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Abstract—Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and
interpretable image reconstructions. Conventionally, reconstruction algorithms have been derived from physical
principles. These algorithms rely on assumptions and approximations of the underlying measurement model, lim-
iting image quality in settings where these assumptions break down. Conversely, more sophisticated solutions
based on statistical modeling or careful parameter tuning or derived from increased model complexity can be
sensitive to different environments. Recently, deep learning�based methods, which are optimized in a data-
driven fashion, have gained popularity. These model-agnostic techniques often rely on generic model structures
and require vast training data to converge to a robust solution. A relatively new paradigm combines the power of
the two: leveraging data-driven deep learning and exploiting domain knowledge. These model-based solutions
yield high robustness and require fewer parameters and training data than conventional neural networks. In this
work we provide an overview of these techniques from the recent literature and discuss a wide variety of ultra-
sound applications. We aim to inspire the reader to perform further research in this area and to address the
opportunities within the field of ultrasound signal processing. We conclude with a future perspective on model-
based deep learning techniques for medical ultrasound. (E-mail: w.m.b.luijten@tue.nl) © 2022 The Author(s).
Published by Elsevier Inc. on behalf of World Federation for Ultrasound in Medicine & Biology. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

Ultrasound (US) imaging has proven itself to be an

invaluable tool in medical diagnostics. Among many

imaging technologies, such as X-ray, computed tomog-

raphy (CT) and magnetic resonance imaging (MRI), US

uniquely positions itself as an interactive diagnostic tool,

providing real-time spatial and temporal information to

the clinician. Combined with its relatively low cost,

compact size and absence of ionizing radiation, US

imaging is an increasingly popular choice in patient

monitoring.

Consequently, the versatility of US imaging has

spurred a wide range of applications in the field. While

conventionally it is used for the acquisition of B-mode

(2-D) images, more recent developments have enabled

ultrafast and 3-D volumetric imaging. Additionally, US
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devices can be used for measuring clinically relevant

features such as blood velocity (Doppler), tissue charac-

teristics (e.g., elastography maps) and perfusion through

ultrasound localization microscopy (ULM). Although

this wide range of applications shares the same underly-

ing measurement steps—acquisition, reconstruction and

visualisation—their signal processing pipelines are often

specific for each application.

It follows that the quality of US imaging strongly

depends on the implemented signal processing algo-

rithms. The resulting demand for high-quality signal

processing has pushed the reconstruction process from

fixed, often hardware-based implementations to the digi-

tal domain (Kim et al., 1997, Thomenius, 1996). More

recently, this has led to fully software-based algorithms,

as they can open up the potential to complex measure-

ment models and statistical signal interpretations. How-

ever, this shift has also posed a new set of challenges, as

it places a significant strain on the digitisation hardware,

bandwidth constrained data channels and computational
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capacity. As a result, clinical devices, where real-time

imaging and robustness are of utmost importance, still

rely mainly on simple hardware-based solutions.

A more recent development in this field is the utili-

zation of deep neural networks. Such networks can pro-

vide fast approximations for signal recovery, and can

often be efficiently implemented because of their exploi-

tation of parallel processing. After training, these net-

works can be efficiently implemented to facilitate

ultrafast signal processing. However, by inheriting

generic network architectures from computer vision

tasks, these approaches are highly data driven and are

often over-parameterized, posing several challenges. To

converge to a well-generalized solution across the full

data distribution encountered in practice, large amounts

of (unbiased) training data are needed, which are not

always trivial to obtain. Furthermore, these models are

often treated as a “black box,” making it difficult to guar-

antee the correct behavior in a real clinical setting.

To overcome some of the challenges of purely data-

driven methods, an alternative approach is to try to com-

bine model-based and data-driven methods in an attempt

to obtain the best of both worlds. The proposition here is

that the design of data-driven methods for ultrasound

signal processing can likely benefit from the vast

amounts of research on conventional, model-based,

reconstruction algorithms, informing, for example, spe-

cific neural network designs or hybrid processing

approaches.

In this review, we aim to provide the reader with a

comprehensive overview of ultrasound signal processing

based on modeling, machine learning and model-based

learning. To achieve this, we take a probabilistic per-

spective and place methods in the context of their

assumptions on signal models and statistics, and training

data. Although other works (Al Kassir et al., 2022,

Liu et al., 2019, Monga et al., 2021, Shlezinger et al.,

2020, van Sloun et al., 2019) offer an excellent overview

of the different aspects of AI applied to ultrasound image

processing, the focus of this review is to put the theory of

both signal processing and machine learning under a uni-

fying umbrella, rather than to showcase a general review

of deep learning (DL) being applied to ultrasound-spe-

cific problems. To that end, we cover topics ranging

from beamforming to post-processing and advanced

applications such as super-resolution. Throughout the

article we distinguish between three types of approaches

that we cover in separate sections.

� Model-based methods for US signal processing: Con-

ventional model-based methods derive signal process-

ing algorithms by modeling the problem based on first

principles, such as knowledge of the acquisition

model, noise and signal statistics. Simple models offer
analytical solutions, whereas more complex models

often require iterative algorithms.
� DL for US signal processing: DL solutions are fully

data driven and fit highly parameterized algorithms

(in the form of deep neural networks) to data. DL

methods are model-agnostic and thus rely on the train-

ing data to expose structure and relations between

inputs and desired outputs.
� Model-based DL for US signal processing: Model-

based DL aims at bridging the gap by deriving algo-

rithms from first-principle models (and their assump-

tions) while learning parts of these models (or

their analytic/iterative solutions) from data. These

approaches enable incorporation of prior knowledge

and structure (inductive biases) and offer tools for

designing deep neural networks with architectures that

are tailored to a specific problem and setting. The

resulting methods resemble conventional model-based

methods, but allow for overcoming mismatched or

incomplete model information by learning from data.

In all cases, data are needed to test the performance

of (clinical) signal processing algorithms. However, in

DL-based solutions specifically, we observe an increas-

ing need for training data when prior knowledge on the

underlying signal model is not fully exploited. A sche-

matic overview of these approaches is given in Figure 1,

including examples of corresponding techniques in the

case of ultrasound beamforming.

We begin by briefly explaining the probabilistic

perspective and notation we adopt throughout the article

in a preliminaries section, after which we provide back-

ground information on the basics of US acquisition,

which can be skipped by experts in the field of ultra-

sound. Following this background information, we dive

into model-based US signal processing, in which we

derive various conventional beamforming and post-proc-

essing algorithms from their models and statistical

assumptions. Next, we turn to DL methods, after which

we bridge the gap between model-based and DL-based

processing, identifying opportunities for data-driven

enhancement of model-based methods (and their

assumptions) by DL. Finally we provide a Discussion

and Conclusions, where we present a future outlook and

several opportunities for DL in ultrasound signal proc-

essing.
A PROBABILISTIC APPROACH TO DL IN US

SIGNAL PROCESSING

In this article we use the language and tools of prob-

ability theory to seamlessly bridge the gap between con-

ventional model-based signal processing and

contemporary machine/DL approaches. As Shakir



Fig. 1. Schematic overview of model-based and deep learning�based techniques in ultrasound signal processing. An
example for each category is given in the context of ultrasound beamforming: minimum variance beamforming, adaptive

beamforming by deep learning (ABLE) (Luijten et al., 2020) and deep beamforming (Khan et al., 2020).
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Mohamed (DeepMind, https://www.shakirm.com/slides/

MLSS2018-Madrid-ProbThinking.pdf) phrased it:

“Almost all of machine learning can be viewed in

probabilistic terms, making probabilistic thinking

fundamental. It is, of course, not the only view. But it

is through this view that we can connect what we do

in machine learning to every other computational sci-

ence, whether that be in stochastic optimisation, con-

trol theory, operations research, econometrics,

information theory, statistical physics or bio-statistics.

For this reason alone, mastery of probabilistic think-

ing is essential.”

To that end, we begin by briefly reviewing some

concepts in probabilistic signal processing based on

models and then turn to recasting such problems as data-

driven learning problems.

PRELIMINARIES ONMODEL-BASED

PROBABILISTIC INFERENCE

Let us consider a general linear model

y ¼ Axþ n ð1Þ
where y is our observed signal, A a measurement matrix,

n a noise vector and x the signal of interest. As we will

see throughout the article, many problems in ultrasound

signal processing can be described according to such
linear models. In ultrasound beamforming for example,

y may denote the measured (noisy) RF signals, x the spa-

tial tissue reflectivity and A a matrix that transforms such

a reflectivity map to channel domain signals. The goal of

beamforming is then to infer x from y under the mea-

surement model in eqn (1).

Recalling Bayes’ rule, we can define the posterior

probability of x given y, as a product of the likelihood

pðyjxÞ and a prior pðxÞ, such that

pðxjyÞ ¼ pðyjxÞp xð Þ
p yð Þ ð2Þ

/ pðyjxÞp xð Þ ð3Þ
Following (3) we can define a maximum a posteri-

ori (MAP) estimator for (1), given bybxMAP:¼arg maxxpðxjyÞ ¼ arg maxxpðyjxÞp xð Þ ð4Þ
which provides a single, most likely, estimate according

to the posterior distribution. If we assume a Gaussian

white noise vector n in eqn (1), that is, y»N ðAxjs2
nIÞ,

the MAP estimator becomesbx ¼ arg minx k y� Ax k 2
2 � λ logp xð Þ ð5Þ

where λ is a scalar regularization parameter.

Evidently, the MAP estimator takes the prior den-

sity function pðxÞ into account. In other words, it allows

us to incorporate and exploit prior information on x,

https://www.shakirm.com/slides/MLSS2018-Madrid-ProbThinking.pdf
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should this be available. Conversely, if x is assumed to

be deterministic but unknown, we get the maximum like-

lihood (ML) estimator. The ML estimator thus assigns

equal likelihood to each x in the absence of measure-

ments. As such this simplifies tobxML:¼arg maxxpðyjxÞ ð6Þ
Many traditional ultrasound processing methods are

in this form, where its output only depends on a set of

(finely tuned) hyperparameters and the input data. This

is not surprising, as deriving a strong and useful prior

that generalizes well to the entire expected data distribu-

tion is challenging in its own right.

