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Abstract

The problem addressed is to design a detector which is méyisgmsitive to specific quantum
states. Here we concentrate on quantum state detectiogthsiworst-case a posteriori probability
of detectioras the design criterion. This objective is equivalent taragkhe question: if the detector
declares that a specific state is present, what is the pidpaifithat state actually being present?
We show that maximizing this worst-case probability (mazing the smallest possible value of this
probability) is aquasiconvex optimizatioover the matrices of the POVM (positive operator valued
measure) which characterize the measurement apparatudstvghow that with a given POVM, the
optimization is quasiconvex in the matrix which charaaesithe Kraus operator sum representation
(OSR) in a fixed basis. We use Lagrange Duality Theory to éstathe optimality conditions for
both deterministic and randomized detection. We also exarhie special case of detecting a single
pure state. Numerical aspects of using convex optimizdtiorguantum state detection are also
discussed.
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1 Introduction

why Information is extracted from a quantum system by measuneriée most information that it is
possible to extract from the quantum system is given by #&estpecified by a density operator, and it
is impossible to determine this from a single measurememd. problem of detecting information stored
in the state of a quantum system is therefore a fundamentalgm in quantum information theory.
The nature of this problem is essentially the design of nreasents such that they yield the optimum
information for the specified purpose. That s, the consitvamf matrices representing positive operator
valued measures (POVMSs) which give the best performancmsiga given set of criteria, subject to
constraints reflecting the underlying properties of thenfuia mechanics, or costs associated with the
implementation of certain operations.

The emergence of quantum information processing has raigaaltant new issues, and made more
urgent the development of tools for the design of quantunsoreanents. In this paper we present a gen-
eral formalism that enables this design across a wide raiggptications. In particular we show that the
problem may be cast in the form of a convex optimization olrergossible POVMs, and that this allows
powerful numerical tools to identify the globally optimakasurements to achieve the desired objective.
Such optimizations are useful even if they turn out to bedliffito implement in the laboratory, since
they provide a benchmark for the performance of experintigriasible measurements.

The objective of a measurement in quantum information thdepends on the way in which infor-
mation is encoded into the quantum system to begin with, laisdg in turn, depends on the application.
In quantum cryptography, for example, the information iscated by the sender choosing randomly
between two non-orthogonal bases, both of which can encadegke bit. The ability of an eavesdrop-
per, who is in principle unable to influence the choice of praion and measurement bases chosen by
the sender and receiver of this information, to extractrimfation from the transmitted quantum bits,
depends on her ability to determine which of four non-orth states were sent. In a quantum infor-
mation processor, the information in the register at thearadcomputation often resides in orthogonal
states, and the goal of the measurement is simply to reacheuegister by distinguishing among the
sets of such states. However, the operation of such a pacesy itself depends on measurements.
For example, quantum error correction protocols requieentieasurement of an ancilla to preserve the
guantum state of the register itself. In another exampéeglister computing mod¢40] and thelinear
optical quantum computg®9], both rely on measurements of ancillary qubits for tperation of the
logic gates themselves.

In these examples of conditional state preparation, itted that there is a high degree of correlation
between the outcome of the measurement and the quantunpgpsged in the register by the measure-
ment. The structure of the measurement should thereforadbetisat this correlation is maximized. Thus
it is vital to consider the case when the detectors have naigkto develop strategies for optimizing the
measurement in the presence of this and inherent ineffieignDespite the fundamental inability to de-
termine the quantum state of a system from a single measuteinie sometimes useful to make such a
determination from a set of independent measurements okigdlty prepared systems. This procedure
is calledquantum state tomographgimilarly, one may characterize the action of a quantum atjmer
by determining its effect on a known input quantum state fepdetermination of the output state. In
this application, the central questions are: how many nreasents are needed to determine the state to
within a given precision, and how should these measurenfient®nstructed? That is, it is essentially a
problem ofexperiment desigrOptimal experiment for quantum state tomography and guarocess
tomography is considered in [30].

In this work, we concentrate on the problem gqpfantum state detectionThat is, the design of
POVMs that can determine whether or not a particular compiowas present in the input state to the
detector. The problem is thus equivalent to the design ofamigun channel that optimally transforms



the input state distribution (assumed to be given, and dict non-orthogonal states) to the output
measurement outcomes. The channel may be lossy, and magiuo# noise, and thus there may be
latency in the measurement, in which certain outcomes aleguous.

previous work Several approaches have emerged for distinguishing betaeeollection of non-
orthogonal quantum states. An accessible review can balfouthe article by Chefles [8]. In one
approach, called quantum hypothesis testing, a measutesndesigned to minimize the probability of
a detection error [25, 23, 44, 17, 6, 35, 2, 15, 16, 14]. Nexwgsand sufficient conditions for an opti-
mum measurement maximizing the probability of correct cieia have been developed in [17] using a
semidefinite programming approach, and earlier in [25] ditaevback of this approach is that it does not
readily lend itself to efficient computational algorithm&losed-form analytical expressions for the op-
timal measurement have been derived for several speced ¢23, 6, 35, 2, 15, 16]. Iterative procedures
maximizing the probability of correct detection have alsei developed for cases in which the optimal
measurement cannot be found explicitly [24, 17]. A speciisign for achieving the optimal discrimina-
tion between non-orthogonal coherent states has been igiy8h) and for non-orthogonal polarization
states of a single photon by [4]. Optimal discrimination agst more than two non-orthogonal states
has also been analyzed [39] and demonstrated experimefita]l

A more recent approach, referred to as unambiguous detglfo 11, 36, 28, 38, 7,9, 13, 12, 18], is
to design a measurement that with a certain probabilitymstan inconclusive result, but such that if the
measurement returns an answer, then the answer is cortcprmwbability 1. Chefles [7] showed that
a necessary and sufficient condition for the existence ofnliiguous measurements for distinguishing
between a collection gbure quantum states is that the states are linearly independatessary and
sufficient conditions on the optimal measurement miningizhre probability of an inconclusive result for
pure states were derived in [13]. The optimal measuremeahwlistinguishing between a broad class of
symmetric pure-state sets was also considered in [13]. Tdtd@gm of unambiguous detection between
mixedstate ensembles was first considered in [41]. Necessaryudficient optimality conditions for
unambiguous mixed state detection were developed in [18].

Experimental configurations may not allow the ideal measerdgs to be made, and thus the per-
formance of feasible apparatuses have been analyzed. &wompéx an apparatus for the unambiguous
discrimination between two orthogonal states of a singletqi using homodyne detection, rather than
photon counting, which has higher losses and more noisdydesexamined in [22] and [33]. An exper-
imental implementation of the process for discriminatimambiguously between two non-orthogonal
states of polarization of a single photon has been demaoedtia[26].

An interesting alternative approach for distinguishingweeen a collection of quantum states, which
is a combination of the previous two approaches, is to allmwafcertain probability of an inconclusive
result, and then maximize the probability of correct detecfl2, 45, 20].

what's new here Prior work has considered optimal detector design only foagerage measure of
the probability of detection, such as theerage joint probability of detectiori-or example, in [17, 13]

it is shown that using this criterion, detector design cafob@ulated as a convex optimization over the
matrices in the POVM, specificallysemidefinite prograntSDP). Here we concentrate on quantum state
detection using thevorst-case a posteriori probability of detectias the design criterion. This objective
is equivalent to asking the question: if the detector deslahat a specific state is present, what is the
probability of that state actually being present? We shat fiiiaximizing the smallest possible value of
this probability is quasiconvex optimizatioover the POVM matrices, or over the Krause operator-sum-
representation (OSR) in a fixed basis. Issues relating tditons of optimality and numerical aspects
of convex optimization of state detection are also disalisse



We will show that many of the standard measures of detectéonoeance (including those previously
considered) are also convex functions of the detector dgmgameters. In addition, we will see that the
design parameters, either POVM or OSR, are in a convex set.résult we can cast a number of detector
design problems as a convex optimization. Details and lyidgrtheory about convex optimization are
in the text by Boyd and Vandenberghe [5]. As stated theregtbat advantage of convex optimization
is a globally optimal solution can be found efficiently antiatgly, and perhaps most importantly, can be
computed to within any desired accuracy usingrdarior-point method

Another advantage to being able to obtain a globally optisedlition is that the resulting perfor-
mance can be used as a benchmark against which the initedtdedesign can be compared. If the
optimal performance is significantly better, then thereampelling reason to try and implement the
optimal solution or to try and modify the initial design irethdirection” of the optimal solution, if that
is clear from the physical implementation.

