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A B S T R A C T

Accurately detecting the aortic valve opening (AO) peaks of seismocardiography (SCG) is a challenging problem
due to interference of other morphological inflection points. In this paper, a high accurate method is proposed
to extract AO peaks based solely upon the SCG data. The raw SCG signal is purified by a simple first
order interference cancellation method, resulting in a reduced number of modes to be decomposed. The
purified SCG signal is then decomposed into a series of quasi-orthogonal modes by successive variational mode
decomposition (SVMD) without any prior about the number of modes. Considering the pulsatile nature of the
AO signal, a waveform factor criterion is proposed to reconstruct the AO signal based on the pulsatile level of
each mode. A seventh power law detector is designed to amplify the AO peak and suppress spurious peaks.
The publicly available combined measurement of electrocardiogram (ECG), breathing and seismocardiograms
(CEBS) database is exploited to verify the performance of the proposed method. We show that the average
sensitivity of our technique is 99.02%, the prediction rate is 99.06%, and the detection accuracy is 98.10%,
which is superior to several state-of-the-art methods. In addition, compared with the ECG reference value, the
instantaneous heart rate extracted by the proposed method is in good agreement with that of the ECG, e.g.,
the maximum average absolute error percentage is as low as 2.11 and the maximum average value relative
error is about 0.03, further demonstrating that the proposed method can achieve accurate estimates of heart
rate with an accelerometer alone.
1. Introduction

Heart disease is considered to be one of the leading causes of
human death [1–4]. Studies have shown that changes in heart rate
are closely related to cardiac condition [5]. Therefore, real-time mon-
itoring of heart rate variation in daily life is very important for early
detection of hidden heart disease. ECG has been widely used to detect
changes in electrical activity caused by cardiac activity. However, more
recently, benefited from the fast development of sensor technology,
SCG [4,6], ballistocardiography (GCG) [7], kinocardiography (KCG)
[8], and forcecardiography (FCG) [9–11] have received great attention.
In particular, SCG uses a small high-precision acceleration sensor to
measure the acceleration of the chest wall movement caused by heart-
beat, and provides a new convenient, inexpensive, and efficient way for
heart rate monitoring in daily life [4,12].

The advantages of SCG over ECG are multi-fold. First, SCG bet-
ter identifies the clinical diagnostic information corresponding to the
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mechanical activities of the heart [13], while ECG based on electrical
activity measurements may fail to detect those structural defects. These
mechanical activities include the motion state of the heart valve, the
state of ventricular blood circulation, the state of ventricular wall, and
more [14]. Second, SCG provides a non-invasive way for diagnosis by
simply sticking a small acceleration sensor to the chest wall. SCG is also
more suitable for critical and emergent cases, because the acceleration
sensor is easier to install and deploy compared to preparing electrode
connections [15]. Finally, due to its simplicity, SCG has the potential
to embed into smart phones to realize intelligent medical monitoring
anytime and anywhere in the near future [16]. Therefore, the SCG
prospects are elated for applications in daily health monitoring and
promotion of heart disease prevention.

The morphology of SCG signals reveals different types of heart
motions and thus health conditions. A cardiac cycle can be divided into
systolic and diastolic phases. Cardiac motion changes significantly at
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Fig. 1. Synchronised ECG (above) and SCG (below) records from the CEBS database.

he two phases due to changes in volume and pressure, which gives rise
o a rhythmic pulsation in the chest for each beat of the heart [17]. The
ain benchmarks associated with the systolic and diastolic phases are
O, aortic valve closure (AC), isovolumic moment (IM), mitral valve
pening (MO), mitral valve closure (MC), rapid blood filling (RF), and
apid ejection (RE) [12,14,18], which can be revealed by the rhythmic
ardiac acceleration signals, as shown in Fig. 1.

