Abstract

This study is focused on the following similarity problem: Given n
data points in a high dimensional feature space. Every data point
p; is the center of a hyper-sphere with radius r;. A query point ¢ is
considered to be similar to a data point p;, if the query point falls
within the sphere of p;. We call such p; a cover point. We suppose to
build an algorithm that returns a cover point if it exists for any given
query.

The solutions that were investigated here are essentially reduc-
tions that can rely on both of the classical near or nearest neighbor
problems. We try several approaches to map our similarity problem
to the near/nearest neighbor problem. The first approach relies on
dividing the data points with respect to their radii. The second ap-
proach named “Separation method“ relies on increasing the distances
of the data points. A third approach is based on preprocessing data
structures that use the spheres of the points. Then based on the clos-
est point to the given query it can return a cover point. The forth
approach tries to generalize the Separation approach using intuitions
from the similarity.

In practice, we use the near neighbor algorithm E?LSH [2] for
solving the mapped problem. All of our approaches based on E2LSH
have typically sub-linear running time on the data points and per-
form significantly better than the naive search and the E?LSH near
neighbor algorithm itself. The additional space requirements of our
methods are linear, and thus applicable. We also developed a specific
version of the Separation method for the I3 norm and, the unit sphere.
This method is the best among our methods for points distributed on
the unit sphere. Finally, We generalize the Separation method for

every possible /, norm, including the “fractional norms*.

Acknowledgements

First and foremost I would like to thank my thesis advisor, Prof. Shimon
Ullman, for his patience, good advice and support during this research.

I would like to thank Prof. Harry Dym, Prof. Ronen Basri and Prof.
Edriss Titi for their help. I am very grateful to Alexandr Andoni from M.I.T.
for his generous help in answering my questions about his E?LSH — 0.1
package. I am very grateful to Denis Simakov for his helpful comments. I
would like to thank my friend Michael Dinerstein for his help in building
the figures and reviewing this report. Also I wish to thank my friend Daniel
Reichman for his helpful comments. Jasmine Tal and Felix Polyakov deserve
thanks for their help in reviewing this report. I am grateful to Dan-Michael
Levi and Boris Epshtein for their help with providing parts of the data.
Finally, I wish to warmly thank my family and friends from my small city

Tamra for their love and support.

In memory of my father Radwan Hegaze.

Contents

1 Introduction 9
2 Structure of the Thesis 12
3 Background 12
3.1 The Curse of Dimensionality 12
3.2 The Minkowski Norms and the Fractional Norms 13
3.3 Definition of the PLDS and Related Problems 14
3.4 Algorithms for The Near/Nearest Neighbor Problem 17
3.5 Generic locally-sensitive hashing scheme 18
3.6 Solution Using Exact Near Algorithm E*LSH 19
3.6.1 The Estimated Running Time of E2LSH 21

3.6.2 The Near Method 21

4 Direct Multi-level Method 22
4.1 Multi-level Using a Nearest Neighbor Algorithm 23
4.2 Multi-level Using a Near Neighbor Algorithm 24
421 HowtoDivide. 25

4.2.2 Equal Levels Widths 26

4.2.3 Power Growth Levels Widths 26

4.2.4 Searching for the Best Intervals Division 27

4.2.5 The Running Time Using E°LSH 28

4.2.6 Comparing the Different Divisions Using E?LSH . . . 31

5 The Separation Method 31
5.1 Solving the Problem in [, Norm 32
5.1.1 The Separation Algorithm 37

5.1.2 Time Analysis of the Separation Method using E2LSH 38

5.2 The Separation method for the Unit Sphere 39
5.3 Combining Multi-level and the Separation Method 43

The Intersection Method

6.0.1 Description of the Algorithm
6.0.2 Time Analysis

6.0.3 Space Analysis L.
6.0.4 Using the E2LSH Algorithm

Similarity Method with Virtual Levels

Experiments

Conclusions

The Running Time of E?LSH

More Analysis for the Separation Method

B.1

B.2
B.3

B.4

Time analysis restricted to E2LSH
B.1.1 Conclusions and important points
The Separation Method for the Unit Sphere
Combining Multi-level and the Separation Method
B.3.1 Howtodivide
B.3.2 Comparing the Different Divisions Using the EF2LSH .
B.3.3 The Running Time Using E*LSH
The Separation Method Using an € — NNs Algorithm
B.4.1 Solving the Exact PLDS Using an e — NNs
B.4.2 Solving the v — PLDS Using an e — NNs

Intersection Method

C.1
C.2

The Algorithm
Analysis When Using the E?°LSH
C.2.1 The Running Time Using the E?°LSH

Similarity with Virtual Levels

D.1

The Virtual Levels

43
44
44
46
46

47

49

57

68

70
70
72
73
75
75
76
76
77
78
79

82
82
33
84

84

D.1.1 How to apply the method. 85

D.1.2 The Virtual Levels Algorithm 90

D.2 Virtual Levels Using the E2LSH 93

E Comparing the Different Methods 94
E.1 Comparing the Running Time 95
E.2 Comparing the Storage Space Required 95
E.3 Comparing the Methods for Dynamic Databases 96
E.3.1 Inserting and Deleting for the Intersection Method . . 97

F Related Work 98

List of Figures

Unit spheres for Iy, I1, l1/2 and Iy /3 in two dimensions 14
2 Simulation of distances for 250 points around the query point in /3 norm.

The left plot displayes distances of points in 1024 dimensions of image

fragments of size 32 x 32. The right plot displays the distances of the

points after running the Separation method. The circle simulates the ball

with the maximum radius, the red point represents the query, the black

points represent the cover points and the others are non-cover points. . . 35
3 The general Separation method. The red point is the query point ¢

represented in the new space as ¢, the green point is a data point p

represented in the new space as p”, and the blue point p’ represents the

new position of the data point p after applying the Separation method. . 40
4 The Separation method for the unit sphere applied for a boundary point.

This figure shows the two-dimensional plane 7,,. The black point is the

origin, the red point is the query point ¢, the green point represents a

boundary point p;, and the blue point represents the new position of the

boundary point p; after applying the Separation method. 41

10

11

The point q is the query, N is its nearest neighbor, and p; is a cover point
to ¢ with radius r;. .

Distances between a query point and 10000 data points with 128 dimen-
sions. The points are uniformly distributed on the unit sphere.

The running time for several methods compared with the naive search.
The = axis represents the number of points, and the y axis represents
the improvement compared with the naive search. The points have 128
dimensions, uniformly distributed on the unit sphere and have thresholds
that are normally distributed according to N(0.5,0.1).

The running time for several methods compared with the naive search.
The x axis represents the number of points, and the y axis represents
the improvement compared with the naive search. The points have 128
dimensions, uniformly distributed on the unit sphere and have thresh-
olds that are normally distributed according to N(0.5,0.1) such that the
maximum threshold is bounded by the value 0.9. .

The running time for several methods compared with the naive search.
The number of points is 50,000 which are uniformly distributed on the
unit sphere with thresholds that are normally distributed. The x axis
represents the varying of the average thresholds. The y axis represents
the ratio of the running time compared with the naive search.

The running time for several methods compared with the naive search.
The number of points is 50,000 which are uniformly distributed on the
unit sphere with thresholds that are normally distributed. The z axis
represents the varying of the average thresholds. The y axis represents
the ratio of the running time compared with the naive search.

The running time for several methods compared with the naive search.
The x axis represents the number of points, and the y axis represents
the improvement compared with the naive search. The points have 128
dimensions, uniformly distributed on the unit sphere and have thresholds

that are uniformly distributed in the interval [0.1,0.9]). . .

45

51

52

. 103

. 104

. 105

. 106

12

13

14

15

The running time for the Separation on unit sphere and the Near method
compared with the naive search. The z axis represents the number of
points, and the y axis represents the improvement compared with the
naive search. The points have 500 dimensions, uniformly distributed
on the unit sphere and have thresholds that are normally distributed
according to N(0.5,0.1) such that the maximum threshold is bounded by
the value 0.9.

The running time for the Intersection method compared with the Near
method. The z axis represents the number of data points, and the y axis
represents the ratio running time compared with the naive search. The
points are included in clusters such that each cluster contains 100 points;
we varied the number of points on the z axis by adding more clusters.
The thresholds distributed according to N(0.1,0.1).

The running time for the Intersection method compared with the Near
method. The z axis represents the number of data points, and the y axis
represents the ratio running time compared with the naive search. The
points are included in clusters such that each cluster contains 100 points;
we varied the number of points on the = axis by adding more clusters.
The threshold distributed according to N(0.5,0.1)

The Separation method for Ly /10, l1/2, l1, and I5, respectively. The left
plot shows the simulation of the distances from a query point of 895
points with 128 dimensions, randomly distributed on the unit sphere on
a suitable [, norm and 105 points distributed around the query point ¢
inside the ball B(q,maz). The right plot shows the simulation of the

distances of the same points after applying the Separation method.

. 107

. 108

. 109

. 110

1 Introduction

In this work we develop algorithms for searching neighboring points in high-
dimensional spaces. The problem is motivated by feature matching in com-
puter vision applications. We describe below related background to the cur-
rent problem, the motivation coming from feature matching, and define in
more detail the search problem we deal with.

A classical similarity search problem is also known as the nearest neigh-
bor search (N Ns). It involves a collection of objects which are characterized
by a collection of relevant features, and are represented as points in a high
dimensional feature space. Given a query object which is also represented
as a point in the feature space, the problem is to find efficiently its nearest
neighbor point, which represents the most similar object to the query object.
This problem was studied and solved for the low dimensional space case, but
it remains difficult and challenging for the high dimensional space case. The
problem in high dimensional space is of major importance to variety of ap-
plications; including information retrieval, statistics and data analysis, data
compression, pattern recognition, machine learning, and image and video
databases.

Our work is motivated in part by problems arising in recognition and clas-
sification in computer vision. The task of visual classification is the recogni-
tion of an object in the image as belonging to a class of similar objects, such
as a face or a car. To do this we build a database of images relying on a clas-
sification approach using a feature based representation. We will consider in
particular methods that use image fragments as classification features, but
other classification features can be used in a similar manner. The fragments
used for classification are selected from a training set of images based on a
criterion of maximizing the mutual information between the fragments and
the class they represent. They are then stored in a database and used in
the classification of new inputs. Each fragment can be considered as a weak

classifier that has its own detection threshold, selected so as to achieve the

optimal Separation between class and non-class examples (for more details
see Ullman et al [24, 25]). The present work focus on the case of binary
class vs. non-class classification; further research can extend the approach
to multi class classification problems.

During recognition, the fragments database receives a new image (a typ-
ical size can be ~ 1000 x 1000 pixels), and it is required first, to find image
patches which are similar to the stored fragments. The process starts by
constructing from the new image a large set of image patches (~ 20 x 20
pixels each). An image of size ~ 1000 x 1000 can produce ~ 10° patches for
matching. The patches are created by running a window of size ~ 20 x 20
on the new image. Each possible window defines an image patch, and each
new patch is treated as a query image. We then search the database to find
the stored fragment that is most similar to the query.

This similarity problem can be translated to a search for neighboring
points in a high dimensional attribute space as follows. Each stored fragment
becomes a point in the attribute space together with a sphere with radius
which is equal to its detection threshold. A query point (patch) is considered
similar to a given stored point if their distance is smaller or equal to the point
threshold. We will call our problem the PLDS problem, for Point Location
in Different Sphere (see definition 1 in Section 3.3). One can look at such
a similarity problem as a generalization of the classical similarity problem.
Our problem can also be mapped to the problem called 'near neighbor’. In
this version, the goal is to report all the points within a given radius R (also
called epsilon range search). The mapping is obtained by searching the near
points to the query point using a radius equal to the maximum threshold.

For radii that are significantly smaller than the average inter-point dis-
tance we can rely on the near neighbor search for solving the PLDS problem,
by replacing all the individual radii with the maximum radius in the database,
and then running the near neighbor algorithm on search’s radius equal to the

maximum threshold.

10

Our research focuses on the case where the thresholds of the points can
be large compared with the mean inter-point distance, as often happens
with data points, derived from computer vision recognition problems. In
particular, the ratio between the mean inter-point distance and the maximum
threshold can be smaller than 2. Mapping the problem to the near neighbor
search with a radius equal to the maximum threshold gives in this case poor
and unstable improvement (if at all) compared with the naive search. By
naive search, we mean that for each query we search for the cover point of the
query by computing the distances from the query to all the data points one
by one. Since in the worst case there is no cover point, then we will compute
all such distances, the worst case running time in this case is O(dn), where
n is the number of points and d is the dimension.

In such hard cases we develop methods to solve the problem by using
new reduction methods to the near/nearest neighbor problem, which will
significantly improve the running time compared with the naive search. It
seems natural to rely on the near/nearest neighbor in solving the PLDS
problem for two reasons. First, as mentioned before, the two problems have
a similar formulation as searching neighboring points in high dimensional
spaces. Second, the area of NNs search is an active research area, and
therefore if we obtained a successful reduction to NNs, then any future
improvement in the algorithms of N Ns will also improve with it the solution
to the PLDS problem.

Since in our applications we do not distinguish between a threshold of a
fragment and a radius of a point, we will alternate freely between the two
terms.

Most of the algorithms in high dimensions solve the nearest neighbor
problem not in an exact manner, but by some approximate solutions e.g. [17,
16, 13, 3, 8]. Most of the cases we will analyze below, the solutions will assume
that we use exact near/nearest neighbor algorithm and not approximated

near/nearest neighbor algorithm(see definition 4 in subsec. 3.3). There are

11

two reasons for this use of exact NN algorithms. First, the analysis using
approximated algorithm is fairly straightforward (for example see appendix
B.4), and therefore for simplicity and intuition we prefer the exact algorithm.
Second, algorithms have been recently developed which solve the exact near
neighbor problem with high probability[11]. Thus, the exact analysis by itself

can be used in practical applications.

2 Structure of the Thesis

The rest of this thesis is organized as follows: in the next section we present
the background for our problem such as the ‘curse’ of dimensionality, the
fractional norms, and definition for our PLDS problem and other related
problems. Then we present a brief overview of the approaches for solving
the near/nearest neighbor problem and the PLDS problem. We also present
the near neighbor algorithm E?LSH that we will use in practice. In sections
{4,5,6,7} we will present the methods that we used to map the PLDS prob-
lem to the N Ns problem. The methods are the Direct Multi-level method,
the Separation method, the Intersection method and the Similarity with Vir-
tual Levels method, respectively. In the reminder of this report we present

experimental results and conclusions.

3 Background

3.1 The Curse of Dimensionality

The curse of dimensionality first defined by Bellman [4], refers to the expo-
nential growth of hypervolume as a function of the dimensionality. In the
field of N Ns, the term describes the phenomena that the algorithms of N Ns
and related problems become less and less efficient as the dimension grows.

More specifically, their space or time requirements grow exponentially with

12

the dimension.

The failure to remove the exponential dependence on the dimension, led
many researches to conjecture that no efficient solutions exist for the exact
version of the N Ns problem and its related problems, when the dimension is
sufficiently large (see [22]). At the same time, it raised the following question:
Is it possible to remove the exponential dependence on the dimension, if we
allow the answers to be approzimate (see definition 4 in 3.3). During recent
years, some algorithms have been developed that indeed show that in many
cases approximation enables a reduction of the dependence on the dimension,

from exponential to polynomial, both in their space and time requirements.

3.2 The Minkowski Norms and the Fractional Norms

All the algorithms we consider use a measure of distance between points
in metric spaces. A common way to measure such distances is based on I,
norms.

The [, norm is used to define distance by:

1/p
disti(x,y) = [Z | 2@ — yC Hp] , (1)

where d is the dimension of the space and p is the parameter of the norm.
For p > 1, they are also called the Minkowski norms (during this work we
assume that p < o0). These norms were extended by Aggarwal et al [1]
for p such that p € (0,1), we will call such distance measures the fractional
norms. Note that the fractional norms are not even metric distances in the
mathematical sense as the triangle inequality does not hold. The reason
for this is that the unit sphere under fractional norms is no longer convex
(see fig. 1). This extension was motivated by the need to find suitable
distance measures for high dimensions, since, Beyer et al [5] show, the nearest

neighbor search in high dimensions may be no longer meaningful for most

13

L L I S _ L L L ,
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Figure 1: Unit spheres for Iy, I1, l1/2 and l; /3 in two dimensions

of the data distributions and distance measures. The reason is, that as the
dimension increases, the distance to the nearest and farthest neighbor tend to
converge to the same value. Aggarwal et al, showed that using the fractional
norms as the distance measure in high dimensionality keeps a satisfactory
contrast between the data points. Thus, solving the nearest neighbor problem
using a fractional norm gives more meaningful results, also solving clustering
problems give more robust clusters. Therefore, the fractional norms started
to attract interest see e.g. [15],[10]. We will refer to the fractional norms also

as the [, norms with 0 <p < 1.

3.3 Definition of the PLDS and Related Problems

In this section we define formally the PLDS problem, and some related
problems.

The problem that we are dealing with is the following. A set of n points is
given in a space, with a threshold associated with each point. These n points
are also called the data set. We need to find an algorithm that efficiently

finds for a given query point ¢ in the space a data set point that covers it, or

14

to report that there is no data set point that covers the query point.
The data point is said to cover the query if the distance between the
query and the data set point is at most equal to the given threshold of the

point. We define our problem formally as follows

Problem definition 1 Point Location in Different Spheres(PLDS) 1

Given n spheres in a d-dimensional space Rg, where the distance function
in R is some l, norm, centered at P = {py,...,pn} with radii {ry,...,r,}
respectively, preprocess the points in P to efficiently answer the following
query: for every query point in Rg, if there exist a point p; € P such that
q € S(pi,ri) (sphere centered on p; with radius r;), call p; a cover point and

return it, otherwise return NO.

We will concentrate on the case of 5 norm since most of the applications use
the Euclidian metric as a measurement of the distance.

We next define the Approximate PLDS problem; we will call it the v —
PLDS problem.

Problem definition 2 Approzimate Point Location in Different Spheres(y—
PLDS)

Given v > 0 and n spheres in Rg centered at P = {p1,...,pn} with radii
{ry,...,rn} respectively, preprocess the points in P to efficiently answer the
following query: for every query point in Rg, if there exists a point p; € P
such that ¢ € S(p;,r:(1+ 7)) (sphere centered on p; with radius r;(1 + 7)),
then return a single point p’ such that ¢ € S(p',r'(1+ 7)), otherwise return
NO.

Also we need to define formally the problem of finding nearest neighbor

and near neighbor. The nearest neighbor search is defined formally as follows

IThe definition of this problem is a generalization of the definition of Point Location
in Equal Spheres(PLES) problem defined in [16].

15

Definition 3 (Nearest Neighbor Search (NNs))?
Given a set P of n points in a space Rg, preprocess P so as to efficiently find

the point in P closest to a query point q.