In a few instances we use Lagrange Duality Theory to derimmddas for direct calculation of the
optimal objective value and the associated POVM matricdsesé& calculations only involve singular
value decomposition of the problem data.

2 Problem formulation

2.1 Detector

A quantum state detectds considered here as an input/output device mapping a(statsity matrix)
p € C™™ at the input into one of a number of discrete outcomes at thgubas illustrated in Figure 1.

p € Dy, = | Detector | = d € Dyt

Figure 1: Quantum state detector
Specifically, the input state is drawn randomly from
Diy={peC”™", 0<p;<1]i=1,....m} (1)
wherep; is the occurence probability @f, that is,
pi=Prob{p=p;},i=1,....,m 2

The set of detector outcomes is,
Dot ={ili=1,...,m} 3)

The problem addressed is to design the detector to be abletéonuine the presence of some or all
of the specified set of input states given knowledge of thetigptD;, and the associated occurrence
probabilities. Although the principal focus is on an equatier of state inputs and detector outcomes,
this is not always the case.g, noisy measurements can result in unequal inputs and oetcambriefly
discussed in Section 5.1.



2.2 Performance probabilities

Detector performance is usually assessed by examinatiomefor more of the following probability
matrices:

joint probability matrix Pioint(4,7) = Prob {detecti AND inputj}
conditional probability matrix poujin(ilj) = Prob {detecti GIVEN input;} 4)
a posterioriprobability matrix pi, o (jli) = Prob {inputj GIVEN detecti}

As shown in any standard text [21] these probabilities deded as follows:

pjoint(iaj) = pout\in(ﬂj)pj = pin|out(j|i)pout (’L) (5)
. m ..
pout(l) = ijl pout|in(z|])pj

Without loss of generality we can order the input and outpenés so that detector event 1 corresponds
to input event 1, detector event 2 to input event 2, and so ath #Ms ordering, detector performance
can be assessed by theor probabilities

eioint(1) = Prob {detecti AND input j # i} = Pout () — Pjoint (Z,1)
econd(i) = Prob{detectj # i GIVENinputi} = 1 — pouin(ili) (6)
epost(i) = Prob{detecti GIVENinputj # i} = 1 — piyjout(il)

Observe that each of these is the sum of the off-diagonal exlesrof the corresponding probability
matrices (4). Being error probabilities, they all rangenfreero to one:

6joint(i)a econd(i)7 epost(i) € [07 1]7 1= 17 cee, M (7)

As we will see shortly, it is convenient to express each ofetiter probabilities in terms qQf, i (i)
andp;. Using (5) gives,

ejoint(i) = Z‘;rLzl pout\in(ﬂj) b; — pout\in(ﬂi) Di
€cond (Z) = 1- pout\in(i.ﬁ.) . (8)
e (Z) - 1 pout\in(lh) pi 1 pout|in(Z|Z) 2
t = - =1- T
pos Pout (Z) Z;nzl Pout|in (Z’j) Dbj

The expression fot,,.s (¢) is valid only if poy (¢) # 0 which is assumed.

2.3 Perfect and unambiguous detection

Perfect detectioroccurs when the detector readenly if the ith input is present. Thus the detector is
correct all the time. In this case theposterioriprobability matrix is identity which can only occur when
the conditional probability matrix is identity.e.,

pout|in(i|j) = 5ij> i»j = 17- .., m (9)

Under this conditionall the error probabilities in (8) are simultaneously idertjcaero. As might also
be expected, perfect performanceridependenof the input distribution{p;}. For quantum systems,
this is possible if and only if the input states are orthod¢83).

5



A weaker condition, referred to amambiguous detectipccurs when the detector either provides
the correct answer or one that is inconclusive with someairitity (see,e.g, [12, 13]. This detector
requires an additional outcome corresponding to the iHosive result. There are now + 1 detector

outcomesD,,. = {i |i=0,...,m }, where outcom® means the result is inconclusive. As before,
fori = 1,...,m, outcomei means that input is declared to be present. For the detector to be correct
wheni, i = 1,...,m is declared, thex posteriori probability of inputi given outcome; must be

1. Equivalently, the submatrix of the conditional prob#pimatrix corresponding to the: states is
diagonal but not necessarily identity, as in perfect daactThus (9) now becomes,

pout|in(i|j) = ﬁ(z)élﬁ i»j = 17 ey (10)
Under this condition, tha posteriorierror probability is,
. Pout|in (%]7) Pi p(i) pi
€ ost(l) =1- T =1— — = (11)
: > Poutfin(il7) pj (i) pi
foralli =1,...,m, and the probability of an inconclusive result is,
Pincl = 1-— Z ﬁ(z)pz (12)

=1
If the probability of an inconclusive result is non-zercgttithis detector is a type adndomized detector

A detector designed without this feature will be referred$adeterministic detectonVe will return to
the problem of designing an unambiguous and/or randomietsttbr in Section 5.2.

2.4 Partial state detection

It is often the case that not all the input states are to bectiite We will show that it is not necessary to
have a detector outcome for all the states. Consider thé aghu

Suppose only the states, . .., pr, k < £ are to be detected. THe- k states that are not being detected
can be lumped into one state, the statistical mixture,

A
r= > pipi (14)

i=k+1
with occurrence probabilit@f:k 41 pi- Thus the set (13) dof states can be replaced with the statistically
equivalent set ok + 1 < ¢ states
¢

Din = {(ph pl)v R (sz, pk)v (Tv Z pz)} (15)
i=k+1
The detector then only requirést 1 outcomes, nof outcomes. To adhere to the previous notateg,
(1), definem =k + 1.
An important application of the above procedure is detectiba single pure state. In this case the
input state set, in the form of (15), becomes,

Di, = {(1/}1/}*7 1- 5)a (T7 5)} (16)

with the pure state) € C”, *¢) = 1 occurring with probabilityl — g and the remaining states
represented by the mixed statec C™*", r > 0, Tr » = 1 occurring with probabilitys. We use this
example to illustrate the structure of the optimal detert@ome cases.
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2.5 Measures of performance

The goal is to design the detector to minimize the size of aor grobability. The size of the error is
set by selecting a norm. Here we will consider two common soreferred to aaverageandworst-

case Since (7) holds — the errors are always non-negative — welefine the average error norm by
lellvg = >oiey wi e(i) and the worst-case norm By||, . = max;—1,_m» w; e(i). These norms are
weighted error probabilitiesthe weightsyw; > 0, are selected to emphasize specific outcomes — a larger

weight emphasizes the desire to detect a particular statde T shows these norms for the specific error
probabilities (8).

€llavg lellwe

€joint Z Wi (pout(i) - poutlin(im pi) m?X Wy (pout(i) - pout\in(im pi)

[

€cond Z wy (1 - pout\in(i’i)) m?X W; (1 - pout\in(i‘i))

i

epost Z w; (1 pout|1n( ’ )pz ) mlax w; (1 . pout\ln( ’ )pz )

Zj pout|in(i|j) pj Zj pout|in(i|j) by

Table 1: Norms of error probabilities.

In Table 1, the performance measut@Sint |, > ||€condllavg + lI€jointllye > [l€condllye are convex
functions of the elements of the conditional probabilitytrixa In the next section we will show that
the conditional probabilities are affine functions of theida parameters, specifically, the elements of
the POVM characterizing the detector. Hence, these areezdmmctions of the design parameters. Of
these measures of performance, omayointﬂavg, HecondHavg, or slight variations thereof, have been
addressed in the literature. Section 4 briefly describesdheex optimization problem associated with
the performance measuj€;oint Havg and is to some extent a partial review of known resutg, [17].

The performance measufepos||,,.. Which is the focus of this paper, iscuasiconvexXunction
of the conditional probabilities, and hence, a quasicorfuection of the design parametersg, the
POVM elements. As we will show in Section 5, the optimal design be obtained by solving a convex
optimization problem.