Among all these benchmarks in a SCG cycle, the AO point is the
ost critical inflection point of the systolic profile, which is used to

stimate the beat-to-beat systolic time interval [12,19,20]. The average
O-AO interval in one-minute SCG signal can evaluate the number
f beats per minute. Furthermore, it can also be used for diagnostic
nalysis, such as heart rate variability analysis [21,22]. Consequently,
O point detection plays an important role in heart health monitoring
23]. Incidentally, recent study has shown that the template matching
ethod can provide very accurate estimates of the heartbeat interval
ithout having to localize any specific SCG peak [24].

These AO peaks can be annotated manually, but it is generally quite
ime-consuming. Recent works consider automatic extraction of AO
eaks [13,25]. However, this is a non-trivial problem due to noise-
ontaminated measurements and other interference [13,20]. The use
f multiple sensors facilitates AO peak estimation. For example, many
orks utilize an ECG signal as Ref. [21,26,27], which better indicates

he characteristics of SCG signals, but it is inconvenient for routine
onitoring. An alternative is to combine a gyroscope or an extra

ccelerometer [28,29], which alleviates motion noise. But these devices
ndoubtedly increase the complexity and cost of the system.

There have also been many signal processing efforts devoted for AO
eak extraction from a single sensor, which is our focus here. one of the
ain challenges is how to extract the AO peak under the interference

f the non-AO morphological inflection points. Unlike the ideal case in
ig. 1 where the AO peak dominates the other surrounded inflection
oints, in many practical noisy scenes, the AO peaks are not the most
rominent ones [30]. Although the non-prominent AO peaks can be
dentified according to the morphological characteristics of SCG signals
y manual annotation or ECG assist, these approaches are inefficient
nd expensive.

Considering that the SCG signal is composed of multiple sub-signals,
n effective approach is to first decompose it into a series of modes
nd then reconstruct the desired AO signal by mining the underlying
odal information. Several classical signal decomposition techniques
ave been employed to extract the AO signal from fundamental com-
onents with inherent properties. See [31] for a detailed analysis of
he advantages and disadvantages of this approach. Siecinski et al.
32] applied empirical mode decomposition (EMD), which is sensitive
o noise due to its recursive property [31]. To enhance the robust-
ess against noise, Choudhary et al. [33] employed variational mode
ecomposition (VMD) [34] to decompose the SCG signal, in which a
ingle IMF component is empirically selected in term of the oscillation
mplitude to construct the heart rate envelope. However, selecting only
2

one IMF component may miss important heartbeat information in some
SCG signals [35–37]. To overcome the information loss of the single
IMF, [35] exploited two modes. In addition, the authors proposed the
modified VMD (MVMD) algorithm, which improves the accuracy of
AO peak estimation, at the cost of increased complexity since it relies
on two stage VMDs. A common drawback of existing EMD, VMD, and
MVMD methods is that they require setting the proper number of modes
in advance, otherwise the final heart rate results are severely affected
[38]. Another open issue is how to efficiently choose suitable modes to
reconstruct the AO signal from the numerous IMF components [13,35].

To address the above issues, we apply SVMD, which does not
need the number of modes as input but estimates the number auto-
matically. Being aware of the pulsatile nature of the AO signal, we
propose the waveform factor to evaluate the pulsatile level of each
IMF component and use the result as the criterion to select IMFs for
AO signal reconstruction. In addition, we also propose preprocessing
of the raw SCG signal prior to the decomposition, which purifies the
SCG signal and enhances the decomposition and reconstruction quality.
Based on the reconstructed AO signal, we propose a computationally
efficient method to extract and smooth the envelope, which yields
accurate detection of AO peaks. We summarize the main contributions
as follows:

(1) Preprocessing the raw SCG signal: Instead of directly decomposing
the raw SCG data, we construct filters to cancel out-band arti-
facts, which improves the performance of the subsequent signal
decomposition in two aspects: The number of output modes is
reduced, alleviating the computational complexity, and more im-
portantly facilitating the follow-up mode selection. These filters
are designed by applying MTI techniques widely used in radars
[39,40], which perform well for SCG signals and are simple to
implement.