The definition generalizes naturally to the case where we want to return
k > 1 points. The approximate version of the NNs problem is defined as

follows:

Definition 4 (Approzimate Nearest Neighbor Search (¢ — NNs))
Given € > 0, we say that a point p € Rg is a (1 4 €)-approximate nearest
neighbor of q if dist(p,q) < (1 + €)dist(p*,q), where p* is the true nearest

neighbor to q.

Almost all the algorithms for proximity in high-dimensional spaces pro-
ceed by reducing the problem to the problem of finding an approximate near
neighbor, which is the decision version of the approximate nearest neighbor
problem. As an example we mention the algorithms in [13] and [16], that use
this reduction to solve nearest neighbor problem. The definition of the near

neighbor problem is given by:

Definition 5 (R-Near Neighbor Problem (R — NN)):

Given a set of points P C Rz and a radius R > 0, construct a data structure
to efficiently answer the following: for a query point q, find all points p € P
such that dist(p,q) < R.

We next define an approximate version of the near neighbor, in this ver-

sion it is sufficient to return a single approximate near neighbor point.

Definition 6 (The (R,c) Near Neighbor, or (R,c¢) — NN)
Given a set P of n points in space Rg and two positive constants R and c ,

design a data structure that supports the following operation: For any query

2Although the term NNs is formally for representing the Nearest Neighbor Search
problem, during this work we will sometimes mean by N N's both the near and the nearest
neighbor search problem.

16

€ Rg, if there exists p € P such that dist(p,q) < R, find a point p' € P
such that dist(q,p’) < cR.

3.4 Algorithms for The Near/Nearest Neighbor Prob-

lem

Here we represent briefly the known approaches for solving the NNs(e —
NNs) problem. As we mentioned before, the nearest neighbor problem is
conjectured to suffer from the curse of dimensionality (see subsection 3.1).
Assume that the number of dimensions is d and the number of points is
n. In particular, the exact NNs problem has a solution with O(d°Mlogn)

0(d) gpace [21]. The exponential dependence of

query time, using roughly n
space and/or time on the dimension has been observed in applied setting as
well. Many popular data structures using linear or near-liner storage and
rely on partitioning the data space (such as KD tree algorithm [7]), exhibit
query time linear in n when the dimension exceeds certain threshold (usually
10-20 dimensions), for more information see [26]. Therefore, Most of the
algorithms in high dimensions are solving the approximate version of the
N Ns. Finding solution to € — NNs for an arbitrary small € > 0, has been
studied extensively. Arya et al. [3] obtained an algorithm with query time
O(exp(d) - e %logn) and pre-processing time O(nlogn). Clarkson [8] obtained
a different algorithm which improved the dependence on € in the query time
to O(exp(d) - e~@"1/2). Kleinberg [17] gave an algorithm with O(nlogd)
pre-processing and query time polynomial in d, € and logn, and another
algorithm with pre-processing polynomial in d, € and n but with query time
O(n + dlog*n).

But again the dependence in d for the query time or the space require-
ments in these approaches is still exponential. The algorithms that have
an exponential dependence on d for their query time or space requirements
suffer from the curse of dimensionality.

Newer Algorithms were developed using a relatively new approach that

17

based on what called locally sensitive hashing functions, these algorithms
solve the ¢ — NNs problem by reducing it to the problem of finding an
approximate near neighbors (see definition 6 of (R,¢) — NN), which is the
decision version of the approximate nearest neighbor problem. The first
algorithms for (R,c¢) — NN in high dimensions were obtained by using the
technique of random projections. This technique is applicable for the [,
norms, such that p € [1,2]. The basic locally sensitive hashing functions
work for the hamming space {0, 1}, and then embedded into the suitable I,
for p € [1,2]. We mention here the algorithm of Indyk and Motwani [16],
this algorithm uses O(n'*'/¢ 4 dn) pre-processing time and required O(dn'/¢)
query time for € > 1. An improvement to the query time for the algorithm
to O(dn'/(1%9)) were done by Gionis et al [13] for any ¢ > 0, thus its running
time was sub-linear. Recently was developed algorithm based on work of
Datar et al [11], this algorithm solves the exact version of the Near Neighbor
Search. It is based on a new family of hash functions that works directly
on lg norm for p € (0,2]. This algorithm were also implemented to the Iy
norm and the algorithm package was called the E*LSH — 0.1 [2]. We rely
on this algorithm for our practical implementation, thus, it represented next
subsection. On the other hand, there are only a few studies related to the
PLDS problem. One recent example is a study of multimedia identification,
which was applied for audio fingerprinting by Goldstein et al [14], for more

details and comparing this method with our methods see appendix F.

3.5 Generic locally-sensitive hashing scheme

The description of this subsection and the next one follows [2]. Consider
the space Rg with the norm [,, we can use the technique of locally-sensitive
hashing [11] to solve the R — NN problem (definition 5). We define the LSH

for a domain S of points as:

Definition 7 A family H = {h : S — U} is called locally sensitive, if for

18

any query point q and data point v in RZ, the function p(t) = pryfh(q) =
h(v) : |lg —vl|, = t] is strictly decreasing in t. In other words, the probability

of collision of points q and v is decreasing with the distance between them.

Thus, if we consider any query point ¢ and any data points v, w such that
v € B(q,R) and w ¢ B(q, R), then p(|lg — vl|,) > p(|l¢ — w]|,). Intuitively, in
the pre-processing we could hash the data points into some domain U, and
then processing the query will be by computing the hash of ¢ and consider
only the points with which ¢ collides. This way we can find the R — NN
points, but it is not necessary that the running time is efficient.

To achieve the desired running time, we need to amplify the “gap* be-
tween the collision probabilities for the range [0, R], i.e. where the near neigh-
bor points lie and the range (R, 00). For this purpose we concatenate several
functions h € H. In particular, define a function family G = {g : S — U*}
such that g(v) = (hy(v), -+, hi(v)) for some suitable integer k, where h; € H.
For an integer L, the algorithm chooses L functions ¢y,--- , g from G, in-
dependently and uniformly at random. during preprocessing, the algorithm
stores each data point v in buckets g;(v), for all j =1,---, L. To process a
query ¢, the algorithm searches all buckets ¢1(q),- -, gr(q). For each data
point v found in a bucket, the algorithm computes the distance from ¢ to v,
and reports the data point v if and only if, its distance is at most R (i.e. v is

a near neighbor).

3.6 Solution Using Exact Near Algorithm F2LSH

We will represent the algorithm E?LSH (for Exact Euclidean LSH) , we will
use this algorithm as a "black box’ component to solve the N Ns problem.
This algorithm receives three parameters as input. First, R the radius of
searching, such that just points within distances less or equal to R will be
returned. Second, Two point files, one includes the query points and the

other include the data points. The final input is p which is the success

19

probability required.

The algorithm E?LSH available at [2] is based on recent work of Datar et al
[11]. The algorithm solves the exact version of the near neighbor search using
the technique of Locally Sensitive Hashing (LSH). It is based on a new family
of hash functions that works directly on I¢ norm for p € (0,2] , without the
need to use any embedding, as in the earlier LSH algorithm (see [13]).

E?LSH solves a probabilistic version of the R-near neighbor problem (see
definition 5), which we call a (R, 1—3§)— near neighbor problem. In this case,
each point p satisfying || ¢ — p [|2< R has to be reported with a probability
at least (1 —).

The new locality-sensitive hashing scheme [11] solves the approzimate ver-
sion of the R-near neighbor problem, called the (R,c)-near neighbor problem
(see definition 6) where ¢ = 1 + ¢, € > 0. In that formulation, it is sufficient
to report with a constant probability any point within the distance of at
most cR from the query q if there is a point in the data set points within
distance at most R from q. For the approximate formulation, the LSH query
time is O(n”), where p < 1/c = 1+_E Note that for € > 0 the running time is
sub-linear in n.

To solve the (R, 1—¢) formulation, E*LSH uses the basic LSH scheme to
get all the near neighbors, including the approximate ones, and then drops
the approximate near neighbors by a post-processing step (as was mentioned
in 3.5). As a result, the running time of E*LSH depends on the data set
points. more specifically, £?LSH running time depends on the distances of
the points from the query point. It is slower for "bad” data sets, e.g., when
for query q, there are many points from the data set clustered right outside
the ball of radius R centered at q.

In contrast to the original LSH scheme, E?LSH empirically estimates
the optimal parameters k& and L (see 3.5) for the data structure, instead of
using theoretical formulas. E?LSH computes the parameters as a function

of the data set and optimizes them to minimize the actual running time of

20

query on the host system.

3.6.1 The Estimated Running Time of E?LSH

Assume R is the search radius of the algorithm, and the data points are at
least within distance cR from the query. The estimated running time for the
E?LSH in the worst case is O(log(1/5) - O(n”@logn + nf9)) ~ O(logl/§) -
O(nlogn) where p(c) < 1/c. This estimation is a coarse estimation but it
is sufficient for our purposes, for more details and more accurate estimation

for the running time see appendix A.

3.6.2 The Near Method

In this section we describe a “naive* way to use E2LSH to solve the PLDS
problem, which we will call the Near method.

As we mentioned in the introduction above, there is a “naive* way to use
any near neighbor algorithm which reports all the points within the search
radius, to solve the PLDS problem. This is obtained simply by running the
algorithm on radius R = 7,42, Where r,,,, is the maximum radius in the
database, and then performing a post-processing step, which checks for each
point whether it covers the query, and finally returns those points that cover
the query.

The running time for the PLDS using the Near method and the E2LSH
is Time(Near Method)=Time(E?LS H)+ Time(post-processing).

The E?LSH will be used below as a ‘building block‘ within a number
of schemes for solving our original PLDS problem. It is therefore useful to
note, in summary, the E?LSH can be applied efficiently with parameters
(¢, R) provided that only a small fraction of the points lie inside the sphere
with radius cR around the query point.

The Near method is not always practical, since the maximum radius could
be relatively large. Assume that for the E?LSH algorithm R = r,,,,, and

that most of the database points are at distance (1 + €)7y,4, from the query.

21

In order to have good performances using the algorithm, we have to insure
that e is sufficiently large. Thus, if the maximum radius is relatively large
compared with the distances of most of the points in the database we cannot
obtain good performances. Therefore, the E*LSH algorithm for large radii
is inefficient.

In the next four sections, we present alternative methods we used for
mapping the PLDS problem to the near/nearest neighbor problem which
have advantages over the naive Near method. The methods are called the
Direct Multi-level method, the Separation method, the Intersection method,
and the Similarity with Virtual Levels method.

4 Direct Multi-level Method

The motivation of this method comes from the idea of dividing our original
PLDS problem into several subproblems, which we will call ‘levels‘’. Each
one of these subproblems has data points which have almost the same radius,
i.e. they differ by not more than a v fraction, where ~ is the discrimination
parameter which specifies the fraction of mistakes that we allow. We can
consider every subproblem as a nearest neighbor problem and solve it inde-
pendently. In this case we solve the approximate problem, or as we call it
the vy — PLDS problem (see definition 2).

As we show above (in 3.6.2), we can solve the exact version of the PLDS
using a near neighbor algorithm, but the solution may be inefficient in its
running time. As we will see the division of the problem to levels can make
the running time more efficient, but we will need to estimate the number of
levels and the optimal way for division.

The solution obtained by dividing the problem into several subproblems
can be considered as a generalization of the near/nearest algorithm itself,
since after dividing the original problem into different subproblems, each

subproblem will be a new independent near/nearest problem. We can look at

22

the regular near/nearest algorithm as a Multi-level method with the number
of levels equals one. Thus, from our point of view, the near/nearest algorithm
is just a special case of the Multi-level method. In the case of using a near

algorithm, we call this special case the Near method (see 3.6.2).

4.1 Multi-level Using a Nearest Neighbor Algorithm

Using a nearest neighbor algorithm under the Multi-level Method requires
a relaxation on the original problem, i.e. it solves the approximate PLDS
problem (v — PLDS), instead of solving the original PLDS problem.

The basic idea behind this method is to convert the PLDS problem to
a Multi-level NNs problem. This is done by discretizing the interval of the
thresholds I = [ryin, Tmaz], into several intervals (Iq, Is, ..., ;). Let us call R;
the maximum threshold in any interval I;, the value R; presents the threshold
of level i, where k = [log(14+)(Tmaz — Tmin)| and v is the allowed fraction of
the solution error.

The threshold in each level is computed as follows: for level i, R, =
(147)"Tmin- Therefore, the levels’ thresholds for all the k levels are (7, (1+
Yy eees Tmin (1 +79)F), where 75 (1 4+7)% > 740.. We chose to define the levels
by a multiplicative factor, rather than using intervals of constant size, since
similar for the e — NNs we are interest in solutions that for any cover point
p; with threshold r; they provide an approximated cover point p’ that its
distance is at most (1 + 7)r’ from the query. To achieve the same accuracy
using a constant level sizes we will need more levels, since we need to take
the size of the smallest level in this scheme as the size for all the levels in the
constant size scheme.

Now we divide the data points of the original problem among the different
levels such that, any point p; belongs to level ¢, if and only if its threshold
satisfies the restriction R;_; <r; < R;.

In this way each level out of the k different levels has points with thresh-

olds that have similar values, in particular, their thresholds differ by at most

23

~ fraction.

Thus, if our applications are not sensitive to v, then we can consider
each level as a separate N Ns problem. We can run now a nearest neighbor
algorithm on every level, but we should use the following strategy for solving
our original problem: on level 7, the algorithm will return the closest point if
the distance from the query to this point is at most equal to R;, and nothing
otherwise.

The algorithm can stop whenever it finds answer on any level, or may
run over all the levels. Thus, the worst case for the running time is when
the algorithm tries all the levels. If the algorithm returns point p’ that has
threshold r’, then the distance of the point p’ from the query point will be at
most 7' (147). Therefore, this method actually solves the y— PLDS problem.

Note: If we use an approximate nearest neighbor algorithm instead of the
exact one, i.e. the one that solves the ¢ — NNs problem (definition 4), then
we have to take the approximation factor € into account too. The reason is
that the algorithm in this case can return point p’ that is /(1 +v)(1 +¢€) far
from the query. Assume that I is the allowed error fraction that we need for
our application. In other words, assuming that there exists a cover point for
the query point, we need the returned point p’ from the Multi-level method
to be within distance at most (1 + I')r’ (comparing to its threshold 7). To
satisfy this distance condition, we need to determine the number of levels
by determining ~ that gives the required I'. Easy computations show that

v = EJ: guarantees that the final error fraction is at most I'.

4.2 Multi-level Using a Near Neighbor Algorithm

We recall that the R — NN algorithm should report all the points within any
given search radius R. In this case we can look on the Multi-level method
as a generalization of the Near method (see 3.6.2), since we will divide the

problem into subproblems and we will run the Near method with a suitable

24

search radius on each subproblem. In this way we will solve the exact version
of the PLDS problem.

4.2.1 How to Divide

The division of the points into levels here is more flexible than in the case
of the nearest neighbor algorithm. At each level we find all of the near
points inside the search radius and from them by post-processing step we
can find those that cover the query point. As we show in the description of
the Near method, this solves the exact PLDS problem. In reality, each level
is considered as a subproblem of a PLDS problem.

The running time of the Multi-level method using R — NN algorithm in
the worst case is the sum of the running time for all the levels. Assume Tn
is the running time of the R — NN algorithm, and T'p is the running time of

the post-processing step. Thus the running time for any level i is
T(i) =Tn; + Tp;. (2)

We conclude from above that any possible division of the interval thresholds
[T'mins Tmaz) for any number of levels can be performed to solve the exact
version of the PLDS problem. For most of the distributions of the data
points in high dimensionality T'p; is negligible compared with Tn;. This is
because that the reasonable size of the maximum threshold 7,,,, is smaller
than the mean distance of the points. Most of the distributions points in
high dimensions have equidistant points with small variance [5]. Thus, the
number of points that are within distance 7,,,, from the query is negligible
for most of the distributions of the points. Furthermore, most of the cases
the levels that have the largest radii will contain a small number of data
points.

We next estimate the best division and the optimal number of levels that

will give us the optimal running time for all of the levels of the Direct Multi-

25

level method.
We discuss below the main alternative methods for dividing the points

according to the threshold.

4.2.2 Equal Levels Widths

The simplest way for division is to divide the interval equally. We divide the
data points to the different levels that have equal widths by their thresholds,
i.e. Let us assume that the number of levels is equal to k. First, we need
to determine k, then we compute the width of every level call it A by A =
fmaztmin The upper bound threshold in each level is Ry, Ry, ..., Ry, where
R; = rpin +1 - A, so the lower bound threshold is R;_1 = mpin + (1 — 1) - A,
for any level i. Note that by this definition Ry = 7,40

For simplicity we assume that the maximum threshold and the minimum
threshold are equal to the upper bound and the lower bound thresholds
respectively in each level.

Now, for any level ¢, we can run some R — NN algorithm with search
radius R;. After doing a post-processing step, we can return those points
that cover the query point. We can stop the algorithm on any level that
returns a positive answer. Therefore, running over all the levels gives the

worst case running time.

4.2.3 Power Growth Levels Widths

This division has the property that the widths of the levels are growing as
a power of some base b, where b = (1 + v) and (v > 0), such that the
search radius of level i is R; = b - 7ynin, and the width of level number i is
Ai=Ri—Ri1 =0+ rpmin — (L +79)7 1y It is the same technique
that we used above, for solving the Direct Multi-level based on a nearest
neighbor algorithm (see 4.1).

Unlike the previous case, here we apply an additional heuristic step. Our

heuristic is to take a permutation of the original widths, as follows. Assuming

26

that there are k levels and that the original order of the levels widths is
(A1, Ag, -+, Ay), we suggest to take the permutation (Ag, Ap—1, -+, Aq) as
the new levels widths. The number of levels £ will be determined empirically
by optimizing the function of the running time of the algorithm for all the
different levels. The running time of the R — NN algorithm is usually very
dependent on the search radius R and the number of points n. Note that the
search radius of the R — NN algorithm equals to R; the maximum threshold
at level 7. Using the permutation above means that the levels with the larger
radius R will also have a smaller interval, and therefore a smaller number of
points in them. Assume that i, and j are any two levels with R;,R; being their
maximum thresholds and A;,A; being their widths respectively. Assume also
that R; is smaller than R;. Our heuristic comes from the intuition that taking
A,; larger than A; in this case improves the running time of the Multi-level
method.

4.2.4 Searching for the Best Intervals Division

Here we will use a more general way to find the best division of the radii
range to intervals, by searching for it within different possible values for the
base interval b and possible values for k that determine the number of levels.
We suggest here a way to determine the widths of the levels and the number
of the levels independently. by finding both the optimal b and the optimal &
will improve the running time of the Direct Multi-level method.

For applying the search we try several relevant values for b (say b = 0.5
to b = 2, with the step 0.1). We similarly try several relevant values for
k (say k = 1 to k = 25) for each such b. We calculate for the value A =
% for each b and for each k. Further, we determine the widths of
the levels as follows; Ar = b' - A, Ay = b2 - A .., A, = b - A, where
Ry = Tyin + 5y -BFITIAL

Note that if the base b > 1 then we will have a power growth levels widths
such that A; > A; for ¢ > 7, if the base b = 1 then we will have equal levels

27

widths, and if b < 1 then A; < A;. Thus, this divisions generalize the idea

of both of the divisions that we have suggested earlier.

