## Select Seminar Series

All seminars- Home
- ›
- Studying at the Faculty
- ›
- Seminars ›
- Algebraic Geometry and Representation Theory Seminar

# Algebraic Geometry and Representation Theory Seminar

In this talk I will describe a family of integral representations for the standard twisted L-function of a cuspidal representation of the exceptional group of type G_2. This integral representations. These integral representations are unusual in the sense that they unfold with a non-unique model. A priori this integral is not Eulerian but using remarkable machinery proposed by I. Piatetski-Shapiro and S. Rallis we prove that in fact the integral does factor. In the course of the plocal unramified calculation we use another non-standard method, approximations of generating functions. I will then describe a few applications of these integral representations to the study of the analytic behaviour of the this L-function and to various functorial lifts associated with the group G_2.

Abstract. As is well known and easy to prove the Weyl algebras A_n over a field of characteristic zero are simple. Hence any non-zero homomorphism from A_n to A_m is an embedding and m \geq n. V. Bavula conjectured that the same is true over the fields with finite characteristic. It turned out that exactly one half of his conjecture is correct (m \geq n but there are homomorphisms which are not embeddings).

If we replace the Weyl algebra by its close relative symplectic Poisson algebra (polynomial algebra with F[x_1, ..., x_n; y_1, ..., y_n] variables and Poisson bracket given by {x_i, y_i} =1 and zero on the rest of the pairs), then independently of characteristic all homomorphisms are embeddings.

I shall review the framework of algebraic families of Harish-Chandra modules, introduced recently, by Bernstein, Higson, and the speaker. Then, I shall describe three of their applications.

The first is contraction of representations of Lie groups. Contractions are certain deformations of representations with applications in mathematical physics.

The second is the Mackey bijection, this is a (partially conjectural) bijection between the admissible dual of a real reductive group and the admissible dual of its Cartan motion group.

The third is the hidden symmetry of the hydrogen atom as an algebraic family of Harish-Chandra modules.

Given a p-adic group G, number theorists are interested in producing admissible representations of G: representations which have a well-defined character functional. One way to produce such representations is by "Jacquet induction" from smaller groups, whose characters can be understood inductively. The complementary space of "new" characters which are not obtained by induction (complementary with respect to a natural metric on the space of characters) is given by what is called "elliptic" characters. Given a representation V of G, the "new" input from its character is captured by the operator Ax(V), with A (the Bernstein-Deligne-Kazhdan A-operator) the projector to the elliptic component (note that this is different from the component of the character lattice valued in elliptic elements). I will talk about my ongoing work with Xuhua He on extending this operator to a trace functional Ax(V) for V a finitely-generated representation (whose Grothendieck group is well understood), which works by first constructing a virtual elliptic admissible representation from any finitely generated representation.

In this talk, I present an analogue of the Hardy-Littlewood conjecture on the asymptotic distribution of prime constellations in the setting of short intervals in function fields of smooth projective curves over finite fields.

I will discuss the definition of a "short interval" on a curve as an additive translation of the space of global sections of a sufficiently positive divisor E by a suitable rational function f, and show how this definition generalizes the definition of a short interval in the polynomial setting.

I will give a sketch of the proof which includes a computation of a certain Galois group, and a counting argument, namely, Chebotarev density type theorem.

This is a joint work with Tyler Foster.

We develop the theory of semisimplifications of tensor categories defined by Barrett and Westbury. By definition, the semisimplification of a tensor category is its quotient by the tensor ideal of negligible morphisms, i.e., morphisms f such that Tr(fg)=0 for any morphism g in the opposite direction. In particular, we compute the semisimplification of the category of representations of a finite group in characteristic p in terms of representations of the normalizer of its Sylow p-subgroup. This allows us to compute the semisimplification of the representation category of the symmetric group S_{n+p} in characteristic p, where n=0,...,p-1, and of the Deligne category Rep^{ab} S_t, t in N. We also compute the semisimplification of the category of representations of the Kac-De Concini quantum group of the Borel subalgebra of sl_2. Finally, we study tensor functors between Verlinde categories of semisimple algebraic groups arising from the semisimplification construction, and objects of finite type in categories of modular representations of finite groups (i.e., objects generating a fusion category in the semisimplification).

This is joint work with Victor Ostrik.