(2) Decomposing the SCG signal without a prior on the number of modes:
After preprocessing, SVMD [41] is employed to decompose the
SCG signal without knowing the number of modes, which avoids
estimation error caused by improper number of modes selection.
SVMD solves a series of one-dimensional problems accompanied
by a reduced number of modes, resulting in low computational
complexity.

(3) Waveform factor criterion: Once the SCG signal is decomposed into
several IMF components by SVMD, a criterion is essential for
choosing which components best represent the AO signal. The
overestimated number of components will cause a large number
of non-AO signals, while an underestimated number might result
in missing AO peaks. The proposed waveform factor criterion,
which exploits and evaluates the intrinsic pulsating character
of AO signals, empirically shows enhanced capacity in selecting
desired modes.

(4) Envelope extraction and smoothing : A seventh power law detector
is designed to enhance the amplitude of the AO peak and simulta-
neously suppress the surviving non-AO peaks in the reconstructed
AO signal, which yields a cleaner envelope and relieves spurious
peaks.

Experimental data from a public dataset (CEBS) [42] shows that the
proposed method not only provides more accurate heart rate estimates
than several state-of-the-art methods but also enjoys lower computa-
tional complexity. In particular, our technique achieved average sen-
sitivity of 99.02%, prediction rate of 99.06%, and detection accuracy
of 98.10%. Compared with the instantaneous heart rate of the ECG
reference value, our technique reduces the maximum average absolute
error percentage and the maximum average value relative error to
about 2.11 and 0.03, respectively.

The remainder of this paper is organized as follows. Section 2
introduces the signal model and the proposed method in detail, includ-
ing preprocessing, signal decomposition and reconstruction, as well as
AO peak position detection. Experimental results and discussions are
provided in Section 3. Finally, conclusions are drawn in Section 4.
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Fig. 2. The main processing flow of the proposed AO peak detection method (CEBS database recording: b008).
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2. Model and methodology

In this section, we model the chest acceleration signal and introduce
the signal processing flow.

2.1. Signal model

SCG measures the local vibrations of the chest wall induced by
cardiac activity in a noninvasive manner; see original signal in Fig. 2 as
an example of the measurements. The AO peaks in the measurements
indicate many diagnostic information. Our goal is to detect these AO
peaks efficiently from the measurements. This is non-trivial, because
the original signals are contaminated, making the AO peaks submerged
by spurious peaks.

The first challenge is that the signal collected from the accelerom-
eter may be interfered by other vibrations, e.g., unavoidable breathing
[13,43–45]. The SCG signal is often regarded as a superposition of
several vibration signals, expressed as:

𝑠(𝑡) = 𝑠𝑆𝐶𝐺(𝑡) + 𝑠𝐼 (𝑡), (1)

where 𝑠𝑆𝐶𝐺(𝑡) and 𝑠𝐼 (𝑡) are the SCG and interference signal, respec-
tively. Therefore, the first task is to remove the interference signal from
the measurements and purify the SCG signals at low computational
cost. The interference signal from breathing has larger amplitude and
lower frequency than the SCG signal [46]. Although the breathing
masks the SCG signal in terms of the amplitude, its lower oscillation
3

frequency allows us to filter it out by high-pass filtering.
Secondly, as is shown in Fig. 1, the morphology of the waveform of
each cardiac cycle contains several inflection points that correspond to
different mechanical events [13]. We then further write the SCG signal
as:

𝑠𝑆𝐶𝐺(𝑡) = 𝑠𝐴𝑂(𝑡) + 𝑠𝑂(𝑡), (2)

here 𝑠𝐴𝑂(𝑡) and 𝑠𝑂(𝑡) denote the AO signal and the other inflection
oint signal in SCG, respectively.

For example as shown in Fig. 2, some AO peaks are less significant
han those of MC and RE peaks. As a result, it is crucial to identify
he signal components corresponding to AO from other various subject
orphology. As will be detailed later, this is the most critical challenge.