4.2.5 The Running Time Using E?LSH

In practice we will use as a ‘black box‘ the E2LSH near algorithm which
reports the near points with high probability. In the Multi-level case we fix
the search radius of the algorithm at each level to be equal to the maximum
threshold for the level, i.e. to be equal to R; for each level .

As we have shown earlier, the running time for each level is the sum of
two parts, Tn the near algorithm time, and T'p the time of post-processing.
We assume as above that T'p is negligible compared with the Near time T'n,
This is for two reasons. First, the high dimensionality of the points causes
that most of the points are equidistant, a reasonable size to the maximum
threshold 7,4, is significantly smaller than the mean distance of the points.
Second, The post-processing time becomes large when the Near computa-
tion finds many irrelevant points within the search radius. This happens
with higher probability when the radius R increases. However, by our choice
of intervals, the number of points in the intervals usually go down with the
radius. As a result, we found that the post-processing time T'p is usually
negligible compared with the near neighbor time Tn. We therefore, chose
to determine the optimal number of levels by experimental optimization of
the running time of the near algorithm T'n for all the levels. The experimen-
tal optimization does not require the application of the E?LSH algorithm,
but an empirical evaluation of an equation we derive next for the expected
running time.

Assume that R is the radius of search and that the distances of most of
the points from the query point are at least (1 4 ¢)R. Let ¢ = (1 + ¢), and
the maximum radius R}, of level k equals to 7pe. The E?LSH algorithm

28

running time can be estimated as (see subsection 3.6.1)
O(log1/6) - O(dn©logn) ~ O(logl/d) - O(dn%logn).

From our experiments the parameter J is not affect at all the optimal num-
ber of levels, we also plan to use a fixed d for our experiments. Thus, for
optimizing the number of levels we can use the following estimation to the

running time.
O(dn”logn) ~ O(dn%logn).

We took a coarse estimation for ¢, such that we took as ¢, the ratio between
the mean inter-point distance and the radius search R. The estimation for
the Multi-level can be derived from this estimation as follows. Assume that
R; is the search radius at level ¢ and that the distances of most of the points

from the query point are at least ¢; R;. We can then estimate ¢; as

(3)

where Ry, is the maximum threshold in the database and R; is the maximum

threshold in level i. For the k levels we can estimate the running time as

k

O(d Z nf(ci) - logn;), (4)

i=1
where n; is the number of points at level i that can be computed by
simply counting all the points at the different levels given their thresholds.
Alternatively, we can estimate the number of points at each level if we can
estimate the thresholds distribution of the points.
Optimizing k, the number of levels, cannot be done analytically, but it can
be solved experimentally by computing a reasonable number of possibilities

and then taking k, the number of levels, to be the one with the minimal

29

estimated running time (a reasonable check is from k=1 to 25 levels). This
can be done efficiently using equations (3) and (4) above.

The only value that we have to estimate is the value of €. In most cases it
is straightforward task to estimate € for two reasons. First, as was mentioned
in [9], the distribution of distances between a query point and the data set
points in most cases does not depend on the specific query point, but it is
an intrinsic properties of the data set. Second, it was shown in [5] that most
data set distributions have distances between the data points that tend to
be equal in high dimensions. In other words, the variance of the distances
decreases as the dimensionality increases. As discussed further below, the
value of € can then be estimated from the variance of the inter-point distance
of points chosen randomly in a high-dimensional space.

We found in simulations that the number of optimal levels depends on
the following three factors: e, the number of points n and the support of
the thresholds distribution. Increasing e causes that the number of levels
decreases. On the other hand, increasing n causes the optimal number of
levels to increase but it increases very slowly. Increasing the support of the
thresholds distribution Increases the optimal number of levels. The number
of optimal levels is more sensitive to € than to n. Considering our data points
that have minimum threshold 0.1 and maximum threshold of 0.9, For large
value of € (larger than 1 for number of data points n ranges from 10000 to
100000 points) the optimal number of levels almost does not depend on the
number of the points an it is one. For small values of € the optimal number
of levels is more depend on the number of data points n, but it is increasing
very slowly when n increases (a reasonable number of levels in this case is
~ 5). A coarse estimation of the number of levels is sufficient to our purposes,
since we notice that the running time function is not sensitive to the number
of levels k. Thus, one can easily find an estimation of the optimal number of
levels for a given € value, that can work almost optimally for different number

of data points.

30

4.2.6 Comparing the Different Divisions Using E>LSH

The Multi-levels scheme with equal intervals (see 4.2.2) improves the running
time compared with the single-level Near method considerably in the cases
when the maximum threshold is large, i.e. when € is small. We try also the
power law for the interval division (see 4.2.3) for our experiments on data
points that have a uniform distribution on the unit sphere. The improvement
is slightly better for the algorithm running time compared with the equal
interval method, if the distribution of the thresholds is normal. We noticed
also that if the number of levels is large then the power width levels are more
robust and close to the real optimal. We can find almost the best division by
searching the possible intervals divisions (see 4.2.4). But the improvement
using the division we find by searching is small and sometimes negligible
compared with the previous two schemes. For our experiments, we will not
use the search scheme since it will take quadratic running time O(b - k) to
the computer to find the optimal division, where k is the level numbers and
b is the power of the level width. The previous two methods take linear time
of O(k) to find their optimal division, thus we prefer to use them.

Next we will present our second method which is based on reduction
from the PLDS problem to the near/nearest neighbor problem called the

Separation method.

5 The Separation Method

In this section we suggest a reduction from the PLDS to the near/nearest
neighbor problem, by using an additional dimension. The reduction works
theoretically for every [, norm such that 0 < p < oo.

The method proceeds by adding a single dimension to the original space.
The reduction guarantees that points which cover the query in the original
space are included in the ball of radius 7,4, (maximum threshold) centered

at the query point in the new space, while points that do not cover the query

31

lie outside this ball. We call this reduction the Separation method.

5.1 Solving the Problem in [, Norm

Our original similarity problem is as follows: we are given a data set of
P ={(p1,m1), -+, (pn,7Tn)}, where the p; are d dimensional points and the
r; are their corresponding radii spheres. A query point ¢ is considered to be
similar to a data set point p; if the point ¢ falls within the sphere of point p;.

We show that this similarity problem becomes a standard nearest neigh-
bor problem, if we map it to a new problem of (d+ 1) dimensions, by adding
a new dimension for every data point. The value of the new dimension for a
point p; is a function of its radius r;. This applies to cases where the [, norm
is used as a measurement of the distance, for both the Minkowiski norms
(1 < p < o0) and the fractional norms (0 < p < 1) (see 3.2).

More precisely, assume 7,,,, is the maximum radius in the data set, then

every data point p; with coordinates {pgl), e ,pgd)} in the original space,
(d)

will have the coordinates {pgl), -+, p; s f(r;)} in the new space. The query
point that originally had the coordinates {q(l), e ,q(d)} becomes the point

with coordinates {g™"),---,¢®,0} in the new space. The f(r;) is given by,

F(ri) = (rhae — D)7, ()

Following this embedding, our original similarity problem becomes a clas-
sical nearest neighbor problem.

Formally, we define dist;, and dist] as the distances between p; and ¢ in
the d dimensional space (R{) and in the new d+1 dimensional space (Rédﬂ))
respectively.

We can compute dist, using dist; by,

dt1 1/p
dist; = [Z | p{) — ¢ |P] = (dist} + (r5,,, — 17)"/7. (6)
j=1

32

Lemma 8 For any l, norm (oo > p > 0), we use for each point i, the
function f(r;) (5) as a value for the new dimension. If we assume that p; is
a cover point and py is a non-cover point, then in the new space Rédﬂ) , thewr

distances necessarily satisfy that, dist'(p;,q) < Tmae and dist'(p, q) > T'maz-

Proof. In the original space p; covers the query ¢, and p; does not cover the
query g. Thus, dist; = dist;(p;,q) < r; and disty = dist(py,q) > 7.

Now from eq.(6) we have in the (d + 1) dimensional space,

dZSt; - (d25t§ + Oﬂfnax - T?))l/pa
dist), = (distf + (12,40 — ri’))l/p'

Since dist; is at most r; and disty, is at least (rj, + 0) for some 6 > 0,

.l D P _ .P\1/p _
dZStj < (Tj + T Tj) = Tmazx,

s op! P P\1/p _
dZStk > (Tk’ + Tfnaaz - Tk:) /P = T'maxs

so the claim follows. m

Corollary 9 For any query, assume p, s the nearest neighbor point in the

+1)

new space RI(,d . The distance of p,, satisfies dist'(py,q) < Tmax if and only

if there exists a cover point among the original data set points.

Proof. It follows directly from lemma 8 above. m

We succeeded theoretically to cluster the points into two groups, the
“good“ points are inside the ball with radius r,,,. centered at the query
point and the “bad*“ points are outside this ball (see fig. 2). But in practice,
for most of the nearest neighbor algorithms we need to ensure a reasonable
distance between the nearest point and the approximated nearest points.
Thus, if the distances between the points included in the ball and the points
clustered right outside of it are very small, it will be difficult to apply the

N N s algorithm and its performances will decrease.

33

From our analysis above, we conclude that points in the original space
Rg that have distances from the query point larger than r,,,, will have larger

1), hence those points are not problematic.

distances in the new space R,(ngr
Furthermore, for most of the near/nearest algorithms this property improves
the performance of the algorithm. In the same way the points that have
originally distances less or equal to 7,4, from the query point, will also have
larger distances in R},dﬂ), but their distances are affected by two factors. The
first factor is the ratio between r,,,, and 7 (where 7 is the smallest radius
among the points that are originally inside the ball B(q,7a.)). The second
factor is the parameter p of the [, norm. If one of these factors is large, then
those points will be close to the boundary of the ball B(q, nq4.) in the new
space.

In the following lemma we show the relation between the parameter p of
the [, norm and the distances of the points. More specifically, we will show
that the separation between the points included inside the ball B(q, rmnaz)
and those outside it improves as we decrease the parameter p of the norm /,,.
In other words, in general “bad“ points get further distance from the query
point, and “good“ points get closer to the query point as p decreases.

We also show that the critical points for nearest neighbor algorithms are
those that are originally included in the ball B(q, 7ma:). Such points have

large affect on our separation.

Lemma 10 For any data point p; (such that r; < rya.) in the space Rﬁ, if

the parameter p of the norm converges to infinity, then the distance of p; in

the new space R]E,dﬂ), dist] (eq. 6) converges to the mazimum of {dist;, rmaz}-

And if p converges to zero ,then dist, converges to the value dl% Tmaz

k3

where dist; is the distance of p; in the original space R;f.

Proof. Let us assume that p — oo ,and that 7; < rpe. (for 7, = T
it is immediate, and it always converges to dist;), assume without loss of

generality that r,,,, > dist; (i.e. the points are originally included in the ball

34

simulation of distances from query point simulation of distances from query point
T T T T T T T 2 T T T T T T T

Figure 2: Simulation of distances for 250 points around the query point in Il norm.
The left plot displayes distances of points in 1024 dimensions of image fragments of size
32 x 32. The right plot displays the distances of the points after running the Separation
method. The circle simulates the ball with the maximum radius, the red point represents
the query, the black points represent the cover points and the others are non-cover points.

B(q, "maz)), then

limyoodist, = limy, oo (dist? + 1P — PV = 1 alimy,_oo (1 4+ 2P — yP)V/?P,

disti T . .
where x = <1l,y= < 1, we can write it as
Tmax Tmax
1q-
Slimpooln(14+2P—yP) 0 __
Tmaz * € e = Tmaz * € = Tmaz-

since lim,_ooIn(1 + 2P — y*) < In(2).
For the second part (p — 0)

llmp_ﬂ)dlst; — lzmp_)o(dlstz; + rgmx o rf)l/p — elimpﬂ(]%-ln(distf+7’gmzfrf).
Now by using Lhopital’s rule on the power of e we can continue the analysis...
We used Matlab to calculate the limit above, without any conditions on
Tmaz, dist; and r; and got that the limit is @ gz W
The lemma above shows that in spite of the success to Separation implied by

the clustering, this clustering is getting worse as the parameter of the norm p

35

increases. We conclude from the lemma and from our empirical simulations,
that points that are originally outside the ball (g, 74,) Will increase their
distances if we decrease the parameter p of the norm [,. Furthermore, for
the points that originally have distance less or equal to 7,,4., We conclude
that if the parameter p of the [, norm satisfies that 0 < p < 1 i.e. if we
use the fractional norms, then the separation between points inside the ball
B(q, Tmaz) and those that are outside it, is satisfactory also for large ratios
between 7,4, and 7.

For p increasing beyond 1, we start to notice that the separation is getting
worse. From our observation, we notice that when p increases the points are
getting closer and closer to the boundary of the ball B(q, rmnq.) from both
sides. If p becomes very large then this reduction is not practical any more for
nearest neighbor algorithms (see fig. 15). But for near neighbor algorithms it
is still practical, especially since it is known that for most of the data points
distributions there is a small fraction of points that have distances less or
equal to 7,4, in high dimensional spaces, for a reasonable size of 7., (see
[5]).

We conclude that using the fractional norms give us better clustering
between the “good® points and the “bad“ points, for solving the PLDS
problem. This conclusion gives another evidence to Aggarwal et al’s work [1]
showing that using fractional norms as distance measures in high dimensions
gives more meaningful nearest neighbors search. Here we showed that using
fractional norms is also more robust for solving our problem the PLDS
problem as it make more robust clustering. We hope also that the large
distances between the points inside the ball B(q,rmq.) and those outside it
using the fractional norms, will improve sufficiently also the running time
of our methods compared with using the Euclidean norm. In this work we
will not try in practice our methods under the fractional norms since to our
knowledge there is no algorithm for the NNs problem that works for the

fractional norms in practice. But theoretically, the E*LSH algorithm can

36

be implemented for such norms. Therefore, we expect that in the future we
will have algorithms for fractional norms that works in practice.

For our present applications, we are interested in particular in the {; norm
(p = 1) where the performance of the reduction is satisfactory, and the [y
norm (p = 2), where the performance is worse than in /; norm, but still good
enough for the cases where the ratio between r,,,, and 7 is not very large.

We conclude that in the cases where the ratio between r,,,, and 7 is very
large, and a nearest neighbor algorithm is to be used, it will be helpful to
divide the problem into several levels, such that at every level we will have
suitable ratio between the radii (see 5.3).

when using the near neighbor algorithm, the situation will be more robust
and it will not face such problems, in general.

Next we will describe the Separation algorithm that rely on the Separation
method.

5.1.1 The Separation Algorithm

e Pre-processing:

1- Run the Separation method above and reduce the problem from d di-
mensional PLDS problem to (d + 1) dimensional NNs problem. By
substituting (

Di-

7P . —r7) /P in the new dimension for every data point

e Query processing using a nearest neighbor algorithm

Extend the query to (d+ 1) dimensions by substituting zero in the new
dimension. Run the NNs algorithm on the data points on the new
space. If the returned point have distance less or equal to 7,,,, then
return it as answer (based on cor. 9), otherwise return 'No cover points

in the data set’.

e QQuery processing using a near neighbor algorithm

Extend the query to (d + 1) dimensions by substituting zero in the

37

new dimension. Run the R — NN algorithm on the new points on
radius 7,4, return the points that returned by the near algorithm as
an answer (based on lemma 8). If no points returned, return "No cover

points in the data set’.

We described above how the Separation method works, and discussed its
properties. Next we will analyze the running time of £?LSH algorithm using

the Separation method.

5.1.2 Time Analysis of the Separation Method using F2LSH

If we assume that R is the search radius of the algorithm, then the running
time of E2LSH is estimated as O(1/8)O(dn*©logn), where we assume that

most of the points are at distance not less than c¢R (see 3.6.1).

e The running time of the Near method is
Time(Near method)=Time(E? LS H)+ Time(post-processing)
=0(1/6)0(dn*“logn) + Time(post — processing), where p(c) < 1.

e The running time of the Separation method is
Time(Separation method)=0(1/8)O((d + 1)n*?logn), where p(cz) <

L and ¢y > c.
c2
e In general ¢, for the [, norm is increasing as p decreases.

Note that the fact that ¢ > ¢ improves the running time of the Separation
method comparing to the Near method. For more details and to estimate ¢
(or ¢, for any [, norm) see appendix B.1.

We analyzed above the running time of the algorithm using the Separation
method. We also compared the running time to the "naive” Near method
running time. Next we will address a special application of the Separation

method for data points that are distributed on the unit sphere.

38

5.2 The Separation method for the Unit Sphere

Here we address a special case Separation method applied specifically to data
points that are distributed on a sphere and using the [norm. We will restrict
the discussion to the unit sphere.

In our similarity applications coming from computer vision, we are in fact
interested in points distributed on the unit sphere. The similarity measure-
ments for our data in computer vision problems is generally the Normalized
Cross Correlation (NCC). Translating this to the classical I norm causes the
data points to be mapped to the unit sphere. We need such a translation
since most of the algorithms that deal with nearest neighbor search or sim-
ilarity assume the use of the Minkowski norms as a distance measurement.
In particular, most of the algorithms use the /5 norm.

Thus, we will analyze here a special Separation method for the case of
a data set distributed on the unit sphere, and the Iy norm as our distance
measurement.

Assume p is some data point with threshold r, and ¢ is a query point in
the original space R;f. Consider the Separation method above (see section 5)
then we can look on the points p’ = {p, f(r)}, p” = {p,0}, and ¢" = {q¢,0}
as the vertices of a triangle in the new space RZ(DdH) (see figure 3). Note that
this triangle does not necessarily have Fuclidian geometric properties under
any [, norm, we use it just to make our motivation to the Separation on the
unit sphere method clearer.

Assume that the data set points are in a d dimensional /5 normed space,
then the unit sphere centered at the origin lies on (d — 1) dimensional space.
Our data points that are distributed on the unit sphere lie on a (d — 1)
dimensional space.

We can take advantage of this fact and instead of adding a new dimension
as we do in the general case (section 5), we can use the space RY itself for
re-mapping the data points and achieve separation. We will also use the fact

that RY is a Hilbert space. First we define a re-mapping of a boundary point

39

The New
p'={p,f(r)} Space

The
q"={q,0} Original
Space

p"={p,0} dist

Figure 3: The general Separation method. The red point is the query point ¢ represented
in the new space as ¢, the green point is a data point p represented in the new space as
p”, and the blue point p’ represents the new position of the data point p after applying
the Separation method.

pi- Consider the two-dimensional plane 7, that contain the following three
points: the query ¢, the boundary point p; itself, and the origin 0 (see figure
4). Note that the geometric properties (the edges lengths, and the values of
the angels) are invariant under rotation, i.e. are invariant for any query point
on the unit sphere that are within a distance r; from the data point p;. We
assume that (0 < r; < 2), thus v shown in figure(4) is in the interval (7, 7),
v < 7 since 7; < 2, and v > 7 since if v = 7 then « should be zero.

