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P
rocessing, storing, and communicating information that 
originates as an analog signal involves converting this 
information to bits. This conversion can be described by 
the combined effect of sampling and quantization, as 

shown in Figure 1. The digital representation is achieved by first 
sampling the analog signal to represent it by a set of discrete-
time samples and then quantizing these samples to a finite num-
ber of bits. Traditionally, these two operations are considered 
separately. The sampler is designed to minimize the information 
loss due to sampling based on characteristics of the continuous-
time input. The quantizer is designed to represent the samples 
as accurately as possible, subject to a constraint on the number 

of bits that can be used in the representation. The goal of this 
article is to revisit this paradigm by illuminating the dependency 
between these two operations. In particular, we explore the 
requirements of the sampling system subject to the constraints 
on the available number of bits for storing, communicating, or 
processing the analog information.

Motivation
As a motivation for optimizing sampling and quantization 
together, consider the minimal sampling rate that arises in 
classical sampling theory due to Whittaker, Kotelnikov, 
Shannon, and Landau [1]–[3]. These works establish the 
Nyquist rate, or the spectral occupancy of the signal, as the 
critical sampling rate, above which the signal can be perfect-
ly reconstructed from its samples. This statement, however, 
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focuses only on the critical sampling rate required to perfect-
ly reconstruct a bandlimited signal from its discrete samples. 
It does not incorporate the quantization precision of the sam-
ples and does not apply to signals that are not bandlimited. It 
is, in fact, impossible to obtain an exact representation of any 
continuous-amplitude sequence of samples by a digital 
sequence of numbers because of finite quantization preci-
sion, and, therefore, any digital representation of an analog 
signal is prone to error. That is, no continuous-amplitude sig-
nal can be reconstructed from its quantized samples with 
zero distortion regardless of the sampling rate, even when the 
signal is bandlimited. 

This limitation raises the following question: In converting 
a signal to bits via sampling and quantization at a given bit 
precision, can the signal be reconstructed from these samples 

with minimal distortion based on sub-Nyquist sampling? In 
this article, we discuss this question by extending classical 
sampling theory to account for quantization and for nonband-
limited inputs. That is, for an arbitrary stochastic input and 
given a total budget of quantization bits, we consider the lowest 
sampling rate required to sample the signal such that recon-
struction of the signal from its quantized samples results in 
minimal distortion. Without assuming any particular structure 
of the input analog signal, this sampling rate is often below the 
signal’s Nyquist rate.

The minimal distortion achievable in the presence of quan-
tization depends on the particular way the signal is quantized 
or, more generally, encoded into a sequence of bits. Since we 
are interested in the fundamental distortion limit in recover-
ing an analog signal from its digital representation, we con-
sider all possible encoding and reconstruction (decoding) 
techniques. As an example, in Figure 1, the smartphone dis-
play may be viewed as a reconstruction of the real-world paint-
ing The Starry Night from its digital representation. No matter 
how excellent the quality of a smartphone’s high-definition 
screen may be, this recovery is not perfect, since the digital 
representation of the analog image is not accurate due to a loss 
of information occurring during the conversion from analog 
to bits. Our goal is to analyze this loss as a function of hard-
ware limitations on the sampling mechanism and the number 
of bits used in the encoding. It is convenient to normalize this 
number of bits by the signal’s free dimensions, i.e., the dimen-
sions along which new information is generated. For example, 
the free dimensions of a visual signal are usually the hori-
zontal and vertical axes of the frame, and the free dimension 
of an audio wave is time. For simplicity, we consider analog 
signals with a single free dimension, i.e., time. Therefore, our 
restriction on the digital representation is given in terms of its 
bit rate—the number of bits per unit time.

For an arbitrary continuous-time random signal with known 
statistics, the fundamental distortion limit due to the encoding 
of the signal using a limited bit rate is given by Shannon’s dis-
tortion-rate function (DRF) [4]–[6]. This function provides the 
optimal tradeoff between the bit rate of the signal’s digital rep-
resentation and the distortion in recovering the original signal 
from this representation. Shannon’s DRF is described only in 
terms of the distortion criterion, the probability distribution on 
the continuous-time signal, and the maximal bit rate allowed in 
the digital representation. Consequently, the optimal encoding 
scheme that attains Shannon’s DRF is a general mapping from 
continuous-time signal space to bits that does not consider 
practical constraints in its implementation. In practice, the 
encoding of an analog signal into bits entails first sampling the 
signal and then representing the samples using a limited num-
ber of bits. Therefore, in practice, the minimal distortion in 
recovering analog signals from their bit representation consid-
ers the digital encoding of the signal samples, with a constraint 
on both the sampling rate and the bit rate of the system. Here, 
the sampling rate fs  is defined as the number of samples per 
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unit time of the continuous-time source signal, and the bit rate 
R is the number of bits per unit time used in the representation 
of these samples. The resulting system describing our problem 
is shown in Figure 2 and is referred to as the analog-to-digital 
compression (ADX) setting.

The digital representation in this setting is obtained by 
transforming a continuous-time, continuous-amplitude, ran-
dom source signal ( )X t  through a concatenated operation 
of a sampler and an encoder, resulting in a bit sequence. For 
instance, when the input signal ( )X t  is observed over a time 
interval T, then the sampler produces f Ts6 @ samples, and the 
encoder maps these samples to TR6 @ bits. The decoder esti-
mates the original analog signal from this bit sequence. The dis-
tortion is defined to be the mean squared error (MSE) between  
the input signal ( )X t  and its reconstruction ( ).X tt  Since we 
are interested in the fundamental distortion limit subject to a 
sampling constraint, we allow optimization over the encoder, 
decoder, and time horizon T. In addition, we also explore the 
optimal sampling mechanism but limit ourselves to the class of 
linear and continuous deterministic samplers [7]. That is, each 
sampler in this class is a linear continuous mapping of signals 
over time lag T to .R f Ts6 @

The minimal distortion in ADX is bounded from below 
by two extreme cases of the sampling rate and the bit rate, as 
shown in Figure 3: 
1)	 When the bit rate R is unlimited, the minimal ADX distor-

tion reduces to the MSE in interpolating a signal from its 
samples at rate .fs  

2)	 When the sampling rate fs  is unlimited or above the 
Nyquist rate of the signal, the ADX distortion reduces to 
Shannon’s DRF of the signal. 
Indeed, in this situation, the optimal encoder can recover 

the original continuous-time signal without distortion and 
then encode this recovery in an optimal manner according to 
the scheme that attains Shannon’s DRF. Our goal is therefore 
to characterize the MSE due to the joint effect of a finite bit-
rate constraint and sampling at a sub-Nyquist sampling rate 
or for signals that are not bandlimited. In particular, we are 
interested in the minimal sampling rate for which Shannon’s 
DRF, describing the minimal distortion subject to a bit-rate 
constraint, is attained. As shown in Figure 3 and as will be 
explained in more detail in this article, this sampling rate is 
usually below the Nyquist rate of the signal. We denote this 
minimal sampling rate as the critical sampling rate subject to a 
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FIGURE 3. The minimal sampling rate for attaining the minimal distortion 
achievable in the presence of quantization is usually below the Nyquist 
rate, whereas sampling at the Nyquist rate is necessary to attain zero 
distortion without quantization constraints. 
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FIGURE 1. An illustration showing that analog-to-digital conversion (ADC) is achieved by combining sampling and quantization. (Image of the guitar 
courtesy of https://pixabay.com; image of Van Gogh’s The Starry Night courtesy of Wikipedia.) 
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FIGURE 2. The ADX and reconstruction setting. Our goal is to derive the 
minimal distortion between the signal and its reconstruction from any en-
coding, at bit rate R  of the samples of the signal taken at sampling rate fs .
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bit-rate constraint, since it describes the minimal sampling rate 
required to attain the optimal performance in systems operat-
ing under quantization or bit-rate restrictions. Therefore, the 
critical sampling rate extends the minimal-distortion sampling 
rate considered by Shannon, Nyquist, and Landau. It is only as 
the bit rate extends to infinity that sampling at the Nyquist rate 
is necessary to attain minimal (i.e., zero) distortion for general 
input distributions.

Figure 2 represents a general block diagram for systems 
that process information through sampling and are limited 
in the number of bits they can transmit per unit time, the 
amount of memory they use, or the number of states they can 
assume. Therefore, the critical sampling rate that arises in 
this setting describes the fundamental limit of sampling in 
systems like audio and video recorders, radio receivers, and 
digital cameras. Moreover, this model also includes signal 
processing techniques that use sampling and operate under 
bit-rate constraints, such as artificial neural networks [8], 
financial markets analyzers [9], and techniques to acceler-
ate operations over large data sets by sampling [10]. In “Sys-
tem Constraints on Bit rate,” we list a few scenarios where 
sampling and bit-rate restrictions arise in practice. Other 

utilizations of the ADX paradigm will be discussed in the 
“Applications” section.

To derive the critical sampling rate, we rely on the follow-
ing two steps:
1)	 Given the output of the sampler, derive the optimal way to 

encode these samples subject to the bit rate R so as to mini-
mize the MSE distortion in reconstructing the original con-
tinuous-time signal.

2)	 Derive the optimal sampling scheme that minimizes the 
MSE in the first step subject to the sampling rate constraint.
When the analog signal can be perfectly recovered from 

the output of the sampler, the fundamental distortion limit 
in step 1 depends only on the bit-rate constraint and leads to 
Shannon’s DRF. In this article, we explore this function as well 
as the optimal encoding to attain it. Applications of the ADX 
framework and the critical sampling rate that attains the mini-
mal distortion are also discussed.

Before exploring the minimal distortion limit in the ADX 
setting, it is instructive to consider the distortion in pulse-code 
modulation, which is a particular system that is implement-
ing a simple version of a sampler, an encoder, and a decoder. 
Although this system does not implement the optimal sampling 

The analog-to-digital compression setting of Figure 2 is rel-
evant to any system that processes information by sam-
pling and is subject to a bit-rate constraint. Three possible 
restrictions on a system’s bit rate that arise in practice are 
as follows:
•	 Memory: Digital systems often operate under a con-

straint on the amount of memory or the states they can 
assume. Under such a restriction, the bit rate is the nor-
malized amount of memory used over time (or the 
dimension of the source signal). For example, consider 
a system of K states that analyzes information obtained 
by observing an analog signal for T seconds. The maxi-
mal bit rate of the system is ( )/ .logR K T2=

•	 Power: Emerging sensor network technologies, such as 
those developed for biomedical applications and smart 
cities, use many low-cost sensors to collect and transmit 
data to remote locations [11]. These sensors must operate 
under severe power restrictions and, hence, are limited 
by the number of comparisons in their analog-to-digital 
conversion (ADC) operation. These comparisons are typi-
cally the most energy-consuming part of the ADC unit, so 
that the total power consumption in an ADC unit is pro-
portional to the number of comparisons [12, Sec. 2.1]. 
In general, the number of comparisons is proportional to 
the bit rate, since any output of bit rate R is generated by 
at least R comparisons (although the exact number 
depends on the particular implementation of the ADC 
and may even grow exponentially in the bit rate [13]). 

Therefore, power restrictions lead to a bit-rate constraint 
and to an MSE distortion floor given by Shannon’s distor-
tion-rate function of the analog input signal.

	   An important scenario of power-restricted ADC units 
arises in wireless communication using millimeter waves 
[14]. Severe path loss of electromagnetic waves in 
these frequencies is compensated for by using a large 
number of receiver antennas. Each antenna is associat-
ed with a radio-frequency chain that includes an ADC 
unit. Because of the resulting large number of ADC 
units, power consumption is one of the major engineer-
ing challenges in millimeter-wave communication.