With the separated signal components due to AO, the last task is to
alculate its envelope and identify the periodic peaks.

To overcome these challenges, we propose to exploit three key
ignal processing steps, and show their results in Fig. 2. The basic ideas
f these steps are:

(a) Signal preprocessing : Since the desired AO signals are band limited,
we construct a band-pass filter by subtracting the outputs of two
high-pass filters with different cut-off frequencies to eliminate the
respiratory interference and high-frequency noise, i.e., 𝑠𝐼 (𝑡).

(b) Signal decomposition and reconstruction: This step aims to further
extract AO signals out of the purified SCG signal, separating
from other cardiac phases like MC and RE. Since the analytical
expressions of these SCG morphology are difficult to obtain, we

complete this step by heuristically decomposing the SCG signals
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into a series of components. Observe the morphology of the SCG
signal, the AO signals reveals a pulsating nature of the heart-
beat. Then we select some of the components that represent the
pulsating character to reconstruct the AO signals 𝑠𝐴𝑂(𝑡).

(c) AO peak position detection: Given the reconstructed AO signal, this
step calculates and smooths its envelop, and finally highlights
positions of AO peaks.

These steps are explained in detail below.

2.2. Preprocessing

We perform time-domain filtering to remove the out-of-band inter-
ference/noise in 𝑠𝐼 (𝑡).

The key ingredients of the concerned systolic profile are band
limited. Therefore, we apply filters to remove the out-of-band inter-
ference/noise. Particularly, the desired signals are around 1 to 40
Hz [13,45,47–49]. The respiration interference generally has lower
frequency than the heartbeat signal [44], and composes one of the main
sources of the artifacts. In addition, the recommended sampling rate is
well above 40 Hz [44], so high frequency noise above 40 Hz is also
sampled and contaminates the raw data. These low and high frequency
artifacts will be removed at low implementation costs.

The main procedure is the following:

• Form a band-pass filter via two high-pass filters, removing both
the low-frequency respiration and the high-frequency artifacts in
raw signal 𝑠(𝑡). These two high-pass filters have different cutoff
frequencies, but the responses at frequencies higher than 40 Hz
are almost identical. A subtraction operation of the outputs of the
above two filters will remain the intermediate frequency between
about 0.5 Hz and 14 Hz that corresponds to the desired SCG signal
[50].

To construct the filters, we use the MTI technique from radar [39,
40], in which returns from fixed or slow-moving unwanted targets (i.e.,
low-frequency signals) are rejected and signals from moving targets are
displayed [51]. We regard the low-frequency respiration as the slow-
moving unwanted target so that the MTI technique can be employed to
remove it. The MTI filter is a first-order finite impulse response (FIR)
filter, which first extracts the low frequency component, given by,

𝑠𝑅(𝑡) = 𝛽𝑠𝑅(𝑡 − 1) + (1 − 𝛽)𝑠(𝑡), (3)

and then subtracts it from the input, yielding the filtered output

𝑥(𝑡) = 𝑠(𝑡) − 𝑠𝑅(𝑡). (4)

Here, 0 < 𝛽 < 1 is the weighting value, determining the cutoff fre-
quency. The MTI is essentially a high-pass filter with transfer function
𝐻(𝑧) = (𝛽 − 𝛽𝑧−1)∕(1 − 𝛽𝑧−1) [40].

Fig. 3 shows two examples of the magnitude responses of MTI filters,
with 𝛽 set to 𝛽1 = 0.9 and 𝛽2 = 0.99, respectively, and the sampling rate
is 500 Hz that corresponds to the subsequent processing for the CEBS
database.