The Separation method in this case can be applied by multiplying every
point p; that lie on the unit sphere by a suitable value that we call ratzo;.
Ratio; is a function of the radius of p; and the maximum radius.

This Separation method has the same properties of the general Separation
method, in the sense that points that cover the query will lie inside of the
ball B(q, 7maz), and points that do not cover the query will lie outside this
ball. In addition, any boundary point p; that lies originally on the boundary
of the ball B(q,r;), i.e. its distance from the query equals its radius, will lie

on the boundary of the ball B(q,), after applying the method.

40

Figure 4: The Separation method for the unit sphere applied for a boundary point.
This figure shows the two-dimensional plane m,,. The black point is the origin, the red
point is the query point ¢, the green point represents a boundary point p;, and the blue
point represents the new position of the boundary point p} after applying the Separation
method.

To achieve the properties above, ratio; should satisfy the following: as-
sume that dist;, is the distance from the origin to the point p;. Since the RZ
space for the [, norm is a Hilbert space, we can compute the angle o from

figure (4), using the following cosine rule on the triangles
r?=1+1-2-cos(a)
The new distance from the origin dist;, given by
dist,, = disti, +y =1+1y. (7)
Note that,

72 .. = 1+ dist? — 2dist,, - cos(a). (8)

maxr

41

Thus,

ratio; = ZZL?’ =1+4y= 2 cos(a) + /(—2- c2os(a))2 —41=r2,)
1Sl

The multiplication of any boundary point p; by its corresponding ratio
ratio; increases its distance from the origin by ratio;. This causes the bound-
ary point to lie on the boundary of the ball B(q, 7maz), i.e. the distance of
the point from the query point will be 7,,4,.

The same computation is suitable for non-boundary points i.e. for points
that their distance from the query is not equal their thresholds. For any
point pi we first assume that p; is a boundary point and then compute its
ratio. Relying on this assumption, the use of the ratio computed this way
satisfies the request that the points that cover the query will lie inside the
ball B(q, "maz), and points that do not cover the query lie outside the ball
B(¢; Tmaz)-

We recall that a data point p; is considered to be a ‘cover‘ point to the
query ¢ if ¢ is inside the ball B(p,ry), and ‘non-cover‘ point if the query is
outside that ball.

Lemma 11 For a query q, applying the Separation method causes that any
point pr. on the unit sphere which is originally cover the query lies inside the
ball B(q, Tmaz), while if py is originally a non-cover point for q then it will

lie outside B(q, Tmaz)-

Proof. See appendix B.2. m

The above lemma implies that if disty, = 7, then dist), = 74, (boundary
point case), and if disty is smaller or larger than ry, then dist) is smaller or
larger than r,,,., respectively.

This method performs better than the general Separation method using
the [y norm, for points that are distributed on the unit sphere (see experi-
ments in section 8). This is because, we do not need to add a new dimension

to the original points. Furthermore, the new distances from the query for

42

both the cover points and the non-cover points are somewhat larger than
the distances in the case of the general Separation method. Increasing the
distances improves the running time of the E?LSH algorithm. Another ad-
vantage of using this method compared with the general case Separation

method is that it is intuitively simpler and easier to observe.

5.3 Combining Multi-level and the Separation Method

We can combine both the Multi-level approach and the Separation method
together for the original data points. Such combining improve the running
time of the Direct Multi-level method, for more details see appendix B.3.
We suggested above a reduction form the PLDS problem to the near /nearest

neighbor problem, which works for every [, norm. The method accomplishes
that all the points that cover the query point are within distance r,,,, from
it, and all the points that do not cover the query have distances greater than
Tmaz from it. We also showed how we can use the near neighbor E*LSH
algorithm to solve the PLDS problem, and how this reduction can improve
the running time of E2LSH. Next, we introduce another way that uses a re-
duction from the PLDS problem to the N Ns problem called the Intersection
method.

6 The Intersection Method

The intersection method is a reduction of the PLDS problem to the nearest
neighbor problem, which also uses information from the balls of the data
points. Suppose that ¢ is a query point, and p; is a data point that covers
g within its radius r;, p; is the point we want to find. Assume that the
nearest neighbor to ¢ is a different data point, denoted by N. If we search
the nearest neighbor of ¢, we will retrieve N rather than p;. The essence of

the intersection method is to create a data structure, using a pre-processing

43

stage, by which the point N will 'point’ to the correct point p;. The method

uses two basic facts:

1- If the nearest point has a distance greater than r,,,, then no point

covers the query.

2- If there is a point p; that covers the query and has radius r;, then the

point p; with radius 2 - r; must also cover N, the nearest point to the

query.

This is true because dist(p;, N) < dist(p;,q) + dist(q, N) < 2-r;. There-
fore, fact (2) above assumes that the distance’s measurement satisfies the

triangle inequality.

6.0.1 Description of the Algorithm

In the pre-processing step we save for each data point py a list of data points
that are candidates for being cover points for any query that return py as
its nearest neighbor, call it list;. The candidates associated with a point pg
are all the data points that cover the point py if we double their thresholds
(see figure 5 in this figure p, = N). In the query step, we first use a nearest
neighbor algorithm to find the closest point N to the query ¢, then we can find
a cover point if it exists by scanning the candidates list of N and computing
their distances from the query. If we did not find a cover point among the
candidates list of IV, we conclude that there is no cover point in the database
for the given query.

For the pseudo-code of the algorithm see appendix C.1.

6.0.2 Time Analysis

We next examine the running time of the intersection method when we use

a nearest neighbor algorithm.

44

Figure 5: The point ¢ is the query, N is its nearest neighbor, and p; is a cover point to
q with radius r;.

The pre-processing step running time is O(dn?) time, since in order to
build the list of any data point p; in the database we need to run over all the
other data points in the database and compute their distances from p;.

Call the N Ns algorithm that we use A, the query processing time is equal
to the time that the algorithm A takes to find the nearest neighbor point.
In addition, we need to take into account the time to go through the data
structure of the nearest neighbor point. Assume that the size of list; that
corresponds to the point p; is S;. If Spee = {maxS; : 1 < i < n}, then in
the worst case the time of the query is T' = Time(A) 4+ d - Spaz-

Note that by using this method we can retrieve all of the points that cover
the query point, since all of them must be included in the list of the nearest
neighbor point.

The algorithm is efficient if S; is sufficiently small compared with n
(i.e. S; << n) for most of the points in the data set, namely most of the
data points have thresholds that are at least twice smaller than the mean

inter-point distance.

45

6.0.3 Space Analysis

We will discuss the space requirement for the Intersection method in addition
to the space used by the nearest neighbor algorithm.

Our pre-processing stage requires in the worst case O(n?) space, in ad-
dition to the space used by the nearest neighbor algorithm. This space is
used for building the data structure list for all the data set points. This is
the worst case requirement, when each data point is included in all of the
other points extended spheres. Therefore, it saves all of the data points in
each list of the data points. In such a case, the running time algorithm is
worse than the naive search and it is better to use another approach. The
query processing step in this case includes running over all the n points and
computing all the distances from the query point.

In the average case, the space requirements by the intersection method is
O(n), since the space that the data structure list; of point p; uses should be
0(5;), if we assume as above that S; is the size of list;. Thus, all the data set
points need O(S* -m) space, where S is the average list size and S is assumed

to be small compared with n.

6.0.4 Using the E2LSH Algorithm

The intersection method above uses a nearest-neighbor computations. For
the other methods we have used in practice the E?LSH, which as a near
neighbor algorithm. A question that arises is whether we can use the same
E?LSH also as an efficient nearest neighbor algorithm?

We can find the nearest point by using a binary search on radius of search
R of the R — NN algorithm E?LSH. The Intersection method is efficient
using a R — NN algorithm if we run it on data points with a meaningful
N N s, namely, there is a sufficient contrast between the distances of the data
points from the query point. In particular, the closest point distance from the
query is small compared with most of the points and the maximum threshold.

Most of the meaningful data sets in high dimensions are clustered data set

46

points or data points with implicitly low dimensionality[5]. For more details
see appendix C.2.

In the next section, we will present our fourth and last method for reducing
the PLDS problem to the N Ns problem, called the Similarity method.

7 Similarity Method with Virtual Levels

The basic idea of the similarity method is to use an additional dimension to
increase the similarity (or reduce the relative distance) between the query
and points with large radius. Points with a large radius are more likely to
be missed by a search method that looks for near neighbors, compared with
points with a small radius. The similarity method tries to offset this 'disad-
vantage’ of points with large radii. This is obtained by a way of normalizing
the distances relative to the radii: the distances of the points from a poten-
tial query increased for all the points, but the additional distance for each
point is relative to its radius, therefore, points with small radii will increase
there distances more than points with large radii. This method is based on
generalizing the idea of the Separation method, and considering the I norm.

Another way of looking at the approach is as a tradeoff between distance
and radius: We search for the data point that is as close as possible to the
query point in the original space, and at the same time has the largest possible
radius. The tradeoff between the original features and the new radius feature
can be changed by a parameter a. The value of the additional dimension
(d + 1) that we add to the points is « - r; for each point p; in the data set,
and « - 74, for the query point. Determining the value of « is critical for
the algorithm, since « is the parameter that controls the tradeoff between
the original distance and the effect of the radius. If « is very large, then the
property of the radius in the new space (R,(Jdﬂ)) becomes important, and the
most similar points to the query are those points with the maximum radius,

even if the points are not close enough to cover the query point. On the other

47

hand, if a small « is chosen, then the additional dimension has a negligible
effect on the similarity. Therefore, the most similar points in this case are
those closest to the query in the original space. It is clear that these points
do not necessarily cover the query point.

Ideally, we would like the selected « to satisfy one of the following prop-

erties:

e The first cover point must lie within the most similar k& points in the

new space (R,(,dﬂ)), for some constant k& with a high probability.

e The cover points must lie inside some ball in the extended space with
a radius R (for some R) centered at the query point, and there are no

non-cover points inside this ball.

We chose to focus on the second property because this property gives us the
opportunity to use a near neighbor algorithm.

Unfortunately, the requirement above cannot be satisfied efficiently by
just substituting a suitable parameter « for the additional dimension. The
requirement forces a to be a function of the radius r; for any point p;. This

), since we will

complicates the problem of similarity for the new space Rfodﬂ
have a different parameter «; for each different data point p;. Theoretically
this implies that the query point should have in its added dimension the
parameter &, which should equal all the a;s at the same time. Obviously,
this requirement cannot be satisfied, and therefore, we should build for each
different radius in the data set a special query, and then run all of these
queries instead of the single original query. However, this will be of course a
highly inefficient solution to our problem.

To avoid the problem above we make a discretization of the thresholds
interval values ["min, T"maz| t0 k intervals with (Ry, ..., Ry), as the maximum
thresholds in all the intervals, and then producing for each original query, k
new queries. Each new query corresponds to one interval from the set above.

The value of the additional dimension of query number ¢ corresponding to

48

interval number ¢ has the value a(R;) - R;. We will call this extension the
Virtual Levels.

We presented above the motivation and a basic use of the Similarity
method. We will show examples how we can apply the notion above, by
producing some queries in the new space R;,(,dﬂ) to each single query in the
original space Rg. This extension is called the Virtual Levels and is presented

in appendix D.1.

8 Experiments

The experiments below were done using the following methods: the Near
method, the Direct Multi-level method, the Exponential Direct Multi-level
method, the Separation method (both one level and Multi-level), the Separa-
tion method for the unit sphere (both for one level and Multi-level) and the
Similarity with Virtual Levels method. The difference between the Direct
Multi-level method and the Exponential Direct Multi-level method is in the
way we divided the levels. The divisions were the equal widths division and
the power growth division, respectively (see 4.2).

Our experiments were done on synthetic data points that we produced
randomly on the unit sphere. The reason that we did not use a real data set
from vision problems is that currently we do not have a sufficient number of
fragments for our experiments. For most of the experiments we produced 128
dimensional data points which were uniformly distributed on the unit sphere.
Producing d-dimensional points distributed uniformly on the unit sphere can
be done efficiently by picking the d different coordinates as i.i.d. random vari-
ables distributed according to the standard normal distribution N (0, 1), and
then normalizing the vector to have a unit length [23]. For the Intersection
method we used clustered data points on the unit sphere which we also pro-
duced synthetically. We chose points with 128 dimensions compatible with
the number of dimensions commonly used by the STFT descriptor [20] which

49

is a useful representation for matching image fragments.

In all of our experiments we used the E?LSH algorithm as our R —
NN algorithm. As we mentioned before this algorithm find the near points
with probability (1 — §). We set the percentage of false negatives that we
can tolerate up to 10% (i.e. 6 = 0.1). Consequently, at least 90% of the
points that cover the queries will be detected by the E?LSH. In practice,
for the "hardest” data points of the Separation method on the unit sphere
for example, the E?LSH algorithm miss 81 cover points from 1000 cover
points. Therefore, 91.9% of the cover data points were detected in the worst
case. In addition, we present below, the worst case running time since we
assumed that we always run over all the levels. Running all over the levels
will find all the cover points for any given query. However, If it is sufficient to
return a single cover point for each query, then the average running time is
sufficiently larger using the Multi-levels methods, since then we can stop the
search in any level we find a cover point. We also did not take into account
the post-processing time for the methods that need a post-processing step,
since in the case of uniformly distributed data, the post-processing time is
negligible compared with the time of E2LSH. If we run our methods on a
clustered data, then the post-processing time may be larger. in this case,
the Separation method offers an advantage, since it does not need a post-
processing step (see sec. 5).

The first experiment is for points uniformly distributed on the unit sphere
with 128 dimensions (figure 7). The points are almost equidistant. To es-
timate this distance, assume in general points distributed on a sphere with
radius a in d dimensions, and p,c3 are the mean distance and the vari-
ance, respectively. We can estimate the mean distance p and the variance
o2 for points uniformly distributed on sphere as the following p = v2a and
0a = &5 where d is the dimensionality of the data points [18]. Thus, we
estimate the mean distance of points distributed on the unit sphere as v/2,

and o4 for our data is o4 &~ 0.0625. The points thresholds were taken to be

50

350

Figure 6: Distances between a query point and 10000 data points with 128 dimensions.
The points are uniformly distributed on the unit sphere.

normally distributed with a mean value that equals 0.5 and a variance that
equals afh = 0.01 (o4, = 0.1). Thus, the maximum threshold 7,,,, is some
value that generally belongs to the interval [0.9,1]; the minimum threshold
Tmin Usually belongs to the interval [0.1,0.2]. These are somewhat challeng-
ing assumption, since the thresholds can be relatively large compared with
the inter-point distances.

If most of the points are at distance of no less than ¢y = (1 + €)rmas
from the query, then we can estimate the running time of the E*?LSH as
O(dn<)(see 3.6.1). We recall here that the E2LSH does not need ¢ as an
input, but we will estimate it here to make our discussion clearer. We need
also to estimate coarsely it ¢ for optimizing the number of levels for the
Multi-level methods. But in reality, we used the ratio between the mean
distance and the maximum threshold as an estimation for ¢ for optimizing
the number of levels. From our observation, we can estimate the distribution
of distances of the data points from a typical query, as a normal distribution
(figure 6). Therefore, We compute ¢rpq. as follows: crpe. ~ p—30, = 1.226.
The number of data points varied in this experiment from 10000 to 100000
with steps of 10000. For this experiment we tried 100 different queries. The
running time is the average running time of those 100 different queries.

For the methods that use a single level, we use the maximum threshold

51

30

25F -
//.//
20 7
7
- /b\
// - >
ST T T - _ =A
- _A/
15 PR /% /Ar’/*/ —*
- s A = T
"’/’. //D\ /9'%:__*————
/ - ~ =
o P ao =K
/ 4 %
S
5*//
- B S B G AR T
\\8~—“9*-~o~__g,/’o_“9‘-—0———e—~—o
O Il Il Il L Il Il Il Il J
1 2 3 4 5 6 7 8 9 10
x 10"

— -O— - Near method
Similarity method
Direct Multi-Level method
— —%— - Exponential Direct-Multi Level method
— -A— - Multi-Level Separation method
— —— - Separation method
— —>— - Separation method for the unit sphere

— — — - Multi Level Separation method for the unit sphere

Figure 7: The running time for several methods compared with the naive search. The x
axis represents the number of points, and the y axis represents the improvement compared
with the naive search. The points have 128 dimensions, uniformly distributed on the unit
sphere and have thresholds that are normally distributed according to N(0.5,0.1).

52

as the search radius for the E?LSH algorithm. These methods are con-
sequently more affected by the value of the maximum threshold. Most of
the non-monotonic ‘zigzag’ changes in the result graph are because of the
changing value of the maximum threshold; these changes are more drastic
and noticeable for the methods using a single level. The methods that use
Multi-level succeed in making this zigzag changes less noticeable. thus, multi
levels are more robust when we use the E?LSH algorithm.

We see that the direct use of the standard Near search is only slightly
better than a naive search that simply test all the points in the data set.
The simplest form of the separation method performs only twice better than
the Near method. The Multi-level version of the same method performs
significantly better than the single level version. The other methods also
provide a significant advantage, reducing the running time by a factor of to
15 — 25, for 100000 points with 128 dimensions. We can also see that the
relative advantage increases systematically with the number of points, this
is due to the fact that the E2LSH has a typically sub-linear running time.

There are other factors that can amplify the non-monotonic zigzag chang-
ing phenomena. One is the fact that E2LSH is a randomized algorithm which
chooses its hash functions randomly causing some choices to be more (or less)
successful for our specific data set points and queries. The most important
factor is that the E2LSH algorithm attempts to approximate the optimal
number and the optimal widths of its hash functions in its pre-processing
step, depending on both the data set points and the queries set (see [2]).
This optimization step is done within a memory bound, and this bound
sometimes causes inaccurate optimizations. An example of unsuccessful op-
timization of E2LSH because of the memory bound was noticed using the
Separation method for the unit sphere for data sets with 90, 000 and 100, 000
points, we therefore removed these two points from the figures.

The second experiment was similar to the first one; the only difference

was that we fixed an upper bound to the maximum threshold, which we

93

took to be 0.9. Since o4 = 0.0625; thus the ratio crpee = (1 + €)rpas =~
i — 304 = 1.226 as before, and therefore ¢ = 1.363. The running time
was computed by averaging the running time of 100 different queries. The
main observed difference in the result was that the changes for the methods
that uses a single level were more smooth and robust, since the maximum
threshold was bounded (figure 8). The non-monotonic change for the Multi-
levels Separation method for the unit sphere is since the optimal number of
levels for this method is small (two or three levels). If the optimal number of
levels is small and the interval of the radii ([rpin, "maz|) is changing with the
number of points then this cause non-monotonic changes for the running time.
This changes are more noticeable since we divided the interval according to
the power growth levels widths (see 4.2.3).

The third experiment was as follows. The number of the points was fixed
to 50,000, and they are uniformly distributed on the unit sphere, as in the
first experiment. The thresholds were normally distributed, and we varied
the average threshold from 0.1 to 0.9 with steps of 0.2 and with a variance
of 0.01 (o4, = 0.1). The running time is the average time for answering 100
different queries.