•	 Communication: Low-power sensors may also be limit-
ed by the rates of communication available to send 
their digital sensed information to a remote location. 
For example, consider a low-energy device collecting 
medical signals and transmitting its measurements 
wirelessly to a central processor (e.g., a smartphone). 
The communication rate from the sensor to the central 
processor depends on the capacity of the channel 
between them, which is a function of the available 
transmit power for communication. When the transmit 
power is limited, so is the capacity. As a result, the 
data  rate associated with the digital representation of 
the sensed information cannot exceed this capacity 
limit, since, without additional processing, there is no 
point in  collecting more information than what can 
be communicated.

System Constraints on Bit Rate
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and encoding scheme, it illustrates an instance where, as a 
result of the bit-rate constraint, sampling below the Nyquist rate 
is optimal. In addition, this analysis provides a simple way to 
introduce the notions of sampling, quantization, and bit rate and 
serves as a basis for the generalization of the sampling and for 
encoding operations into optimal ones. 

ADX via pulse-code modulation
A particular example for a system incorporating a sampler, an 
encoder, and a decoder is given in Figure 4. This system converts 
the analog signal ( )X t  to a digital representation [ ]Y nQ  by a uni-
form sampler followed by a scalar quantizer. This conversion 
technique is known as pulse-code modulation (PCM) [15], [16]; 
refer to [17, Sec. I.A] for its historical overview. The bit rate in 
this system is defined as the average number of bits per unit time 
required to represent the process [ ].Y nQ  The goal of our analysis 
is to derive the MSE distortion in recovering the analog input 
signal ( )X t  under a constraint R on this bit rate, assuming a par-
ticular sampling rate fs  of the sampler. We denote this distortion 
by ( , ).D f RPCM s  Since the system in Figure 4 is a special case of 
Figure 2, the function ( , )D f RPCM s  is lower-bounded by the min-
imal distortion in the ADX, obtained by optimizing over all of 
the encoders and decoders, subject only to a sampling rate con-
straint fs  and a bit-rate constraint R.

We analyze the system of Figure 4 assuming a stochastic 
continuous-time, continuous-amplitude source signal ( )X t  at its 
input. This signal is first filtered using a presampling low-pass 
filter (LPF) to yield ( ).X tp  The filtered signal is then sampled 
uniformly at rate fs  samples/s. Each sample [ ]Y n  is mapped 
using a scalar quantizer to [ ],Y nQ  which is the nearest value 
to [ ]Y n  among a prescribed set of K quantization levels. More 
details on the operation of the scalar quantizer are provided 
in “Scalar Quantization.” Since each of the quantization levels 
can be assigned a finite digital number, we say that the process 

[ ]Y nQ  is a digital representation of [ ]Y n . As explained in “Sca-
lar Quantization,” the selection of the quantization levels and 
the length of the digital number assigned to each of them may 
also be subject to optimization. Subsequently, we assume that 
Rr  is the expected number of bits per sample assigned to repre-
sent the quantization levels (the expectation is with respect to 
the distribution of the source signal). Using this notation, the bit 

rate of the digital representation, i.e., the 
number of bits per unit time required to 
represent the process [ ],Y nQ  is defined 
as .R Rfs= r

The process of recovering the ana-
log source signal ( )X t  from the digital 
sequence [ ]Y nQ  is described at the bot-
tom of Figure 4. The digital discrete-
time sequence of quantized values 

[ ]Y nQ  is first converted to a continu-
ous-time impulse train using a digital-
to-analog (D/A) unit and then filtered 
using an ideal LPF with cutoff frequen-
cy .fr  In the time domain, this LPF is 
equivalent to an ideal sinc interpolation 

between the analog sample values to create a continuous-time 
signal bandlimited to ( , ).f fr r-  The result of this interpolation 
is denoted by ( ).X tt  We measure the distortion of the system by 
the MSE between ( )X t  and ( )X tt  averaged over time as

	 ( , ) ( ) ( ) .limD f R
T

X t X t dt1 E
/

/
PCM

T T

T
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2 2
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Note that letting the time grow symmetrically in both direc-
tions simplifies some of the expressions, but our results remain 
valid even if time grows in one direction. It is, in general, pos-
sible to use a different decoding scheme that would lead to a 
lower MSE under the same sampling and bit-rate constraint. 
Indeed, (1) is minimized by using the conditional expectation 
of ( )X t  given [ ]Y nQ  as the reconstruction signal rather than 
using ( ).X tt  However, the nonlinearity introduced by the scalar 
quantizer makes the exact analysis of the distortion under the 
conditional expectation a difficult task [17], and, therefore, for 
simplicity, we focus here on interpolation by low-pass filtering.

We now turn to analyze the distortion in (1) as a function of 
the sampling rate fs  and the bit rate R. We assume that ( )X t  
is a stationary stochastic process with a symmetric power 
spectral density (PSD) ( ),S fX  and we denote its bandwidth by 

/ .f 2Nyq  If ( )X t  is not bandlimited, then we use the notation 
.fNyq 3=  In either case, we assume that ( )X t  is bounded in 

energy and denote

( ) ( ) .X t S f dfvar X
2

R
v = = #

We further assume that the PSD ( )S fX  is unimodal, in the 
sense that its energy distribution is decreasing as one moves 
away from the origin, as given, for example, in Figure 5. Under 
this assumption, the presampling filter that minimizes the 
distortion, among all linear time-invariant filters, is an LPF 
with a cutoff frequency of /f 2s  [18]. Henceforth, we assume 
that this filter is used. Finally, we pick the cutoff frequency 
fr  of the reconstruction filter to match the bandwidth of the 

low-pass filtered signal. This cutoff frequency is therefore the 
minimum between /f 2s  and the bandwidth of ( ),X t  which 
equals / .f 2Nyq

As a result of these assumptions, the only distortion intro-
duced in the sampling process is due to the presampling filter, 
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FIGURE 4. PCM and reconstruction system.
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and only in the case where fs  is smaller than the Nyquist rate 
of ( ).X t  In fact, this distortion is exactly the energy in the part 
of the spectrum of ( )X t  blocked by the presampling filter. We 
therefore have

( ) ( ) .D f S f dfsmp Xf

f

2

2

2
s

s

s

_ v -
-
#

Note that ( )D fsmp s  equals zero when fs  is above the Nyquist 
rate of ( ).X t

To analyze the distortion due to quantization, we represent 
the output of the quantizer as

	 [ ] [ ] [ ], , , ,Y n Y n n n 0 1Q fh= + = � (2)

where [ ] [ ] [ ]n Y n Y nQh = -  is the quantization noise. Since 
there is no aliasing in the sampling operation, the reconstruc-
tion filter applied to [ ]Y n  leads to the signal ( )X tp  at the out-

put of the first LPF. Since the quantizer is a deterministic 
function of [ ],Y n  the process [ ]nh  is stationary, and we 
denote its PSD by ( )S fh  [note that ( )S fh  is periodic, with a 
period of fs ]. Nevertheless, an exact description of the statis-
tics of [ ]nh  turns out to be a surprisingly difficult task. As a 
result, many approximations of its statistics have been devel-
oped [17], [19]. Most of these approximations provide condi-
tions under which the spectrum of [ ]nh  is white (i.e., 
different elements of [ ]nh  are uncorrelated) [20]. One of the 
widely used approximations was provided by Bennet [21], 
who showed that, when the distribution of the input to the 
quantizer [ ]Y n  is continuous and the quantization levels are 
uniformly distributed, the spectrum of the quantization noise 

( )S fh  converges to a constant as the quantizer resolution Rr  
increases. Another way to achieve the uniform spectral distri-
bution of [ ]nh  is by dithering the signal at the input to the 
quantizer, i.e., by adding a pseudorandom noise signal [22]. 
For simplicity, our following analysis assumes that ( )S fh  is a 

Consider the problem of representing a random num-
ber X drawn from a continuous distribution using anoth-
er number taken from a finite alphabet of K elements 

, , .X x xQ K1 f! " ,  Since an exact representation of X can-
not be attained due to cardinality limitations, the goal is 
to minimize

	 .X XE Q
2

-^ h � (S1)

The mapping of X to XQ is called quantization. When the 
representation of a sequence of random numbers is consid-
ered, we use the term scalar quantization to denote that 
the same quantization mapping is applied to each element 
of the sequence, independently of the previous elements.

Assuming that the quantizer inputs are independent, the 
estimation of each input sample from the output of the quan-
tizer is based on only one of these K states , , .x xK1 f" ,  
Evidently, the minimal estimation error is attained by map-
ping X to the reconstruction value xi that minimizes (S1). As 
a result, the procedure of optimizing a scalar quantizer of K 
states can be described by selecting the optimal K recon-
struction values. Given the distribution of the input, this opti-
mal set may be attained by an iterative procedure known 
as the Lloyd algorithm or, more commonly, the K-means 
algorithm [30], [31].

The number of bits or the bit resolution of the quantizer 
is the number of binary digits that represent X at its out-
put by assigning a different label to each state. Clearly, 
the output of a K-state quantizer can be encoded with 
log K2^ h  binary digits. However, this number may be 

reduced on average if the labels of the states consist of 
binary numbers of different length. For example, by using 

uniform quantization levels to quantize a nonuniformly 
distributed input, we may label those states that are more 
likely with binary numbers shorter than those numbers 
assigned to less likely states. These numbers must satisfy 
the condition that no member is a prefix of another mem-
ber, so that the sequence of states can be uniquely  
decoded. This procedure is denoted as variable-length 
scalar quantization, distinguished from fixed-length quan-
tization, in which the labels are all binary numbers of the 
same length.

Interestingly, the average mean squared error (MSE) over 
an independent and identically distributed sequence using 
a variable-length scalar quantizer may be strictly smaller 
than with a fixed-length scalar quantizer for the same aver-
age number of bits, even if the levels in the latter were 
optimized for the input distribution using the Lloyd algo-
rithm. For example, with input taken from a standard 
normal distribution, the average MSE attained by a vari-
able-length scalar quantizer with equally spaced recon-
struction levels and an optimal labeling of these levels 
converges to ( / ) .e 6 2 1 42 2R R2 2#.r - -r r  as Rr  becomes 
large [32]. In fact, it is also shown in [32] that a uniform 
quantizer with optimal labeling converges to the optimal 
variable-length quantizer as Rr  increases. However, the dis-
tortion attained by a fixed-length quantizer under an opti-
mal selection of the K 2R=

r  reconstruction levels converges 
to ( / ) .3 2 2 2 72 2R R2 2#.r - -r r  [30].

As explained in “Source Coding and the DRF,” a lower 
MSE for the same average number of bits per source sam-
ple Rr  can be attained by using a vector quantizer, i.e., by 
considering the joint encoding of multiple samples from a 
sequence of samples, rather than one sample at a time.

Scalar Quantization



22 IEEE Signal Processing Magazine   |   May 2018   |

constant, although deviation from this rule would not affect 
our general conclusions. Regardless of this assumption and as 
explained in “Scalar Quantization,” the variance of this noise 
[ ]nh  is proportional to the variance of the process [ ]Y n  at the 

input to the quantizer and decreases exponentially with the 
number of quantization bits Rr :

	 ( [ ]) ( [ ]) .n c Y n 2var varQ
R2h = - r � (3)

The proportionality constant cQ  depends on the actual 
digital label assigned to each quantization level. At high quan-
tization precision /R R fs=r  and using a uniform quantizer, the 
value of the constant corresponding to optimal encoding con-
verges to ( )./c e 6Q r=  This value of cQ  is used in our figures.