The performance measu\ltepostﬂavg is neither a convex nor quasiconvex function, hence, ordgllo
solutions are guaranteed to be found numerically.

3 Detector as a POVM

We start with the assumption that the detector can be coetplééscribed by a POVM (positive operator
valued measure) with matrix elemert®); € C**" |i = 1,...,m } which, by definition, satisfy,

m
Y Oi=I, 0;>0i=1,...,m (17)
=1
The notationX > 0 or X > 0 means tha\ = X* and all the eigenvalues of are, respectively, non-negative or strictly
positive.




In consequence, designing aptimal detector means selecting the matrices that form the POVM to
minimize a selected performance measure from Table 1. $oetiil we express the error probabilities
in terms of the problem datgp;, p;} and the design variablg®); }. First, the conditional probability of
detectingi given stategj is,

pout\in(i‘j) =Tr inj (18)

From (5), the total probability of detector everis then,
m

pout Z pout|1n |j Z 'I‘I' Olp] p; = Tr Ol P (19)
7=1

wherep is the statistical mixture of all the possible input states,
m
p=1 D (20)
j=1

Throughout we make the assumption that,
p>0 (21)

This is a not a limiting condition; it is easily satisfied in stgractical situations and if necessary can be
overcome by restricting attention to the range spage of

The error probabilities in (8) can now be expressed as fallfor: = 1,...,m
ejoint(1) = Tr O; (p — pips)
€cond (Z) = 1-Tr ini
eoot(i) = 1- D Tr O;p; (22)
post - Tr Ozp

Observe that,. (7) is meaningful only ifTr O;p > 0. SinceO; > 0 from (17), it follows that if the
mixed stateyp > 0, thenTr O;p = 0 only whenO; = 0 which is a pathological case.

Using (22), the entries in Table 1 are given explicitly asvaman Table 2. The first observation to
make is that the POVM matricelg); } form a convex set (17). As already stated, singg, (i) and
econd (1) are affine functions of);, it follows that these errors are both convex functions ef(h matri-
ces. Further, since all norms are convex functions, thepadnce me<';lsur¢|sajomtuaWg  |l€joint]| . @N
[€condllayg + [[€condll . @re all convex functions of the POVM matrices. Again, we rtbt [|epost |,
is a quasiconvex function ofO;} and |[epost|,,,, IS NOt convex. Therefore, minimizing any of these
(quaisi)convex measures over the POVM matrices can be sastanvex optimization problem.

Optimality conditions

Lagrange Duality Theory [5, Ch.5] provides a means for distaing a lower bound on the optimal
objective value, establishing conditions of optimalitpdaproviding, in some cases, a more efficient
means to numerically solve the original problem. In theisastto follow we will present the optimality
conditions in a form which involves only the problem datg,p;, i = 1, ..., m, and the design variables,
the POVM matrices(;, ¢ = 1,...,m. The details are presented in the Appendix. The optimality
conditions can also be used for determining if a known POVMseptimal, what the authors in [1]
call: “testing an Ansatz.” Such a POVM could be obtained fremme analytic means, from data, or
from imagination.



e el avg el we

ejoint | Y wi (Tr O; (p — pipi)) max w;Tr O; (p — pipi)

i

Ceond | > wi(1—Tr O;p;) max w; (1 —Tr O;p;)

7

epost | 3w (1 - P OB |y (1 - LD Oipi
post ) TrOZp 5 ) TrOZp

[

Table 2: Norms of error probabilities as functions of POViMmEnts.

Implementation of a POVM

As shown in [34,62.2.8], any POVM can be implemented by a unitary matrix in apa@ded space
together with rank-one projective measurements in theraldbasis on the ancilla outputs. Some general
implementations of a POVM are also presented in [32]. Rieggithe resulting unitary and rank-one
projections withspecificphysical components is, in general, a more difficult problem

4 Optimal average joint performance

In this section we briefly discuss optimal detector desigd\é%intﬂavg. This problem, with slight vari-
ations, has been essentially completely analyzed in [1fi¢ @resentation here is primarily to illustrate
a few of the ideas which repeatedly occur. Following thig thain focus of this paper, presented in
Section 5, is on detector design for, .|| .. the optimal worst-casa posterioridesign.

A detector which minimizes the objecti\H(ejoimH&wg in Table 2 is obtained by solving the following
optimization problem for the POVM matricd®); }:

minimize |ejoin | = S0y wi(Tx O (p = pipi) ) 23)
subjectto >, 0, =1,, 0;>0,i=1,...,m
This problem was addressed in [17] for equal weights,= 1, where the objective becomds—
>; piTr O;p;. As observed in [17], problem (23), with or without equal g, is asemidefinite
program(SDP) [5,54.6.2]. An SDP is a generalization of linear programming rehbe linear inequal-

ities are replaced with matrix inequalities. Although iedmot make any physical sense, if {it@; } are
constrained to be diagonal, then the problem reduceditnear programming problem

Optimality conditions
As derived in Appendix A.1, any feasible POVNe., any set ofO; € C"*", i = 1,...,m which
satisfy (17), is optimal for problem (23) if and only if,

A= 300 A50;

<A"_Z§n:1 AJ’OJ) O; = 0, z:lm (24)
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with all the problem data in the matrices,

Two state detection

As an application consider the two state detection problemguthe state set (16). For equal weights
wy = wy = 1, the data matrices are,

Ar = p— (L= B = or
A = p—pr=(1- B (20

UsingO; + O4 = 1, the optimality conditions become,

AOy >0 A0201 =0

AO1 <0 AO105=0 (27)
with
A=A — Ay = pr—(1-B)Yy* (28)
SinceA is Hermitian it can be decomposed as,
B Q. 0 Uy
A_[U+U_][ 0 Q_] [Ui] (29)

whereU = [U; U_] € C™" is unitary and(2. > 0, Q_ < 0) are diagonal matrices consisting,
respectively, of the positive and negative eigenvalued.d¥lake the choice,

Oy =U_U*, Oy=U,U* (30)

This is a feasible POVM set becauBeis unitary. This choice also satisfies the optimality candi
(27). Specifically,AO; = U_Q_U* < 0, AO; = U,Q,.U; > 0, and because unitaly requires
UrU4 =0, itfollows thatO,0, = U_U*U, U} = 0. After some algebra, the optimal objective value

is found to be,
opt
joint

(&

=Tr(0O1A;1 + 0242) = 3 — Tr Q4 (31)

avg

As a further illustration, assume thats completely randomized, that is= I,,/n. In this casd/ can be
chosen such that the pure state in refeqomin pure has thengesaionyy* = U diag(0,...,0,1) U*.

It then follows that:
A = diag(f/n,...,B/n,~1+B(1+1/n)

p = diag(8/n,...,B/n,1—p3(1—1/n)) (32)
Q. = diag(f/n,...,B/n)
O_ = —1+8(1+1/n)

Observe thaf2_ < 0ifand only if 3 < n/(1 + n). In general, as we show below, the assumption that
A has both positive and negative eigenvalues places a linthesize ofs.
Since); isn —1 xn — 1, we getTr Q, = 5(n — 1)/n, and hence the objective value becomes

i ™ B/n (33)
For this detector the correspondiagposterioriprobabilities are
(1= B)Tr Oy* 1-5
infout (1/1 = =
r n —
pin\out(2’2) = = =



This result shows that as — oo, [|€joint || ,yg — 0s Pinjout (1[1) — 1, aNdpipjoui(2|2) — B. Thus, if the
state dimension is large and the statistical mixture of és&ual states tends to average out to a random
distribution over all states, then the probability of déiteg a single pure state is very high.

Restrictions on3  From (28),A has non-negative eigenvalue$ & 0) only if 5r > (1 — 3)yy*, or
equivalently, if,
Pl
> [y = ——"——
B> Bo =

Hence, forg < [y, A will have both positive and negative eigenvalues. If as & dbhove example,
r = I, /n, theny*r~1y = n and thus3y = n/(1 +n).