Data-driven approaches aim to overcome the chal-

lenges of accurate modeling by learning the likelihood

function, the prior, the entire posterior or a direct end-to-

end mapping (replacing the complete MAP estimator)

from data. We will detail on these methods in the follow-

ing section.
Preliminaries on DL-based inference

Fully data-driven methods aim at learning the opti-

mal parameters u� of a generic parameterized mapping,

fuð ¢ Þ, Y !X ; from training data. In DL, the mapping

function fuð ¢ Þ is a deep neural network. Learning itself

can also be formulated as a probabilistic inference prob-

lem, where optimized parameter settings for a fixed net-

work architecture are inferred from a data set D . To that

end we define a posterior over the parameters

pðujD Þ ¼ pðD juÞp uð Þ
p Dð Þ ð7Þ

/ pðD juÞp uð Þ ð8Þ
where pðuÞ denotes a prior over the parameters. Often

pðuÞ is fully factorized, that is, each parameter is assumed

independent, to keep the learning problem in deep net-

works (with millions of parameters) tractable. Typical pri-

ors are Gaussian or Laplacian density functions.

Most DL applications rely on MAP estimation to

find the set of parameters that minimize the negative log

posterior:

u� ¼ arg maxupðujD Þ ¼ argmaxu logpðD juÞp uð Þ ð9Þ

¼ arg minu � logpðD juÞ þ logp uð Þf g ð10Þ
Note that for measurement (input)�signal (output)

training pairs, ðyi; xiÞ2D ; common forms of pðxjfuðyÞ; uÞ
are Gaussian, Laplacian or categorical distributions,

resulting in mean squared error, mean absolute error and

cross-entropy negative log-likelihood functions, respec-

tively. Similarly, Gaussian and Laplacian priors lead to

l 2 and l 1 regularization on the parameters, respectively.
It is worth noting that although most DL applications

perform MAP estimation, there is increasing interest in

so-called Bayesian DL, which aims at learning the

parameters of the prior distribution pðuÞ as well. This

enables posterior sampling during inference (by sam-

pling from pðuÞ) for (epistemic) uncertainty estimation.

Again, often these distributions are fully factorized (e.g.,

independent Gaussian or Bernoulli) to make the problem

tractable (Gal and Ghahramani, 2016).

After training (i.e., inferring parameter settings), we

can use the network to perform MAP inference to

retrieve x from new input measurements y:

bx ¼ arg maxxp
�
xjfu yð Þ; u

�
: ð11Þ

The neural network thus directly models the param-

eters of the posterior, and does not factorize it into a like-

lihood and prior term as model-based MAP inference

does. Note that for Gaussian and Laplace density func-

tions, a neural network fuðyÞ computes the distribution

mean, arg maxxpðxjfuðyÞ; uÞ ¼ fuðyÞ. For categorical dis-
tributions, fuðyÞ computes the probabilities for each cate-

gory/class.

Typical deep neural network parameterizations fuð ¢ Þ
are therefore model-agnostic, as they disregard the struc-

ture of the measurement/likelihood model and prior and

offer a high degree of flexibility to fit many data distribu-

tions and problems. However, many such parameteriza-

tions do exploit specific symmetries in the expected input

data. Examples are convolutional neural networks, which

exploit the spatial shift-invariant structure of many image

classification/regression problems through shift-equivar-

iant convolutional layers. Similarly, many applications in

which the input is temporally correlated, such as time

series analysis, recurrent neural networks (RNN) are

employed.
Preliminaries on model-based DL

Model-based DL aims at imposing much more

structure to the network architectures and parameteriza-

tions of fuð ¢ Þ. Where standard deep networks aim at fit-

ting a broad class of problems, model-based DL offers

architectures that are highly tailored to specific inference

problems given in eqns (1) and (4); that is, they are

aware of the model and structure of the problem. This

promises to relax challenges related to generalization,

robustness and interpretability in DL. It often also ena-

bles design of smaller (but more specialized) networks

with a lower computational and memory footprint.

To derive a model-based DL method, one can start

by deriving a MAP estimator for x from the model,

including assumptions on likelihood models pðyjxÞ and
priors pðxÞ. Generally, such estimators come in two

forms: analytic (direct) and iterative solutions. The
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solution structure dictates the neural network architec-

ture. One then has to select which parts of the original

model-based graph are to be replaced by learnable func-

tions.

One of the first examples of model-based DL is the

learned iterative-shrinkage and thresholding algorithm

(LISTA), proposed by Gregor and LeCun (Gregor and

LeCun, 2010). As the name suggests, fuð ¢ Þ is based on an
iterative solution, specifically to the MAP sparse coding

problem: arg maxxpðyjxÞpðxÞ, with x ~Laplaceð0; bIÞ,
where b is a scale parameter, and yjx»N ðAx; s2IÞ.
This iterative solution consists of two alternating steps:

(i) a gradient step on x to maximize the log-likelihood of

logpðyjxÞ, and (ii) a proximal step that moves the inter-

mediate solution for x toward higher log-likelihood under

the prior distribution logpðxÞ. The model-based DL

method LISTA unfolds or unrolls a limited number of

algorithm iterations to form a feed-forward neural net-

work, learning the parameters of the gradient step and the

proximal step end-to-end from training examples

(yi; xi 2D ), without knowledge on the underlying distri-

bution of these parameters. Moreover, LISTA has been

shown to accelerate inference compared with the iterative

algorithm.

Today, model-based DL is a rapidly developing

field, with many variations of such model-based DL

methods being developed for various problems and

applications (Monga et al., 2021). One can learn optimal

gradient steps, adopt neural-network-based proximal

operators and include deep generative models for itera-

tive/unfolded inference, thereby overcoming the limita-

tions of naive assumptions in model-based methods.

Similarly, for analytical solutions, one can replace com-

putations that rely on accurate model knowledge (that

may be unavailable) or are challenging/time-consuming

to compute by neural networks.

Also within the field of US imaging and signal proc-

essing, model-based DL is seeing increasing adoption for

problems spanning from beamforming (Luijten et al.,

2020) to clutter suppression (Solomon et al., 2019) and

localization microscopy (van Sloun et al., 2019). Exact

implementations of these model-based DL methods for

US imaging are indeed highly application specific

(which is its merit), as we discuss in a later section.
FUNDAMENTALS OF US ACQUISITION

Ultrasound imaging is based on the pulse-echo prin-

ciple. First, a pressure pulse is transmitted toward a

region of interest by the US transducer consisting of

multiple transducer elements. Within the medium, scat-

tering occurs because of inhomogeneities in density,

speed-of-sound and non-linear behavior. The resulting

back-scattered echoes are recorded using the same
transducer, yielding a set of radiofrequency (RF) channel

signals that can be processed. Typical ultrasound signal

processing includes B-mode image reconstruction via

beamforming, velocity estimation (Doppler) and addi-

tional downstream post-processing and analysis.

Although the focus of this article is on these proc-

essing methods, which we discuss in later sections, we

will for the sake of completeness briefly review the basic

principles of ultrasound channel signal acquisition.

Transmit schemes

Consider an ultrasound transducer with channels

c2C. A transmit scheme consists of a series of transmit

events e2E. Different transmit events can be con-

structed by adjusting the per channel transmit delays

(focusing), the number of active channels (aperture) and,

in advanced modes, also waveform parameters. We

briefly list the most common transmit schemes.

Line scanning

Most commercial ultrasound devices rely on

focused, line-by-line, acquisition schemes, as these yield

superior resolution and contrast compared with unfo-

cused strategies. In line scanning, a subaperture of chan-

nels focuses the acoustic energy by channel-dependent

transmit delays along a single (axial) path at a set depth,

maximizing the reflected echo intensity in a region of

interest (Ding et al., 2014). Some transmit schemes

make use of multiple foci per line. To cover the full lat-

eral field of view, many scan lines are needed, limiting

the overall frame rate.

Synthetic aperture

In synthetic aperture (SA) imaging, each channel

transmit�receive pair is acquired separately

(Jensen et al., 2006, Ylitalo and Ermert, 1994). To that

end, each element independently fires a spherical wave-

front, the reflections of which can be simultaneously

recorded by all receiving elements. Typically, the num-

ber of transmit events is equal to the number of trans-

ducer elements (E ¼ C). Having access to these

individual transmit�receive pairs enables retrospective

transmit focusing to an arbitrary set of foci (e.g., each

pixel). Although SA imaging offers advantages in terms

of receive processing, it is time consuming, similar to

line scanning. Furthermore, single elements generate

low acoustic energy, which reduces the signal-to-noise

ratio (SNR).

Plane and diverging wave

Recently, unfocused (parallel) acquisition schemes

have become more popular, as they can drastically

reduce acquisition times, yielding so-called ultrafast

imaging at very high frame rates. Plane wave (PW)
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imaging insonifies the entire region of interest at once

through a planar wave field, by firing with all elements

and placing the axial focus point at infinity. Diverging

wave (DW) transmissions also insonify the entire region

of interest in one shot, but generate a spherical (diverg-

ing) wavefront by placing a (virtual) focus point behind

the transducer array. Especially for small transducer

footprints (e.g., phased array probes), DW schemes are

useful to cover a large image region.

Both PW imaging and DW imaging suffer from dete-

riorated resolution and low contrast (high clutter) because

of strong interference by scattering from all directions.

Often, multiple transmits at different angles are therefore

compounded to boost image quality. However, this

reduces frame rate. Unfocused transmissions rely heavily

on the powerful receive processing to yield an image of

sufficient quality, raising computational requirements.

Doppler

Beyond positional information, ultrasound also per-

mits measurement of velocities, useful in the context of,

for example, blood flow imaging or tissue motion esti-

mation. This imaging mode, called Doppler imaging

(Chan and Perlas, 2011, Hamelmann et al., 2019,

Routh, 1996), often requires dedicated transmit schemes

with multiple high-rate sequential acquisitions. Continu-

ous wave Doppler allows for simultaneous transmit and

receive of acoustic waves using separate sub-apertures.

Although this yields a high temporal sampling rate, and

prevents aliasing, it does result in some spatial ambigu-

ity. The entire region of overlap between the transmit

and receive beams contributes to the velocity estimate.

Alternatively, pulsed-wave Doppler relies on a series of

snapshots of the slow-time signal, with the temporal

sampling rate being equal to the frame rate. From these

measurements, a more confined region of interest can be

selected for improved position information, at the cost of

possible aliasing.