Under the assumption that the PSD of [ ]nh  is constant over 
the entire discrete-time frequency range with variance (3) and 
using the fact that the variance of [ ]Y n  equals the variance of 

the low-pass filtered version of ( ),X t  the contribution of the 
quantization to the distortion in (1) is given by
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where the term in the braces represents the variance of [ ]Y n  or 
the energy of the signal at the output of the reconstruction 
LPF (the min is present because the LPF at the sampler is in 
use only if the sampling rate is lower than Nyquist). The over-
all distortion in PCM is, therefore, 

	 ( , ) ( ) ( , ).D f R D f D f Rsmp qntPCM s s s= + � (5) 

The important observation from this expression is that, under a 
fixed bit rate R, the distortion due to quantization increases as the 
sampling rate fs  increases. This increase in fs  means fewer quan-
tization bits are available to represent each sample, and, therefore, 
the distortion due to quantization is larger. Alternatively, the dis-
tortion due to sampling decreases as fs  increases and, in fact, van-
ishes as fs  exceeds the Nyquist rate. A spectral interpretation of 
the function ( , )D f RPCM s  is shown in Figure 5. This figure shows 
the spectrum of the sampled source signal and the spectrum of the 
quantization noise under the high-resolution approximation for 
two representative cases of the sampling frequency:
1)	 Sub-Nyquist sampling: The distortion due to sampling 

( )D fsmp s  is the part of ( )S fX  not included in the sampling 
interval / , / .f f2 2s s-^ h  The distortion due to quantization is 
relatively low, since the small value of fs  allows the quan-
tization of each sample with the relatively high resolution 
of /R R fs=r  bits.

2)	 Super-Nyquist sampling: The distortion due to sampling 
( )D fsmp s  is zero, but the distortion due to quantization 
( )D fqnt s  is affected by the reduction in the bit-resolution 

that decreases linearly in ,fs  since / .R R fs=r

It follows from the prior description that there exists a 
sampling rate that balances the two error contributions from 
quantization and sampling to minimize the total distortion in (5). 
This sampling rate can be seen in Figure 6, where the distortion 

( , )D f RPCM s  is shown versus the relative sampling rate /f fNyqs  
for two PSDs. For the PSD ( )S fP  with uniform energy distribu-
tion, the sampling rate that minimizes the distortion is exactly the 
Nyquist rate. For the triangular PSD ( ),S fK  the optimal sam-
pling rate is below the Nyquist rate. In general, it is shown in [18] 
that, under similar assumptions, the sampling rate that minimizes 
the distortion in PCM is always at or below the Nyquist rate. 
This rate is, in fact, strictly smaller than the Nyquist rate when the 
energy of the signal is not uniformly distributed over its spectral 
support, as in ( )S fK  of Figure 6. Going back to our general ques-
tion, PCM illustrates an instance where, as a result of a bit-rate 
constraint, sampling below the Nyquist rate is optimal.

Another conclusion from our analysis is that, under a fixed 
bit rate, the distortion in PCM increases as a result of oversam-
pling. This phenomenon is explained by the increasing correlation 
between consecutive time samples at a super-Nyquist sampling 
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rate, since the covariance function of a bandlimited signal is con-
tinuous [23], [24]. This correlation is not exploited by the quantizer, 
which maps two similar samples to the same digital value, lead-
ing to a redundant digital representation of the analog signal. Since 
the overall bit rate is limited, this redundancy in representation is 
translated to a higher distortion compared to the distortion in a less-
redundant representation obtained at a lower sampling rate. In fact, 
it is well known that the sampling rate that minimizes the distortion 
in PCM also maximizes the entropy rate of the process postquan-
tization, i.e., of [ ]Y nQ  [17]. Therefore, we conclude that the most 
efficient representation of the analog signal in PCM under a bit-rate 
constraint is attained by sampling at or below the Nyquist rate.

The previously discussed conclusions imply that we can read-
ily improve the performance of PCM by providing a more com-
pact representation of the signal in terms of bit rate under the same 
distortion level, and we can do so in one of the following ways: 
1)	 reduce the correlation between consecutive quantizer out-

puts by using a whitening transformation as in transform 
coding [17] or by a delta feedback loop as in sigma-delta 
modulation [25], [26] 

2)	 compress the digital process [ ]Y nQ  using a universal loss-
less compressor, such as Lempel–Ziv [27], [28] or context-
tree weighting [29]

3)	 aggregate a large block of, e.g., N samples of [ ]Y n  and 
represent these samples using a single index out of 2RNr  pos-
sible values.
This last technique, commonly known as vector quanti-

zation [17], does not assume any restrictions on the mapping 
from the samples to the digital representation, except the size 
of the block. It therefore covers a wide range of quantization 
techniques operating at bit rate R and includes 1) and 2) as 
special cases. This technique leads to the most general way to 
encode any discrete-time process to a digital representation, 
subject only to a bit-rate constraint. Moreover, combined with 
an optimal mechanism to represent the analog signal as a bit 
sequence, this encoding technique attains the minimal distor-
tion in encoding ( )X t , described by Shannon’s DRF D(R).

Minimal distortion subject to a bit-rate constraint
We now go back to the ADX setting of Figure 2. In this sec-
tion, we consider the minimal distortion that can be attained 

when the only restriction is the bit rate R of the resulting digi-
tal representation. In other words, we consider the minimal 
distortion assuming that the encoder operates directly on the 
continuous-time process ( )X t , as shown in Figure 7.

This encoder observes a realization ( )tx  of the process ( )X t  
over some finite time horizon T and then represents its observa-
tion using TR6 @ bits. The number of possible states this encod-
ing can take is, therefore, .2 TR6 @  As shown in Figure 8, without 

10 1.5

−10

−5

0

fs/fNyq
D

P
C

M
 (f

s,
 R

) 
(d

B
)

SΠ (f ) SΛ (f )

FIGURE 6. The distortion in PCM as a function of the sampling rate fs  for a 
fixed bit rate R  and the PSDs in the small frames. With a nonuniform energy 
distribution, the optimal sampling rate of PCM is below the Nyquist rate.

Analog Digital

Encoder

Decoder

Distortion

X (t )

X (t )

"

bits
s

R

FIGURE 7. Encoding with full continuous-time source signal information.

...

0...00

0...01

1...11

TR bits

...

− T
2

T
2

X (t )
Encoder

x 0(t )

x 1(t )

x 2TR – 1(t )

"
"

"

FIGURE 8. The optimal encoding with TR bits is obtained by mapping the source signal realization to the index of the predetermined reconstruction waveform 
closest to this realization. The optimal set of reconstruction waveforms and the resulting average distortion are given by Shannon’s source coding theorem.
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losing generality we can assume that each reconstruction wave-
form produced by the decoder is only a function of one of 
these states, so there are at most 2 TR6 @  possible reconstruction 
waveforms. Moreover, any encoder that strives to attain the 
minimum MSE (MMSE) in this system would map the input 
signal to the state i associated with the reconstruction wave-

form ( )x tit  that is closest to the input in the distance defined by 
the L2  norm over the interval [ / , / ],T T2 2-  as derived from our 
distortion criterion. Therefore, the only freedom in designing 
the optimal encoding scheme is in deciding on the set of recon-
struction waveforms ( ), [ / , / ], , , ,x t t T T i2 2 1 2i

TRf! - =t" ,6 @  
which we denote as codewords.

The procedure for selecting these codewords and the result-
ing MMSE distortion are given by Shannon’s classical source 
coding theorem [4], [5] and its extensions to continuous alpha-
bets [33], [34]. According to this theorem, a near-optimal set 
of codewords is obtained by 2 TR6 @ independent random draws 
from a distribution on the set of functions over [ / , / ]T T2 2-  
with a finite L2  norm, such that the mutual information of the 
joint distribution of the input and the reconstruction waveforms 
is limited to TR6 @ bits. Moreover, Shannon’s theorem also pro-
vides the asymptotic MMSE obtained by using this set of code-
words, denoted as Shannon’s function or the information DRF 
of the source signal ( )X t  at bit rate R.

Shannon’s source coding theorem with respect to a dis-
crete-time independent and identically distributed process is 
explained in “Source Coding and the DRF.” In the case of a 
continuous-time Gaussian stationary input signal with a PSD 
of ( ),S fX  a closed-form expression for Shannon’s DRF was 
derived by Pinsker and Kolmogorov [35] and is given by the 
following parametric form:

The source coding problem addresses the encoding of a 
random source sequence so as to attain the minimal distor-
tion over all possible encoding and reconstruction 
schemes, under a constraint on the average bits per source 
symbol in this encoding. In “Scalar Quantization,” we con-
sidered the encoding of such sequences subject to the 
additional restriction that each source symbol is encoded 
independently of the other. By removing this restriction and 
considering the joint encoding of n independent source 
symbols, we can attain smaller distortion using the same 
average number of bits. For this reason, the source coding 
problem with respect to a real independent and identically 
distributed (i.i.d.) sequence , ,X Xn1 f  is defined as deter-
mining the minimum mean squared error attainable under 
all possible encoder mappings of a realization of this 
sequence to an index out of 2 nRr6 @ possible indices, as well 
as all reconstruction decoder mappings from this set of 
indices back to .Rn  This minimal value is called the opera-
tional distortion-rate function (DRF) of the i.i.d. distribution 
of the sequence at code rate Rr  and is denoted by ( ).Rnd r

In his source coding theorem, Shannon showed that, as 
the number of jointly described source symbols n extends 
to infinity, the operational DRF ( )Rnd r  converges to the infor-
mational DRF. The latter is defined as

	 ( ) ,infD R X XE
2

_ -r t^ h � (S2)

where the infimum is over all joint probability distributions 
( , )p x xt  such that their marginal over the x coordinate coin-

cides with the distributions of X1 and their mutual informa-
tion does not exceed .Rr  For example, when the source 
sequence is drawn from a standard normal distribution, 
the result of the prior optimization leads to

	 ( ) .D R 2 R2= -r r � (S3)

Comparing with the distortion under scalar quantization 
in “Scalar Quantization,” this value is strictly smaller than 
the minimal distortion in encoding the same sequence 
using either fixed or variable bit-length scalar quantiza-
tion. This difference is explained by the fact that as n 
extends to infinity, the law of large numbers implies that 
the probability mass of n i.i.d. copies of a random vari-
able of bounded variance concentrates around the edges 
of an n-dimensional sphere of radius equal to the square 
root of this variance. Thus, these n copies can be repre-
sented in a more compact manner than with independent 
representations of each coordinate, as in scalar quantiza-
tion [39].

Source Coding and the DRF

Lossy Compression Distortion

Preserved Spectrum

θ

f

SX (f )

FIGURE 9. The reverse water-filling interpretation of (6). Water is poured 
into the area bounded by the graph of (S fX ) up to level i . The bit rate 
R  is tied to the water level i  through the preserved part of the spectrum 
(6b). The lossy compression distortion D  is given by (6a).
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	 ( ) ( ),minD R S f dfX i=
3

3
i

-
" ,# � (6a)

	 ( ) / ,logR S f df
2
1

X i=
3

3
i

+

-
6 @# � (6b)

where [ ]x + is the maximum between x and zero. The paramet-
ric form of (6) has the graphical interpretation given by 
Figure 9, denoted as the water-filling scheme. The distortion 
in (6a) may be seen as if water is being poured into the area 
bounded by the graph of ( )S fX  up to level .i  The distortion 
in (6a) is the total volume of the water. The bit rate is deter-
mined by integration over the preserved part through (6b). As 
explained in “The Water-Filling Scheme,” this approach is 
obtained as the solution of an optimization problem involving 
the allocation of the rate of the codes to describe different fre-
quency components of the signal according to their respective 
energy (components with higher energy are given a higher 
code rate). As a result, in addition to the minimal distortion 
subject only to the bit-rate constraint, the water-filling inter-

pretation provides the optimal coding scheme that attains this 
minimal distortion [36]. Independent spectral components of 
the signal are represented using independent bitstreams, where 
the rate of each bitstream is determined according to the 
water-filling principle.