Suppose thatl > 0 (8 > (). Then the only way to satisfy the optimality conditions 2&7to set

(35)

01=0, O=1, (36)
The optimal objective value is now

opt
joint

=Tr(Ay) =1-7 (37)

avg

e

This is just the occurrence probability of the pure statessentially the detector does nothing. Observe
that similar remarks can be made whén< 0.

5 Optimal worst-casea posteriori design

In this section the detector is designed to minimize the abve ||e,ost ||, iN Table 2. This requires
solving the following optimization problem for the POVM miaes{O; }:

pi Tr O; Pz')

yeeny TI'in

subjectto Y, O;=1,, O0;>0,i=1,....,m
TrO;p>0,i=1,....,m

minimize |lepost ||, = max - w; <1 -
3 (38)

As shown in [5,5§4.3.2], the objective functionjeyost|,.. IS @ maximum over a set afuasiconvex
functionseach with domairilr O;p > 0, Vi, and hence, is a quasiconvex function over the domain
{TrO;p>01]i=1,...,m }. Since the POVM matricef0; } form a convex set, (38) isguasiconvex
optimization problemin the POVM matrices. Technically this means that for anyitp@sscalard, the
sublevel setsf POVMs

{0, Tr Oip > 0, Vi | [lepost|lye <0 } (39)

are convex. To see that these sets are convex in this cassyvelibat for POVMs in the domain
Tr O;p > 0, Vi, the sublevel sets are equivalently,

Tr O;A;(6) <0 (40)

with

The sets defined by (40) are affine in the POVM elements, ancehamne convex sets. We will refer to
the matricesA;(d) as thedata matrices
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This effectively shows (see also Appendix A.2) that (38)gaiealent to,
minimize §
subjectto >, 0, =1,, O0;>0,i=1,....,m (42)
Tr O;A;(6) <0,i=1,...,m

The optimization variables for (42) are now the real positcala® as well as the POVM matricg®); }.
Observe that (42) does not include the constrainflseD;p > 0, i = 1,...,m. Sincep > 0, the only
way this constraint can be violated is if a POVM element iozéf this occurs then the problem is ill-
posed and most likely that POVM element can be eliminatedhcelefrom now on we do not explicitly
state this constraint.

As shown in [5,54.2.5] and described in Appendix A.2, a solution to the qu@siex optimization
problem (38) or (42) can be obtained by solving a series of@offeasibility problems together with a
bisection method.

Optimality conditions

As derived in Appendix A.2, any feasible POVM (17) is optinfadnd only if there exist real constants
§°Ptand);, i = 1,...,m such that,

A > 0,i€e8
Ni = 0,i¢8
Y Moo= 1 (43)
Aidi(0PY) = 370 A A (6PN0; > 0,i=1,...,m
()\iAi(éopt) - ZTzl )\jAj((SOpt)Oj) OZ = O, 1= 1, e,

The index setS consists only of those indices where the optifi&' in (42) is achieved. Thu$ is
equivalently expressed by,

S = {ZZI,,m‘rI‘I'OZAZ((;Opt):O}

44
— Lo |t — (1 B Oip o
)ty 7 ,I,r Ozp
Some special cases follow.
Equal weights: one active linear constraint
For equal weightsw; = 1, Vi, (38) can be expressed equivalently by,
maximize -y
. . p; Tr O; p; .
subject to pipout (ili) = Z'I‘riO:pZ >~,i=1,...,m (45)

S Oi=1,, 0;>0,i=1,...,m

Clearlyy = 1 — § with § from (42). Lety°P* denote the optimal objective value in (45). Suppose only
one linear constraint is active, that is, for &, Tr O Ay (7°P*) = 0 and fori # k, Tr O; A;(v°P*) < 0.
Then, as shown in Appendix A.2, the optimality condition8)(Become,

A(YP)(I = 0Or) > 0
A(7°P)O0r <0
Ar(YPHY (I —O0x) O = 0 (46)
A(Y°PHY0LO; = 0,i#k
Tr OkAk(’YOpt) = 0
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with Pt given by,
VP = pr Omax (0~ P prp~?) (47)

whereo,.«(+) is the maximum singular value of the matrix argument. (Nbt p~1/2 exists because
p > 0is assumed (21)). Since only one constraint is assumecdeadiv) is equivalent to,

opt

VP = min  p; omax(p”2pip”?) (48)

i=1,....m
If the input states arpure that is,

with ¢p € C", ¢*¢ = 1, then (47) becomes,

Y= min p; g pT (50)

Single pure state detection

Consider again the input set (16) where the goal is to degtek¥ith the weights setta, = 1, ws = 0,
the data matrices are,

Ai(y) = yp— (1 =By~

51

A500) = ~bp &Y
with v = 1 — §. Unlessy°Pt = 1 (§°Pt = (), it follws that Tr Oy A2(6°P') = —6°P'Tr Oqp < 0.
Thus, the only active constraint r O A;(y°P*) = 0 which makes the index sef the singleton
S = {1}, and hence, (46)-(47) applies. Using the Matrix Inversi@mima to compute)*p~'4 with
p = (1= B)yy* + Br gives,

1-p
(1—1/y*r=1y)

Observe that/°P! increases ag*r 11 increases. If) is close to a singular vector ef which has a
very small singular value, thep*r =14 will be large, and hencey°P* ~ 1. This can be construed as an
approximate orthogonality condition. In the special cabenv: = I,, /n, theny*r~1¢) = n, and hence,

opt __ 1_5
18- 1/n)

This is exactly the result in (34), which in general is not éodxpected.

The (two) POVM element$); and O, associated with the two state input set (16) can be directly
calculated from the optimality conditions (46). Using thetfthatO; +0O- = I, the optimality conditions
(46) become:

(52)

A= (L= BT =

v (53)

Al(’yOpt)OQ > 0 A1 (’VOpt)OgOl =0

A1(7°PH)01 <0 A1 (7°PH)0102 = 0 (54)

Observe that because = 0, the data matrixd,(6°P*) plays no part in the optimality conditions. Using
7Pt from (52) makegank A;(7°P') = n — 1, and hence has the decomposition,

M) == (= pow = o vl | g+ Vet | [ U]
- (55)

Oy =diag(wi,...,wp-1), w1 2w >+ >wp—1 >0, w1 >0
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for unitary [U;. Up] € C™*™ with U, € C™*"~! andU, € C"*!. Setting,
Oy = UpUg, Oy =UU" (56)

gives A1 (v°P)0, = UL QUL > 0, A;(7°PY)0;1 = 0, 0102 = 0, thus satisfying the optimality
conditions (54). Observe also thaji is a rankl projector, and), is a rankn — 1 projector.

If » = I,,/n, then thea posterioriprobabilities are exactly the same as given by (34); aghis,i$
not the case in general.

Single state detection with pure residual state

In the previous example, as long as the residual state0, then it it is not possible to makg*t = 1.
To see this, observe that; (v°P* = 1) = p — (1 — B)y¥y* = Br > 0, and hence has only positive
eigenvalues. Thus, the optimality conditions can only lisfsad withO; = 0, O, = I. (Effectively Uy
in (55) is null.) This choice ofy°P! is therefore infeasible.

Now consider the input set,

D, = {(p(]a - ﬁ)v (¢¢*7 ﬁ)} (57)

with the pure residual staie € C™, ¢*¢ = 1 occurring with probability and the state to be detected
po € C™", p > 0 occurring with probabilityl — 3. In this case for°P* = 1, we get,

A(yP=1) = p—(1-PB)po )
— Ber=p U, | L e } {U; } (58)

On—l On—lxn—l va)k
with Uy € C™1, Uy € C™"~L. The choiceO; = UyU;, O, = U, U satisfies the optimality

conditions. Hence, perfect deterministic detection ofreglsl state, pure or mixed, is possible if the
residual state is pure.