Waveform and frequency

The resolution that can be obtained using ultrasound

is in large part dependent on the frequency of the transmit-

ted pulse. High transmit pulse frequencies and short pulse

durations yield high spatial resolution, but are strongly

affected by attenuation. This becomes especially problem-

atic in deep tissue regions. As a general rule, the smallest

measurable structures scale to approximately half the

wavelength of the transmit frequency, that is, the diffrac-

tion limit. In practice the transmit pulse spans multiple

wavelengths, which additionally limits axial resolution by

half the transmit pulse length. Design choices such as

transducer array aperture, element sensitivity, bandwidth

of the front-end circuitry and reconstruction algorithms

also play a dominant role in this.
Array designs

Depending on the application, different transducer

types may be preferred. Either because of physical con-

straints or from having desirable imaging properties.

Commonly used transducer geometries include linear,

convex and phased arrays. Effectively, the transducer

array, consisting of elements, spatially samples the array

response. Typically, these array elements have a center-

to-center spacing (pitch) of λ=2 or less, to avoid spatial

aliasing. In general, a larger number of elements yields a

better resolution image, but this consequently increases

size, complexity and bandwidth requirements. Especially

for 2-D arrays (used in 3-D imaging), the large number

of transducer elements can be problematic in implanta-

tion because of the vast number of physical hardware

connections. Other than translating to an increase in cost

and complexity, it also raises power consumption. In

those cases, often some form of micro-beamforming is

applied in the front end, combining individual channel

signals early in the signal chain.

Similar reductions in data rates can be achieved

through sub-sampling of the receive channels. Trivial

approaches include uniform or random sub-sampling, at

the cost of reduced resolution, and more pronounced ali-

asing artifacts (grating lobes). Several works have

reported that these effects can be mitigated either by

principled array designs (Cohen and Eldar, 2020,

Song et al., 2020) or by learning sub-sampling patterns

from data in a task-adaptive fashion (Huijben et al.,

2020).

Sub-Nyquist signal sampling

Digital signal processing of US signals requires

sampling of the signals received by the transducer, after

which the digital signal is transferred to the processing

unit. To prevent frequency-aliasing artifacts, sampling at

the Nyquist limit is necessary. In practice, sampling rates

4�10 times higher are common, as they allow for a finer

resolution during digital focusing. As a consequence,

this leads to high bandwidth data streams, which become

especially problematic for large transducer arrays (e.g.,

3-D probes).

Compressed sensing (CS) provides a framework

that allows for reduced data rates, by sampling below the

Nyquist limit, alleviating the burden on data transfer

(Eldar, 2015). CS acquisition methods provide strong

signal recovery guarantees when complemented with

advanced processing methods for reconstruction of the

signal of interest. These reconstruction methods are typi-

cally based on MAP estimation, combining likelihood

models on the measured data (i.e., a measurement

matrix) with priors on signal structure (e.g., sparsity in

some basis). Many of the signal processing algorithms

that we list throughout the article will find application
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within a CS context, especially those methods that intro-

duce a signal prior for reconstruction, either through

models or by learning from data. The latter is especially

useful for elaborate tasks where little is known about the

distribution of system parameters, offering signal recon-

struction beyond what is possible using conventional CS

methods.

For further reading into the fundamentals of ultra-

sound, the reader may refer to works such as Brahme

(Brahme, 2014).
Model-based US signal processing

Model-based ultrasound signal processing techniques

are based on first principles such as the underlying physics

of the imaging setup or knowledge of the statistical struc-

ture of the signals. We now describe some of the most com-

monly used model-based ultrasound signal processing

techniques, building on the probabilistic perspective

sketched in earlier sections. For each algorithm, we explic-

itly list (i) inputs and outputs (and dimensions), (ii) the

assumed signal model and statistics, (iii) signal priors and

(iv) the resulting ML/MAP objective and solution.

Beamforming, the act of reconstructing an image

from the received raw RF channel signals, is central to

ultrasound imaging and typically the first step in the sig-

nal processing pipeline. We thus start our description

with beamforming methods.
Beamforming

Given an ultrasound acquisition of C transducer

channels, Nt axial samples and E transmission events,

we can denote Y 2RE�C�Nt as the recorded RF data

cube, representing backscattered echoes from each trans-

mission event. With beamforming, we aim to transform

the raw aperture domain signals Y to the spatial domain

through a processing function f ð ¢ Þ such thatbX ¼ f Yð Þ ð12Þ
where bX represents the data beamformed to a set of focus

points Sr. As an example, in pixel-based beamforming,

these focus points could be a pixel grid such that

Sr 2Rrx�rz , where rx and ry represent the lateral and axial

components of the vector indicating the pixel coordinates,

respectively. Note that although this example is given in

Cartesian coordinates, beamforming to other coordinate

systems (e.g., polar coordinates) is also common.
Delay-and-sum beamforming

Delay-and-sum (DAS) beamforming has been the

backbone of ultrasound image reconstruction for decades.

This is driven mainly by its low computational complex-

ity, which allows for real-time processing, and efficient

hardware implementations. In DAS, to reconstruct a tissue
reflectivity image (B-mode), the aperture domain signals

are first migrated back to the image domain in a process

called time-of-flight (TOF) correction. This transforma-

tion is based on the back-projection of the time-domain

signals, and aims at aligning the received signals for a set

of focus points (in pixel-based beamforming: pixels) by

applying time delays. We can define the total TOF from

transmission to the receiving element as

tr ¼ t rx; rz½ � ¼ jjre � rjj2 þ jjrc � rjj2
v

ð13Þ

where tr is the channel delay required to focus to an

imaging point r, vectors re and rc correspond to the ori-

gin of the transmit event e, and the position of element c,

respectively, and v is the speed-of-sound in the medium.

Note that the speed-of-sound is generally assumed to be

constant throughout the medium. As a consequence,

speed-of-sound variations can cause misalignment of the

channel signals and result in aberration errors.

After TOF correction, we obtain a channel vector yr
per pixel r, for which we can define a linear forward

model to recover the pixel reflectivity xr:

yr ¼ 1rxr þ nr ð14Þ
Here, yr 2RC is a vector containing the received

aperture signals, xr 2R is the tissue reflectively at a sin-

gle focus point r and nr 2RC�1 is an additive Gaussian

noise vector »N ð0; s2
nIÞ. In this simplified model, all

interference (e.g., clutter, off-axis scattering, thermal

noise) is contained in n. Note that (without loss of gener-

ality) we assume a real-valued array response in our

analysis, which can be straightforwardly extended to

complex values (e.g., after in-phase and quadrature

demodulation). Under the Gaussian noise model, eqn

(14) yields the likelihood model for the channel vector

pðyrjxrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

n

� �q exp �ðyr � 1rxrÞ2
2s2

n

" #
ð15Þ

where s2
n denotes the noise power.

The delay-and-sum beamformer is the per-pixel ML

estimator of the tissue reflectively, bxr, given bybxr:¼arg maxxr logpðyrjxrÞ ð16Þ

¼ arg maxxrðyr � 1rxrÞH yr � 1rxrð Þ ð17Þ
Solving eqn (17) yields

bxr ¼ 1

C
1Hyr ¼

1

C

XC
c¼1

yc ð18Þ

where C is the number of array elements. In practice,

apodization/tapering weights are included to suppress

side lobes:
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bxr ¼ 1

C
wHyr ¼

1

C

XC
c¼1

wcyc ð19Þ

This form can be recognized as the standard defi-

nition of DAS beamforming, in which the channel

signals are weighed using an apodization function, w,

and subsequently summed to yield a beamformed

signal.

To promote either higher resolution or contrast, fur-

ther adjustments can be made to the apodization func-

tion. However, this always poses an inherent

compromise between main lobe width and side lobe

intensity or, equivalently, resolution and contrast. This

can be attributed to the beamformer, which is a spatial

filter characterized by the aperture pitch (sampling rate),

aperture size (filter length) and apodization weights (fil-

ter coefficients). Typical choices for apodization weights

are tapered functions, such as Hanning or Hamming win-

dows, in which elements further away from the focus

point are weighed less then the elements close by. In

commercial devices, these apodization weights are often

finely tuned to optimize image quality for each trans-

ducer type and imaging setting, and may vary spatially

(per focus point). Similar to DAS for aggregating chan-

nels, different transmit events can be aggregated, known

as coherent compounding.
Frequency domain beamforming

In the previous section, all processing was done in

the time domain. Alternatively, the TOF correction can

be implemented in the frequency domain. This has sev-

eral benefits. First, it avoids the need for oversampling

channel data at high rates to enable accurate time-

domain delays. Second, it facilitates sub-Nyquist acqui-

sition schemes that sample only the most important

Fourier coefficients (e.g., via sum of sinc filters). In this

context, Chernyakova and Eldar (Chernyakova and

Eldar, 2014) proposed a Fourier-domain beamformer

(FDBF), which allows for a substantial reduction in sam-

pling rates while maintaining image quality. Denote by v

½k� the kth Fourier series coefficient of a beamformed

signal. The Fourier transform of the time-aligned signals

is defined asbvc k½ � ¼
X

vc k � n½ �Qk;c;r ð20Þ

Here, Qk;c;r are the Fourier coefficients of a distor-

tion function derived from the beamforming delays at r,

as in eqn (13).

When not all Fourier coefficients are sampled (i.e.,

in sub-Nyquist acquisition), the desired time-domain sig-

nal can be recovered using CS methods such as NESTA

(Becker et al., 2011) or via DL approaches.
Advanced adaptive beamforming

The shortcomings of standard DAS beamforming

have spurred the development of a wide range of adaptive

beamforming algorithms. These methods aim to overcome

some of the limitations that DAS faces by adaptively tuning

its processing based on the input signal statistics.
Minimum variance

Delay-and-sum beamforming is the ML solution of

eqn (14) under white Gaussian noise. To improve real-

ism for more structured noise sources, such as off-axis

interference, we can introduce a colored (correlated)

Gaussian noise profile n ~Nð0;GnÞ, with Gr being the array

covariance matrix for beamforming point r. Maximum

(log) likelihood estimation for xr then yieldsbxr ¼ arg maxxr logpðyrjxr;GrÞ ð21Þ

¼ arg minxr yr � 1xrð ÞHG�1
r yr � 1xrð Þ ð22Þ

Setting the gradient of the argument in eqn (22)

with respect to bxr equal to zero gives
0 ¼ d

dbxr yr � 1bxrð ÞHG�1
r yr � 1bxrð Þ ð23Þ

0 ¼ �21HG�1
r yr � 1bxrð Þ ð24Þ

bxr ¼ 1HG�1
r 1

� ��1
1HG�1

r yr ð25Þ
It can be shown that solution (25) can also be

obtained by minimizing the total output power (or vari-

ance), while maintaining unity gain in a desired direction

(the foresight):

minw wH
r Grwr;

s:t: wH
r 1 ¼ 1 ð26Þ
Solving for eqn (26) yields the closed form solution

bwMV ¼ 1G�1
n

1HG�1
n 1

ð27Þ

which is known as minimum variance (MV) or capon

beamforming.