The Pinsker–Kolmogorov expression (6) is easily adjusted to 
account for a distortion criterion that assigns different weights 
( )W f 0$  to each spectral component. This spectral weight-

ing is useful in applications where some tones are of different 
importance than others, such as in psychoacoustic consider-
ation in the digital encoding of audio signals [37]. The adjust-
ment of the expression for the minimal distortion required  
because of this importance weighting is achieved by evaluat-
ing the distortion equation (6a) with respect to ( ) ( )W f S fX  
rather than ( ),S fX  in a way similar to the procedure explained 
in [38]. This different weighting emphasizes the generality of 
the lossy compression principle. Under a strict bit-rate budget, 
part of the analog signal must be removed due to lossy com-
pression, and this part is the least important in our application. 

In “Source Coding and the DRF,” we explored the encod-
ing of an independent and identically distributed (i.i.d.) 
Gaussian sequence using a code of rate Rr  bits per sample. 
We now extend this source coding problem to consider the 
joint encoding of m i.i.d. sequences taken from m Gaussian 
distributions with variances , , ,m1

2 2fv v  using a total of Rr  
bits and under a sum mean squared error criterion.

From (S3) we see that it is possible to describe the ith 
sequence using Rir  bits per symbol, such that R Rii # r/  
and the overall distortion with respect to all sequences is

	 ( , , ) .D R R 2m i
i

m
R

1
2

1

2 if v=
=

-/ � (S4)

The problem we consider next is how to allocate the total 
bit budget Rr  in a way that minimizes the overall distortion. 
This is a convex problem whose solution can be expressed 
by the following parametric expression [42, Ex. 5.2]:

/ ,logR 2
1*

i i2
2v i= +6 @

where i  is chosen to satisfy the constraint .R R*
i
m

i1=
=
/  

The resulting distortion-rate function (DRF) is

( ) ( , , ) , .minD R D R R**
m

i

m

i1
1

2f v i= =
=

r " ,/

This parametric expression for the DRF is referred to as a 
water-filling scheme. The parameter i  may be interpreted 
as a water level, such that ( )D Rr  is obtained by summing 
the part of the variances that are below this level (see 
Figure S1). 

FIGURE S1. The total distortion equals the sum of the part of the 
variances that lie below the water-level i .

σi2
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1 2
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. . .

Lossy Compression Distortion

Preserved Spectrum

Intuitively, components with higher variance are described 
with more bits, since they have a higher impact on the total 
distortion. An interesting property of the water-filling scheme 
is that, when R is small, the optimal coding does not allo-
cate any bit budget to some of the components with the low-
est variance. This means that no information is sent on these 
low-variance components.

When the source is a stationary process, the DRF is 
described by water-filling over the power spectral density 
of the process, as in (6). In this case, different frequency 
subbands correspond to different independent signal com-
ponents, and (6) is obtained by solving an optimization 
similar to that of minimizing (S4) over , ,R Rm1 f  [36].

The Water-Filling Scheme
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The Pinsker–Kolmogorov expression, with a possible spectral 
reweighting, provides a mechanism to determine those parts 
of the signal that should be removed in an optimal encoding 
subject to the bit-rate constraint.

This provides the minimal distortion in any system that is 
used to recover a length T realization of ( )X t  having no more 
than 2 TR6 @ states. A special case of such a system is PCM of 
the section “ADX Via Pulse-Code Modulation,” and, therefore, 
when ( )X t  is a Gaussian process, the distortion in (5) is bound-
ed from below by (6).

In general, the optimal encoder that attains Shannon’s 
DRF operates in continuous time. Upon receiving a real-
ization of ( )X t  over [ / , / ],T T2 2-  the encoder compares this 
realization to each of the 2 TR6 @  reconstruction waveforms 
[33], [34]. We note, however, that Shannon’s DRF is attain-
able even if this encoder is required to first map the analog 
waveform to a discrete-time sequence. Indeed, this discrete-
time sequence can be the random coefficients in the ana-
log signal’s expansion according to some predetermined 
orthogonal basis. Consequently, encoding and decoding may 
be performed with respect to this discrete sequence with-
out changing the fundamental distortion limit described by 
the DRF in (6). We emphasize that the equivalence between 
analog signals and coefficients in their basis expansion holds 
regardless of whether the original process ( )X t  is bandlim-
ited or not [40].

One commonly used example for such an orthogonal basis 
is the Karhunen–Loèeve (KL) basis [41]. The latter’s functions 
are chosen as the eigenfunctions of the bilinear kernel defined 
by the covariance of ( )X t . As a result, the coefficients in this 
expansion are orthogonal to each other and, in fact, indepen-
dent in our case of Gaussian signals. This fact implies that the 
KL expansion decomposes the process ( )X t  over the interval 

/ , /T T2 2-6 @ into a discrete Gaussian sequence of indepen-
dent random variables, where the variance of each element is 
proportional to the eigenvalue associated with the eigenfunc-
tion. Since ( )X t  is stationary, multiple sequences of this type 
obtained from different length T blocks of ( )X t  are identically 
distributed and, therefore, can be encoded using the same 
block T encoder that essentially encodes multiple discrete 
Gaussian sequences. The optimal encoding of such a sequence 
using TR6 @ bits is achieved according to the water-filling prin-
ciple, as described in “The Water-Filling Scheme.” Moreover, 
as T extends to infinity, the density of the KL eigenvalues is 
described by the PSD ( )S fX  of ( )X t , and the average distor-
tion in encoding each block converges to (6) [41]. The prior 
described coding procedure is one way to show that Pinsker 
and Kolmogorov’s water-filling expression (6) is attainable.

To implement any of the optimal encoding schemes of the 
analog signal described previously, it is required to represent 
it first by a discrete sequence of coefficients. However, the 
implementation of this transformation is subject to practical 
limitations. In particular, realizable hardware such as filters 
and pointwise samplers are limited in the number of coeffi-
cient values they produce per unit time [7]. That is, for a time 
lag T, there exists a number fs  such that any system consist-

ing of these operations does not produce more than T fs  analog 
samples. In the next section, we explore the minimal distortion 
that can be attained under this restriction. We are especially 
interested in the minimal sampling rate fs  that is required to 
achieve Shannon’s DRF.

ADX via sampling
We have seen that the optimal tradeoff between MSE distortion 
and bit rate in the digital representation of an analog signal is 
described by Shannon’s DRF of the signal. In this section, we 
explore the minimal distortion under the additional constraint 
that the digital representation must be a function of the samples 
of the analog signal, rather than the analog signal itself.

Lossy compression from samples
In the ADX setting of Figure 2, the encoder observes samples 
of the source signal ( )X t , and is required to encode these sam-
ples so that ( )X t  can be estimated from this encoding using 
MMSE. Specifically, assuming that the sampler observes ( )X t  
for [ / , / ]t T T2 2! - , we denote by Y  the Tfs6 @-dimensional 
random vector resulting from sampling ( )X t  at rate fs . The 
encoder maps the vector Y  to a digital word of length TR6 @ 
and delivers this sequence without errors to the decoder. The 
latter provides an estimate ( )X tt  for ( )X t , [ / , / ]t T T2 2! - , 
based on only the digital sequence and the statistics of ( )X t . 
The distortion between ( )X t  and its reconstruction for a fixed 
sampler S is defined by

	 ( , ) ( ) ( ) .infD f R
T

X t X t dt1 E
/

/
S s

T

T

2

2 2
= -

-

t^ h# � (7)

The infimum in (7) is over encoders, decoders, and time 
horizons T. We note that, under the assumption that ( )X $  and 
its samples are stationary, any finite time-horizon encoding 
strategy may be transformed into an infinite time-horizon 
strategy by applying it to consecutive blocks. As a result, 
increasing the time horizon cannot increase the distortion, and 
the minimum over the time horizon in (7) can be replaced by 
the limit .T " 3

As an example, in the PCM encoding described in the 
“ADX Via Pulse-Code Modulation” section, S is a pointwise 
sampler at sampling rate fs  preceded by an LPF. The particular 
encoder and decoder used in PCM was described in Figure 4. 
Therefore, since the optimization in (7) is over all encoders and 
decoders, for any signal for which pointwise sampling is well 
defined, we have ( , ) ( , ) .D f R D f RPCMs sS #

Characterizing ( , )D f RsS  gives rise to a source coding prob-
lem in which the encoder has no direct access to the source 
signal it is required to describe. Source coding problems of this 
type are referred to as remote or indirect source coding prob-
lems [6]. More details on this class of problems is provided 
in “Indirect Source Coding.” Under the MSE criterion (7), the 
optimal encoding scheme of most indirect source coding prob-
lems is obtained by a simple two-step procedure [43], [44], [6]:
1)	Estimate ( )X t  from its samples Y  subject to the MSE 

criterion (7), i.e., compute the conditional expectation 
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( ) ( ) | ,YX t X tE=u 6 @  where Y  is the output of the sampler 
with input ( )X t , [ / , / ] .t T T2 2! -

2)	 Encode the estimated signal as in a standard (direct) source 
coding problem at rate R, i.e., encode ( )X tu  as the source 
signal to the system in Figure 8.
These two steps are shown in Figure 10. We note that 

although the encoding in step 2 is with respect to an analog 
signal and, hence, prone to the same sampling limitation in 
processing analog signals that was mentioned in the “Minimal 
Distortion Subject to a Bit-Rate Constraint” section, the input 
to step 1 is a discrete-time process. Therefore, the composition 
of steps 1 and 2 is a valid coding scheme for the encoder in the 
ADX setting, since it takes as its input a discrete-time sequence 
of samples and outputs a binary word.

As explained in “Indirect Source Coding,” the two-step 
encoding procedure leads to the following decomposition:

	 ( , ) mmse ( ) ( ),D f R f D RS Xs sS = + u � (8)

where mmse ( )fS s  is the asymptotic noncausal MMSE in esti-
mating ( )X t  from the output Y  of the sampler S, and ( )D RXu  
is Shannon’s DRF of the estimated process ( )X tu .

The decomposition in (8) has a few important conse-
quences. First, it reduces the characterization of ( , )D f RS s  to 
the evaluation of the MMSE in sampling plus the evaluation 
of Shannon’s DRF of another signal, defined as the noncausal 
instantaneous MMSE estimator of ( )X t , given its samples. In 

particular, these two quantities are independent of the time 
horizon T, and the MMSE term mmse ( )fS s  is independent of 
the bit rate R. In addition, this decomposition implies that, for 
any sampler S, the minimal distortion is always bounded from 
below by the MMSE in this estimation, as shown in Figure 3. 
Moreover, it follows from (8) that whenever the sampling 
operation is such that ( )X t  can be recovered with zero MSE 
from its samples, then ( , )D f RS s  reduces to Shannon’s DRF of 
the source signal ( )X t . For example, this last situation occurs 
when ( )X t  is bandlimited and the sampling is uniform at any 
sampling rate exceeding the Nyquist rate of ( )X t , as seen in the 
“ADX Via Pulse-Code Modulation” section.