5.1 Noisy measurements

The optimal detector design problem can be modified to hantfieisy” set of measurements. In general
there can be more noisy measurements than noise-free ragesis. Consider, for example, a photon
detection device with two photon-counting detectors. thbare noise-free, meaning, perfect efficiency
and no dark count probability, then, provided one photonviggs present at the input of the device,
there only two possible outcome$10, 01}. If, however, each detector is noisy, then either or both
detectors can misfire or fire even with a photon always prestghe input. Thus in the noisy case there
are four possible outcome$10, 01, 11, 00}. .
As before, le{O;} denote then noise-free POVM matrices. Now 160, } denote then noisy

measurements withh > m. The noisy measurements can be expressed as,

O?oisyzz Vij Oj, ZZl,,ﬁ@ (59)
Jj=1

The{v;} represents the noise in the measurement, specificallyptigitonal probability that is mea-
sured given the noise-free outcomeSince " | v;; = 1, Vj, it follows that the noisy sefO; "} is
also a POVM. Thus,

ZO?Oisy:[na O?Oisy207 22177m (60)
=1
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In matrix form,

O?Oisy vit L, - vim Iy O1
: = : : : : (61)
O?;isy Vil In e Vi In Om

When the equivalent noisy POVM matrice{s??"isy}, are inserted into (38), either objective function
retains the same form with tHg)***" } replacing the{O;}. The design variables are still the noise-free
POVM matrices{O;}. Since the noisy POVM matrice§0**}, are linear in the noise-free POVM
matrices,{O;}, the design problems in Table 2 remain convex or quasiconptxnization problems
over the noise-free POVM matricé§); }.

Optimal worst-casea posteriori performance with noisy measurements
With noisy measurements, (38) becomes,

o ; Tr O™ p;
minimize |lepost ||, = max - w; (1 — pl—nloisypl
=1 Tr O, p

noisy __ o . ~ (62)
subject to Om Z, lu”Oj, 2.:1,...,m
Y1 Oi=1,, 0;>0,i=1,....,m
Under the assumption thdir O?Oisyp > 0,V1, (62) is equivalent to,
minimize §
subject to O™ = Dy vij Og, i=1,...,m (63)

S0 =T, 0;>0,i=1,....m
Tr O™ A;(5) <6, i=1,...,m

The optimization variables for (62) are now the real positicalars as well as the noise-free POVM
matrices{O; }. The data matrices4;(d), are given by (41).
Optimality conditions

As derived in the Appendix A.3, any feasible POVM (17) is ol if and only if there exist real con-
stants\;, i = 1,...,m such that,

A > 0,i€e S
Ai = 0,i¢8
Z;ZI Ao =1
N A (8P v) — ST N A (6P )0 > 0, i=1,...,m (64)
(NAs (0P ) = STy A4 (0P, 1)0;) O = 0,0 =1,...,m
Sy Tr A (6°P,v)0; = 0
with .
:Z )\jujiAj(é), 1= 1,...,m (65)
j=1
and the index sef given by,
S={i=1,...,m|Tr O;4;(5"v)=0} (66)

whered°Pt is the optimal objective value from (63).
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Single pure state detection

Consider again the input set (16) with weights = 1, wy = 0. Suppose the measurement noise matrix
is,
o 1-— IZ0) %0
V—|: " 1_1/0] (67)

Assuming the only active constraint to fie O™ 4, (§) = 0, then the multipliers ard; = 1, Ay = 0
and the optimality conditions become:

(1= 200) A1 (Y51 )02 > 0 A1(Vtiay ) 0201 = 0

(1 - 2V0)A1 (fyggitsy)Ol <0 Al(fyggitsy)0102 =0 (68)
opt Vo

Tr Al(/ynopisy) <01 + 1— 7 Og) =0

with A;(v) from (51). Assume further thay, < 1/2. Then the matrix inequalities in (68) are the same
as in (54), namely,
AL(7Piy )02 > 0, Ay(eRL )01 <0 (69)

’Ynoisy ’Ynoisy
Now again introduce the decomposition,

At =itk — =g = oo | S ] (70)

where(Q2, Q_) are diagonal matrices consisting, respectively, of théigesand negative eigenvalues
of Al(»yggfsy). As in the previous examples, make the cho@e,= U_U*, Oy = U, U} The matrix
inequalities and equalities in the optimality conditione aatisfied by this choice. The scalar (trace)

condition is satisfied provided that,

Vo

Tr. = - Tr o, (71)

—
The noise-free casey = 0, requires thaflr 2_ = 0, which means tha®_ = 0. This is the condition
for the decomposition in (55) which can only occur f@ﬁfsy = ~°Pt from (52). When noise is present,
vy > 0, itis necessary thd2_ < 0, and henceyﬁfjitsy < «°P* as might be expected; noise reducesahe
posteriori probability of detection.

To illustrate this further, suppose again that= I,,/n and we use the decompositiaf* =

U diag(0,...,0,1) U*. This gives,

Q= (Vb B/n) Tn1, Q- =~ (1—B(1—1/n)) —(1—P) (72)

Consequently, (71) holds if

o 1- 6
Vooisy = 1 1 (73)
g (1 )
This clearly shows thatﬁopfsy < APt =(1-0)/(1—pB(1—1/n)). In addition ,as1 — oo,
o 1- ﬁ
Ty ~ T\ (74)
-5 (=)
Whenvy > 1/2, the matrix inequalities in (68) reverse and become,
A1ty )02 <0, A1(96 )01 2 0 (75)
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These are satisfied if the POVM matrices#gr< 1/2 are also reversed, thatis, seQp = U, U}, O, =
U_U* with (U;,U-) from the decomposition (70). For a fixgt] the optimal objective value with
vy < 1/2 will always be greater than the value with > 1/2. Whenv, = 1/2, this type of detector can
do no better thary = 1 — 3, the occurrence probability for the pure state.

5.2 Unambiguous detection

As discussed briefly in Section 2.3, an unambiguous detéxtone that with some probability either
detects the correct state or else declares the result ilusives This requires an additional POVM
element to account for the inconclusive result. Specificals before, leD;, i = 1,...,m correspond

to them input stateg;, i = 1,...,m and letOy correspond to the inconclusive result. Thus there are
m + 1 POVM elementsQ;, i = 0,...,m. The probability of an inconclusive result is therefore,

Pincl = Tr OOP (76)

The ideal unambiguous detector is one wherealposterioriprobability error is zero, or equivalently
Pinjout(7]7) = 1, 7 = 1,...,m which can only occur when (10) holds which here becomes,

pout\in(ﬂj) =Tr inj = ﬁ(l) 5ij7 Z>] = 17 s (77)

Observe that ifi(i) = 1, i = 1,...,m then from (12)p;,; = 0, and henceQ, = 0, which eliminates
the need for the extra (inconclusive) detector outcome addaes to the condition f@erfectdetection
(9). Allowing for a non-zero probability of an inconclusivesult opens the possibility that a detector
can be designed to satisfy (11), and thys,; (i) =0, i =1,...,m.

Optimal a posteriori performance with an inconclusive outcome

By relaxing the requirement for zero error we can find a randechdetector by solving the following
problem.
N pi Tr O; p;
minimize  |lepost ||, = max - w; (1 - W)
subjectto > O;=1,, 0;>0,i=0,...,m
If |lepost |l = O then we have found annambiguous detectpone that either produces the correct
result or is inconclusive. Otherwise the detector is randedh but not unambiguous. However, the
extra design freedom in the inconclusive POVM mat(,, insures that the resultinfe,os ||, will
always be smaller than the value obtained for a detectoowitthe additional inconclusive outcome.

(78)

=1,...,

Optimality conditions

Observe also that the only difference between problem {@@)paoblem (38)s the extra POVM element
Oy. As a result the optimality conditions have extra constsato account for the additional element.