In this experiment we examined the improvement of our methods com-
pared with the Near method (using the basic E?LSH) and the naive search,
by varying the average threshold of the normally distributed thresholds (see
figures 9,10). For the applications coming from computer vision, we are in-
terested in the case where the average threshold equals about 0.5. For this
average value we have sufficient improvement compared with both of the
Near method and the naive search. The case of the average thresholds being
equal to 0.9 is unrealistic and represents a very difficult case, since the max-
imum threshold in this case is generally more than 1.2 (the mean distance
of the points is v/2 &~ 1.4); however most of our methods are slightly better
than the naive search even in this case. On the other hand, for the average

threshold equals to 0.6, the Near method is already worse than the naive

54

search.

The fourth experiment is the same as the first experiment, but the thresh-
olds are uniformly distributed in the interval [0.1,0.9] and the points are
uniformly distributed on the unit sphere. We noticed that the performance
of our methods in this case are twice as bad as the case of the normally
distributed thresholds (see figure 11).

As we note in appendix F the improvement of our methods for the run-
ning time increases with the dimensionality. We call this phenomena the
‘benefit of dimensionality. The reason for such a phenomenon is that the
algorithm of E?LSH is sensitive to the distances of the data points from the
query point. The distances of the points turn to be more and more uniform as
function of the dimensionality, in other words the variance of the distances o2
gets smaller as the dimensionality increases [5]. Consequently, for very high
dimensions the improvement of the running time because of this phenomena
becomes less noticeable. One can notice the improvement in running time
that this phenomena causes for the E2LSH algorithm. Our methods fur-
ther amplify this improvement, such that it can become very helpful in real
applications. Next, we experimented with data points distributed uniformly
on the unit sphere with 500 dimensions. We used in this experiment our
Separation method on the unit sphere (see figure 12); the number of points
was varied from 10000 to 50000 points, and the running time was computed
as the average of 100 different queries. The result show that the improve-
ment in running time was about twice compared with data points with 128
dimensions (figure 8). In this case ry. = 0.9 and o, ~ 0.031, therefore
Clmaz = b — 30q ~ 1.32 thus ¢ ~ 1.466, note that this is larger than c in the
case of 128 dimensions, where it was 1.363.

The final experiments used the Intersection method. The points in this
case were clustered on the unit sphere, such that each cluster contains 100
points. Such clustered data points can arise naturally in practical applica-

tions. We varied the number of clusters from 100 to 1000 clusters. The clus-

55

ters were built by 1000 points uniformly distributed on the unit sphere with
thresholds that are normally distributed according to N(0.4,0.1), an upper
bound of 0.8 and a lower bound of 0.2. For each cluster we produced points
by the following procedure. We randomly chose a point from the cluster from
the points that we already computed. We then computed a random vector
with a distance from this point distributed according to N(0.4,0.1), with an
upper bound of 0.5 and a lower bound of 0.2. The new point is the normalized
sum of the chosen point and the random vector. The diameter of each cluster
is at least one. We examined two distributions of thresholds for the same
data points set. In figure (13) the thresholds of the points are found from the
distribution N(0.1,0.1) in the same way (with upper bound 0.8 and a lower
bound 0.2, thus most of the thresholds have value in the interval [0.2,0.3]);
the maximum threshold in the data set is 0.7. In figure (14) the thresholds
where chosen from the distribution N(0.5,0.1) with upper bound equal to
0.9 and lower bound equal to 0.01. The running time was computed by 100
different queries such that 10% of the queries were chosen randomly on the
unit sphere, i.e. generally they are not within any cluster, and the remaining
90% of the queries were chosen to be included within some cluster, by choos-
ing the query in the same way as we choose the data points included in each
cluster. We also took to account the post-processing step for the Intersection
method. The improvement in the running time is significant compared with
the Near method and to the naive search. The post-processing step could
be large for clustered data. The Separation method have advantage over the
other methods in that it does not need any post-processing step. In the first
experiment we chose small radii (the average in the interval [0.2,0.3]) com-
pared with the maximum threshold (0.7). The Separation method benefit
from this distribution of thresholds. For example, the Separation method
for the unit sphere has improvement of ~ 60 times better than the naive
search. This improvement was less dramatic when the average threshold was

0.5. There is an important advantage of the Intersection method over all

96

the other methods, in that its improvement is not depend very much on the
thresholds distribution, if we satisfy the request that most of the data points
thresholds are at least twice smaller than the mean inter-point distance. con-
sequently, assume that the inter-point distance is at least twice larger than
the maximum threshold. If all the thresholds equal the maximum threshold
the Intersection method will still have an efficient running time. On the other
hand all the other methods running time will not be better than the running
time of the Near method.

9 Conclusions

We examined in this work the problem of PLDS, which is a variation of
the near-neighbor and nearest-neighbor problems studied in the past. For
these previous problems, efficient methods have been developed in the past,
which improve significantly the search time compared with the naive search
approach. In practice, this solutions are for the approximated version of
the problems and/or solves the problems with constant probability. The
solution for the PLDS problem (definition (1) subsection 3.3), in cases where
the spheres are significantly small compared with the average inter-point
distance, can be obtained efficiently enough by directly using a near neighbor
algorithm, which reports every point in any given radius (we called this the
Near method). The search will use a near-neighbor algorithm with search
radius equal to 7,4, the maximal radius of the stored data points. When the
spheres are relatively large, then the solution using a near neighbor algorithm
is inefficient, sometimes even compared with the naive search.

Our aim in this work was to solve more efficiently the PLD.S problem,
especially for relatively large spheres. The problem is motivated in part by
problems arising in computer vision classification, where different data points
may have different radii.

Our solutions are, in general, reductions from the PLDS to the classical

o7

near and nearest neighbor problems, which work well in both theory and
practice. In the section below we briefly list the solutions we have developed
and their main properties.

A simple and natural extension of previous near-neighbor methods is the
approach we called the Direct Multi-level method. The idea is to divide the
problem into several sub-problems with a suitable accuracy such that we can
solve every sub-problem independently. Within each sub-problem the search
radius is assumed to be fixed, and therefore we no longer confront the problem
of different search radii. As it turns out, a simple application of the Multi-
level method with fixed intervals does not produce a significant improvement.
We therefore developed a more efficient variation of the method that divides
the range of radii in an optimal manner.

The second solution, which works theoretically for every norm [, for the
Minkowski norms (p > 1), and for the fractional norms (0 < p < 1) (see
subsection 3.2), is to separate the data points by their thresholds and their
distances from the query into two groups. The “good* points, which cover
the query point will become included inside the sphere with a radius equal
to the maximum threshold, centered at the query point. The “bad* points,
which do not cover the query, will end up outside this sphere. We therefore
call this method the Separation method.

The third method is to build a data structure for each data point, where
we store during a pre-processing step all the candidates to cover the point in
question. Relying on finding the nearest neighbor to the query, we can find
all the cover points to the query from the data structure that corresponds
to the nearest point. This method is called the Intersection method. The
fourth method is based on a similar idea to the Separation method; it was
developed to generalize the Separation method and to improve its running
time for the I norm. The basic idea underlying this method is to rely on
similarity indexing in high-dimension feature space, so that the radius sphere

of the data points will be considered as a new feature for comparing points.

o8

This is implemented by discretizing the thresholds interval and Separating
the data points to the different intervals by adding distances related to their
thresholds in a new dimension. During search, we build from the original
query point a new query, one for each discrete interval. This was called the
Similarity with Virtual Levels method.

All the methods described above rely on the availability of a near-neighbor
or nearest-neighbor computation. We next discuss the relationship between
the PLDS methods and specific types of near and nearest neighbor algo-
rithms.

If we use a nearest neighbor algorithm for solving the PLDS problem,
then the solution by the Direct Multi-level and the Virtual Levels methods
are applicable to the approximate version of the problem (y— PLDS see def-
inition 2). In contrast, the solution using the Separation and the Intersection
methods are applicable to the exact version of the PLDS problem. The use
of a near neighbor algorithm solves the exact version of the PLDS problem
for all the different methods. The solution based on the Intersection method
cannot directly use the near-neighbor algorithm, unless the near neighbor
algorithm is used to find the nearest neighbor, by a binary search (see table
(1) for summary of our conclusions).

The discussion so far assumed the availability of a near-neighbor algo-
rithm, but did not depend on a particular form of the algorithm. In practice,
we used in all our simulations the near neighbor algorithm known as E?LSH
for solving the mapped R — NN problem. Next, we will analyze how the
different methods improve the running time for solving the PLDS problem.

The E?LSH running time is not affected by the distribution of the data
points. The main factor that determine its running time is the distances
of most of the data points from the query, compared with the radius of
search (We called this ratio ¢). The running time of this algorithm can be
estimated approximately as O(dnl/ ¢), where n is the number of points and d

is the dimension. The main advantage of our methods over the Near method

29

Method

A nearest neighbor
algorithm solves

A near neighbor al-
gorithm solves

Special assumptions

Direct Multi-level

method

~— PLDS

PLDS

Separation method

PLDS

PLDS

Separation for the
unit sphere

PLDS

PLDS

Works just for points
distributed on the
unit sphere and the
l2 norm

Intersection Method

PLDS

Does not fit

1-Most of the thresh-
olds of the data
points are at least
twice smaller than
the mean inter-point
distance

2- It improve the run-
ning time compared
with a R — NN al-
gorithm just for clus-
tered data points or
implicitly with low
dimensionality.

Similarity =~ method
with Virtual Levels

v — PLDS

PLDS

For a NNs algo-
rithm, the mini-
mum threshold is
sufficiently large
compared with the
width of the levels.

Table 1: Summary of the methods.

60

(using directly the E*LSH) is that our methods increases the effective value
of ¢. Increasing the value of ¢ is obtained based on two factors. First, by
reducing the size of the search radius for large number of points, as done
by all of the Multi-levels methods, and by the Intersection method. Second,
by increasing the distances of the points from every potential query, as done
by the Separation methods, and the Similarity with Virtual Levels. We can
attribute each improvement in the running time to one of the two factors
above, or to both, as the Multi-level Separation methods uses both of the
above factors.

We next discuss how the different methods use these two factors. It is
obvious that the first factor is used by the Multi-levels scheme applied to
the Direct Multi-level, the Separation, and the Virtual Levels methods. The
Intersection method is also based on the first factor, by assuming that the
NN point distance is sufficiently smaller than most of the other points, and
consequently choosing a small search radius compared with the maximum
radius. The methods that rely on the second factor uses the ‘gap‘ between
the maximum threshold and the thresholds of most of the data points to
increase the distances of most of the points from any potential query. In
reality, both of the factors above depends on the ‘gap® between the maximum
threshold and the average threshold. In the extreme case, all of the radii will
be equal to the maximum threshold. In this case, all of the methods except
the Intersection method will not perform better than the Near method. Thus,
we conclude that the support of the radii distribution is important to increase
the ratio c. From the analysis above and from the experiments, the running
time of the three methods mentioned is better for radii distributions that
are similar to normal distribution than ‘harder’ radii distribution such as
uniform distribution (see figures 8 and 11).

From the analysis above we conclude that the most important factor for
the running time is the value of the ratio ¢. Thus, it is not important if the

data points are clustered or not, or if the data points lie on a unit sphere

61

or within the volume; if the distribution of the points provides a sufficient
ratio ¢, then it will run sufficiently fast compared with the naive search. The
clustered data set are important for the Intersection method, since it provide
the necessary assumption to improve the intersection running time. This
assumption is that the nearest neighbor is usually sufficiently closer to the
query than the other data points. The Separation methods shows advantage
over other methods on clustered data, since the post-processing step could
be large for clustered data, and the Separation methods does not need any
post-processing step like the other methods.

In contrast to most of the algorithms that suffer from the ’curse of di-
mensionality’ (see subsection 3.1) in high dimensions, the use of the E*LSH
algorithm under our methods gives us an important benefit in high dimen-
sionality. As was noted in section 8 the improvement of the running time of
our methods increases with the dimensionality for the same radii distribu-
tion. The dimensionality of the data points also serves to improve the ratio
c. It is known that all of the data points distributions tend to have more
equidistant distances between the data points as the dimension increases [5],
and therefore the distances of the close data points to the query increases.
Thus, the ratio between the radius search and the distances of the points ¢
increases. This improve the running time of the E?LSH algorithm, but the
improvement using our methods is more noticeable.

We present next the performances of the different methods using the
E?2LSH. Assume that for our solution it is sufficient to find a single cover
point to the query. Thus, running on all over the levels for the methods uses
the Multi-level scheme is the worst case running time. The improvement in
the worst case by using the Direct Multi-level method was sufficient com-
pared with the naive search. We noticed that there is no reasonable way of
dividing the data points according to their thresholds that can case a drastic
improvement compared with dividing the thresholds interval equally. The

improvement using the Separation method for the /5 norm was almost twice

62

better than the Near method, this improvement is insufficient by itself for
our purposes, we therefore combined the Separation method with the idea of
dividing the problem into different intervals, resulting in what we called the
Multi-level Separation method. Using this combined method we got an addi-
tional improvement over the Direct Multi-level method. We also developed a
special Separation method for the case where the data points are distributed
on the unit sphere (as our vision data points are distributed on the unit
sphere). We obtained in this case a significant improvement: even without
using division into intervals, the performance was better than the Multi-level
Separation method. If we also apply the division strategy to the Separation
method on the unit sphere, the method becomes more robust and it gives
better performances. We called this combination the Multi-level separation
method for the unit sphere. We conclude from our experiments that this
combined method was the best method for data points distributed on the
unit sphere (normalized data points).

The Intersection method, which uses F2LSH as an implicitly nearest
neighbor algorithm, improved the running time of the problem compared
with the Near method (E?LSH itself), if the data points that were used have
a meaningful nearest neighbor to the query. Namely, if the closest point has
a significantly smaller distance than the majority of the other data points in
the data set. In high dimensionality, data points with a meaningful nearest
neighbor naturally occur for clustered data points, or for data points lying
on lower dimensional sub-space[5]. For our experiments we used clustered
data points, and obtained consistent and significant improvement compared
with the basic E2LSH algorithm (see results in sec. 8).

Our final method, the Similarity with Virtual Levels using E2LSH, also
improved the running time, but in most cases the improvement was not better
than the Direct Multi-level method, and sometimes even worse.

In all the cases where we divide the data points into intervals, we take

the number of levels that empirically optimizes the running time of the al-

63

gorithm, based on an estimation of the worst case running time. The query
running time relying on E?LSH for a reasonable thresholds sizes is sub-
linearly related to the number of the data points in all of the methods. The
space requirements were at most linear in the number of data points n, if
we consider the additional space needed by the different methods (without
the space needed by E*LSH). The space requirement for the Intersection
method is O(n?) in the worst case, but when the Intersection method is in
fact practical, then its space requirement is only O(n).

Next, we present the benefit of the Separation method using fractional
‘norms‘ and propose future approaches related to the fractional norms. The
solution that the Separation method obtained for the fractional norms was
better than the solution for the Minkowski norms, since the distances between
the good points and the bad points becomes larger in general when the pa-
rameter of the norm p gets smaller. As a result, we obtain better Separation
between cover and non-cover points for the fractional norms. This solution
is important for two reasons. First, it has been shown that the fractional
norms serve as better distance measurements for high dimensions compared
with the Minkowski norms for the nearest neighbor and the clustering prob-
lems [1], and we have shown here that this is the case also for the PLDS
problem. Second, the algorithms for the NNs improve in term of running
time if we increase the distances of most of the data points from the query
point. Consequently, the fact that non-cover points increase their distances
from the cover points and the query, can improve the running time of the
algorithm. A future research direction of interest would be to check whether
the Separation method using the fractional norms, with similarity relying
on a suitable NNs algorithm that supports such norms, will have a better
running time compared with the Separation method using the Minkowiski
norms. Such an algorithm can be from the family of LSH methods, which

are known theoretically to support the use of any fractional norm (see [11]).

64

References

1]

C. Aggarawal, D. Keim , and A. Hinneburg. On the surprising behav-
ior of distance metrics in high dimensional spaces. Proceedings of the

International Confererence on Database Theory, pp. 420-434, 2001.

A. Andoni and P. Indyk. E?LSH-0.1 User Manual. avilable at
http://web.mit.edu/andoni/www/LSH/index.html

S. Arya, D. Mount, N. Netanyahu, R. Silveman, and A.Wu. An optimal
algorithm for approximate nearest neighbor searching in fixed dimen-
sion. Proc. 5th ACM-SIAM SODA, 1994. Extended version appears as
University of Maryland technical report CS-TR-3568, December 1995.

R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton,
NJ, Princeton University Press, 1961.

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft: When is ‘near-
est neighbor’ meaningful?, Proceedings of the 7th International Confer-

ence on database Theory, pp. 217-235, Jerusalem, Israel, 1999.

C. Burges, J. Platt, and S. Jana. Distortion discriminant analysis for
audio fingerprinting, IEFE Transaactions on Speech and Audio process-
ing,vol 11, No. 3, pp. 165-174, 2003.

V. Castelli. Multidimensional indexing structures for content-based re-
trieval. IBM Research Report, IBM Thomas J.Watson Resarch Center,
Yorktown Heigts, NY.

K. Clarkson. An algorithm for approximate closest-point queries. Proc.
10th ACM symp. on Computational Geometry, 1994.

P. Ciaccia, M. Patella and P. Zezula. A cost model for similarity queries
in metric spaces. In Proceedings of PODS 98, pp. 59-68.

65

[10]

[11]

[12]

[13]

[15]

[16]

[17]

G. Cormode, P. Indyk, N. Koudas, and S. Muthukrishnan. Fast mining
of massive tabular data via approximate distance computations. Proc.
18th Internatinal Conference on data Engineering(ICDE), pp. 605, 2002.

M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. DIMACS Workshop on
Streaming Data Analysis and Mining, 2003.

R. Fergus, P. Perona, A. Zisserman. Object class recognition by unsu-
pervised scale-invariant learning. Proc. of the IEEE Conf. Comp. Vis.
Pattern Recog, pp. 264-271, 2003.

A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimen-
sions via hashing. In Peoceeding of the 25th VLDB Conference, Edin-
burgh, scotland, 1999.

J. Goldstein, C. Platt, J. C. Burges. Indexing high dimensional rectan-
gles for fast multimedia Identification. Technical Report, MST-TR-2003-
38 , Microsoft Research, Microsoft Corporation , 10/28/2003.

P. Howarth and S. Ruger. Fractional distance measures for content-
based image retrieval.27th Furopean Conference on Information Re-
trieval (ECIR, Santiago de Compostela, Spain, Mar 2005), pp. 447-456,
2005.

P. Indyk,and R. Motwani. Approximate nearest neighbors: towards re-
moving the curse of dimensionality. STOC 98, Dallas, Texas, USA.

J. Kleinberg. Two algorithms for nearest-neighbor search in high dimen-
sions. Proc. 29th ACM Symposium on Theory of Computing,pp. 599-608,
EI Paso, Texas, USA, 1997.