This last property implies that oversampling cannot increase 
( , )D f RS s , as opposed to the PCM distortion of the “ADX Via 

Pulse-Code Modulation” section, which increases when the 
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FIGURE 10. The optimal encoder in the ADX setting first estimates the 
analog source from its samples Y  and then encodes this estimate in an 
optimal manner.

The characterization of the optimal encoding scheme and 
the resulting minimal distortion in Figure 2 can be seen as 
a special case of a family of source coding problems in 
which the encoder does not observe the source process X 
directly. Instead, it observes another process Y, statistically 
correlated with X, where the relation between the two pro-
cesses is given by a conditional probability distribution 

,P |Y X  as in Figure S2.
This setting describes a compression problem in which 

the encoder is required to describe the source X using a 
code of rate R bits per source symbol, but with only partial 
information on X as provided by the signal Y. In informa-
tion theory, this problem is referred to as the indirect, 
remote, or noisy source coding problem, which was first 
introduced in [38]. The optimal tradeoff between code rate 

and distortion in this setting is denoted as the indirect dis-
tortion-rate function (iDRF). For example, when the source is 
an independent and identically distributed (i.i.d.) Gaussian 
process , ,X X X1 2 f=  and the observable process at the 
encoder is ,Y X Wn n n= +  where Wn is an i.i.d. Gaussian 
noise sequence independent of X, the iDRF is given by

	 ( ) ( | ) [ | ] ,D R X Y X Y 2mmse Var E|X Y
R2= + -^ h � (S5)

where ( | )X Ymmse  is the minimum mean squared error 
(MMSE) in estimating Xn from Yn, and [ | ]X YVar E^ h is 
the variance of this estimator. Comparing (S5) with 
Shannon’s distortion-rate function (DRF) of X in (S3), we 
see that the first term in (S5) is the MMSE in estimating 
the source from its observations, and the second term is 
Shannon’s DRF of the mean squared error estimator. The 
decomposition of the iDRF into an MMSE term plus the 
DRF of the estimator is a general property of the indirect 
source coding setting for any ergodic source pair (X, Y) 
under quadratic distortion [43]. In the analog-to-digital 
compression setting of Figure 2, this decomposition takes 
on the form of (8).

Indirect Source Coding

FIGURE S2. Indirect source coding: the source process X is not directly 
observed. 
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sampling rate goes above the Nyquist rate of the input signal. 
This fact highlights an important distinction between the opti-
mal encoder we consider in the definition of ( , )D f RS s  and the 
encoder in PCM. While the scalar quantizer in PCM encodes 
each sample instantaneously and independently, the opti-
mal encoder can observe an unlimited number of samples by 
increasing the time horizon T before deciding on a single index 
out of 2 TR6 @. This index is chosen to best describe the realiza-
tion of ( )X t  based on the samples stacked in its buffer up until 
time T. Oversampling ( )X t  provides the encoder with redun-
dant information to make this choice, which cannot result in a 
worse choice and, hence, cannot result in worse performance.

Next, we study the behavior of ( , )D f RS s  under various class-
es of samplers. We begin with samplers that can be described 
by the concatenation of a linear time-invariant filter and a 
uniform pointwise evaluation of the filtered signal, as shown 
in Figure 11 [7]. We then gradually generalize the sampling 
mechanism to address more general forms of linear continu-
ous sampling, as described in “Generalized Sampling of Ran-
dom Signals.”

Shift-invariant sampling
The system of Figure 11 described the combined sampling 
and source coding system under a specific class of samplers. 
Each sampler in this class consists of a linear time-invariant 
filter applied to the analog source followed by a pointwise 
evaluation of the filter’s output every T fs s

1= -  time units. 
Therefore, this sampler is characterized only by its sampling 
rate fs  and the frequency response H(f) of the presampling 
operation. Samplers of this form are called shift invariant, 
(SI) since their operation is equivalent to taking Tfs6 @ inner 
products, with respect to the functions ( )h t nTs-  [7], for 

.n Z!  When this sampler is used in the combined sampling 
and coding system of Figure 2, the resulting system model is 
shown in Figure 11. In this system, at each time T, the encoder 
observes the length Tfs6 @ vector of samples of the filtered 

Let X  be a class of signals defined over the entire real 
line. We define the linear continuous sampling of X  at the 
sampling rate fs by the Tfs6 @ linear continuous functionals of 
.X  That is, when denoting the bilinear operation between 
X  and its continuous dual X*  by an integral, the nth sam-
ple is given by

	 ( ) ( ) ,y x t g t dtn n=
3

3

-
# � (S6)

where .g X*
n !  To incorporate sampling techniques that 

arise in practice, the class of signals X  is chosen such that 
pointwise evaluation is continuous, i.e., the Dirac distribu-
tion ( )td  belongs to .X*

When the source X(t) is a random signal, the set of func-
tionals is often associated with the statistics of the signal. 
To define the counterpart of (S6) when X(t) is a stationary 
process with known statistics, we use the Fourier transform 
relation between the covariance of X(t) and its power spec-
tral density:

( ) ( ) ( ) ( ) ( ) .X t X s X t s X e S f df0E E ( )i t s f
X

2= - =
3

3 r -

-
6 6@ @ #  

� (S7)

This equation defines an isomorphism between the 
Hilbert space generated by the closed linear span of the 

random source signal ( ) ( ),X t X t t R!= " ,  with norm 
( ) [ ( )]X t X tE

2 2=  and the Hilbert space ( )SL X2  of complex-
valued functions generated by the closed linear span (CLS) 
of the exponentials ,e t RE ift2 != r" , with an L2  norm 
weighted by (S fX ) [45]. This isomorphism allows us to 
define sampling of the random signal X(t) by describing its 
operation on the exponentials .E  Specifically, for any lin-
ear continuous functional h on the CLS of ,E  denote

	 ( ) ( ) .f e h t dth
ift2z =

3

3 r

-
# � (S8)

As long as hz  is in ( ),SL X2  the sample of X(t) by the func-
tional h is defined by the inverse map of hz  under the 
aforementioned isomorphism. For example, pointwise eval-
uation of X(t) at time /n fs  is obtained when h is the Dirac 
distribution at /t n fs=  and is well defined as long as the 
L1  norm of ( )S fX  is finite. The last condition requires that 
X(t) is bounded in energy, which is one of the few assump-
tions in our analog-to-digital compression setting.

The shift-invariant uniform sampler of Figure 11 corre-
sponds to sampling with functionals ( / ), ,h t n f n Zs !-  
where h is an arbitrary linear continuous functional on the 
CLS of .E  Similarly, uniform multibranch sampling is ob-
tained by sampling with respect to ( / ), ,h t nL fs1 f-  
( / ),h t nL fL s-  where , ,h hL1 f  are L such functionals.

Generalized Sampling of Random Signals
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Yn
X (t )

X (t )
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FIGURE 11. ADX with an SI uniform sampler.



29IEEE Signal Processing Magazine   |   May 2018   |

source at instances , , , ,T T0s sf f-  inside the interval 
[ / , / ]T T2 2- . The decoder receives the length TR6 @ binary 
sequence produced by the encoder from this vector. We denote 
the MMSE in recovering the source from this binary sequence 
as T extends to infinity by ( , ) .D f RSI s

From the general decomposition (8), it follows that the 
minimal distortion for a SI sampler is obtained as the sum 
of the MMSE in estimating ( )X t  from its filtered and uni-
form samples at rate fs , plus Shannon’s DRF of the noncaus-
al estimator from these samples. As explained in “MMSE 
Under Sub-Nyquist Sampling,” this MMSE vanishes when-
ever fs  exceeds the Nyquist rate of ( )X t , provided that the 
presampling filter H( f) does not block any part of the signal’s 
spectrum ( )S fX . In this situation, the estimator ( )X tt  coin-
cides with the original signal ( )X t  in the L2  sense, and the 
decoder essentially encodes ( )X t  directly, as in the previous 
section. Therefore, for bandlimited signals, we conclude that 

( , )D f RSI s  equals Shannon’s DRF of ( )X t  when the sampling 
rate is above the Nyquist rate. Moreover, when ( )X t  is not 
bandlimited, a similar equality holds as the sampling rate 
extends to infinity [48].

When the sampling rate is below the Nyquist rate, the 
expression for the optimal estimator and the resulting MMSE 
are obtained by standard linear estimation techniques, as 
explained in “MMSE Under Sub-Nyquist Sampling.” In this 
case, the estimator ( )X tu  has the form of a stationary process 
modulated by a deterministic pulse and is therefore a block-sta-
tionary or a cyclostationary process [49]. It is shown in [50] that 
Shannon’s DRF for this class of processes can be described 
by a generalization of the orthogonal transformation and rate 

allocation that leads to the water-filling expression (6), in a way 
analogous to the description in “The Water-Filling Scheme.” 
By evaluating the resulting expression for the DRF of the 
cyclostationary process ( )X tu  and using the decomposition (8), 
we obtain the following closed-form formula for ( , ),D f RSI s  ini-
tially derived in [51]:

	 ( , ) mmse ( ),minD f R f S f dfSI |SI s s f

f
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2

2

s

s
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u^ h " ,# � (9a)
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where (mmse | )X Y  and ( )S f|X Yu  are given by (S10) and (S11), 
respectively. The parametric expression (9) combines the MMSE 
(S10), which depends only on fs  and H(f), with the reverse 
water-filling expression (6), which also depends on the bit rate R. 
The function ( )S f|X Yu  arises in the MMSE estimation of ( )X t  
from its samples. As explained in [50], this function is the aver-
age over the PSD of each polyphase component of the cyclosta-
tionary process ( )X tu . To summarize, (9) provides the MMSE 
distortion in encoding a Gaussian stationary signal at rate R 
from its uniform samples taken at rate fs . Moreover, according 
to Figure 10, the coding scheme that attains this minimal distor-
tion can be described by the composition of the noncausal 
MMSE estimate of ( )X t  as in (S9), followed by an optimal 
encoding of the estimated process to attain its Shannon’s DRF.

It is possible to extend the system model of Figure 2 to include 
a noisy input signal before the sampler. In this extended model, 
the excess distortion is a result of lossy compression, sampling, 

Consider the noncausal estimation of the process X(t) from 
the discrete-time process Yn at the output of the shift-invari-
ant sampler of Figure 11. Since all signals are Gaussian, 
the optimal estimator and the resulting minimum mean 
squared error (MMSE) can be found using linear estima-
tion techniques that generalize the Wiener filter [46], [47].  
In our case, the optimal estimator ( ) ( ) |X t X t YE=u 6 @ is 
given by

	 ( ) ( ), ,X t Y w t nT t Rn
n

s
Z
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where the Fourier transform of w(t) is
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The resulting MMSE is given by
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where

	 ( )
( ) ( )

( ) ( )
.S f

S f f n H f f n

S f f n H f f n
|X Y

X
n

s s

X
n

s s

2

2 2

Z

Z_
- -

- -

!

!u
/
/

� (S11)

We interpret this fraction to be zero whenever both the 
numerator and denominator are zero. 

When fs is above the Nyquist rate of X(t), the support of 
( )S fX  is contained within the interval ( / , / ).f f2 2s s-  It can 

be seen from (S9) that, in this case, provided that H(f ) 
is  nonzero over the support of (S fX ),  we have that 
( (X t X t |X Y=) ), (S f )u u  coincides with (S fX ), and, therefore, 

( ) .f 0mmseSI s =  Hence, as the time horizon extends to infin-
ity, it is possible to reconstruct X(t) from its samples with the 
zero mean squared error. Alternatively, when fs is below 
the Nyquist rate, (S10) shows how the MMSE in this esti-
mation is affected by aliasing, i.e., interference of different 
frequency components of the signal due to sampling.