In practice, the noise covariance is unknown, and is

instead empirically estimated from data (Gn ¼ E½yyH �).
For stability of covariance matrix inversion, this estima-

tion often relies on averaging multiple sub-apertures and

focus points or adding a constant factor to the diagonal

of the covariance matrix (diagonal loading). Note here

that for G ¼ s2
nI (white Gaussian noise), we get the DAS

solution as in eqn (18).

Minimum variance beamforming was found to

improve both resolution and contrast in ultrasound

images, and has similarly found application in plane
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wave compounding (Austeng et al., 2011). However, it is

computationally complex because of the inversion of the

covariance matrix (Raz, 2002), leading to significantly

longer reconstruction times compared with DAS. To

boost image quality further, eigenspace-based MV

beamforming has been proposed (Deylami et al., 2016),

at the expense of further increasing computational com-

plexity. As a result of this, real-time implementations

remain challenging, to an extent that MV beamforming

is almost exclusively used as a research tool.
Wiener beamforming

In the previously covered methods, we considered the

ML estimate of bx. Following eqn (4), we can extend this

by including a prior probability distribution pðxrÞ, such thatbxr ¼ arg maxxrðyrjxrÞp xrð Þ ð28Þ
For a Gaussian likelihood model, the solution to this

MAP estimate is equivalent to minimizing the mean

squared error, such thatbw ¼ arg minwE½jxr � wHyrj2� ð29Þ
also known as Wiener beamforming (Van Trees, 2004).

Solving this yields

bwwiener ¼ s2
x

s2
x þ wH

MVGrwMV

wMV ð30Þ

with Gr being the array covariance for beamforming

point r, and wMV the MV beamforming weights given

by eqn (27). Wiener beamforming is therefore equivalent

to MV beamforming, followed by a scaling factor based

on the ratio between the signal power and total power of

the output signal, which can be referred to as post-filter-

ing. Based on this result, Nilsen and Holm (2010)

observed that for any w that satisfies wH1 ¼ 1 (unity

gain), we can find a Wiener post-filter that minimizes the

MSE of the estimated signal. As such, we can write

Hwiener ¼ arg minHE½jxr � HwHyrj2� ð31Þ

Hwiener ¼ s2
x

s2
x þ wHGrw

ð32Þ

Assuming white Gaussian noise (Gr ¼ s2
nI, and x»

N ð0; s2
xÞ the Wiener beamformer is equivalent to Wie-

ner post-filtering for DAS, given by

bwwiener ¼ HwienerwDAS ¼ s2
x

Cs2
x þ s2

n

1 ð33Þ
Coherence factor weighing

The coherence factor (CF) (Mallart and Fink, 1994)

aims to quantify the coherence of the backscattered
echoes to improve image quality through scaling with a

so-called coherence factor, defined as

CF ¼ j1Hyrj2
CyHr yr

ð34Þ

where C denotes the number of channels. Effectively,

this operates as a post-filter, after beamforming, based

on the ratio of coherent and incoherent energy across the

array. As such, it can suppress focusing errors that may

occur because of speed-of-sound inhomogeneity, given

by

bxCF ¼ CF ¢ bxDAS ¼ CF

C
1Hyr ¼

s2
x

Cs2
x þ Cs2

n

1Hy ð35Þ

The CF has been reported to significantly improve

contrast, especially in regions affected by phase distor-

tions. However it also suffers from reduced brightness

and speckle degradation. An explanation for this can be

found when comparing eqn (35) with the Wiener post-

filter for DAS in eqn (33). We can see that CF weighing

is in fact a Wiener post-filter where the noise is scaled

by a factor C, leading to a stronger suppression of inter-

ference, but consequently also reducing brightness. Sev-

eral derivations of the CF have been proposed to

overcome some of these limitations or to further improve

image quality, such as the generalized CF (Li and

Li, 2003) and phase coherence factor (Camacho et al.,

2009).
Iterative MAP beamforming

Chernyakova et al. Chernyakova et al., 2019) pro-

posed an iterative maximum a posteriori (iMAP) estima-

tor, which provides a statistical interpretation to post-

filtering. The iMAP estimator works under the assump-

tion of knowledge on the received signal model, and

treats signal of interest and interference as uncorrelated

Gaussian random variables with variance s2
x . Given the

likelihood model in eqn ((15) and x»N ð0; s2
xÞ, the

MAP estimator of x is given by

bxMAP ¼ s2
x

s2
n þ Cs2

x

1Hyr ¼
Cs2

x

s2
n þ Cs2

x

bxDAS ð36Þ

However, the parameters s2
x and s2

n are unknown in

practice. Instead, these can be estimated from the data at

hand, leading to an iterative solution

First an initial estimate of the signal and noise var-

iances is calculated through

bs2
x ; bs2

n

n o
tð Þ
¼ bx2tð Þ; 1C jjyr � 1bx tð Þjj2

� �
ð37Þ

and initialization with the DAS estimate bx 0ð Þ ¼ 1
C
1Hy.

Following eqns (4) and (37), a MAP estimate of the
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beamformed signal is given by

bxiMAP; tþ1ð Þ ¼
bs2
x; tð Þ

Cbs2
x; tð Þ þ bs2

n; tð Þ
1Hyr ð38Þ

where t is an index denoting the number of iterations.

Equations (37) and (38) are iterated until a stopping cri-

terion is met. The authors suggest that two iterations

yield a sufficient noise reduction (80�100 dB) for con-

ventional ultrasound images. If we compare eqn (33)

with eqn (38), we can see that for the estimates given by

eqn (37), Wiener beamforming coincides with a single

iteration of the iMAP algorithm.
ADMIRE

Byram and colleagues have proposed aperture

domain model image reconstruction (ADMIRE)

(Byram, 2017, Byram et al., 2015), which explicitly

models the underlying acoustic “sources” in the scan

region. Let A be a model matrix with predictors repre-

senting both scattering from cluttered regions and scat-

tering from the direction of interest, and b a vector of

model parameters. We can then write the received signal

at each time instance as y ¼ Ab, where y is a single fre-

quency bin of the received signal from a given short-

time Fourier transform (STFT) window. Exact details on

y, b and A are given in Byram et al. (Byram et al.,

2015). Performing MAP estimation for b under a (white)

Gaussian measurement model and a mixed Gaussian/

Laplacian prior yields

bb ¼ arg minb

�
j
				y� Ab k 2

2

þ λ a

								b				j1 þ 1� að Þ
								y k 2

2=2


 �� ð39Þ

where a and λ are regularization parameters. This partic-

ular form of regularization is also called elastic-net regu-

larization. ADMIRE shows significant reduction in

clutter as a result of multipath scattering and reverbera-

tion, resulting in a 10- to 20-dB improvement in con-

trast-to-noise ratio (CNR).
Sparse coding

Chernyakova and Eldar (Chernyakova and

Eldar, 2014) proposed formulating the beamforming pro-

cess as a line-by-line recovery of backscatter intensities

from (potentially undersampled) Fourier coefficients.

Denoting the axial fast-time intensities by x2RN , and

the noisy measured DFT coefficients of a scan line by

~y2RM , with M�N , we can formulate the linear mea-

surement model

~y ¼ HFuxþ n ¼ Axþ n ð40Þ
where Fu is an M � N (partial) DFT matrix, H is a diag-

onal M �M matrix representing the DFT coefficients of

the transmit pulse and n is a white Gaussian noise vector.

Recovery of x under a Laplace prior distribution (i.e.,

assuming it is sparse) can again be posed as a MAP esti-

mation problem:

bx ¼ arg maxxpð~yjxÞp xð Þ

¼ arg maxxjj~y� Ax k 2
2 þ λjjxjj1 ð41Þ

where λ is a regularization parameter. Problem (41) can

be solved using the iterative shrinkage and thresholding

algorithm (ISTA), a proximal gradient method:

bxkþ1 ¼ tλ xk � mAH Axk � ~y
� �� � ð42Þ

where tλ ¼ sgnðxiÞðjxij � λÞþ is the proximal operator of

the l 1 norm, m is the gradient step size and ð ¢ ÞH denotes

the Hermitian, or conjugate transpose. It is interesting to

note that the first step in the ISTA algorithm, given bybx1 ¼ AH~y ¼ FH
u H

H~y, thus maps ~y back to the axial/fast-

time domain through the zero-filled inverse DFT.
Wavefield inversion

The previously described beamforming methods

all build on measurement models that treat pixels or

scan lines (or, for ADMIRE, short-time windows)

independently. As a result, complex interaction of

contributions and interference from the full lateral

field of view are not explicitly modeled and are often

approximated through some noise model. To that end,

several works explore reconstruction methods that

model the joint across the full field of view and its

intricate behavior, at the cost of a higher computa-

tional footprint.

Such methods typically rely on some form of

“wavefield inversion,” that is, inverting the physical

wave propagation model. One option is to pose beam-

forming as a MAP optimization problem through a

likelihood model that relates the per-pixel backscatter

intensities to the channel signals Ozkan et al., 2017,

Szasz et al., 2016, Szasz et al., 2016) and some prior/

regularization term on the statistics of spatial distribu-

tions of backscatter intensities in anatomical images.

On the basis of the time delays given by eqn ((13)

(and the Green’s function of the wave equation), our

typical linear forward model can again be formulated

as

y ¼ Axþ n ð43Þ
where x2Rrxrz is a vector of beamformed data, n2RCNt

an additive white Gaussian noise vector and y2RCNt the

received channel data. The space�time mapping is

encoded in the sparse matrix A2R.
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Solving this system of equations relies heavily on

priors to yield a unique and anatomically feasible solu-

tion, and yields the MAP optimization problembx ¼ arg minx k y� Ax k 2
2 � log pu xð Þ; ð44Þ

where log pu(x) acts as a regularizer, with parameters u

(e.g., an l1 norm to promote a sparse solution

(Combettes and Wajs, 2005)). Ozkan et al. (Ozkan et al.,

2017) investigated several intuition- and physics-based

regularizers and their effect on the beamformed image.

