on the data points, compared

with the linear dependence of this technique on the data points. The running

time using this technique is still O(dn), the same order as the naive search.

Our methods are more generic and general since they are reductions from

the PLDS (or γ−PLDS) problem to the nearest or near neighbor problem;

thus, they can be used for any near/nearest algorithm. Any improvement

in the algorithms used in the field of the nearest neighbor will cause an

improvement in the performances of our methods. On the other hand, the

method of Goldstein et al, is a specific method that is based on the speed of
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the binary operations.

We also noticed that for solving the problem efficiently, Goldstein et al’s

method needs to be utilized and more information is needed about the data

points distribution, the query distribution and the thresholds distribution.

More specifically, this method needs to observe the projected distribution

of the data points and thresholds in every dimension, and sometimes it also

needs to have information about the query distribution to achieve an efficient

partitioning for each dimension. On the other hand, our methods need less

information about the data points; the only necessary step in our case that

needed for the Multi-level methods is to estimate (1 + ε), the ratio between

the distances of most of the points and the maximum threshold.

In contrast to most of the algorithms that suffer from the curse of dimen-

sionality our methods relying on the E2LSH algorithm improve their running

time as the dimensionality increases, we call such a phenomena ‘the benefit

of dimensionality‘. The improvement of the running time is due to the fact

that when the dimensionality increases the data points become more equidis-

tant i.e. close points to the query increases their distances[5], this improve

our methods running time using the E2LSH in a noticeable manner. Thus,

our methods are suitable for data points with extremely high dimensions.

On the other hand the increase of dimensionality makes the performance of

the method of Goldstein et al worse. As we mentioned above, the method of

Goldstein et al was implemented to audio fingerprinting system that contain

∼ 240, 000 data points of 64 dimensions. The thresholds were taken as a fixed

fraction of the mean distance of the data points and the fractions ranged from

0.3− 0.5 of the mean distance (the average around 0.4) (for more details see

[6]). The improvement compared with the naive search where ∼ 50 times

better. The comparing was done just for 14 dimensions, since they are the

most informative for the audio database.

From our simulations on points uniformly distributed on the unit sphere

with mean distance equal
√

2 with 64 dimensions, the improvement in run-
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ning time for the general clustering method was ∼ 25 better, Note that the

dimensionality of the data points affect our methods performance, thus we

repeat the experiment for points distributed on the unit sphere with 500

dimensions and get improvement in the running time of ∼ 70 better than

the naive search. Further, due to the sub-linear running time function of

the E2LSH algorithm, the improvement of our methods increases with the

number of points n. Therefore, for large enough n our methods have better

running time also for the audio database with 64 dimensions.

The increase of dimensionality and the number of data points improves

the performances of our method but, on the other hand it, makes problems

for Goldstein et al method. It is required in their method to compare all

the dimensions if there are other database points that do not have special

informative dimensions. This causes that they need a significantly larger

space to make a finer partition to the different dimensions. Furthermore, they

need to do the AND and the OR binary operations for all of the dimensions,

we are not sure that running the binary operations for points in feature space

with very large number of dimensions (say 1024 dimensions or larger) has

the same efficiency as above, because of the limitation of the size of the cash

memory and the need to do page exchanges with the main memory. On the

other hand E2LSH which we rely on, still works efficiently on feature spaces

with very high dimensions.

Note that the running time improvement and space required of their

method are very related to the values of the points thresholds. For larger

thresholds this method needs significantly more space to build more bit vec-

tors to a finer partitioning for maintaining the running time efficiency. In a

similar manner the E2LSH algorithm running time and space requirements

are dependent on the values of the data points thresholds.

The advantage of Goldstein et al’s method comparing to our methods if

we do not consider the intersection method is that this method improves the

running time for both the PLDS problem and the PLES problem, where the
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PLES problem is the same as the PLDS problem if we consider equal radii

for all the points. The Direct Multi-level method, the Separation method,

and the Virtual Levels improves the running time just for the PLDS problem.
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Figure 8: The running time for several methods compared with the naive search. The x
axis represents the number of points, and the y axis represents the improvement compared
with the naive search. The points have 128 dimensions, uniformly distributed on the unit
sphere and have thresholds that are normally distributed according to N(0.5,0.1) such that
the maximum threshold is bounded by the value 0.9.
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Figure 9: The running time for several methods compared with the naive search. The
number of points is 50, 000 which are uniformly distributed on the unit sphere with thresh-
olds that are normally distributed. The x axis represents the varying of the average
thresholds. The y axis represents the ratio of the running time compared with the naive
search.
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Figure 10: The running time for several methods compared with the naive search.
The number of points is 50, 000 which are uniformly distributed on the unit sphere with
thresholds that are normally distributed. The x axis represents the varying of the average
thresholds. The y axis represents the ratio of the running time compared with the naive
search.
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Figure 11: The running time for several methods compared with the naive search. The x
axis represents the number of points, and the y axis represents the improvement compared
with the naive search. The points have 128 dimensions, uniformly distributed on the unit
sphere and have thresholds that are uniformly distributed in the interval [0.1,0.9]).
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Figure 12: The running time for the Separation on unit sphere and the Near method
compared with the naive search. The x axis represents the number of points, and the y
axis represents the improvement compared with the naive search. The points have 500
dimensions, uniformly distributed on the unit sphere and have thresholds that are normally
distributed according to N(0.5,0.1) such that the maximum threshold is bounded by the
value 0.9.
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Figure 13: The running time for the Intersection method compared with the Near
method. The x axis represents the number of data points, and the y axis represents the
ratio running time compared with the naive search. The points are included in clusters
such that each cluster contains 100 points; we varied the number of points on the x axis
by adding more clusters. The thresholds distributed according to N(0.1, 0.1).
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Figure 14: The running time for the Intersection method compared with the Near
method. The x axis represents the number of data points, and the y axis represents the
ratio running time compared with the naive search. The points are included in clusters
such that each cluster contains 100 points; we varied the number of points on the x axis
by adding more clusters. The threshold distributed according to N(0.5, 0.1)
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Figure 15: The Separation method for L1/10, l1/2, l1, and l5, respectively. The left plot
shows the simulation of the distances from a query point of 895 points with 128 dimensions,
randomly distributed on the unit sphere on a suitable lp norm and 105 points distributed
around the query point q inside the ball B(q, rmax). The right plot shows the simulation
of the distances of the same points after applying the Separation method.

110