MMSE Under Sub-Nyquist Sampling
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and independent noise. Therefore, the problem of estimating 
the source signal from the digital output of the encoder com-
bines a linear filtering problem, an interpolation problem, and a 
lossy compression problem. The only adjustment to the descrip-
tion of the minimal distortion under this extension is to replace 
the function ( )S f|X Yu  in (9) and (S10) with [51]

	 ( )
( ) ( ) ( )

( ) ( )
.S f

S f f n S f f n H f f n
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n
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h

u
^ h/
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Equations (S10), (9), and (10) describe the MMSE in noncaus-
al filtering, the MSE due to uniform sampling, and the distor-
tion under optimal lossy compression. That is, these equations 
determine the combined effect of three of the most fundamen-
tal operations in signal processing: quantization, sampling, 
and interference by noise. Most importantly, these equations 
provide a unified representation for the distortion in these 
three fundamental operations, allowing us to explore the inter-
action among them. In this article, we consider a less general 

case; we explore the interaction between sampling and lossy 
compression and assume that the noise is zero. Hence, the 
simplified form (S11) for ( )S f|X Yu  is used.

As a simple example for using (9), we consider ( )X t  to be 
a stationary Gaussian signal with a flat, bandlimited PSD, i.e.,

	 ( )
,

.
S f W

f W
2
1

0 otherwise

1
=P ) � (11)

As long as the presampling filter passes all frequencies 
( , )f W W! - , the relation between the distortion in (9a) and 

the bit rate in (9b) is given by
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where / .mmse ( ) Wf f 21SI s s= -  Expression (12) is shown in 
Figure 12 for two fixed values of the bit rate R. It has a very 
intuitive structure—for frequencies below the signal’s Nyquist 
rate 2W, the distortion as a function of the rate increases by a 
constant factor because of the error as a result of nonoptimal 
sampling. This factor completely vanishes once the sampling 
rate exceeds the Nyquist frequency, in which case ( , )D f RSI s  
coincides with Shannon’s DRF of ( )X t .

In the previous example with PSD ( )S fP , the filter H( f) has 
no effect on the distortion as long as its passband contains the 
support of ( )S fP . However, when the spectrum is nonflat over 
its support, there is a precise way to choose the passband of the 
presampling filter to minimize the function ( , ).D f RSI s

Optimal sampling rate under bit-rate constraint
We now consider the expression ( , )D f RSI s  of (9) for the uni-
modal PSD shown in Figure 13, where the presampling filter 
H(f ) is an ideal LPF with a cutoff frequency of /f 2s . This 
LPF operates as an antialiasing filter, and, therefore, the part 
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FIGURE 13. A water-filling interpretation of (9) with H(f ) as an LPF of cutoff frequency / .f 2s  The distortion is the sum of the sampling and the lossy com-
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of ( , )D f RSI s  associated with the sampling distortion is due 
only to those energy bands blocked by the filter. As a result, 
the function ( , )D f RSI s  can be described by the sum of the red 
and the blue parts in Figure 13(a). Figure 13(b) describes the 
function ( , )D f RSI s  under the same bit rate R and a higher 
sampling rate, while the cutoff frequency of the LPF is 
adjusted to this higher sampling rate. As can be seen from the 
figure, at this higher sampling rate, ( , )D f RSI s  equals the DRF 
of ( )X t  in Figure 13(c), although this sampling rate is still 
below the Nyquist rate of ( )X t . In fact, it follows from 
Figure 13 that the DRF of ( )X t  is attained at some critical 
sampling rate fR that equals the spectral occupancy of the pre-
served part in the Pinsker–Kolmogorov water-filling expres-
sion (6). The existence of this critical sampling rate can also 
be seen in Figure 14, which illustrates ( , )D f RSI s  as a function 
of fs  with H(f) an LPF.

In the “Shift-Invariant Sampling” section, we concluded 
that the DRF of ( )X t  can be attained by sampling at or above 
the Nyquist rate, since then the MMSE term in (6) vanishes. 
Now we see that by using the LPF with a cutoff frequency of 
/f 2s , the equality between ( , )D f RSI s  and the DRF, which is the 

minimal distortion subject to a bit-rate constraint, occurs at a 
sampling rate smaller than the Nyquist rate.

An intriguing way to explain this phenomena is as an 
alignment of the degrees of freedom in the signal after the 
presampling operation with the degrees of freedom that the 
lossy compression with bit rate R can capture in this sam-
pled signal. For stationary Gaussian signals, the degrees of 
freedom in the signal representation are those spectral bands 
where the PSD is nonzero. When the signal energy is not uni-
formly distributed over these bands—unlike in the example of 
the PSD in (11)—the optimal lossy compression scheme calls 
for discarding those bands with the lowest energy, i.e., the 
parts of the signal with the lowest uncertainty. The presam-
pling operation removes these low-energy signal components 
such that the resulting signal has the same degrees of freedom 
as those that can be captured by the lossy compressed sig-
nal representation that follows the sampler. Thus, the presa-
mpling operation in a sense aligns the degrees of freedom 
of the presampled signal with those of the postsampled lossy 
compression operation. 

The degree to which the new critical rate fR is smaller than 
the Nyquist rate depends on the energy distribution of ( )X t  
along its spectral occupancy. The more uniform it is, the more 
degrees of freedom are required to represent the lossy com-
pressed signal, and therefore fR is closer to the Nyquist rate. 
Figure 15 shows the dependency of fR on R for various PSD 
functions. Note that, whenever the energy distribution is not 
uniform and the signal is bandlimited, the critical rate fR con-
verges to the Nyquist rate as R extends to infinity and to zero 
as R reaches zero.

In the prior discussion, we considered only signals with uni-
modal PSDs (for example, the PSD in Figure 9 is not unimod-
al). The main challenge in extending the previously mentioned 
conclusions to signals with nonunimodal PSDs is the design of 
a sub-Nyquist system that samples the signal components con-

taining the most information about the signal (i.e., the signal’s 
high-energy bands) to obtain the optimal lossy compressed 
signal representation when these samples are encoded at the 
fixed bit rate R. Before describing this extension, we consid-
er the general structure of a presampling transformation that 
minimizes the distortion in the ADX setting.

Optimal presampling transformation
We now consider the presampling filter H(f) that minimizes 
the function ( , )D f RSI s  subject to a fixed bit rate R and sam-
pling rate fs . By examining expressions (9) and (S10), we con-
clude that this minimization is equivalent to the maximization 
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FIGURE 15. The critical sampling rate fR  as a function of the bit rate 
R  for the PSDs given in the small frames. For the bandlimited PSDs 

( (S f fP K), )S  and (S f~ ), the critical sampling rate is always below the 
Nyquist rate. The critical sampling rate is finite for any ,R  even for the 
nonbandlimited PSD (S fX ).
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of ( )S f|X Yu  for any f in the interval ( / , / )f f2 2s s- . This fact is not 
surprising, since we have seen in (S10) that ( )S f|X Yu  represents 
the part of the source available to the encoder. Because the 
function ( )S f|X Yu  is independent of R, the optimal filter H(f) 
that minimizes ( , )D f RSI s  is only a function of the sampling 
rate, and it is, therefore, identical to the presampling filter that 
minimizes (mmse | )X Y , i.e., the MMSE without the bit-rate 
constraint. Note that, since ( )S f|X Yu  is indifferent to scaling in 
H(f), the only effect of the presampling filter on the distortion 
is through its passband, i.e., the support of H(f). We explain in 
“Optimal Presampling Transformation” that the passband of 
the presampling filter that minimizes (mmse | )X Y  can be 
completely characterized by the following two properties:
1)	 Aliasing-free: The passband is such that the filter elimi-

nates aliasing in sampling at frequency fs . That is, all 
integer shifts of the support of the filtered signal by fs  
are disjoint.

2)	 Energy maximization: The passband is chosen to maxi-
mize the energy of ( )X t  at the output of the filter, subject 
to the aliasing-free property 1).
In the case of a unimodal PSD, an LPF with a cutoff fre-

quency of /f 2s  satisfies both the aliasing-free and energy max-
imization properties and is therefore the optimal presampling 
filter that minimizes ( , ) .D f RSI s  For this reason, Figure  13 
describes the minimal value of ( , )D f RSI s  for the PSD con-
sidered there. In general, however, the set that maximizes the 
passband energy is not aliasing-free. As an example, consider 
the PSD shown in Figure 16(b). The colored area represents 
the support of the optimal presampling filter. This support is 
aliasing-free, since the difference between any two bands in 
the support is not an integer multiple of fs . The example in 
Figure 16(a) also shows that, although ( , )D f RSI s  is guaranteed 
to coincide with D(R) for f f ,s Nyq2  the convergence to this 
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FIGURE 16. (a) The minimal distortion ( , )D f RSI s  using an optimal presam-
pling filter as a function of the sampling rate for two values of the bit rate 
R . The dashed lines represent the distortion with an all-pass presam-
pling filter that allows aliasing. (b) The support of the optimal presam-
pling filter over the source PSD for a particular sub-Nyquist sampling 
rate fs . The difference between any two bands in the support is not an 
integer multiple of .fs

Properties 1 and 2 of the optimal presampling filter imply 
that to minimize the mean squared error (MSE) and, 
hence, the overall distortion, it is preferred to eliminate all 
information on lower-energy subbands where they interfere 
with higher-energy bands. To provide an intuitive explana-
tion for this phenomenon, we consider two independent 
Gaussian random variables X1 and X2 with the zero mean 
and variances 1

2v  and ,22v  respectively. These random 
variables can be seen as two different spectral lines in the 
spectrum of X(t) that interfere with each other because of 
aliasing in uniform sampling. Assume that we are given 
the linear combination ,U h X h X1 1 2 2= +  and are interest-
ed in the joint estimation of X1 and X2 subject to an MSE cri-
terion. That is, we want to minimize

( , ) .|X X U X X X Xmmse E E1 2 1 1
2

2 2
2

_ - + -t t^ ^h h

The optimal estimator of each variable as well as the 
corresponding estimation error can be easily found, since 
the optimal estimator is linear. We further ask how to 
choose the coefficients h1 and h2 in the linear combina-
tion such that the MSE is minimized. A simple optimiza-
tion over the expression for ( , | )X X Ummse 1 2  shows that 

,h h0 01 2! =  is the answer whenever ,1
2

2
22v v  and 

,h h0 01 2 !=  whenever .1
2

2
21v v  That is, the optimal 

linear combination eliminates all the information on the 
part of the signal with the lowest variance and passes 
only the part with the highest uncertainty. Going back to 
spectral components, the MSE is minimized by a presam-
pling filter H(f ) that eliminates all spectral components of 
low energy whenever they interfere with high-energy 
spectral components because of the aliasing that results 
from uniform sampling.

Optimal Presampling Transformation
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value may not be monotonic in fs . That is, some sub-Nyquist 
sampling rates may introduce more aliasing than sampling 
rates that are lower. This phenomenon does not occur in sam-
pling signals with a unimodal PSD.

The dependency of the passband of H( f) on the sampling 
frequency fs  comes from the aliasing-free property. In par-
ticular, this property restricts the Lebesgue measure of the 
passband of any aliasing-free filter to be smaller than fs  [52, 
Prop. 2]. It follows from this that a lower bound on the func-
tion ( , )D f RSI s  is obtained by taking the part of the spectrum 
of highest energy and overall Lebesgue measure not exceeding 
fs . That is, we denote by ( )F fs*  the part of the spectrum that 

maximizes ( )S f dfX
F
#  over all sets F of Lebesgue measure not 

exceeding fs . The following expression bounds the function 
( , )D f RSI s  from below:
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A graphical water-filling interpretation of the prior expres-
sion is given in Figure 17. In the next section, we describe how 
to attain this lower bound by extending SI samplers to an array 
of such samplers.