The results indicate benefits for contrast and resolution

for all proposed regularization methods, however each

yielding different visual characteristics. This illustrates

that choosing correct regularization terms and parame-

ters that yield a robust beamformer can be challenging.
Post-processing

After the channel data are mapped to the image

domain via beamforming, ultrasound systems apply sev-

eral post-processing steps. Classically, this includes fur-

ther image processing to boost B-mode image quality

(e.g., contrast, resolution, despeckling), but also spatiotem-

poral processing to suppress tissue clutter and to estimate

motion (e.g., blood flow). Beyond this, we see increasing

attention for post-processing methods dedicated to

advanced applications such as super-resolution ultrasound

localization microscopy (ULM). We now review some

of the model-based methods for post-processing, cover-

ing B-mode image quality improvement, tissue clutter

filtering and ULM.
B-Mode image quality improvement

Throughout the years, many B-mode image-quality

boost algorithms have been proposed with aims that can

be broadly categorized into: (i) resolution enhancement,

(ii) contrast enhancement and (iii) speckle suppression.

Although our focus lies on model-based methods (to

recall: methods that are derived from models and first

principles), it is worth nothing that B-mode processing

often also relies on heuristics to accommodate, for exam-

ple, user preferences. These include fine-tuned bright-

ness curves (S-curves) to improve perceived contrast.

In a method commonly used to boost image quality,

multiple transmissions are coherently compounded

with diverse transmit parameters. Often, a simple mea-

surement model similar to that in DAS is assumed,

where multiple transmissions are (after potential TOF

alignment) assumed to measure the same tissue intensity

for a given pixel, but with different Gaussian noise real-

izations. As for the Gaussian likelihood model for DAS,

this then simply yields averaging of the individual meas-

urements (e.g., different plane wave angles, or
frequencies). More advanced model-based compounding

methods use MV weighting of the transmits, thus assum-

ing a likelihood model in which multiple measurements

have correlated noise:bxr ¼ arg maxxr logpðyrjxr;GrÞ ð45Þ

¼ arg minxr yr � 1xrð ÞHG�1
r yr � 1xrð Þ ð46Þ

Note that here, unlike in MV beamforming, yr is a vec-

tor containing the beamformed pixel intensities from multi-

ple transmits/measurements (after TOF alignment), bxr is the
compounded pixel and Gr is the auto-correlation matrix

across the series of transmits to be estimated. Compounding

can boost resolution and contrast and suppress speckle.

After compounding, additional processing is per-

formed to further boost image quality. For denoising/

speckle suppression, many advanced methods have

been developed that all aim to reduce inter-tissue varia-

tions while preserving sharpness of edges. This

includes directional median filtering (Czerwinski et al.,

1995), adaptive kernel sizes (Nugroho et al., 2019) or,

more recently, non-local-means (NLM) filters and their

Bayesian extension, the optimized Bayesian NLM

(OBNLM) filter. These methods formulate denoising as

a patch-based MAP inference problem (Kervrann et al.,

2007), where an unobserved image patch x with some

unknown probability density function is estimated from

its noisy observation y ¼ f ðxþ nÞ, with f ð ¢ Þ denoting
a function related to the image formation processes,

and n a random noise vector with independent and iden-

tically distributed (i.i.d.) entries. The density functions

are then estimated by exploiting redundancy across

patches in an image, drawing samples from a local

neighborhood. This probabilistic Bayesian interpreta-

tion of NLM has enabled ultrasound-specific imple-

mentations with more realistic (multiplicative) noise

models (Coupe et al., 2008). Other MAP approaches

pose denoising as a dictionary matching problem

(Jabarulla and Lee, 2018). These methods do not

explicitly estimate patch density functions from the

image, but instead learn a dictionary of patches. Other

approaches combine spatial filters with priors (e.g.,

sparsity) in a transformed domain, that is, the wavelet

domain (Garg and Khandelwal, 2019), or combine PCA

and wavelet transforms (Jagadesh and Rani, 2016)].

To achieve a boost in image resolution, the problem

can be recast as MAP estimation under a likelihood

model that includes a deterministic blurring/point-

spread-function matrix Ablur

bx ¼ arg minx k y� Ablurx k 2
2 � log pu xð Þ ð47Þ
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where x is the (vectorized) high-resolution image to be

recovered, and y is a (vectorized) blurred and noisy

(Gaussian white) observation y. This deconvolution

problem is ill posed and requires adequate regularization

via priors. As we noted before, the log-prior term can

take many forms, including l 1 or total variation-based

regularizers.

Clutter filtering for flow

For many applications (including flow mapping and

localization microscopy), suppression of reflections from

tissue is of interest (Wildeboer et al., 2020). Slow-mov-

ing tissue introduces a clutter signal that introduces arti-

facts and obscures the feature of interest being imaged

(be it blood velocity or, e.g., contrast agents), and con-

siderable effort has gone into suppressing this tissue clut-

ter signal. Although infinite impulse response (IIR) and

finite impulse response (FIR) filters have been the filters

most commonly used for such tasks, it is still very diffi-

cult to separate the signals originating from slow-moving

blood or fast-moving tissue. Therefore, spatiotemporal

clutter filtering is receiving increasing attention. We

here review some of these more advanced methods

(including singular value thresholding and robust princi-

ple component analysis), again taking a probabilistic

MAP perspective.

We define the spatiotemporal measured signal as a

Casorati matrix, Y2RNM�T , where N and M are spatial

dimensions, and T is the time dimension, which we

model as Y ¼ Xtissue þ Xblood, where Xtissue 2RNM�T is

the tissue component, and Xblood 2RNM�T is the blood/

flow component. We then impose a prior on Xtissue, and

assume it to be low rank. If we additionally assume

Xblood to have i.i.d. Gaussian entries, the MAP estimation

problem for the tissue clutter signal becomesbXtissue ¼ arg maxXtissue
pðYjXtissueÞp Xtissueð Þ

¼ arg maxXtissue
logpðYjXtissueÞ þ log p Xtissueð Þð Þ

¼ arg minXtissue
kY� XtissueF k þ λ kXtissue k �

ð48Þ
where k ¢ k F and k ¢ k � denote the Frobenius norm and

the nuclear norm, respectively. The solution to eqn (48)

isbXtissue ¼ T SVT;λ Yð Þ ð49Þ
where T SVT;λ is the singular value thresholding func-

tion, which is the proximal operator of the nuclear norm

(Cai et al., 2010).

To improve on the model in eqn (48), one can

include a more specific prior on the flow components

and separate them from the noise:

Y ¼ Xtissue þ Xblood þ N ð50Þ
Here we place a mixed l 1=l 2 prior on the blood

flow component Xblood and assume i.i.d. Gaussian entries

in the noise matrix N, such thatbXtissue; bXblood ¼ arg maxXtissue;Xblood
pðYjXtissue;XbloodÞ

p Xtissueð Þ p Xbloodð Þ

þ log p Xtissueð Þð Þ þ log p Xbloodð Þð Þ

¼ arg minXtissue;Xblood
kY� Xtissue � Xblood k F

þ λ1 kXtissue k � þ λ2 kXblood k 1;2

where k ¢ k 1;2 indicates the l 1 and l 2 norm. This low-

rank plus sparse optimization problem is also termed

robust principle component analysis (RPCA), and can be

solved through an iterative proximal gradient method

Xkþ1
tissue ¼ T SVT;λ1 Xk

tissue � m1 Y� Xk
tissue � Xk

blood

� �� �
ð51Þ

Xkþ1
blood ¼ T 1;2;λ2 Xk

blood � m2 Y� Xk
tissue � Xk

blood

� �� �
;

ð52Þ
where T SVT;λ1 is the solution of eqn (48) (i.e., the proxi-

mal operator of the nuclear norm), T 1;2;λ1 is the mixed

l 1� l 2 thresholding operation and m1 and m2 are the

gradient steps for the two terms.

Shen et al. (Shen et al., 2019) further augmented the

RPCA formulation to boost resolution for the blood flow

estimates. To that end, they add a PSF-based convolution

kernel to the blood component Ar⊛Xblood, casting it as a

joint deblurring and signal separation problem.
Ultrasound localization microscopy

We now turn to an advanced and increasingly popu-

lar ultrasound signal processing application: ULM. Con-

ventional ultrasound resolution is fundamentally limited

by wave physics, to half the wavelength of the transmit-

ted wave, that is, the diffraction limit. This limit is in the

range of millimeters for most ultrasound probes, and is

inversely proportional to the transmission frequency.

However, high transmit frequencies come at the cost of

lower penetration depth.

To overcome this diffraction limit, ULM adapts

concepts from Nobel prize-winning superresolution fluo-

rescence microscopy to ultrasound. Instead of localizing

fluorescent blinking molecules, ULM detects and local-

izes ultrasound contrast agents, microbubbles (MBs),

flowing through the vascular bed. These microbubbles

have are similar in size to red blood cells and act as point

scatterers. By accumulating precisely localized micro-

bubbles across many frames, a super-resolution image of
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the vascular bed can be obtained. In typical implementa-

tions, the localization of the MBs is performed by cen-

troid detection (Christensen-Jeffries et al., 2020,

Couture et al., 2011, Siepmann et al., 2011).

Not surprisingly, we can also pose microbubble

localization as a MAP estimation problem (van Sloun

et al., 2017). We define a sparse high-resolution image

that is vectorized into x, in which only few pixels have

non-zero entries: those pixels that contain a microbub-

ble. Our vectorized measurements can then be modeled

as y ¼ Axþ n, where A is a PSF matrix and n is a white

Gaussian noise vector. This yields the following MAP

problem:bx ¼ arg maxypðyjxÞp xð Þ

¼ arg maxx logpðyjxÞ þ logp xð Þ

¼ arg minx k y� Ax k 2
2 þ λ k x k 1 ð53Þ

van Sloun et al. van Sloun et al., 2017) proposed solving

this sparse coding problem using ISTA, similar to the

formulation in eqn ((42).

Instead of processing each image frame indepen-

dently, Bar-Zion et al. (Bar-Zion et al., 2018) exploited

sparse structure in the temporal correlation domain; that

is, y is a correlation image, leading to the SUSHI

method. Later, Solomon et al. (Solomon et al., 2019)

combined MAP estimation across the spatial dimensions

with MAP estimation in time, by complementing the

spatial sparse coding problem with a Kalman filter that

places a prior on future microbubble locations according

to a motion model.