Specifically, any feasible POVM is optimal if and only if teesxist real constants;, i = 1, ..., m such
that,
A > 0,1€ 8
Ao o= 0,i€8
Z;il Aio =1
)\iAi(éopt) - Z;nzl )\jAj(éo t Oj > O, 1= 1, ,m (79)
()\iA,-(éopt) - Z;nzl )\jAj((SOpt)Oj) OZ = O, 1= 1, oo,
DTy AjA;(0P)0; <0
<Z;’n=1 N4 (0°7)0;) Oy = 0
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The index sefS consists only of those indices where the optimal objectalees from (78) is achieved.
Thus,
S={i=1,...,m |Tr O;A;(6") =0} (80)

If the optimal is achieved at only one constraint, say k, thenA, = 1 \; = 0, i # k, and the optimality

conditions become:
Ap(6°P)(I = O)
A (6°P) Oy,

A IV
cocoocoo

Ag(6°PHY (T — Oy) Oy, (81)
(Ak(50pt)0k) O, = 0,71¢ {1, . ,m} £k
A(6°PHOLOg =
Optimal a posteriori performance with an inconclusive outcome and measurementaise
Problem (78) can be modified to account for measurement.noise
o ; Tr poisy ;
minimize  ||epost |, = max w; (1 - %)
e Tr O p (82)

subject to Opoisy = Z;n:(] Vij Oj, 1=0,...,m

(2

Yoy Oi=1I,, 0;>0,i=0,...,m

In this case because of the noise, it is doubtful that an uiarobs detector can be found. Nonetheless,
the resulting randomized detector will still outperformeamithout an inconclusive outcome.

5.3 Example
Consider the following two (pure) input states and corresiigg occurrence probabilities:
Tyl TvElt 111"
P=lyve | [yva] P27 lo] o (83)
pin(1) =2/3 pin(2) =1/3

Throughout this example we place equal weights on each state
[wy,we] = [1, 1] (84)
Optimizing the worst-casa posterioriprobability measure, (38), returasposterioriprobabilitie$
Pinjout(1]1) = 0.87  pinjour(2|2) = 0.87 (85)

and POVM matrices which are well approximated by the rank-omjectord

0.53 —0.85
([s2].[22])
Optimizing the worst-casa posteriori probability measure with the additional inconclusive oume,
(78), for the boung;,; < 1, returns an unambiguous detector watposterioriand inconclusive prob-
abilities,
pin|out(1‘1) =1 pin\out(2’2) =1 Pina=0.75 (87)
2All numerical results were obtained usisgbumi [42]. The numbers shown are rounded to two significant digits

3The positive semi-definite matrices returned by the convegram are approximated by rank-one projectors using a
singular value decomposition only when the maximum singudéue is much greater than all the others.
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The associated POVM matrices (rank-one projectors) are

0 —0.62 0.79
{[0.62]’ [ 0.62 ]’ [0.49]} (88)
This is an unambiguous detector which is perfectly corréés of the time.
Now we add 2% noise and solve (62) with

0.98 0.02
B { 0.02 0.98 ] (89)
By comparison with (85)-(86) we now get
pin\out(lu) =0.86 pin|out(2|2) = 0.86 (90)

and similar POVM rank-one projectors

0.55 —0.83
Los ][ ) ©
Solving (82) with a similar 2% noise

0.98 0.01 0.01
Vina = | 0.01 0.98 .01 (92)
0.01 0.01 0.98

gives the probabilities,
pin|out(1|1) = 0.96 pin\out(2|2) =0.96 pinc =0.76 (93)

and POVM matrices which are well approximated by the ran&+mmjectors,

0.04 —0.68 0.73
ULoss )| o | Lo ] ] 2
This is no longer an unambiguous detector but rather a raizéohdetector. For 76% of the time an
inconclusive result will occur. When the detector declagither state 1 or state 2, the probability of
being correct is 96% which is better than the determinisdtector with probabilities of 86%. If the
situation is such that there is little penalty in waitingetha higher probability outcome is promised by

the randomized detector.
We now repeat all the above optimal designs for varying nieisels:

1-— 140 I/(]/2 I/(]/2
:| , Vincl(VO) = 1/0/2 11— 1/0/2 , Vg € [O, 020] (95)
I/(]/2 I/(]/2 1— [40]

1— 140 %0
V(VO) - |: 140 1-— 140
The results are plotted in Figure 2 fag from 0 to 0.20 in 0.02 increments. The solid curves are the two
diagonal elements of theposterioriprobability matrix for the optimal randomized detector.sAsiated
with them is the dotted curve showinpg,.;, the probability of an inconclusive result. The dashed esrv
are the two diagonal elements of theosterioriprobability matrix for the optimal deterministic detector
As expected, the randomized detector outperforms therdetistic detector as seen by the fact that
the lower solid curve is always larger than the lower dashastec (The optimal worst-case design
maximizes the minimum error, which is equivalent to makihg tower of the two curves as large as
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possible.) In all cases the POVMs were easily approximaye@uk-one projectors, but in no case were
the projectors in the natural basis.

The behavior op;,q1 (1) is quite interesting. The inconclusive probability and éissociated POVM
matrix become small at a noise levek: 0.12, in effect, turning off the randomized feature.

Figure 3 shows the robustness properties of the randomizedieterministic detectors. We fixed
the POVMs for the two cases at their optimal settings comedimg to the noise-free cage, = 0).
The plots show what happens as the noise level increasegrdbability levels are not all that different
from the optimal noisy results in Figure 2, but are of courseas good.

pin\out(“i)’ =12

S~ .o randomized
09} ~ - i

0.8

0.7

0.6 deterministic

0.5

0.4+ Pincl ]
0.3 o i

0.2} SEP

o
0 L L L L L 1 L L L
(0] 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

noise level o)

Figure 2:pinjout (i]7), 7 = 1,2 optimized for each noise level via (38) and (78).
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1s T
randomized

e T T~ -,
0.6 deterministic [ - __ 1

|
(0] 0.02 0.04 0.06 0.08 0._1 0.12 0.14 0.16 0.18 0.2
noise level {g)

Figure 3:pinjout (il7), @ = 1,2 optimized only for the zero noise level.
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6 Extensions and Other Considerations

6.1 Uncertain dynamics

The goal is to design the POVNO;} in the presence of uncertain detector dynangicss Dy, as
illustrated in Figure 4.

Uncertain Dynamics POVM
p €Dy, — -

= d € Dy
Q € Dyyn {0:} i

Figure 4: Detector with uncertain dynamics.

We will assume thaDg,, consists of a finite number of unitary operatdi;,} with corresponding
occurrence probabilitie§pgy, (k) }. Thus,

Ddyn = {Ukecnxn“{?:l,...,f}

96
payn(k) = Prob{Q = U} (96)
The conditional probability (18) now becomes,
¢
Poutin(il7) = Tr Oips ,  pj =Y Payn(k)Ukp; Uy (97)
k=1

This clearly shows that the only changes to make is to replaeéth /; everywhere, specifically, in the
error probabilities (22) and in the output statas defined by (20).

The above representation@fis an example of a the more genefiaus operator sum representation
(OSR). Specifically, th&raus matrices{ K;, € C™" |k =1,...,¢ } with £ < n?, can characterize a
large class of possibilities for th@-system as follows:

14 V4
Qp,K) = KppKj, > KjKp=FKi<I, (98)
k=1 k=1

Comparing this with (96) give&(;, = \/payn(k)U;, and Ky = I,,, which clearly is just one possibility.
For example, wheik(y < I,,, additional measurement operations wittjrare included. The OSR also
accounts for many forms of error sources as well as decoteremy, [34], [31].

6.2 Detector with fixed POVM

In this section we consider designing the detector for a fR@¥M set. We will show that the detector
dynamics when represented as an OSR (Operator-Sum-Re{atise) can also be designed by solving
a quasiconvex optimization problem.

Suppose we argiventhe POVM, {O;}, and wish to desigi) for optimal detection as shown in
Figure 5.

Detector Fixed POVM
p €Dy — —

Q {0:}

— d S Dout

Figure 5: Detector with fixed POVM.
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The POVM would be most likely selected as rank-one projsctothe natural basis. For example, for
i=1,...,m,fixb € C™andO; = I; ® b; b; with £ + m = n, the dimension of the input state. The
input state might also consist of prepared ancilla stateshe natural basisl = [1 0 --- 0], by =
010 ---0],...,06L =[0--- 01].