Multibranch sampling
In contrast to the case of a unimodal PSD, it is, in general, 
impossible to attain the function ( , )D f Rs  of (13) using a single 
SI sampler. Indeed, once we fix a band, no other bands located 
at integer multiples of the sampling rate are included in the 
support of the optimal presampling filter because of the 
aliasing-free property. This limitation implies that the support of 
the optimal presampling filter does not necessarily consist of a 
set of measured fs  with the largest signal energy, as in the defi-
nition of ( , )D f Rs . By using more sampling branches, the global 
aliasing-free property is relaxed to a local aliasing-free property 
at each sampling branch. Therefore, while each branch has con-
straints on the position of the bands in the support of its filter to 
avoid aliasing, the increment in sampling branches allows for 
more freedom in selecting the overall part of the spectrum 
passed by all filters. As a result, the union of the supports of an 
optimal set of L filters that are aliasing-free with respect to /f Ls  
approximates the set of maximal energy of measure fs  better 
than is possible with a single filter that is aliasing-free with 
respect to fs . This situation is shown in Figure 16. In particular, 
components that needed to be eliminated in the single-branch 
case because of aliasing with higher-energy components can 
now be retained, as these two components can be preserved on 
separate branches without interference with each other after 
sampling. In other words, multibranch sampling reduces part of 
the constraint on retaining desired signal components that arises 

as a result of the aliasing-free requirement in a single SI filter, 
leading to higher-energy frequency components in the resulting 
signal representation before encoding and therefore lower dis-
tortion after encoding.

This intuition motivates replacing the SI sampler in Figure 11 
with an array of such samplers, as shown in Figure 18. With-
in each branch, the presampling filter may pass only a nar-
row part of the signal’s spectrum and apply passband sampling 
[52]. This multibranch uniform sampler covers a wide class of 
sampling systems used in practice, including single-branch SI 
sampling, nonuniform periodic sampling, and multicoset sam-
pling [7], [53].

The analysis of the system is greatly simplified if all of 
the sampling branches have the same sampling rate. Thus, we 
assume that the sampling rate at each branch equals /f Ls , so 
that the overall effective sampling rate is fs . Similar to the case 
of a single SI sampler, the optimal selection of the presampling 
filters across all branches leads to a collection of filters with the 
aliasing-free property at each branch, such that the net energy 
passed by these filters is maximal [51]. Since the measure of the 
passband of each aliasing-free filter for sampling at rate /f Ls  is 
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FIGURE 18. A multibranch filter-bank uniform sampler. 
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at most /f Ls , the overall part of the spectrum passed by the L 
filters is at most of size .fs  This property implies that the lower 
bound ( , )D f Rs  of (13) is kept under this form of sampling.

The next question is whether this lower bound is attainable, 
provided that we are allowed to increase the number of sam-
pling branches L and the presampling filters ( ), , ( ).H f H fL1 f  
A positive answer to this question was given in [51], where it 
was shown that for any PSD, the distortion level ( , )D f Rs  can 
be attained using some finite number L*  of sampling branches 
and a particular set of filters, each of which is antialiasing for 
sampling at a rate of / .f Ls *  The reduction of the distortion in 
ADX using the optimal filter-bank sampler as the number of 
branches increases is shown in Figure 19. Also shown are the 
supports of the optimal presampling filters at a specific sam-
pling rate .fs

We conclude that the function ( , )D f Rs  describes an 
achievable lower bound for the distortion in the ADX setting 
with a multibranch uniform sampler. In the next section, we 
extend this result to nonuniform and generalized linear sam-
pling procedures.

Nonuniform and generalized sampling
We now extend the ADX setting to include a nonuniform sam-
pling system with time-varying preprocessing. We show that 
under some mild assumptions on the sampling set, it is impossi-
ble to achieve a distortion lower than ( , )D f Rs , where, here, fs  
equals the density of the sampling set. The definition of the 
density of a sampling set and more detailed background on 
nonuniform sampling can be found in “Nonuniform Sampling.” 
This extension includes all cases of linear continuous sampling, 
as given in “Generalized Sampling of Random Signals.”

A nonuniform time-varying sampler is shown in Figure 20. 
It is characterized by a discrete and ordered sampling set of 
sampling times , , , , ,t t t Rn01f f f 1K = -" ,  and a time-
varying impulse response ( , ).g t x  The sampling set is assumed 
to be uniformly discrete, in the sense that there exists a uni-
versal constant 02f  such that each two elements of K  are 
at least f  apart. The nth output of the sampler is the convolu-
tion of ( , )g t tn  with ( )X t , where tn ! K . For every finite time 
lag [ / , / ]T T2 2- , the vector Y  is the sampler output at times 
[ / , / ]T T2 2 +K- . Our goal is to map this vector to one of 2 TR6 @ 
elements and, by observing this element, recover ( )X t  over this 
time interval under MSE distortion. We note that although the 
sampler in Figure 20 has only a single sampling branch, the 
multibranch sampling system of Figure 18 may be realized by 
this filter using a particular choice of the time-varying opera-
tion [54].

As in the case of uniform sampling, it is instructive to begin 
our discussion with the lower bound on the minimal distortion 
obtained by the MMSE in estimating ( )X t  from its nonuni-
form sampled version Yn. A classical result in functional analy-
sis and signal processing due to Landau asserts that a signal 
can be perfectly recovered from its nonuniform samples if, and 
only if, the density of K  exceeds its spectral occupancy [55]. 
See “Nonuniform Sampling” for an overview of this result.  
In our setting, the spectral occupancy takes the form of the 

(a)

(b)

(c)

(d)

(e)

σ2

0 fNyq

fs

(b)

(c)

(d)

(e)

Support of
Optimal Filters
[Cases (b)–(d)]

Water-Filling
Representation
[Cases (b)–(e)]

FIGURE 19. The minimal distortion versus the sampling rate fs  for a fixed 
value of R . The case of no sampling prefilter is given in case (a), and 
the cases of one, two, and five sampling branches with optimal branch 
prefiltering are considered in cases (b), (c), and (d), respectively. For each 
of these cases and a fixed ,fs  the union of support for the optimal filters, 
which equals ,fs  is shown in the gray-scale images, and how these 
bands are identified through water-filling and the sampling distortion 
that results is shown in the color images. Case (d), of five SI sampling 
branches, preserves the part of the spectrum of measure fs  with the 
highest energy, and therefore achieves ( , ).D f Rs  (e) Shannon’s DRF with 
its water-filling representation.
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support of the PSD. Therefore, the function ( , )D f Rs  of (13) 
agrees with Landau’s characterization, since it implies that as 
R extends to infinity, zero MSE is attained if, and only if, the 
sampling rate exceeds the spectral occupancy.

The ADX with the nonuniform sampler extends the prior 
result, since it considers the case of a limited finite bit rate and 
linear preprocessing of the samples. For this setting, it is shown 
in [18] that the lower bound on the distortion ( , )D f Rs  still 
holds, provided fs  is replaced by the density of K . That is, for 
any time-varying system ( , )g t x  and any sampling set K  for 
which a density exists, the minimal distortion in the ADX set-
ting with a time-varying nonuniform sampler is lower-bounded 
by ( , )D f Rs , where fs  equals the density of K .

It follows that minimal distortion in the ADX setting under 
the class of linear pointwise samplers at rate fs  is fully char-
acterized by the function ( , )D f Rs . In general and accord-
ing to Landau’s condition for stable sampling, an equality 
between ( , )D f Rs  and Shannon’s DRF of the analog source 
is expected for sampling rates higher than the spectral occu-
pancy of ( ) .X t  We have seen, however, that this equality 
usually already occurs as the sampling rate fs  exceeds the 
support of the preserved part of the spectrum in the Pinsker–
Kolmogorov water-filling expression (6). In other words, the 
sampling structure that attains ( , )D f Rs  utilizes the special 
structure associated with the optimal lossy compression of 
analog signals given by the Pinsker–Kolmogorov result. It, 
in effect, aligns the degrees of freedom of the presampled 
signal with those of the postsampled lossy compressed sig-
nal so that the part of the signal removed prior to the sam-
pling stage matches the part of the signal removed under 
the optimal lossy compression of the signal subject to the 
bit-rate constraint.

As a final remark, we note that any linear continuous 
sampler as defined in “Generalized Sampling of Random 
Signals” can be expressed as the time-varying nonuniform 
sampler of Figure 20. Indeed, the kernel of the time-varying 
operation ( , )g t x  defines a set of linear continuous functionals 

( ) ( , ),g t g t t tn n n ! K= .

Summary of ADX
We have shown that the optimal tradeoff among distortion, bit 
rate, and sampling rate under the class of linear samplers with 
pointwise operations is fully described by the function 
( , )D f Rs  of (13). Moreover, the procedure for attaining an opti-

mal point in this tradeoff is summarized in the following steps.
1)	Given the bit-rate constraint R, use the Pinsker–

Kolmogorov water-filling (6) over the PSD ( )S fX . The crit-
ical sampling rate fR is the support of the frequency 
components associated with the preserved part of the spec-
trum in this expression.

2)	 Use a multibranch uniform sampler with a sufficient num-
ber of sampling branches optimized such that the com-
bined passband of all of the samplers is the support of the 
preserved part of the spectrum [52, Sec. IV].

3)	 Recover the part of the signal associated with the preserved 
part of the spectrum from all branches, as in standard MSE 
interpolation [61].

4)	 Fix a large time lag T and use a vector quantizer with TR6 @ 
bits to encode the estimate in step 3 over this lag.

The previously described procedure calls for a few com-
ments and extensions. First, we note that, although our 
description determines the minimal distortion and sampling 
rate as a function of the bit rate, this dependency can be 
inverted. That is, given a target distortion D, the Pinsker–
Kolmogorov expression (6) leads to a minimal bit rate R and 
a corresponding sampling rate required to attain this target. 
Second, steps 1–4 can be easily adjusted to consider a dif-
ferent distortion criterion according to a spectral importance 
masking, as described in the “Minimal Distortion Subject to 

Consider a sampling set K  for which there exists an 02f  
such that | |t tk n 2 f-  for every t tn k! ! K . The density of 
K  is defined as the number of elements of K  contained in 
a single interval of length r divided by r, in the limit as r 
extends to infinity and provided this limit exists. For exam-
ple, the density of a uniform sampling set f ZsK =  is .fs

The isomorphism described by (15) establishes an equiv-
alence between the problem of estimating a Gaussian sta-
tionary process from its samples at times K  under the 
mean squared error (MSE) criterion, and the problem 
of orthogonal projection onto the space spanned by 
( ) , .e tE ift

n
2 n_ !K Kr" ,  The conditions for this MSE to van-

ish are related to the fact that every element of ( )L SX2  can 
be approximated by a linear combination of exponentials 
in ( )E K , [56], [57]. This property, however, turns out to be 
too weak for practical sampling systems, since it does not 
guarantee stability: the approximation may not be robust 
to small perturbations in the time instances that inevitably 
are present in practice [3], [58], [59]. As a result, only sta-
ble sampling schemes [60] should be considered in appli-
cations. A necessary and sufficient condition for stable 
sampling was given by Landau [55], who showed that it 
can be obtained if, and only if, the density of K  exceeds 
the spectral occupancy of X(t).