DL FOR US SIGNAL PROCESSING

Deep learning�based ultrasound signal processing

offers a highly flexible framework for learning a desired

input�output mapping bX ¼ fuðY Þ from training data,

overcoming the need for explicit modeling and deriva-

tion of solutions. This can be especially advantageous

for complex problems in which models fall short (e.g.,

incomplete, with naive assumptions) or their solutions

are demanding or even intractable. We now review some

emerging applications of DL in the ultrasound signal

processing pipeline. As in the previous section, we first

cover advanced methods for beamforming and then turn

to downstream post-processing such as B-mode image

quality improvement, clutter suppression and ULM.

Beamforming

We discern two categories of approaches: neural

networks that replace the entire mapping from channel

data to images, and those that replace only the beamsum-

ming operation, that is, after TOF correction. Hyun et al.
(Hyun et al., 2021) and Bell et al. (Bell et al., 2019,

Bell et al., 2020) recently organized the Challenge on

Ultrasound Beamforming with Deep Learning (CUBDL)

to incentivize new research in this area. For a more in-

depth survey on DL for ultrasound beamforming, includ-

ing common training strategies and loss functions, we

refer the reader to van Sloun et al. (van Sloun et al.,

2021).

Direct channel to image transformation

Nair et al. (Nair et al., 2018, Nair et al., 2020) intro-

duced a method that learns a direct convolutional neural

network-based transformation between the channel sig-

nals and a target B-mode image. The proposed U-Net

architecture thus has to learn both the (geometry-based)

time-of-flight correction and the subsequent beamsum-

ming. The inputs and outputs of the network comprise

IQ-demodulated channel data (separate I and Q inputs) Y

2RC�Nt� 2 and a beamformed image X2RRx�Ry ,

respectively. The network additionally outputs direct

segmentations of anechoic regions in the image. Train-

ing is done using ultrasound simulations of a variety of

anechoic cysts.

Replacing the entire beamforming pipeline is an

unconventional application of U-Net�style architec-

tures, which were originally designed for image-to-

image translation (segmentation) problems. Instead, the

U-Net here also performs time-to-space migration. It is

worth noting that much of the efficiency of convolutional

networks comes from their ability to exploit spatial sym-

metries (i.e., translation/shift equivariance): their opera-

tions do not depend on the position in the data; that is,

they are spatially invariant. In contrast, TOF correction

is based on the geometry of the array and the scan region,

and its operation varies depending on the focus point. As

such, learning time�space migration through standard

convolutional architectures is not trivial. Most beam-

forming approaches thus benefit from traditional align-

ment of the channel data before processing.

Beam summing after TOF correction

Although the solution proposed by Nair et al.

(Nair et al., 2018, Nair et al., 2020) replaces the entire

beamformer with a convolutional neural network

(including the time�space migration), most works con-

fine the problem to only the beamsumming and com-

pounding steps, leaving the TOF correction based on

geometry. As such it replaces the model-based probabi-

listic beamforming/summing methods, mapping TOF-

corrected channel data Y2RC�Rx�Ry , to an image

X2RRx�Ry . In advanced adaptive beamforming with intri-

cate models, this step is often the most time consuming and

complex, in some cases preventing real-time implementa-

tion. Often, an important goal of DL-based beamsumming is
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therefore to accelerate these advanced beamsumming meth-

ods by learning fast neural network approximations. Many

of the methods we list here make use of deep convolutional

architectures, which have a significant spatial receptive field:

the summed output at a given pixel is based on a large spatial

input support. This spatial “awareness” contrasts with most

of the model-based beamforming methods that operate on a

per-pixel or sometimes per-line basis.

In the work by Khan et al. (Khan et al., 2019,

Khan et al., 2020), a DL-based beamforming network

was proposed that replaces the conventional summation

of channel signals and envelope detection with a deep

convolutional neural network (CNN). Additionally,

Khan et al. reported that their method enables image

reconstruction from sub-sampled radiofrequency (RF)

data, in which a set of receive elements is inactive,

thereby reducing the required bandwidth. In an extension

of this work, Khan et al. (Khan et al., 2021, Khan et al.,

2021) found that such a beamformer can be optimized

for different imaging settings and controlled through the

introduction of a style code vector in the latent space and

training on a corresponding image target with a given

style/setting. Such an approach avoids the need to store

separate models for each setting.

Vignon et al. (Vignon et al., 2020) proposed a solu-

tion similar to that of Khan et al. (Khan et al., 2021,

Khan et al., 2021) in which linewise channel signals are

beamsummed by a CNN. It is worth noting that in this

work, training data are generated using purely simula-

tions, in which targets correspond to DAS beamformed

images obtained with larger simulated array aperture to

yield better imaging resolution.

Mamistvalov et al. (Mamistvalov et al., 2021) pro-

posed a U-Net architecture for beamsumming after Four-

ier-domain TOF correction. This enables sub-Nyquist

acquisition by Xampling (Chernyakova and Eldar, 2014),

reducing data rates. The authors report that their convo-

lutional U-Net architecture enables reconstruction of

high-quality images from fast-time sub-Nyquist acquisi-

tions acquired with a sparse array (channel subsampling)

(Cohen and Eldar, 2018), suppressing the aliasing arti-

facts.

Similarly, Huijben et al. (Huijben et al., 2020) per-

formed image reconstruction from sparse arrays of

undersampled channels using a convolutional network

architecture. In addition, they provided a mechanism for

jointly learning optimal channel selection/sparse array

design via a technique dubbed deep probabilistic sub-

sampling.

Although most beamforming methods aim at boost-

ing resolution and contrast, Hyun et al. (Hyun et al.,

2019) argued that beamformers should accurately esti-

mate the true tissue backscatter map and, thus, also target

speckle reduction. The authors trained their beamformer
on ultrasound simulations of a large variety of artificial

tissue backscatter maps derived from natural images.

Post-processing

Application of DL methods to general image proc-

essing/restoration problems has seen a surge of interest

in recent years, resulting in remarkable performance

across a range of applications. Naturally, these pure

image processing methods are being explored for ultra-

sound post-processing as well. In this section we treat

the same topics as in the previous section, but focus on

recent DL methods.

B-Mode image quality improvement

A common means to boost ultrasound image quality

is compounding data from different transmits. Although

model-based methods offer simple pixel-based com-

pounding strategies (either by simply summing or via

MV processing), several groups have investigated the

use of deep CNNs for improved compounding

(Guo et al., 2020, Khan et al., 2019, Lu et al., 2019). Jan-

sen et al. (Jansen et al., 2021) propose performing this

compounding step in the Radon domain.

In addition to compounding multiple transmits,

many DL methods aim at single-image enhancement,

including resolution/contrast boost, but also speckle sup-

pression. Gasse et al. (Gasse et al., 2017) explored map-

ping a single PW image to an image that was

compounded using multiple PWs. Zhou et al.

(Zhou et al., 2018) pursued a similar goal, but introduced

a multibranch CNN with an additional wavelet-based

post-processing step. Qi et al. (Qi et al., 2020) performed

processing in the Fourier domain, using pixelwise fully

connected neural networks. Rather than compounded

PWs, the authors use a focused line-scan image as a tar-

get.

Chang et al. (Chang et al., 2019) posed denoising as

a signal decomposition problem. To that end they pro-

posed a two-stage CNN that simultaneously models the

image and noise, where the noise estimates, in turn,

inform the image estimates to cope with various noise

distributions.

Temiz and Bilge (Temiz and Bilge, 2020) aimed at

single-image super-resolution, that is, to achieve a B-

mode image with a higher pixel resolution. The authors

achieve this by training a deep CNN with a dataset con-

taining B-mode US images across a range of scale/zoom

factors. A similar approach was taken by Choi et al.

(Choi et al., 2018), who proposed a deep CNN called

SRGAN with the aim of mapping low-resolution images

to a high-resolution domain.

Both Vedula et al. (Vedula et al., 2017) and Ando

et al. (Ando et al., 2020) approached the issue of speckle

reduction in similar ways, by using a CNN. However,
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they used different forms of input and target data, while

Vedula et al. (Vedula et al., 2017) used IQ data, Ando

et al. (Ando et al., 2020) used B-mode images. Similarly,

Dietrichson et al. (Dietrichson et al., 2018) performed

this task by using a CNN, albeit with a more complex

training strategy, by employing a GAN-based structure.

Karaoglu et al. (2021) compared many approaches to

this problem from the perspective of neural networks,

and detailed the effectiveness of the many architectures.

They found that the GAN and the U-Net�like algo-

rithms in their study performed the best. Although all the

works cited on this topic so far deal with 2-D US scans,

Li et al. (Li et al., 2020) attempted to extend it to 3-D

imaging using a 3-D U-Net model. It is an interesting

point to note that Vedula et al. (Vedula et al., 2017) and

Ando et al. (Ando et al., 2020) used simulated data,

whereas the other works on speckle reduction used in

vivo data gathered from volunteers. However, there is

uniformity in how these works created their target

images through model based speckle reduction algo-

rithms.

Most DL methods for image quality improvement

rely on supervised learning, requiring ground truth tar-

gets, which are often difficult to obtain. As an alterna-

tive, Huh et al. (Huh et al., 2022) presented a self-

supervised method based on the cycle-GAN architecture,

originally developed for unpaired (cycle-consistent)

style transfer (Huh et al. 2021). This approach aims at

transferring the features of a high-quality target distribu-

tion of images to a given low-quality image, which the

authors leverage to improve elevational image quality in

3-D ultrasound.

Clutter filtering for flow

Brown et al. (Brown et al., 2020) described a 3-D

(2-D + time) CNN-based spatiotemporal filtering scheme

for tissue clutter suppression, aimed mostly at accelerat-

ing the Singular Vector Decomposition (SVD) algorithm

for real-time use. To that end, they used SVD-processed

in vivo and in vitro images as targets. Similarly, Wang

et al. (Wang et al., 2021) aimed at replacing SVD thresh-

olding, but rather than a 3-D CNN, the authors adopted a

2-D (spatial) CNN, aggregating temporal information in

the feature space through a recurrent neural network.

Tabassian et al. (Tabassian et al., 2019) used a deep

3-D CNN (2-D + time) to suppress clutter and reverbera-

tion artifacts that plague echocardiographic imaging.

Their deep network was trained on realistic simulations

of echocardiographic exams, with simulated superim-

posed artifacts.

Ultrasound localization microscopy

van Sloun et al. (van Sloun et al., 2019, van Sloun

et al., 2020) proposed a DL method based on an
encoder�decoder architecture that aims to replace costly

iterative techniques for sparse coding to obtain super-

resolution vascular images from high-density contrast-

enhanced ultrasound data. Later, Liu et al. (Liu et al.,

2020) proposed a similar approach, but used a sub-pixel

CNN. Brown et al. (Brown et al., 2021) proposed to per-

form jointly tissue clutter filtering and localization by a

3-D CNN to further boost processing rates. Notably,

Youn et al. (Youn et al., 2020) performed localization

directly from channel data.