Al Lehnen G.E. Wesenberg. The Sphere Game in n Dimensions. avilable
at http://matcmadison.edu/alehnen/sphere/hypers.htm

66

[19]

[20]

[22]

[23]

[24]

[25]

[26]

[27]

K. Lin, H.V. Jagadish, and C. Faloutsos. The TV-tree: an index struc-
ture for high-dimensional data. VLDB, 3, pp. 517-542, 1994.

D. Lowe. Distinctive image features from scale-invariant keypoints. Int.
J. Comp. Vis. 60(2), 91-100 , 2004.

S. Meiser. Point location in arrangements of hyperplanes. Information
and Computation, 106:286-303, 1993

M. Minsky and S. Papert. Perceptrons. Cambridge, MIT Press, 1969.

J. Poland. Three Different Algorithms for Generating Uniformly Dis-
tributed Random Points on th N-Sphere. avilable at http://www-
alg.ist.hokudai.ac.jp/ jan/randsphere.pdf

S. Ullman, and E. Sali. Object classification using a fragment-based rep-
resentation. In: Seong- Whan Lee, Heinrich H. Bulthoff, Tomaso Poggio
(eds.). Biologically Motivated Computer Vision, First IEEE Interna-
tional Workshop, BMVC 2000, Seoul, Korea, May 15-17, 2000.

S. Ullman, E. Sali, and M. Vidal-Naquet. A fragment-based approach
to object representation and classification. In: A. Arcelli, L.P. Cordella

and G. Sanniti di Baja (eds.), International Workshop on Visual Form,
Berlin: Springer, pp. 85-100, 2001.

R. Weber, H.J. Schek, and S. Blott. A quantitative analysis and perfor-
mance study for similarity-search methods in high-dimensional spaces.
Proc. 24th Int. Cof. VLDB, pp. 194-205, 1998.

V.M. Zolotarev. One-dimensional stable distributions. vol.65 of Trans-
lations of Mathematical Monographs, Americam Mathematical society,
1986.

67

A The Running Time of E*LSH

We estimate below the running time of E?LSH algorithm. The technique
used in the algorithm is suitable to any norm [, in the interval p € (0, 2],
however, current implementations of the algorithm apply the technique only
using the l; norm (for more details and analysis see [11]). First we present
the running time for the algorithm using the basic LSH scheme for solving
the (R, c) — NN problem (definition 6 in subsection 3.3). For a domain S of

a set of points with distance measure D, an LS H family is defined as follows:

Definition 12 A family H = {h : S — U} is called (r1,72,p1,p2) sensitive
for D if for any v,q € S

e ifv e B(q,m) then Prylh(q) = h(v)] > p1,
o if v ¢ B(q,rs) then Pryfh(q) = h(v)] < ps

In order to have a description for how a LSH family can be used to solve
the (R,c) — NN problem with constant probability see [11]. The running
time for the basic scheme for solving the (R,c) — NN problem in constant

probability is:

e Consider L is the number of hash functions used and % is the width of
each hash function (see L,k in subsection 3.5). For any [, such that
p € (0,2] there exists an algorithm for (R, ¢)— NN under R? which uses
O(dn+nL) space, with query time O(dL) for the distance computations

and O(dkL) for the evaluations of the hash functions, where L = n”,

__Inl/pl
P = inl/p2

and k = log jp,n.

e For the /5 norm assume that R is the search radius for the algorithm,
and most of the points are within distance at least ¢R from the query
point. The query time is O(dn”®logn), where p(c) < 1/c (for ¢ € (1,10]
the inequality is strict).

68

We can use the basic scheme of LSH to solve the R— NN problem (definition
5, subsection 3.3), for more details see subsection 3.6. The solution for the
R — NN problem and the I, norm is called E?LSH. Next, we present an
estimation to the running time for the E2LSH that is sufficient for our

purposes.

e As we mention before the E2LSH can fail to find any point included
in his radius of search R with probability 6. Consider L is the number
of hash functions used and k is the width of each hash function, the
running time of the F?LSH algorithm is O(dkL) + O(dL) where L =

Ir—logl((ig:spk)w . The k value is experimentally optimized by the F?LSH

algorithm to minimize the running time (for more details see [2]). For
our analysis we will take the value of k = log, /,,n above from the LSH

basic scheme for solving the (R, c¢) — NN problem. For this value of k

we estimate L as (log}()#) (since log(1 4 x) ~ « for small zs), thus the
1

estimated running time is at most

O(dkL) + O(dL) ~ O(dk - %) N O(dz()g](;f/a)>

= O(log(1/6) - log1/p,n - d(pi)logl/m") + O(log(1/) - d(l)logumn)
1

b1

Inl/py-lnn Inl/pq

Note that (pil)l"gl/mn = e ™M/rz = ni/r2 thus will have the estima-

tion for the running time,

O(log(1/9d) - dnlog, sp,n) + O(log(1/d) - dn”)
= O(logl/6) - O(dn”log; jp,n + dn”)

Note that in the worst case the running time of the E2LSH is very
similar to the running time of the basic LSH for solving the (R, c)—NN

problem.

69

In practice for the E2LSH package and by special assumptions on
the distribution of picking the hash functions the running time can be

estimated in the worst case more accurately by

O(log(1/8) - dv/nPlog, ,,n) + O(log(1/6) - dn”)
= O(log1/$) - O(dv/nrlogy jp,n + dn”) (9)

o 2tan 1(r/c)

Such that computing ps in the [; norm is as follows: p, = —

sin(l + (r/c)?). Computing p, for the Iy norm is as follows: p, =

r/c
1—2norm(—r/c)— ﬁr/c(
distribution function (cdf) for a random variable that is distributed as

1—e~(*/2¢)) wwhere norm(.) is the cumulative

N(0,1). the value of p; can be obtained by substituting ¢ = 1 in
the formulas above (for more details see [11] and [2]). We use eq.(9)
to make more accurate optimizations for the number of levels for the
Multi-level methods.

B More Analysis for the Separation Method

B.1 Time analysis restricted to E?LSH

We will analyze the running time of the algorithm E2LSH when we run it on
our reduced data using the Separation method. We will compare the running
time using the Separation method against the Near method (3.6.2).

Note that the E2LSH algorithm running time is sensitive to the distances
of the data set points from the query point(see 3.6.1). If we guarantee that
most of the points are within distance at least cR from the query point
(assuming ¢ = (1 +¢€) for € > 0), then the algorithm will run in time at most
O(log1/8)O(dn”“logn), on radius of search equal to R, where p(c) < % (see
appendix A).

The Separation method improves the E?LSH algorithm running time,

since it makes the distances from the query in the (d + 1) dimensional space

70

larger than the original distances in the d-dimensional space.

Assume that we can guarantee that most of the points in the d-dimensional
space are within distance of at least (1+ €)r,,q,. For any point p; within dis-
tance dist; from the query point in the original space, we will have in [y norm

the distance dist, = /dist? + (r2,,, — r?) in the new space (see eq.(6)).

max

Thus most of the distances of the points in the new space will guarantee

2
that, dist; = (1 + € + &)rmaz , Where 1 + e+ & = \/(1+6)2+1—< L >

(note that for the [y norm & =1 —).

Tmax

After running the Separation method reduction, we will run the E2LSH
algorithm on radius R = 7,4, on the data points in the new space (R4t),
as we mentioned in the algorithm above (see 5.1.1). This way we find all the
points that covers the query in the original space (RY), since they must lie
inside the ball of radius R = 7,4, in the new space (R3™).

We can assume that the majority of the points have radii around some
average, call it the average radius 7. This is very natural assumption since in
most real problems the radii are normally distributed or similar to normally
distributed. Our data from real computer vision problems satisfies this as-
sumption. Relying on this assumption most of the data set points will have
distances that can be estimated as dist’ = corpe, = (14 €+ f)rmw, in the

new space ,where

. dist/ P\
co=1+e+&= =1/(14+¢€2+1— (10)

Tma:t rmam

Hence, the query running time of the Separation algorithm will be O(1/8§)O((d+
Dn@logn) < O(1/8)0((d + 1)n).

From eq.(6) and the above analysis

R - o\ P\ 1/p
0= 14t B8t :((1+e)p+1—(!)) (11)

Tmaz T’H’LCLI

71

for any norm [, (0 < p < o). Note that similar to the F*LSH algo-
rithm there theoretically exists an LSH algorithm based on the same hash-
ing scheme [11] for every norm [, such that p € (0,2). From Lemma(10)
and our analysis of the Separation method the distances from the query of
the non-cover points are getting larger as the norm’s parameter p decreases.
Thus, ¢, from eq.(11) is getting larger as p decreases, Thus, the ratio of
the running time improvement is getting larger as the norm’s parameter de-
creases. Intuitively, since the LSH algorithm is sensitive to the distances of
the data points from the query point, and the Separation method make this
distances further larger for “small“ norms, hence, if we use “small* norms
then the improvement in running time of this small norms is larger compar-
ing to “larger” norms. However, this does not mean that in practice it is
faster to use a “small* norm instead of the /5 norm, since we do not know if
the LSH algorithm for such “small® norms is as efficient as E?LSH or not,

as there is no practical version of such LSH algorithms.

B.1.1 Conclusions and important points

e The running time of the Near method is
Time(Near method)=Time(E? LS H)+Time(post-processing)
=0(1/6)0(dn*“logn) + Time(post — processing), where p(c) < 1.

e The running time of the Separation method is

Time(Separation method)=0(1/8)O((d + 1)n*?logn), where p(cz) <
1
¢’

o We conclude that the Separation method reduction improves the run-
ning time of the PLDS using the E2LSH algorithm, since the Sep-
aration method increases the distances of the non-cover points from
the query, furthermore the Separation method does not need a post-

processing.

e The ratio between the distances of most of the points and the maximum

72

threshold ¢, is larger for ‘small® [, norm. Therefore, the ratio of the

improvement of the running time is better if we use ‘small® /, norms.

e The E?LSH is a randomized algorithm that find the near points with
high probability (see 3.6). Note that the probability of finding a cover
point when we use E2LSH algorithm is the same guaranteed proba-
bility 1 — ¢ by the algorithm for finding a near point within the search

radius R = r,,q.. This is because in the new space the cover points are
still inside the Ball B(q, rmaz)-

e For any constant J the running time of the £2 LS H using the Separation
method is theoretically always sub-linear, also in the cases that the
running time of E2LSH on the original data points is linear. More
specifically, if there is no guarantee that most of the points are within
distance 7pmaz(1 4 €) (i.e. most of the points are originally inside the
ball B(q,Tmaz)), then the running time of the E?LSH algorithm on
the original space is O(dnlogn) but in the new space it is less than
O((d + 1)n<logn).

This true since for any non-cover point p;, its original distance must
satisfy dist; = (1 + v;)r; for some ~; > 0, thus its new distance is
dist); = \/((1 +9)r5)? 4 12,4, — 73 from eq.(6) therefore,

- !
dzstj

¢ =t= \/1+(2%'+7?) (—)2

Tmaz Tmaz

Assume that most of the radii are around the average radius 7, we can

N2
estimate ¢ above by \/1 + (29 +4?) (-) . Where 4 estimates the

Tmazx

average 7 of all the non-cover points, note that ¢ > 1.

B.2 The Separation Method for the Unit Sphere

In the following we prove lemma 11 from subsection 5.2. We represent the

lemma here

73

For a query q, applying the Separation method causes that any point py
on the unit sphere which is originally cover the query lies inside the ball
B(q, Tmaz), while if py is originally a non-cover point to q then it will lie
outside B(q, Tmaz)-

Proof. We consider the boundary point p; (its radius equal its distance from
the query) with the radius r; see figure (4).

Assume that for any point pg, dist, and dist) are the distances from
the query point before and after using the Separation method, respectively.
Assume also dist}, is the new distance of p;, from the origin. assume that py
is any point such that its radius equal to the radius of the boundary point p;
i.e. r, = r;. If pi is a boundary point then like the point p; above and from
equation (8) we have that dist) =2, =1+ dist? — 2dist}, - cos(a).

Note that p; in the extreme case equal to the query, and in the other
extreme case has distance 2 from the query. Thus, a4 belongs to the inter-
val [0, 7], and the cosine function in this interval is a decreasing monotone
function.

Assume first the extreme cases i.e. before applying the Separation method
pr = q then after applying the Separation method we have from the case of
the boundary point the distance of p;, is equal to y, thus included in the ball
B(q, "maz)- On the other hand, if py has originally distance 2 from the query
then its new distance will be 2 + y thus not included in the ball B(q, rmaz)-

Most of the cases disty satisfies 0 < dist; < 2 thus aj belongs to (0,7).
Assume pj is a cover point then, dist, < r; and the angle between the
data point and the query satisfies ap < a (« from fig. 4). Considering
equation (8) will have that dist), = 1+ dist2, — 2dist}, - cos(ay). Note that
—2dist,, - cos(ag) < —2distl, - cos(a) since dist,, = 1 +y = dist], and
—cos(ay) < —cos(a) in the given interval, thus dist) < rma..

The proof for the case that p, is non-cover point is in the same way.

74

B.3 Combining Multi-level and the Separation Method

In some cases we need to divide our original PLDS problem into several
subproblems and then solve every subproblem independently. This can be
used to improve the running time when the maximum threshold is large
compared with the inter point distances (see Multi-level 4.2), or to improve
the running time if we use the approximate nearest neighbor algorithm and
the ratio between the maximum threshold and the minimum threshold is
large (see appendix B.4).

The Separation method was presented above (see 5) as a reduction from
the PLDS problem to the NNs problem both in theory and in practice.
Hence, the closest point to the query after we run the Separation method
must cover the query point if it is within distance 7,,,, from the query, and
every point included in the ball B(q, rma,) must cover the query point (see
lemma 8 and cor. 9). Thus, it does not matter which algorithm we use for
solving the N Ns problem, either the nearest or the near neighbor algorithm;
the Separation algorithm can solve the exact version of the PLD.S problem.
Further, in both of these cases we do not need a post-processing step at all.
Thus, the only reason that we divide the problem into subproblems is to
optimize the running time of the algorithm. Therefore, we can divide the

problem into levels without any restriction other than the running time.

B.3.1 How to divide

As we showed when we described the Direct Multi-level method, in the case
that we used a near neighbor algorithm, we chose three different ways to
divide the problem (see 4.2). We will try all of them here, hoping that it will

improve the running time.

1)

B.3.2 Comparing the Different Divisions Using the E>LSH

The behavior of the Multi-level Separation method is similar to that of the
Direct Multi-level method. Although they behave similarly, the improvement
in the running time using the Separation method is greater than in the case
of the Direct Multi-level method in all of the three divisions. On the other
hand, the number of levels that optimize the running time of the Multi-
level Separation method is slightly smaller than the number of levels in the
case of the Direct Multi-level. The improvement in the power growth level
widths division way for the Multi-level Separation method compared with
the equal levels widths division way is not large. Similarly, the improvement
using search growth level widths division way compared with the power Level

widths division way is small or sometimes negligible.

B.3.3 The Running Time Using E?LSH

We determine the number of levels by experimentally optimizing the running
time. The analysis here is very similar to the analysis in the case of the Direct
Multi-level method. If we assume as before that most of the points are at
distance no less than ¢; R; from the query, where R; is the radius of search in
level i, then the estimation of ¢; is a little different from the previous method,
and it is as follows:

Previously we showed in (5.1.2) that for the Separation method, using just
one level such that, corpe, = (1 +€+ g)rmw, where ¢y is the ratio between

the distances of most of the data points and the radius of search R = r,45.

Tmaz

The estimation of ¢, is as follows, ¢; = 1 + e 4 & = \/(1 +e)? 41— (£ >2
(see eq.(10)), and 7 is the average threshold.

For the Multi-level case, we simply assume that R; is the maximum
threshold in level i, we estimate the average threshold in level i as R; — A;/2,
where A; is the width of level ¢ (see 4.2.1). Assume R; is the radius of search

for the algorithm in level 7. Similar to eq.(3) we can estimate the ¢; for level

76

7 as

. r R — A;/2\°
=1+ = 1 2(ZMaTg 4o (T2 12
=1t et \/(+€)(Ri)+ (B).
This estimation is only used for the general Separation method. The es-
timation of ¢; for the Separation method on the unit sphere (subsection 5.2)
is different. Similar to eq.(4) we can optimize the number of levels using the

following estimated running time for £ levels

k
O((d+1) " logn; - '), (13)
=1

where n; as usual is the number of points at each level. For optimizing the
Separation method on the unit sphere we used more accurate function of
the running time for more details see appendix A. Note that as the number
of levels increases, the running time of the Multi-level Separation method
converges quickly to the running time of the Direct Multi-level method (this
can be observed by simulating the running time and the number of levels).
Thus, the number of levels that optimize the Separation method running
time is less than the number of levels in the case of the Direct Multi-level
method.

B.4 The Separation Method Using an ¢ — NNs Algo-

rithm

As was mentioned in subsection 3.1, the problem of finding the nearest neigh-
bor point exactly in high dimensions is conjectured to suffer from the curse
of dimensionality. Thus, most of the algorithms were developed to solve the
approximation version of the problem (the ¢ — NNs). Here, we will analyze
the Separation method using the approximate nearest algorithm in the [y
and the [, norms.

First, we will present the case of solving the exact PLDS problem, using

77

an approximate nearest neighbor algorithm. Next, will present the case of

solving the approximated problem (y — PLDS).

B.4.1 Solving the Exact PLDS Using an ¢ — NNs

Assume that we are trying to solve the exact PLDS problem (and not the
v — PLDS). To do so we have to ensure that this reduction “takes® the
points at least as far as 7,4, - € from the sphere boundary, with radius 7,4,
centered at the query in the new space RI(,dH), where (p = 1,2).

We are interested in points p;s that are within distance r,,,, from the
query in the new space Rz()dﬂ), since these points cover the query in the
original space (see Separation method in section 5).

Assume as before that p; is the nearest neighbor to the query, dist;,

and dist} represents the distances of p; from ¢ in the spaces Rg and Rédﬂ),

respectively. If (’"ﬁf) < dist; < T'mag, then according to the definition of the
€ — N Ns, our approximated algorithm finds in the worst case point p;. in the
range Tmar < pp < (1 + e)rmax from the query, as an approximate nearest
point. In this case, we concluded that there is no cover point to the query
¢ in the original space. However, this is a wrong conclusion; therefore, we
should attempt to accomplish that the points that cover the query are within
a distance less than 2= in the original space, to ensure that the algorithm
returns a cover point if it exists.