Nonuniform Sampling

YnX (t ) g (t, τ )
tn ∈ Λ

FIGURE 20. A nonuniform sampler with time-varying preprocessing.
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a Bit-Rate Constraint” section. In addition, steps 3 and 4 
may be replaced by different techniques to attain the opti-
mal lossy compression performance [6]. For example, the 
output of each sampling branch can be encoded indepen-
dently of the other outputs using a separate bitstream. The 
bit rate of each bitstream is determined by the water-filling 
principle of (6b), with the PSD replaced by the PSD of the 
filtered signal at each sampling branch. Finally, we note that 
the multibranch uniform sampler can be replaced by a non-
uniform sampler with a single branch and possibly time-
varying operation [54], or fewer uniform sampling branches 
of different sampling rates. That is, although uniform multi-
branch sampling attains the minimal distortion ( , )D f Rs , it 
may not achieve it using the most compact system imple-
mentation. In addition to these extensions, we note that the 
characterization of the minimal distortion in ADX has also 
been derived for the Wiener process and for sparse source 
signals [62], [63].

Applications
The most straightforward application of sampling according to 
the optimal ADX scheme is the possibility to reduce the sam-
pling rates in systems operating under bit-rate restrictions. 
Examples are listed in “System Constraints 
on Bit Rate.” These systems process infor-
mation that originated in an analog signal 
under a bit-rate constraint. Therefore, in 
these cases, the rate at which the analog 
input is sampled can be reduced to be as 
low as the critical sampling rate fR, without 
increasing the overall distortion. How low 
this fR is, compared to the Nyquist rate 
or the spectral occupancy of the signal, 
depends on our assumptions on the source 
statistics through its PSD. Examples for the dependency 
between the two are shown in Figure 15. Evidently, reducing 
the sampling rate allows the saving of other system parame-
ters, such as power and thermal noise resulting from lower 
clock cycles. Alternatively, this reduction provides a way to 
sample wide-band signals that cannot be sampled at their 
Nyquist rate without introducing additional distortion due to 
sampling, on top of the distortion due to a bit-rate constraint. 
Next, we explore additional theoretical and practical implica-
tions of our ADX scheme.

Sampling infinite bandwidth signals
While a common assumption in signal processing is that 
for all practical purposes the bandwidth of the source sig-
nal is bounded, there are many important cases where this 
assumption does not hold. These cases include Markov 
processes, autoregressive processes, and the Wiener pro-
cess or other semimartingales. An important contribution 
of the ADX paradigm is in describing the optimal tradeoff 
among distortion, sampling rate, and bit rate, even if the 
source signal is bandlimited. This tradeoff is best explained 
by an example.

Consider a Gaussian stationary process ( )X tX  with a PSD of

	 ( )
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The signal ( )X tX  is also a Markov process, and it is, in fact, 
the unique Gaussian stationary process that is also Markovian 
(also known as the Ornstein–Uhlenbeck process). The PSD 

( )S fX  is shown in Figure 15, along with the relation between 
the bit rate R and the minimal sampling frequency fR required 
to achieve Shannon’s DRF of ( )X tX . This relation is obtained 
by evaluating ( , )D f Rs  for the PSD ( )S fX . In fact, the exact 
equation describing the green curve in Figure 15 can be evalu-
ated in closed form, from which it follows [18] that
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Notice that, although the Nyquist frequency of the signal 
in this example is infinite, for any finite R, there exists a criti-
cal sampling frequency fR, satisfying (16), such that Shannon’s 
DRF of ( )X tX  can be attained by sampling at or above fR.

The asymptotic behavior of (16) as R extends to infinity is 
given by ~ / .lnR f 2R^ h  Thus, for R sufficiently large, the opti-

mal sampling rate is linearly proportional to 
R and, in particular, in the limit of zero dis-
tortion when R grows to infinity. The ratio 
/R fs  is the average number of bits per sample 

used in the resulting digital representation. 
It follows from (16) that, asymptotically, the 
right number of bits per sample converges to 
/ .ln1 2 1 45. . If the number of bits per sam-

ple is below this value, then the distortion 
in ADX is dominated by Shannon’s DRF of 

( )X tX , as there are not enough bits to rep-
resent the information acquired by the sampler. If the number 
of bits per sample is greater than this value, then the distortion 
in ADX is dominated by the sampling distortion, as there are 
not enough samples for describing the signal up to a distortion 
equals to its Shannon’s DRF. 

As a numerical example, assume that we encode ( )X tX  
using two bits per sample, i.e., f R2s = . As R " 3, the ratio 
between the minimal distortion ( , )D f Rs  and Shannon’s DRF 
of the signal converges to approximately 1.08, whereas the 
ratio between ( , )D f Rs  and ( )fmmse s  converges to approxi-
mately 1.48. In other words, it is possible to attain the optimal 
encoding performance within a gap of approximately 8% by 
providing one sample per each two bits per unit time used in 
this encoding. Alternatively, it is possible to attain the optimal 
sampling performance within a gap of approximately 48% by 
providing two bits per each sample taken.

Theoretical limits on estimation from  
sampled and quantized information
The limitation on bit rate in the scenarios mentioned in 
“System Constraints on Bit Rate” are the result of engi-
neering limitations. However, sampling and quantization 

The lack of computational 
resources for the 
extraction of useful 
information from large 
data sets is one of the 
most pressing issues of 
the digital age.
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constraints may also be inherent in the system model and 
the estimation problem. As an example, consider the esti-
mation of an analog signal describing the behavior of the 
price of a financial asset. Although we assume that the price 
follows some continuous-time behavior, the value of the asset 
is only observed whenever a transaction is reported. This limi-
tation on the observation can be described by a sampling con-
straint. If the transactions occur at nonuniform time lags, 
then this sampling is nonuniform. Moreover, it is often as
sumed that the instantaneous change of the price is given by a 
deterministic signal representing the drift plus an additive 
infinite bandwidth and stationary noise [9]. Therefore, the 
signal in question is of infinite bandwidth, and sampling occurs 
below the Nyquist rate. 

In addition to the sampling constraint, it may be the case 
that the values of the transactions are hidden from us. The 
only information we receive is through a sequence of actions 
taken by the agent controlling this asset. Assuming the set of 
possible actions is finite, this last limitation corresponds to a 
quantization constraint. Therefore, the MMSE in estimating 
the continuous-time price based on the sequence of actions is 
described by the minimal distortion in the ADX.

While, in this case, we have no control over the actual way 
the samples are encoded (into actions), the minimal distortion 
in the ADX setting provides a lower bound on the distortion in 
estimating the continuous-time price. This distortion can be 
expressed by an additional noise in a model that makes deci-
sions based on the estimated price.

Removing redundancy at the sensing stage
At the end of the section “ADX Via Pulse-Code Modulation,” 
we concluded that, under an optimal encoder, oversampling 
does not affect the fundamental distortion limit, since the 
introduced redundancy is removed in the encoding. However, 
oversampling may still be undesirable to the overall system 
performance, since it results in redundant data that must be 
removed by additional processing. In fact, since analog signal 
processing is not constrained by memory or bit rate, when infor-
mation originating in an analog sig-
nal is converted to a digital form, it 
may bloat the system’s memory 
with a large amount of redundant 
data. The processing of these data 
requires additional resources that 
are proportional to their size and 
may severely restrict the system’s 
ability to extract useful information. 
Indeed, the lack of computational 
resources for the extraction of use-
ful information from large data sets 
is one of the most pressing issues of 
the digital age [64]. 

One way to address this big data 
challenge is by collecting only rel-
evant information from the analog 
world, i.e., attaining a nonredun-

dant digital representation of the analog signal. For example, 
oversampling in the PCM as in “ADX Via Pulse-Code Modu-
lation” section leads to a redundant digital representation of 
the quantized samples, since these become more correlated 
with one another as the sampling rate increases. Indeed, the 
properties of PCM imply that the optimal sampling rate that 
minimizes the distortion also maximizes the entropy rate of 
its digital output.

The counterpart of the PCM redundancy phenomena in the 
more general setting of ADX is the representation attained by 
optimal sampling at the critical rate. This optimal sampling 
can be seen as a mechanism to remove redundancy at the sam-
pling stage. It guarantees that the signal postsampling does 
not contain any parts that would be removed under an optimal 
lossy compression.

As an example of a system that benefits from operating 
according to the previously discussed principle, we envision a 
real-time voice-to-text transcriber based on an artificial neural 
network [65]. Such a system consists of an artificial neural net-
work that maps a sequence of bits to words, where this sequence 
is obtained by an ADX unit, as shown in Figure 21. Since the 
rate of information per unit time that can be processed by the 
neural net is limited, an optimal design of the ADX would pro-
vide bits into the neural network consistent with this rate. The 
challenge is, therefore, to sample and encode the audio signal 
at the rate of the neural network processing so as to provide 
the most relevant information subject to that rate constraint for 
the network to perform its classification task. If we assume that 
the most relevant information is described by a spectral psy-
choacoustic distortion function, then the optimal ADX scheme 
with a signal PSD weighted by this distortion function provides 
the most relevant information for classification, subject to the 
processing constraint.

Conclusions
The processing, communication, and/or digital storage of an ana-
log signal is achieved by first representing it as a bit sequence. 
The restriction on the bit rate of this sequence is the result of 

FIGURE 21. The bit rate of a digital representation of the sound of the word hello should not exceed the processing 
rate of the neural network. Sampling and lossy compression according to ADX preserves the most relevant part of 
the analog signal with respect to the distortion criterion and subject to the bit-rate constraint.
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constraints on power, memory, communication, and computa-
tion. In addition, hardware and modeling constraints in process-
ing analog information imply that the digital representation is 
obtained by first sampling the analog waveform and then quan-
tizing or encoding its samples. That is, the transformation from 
analog signals to bits involves the composition of sampling and 
quantization or, more generally, lossy compression operations.

In this article, we explored the minimal sampling rate 
required to attain the fundamental distortion limit subject to a 
strict constraint on the bit rate of the system. We concluded that 
when the energy of the signal is not uniformly distributed over 
its spectral occupancy, the optimal signal representation can 
be attained by sampling at a rate lower than the Nyquist rate, 
which depends on the actual bit-rate constraint. This reduction 
in the optimal sampling rate under finite bit precision is made 
possible by designing the sampling mechanism to sample only 
those parts of the signals that are not discarded because of 
optimal lossy compression.

The characterization of the fundamental distortion limit 
and the sampling rate required to attain it has several important 
implications. Most importantly, it provides an extension of the 
classical sampling theory of Whittaker, Kotelnikov, Shannon, 
and Landau, as it describes the minimal sampling rate required 
for attaining the minimal distortion in sampling an analog sig-
nal. It also leads to a theory of representing signals of infinite 
bandwidth with a vanishing distortion. In particular, it provides 
the average number of bits per sample, i.e., the ratio of the bit 
rate (bits per unit of time) and the sampling rate (samples per 
unit of time) so that, as the number of bits and samples per unit 
of time extend to infinity, the ratio between the distortion under 
optimal sampling and encoding and the DRF decreases to one. 

Our results also indicate that sampling at the Nyquist rate is 
not necessary when working under a bit-rate constraint for sig-
nals of either finite or infinite bandwidth. Such a constraint may 
be due to hardware power, cost, or memory limitations. More-
over, sampling a signal at its critical sampling rate associated 
with a given bit-rate constraint results in the most compact digital 
representation of the analog signal and thus provides a mecha-
nism to remove redundant information at the sensing stage.
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