MODEL-BASED DL FOR US SIGNAL

PROCESSING

We now highlight several works that incorporate

signal processing knowledge in their DL approaches to

improve performance, reduce network complexity and

provide reliable inference models. Generally, these mod-

els retain a large part of the conventional signal process-

ing pipeline intact, and replace critical points in the

processing with neural networks so as to provide robust

inference as a result. We discuss methods ranging from

iterative solvers to unfolded fixed complexity solutions.

Beamforming

Model-based pre-focusing using DL. Pre-focusing

(or TOF correction) is conventionally done deterministi-

cally based on the array geometry and assuming a con-

stant speed-of-sound. Instead, data-adaptive focusing, by

calculating delays based on the recorded data, facilitates

correction for speed-of-sound mismatches. The work by

Nair et al. (Nair et al., 2018, Nair et al., 2020) does this

implicitly, by finding a direct mapping from the time

domain to an output image, using DL. However, this

yields a black-box solution, which can be difficult to

interpret.

Kim et al. (Kim et al., 2021) adheres more strictly

to a conventional beamforming structure and tackled this

problem in two steps: first, the estimation of a local

speed-of-sound map, and second, the calculation of the

corresponding beamforming delays. The speed-of-sound

image is predicted from multi-angled plane wave trans-

missions using SQI-net (Oh et al., 2021), a type of U-

Net. One then needs to find the propagation path and

travel time of the transmitted pulse, that is, the delay

matrix, between each imaging point and transducer ele-

ment. For a uniform speed-of-sound this is trivial, as the

shortest distance between a point and element corre-

sponds to the fastest path. For a non-uniform speed-of-

sound, this is more challenging and requires a path-find-

ing algorithm that adds to the computational complexity.

The Dijkstra algorithm (Dijkstra, 1959), for instance,

which is commonly used to find the fastest path, has a

complexity of O ðn2 lognÞ, where n is the number of
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nodes in the graph or, equivalently, the density of the

local speed-of-sound grid.

As such, the authors proposed a second U-

Net�style neural network, referred to as DelayNet, for

estimating these delay times. The network comprises 3

� 3 locally masked convolutions, such that no filter

weights are assigned in the direction opposite the direc-

tion of wave propagation. Intuitively, this can be under-

stood as enforcing an increasing delay time the further

we get from the transducer; that is, the wave does not

move in reverse direction. Furthermore, the reduced fil-

ter count improves computational efficiency by » 33%.

Finally, the predicted delay matrix is used to focus

the RF data using the corrected delays, after which it is

beamsummed to yield a beamformed output signal. As

such, DelayNet does not have to be trained directly on a

target delay matrix, but instead can be trained end-to-

end on the desired beamformed targets. Note that in this

method, the speed-of-sound is estimated in a purely

data-driven fashion. However, the pre-focusing itself

inherits a model-based structure by constraining the

problem to learning time shifts from the aforementioned

speed-of-sound map.

Model-based beamsumming using DL

Luijten et al. [ (Luijten et al., 2019), 2020] proposed

adaptive beamforming by DL (ABLE), a DL-based

beamsumming approach that inherits its structure from

adaptive beamforming algorithms, specifically minimum

variance (MV) beamforming. ABLE specifically aims to

overcome the most computationally complex part of the

beamforming, the calculation of the adaptive apodization

weights, replacing this with a neural network fu. The step

from the model-based MAP estimator to ABLE is then

given by

bxr ¼ arg maxxrp yrjxrð Þ ¼ 1HG�1
r 1

� ��1
1HG�1

r yr ð54Þ

¼ arg maxxrpðyrjxrÞ � fuðyrÞHyr ð55Þ
where u comprises the neural network weights, and yr
the TOF-corrected RF data. Multiplying the predicted

weights by the TOF-corrected data and summing the

result yield a beamformed output signal.

Note that for training, we do not need access to the

apodization weights as in MV beamforming. Instead,

this is done end-to-end toward an MV-generated target,

given by

argmin
u

L fu yrð ÞHyr; bxMV

� �
ð56Þ

where bxMV is an MV training target, and L is a loss

function. As the network operates directly on RF data,

which have positive and negative signal components, as
well as a high dynamic range, the authors propose an

anti-rectifier as an activation function. The anti-rectifier

introduces a non-linearity while preserving the sign

information and dynamic range, unlike the rectified lin-

ear unit, or hyperbolic tangent. Similarly, a signed mean

squared logarithmic error (SMSLE) loss function is

introduced that ensures that errors in the RF domain

reflect the errors in the log-compressed output image.

The authors illustrate that a relatively small network,

comprising four fully connected layers, can solve this

task, and is able to generalize well to different data sets.

They report an increase in resolution and contrast, while

reducing computational complexity by two to three

orders of magnitude.

Wiacek et al. (Wiacek et al., 2020) similarly

exploited DNNs as a function approximator to accelerate

the calculation of the short-lag spatial coherence

(SLSC). Specifically the authors applied their method to

SLSC beamforming, which displays the spatial coher-

ence of backscattered echoes across the transducer array.

This contrasts with conventional DAS beamforming in

which the recorded pressures are visualized. The authors

report a 3.4 times faster computation compared with the

standard CPU-based approach, corresponding to a frame

rate of 11 frames/s.

Luchies and Byram (Luchies and Byram, 2018)

proposed a wideband DNN for suppressing off-axis

scattering, which operates in the frequency domain,

similar to ADMIRE discussed earlier. After focusing

on an axially gated section of channel data, the RF

signals undergo a discrete Fourier transform (DFT),

mapping the signal into different frequency bins. The

neural network operates specifically on these fre-

quency bins, after which the data are transformed

back to the time domain using the inverse discrete

Fourier transform (IDFT) and summed to yield a

beamformed signal. The same fully connected net-

work structure was used for different center frequen-

cies, only retraining the weights.

An extension of this work is described in Khan et al.

Khan et al., 2021, Khan et al., 2021), in which the neural

network itself is replaced by a model-based network

architecture. The estimation of model parameter b, as

formulated in eqn ((39), can be seen as a sparse coding

problem y ¼ Ab (where b is a sparse vector) which can

be solved by using an iterative algorithm such as ISTA.

This yieldsbbkþ1 ¼ tλ bk � mAT Abk � y
� �� � ð57Þ

where tλð ¢ Þ is the soft-thresholding function parameter-

ized by λ.
To derive a model-based network architecture, eqn

(57) is unfolded as a feed-forward neural network with
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input ATy and output bb, the predicted model coefficients.

For each iteration, or fold, we can then learn the weight

matrice, and the soft-thresholding parameter λ trainable.
This then leads to a learned ISTA algorithm (LISTA)bbkþ1 ¼ tλk Wkbk þ ATy

� � ð58Þ
where Wk represents a trainable fully connected layer

and λk is a (per fold) trainable thresholding parameter.

When contrasted with its model-based iterative counter-

part ISTA, LISTA is a fixed complexity solution that tai-

lors its processing to a given data set using DL.

Compared with conventional deep neural networks,

however, LISTA has a lower number of trainable param-

eters.

The authors illustrate that LISTA can be trained on

model fits of ADMIRE or even simulation data contain-

ing targets without off-axis scattering, thereby poten-

tially outperforming the fully model-based algorithm

ADMIRE, because of its ability to learn optimal regular-

ization parameters from data.

Mamistvalov and Eldar (Mamistvalov and

Eldar, 2021) take a similar avenue and recast their

model-based solution for reconstructing images from

sub-Nyquist acquisitions (across channels and time) into

an unfolded LISTA architecture. Although the aforemen-

tioned method based on ADMIRE learns to estimate

sparse codes in the aperture/channel-domain dictionary,

the method of Mamistvalov and Eldar (Mamistvalov and

Eldar, 2021) learns to sparsely encode (fast-time) RF

lines. The original ISTA-based algorithm is recast as a

fixed-length feed-forward model in which the matrix

operations are replaced with learned convolutional

layers. By training the network on pairs of sub-Nyquist�
and full Nyquist�rate data, the authors illustrate that

their approach enables a reduction in data rates as high

as 88% without significantly compromising image qual-

ity.
Model-based wavefield inversion using DL

Reconstruction techniques based on the inversion of

a (non-)linear measurement model are often very compu-

tationally intensive and require careful tuning of hyper-

parameters to ensure robust inference. Alternatively,

Almansouri et al. (Almansouri et al., 2018,

Almansouri et al., 2018) proposed a two-step approach

that leverages a simple linear model to obtain an initial

estimation, after which further refinement is done

through a CNN. As such, the neural network can account

for non-linear, and space-varying, artifacts in the mea-

surement model.

The ultrasound forward model is based on a set of

differential equations and depends mainly on three

parameters: the acoustic velocity c0, the density r0 and
the attenuation a0. Such a model could abstractly be

defined as

y ¼ f c0; r0;a0ð Þ ð59Þ
However, because of the complex non-linear nature

of this forward model, a simplified linear model was

developed by Almansouri et al. (Almansouri et al., 2018,

Almansouri et al., 2018) that yields the estimatorbx ¼ arg minx k y� Ax k 2
2 � log pu xð Þ ð60Þ

where A is a matrix that accounts for time shifting and

attenuation of the transmit pulse. The adjoint operator

operator of the linearized model gives an approximate

estimator for x, given by » x ¼ ATy. The authors adopt

a U-Net architecture to compensate for artifacts caused

by non-linearities. Effectively the the network finds a

mapping from a relatively simple estimate, yet based on

the physical measurement model, and maps it to a

desired high-quality image such thatbx � fu ATy
� � ð61Þ

where f ð ¢ Þu denotes the neural network, and bx is the

high-quality estimate.
Post-processing and interpretation

Deep unfolding for B-mode IQ enhancement/PW

compounding/compressed acquisition. Chennakeshava

et al. (Chennakeshava et al., 2020, Chennakeshava et al.,

2021) proposed a plane wave compounding and decon-

volution method based on deep unfolding. Their archi-

tecture is based on a proximal gradient descent

algorithm derived from a model-based MAP optimiza-

tion problem, which is subsequently unfolded and

trained to compound three plane wave images, gathered

at low frequency, into an image gathered using 75 com-

pounded plane wave transmissions at a higher frequency.