As noted in Section 6.1, a very general form to charactepize the Krause OSR. Using (98), the
posteriori performance probability is now,

_piTrO0; Q(pi, K)

ppost (Z) - Tr OZQ(p7 K) (99)

which is quadratic (fractional) in the Kraus matrices. Ihdee transformed into a quasiconvex function
by expanding the Kraus matrices in a fixed basis. The proeedscribed in [3458.4.2], is as follows:
since any matrix irC™*"™ can be represented by complex numbers, let

{BHGCnxn|p:1,...,n2} (100)

be a basis for matrices @"*™. The Kraus matrices can thus be expressed as,
TL2
Kp=) apBu, k=1,....¢ (101)
pn=1

where then? coefficients{ay,, } are complex scalars. As shown in [34] the representatioi (@&

becomes,
2 2

Q(p,X)= > XuwBuB;, > XuBiB,<I, (102)
p,v=1 w,r=1
with
l
X = Z Applkps sV =1,... ,n? (103)
k=1

The matrixX € C"**** with the above coefficients must also be non-negative inrai@enaintain
probabilities. The number of free (real) variablesXiris thusn* — n2. In addition, we can write,

Pout(i) = Tr O; Q(p, X) =Tr XRi(p), i=1,...,m (104)
where the matrix®;(p) € C"*"* has elements given by,
[Ri(p)]/ﬂ/ = T‘I'BVPBZOZ, m, v = 1,...,7’&2 (105)

The problem of optimally designing the “system” part of thetatttor, the)-system, is equivalent to the
following optimization problem over the positive semidé@matrix X € Ccn*xn?,

_pz'TrXRz'(Pz‘)>

minimize HepostHWC:i_max w; <1 T Xy (0)
(2

=1,...,

subjectto >, X, BB, <I,, X >0

(106)

This problem, like (38), is also a quasiconvex optimizafooblem with the optimization variables being
the elements of the matriX .
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Implementation of OSR

An OSR can be implemented using unitary operations (andcéseary projection measurements) and
the X -matrix can be transformed to Kraus operators via the sargdlue decomposition [34]. Specif-
ically, let X = V. SV* with unitary V' ¢ C7*xn?* and § = diag(sy --- s,2) with the singular values
ordered so that; > so > --- > 5,2 > 0. Then the coefficients in the basis representation of thedra
matrices (101) are,

gy = /58 Vi ko =1,...,n? (107)
Theoretically there can be fewer thefh Kraus operators. For example, if thesystem is unitary, then,
Q(p) = UpU* (108)

In effect, there is one Kraus operatéf, which is unitary and of the same dimension as the input state
p. The correspondingd matrix is a dyad, henceank X = 1. Adding a rank constraint would thus
force a simplification of the implementation. Unfortungied rank constraint is not convex. However,
the X matrix is symmetric and positive semidefinite, hence theibtc from [19] applies where the
rank constraint is replaced by the trace constraint,

Tr X <7 (109)

From the singular value decomposition &f, Tr X = )", s;. Adding the constraint (109) to (106)
will force some (or many) of the, to be small which can be eliminated (post-optimization)r¢hg
reducing the rank. The auxiliary parametetan be used to find a tradeoff between simpler realizations
and performance.
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A Optimality Conditions

Optimality conditions are derived from Lagrange Dualityebhy for the following detection criteria: (i)
average joint performance, (ii) worst-casgosterioriperformance with noise-free measurements, and
(i) worst-casea posterioriperformance with noisy measurements.

Caveat emptor The material in this section is meant to be a “scaffold” to dan be found in some
of the recent texts on convex optimizatiang, see [5] and the references therein. More specifically,
we refer principally to the sections in [5] where detailetbimation and proofs can be found for any
axiomatic statements made here. The same caution apples teferences to computational methods:
interested readers should refer directly to the availablesex solvers which can be downloaded from
the web,e.g, SDPsOL[43] or SEDUMI [42].

A.1 Optimality conditions for average joint performance

We will apply Lagrange Duality Theory [5, Ch.5] to the optiration problem (23) referred to in this
context as th@rimal problem The Lagrange function associated with the primal probl28) {s,

L(0,2,Y) = Em: Tr 0;4; — Tr Z;0; + Tr Y(In . Em: Oi) (110)

i=1 i=1
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with Lagrange multipliersZ; € C"*"  Z; > 0 for the inequality constrainQ; > 0, andY €
R™ ", Y = YT for the equality constrainf_;~, O; = I,,. The firstterm inL(O, Z,Y) is the objective
function in (23) expressed in terms of the data matridesrom (25). ThelLagrange dual functions
defined as,,
9(Z,)Y) = igf L(0,Z)Y)
Y A —-Z-Y=0,i=1,....,m (111)
{ —oo  otherwise

One of the important properties of the dual function is tleatany Z;, > 0 and anyY’, we get the lower
bound,

9(Z,Y) < 6P (112)
whered°P! is the optimal objective value from solving (23). Thagrange dual problenestablishes the
largest lower bound from,

maximize ¢(Z,Y)

subjectto Z; >0,i=1,...,m
where the optimization variables gi#, Y). Using (111) we can eliminate th#& variables and write the
dual problem explicitly in terms of th¥ variables as,

(113)

maximize Tr Y

subjectto A, - Y >0,i=1,...,m (114)

A solution, Y °Pt, thedual optimal multiplier also returns the maximum objective valde}* = Tr Y °Pt,
thedual optimal valueFrom (112) we geti°P* < §°Pt. A numerical solution of the primal problem (23)
always returng) > §°Pt, and likewise numerically solving the dual problem (114)l wiways return

d < d°P. Thus, the optimal solution is always contained in the kndmtarval d < d°Pt < s°Pt < 3

. For this primal-dual pair we also hagtrong duality that is,d°P* = s°Pt. This follows because the
primal problem satisfieSlater’s condition5, §5.2.3], which in this case means that the primal problem
is convex and there exist strictly feasit(@;), i.e, O; > 0, i = 1,...,m, > ;*, O; = I,. (For
example, leD; = I,,/m). The optimal and computed objective values then satisfy,

d < Tr YOPt = 6Pt < § (115)
Strong duality also implies the followingpmplementary slacknesenditions, [585.5.2],

ZPOP = (A —YOPHY Ot = 0,i=1,....,m (116)

K3 7

The last line use&; = A; — Y from (111). Combining_", O™ = I with (4; — Y°PH)O®" = 0, i =
1,...,m gives,

yopt _ Z A0 (117)

This can be used in to eliminaié°®t in (114) and (116) yielding the constraints,
Ai_z;‘n:1 A0 > 0,i=1,...,m

(A - Sy 40,) 00 = 0 i=1,..m (118)
These are the conditions stated in (24) as being necessdryudficient for optimality of any feasible
POVM set{O;}. The proof of this statement relies on the fact that if stralglity holds and the
primal problem is convex — both true for this problem — them &lvove conditions (118) are equivalent
to the Karush-Kuhn-Tucker (KKT) conditions for optimalitihich in this case are both necessary and
sufficient [5,55.5.3]. Thusanyfeasible POVM set which satisfies (118) is optimal.
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A.2 Optimality conditions for worst-case a posteriori performance

As shown in [5,54.2.5], a solution to the quasiconvex optimization probk&8) can be obtained by
solving a series of convex feasibility problems togethethvé bisection method. We start with the
equivalence,

Tr 0;A4;(6) <0

lepmale < 860w (1= PSR <55 (119)
” Ai(8) = (w; — 6)p — wipip;
Problem (38) is then equivalent to,
minimize §
subjectto Tr 0;A4;(5) <0 (120)

Yo, Oi=1I,, 0;>20,i=1,...,m

where the variables are now the real scélas well as the POVM matricd®); € C™"*"}. The algorithm
below requires knowing an upper and lower bound on the optiit?a. Without loss of generality we
can normalize the weights so that< w; < 1. Since the objective is a weighted error probability, the
feasible range i8 < 6°P* < 1. The bisection algorithm as presented in§5.,2.5] now becomes:

Bisection-Feasibility Method

given dnin = 0, dmax = 1, tolerances > 0.
repeat

1. 0 = (dmin + Omax)/2

2. Solve the convex feasibility problem

find Oi,i=1,...,m
subjectto Tr O;A;(0) <0 (121)
Z?ll O;,=1,, 0;,>0,i=1,....m

3. if feasible,dax = 0; €ls€dnin = 0
until dmax — Omin < €.