We now will check in which distance dist; point p; should be in the original
)

will be less than Tmez

space Rg, so that its distance in the new space R,(ngrl s

For the I; norm and for any point p;,

dist; = |dist;] + |"maz — 7il,
Tma/$

1+ €

> |dist;| 4+ |rmae — 7il-

78

Thus, the original distance should satisfy
dist; < 1 — €rmaz- (14)

For the I3 norm and for any point p;,

d’LSt; = \/(dZStz)Q + r?nax o Tz'27

(I"_l:x) > \/(disti)Q + 72 — T2
€

Thus the original distance should satisfy

, 2¢ + €2
dlSti S \/7“12 — r?nax (m) . (15)

The inequalities 14 and 15 above show that for solving the exact version of the

PLDS problem, the distances should satisfy such a restriction. We note that
this restriction is less robust if we use the {3 norm. We will call the distances
in the inequalities above (14 and 15) the critical distances. Note that the ratio
between r,,,. and r; play a major rule in determining the critical distance
from the query. Unfortunately, we noticed that for practical values of € even
for reasonable ratios between r,,,, and r;, the critical distance for the [, norm
is small relative to its threshold r;. Thus, we can get unsatisfactory results
using the [, norm in the sense that we will miss some cover points. In order
to make this problem less delicate, we need to choose a relatively small ¢,
which could has bad performances in practice. A better way to solve this
problem is to use the Multi-level Separation method (see subsection 5.3 and

appendix B.3).

B.4.2 Solving the v — PLDS Using an ¢ — NNs

We will now analyze the case of solving the approximated problem (v —

PLDS). Assume that we allow the approximation factor v for solving the

79

PLDS problem. We need to compute the suitable approximation factor e
for the e — N Ns algorithm that gives us a suitable ~.

Similar to the analysis above, if the nearest point p; distance in the new
space satisfies (TlmTag’) < dist; < Tmaz, then according to the definition of € —
NNs, our approximated algorithm finds in the worst case point p, that
satisfies Tmae < pr < (1 4 €)7mae as an approximate nearest point. We
need to ensure that such a point p, has a distance that is at most 1 + ~
fraction of its radius 7, i.e. for the [y norm and for any point p; that has

dist), = (1 + €)Tmaz,

dist), = |disty| + |Pmae — k],

Tmaz * (1 + €) = |disty| + ["maz — k|-
Thus, the original distance should satisfy
disty, = €rmaz + Tk

Thus,

> disty, _ € Tmaz + Tk

and the relation between v and € will be

Tk 2 5 Tmin .

max Tmax

€=r

To ensure that for points with r,,;, it satisfies the request, we should take

T'min

e<vy

rmax

For the [y norm and for any point py that has dist), = (1 + €))7,

dist), = \/dist,% + (1200 — 1),

80

(14 €)rmaz = \/dist% + (12,00 — T3).

Thus,

disty, = \/((1 + E)Tma;r)Q - (r'?nax - Tl%)

The ratio

Tk

(14 = st _ \/((1 + rmar) = (g = 7).

Thus 1 + € satisfies

(1+e)=\/<1+’y)2+<%—1>2,

(Frmaz)?

also for a smaller 1 + € value it will work; thus taking

Tk

Lo fepon

rmaz’

is sufficient. To ensure that for points with 7,,, it will satisfy the request,

we should take

T'min

€e<7y
Tmazx
Hence, both in the case of the [norm, and the I norm if we take the
approximation factor to the e — N N's algorithm to be € = 7%, then we will
satisfy the request that if there exists a point p; such that ¢ € B(p;,r;(1 +
7)), then the approximated nearest algorithm will return py such that ¢ €
B(pk, re(1 4+ 7))

Note that in the case of the Iy norm we can take a larger € value that

14~)24(Tmaz _1)2
satisfies the goal (we can take 1+ € = \/(7)(ia;§2)).

Tk

81

Thus, for solving the v— PLD.S problem, the /5 norm has a larger € value
for the ¢ — NNs than the [; norm.

C Intersection Method

C.1 The Algorithm

e Pre-processing the points of the data structures

1- Prepare for every point p; in the data set one data structure; call it

2- For i=1 until n

3- For j=1 until n

If (i # j) then

4

a- Find dist;; */distance between the points p;, p;*/

b- If (dist;; < 2-r;) */(if p; will be the nearest point, then every
point that covers the query with r; must also cover p; with
2r;) */
then save the index (j) in list;.

5- End if
6- End for

7-End for

e Query Processing

1- Assume that ¢ is the query point. Run a nearest neighbor algorithm
and assume that p,, (for some m) is the nearest neighbor found by the

algorithm.

82

2- If d(qapm) > T'max
then return ‘No cover points in the data set’

else

If there is any point whose index is stored in list,, that covers the query
point, then return it as the answer.

If no point from list,, covers the query return ‘No cover points in the

data set.

C.2 Analysis When Using the E2LSH

Practical approach: we have available a near neighbor algorithm; how can
we use it as a nearest neighbor algorithm? We will not use a real nearest
algorithm but instead, we plan to use the near neighbor algorithm E?LSH
(section 3.6) because of its efficient performance. We can find the nearest
point to the query by searching the near points within a reasonable distance
R returned by the R — NN algorithm. The only problem remaining is to
determine R, the suitable search radius of the algorithm. In order to make
the Intersection method using E?LSH efficient, the nearest neighbor point
distance to the query should be significantly smaller than the maximum
threshold r,,,,. Therefore, in most of the cases we do not need to run the
algorithm E?LSH with a large search radius R (that equals r,,,) just for
the purpose of finding the nearest neighbor point.

Thus, the Intersection method, using the E2LSH algorithm as a “near-
est“ neighbor algorithm, gives good performances for situations where the
nearest neighbor point is meaningful, i.e. for clustered data points or when
the underlying dimensionality of the data points is much lower than the ac-
tual dimensionality (for more details see [5]). We will focus on clustered
data points in our experiments, such that we require that with a high prob-
ability the query point falls within one of the data clusters. This situation

is perfectly realized in the classification problem, where data naturally falls

83

into discrete classes or clusters in some potentially high dimensional feature
space. It is one of the few realistic situations where the nearest neighbor
point is considered to be meaningful [5].

Thus, in real applications involving classifications, the data points are
usually clustered or are implicitly in low dimensionality.

Finding the suitable search radius R for the E?LSH algorithm is an easy
task, since in high dimension the distance of the nearest neighbor can usually
be predicted. In most cases we succeed in finding the nearest neighbor the
first time, but if we fail we can use a binary search on R in the interval of
thresholds values [ryin, "mae| until we find the nearest neighbor point. It is
obvious that the probability of finding a cover point, if it exists using E*>LSH
under the Intersection method, is at least, as the probability of finding a near
point using E*LSH algorithm (1 — §).

C.2.1 The Running Time Using the E?LSH

Assume that S; is the size of list; for any point p;. The worst case running
time is less than O(1og(Tmaz — Tmin) - Time(E*LSH)) + d - Sppaz, where Spae
is the size of the maximum list .

The log term appears since in the worst case we will fail to find the
nearest neighbor, and we will therefore need to change the search radius,

using a binary search until we reach the maximum radius 7,4,

D Similarity with Virtual Levels

D.1 The Virtual Levels

Here, we show how we can apply the Similarity method in practice. First,
we will discretize the thresholds interval values to several sub intervals, then
we will virtually classify the data set points with respect to the additional

dimension by their thresholds. Consequently, we will have virtual levels, for

84

which every one of them has its maximum radius.

D.1.1 How to apply the method.

We analyze the method for the [, norm only, since we are interested in the
Il norm for our applications.

First, we will discretize the interval [riin, Fimaz] Where 7y, and r,,,, are
the minimum and the maximum radii in the data set, respectively. Assuming
that k is the number of discrete intervals, we will have the values Ry, R, ..., Ry
as the maximum discrete radii, where the discretization step A = (74z —
Tmin)/k and R; = 7 + 1 - AL

Now, for every value of R; we produce a query point ¢; such that in its
additional dimension we substitute the value «(R;) - R;, where a(R;) will be
represented later. Assume the original query ¢ = {q(l), g, ... ,q(d)} then

query g; satisfies,
¢ ={¢",¢®,-- ¢ a(R)- R}. (16)

On the other hand, we need to find the optimal value for k£, which also will
be discussed later.

We consider any point p; such that its radius r; satisfies R, < r; <= R;
as belonging to the virtual level numbered i, we substitute the value a(R;)-7;
in its additional dimension. If p; = {pM,p@ ... p@Y in the original space

then in the new space p; satisfies,

p; = {p(l)’p(2)’ o 7p(d)v a(RZ) : rj}' (17)

We can show that if the point p; is a cover point then it is included in the ball
with radius R; centered at ¢;. Furthermore, a negligible amount of non-cover
points with radii belong to the interval [R;_1, R;] will be included in the ball
B(qi, R:).

85

Lemma 13 Assume we take a(R;) = \/(2R; — A)/A for each data point
p; included in virtual level numbered i i.e. whose radius r; € (R;,_1, R;]. We
claim that each point belongs to virtual level i, that covers the original query
q in the original space R3 is included within the ball with radius R; centered
in the query q; in the new space Rgdﬂ).

Proof. Assume that dist; is the distance of the point p; in the original space
from the query point, and dist’; is the distance of p; from the query ¢; in the
new space.

In the worst case, p; is a level boundary point; we define a level boundary
point as a boundary point whose radius is smaller or equal (larger or equal) to
the minimum (maximum) threshold in the level. This means that its radius
r; = Ri_y = R, — A (or r; = R;), and its distance from the query in the
original space R$ equals its radius. (Note that if r; = R;_;, then p; does not
belong to level i but for our analysis we assume that it is the case). We need
to satisfy for each cover point in the original space R%, which included in the
current level ¢ in the new space Rédﬂ) the following.

If p; covers ¢ in the original space R = p; € B(g¢;, R;) in the new space
Rgdﬂ), then

d+1
dist; = Z | pgk) - qfk) 12 < R,
k=1

from eq.(16), and eq.(17)

dist, = \/distg +(a(R) - R; — a(Ry) - ;)2 < Ry,

In the worst case p; is a level boundary point; the interesting case is when
T'j = RZ — A,

dist; = \/(RZ — A2+ (a(Ry)(R; —15))? < Ry,

86

V(R — A)? +a2A2 < R,
(Ri — A)* + o*’A?* < R?,

Therefore, if we assume equality in the last inequality, we will get that level
boundary points fall on the boundary of R; m

We can show in the same way as in lemma (13) above, that any point
p; such that r; € (R;, Ri+1], i.e. p; belongs to the next virtual level (i 4 1),
included in the current ball B(g;, R;), if and only if, p; is a cover point for
the original query.

Thus, “bad® points that belong to a higher virtual levels cannot be in-
cluded in the current ball B(g¢;, R;).

We showed above that every point in the current virtual level ¢, which
covers the query in the original problem, must lie inside the ball with radius
R; centered at g;.

In the next lemma we show that if we make A significantly small compared
with the minimum threshold r,,;,, then a negligible amount of points that
belong to the current level and do not cover the original query lie inside the
ball B(g;, R;). More precisely, if p; included in the ball B(g;, R;) then the

ratio between its distance and its radius is at most ,/1 + %.

Lemma 14 Any non-cover point p; that belongs to the current level i, i.e.
r; € (Ri—1, Ri], is not included in the ball B(g;, R;) in the new space RY.
If the ratio dif:j satisfies d%t] >4 /1+ %, where dist; is the distance
of p; from the original query in the original space R4.

Proof. Assume p; is not a cover point, such that r; = R; — A, where
0 < A <A, and dist; = R; + v (such that —A < 7). Consider that
A=p3-A, where 0 < 3 < 1.

We will check when the point p; is on the boundary of B(g;, R;) in the

worst case.

87

d+1

: k k
dist); = Z!pﬁ»)—qz“!?:&»
k=1

from eq.(16),and eq.(17)

dist); = \/dist? + (a(Ri)R;i — a(R;)r;)?,

From lemma(13) a(R;) = \/(2R; — A)/A, thus

2R, — A

(Ri+7)%+ (A

3% = R

This is true if v satisfies

Mo =—R; = \/RZ2 — 28R;A + A2,

The worst case for the parabola under the square root is when = %, then,

——
”the bad term”

7172 = —Ri + \/(Rz — A)Q +R2A

The ratio between the distance and the radius in the worst case (5 = %) is

dist; R+ R;-A
= — =4,/1 -

88

which is logical just for a positive term, thus
T N 2(R1 - A/2>2

Now we need to show that “bad* points from other virtual levels cannot

be included in the ball B(g;, R;) in the current virtual level i.

Lemma 15 If p; does not cover the original query in the original space RS,
and r; € (Ry_1, Ry, i.e. pj belongs to the virtual level number k, then p; is
not included in the ball B(g;, R;) that corresponding to virtual level i, in the

new space Rédﬂ), where 1 # k.

Proof. Assume that dist} is the distance of the point p; from the query g;
in the new space, and dist; is as usual the original distance of p; from the
original query.

Since p; belongs to the kth virtual level, then r; = Ry, — A, where A =
G-A,and 0 < B < 1.

Assume without loss of generality that ¢ > k. Then we need to show that

d+1
dist; = Z | pg-t) — qft) |2 > R;,
=1

from eq.(16), and eq.(17)

dist!, = \/dz'st§ + (a(R)R; — a(Ry)r)2 > R,

Since a(R;) > a(Ry) and R; > r;, then

\/distg + (a(R)R: — a(Ry,)r;)? > \/distg + (a(R)R; — a(Ry)r;)2.

89

Note that dist; > r; = Ry, — A; hence, we have

dist; > \/(Ry, — BA)? + (a(R;)(R; — (R — BA)))2.

Since ¢ — k > 1 then in the worst case R, = R;_1 = R; — A, i.e. level k in

the worst case is just level (¢ — 1). Thus,

VI(Bi+ (=0 = 1DAP + (a(R)(B+ 1)A) = R;.

Finally, we find that «(R;) should satisfy

OR, — (B + 1)A
O‘(Ri>2\/ B+DA

Note that for the given values of [,

\/2Ri —(B+1A _ [2R—A

B+1)A A
We substituted for a(R;) the value /282 (see lemma 13). Therefore, we
satisfied the request above that bad points from other virtual levels are not
included in the current virtual level 7. In this way, we can guarantee that
any “bad“ point included in virtual level k cannot be include in B(g;, R;) the

ball in the current virtual level 7. m

D.1.2 The Virtual Levels Algorithm

a- Virtual Levels Using a Nearest Neighbor Algorithm
Assume that we use a nearest neighbor algorithm for solving the sim-
ilarity problem in the new space Rgdﬂ). The algorithm returns the
closest point as a cover point in any level ¢, if the distance of the clos-
est point in the new space Rédﬂ) is smaller than R;, where as above,

R; is the maximum threshold in level i.

90

In this scenario the problem that we solve is the v — PLDS problem
(see definition 2 section 3.3), and not the exact PLDS. Assume that
the point p; belongs to virtual level ¢, such that its distance in the
original space Rg satisfies r; < dist; < (1+ W This
point is not a cover point but it can be included in the ball B(g;, R;)

D)

(see lemma 14). Thus, in some cases it can be chosen as the closest

neighbor point.

Assume 1+~ = <\/ 1+ m) , and that we have k virtual levels
and Ry = 7y + A. Note that v depend on 7,,;,, in other words, the
approximation factor « is determined by the value of r,,,;,. In the worst
case Ty = 0, then 1 +v = /14 AQ /2 \/3 regardless of the value
of A, i.e. regardless of the number of Virtual Levels used. If r,,;, > 0,

then the ratio between A and 7,,;, determines the value of ~.

Any point p; that satisfies dist; < (1+47)r; can be chosen as the nearest
neighbor point. In this case the solution is for the v — PLDS problem
and not for the exact PLD.S problem, similar to the case of the Direct
Multi-level method. It can be easily shown that for a large enough
Tmin, and for the same number of levels, the v value in the case of the
Virtual Levels method are much smaller than the v value in the case
of the Direct Multi-level method. Thus, in this case the virtual levels
method solves v — PLDS with greater accuracy.

The Algorithm

e Pre-processing

1- Choose k, the number of levels that gives the required approxi-

mation factor vy (see lemma 14).

2- Create the Virtual Levels as follows. Compute (Ry, ..., Ry), where
Ri = Tmin + 1+ A and A = mmeemin = Add for every data point
a new dimension such that, for any point p; that has a threshold

r; € (Ri_1, R;], we substitute in the new dimension the value

91

a(R;) 1 (see eq. 17), such that a(R;) = 1/ 282 (see lemma 13).
In this case we say that the point p; belongs to Virtual Level i.

Query processing

Build £ queries g1, g2, - - , qx using the original query and an ad-
ditional dimension, where the value «(R;) - R; is substituted for
the additional dimension for every query ¢; (see eq. 16), such that
(1<i<k).

For every query from step (1), run a nearest neighbor algorithm. If
the distance of the closest point from the query ¢; in the new space
is smaller or equal to R;, return it as a cover point. Otherwise, if
all the queries have negative answers, then return ‘NO cover point

for the original query*.

b- Virtual Levels Using a Near Neighbor Algorithm

Assume that the near neighbor algorithm reports all the points within

radius R, for any given R. Using the R — NN algorithm solves the
exact PLDS problem.

The Algorithm

Pre-processing

Choose k, the number of levels that gives the required A for op-

timizing the near neighbor algorithm running time.

The same as step (2), in the pre-processing of the nearest neighbor

algorithm above.

Query processing

Build £ queries q1, q2, - - - , q& using the original query and an addi-
tional dimension, where the value a(R;) - R; is substituted for the

additional dimension for every query ¢; , such that (1 <1i < k).

92

2- For query number ¢ from step (1) run a R — NN algorithm on
a search radius equal to R;. From the points that the algorithm
returns if any cover the original query, then return it as a cover
point. If we fail to find a cover point in all the Virtual Levels
(i.e. for all the k queries), then return ‘NO cover point for the

original query".

Note: As we mentioned in the case of the Direct Multi-level method
(sec. 4), and the case of the Separation method (sec. 5), using the
Virtual Levels method with a post-processing step, based on a R— NN
algorithm solves the exact PLD.S problem.

Thus, as we did for the previous methods, we can choose the optimal
number of levels as the value that optimize the running time function
of the R — NN algorithm that we use.

D.2 Virtual Levels Using the E?LSH

As we showed in the algorithm above, each data point, say p;, has a new
dimension, which we substitute for it the term «(R;) - r;. We also showed
that every query point ¢; corresponding to level i has the value a(R;) - R; in
its new dimension ,see eq.(16),and eq.(17).

The running time of the E?LSH algorithm depends on the distances of
the data points from the query point. Assume p; is any data point that
belongs to level i. Since E2LSH is sensitive to the distances, we found it
very useful to add to the value of the new dimension (d + 1) for the point
pj, in addition to the term above, the term (i - Divide). The term (Divide)
is some constant that is related to the intermediate distances between the
points. It is obvious that the term (i - Divide) should be also added to the
value of the new dimension of the query ¢; for every (1 < ¢ < k). Doing this
improves the running time of the Virtual Levels in the case where we use the

near neighbor algorithm E?LSH for the similarity.

93

The running time of the Virtual Levels using the constant (Divide) in
this case is somehow similar to the running time of the Multi-level Separation
method. Therefore, as we showed using the Multi-level Separation method
(sec. 5.3), the optimal number of levels using the Separation method is almost
the same as using the Direct Multi-level method. The optimal number of
levels for the Virtual Levels can be determined in the same way. We can use
the optimal value of the Multi-level Separation method as an estimation to

the optimal value of the number of levels for the Virtual Levels method.