This encourages a learned proximal operator that maps

low-resolution, low-contrast input images onto a mani-

fold of images with better spatial resolution and contrast.

Denote x2RN as the vectorized high-resolution

beamformed RF image and y2RNM as the vectorized

measurement of low-resolution beamformed RF images

from M ¼ 3 transmitted plane waves. The authors

assume the acquisition model

y ¼ Axþ n ð62Þ
where

A ¼

A1

A2

..

.

AM

0BBBB@
1CCCCA ð63Þ
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and

y ¼

y1

y2

..

.

yM

0BBBB@
1CCCCA ð64Þ

where ym is the vectorized, beamformed RF image

belonging to the mth steered plane wave transmission, n

2 RNM is a noise vector that is assumed to follow a

Gaussian distribution with zero mean and diagonal

covariance and A 2 RNM�N is a block matrix, with its

blocks A1, A2,..., AM being the measurement matrices of

individual PW acquisitions. The authors assume that the

measurement matrices (which capture the system PSF

for each PW) follow a convolutional Toeplitz structure.

On the basis of this model, each fold in the unfolded

proximal gradient algorithm aimed at recovering the

high-resolution image x is written as

bx kþ1ð Þ ¼ P kð Þ
u W kð Þyþ V kð Þbx kð Þ
� �

ð65Þ

where P u is a U-Net�style neural network replacing the

generalised proximal operator, and

W kð Þy:¼w
kð Þ
1 ⊛y1 þ w

kð Þ
2 ⊛y2 þ :::þ w

kð Þ
M ⊛ym ð66Þ

V kð Þbx kð Þ ¼ v kð Þ⊛bx kð Þ ð67Þ
where ⊛ denotes a convolutional operation, and

fwðkÞ
1 ; :::;w

ðkÞ
m g and vðkÞ are learned convolutional ker-

nels. The authors illustrate that their model-based DL

architecture outperforms model-agnostic DL methods,

yielding high-contrast and high-resolution outputs.

Deep unfolding for clutter filtering. Solomon et al.

Solomon et al., 2019) proposed deep unfolded convolu-

tional robust RPCA for ultrasound clutter suppression.

The approach is derived from the RPCA algorithm,

given by ((51) and (52), but unfolds it and learns all the

parameters (gradient projection and regularization

weights) from data. Each network layer in the unfolded

architecture takes the form

bX kþ1ð Þ
tissue ¼ T kð Þ

SVTðW kð Þ
1 ⊛YþW

kð Þ
3 ⊛X

kð Þ
blood

þ W
kð Þ
5 ⊛X

kð Þ
tissueÞ ð68Þ

and

bX kþ1ð Þ
blood ¼ T kð Þ

λ ðW kð Þ
2 ⊛YþW

kð Þ
4 ⊛X

kð Þ
blood

þ W
kð Þ
6 ⊛X

kð Þ
tissueÞ ð69Þ

where W1;W2;W3;W4;W5 and W6 are trainable con-

volutional kernels. The resulting deep network has two
distinct (model-based) non-linearities/activations per

layer: the mixed l 1;2 thresholding and singular value

thresholding. The authors trained the architecture end to

end on a combination of simulations and RPCA results

on real data, and determined that it outperforms a strong

non-model-based deep network (a ResNet).

Deep unfolding for ultrasound localization micros-

copy. In the spirit of unfolding, van Sloun et al.

(van Sloun et al., 2019) proposed unfolding their sparse

recovery algorithm for ULM to enable accurate localiza-

tion even for high concentrations of microbubbles. Simi-

lar to the previous examples of unfolding, each of the

layers k in the resulting architecture takes the form

x kþ1ð Þ ¼ T λ kð Þ W
kð Þ
1 yþW

kð Þ
2 x kð Þ

� �
ð70Þ

with W
ðkÞ
1 and W

ðkÞ
2 being trainable convolutional ker-

nels. The authors trained this convolutional LISTA

architecture on simulated envelope-detected RF US data

comprising microbubbles under a distribution of point-

spread functions. This method was later adopted by Bar-

Shira et al. (Bar-Shira et al., 2021), who used it to per-

form localization microscopy in in vivo breast lesions.

Youn et al. (Youn et al., 2021) took this one step

further and combined the image-domain LISTA archi-

tecture by van Sloun et al. (van Sloun et al., 2021) with

the ABLE beamforming architecture of Luijten et al.

(Luijten et al., 2020), training the joint network end-to-

end. The authors found that this outperforms non-joint

optimization and that ABLE learns to accommodate the

downstream localization problem addressed by LISTA.

Speckle suppression using deep generative priors

Van de Schaft and van Sloun (Van de Schaft and

van Sloun, 2021) formulate the task of speckle suppres-

sion as a MAP problem in which a clean image x is

recovered from a measured, speckle-corrupted, image y:bx ¼ argmax
x

pðxjyÞ ¼ argmax
x

pðyjxÞp xð Þ:

The authors proposed modeling the clean image

prior pðxÞ using a deep generative model (a normalizing

flow) trained on magnetic resonance images, which natu-

rally have no speckle but display similar anatomical

structure. Under such a deep generative normalizing

flow prior (with normalized hidden space z), optimiza-

tion is then performed in z-space:

bz ¼ argmax
z

logp
�
yjf �1

u zð Þ
�
þ logp zð Þ;

Here, f �1
u ðzÞ is the inverse transformation of the

normalizing flow fuðzÞ, that is, the generative direction.

By assuming a simple Gaussian likelihood model for the

log-compressed envelope detected US images, this can

be rewritten as
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bz ¼ arg minz

								f �1
u zð Þ � y k 2

2 þ λ

								z k 2
2 ð71Þ

where λ is a parameter that depends on the assumed

noise variance. Iterative optimization of eqn (71) was

performed using gradient descent, and the recovered

clean image is given by bx ¼ f �1
u ðbzÞ.
DISCUSSION

Over the past decade, the field of ultrasound signal

processing has seen a large transformation, with the

development of novel algorithms and processing meth-

ods. This development is driven in large part by the

move from hardware- to software-based reconstruction.

In this review, we have showcased several works, from

conventional algorithms to full DL-based approaches,

each having their own strengths and weaknesses.

Conventional model-based algorithms are based on

first principles and offer a great amount of interpretabil-

ity, which is relevant in clinical settings. However, as we

have illustrated in this article, these methods rely on esti-

mations and often simplifications of the underlying phys-

ics model, which result in sub-optimal signal

reconstructions. For example, DAS beamforming

assumes a linear measurement model and a Gaussian

noise profile, both of which are very crude approxima-

tions of a realistic ultrasound measurement. In contrast,

adaptive methods (e.g., MV beamforming) that aim at

modeling the signal statistics more accurately are often

computationally expensive to implement in real-time

applications.

Spurred by the need to overcome these limitations,

we see a shift in research toward data-driven signal proc-

essing methods (mostly based on DL), a trend that

started around 2014 (Zhang et al., 2021), which sees a

significant increase in the number of peer-reviewed arti-

ficial intelligence (AI) publications. This can be

explained by two significant factors: (i) the availability

of high compute-power GPUs, and (ii) the availability of

easy-to-use machine learning frameworks such as Ten-

sorFlow (Abadi et al., 2015) and PyTorch (Paszke et al.,

2019), which have significantly lowered the threshold of

entry into the field of AI for ultrasound researchers.

However, the performance of data-driven and, more spe-

cifically, DL algorithms is inherently bounded by the

availability of large amounts of high-quality training

data. Acquiring ground truth data is not trivial in ultra-

sound beamforming and signal processing applications,

and thus, simulations or the outputs of advanced yet

slow model-based algorithms are often considered as

training targets. Moreover, the lack of clear understand-

ing of the behavior of learned models (i.e., the black box
model) and ability to predict their performance “in the

wild” make implementations in clinical devices chal-

lenging.

These general challenges associated with fully data-

driven DL methods have in turn spurred research in the

field of “model-based deep learning.” Model-based DL

combines the model-based and data-driven paradigms

and offers a robust signal processing framework. It ena-

bles learning those aspects of full models from data for

which no adequate first-principles derivation is available

or complementing/augmenting partial model knowledge.

Compared with conventional deep neural networks,

these systems often require a smaller number of parame-

ters, and fewer training data, to learn an accurate

input�output mapping.

Similar to model-based methods, we can broadly

categorize model-based DL methods into (1) algorithms

based on iterative solutions and (2) algorithms based on

analytic solutions. Algorithms based on iterative solu-

tions can be further split into (1a) truncated algorithms

(fixed number of iterations) the parameters of which

(possibly a subset of) are fine-tuned end-to-end (termed

deep unfolding/unrolling), and (1b) iterative algorithms

with data-driven priors (e.g., plug-and-play optimiza-

tion). Examples of (1a) are deep unfolded ULM and

deep unfolded robust PCA, but also unfolded ADMIRE

beamforming. A recent example of (1b) is the work by

Van de Schaft and van Sloun Van de Schaft and van

Sloun, 2021), in which MRI-based image priors learned

with normalizing flows are used for ultrasound speckle

suppression. An example of method ((2) is ABLE, in

which the analytic ML solution for beamforming under

unknown non-diagonal covariance Gaussian channel

noise is augmented with a neural network, and the entire

hybrid solution is optimized end-to-end. The methods

covered here aim to achieve a better imaging quality, for

example, temporal or spatial resolution, ultimately aid-

ing in the diagnosis process. Although a deeper analysis

of the clinical relevance is a crucial and interesting topic,

it is beyond the scope of this work.
CONCLUSIONS

In this review, we outlined the development of sig-

nal processing methods in US, from classic model-based

algorithms to fully data-driven DL-based methods. We

also discussed methods that lie at the intersection of

these two approaches, using neural architectures inspired

by model-based algorithms and derived from probabilis-

tic inference problems. We take a probabilistic perspec-

tive, offering a generalized framework with which we

can describe the multitude of approaches described in

this article, all under the same umbrella. This provides

us insight into the demarcation between components



696 Ultrasound in Medicine & Biology Volume 49, Number 3, 2023
derived from first principles and the components derived

from data. This also affords us the ability to combine

these components in a unique combination to derive

architectures that integrate multiple classes of signal

processing algorithms.

The application of such novel, DL-based recon-

struction methods requires the next generation of US

devices to be equipped accordingly: either by fast net-

working and on-device encoding, or by fully arming

them with sufficient and appropriate processing power

(GPUs and TPUs), which allows for flexible and real-

time deployment of AI algorithms.
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