The feasibility step is equivalent to solving the followiSB®P in the variabless, O;):

minimize s
subjectto Tr 0;A4;(9) <s (122)
Z;il OZ :In, OZ 20, 1= 1,...,m
Let s°Pt, OSP' denote the optimal solution. Under the temporary assumtiatTr O*p > 0, the
inequality Tr O™ A;(8) < s°P! is equivalent to,
piTr O p; 5oPt
= 4 8 e )« -
lepost |y = max w; (1 ™o, ) = 5+ s T 07 (123)

It follows that if s°Pt > 0 then§ is feasible, and hencé®t < §. If s°Pt < ( then{ is infeasible,i.e.,
§°Pt > §. The optimal valuei°?® is clearly the solution ta°P*(§°P') = 0. The bisection algorithm
together with using an interior-point method to solve thePD22) will return a value af to within any
desired, but finite, accuracy of the optimal.
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The key computational step is solving the feasibility pesbl(122). High quality code which uses
an interior-point method is recommended such as those fousdPsoL[43] or SEDUMI [42]. In many
cases the optimal POVM matrices are rank deficient which rmsyltin a large condition number in the
linear equations to be solved in the Newton step. This shoolde a problem for well conceived code.

To obtain the optimality conditions we will now apply LaggaDuality Theory to the feasibility
problem (122) in the Bisection-Feasibility method. Prablg22) is the primal problem. As previously
noted, the primal optimal value®?*(5), determines if is feasible, Specifically,

Pt < () & § > OPt
sPU >0 & 4 < §ort (124)
Pt =0 & §= Pt

The Lagrange function associated with the primal proble®2)1s,
L(s,O\ZY) =5+ <>\Z-(Tr O, 4;(6) — s) — Tr ZiOi) Tr Y(In -3 oi> (125)
i=1 i=1

with Lagrange multipliers\; € R, \; > 0 for the inequality constrainfr O;A4;(8) < s, Z; €
Ccnn, Z; > 0 for the inequality constrain®; > 0, andY € R™", Y = Y7 for the equality
constrainty_", O; = I,,. The Lagrange dual function is then,

9\ ZY) = inf L(s,0,)\2.Y)

TrY S N=1, MA4(0)—Z -Y=0,i=1,....m (126)
—oo  otherwise

The Lagrange dual problem establishes the largest lowerdbfsam,

maximize g(\,Z,Y)

subjectto \; >0, Z; >0,i=1,...,m (127)

where the optimization variables afk, Z,Y"). Using (126) we can eliminate thg variables and write
the dual problem explicitly in terms of theg andY variables as,

maximize TrY
subjectto A\, >0, \;A4;(0) —Y >0,i=1,...,m (128)
Z?il Ai=1
The dual optimal solution ig\°Pt, Y°P!), Strong duality also holds for this problem because Skter’
condition holds [5§5.2.3]: there exist strictly feasiblg, O;), such thaflr O;A4;(5) < s, O; >0, i =
1,...,m, >, O; = I,. Since the primal (feasibility) problem is convex, the oml primal and dual

objective values are equal,
Tr Y°Pt = 5Pt (129)

Strong duality also implies the following complementargciiness conditions, [§5.5.2],
AP (Tr 0Pt A4,(8) — sopt) — 0, i=1,....m

(130)
ZP O = (AP A8 = YR ) O = 0, i=1,...,m

The last line uses; = \;A;(6) — Y from (126). Combiningy7", O = T with (AP*A;(6°P) —
YoPYOP' =0, i =1,...,m gives,

2

YOP =3 " AP A (6)05P (131)
=1

27



We now put all the primal and dual equality and inequalitystaaints together at the optimél= §°Pt,
s°Pt = Ty Y°P' = (), and use (131) to eliminaté°Pt. To simplify notation we drop the superscript
(-)°Pt from all the variablesO, \,Y, Z, ). This gives:

it 0 = 1
O;, > 0,i=1,...,m
AiAi(0) = 2078 AjA;(000; = 0, i=1,...,m (132)
()\ZAZ((S) — ZTzl )\]AJ((S)OJ) Oz = O, 1= 1, ,m
N> 0,i=1,....m
ity Moo= 1

These can also be established directly from the KKT condditifior optimality which in this case are
both necessary and sufficient [65.5.3]. For the linear constraints, either the constrasnagtive,
Tr A4;(6)O; = 0, A\; > 0, or inactive,Tr A;(0)0; < 0, \; = 0. Combining this with (132) gives
the optimality conditions in (43).

Suppose the weights are all equal with= 1, Vi. Then,

Ai(6) = vp —pipi = Ai(7) (133)

with v =1 — §. From now on we will used;(v) or A;(J) as appropriate to the context.
Suppose the optimal is achieved by only one constraint,ish&tr i = &, Tr O, Ax(v) = 0 and for
i # k,Tr O;A;(v) < 0. Then,\;, = 1, \;2;, = 0 and the optimality conditions (132) reduce to,

Ag(v)(I=0k) = 0
Apr(y)O0r < 0
Ap(V) (I =Or) O, = 0 (134)

Ar(7)0rO; = 0,i#k
TI‘OkAk("}/) = 0

Sincep > 0 by assumption (21),

det Ap(y) = det (p"2 (vI — pep~ 2 prp=1/2) p!/?)
= (det p) [Ti=; (v — prwij)

with wij, j = 1,...,n the eigenvalues of~'/2p,p~1/2. Because > 0, py > 0, they are all non-
negative andnax; wy; > 0. Lety = py max; wy;, or equivalently,
¥ = Dk Omax(p” P prp” %) (135)

whereoax(+) is the maximum singular value of the matrix argument. Witk thoicedet Ax(y) = 0
and henced(v) = 0 has the decomposition:

Q 0 U;

(136)
Qg =diag(wy,...,wp-1), w1 > w2 >+ >wp_1>0, w3 >0
for unitary [U. Ugg] with Uy € C™*"~1 andUy, € C™*!. Setting,
Oy = UroUpy, I — O = U Up,y (137)
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gives Ap(7)Or = Upy Qi Uy > 0, Ap(v)(I — Ox) = 0, Op(I — O) = 0, thus satisfying the
optimality conditions. Observe also th@}, is a rankl projector, and — Oy, is a rankn — 1 projector.
Also, I — Oy = 3,4, O;, and hence is the sum of the remaining- 1 POVM elements. These are thus
arbitrary except for satisfying (137) with each > 0, i # k.

Since the single active constraintan occur forany = 1,...,m, then,

=, min piowa(p” o) (138)
which establishes (47) as the optimal objective value foaégeights with one active linear constraint.
More specifically, this means that there is a single index1 . . ., m such thaty = promax(p~/2ppp~/?) <
Piomax(p™2pip~ %), Vi # k.

The same procedure involving the decomposition (136) id tsarrive at the results for single pure
state detection with weights; = 1, ws = 0 given by (54)-(56).

A.3 Optimality conditions for worst-case a posteriori performance with noisy measure-
ments

To apply the Bisection-Feasibility Method as describedchi] previous section, replacg; with O;“Oisy
everywhere in (122). Thus the primal (feasibility) problescomes,

minimize s
subjectto Tr O;”* A;(d) < s (139)
O?Olsy = Z;nzl I/Z'jOj, 1= 1, s,
S 0i=1I, 0;>0,i=1,....m
The Lagrange function is then,
L(s,0,\,2,Y) = s+ > Aj(Tr O™ A;(8) — s) = Y Tr Z,0; + Tr Y(In - ol-> (140)

j=1 i=1 i=1

with Lagrange multipliers\; € R, ); > 0 for the inequality constrairr O A4;(6) < s, Z; €
Cnn. 7, > 0 for the inequality constrain®; > 0, andY € R™*", Y = Y7 for the equality constraint
>ty O; = I,. Eliminating the noisy POVM terms gives,

L(s,O,\,Z,Y)=TrY +s (1 — Z/\Z) +) Tr O (Ai(S,v) - Z; = Y) (141)
=1 i=1

with the A; (9, v) given by (65). Although not shown, the optimality conditio{64) can be established
by repeatingmutadis mutandisall the steps in the previous sectiarg., formulate the dual problem,
show that strong duality holds, and so on.
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