E Comparing the Different Methods

This section compares the different methods with one another, for solving
the PLDS problem, and determining the running time and the storage space
required.

Each method previously mentioned has its unique main idea that it used
to solve the problem; the Direct Multi-level method relies mainly on dividing
the data set points. The Separation method mainly reduces the PLDS
problem to the NNs problem by changing the distances. In contrast, the
Intersection method relies heavily on the mean inter-point distance compared
with the radii; the radii used should be at least twice as small as the mean
inter-point distance. The Similarity with Virtual Levels method works by
producing many queries instead of the original query, then classifies the data
points to virtual levels by increasing their distances.

If a NNs algorithm is used, the methods that are used to solve the exact
version of the PLD.S problem are the Separation method and the Intersection
method. The Direct Multi-level and the Virtual Levels methods solve the
v — PLDS problem and not the exact PLDS, but there is a difference
between the approximation factor v in these two methods.

If a R— NN algorithm is used, then all of the methods will solve the
exact PLDS problem. But the Separation method is the only method that

94

does not need a post-processing step.

E.1 Comparing the Running Time

To compare the performances of the methods using the E2LSH algorithm
see section 8. In general, it is difficult to compare the running time of these
methods, since the running time is different for different NNs algorithms.
It is possible that we would prefer a specific method for a particular NNs
algorithm and another method for other algorithm. This depends on the
properties and the performance of the algorithm using the specific method.
Sometimes it depends also on the data set distances and the radii distribu-
tions. However, generally methods that increase the distances of the data
points from the query points relative to the radius search (such as the Sep-
aration method) are better for the near neighbor algorithms, and methods
that increase the distances of the approximate nearest neighbor points from
the nearest neighbor point (such as the Direct Multi-level method) are better

for the nearest neighbor algorithms.

E.2 Comparing the Storage Space Required

Here we determine the space requirements for the methods without con-
sidering the N Ns algorithm that we use. We assume that the same NNs
algorithm is used as a black box for all the different methods.

The additional space that we need for the Separation method is O(n),
since we need for every point (and for the query) just one additional di-
mension. In addition, the Similarity with Virtual Levels method needs O(n)
additional space for the same reason. Assume k is the number of virtual lev-
els, we also need space to the k new queries but we assume that the number
of levels is negligible compared with n.

In the case of the Direct Multi-level method we do not need any additional

space, just O(1) space for maintaining information about the levels.

95

For the Intersection method, if we assume that the average number of
points that is saved in the data structure lists is O(m), then the additional
space that we need is O(mn) for all the data points. In the worst case m = n,
but the worst case is not practical at all, since in this case the algorithm has
a worse running time than the naive search algorithm, and we do not have

any interest in running the Intersection method in such cases.

E.3 Comparing the Methods for Dynamic Databases

Dynamic databases are databases that support Inserting/Deleting points.
Here we discuss two questions “Is it possible to support a dynamic database
by our methods? “, and “What are the ‘costs‘ of supporting inserting/deleting
using the different methods mentioned above? “

Our discussion is on the level of the methods themselves, and assuming
that they are using as a black box the same NNs algorithm, we will not
discuss the inserting/deleting for the black box N N's algorithm itself.

Theoretically, all of the methods above can support inserting/deleting
points. But they differ by the cost of these operations. Inserting a new point
using the Direct Multi-level method is performed easily by entering the new
point at its suitable level corresponding to its radius, if its radius is within the
interval [Fpmin, Tmaz]. If its radius is not belonging to the interval [rpin, "maz),
then we have to build a new level for the new point and change 7,4, OF Tmin,
respectively. A Similar analysis can be done to the Virtual Levels method,
but in addition, if we build a new virtual level, then we need to create also
a new query for this virtual level.

The way we insert a point in the case of the Multi-level Separation method
(or the one level Separation method) is also similar to the way we insert a
new point using the Direct Multi-level method. If the one level Separation
method is used and the new point radius is bigger than r,,,,, then we have
also to change the value of the additional dimension (d+ 1), for all the points

in the database to a new value related to the new maximum radius. This

96

change may cost O(n) operations.

In the case of deleting points from the database, it may need O(n) op-
erations in the three methods above, since we need to search the database
(at least one level) for that point. On the other hand, if the points have in-
dices that can be used as I D numbers, then the deletion may cost just O(1)
operations. Deleting may cause the number of levels to collapse, since one
level may become empty after the deletion. Similarly to the case of inserting,
sometimes there is a need to change the additional dimension of the one level
Separation method. This occurs when we delete the last point, which has a
radius that equals to the maximum radius.

For inserting/deleting operations analysis using the Intersection method,

see subsection E.3.1.

E.3.1 Inserting and Deleting for the Intersection Method

Does the Intersection method support inserting new points and deleting
points from the data set?

Assume that the number of points that are stored in every data structure
point list is small compared with n, the number of data points. consequently,
if most the data points have radii that are sufficiently small compared with
the mean inter-point distance, then we can perform insertion of a new data
point p,+1 in O(n) time. The reason is that we have to run all over the data
points and check whether the new point ball with twice its radius includes
other data points, and store it in every data structure list whose correspond-
ing data point included.

Similarly, if we want to delete some data set point p;, it will take O(n)
time for the analogous reason that we have to run over all the points and
check their lists to delete the point p; if it is found there.

If in our application the insert operations are significantly greater than
the delete operations, then we can just mark the point that we need to

delete with some special flag, and then simply ignore it during the running

97

application.

F Related Work

Some researchers in computer vision who had faced a similar problem in
their databases regarding recognition, approached the problem essentially by
reducing the number of queries. Given the new image for recognition, they
do not build a query from every possible patch of the new image, but rather
run an algorithm that computes a small number of feature points from the
new image. In this way they drastically reduce the number of queries to the
image database (see [12, 20]).

We chose to find an algorithm that reduces the running time of each
query such that the overall running time of all the queries is reduced by a
large amount. Our solution is based on the near/nearest search problem.

Indexing similarity in high dimensions is an active research field. Thus,
we can find numerous works for the nearest neighbor search and for the near
neighbor search, some of which rely on partitioning the space, for example
the KD tree, the SR tree, the X tree, and the TV tree [19] (for a survey
see [7]). Recently, approaches were developed based on the locally sensitive
hash functions such as [16, 13, 11] (see subsection 3.4 of the background).
Although there is a vast amount of literature on algorithms for the NNS
(e-NNS), there are only a few studies related to the PLDS problem. One
recent example is a study of multimedia identification, which was applied
for Audio Fingerprinting by Goldstein et al, [14]. The motivation for this
work was to find matches to small parts of songs, which they called audio
fingerprints, from other fingerprints stored in the database. Similar to our
problem, in their database every fingerprint has a threshold.

These thresholds define the d-dimensional spheres centered at the finger-
prints, which they called hyper-spheres. They approximate the hyper-spheres

by circumscribing or non-circumscribing hyper-rectangles.

98

They use non-circumscribing hyper-rectangles if some false negative re-
sults are allowed. For efficiently solving the rectangles search problem, they
use bit vector indices. Let us assume that we give every database point
an integer number as an ID. A bit vector for some dimension is a vector
that corresponds every database point ID to a bit of binary value, whose
value determines whether the projection of the rectangle in that dimension
intersects the query or not. More precisely, each dimension is partitioned
into several intervals, and for every interval a corresponding bit vector is de-
fined. Each bit of such a vector corresponds exactly to one rectangle from the
data set; thus, the vector length is equal to the number of data points (n).
Further, each bit vector determines which rectangle projections overlap its
corresponding interval and which do not by fixing zero/one values for every
bit.

This technique partitions the queries per dimension, such that each par-
tition contains all the IDs of the hyper-rectangles that overlap the query
partition description in that dimension. The bit vector indices are just a
way of compressing those rectangle ID lists, so that the lists can be inter-
sected efficiently, considering that AND and OR are very fast operations in
the computer.

The main advantage of using our methods comparing to this technique is
that the running time of our methods based on the E?LSH algorithm solve
the PLDS problem in typically sub-linear time on the data points, compared
with the linear dependence of this technique on the data points. The running
time using this technique is still O(dn), the same order as the naive search.

Our methods are more generic and general since they are reductions from
the PLDS (or v — PLDS) problem to the nearest or near neighbor problem;
thus, they can be used for any near/nearest algorithm. Any improvement
in the algorithms used in the field of the nearest neighbor will cause an
improvement in the performances of our methods. On the other hand, the

method of Goldstein et al, is a specific method that is based on the speed of

99

the binary operations.

We also noticed that for solving the problem efficiently, Goldstein et al’s
method needs to be utilized and more information is needed about the data
points distribution, the query distribution and the thresholds distribution.
More specifically, this method needs to observe the projected distribution
of the data points and thresholds in every dimension, and sometimes it also
needs to have information about the query distribution to achieve an efficient
partitioning for each dimension. On the other hand, our methods need less
information about the data points; the only necessary step in our case that
needed for the Multi-level methods is to estimate (1 + €), the ratio between
the distances of most of the points and the maximum threshold.

In contrast to most of the algorithms that suffer from the curse of dimen-
sionality our methods relying on the £? LS H algorithm improve their running
time as the dimensionality increases, we call such a phenomena ‘the benefit
of dimensionality‘. The improvement of the running time is due to the fact
that when the dimensionality increases the data points become more equidis-
tant i.e. close points to the query increases their distances[5], this improve
our methods running time using the E?LSH in a noticeable manner. Thus,
our methods are suitable for data points with extremely high dimensions.
On the other hand the increase of dimensionality makes the performance of
the method of Goldstein et al worse. As we mentioned above, the method of
Goldstein et al was implemented to audio fingerprinting system that contain
~ 240,000 data points of 64 dimensions. The thresholds were taken as a fixed
fraction of the mean distance of the data points and the fractions ranged from
0.3 — 0.5 of the mean distance (the average around 0.4) (for more details see
[6]). The improvement compared with the naive search where ~ 50 times
better. The comparing was done just for 14 dimensions, since they are the
most informative for the audio database.

From our simulations on points uniformly distributed on the unit sphere

with mean distance equal v/2 with 64 dimensions, the improvement in run-

100

ning time for the general clustering method was ~ 25 better, Note that the
dimensionality of the data points affect our methods performance, thus we
repeat the experiment for points distributed on the unit sphere with 500
dimensions and get improvement in the running time of ~ 70 better than
the naive search. Further, due to the sub-linear running time function of
the E?LSH algorithm, the improvement of our methods increases with the
number of points n. Therefore, for large enough n our methods have better
running time also for the audio database with 64 dimensions.

The increase of dimensionality and the number of data points improves
the performances of our method but, on the other hand it, makes problems
for Goldstein et al method. It is required in their method to compare all
the dimensions if there are other database points that do not have special
informative dimensions. This causes that they need a significantly larger
space to make a finer partition to the different dimensions. Furthermore, they
need to do the AND and the OR binary operations for all of the dimensions,
we are not sure that running the binary operations for points in feature space
with very large number of dimensions (say 1024 dimensions or larger) has
the same efficiency as above, because of the limitation of the size of the cash
memory and the need to do page exchanges with the main memory. On the
other hand E2LSH which we rely on, still works efficiently on feature spaces
with very high dimensions.

Note that the running time improvement and space required of their
method are very related to the values of the points thresholds. For larger
thresholds this method needs significantly more space to build more bit vec-
tors to a finer partitioning for maintaining the running time efficiency. In a
similar manner the E2LSH algorithm running time and space requirements
are dependent on the values of the data points thresholds.

The advantage of Goldstein et al’s method comparing to our methods if
we do not consider the intersection method is that this method improves the
running time for both the PLDS problem and the PLFES problem, where the

101

PLES problem is the same as the PLDS problem if we consider equal radii
for all the points. The Direct Multi-level method, the Separation method,
and the Virtual Levels improves the running time just for the PLDS problem.

102

251

/,‘
Ve
,—— s
20+ P N L
// //{>_-——"\D/
__./ —
//)— /D/
15 e _ b= P Sl
e _ ’/A///
Lo AR i
e / re _
P 7/ // /‘ik

P —

10F // ”,%/
2 B-==
7
~ z

- g/
5*/// /Ql’ﬂ@\\ e — — & DN
£ o & - TT-6 L

/,@/”e__{)‘\‘9*——&"9_*_@‘—6__:8
0 Il Il Il Il Il Il Il Il J

N
N
w
IN
(&)
o
~
[e)
©
=)

— -O— - Near method
Similarity method
Direct Multi-Level method
— —%— - Exponential Direct-Multi Level method
— -A— - Multi-Level Separation method
— —— - Separation method
— —D>— - Separation method for the unit sphere

— —— - Multi Level Separation method for the unit sphere

Figure 8: The running time for several methods compared with the naive search. The x
axis represents the number of points, and the y axis represents the improvement compared
with the naive search. The points have 128 dimensions, uniformly distributed on the unit
sphere and have thresholds that are normally distributed according to N(0.5,0.1) such that
the maximum threshold is bounded by the value 0.9.

103

100

~N
0F ~
~N
~N
80 >
i o
~ ~N
70 > >
N \\\\\ ~ -
AR ~
60 RENEGN AN
NN ~ ~
N N - ~
50 SO .~ ~ol
~N N ~ ~ -
40%\\ RN S T~
B T SO0 T T~
~ . ~ - SOAL T T~
30 ~ - ~ Yo T~ o T~ T
20+ S~ T~ SISss T~
~ . Q\\\\\\ SESGE
10+ m‘__“\\\\\\ >~
0 | | | | | | B ‘1‘ - = -
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
— —G- — Near method
Similarity method
Direct Multi-Level method
— —% — Exponential Direct-Multi Level method
— —/- — Multi-Level Separation method
— —{- — Separation method
— —[— Separation for the unit sphere

Multi Level Separation for the unit sphere

Figure 9: The running time for several methods compared with the naive search. The
number of points is 50, 000 which are uniformly distributed on the unit sphere with thresh-
olds that are normally distributed. The z axis represents the varying of the average
thresholds. The y axis represents the ratio of the running time compared with the naive

search.

104

18 ~
N
N
16 N
N
N N
- AN
14 \\ N
N AN
N N
12+ \\ N
N N
10%\ A
N ~ N
| \§ ~ N
x N
8 > . \\ N
~
\\ \\\\\
\\\\ N
° Ts N N
\\\\\\\g \\
5 \\\\\ \\\\\\\\\\\:‘___“
| | | B _1 - ‘T_‘_—%—"“@¥‘__-_T_¥___—:8
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

— —0G- — Near method
Similarity method
Direct Multi-Level method
— —Y- — Exponential Direct-Multi Level method
— —A- — Multi-Level Separation method
— —{- — Separation method
— —[— Separation for the unit sphere

— — «— — Multi Level Separation for the unit sphere

Figure 10: The running time for several methods compared with the naive search.
The number of points is 50,000 which are uniformly distributed on the unit sphere with
thresholds that are normally distributed. The x axis represents the varying of the average
thresholds. The y axis represents the ratio of the running time compared with the naive
search.

105

12

L e -
10 b - b
/s
_ P -7
8 e // ___é\ //
// // \% //A
p ,/ AT Tk
L v / A > a-
6 Y / - lag L
g // /’A/ e
4 - ’%/
K v A
4+ - ~ /// //<>______<>\
i A= G- - o
e TR R At S
e ~
K- o —o--O--e--0--6-~""O--9o__ ¢
- ~0
0 I I I I I L |) J
x 10°

— —O— - Near method
Similarity method
Direct Multi-Level method
— —%— - Exponential Direct-Multi Level method
— -A— - Multi-Level Separation method
— —0— - Separation method
— —D— - Separation method for the unit sphere

— —— - Multi Level Separation method for the unit sphere

Figure 11: The running time for several methods compared with the naive search. The x
axis represents the number of points, and the y axis represents the improvement compared
with the naive search. The points have 128 dimensions, uniformly distributed on the unit
sphere and have thresholds that are uniformly distributed in the interval [0.1,0.9]).

106

35

— © — Near method
— £ — Separation for unit sphere _ - -
o>
30 -
P
-
-
-
-
-
25 e
b
-
-
pr
-
-
-
20 -
-
-
b
-
-
'
15+
10
5F e _
- - — - __ 4 -7 e -
S - === -0 T -e
0 L L L L L L L J
1 1.5 2 25 3 35 4 45 5
x 10

Figure 12: The running time for the Separation on unit sphere and the Near method
compared with the naive search. The x axis represents the number of points, and the y
axis represents the improvement compared with the naive search. The points have 500
dimensions, uniformly distributed on the unit sphere and have thresholds that are normally
distributed according to N(0.5,0.1) such that the maximum threshold is bounded by the
value 0.9.

107

70

>
60 N .
- P - 7/ ’ N
- N , AN b
7
50 I >
P
40+ -
/% /+\
v 7 \
~ 7 \
- =
30F 7 _ -t T~ g \
- _ \
- - *
2 A= \
s > _ - ¥
20 -~ A
Ve —
’ -+ o- O
~ - - = = - O- - — - ~
10¢ o --° c ~_
_o--—9 ©
A
O 1 1 1 1 1 1 1 1 J
1 2 3 4 5 6 7 8 9 10
x 10*
— —O& — Near method
— —+ — Intersection method
— — D> — Separation method for the unit sphere

Figure 13: The running time for the Intersection method compared with the Near
method. The z axis represents the number of data points, and the y axis represents the
ratio running time compared with the naive search. The points are included in clusters
such that each cluster contains 100 points; we varied the number of points on the x axis
by adding more clusters. The thresholds distributed according to N(0.1,0.1).

108

251

B e "
e T
20+ / RS
/ >
/
/
B K
// // N
15| ~ //+“"~+\\\+/ \
/l>/ — AN
~ *"’k N
z 7 +
e
_®
~
Z
101 *
7
///
¥ 7
/
K
5k
O -_- f ——6----0-—-60—-7"0C - _o_ _
¢~ © —0
0 Il Il Il Il Il Il Il Il J
1 2 3 4 5 6 7 8 9 10
x 10°
— —G — - Near method
— —+ — - Intersection method
— — > — - Separation method for the unit sphere

Figure 14: The running time for the Intersection method compared with the Near
method. The = axis represents the number of data points, and the y axis represents the
ratio running time compared with the naive search. The points are included in clusters
such that each cluster contains 100 points; we varied the number of points on the x axis
by adding more clusters. The threshold distributed according to N(0.5,0.1)

109

-2 -15 -1 -0.5 0 05 1 15 2 -2 -15 -1 -0.5 0 0.5 1 15 2

Figure 15: The Separation method for Ly, l1/2, I1, and Is, respectively. The left plot
shows the simulation of the distances from a query point of 895 points with 128 dimensions,
randomly distributed on the unit sphere on a suitable [, norm and 105 points distributed
around the query point ¢ inside the ball B(q, rmaz). The right plot shows the simulation
of the distances of the same points after applying the Separation method.

110