We denote the outputs of two high-pass filters in (4) by 𝑥𝛽1 (𝑡) and
𝑥𝛽2 (𝑡), respectively. A subtraction yields:

𝑦(𝑡) = 𝑥𝛽2 (𝑡) − 𝑥𝛽1 (𝑡), (5)

which suppresses high frequency noise.
Fig. 4 compares between the signals before and after the interfer-

ence cancellation in the time and frequency domains, i.e., 𝑠(𝑡) and
𝑦(𝑡). As can be seen from Fig. 4(a), the fast-fluctuating component
in the time domain that corresponds to the high frequency noise is
eliminated after interference cancellation. The results in Fig. 4(b) also
show that both low frequency artifacts and the high frequency noise
are significantly eliminated.

There may be a residual trend component from the zero drift of
the accelerometer [52] and spikes in the residual. The former could be
detrended by the regression approach in [53] and the latter could be
canceled by a fifth-order median filter in [13]. We label 𝑦(𝑡) followed
4

by the detrending and median filtering operations as 𝑠𝑆𝐶𝐺(𝑡). 𝑠
Fig. 3. Magnitude response of MTI filters for two different weighting values.

2.3. Signal decomposition and reconstruction

Although we obtained a cleaner SCG signal by preprocessing, the AO
peaks are not necessarily significant enough to be detected, as shown
in the second subplot of Fig. 2. The AO peaks are only a fraction of the
systolic profile components of SCG [13], and may be masked by the
stronger fractions. To reveal these AO peaks, it is essential to extract
the fraction corresponding to the peaks from the original SCG signal.

While the exact motion models are unknown, the extraction is
performed in a heuristic fashion [35]: (1) Decompose the original SCG
signal into several modes; (2) Select a fraction of modes that has the
notable pulsation character to reconstruct the AO signal. This procedure
is represented by the following equations:

𝑠𝑆𝐶𝐺(𝑡) =
𝐾
∑

𝑘=1
𝑢𝑘(𝑡) + 𝜖(𝑡), (6)

𝐴𝑂(𝑡) =
∑

𝑚
𝑢𝑚(𝑡), (7)

here 𝑢𝑘(𝑡) is the 𝑘th mode, 𝐾 is the number of modes that compose
he original SCG signal 𝑠𝑆𝐶𝐺(𝑡), 𝜖(𝑡) is the residual, and 𝑚 denotes an
ndex of selected modes to reconstruct the AO signal 𝑠𝐴𝑂(𝑡).

Many previous works apply VMD [34] for signal decomposition. The
ain downside is that it heavily depends on the prior knowledge of

he number of modes 𝐾, which is typically unknown in practice. How
o identify modes that characterize the AO signal is another critical
hallenge.

In this paper, we propose to employ SVMD [41] (first developed for
CG signal processing) to decompose the SCG signal, which does not
equire 𝐾, and additionally reduces the computational load. Regarding
he mode selection problem, we propose a criterion based on the
ulsatile level to the identify whether each mode corresponds to the
O signal, which is simple to implement. In this subsection, we will

ntroduce the SVMD method and the proposed criterion in the sequel,
espectively.

.3.1. Successive variational mode decomposition
VMD is an adaptive signal decomposition method [33,35], which

an be regarded as a variant of Wiener filtering with Tikhonov regu-
arization and augmented Lagrange [34]. Given 𝐾, VMD generates 𝐾
odes at the same time by solving a constrained variational problem

ia alternate direction method of multipliers (ADMM) [54]. In contrast,
VMD extracts the modes successively [41], and terminates according
o a certain condition, automatically providing an estimate of 𝐾. In
ddition, SVMD is computationally efficient, because it solves a series
f one-dimensional problems, rather than a much more complex 𝐾-
imensional problem as VMD [55]. Here, we briefly introduce SVMD
41]. Without loss of generality, we assume that 𝑠𝑆𝐶𝐺(𝑡) is decomposed
nto two parts:
𝑆𝐶𝐺(𝑡) = 𝑢𝑘(𝑡) + 𝑢𝑟(𝑡), (8)
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Fig. 4. Comparison between signals before and after interference cancellation for b016.
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where 𝑢𝑘(𝑡) is the 𝑘th mode and 𝑢𝑟(𝑡) is the rest of the signal which is
written as:

𝑢𝑟(𝑡) =
𝑘−1
∑

𝑖=1
𝑢𝑖(𝑡) + 𝑢𝑝(𝑡), (9)

where ∑𝑘−1
𝑖=1 𝑢𝑖(𝑡) are the previously acquired modes and 𝑢𝑝(𝑡) is the un-

processed signals. SVMD was proposed in [41] based on the following
four criteria:

(a) The 𝑘th mode minimizes the following metric:

𝐽1 =
‖

‖

‖

‖

‖

𝜕𝑡

[(

𝛿(𝑡) +
𝑗
𝜋𝑡

)

∗ 𝑢𝑘(𝑡)
]

𝑒−𝑗𝜔𝑘𝑡
‖

‖

‖

‖

‖

2

2
, (10)

where 𝜔𝑘 is the center frequency of the 𝑘th mode, the sign ∗, ‖⋅‖2,
and 𝛿(𝑡) denotes the convolution operation, the 𝓁2 norm, and the
Dirac function, respectively; 𝑗2 = −1.

(b) The spectral overlap between 𝑢𝑘(𝑡) and 𝑢𝑟(𝑡) is minimized by the
following criterion:

𝐽2 = ‖

‖

𝛾𝑘(𝑡) ∗ 𝑢𝑟(𝑡)‖‖
2
2 , (11)

where 𝛾𝑘(𝑡) =
1

𝛼(𝜔−𝜔𝑘)2
is the impulse response of the filter.

(c) The 𝑘th mode should have the smallest energy leakage over the
previously obtained modes by the following criterion:

𝐽3 =
𝑘−1
∑

𝑖=1

‖

‖

𝛾𝑖(𝑡) ∗ 𝑢𝑘(𝑡)‖‖
2
2 , (12)

where 𝛾𝑖(𝜔) =
1

𝛼(𝜔−𝜔𝑖)2
, 𝑖 = 1, 2,… , 𝑘.

(d) To ensure complete reconstruction of 𝑠𝑆𝐶𝐺(𝑡), the following con-
straint need to be imposed:

𝑠𝑆𝐶𝐺(𝑡) = 𝑢𝑘(𝑡) +
𝑘−1
∑

𝑖=1
𝑢𝑖(𝑡) + 𝑢𝑝(𝑡) = 𝑢𝑘(𝑡) + 𝑢𝑟(𝑡). (13)

Assume 𝑘 − 1 modes are known. The 𝑘th mode can be obtained by
a constrained minimization problem as:

min
𝑢𝑘 ,𝜔𝑘 ,𝑢𝑟

𝛼𝐽1 + 𝐽2 + 𝐽3

𝑠.𝑡. 𝑠𝑆𝐶𝐺(𝑡) = 𝑢𝑘(𝑡) + 𝑢𝑟(𝑡),
(14)

where 𝛼 is the balancing parameter among 𝐽1, 𝐽2, and 𝐽3. The con-
strained minimization problem (14) can be transformed to an uncon-
strained problem by Lagrangian multipliers as:

(𝑢𝑘, 𝜔𝑘, 𝜆) = 𝛼𝐽1 + 𝐽2 + 𝐽3 +
‖

‖

‖

𝑠𝑆𝐶𝐺(𝑡) −
[

𝑢𝑘(𝑡) + 𝑢𝑟(𝑡)
]

‖

‖

‖

2

2

+ ⟨𝜆(𝑡), 𝑠𝑆𝐶𝐺(𝑡) −
[

𝑢𝑘(𝑡) + 𝑢𝑟(𝑡)
]

⟩,
(15)

where 𝜆 is the Lagrangian multiplier, the quadratic penalty term is
used to encourage reconstruction fidelity and improve the convergence
5

performance.
The solution of problem (14) can be found as the saddle point of
(15) using ADMM which leads to the iterates [41]:

̂𝑛+1𝑘 (𝜔) =
�̂�𝑆𝐶𝐺 (𝜔)+𝛼2

(

𝜔−𝜔𝑛
𝑘

)4
�̂�𝑛𝑘(𝜔)+�̂�(𝜔)∕2

[

1+𝛼2
(

𝜔−𝜔𝑛
𝑘

)4
]

⎡

⎢

⎢

⎣

1+2𝛼
(

𝜔−𝜔𝑛
𝑘

)2
+
∑𝑘−1

𝑖=1
1

𝛼2
(

𝜔−𝜔𝑛𝑖
)4

⎤

⎥

⎥

⎦

, (16)

𝜔𝑛+1
𝑘 =

∫ 𝑓𝑠∕2
0 𝜔 |

|

|

�̂�𝑛+1𝑘 (𝜔)||
|

2
𝑑𝜔

∫ 𝑓𝑠∕2
0

|

|

|

�̂�𝑛+1𝑘 (𝜔)||
|

2
𝑑𝜔

, (17)

�̂�𝑛+1(𝜔) = �̂�𝑛(𝜔) + 𝜏
[

�̂�𝑆𝐶𝐺(𝜔) −
(

�̂�𝑛+1𝑘 (𝜔)+
[

𝛼2
(

𝜔−𝜔𝑛+1
𝑘

)4(
�̂�𝑆𝐶𝐺 (𝜔)−�̂�𝑛+1𝑘 (𝜔)−

∑𝑘−1
𝑖=1 �̂�𝑖(𝜔)+�̂�(𝜔)∕2

)

1+𝛼2
(

𝜔−𝜔𝑛+1
𝑘

)4

]

−
∑𝑘−1

𝑖=1 �̂�𝑖(𝜔)

1+𝛼2
(

𝜔−𝜔𝑛+1
𝑘

)4 +
∑𝑘−1

𝑖=1 �̂�𝑖(𝜔)

)]

,

(18)

with convergence criteria

‖

‖

‖

�̂�𝑛+1𝑘 (𝜔) − �̂�𝑛𝑘(𝜔)
‖

‖

‖

2

2

‖

‖

‖

�̂�𝑛𝑘(𝜔)
‖

‖

‖

2

2

< 𝜀1, (19)

|𝜎2 − 1
𝑇
‖𝑠𝑆𝐶𝐺(𝑡) −

𝑘
∑

𝑖=1
𝑢𝑖(𝑡)‖22|∕𝜎

2 < 𝜀2, (20)

here 𝑢𝑛𝑘 is the 𝑘th mode at 𝑛th step of update, 𝜔𝑛
𝑘 is the central

frequency, 𝑓𝑠 is the sampling frequency, 𝜏 is the time-step of the
ual ascent, 𝜀1, and 𝜀2 are the tolerance, 𝜎2 is the noise variance,

respectively. The SVMD algorithm is summarized in Algorithm 1.
We emphasize that the quality or purity of the input signal has a

significant impact on the effectiveness and efficiency of the decom-
position method. A SCG signal purified with interference cancellation
method reduces the number of modes than that of the raw SCG signal,
because the contaminating interference and noise in the raw signal
require additional modes to represent. Consequently, the computational
cost will also be reduced significantly.

We compare the SCG signals before and after interference removal
in terms of their decomposition results using SVMD; see Fig. 5 as an ex-
ample calculated from b013 in the CEBS database. The decomposition
sequences are aligned from low to high frequency. The time waveform
of 11 IMFs of the b013 is plotted in Fig. 5(a), which stems from the
raw SCG signal without the interference cancellation. Fig. 5(b) shows
the counterpart after interference cancellation, which has only 7 IMFs,
less than that of the raw SCG signal. The results verify the necessity of
the interference cancellation.

We then exemplify the computational costs of VMD, SVMD before
and after the interference cancellation in Fig. 6, where the number of
modes of VMD is set to 𝐾 = 11, the same that of the raw data processed
by SVMD. Interference cancellation reduces the complexity of the
subsequent SVMD. As a result, the follow-up heartbeat monitoring task
can be achieved faster.
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Fig. 5. Comparison of SVMD signal decomposition results for b013 before (a) and after (b) interference cancellation.
.3.2. Signal screening criterion
Following signal decomposition, how to choose appropriate IMF

omponents to reconstruct the AO signal of the various subject mor-
hology is vital for accurately estimating the heartbeat cycle. Taking
nto account the pulsatile nature of the AO signal, we seek those IMFs
ith significant pulsatility. To this end, we propose a waveform-factor
ased method: We first use waveform factor defined in [56] to evaluate
he pulsatile level of each IMF; Then, we select those IMFs which have
igher pulsatile levels than average.

The waveform factor of the 𝑘th IMF is defined as [56]:

𝑊𝐹𝑘 =

√

1
𝑁

∑𝑁
𝑡=1 𝑢

2
𝑘(𝑡)

1
𝑁

∑𝑁
𝑡=1

|

|

𝑢𝑘(𝑡)||
, (21)

where 𝑢𝑘(𝑡) denotes the 𝑘th IMF resulting from SVMD, and 𝑁 denotes
the number of samples of the 10 s predefined time interval. The
waveform factor quantitatively characterizes the level of fluctuation.
As for the IMF of a SCG signal, more significant fluctuation implies
6

more significant pulsatility. As seen in Fig. 5(b), higher waveform factor
values (green rectangles) indicate IMFs with more notable pulsation
characters.

We then calculate the average as:

𝛼 = 1
𝐾

𝐾
∑

𝑘=1
𝑊𝐹𝑘, (22)

and find those IMFs with waveform factors higher than the average.
Denote their indices by:

𝑚 ∈ {𝑘|𝑊𝐹𝑘 > 𝛼, 𝑘 = 1, 2,… , 𝐾}. (23)

Based on the criterion, these IMF components are selected to recon-
struct the AO signal; see (7) for details.

2.4. AO peak detection

With the reconstructed AO signal, we still need to extract and
smooth the envelope, facilitating peak detection and the subsequent
heart rate estimation. However, there are still some less significant
peaks remaining in the AO signal, which will cause spurious detection.
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𝑠

Algorithm 1 SVMD
Input 𝑠𝑆𝐶𝐺(𝑡)
Set 𝛼, 𝜀1, 𝜀2, and 𝜎2

Initialize, 𝑘 ← 0
repeat

𝑘 ← 𝑘 + 1
Initialize �̂�1𝑘, �̂�1, �̂�1

𝑘, 𝑛 ← 0
repeat

𝑛 ← 𝑛 + 1
1) Update �̂�𝑘 for all 𝜔 > 0:
�̂�𝑛+1𝑘 (𝜔) =

�̂�𝑆𝐶𝐺 (𝜔)+𝛼2
(

𝜔−𝜔𝑛
𝑘

)4
�̂�𝑛𝑘(𝜔)+�̂�(𝜔)∕2
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1+𝛼2
(

𝜔−𝜔𝑛
𝑘

)4
]

⎡

⎢

⎢

⎣

1+2𝛼
(

𝜔−𝜔𝑛
𝑘

)2
+
∑𝑘−1

𝑖=1
1

𝛼2
(

𝜔−𝜔𝑛𝑖
)4

⎤

⎥

⎥

⎦

2) Update 𝜔𝑘:

𝜔𝑛+1
𝑘 =

∫ 𝑓𝑠∕2
0 𝜔||

|

�̂�𝑛+1𝑘 (𝜔)||
|

2
𝑑𝜔

∫ 𝑓𝑠∕2
0

|

|

|

�̂�𝑛+1𝑘 (𝜔)||
|

2
𝑑𝜔

3)Dual ascent for all 𝜔 ≤ 0
�̂�𝑛+1(𝜔) = �̂�𝑛(𝜔) + 𝜏

[

�̂�𝑆𝐶𝐺(𝜔) −
(

�̂�𝑛+1𝑘 (𝜔)+
[

𝛼2
(

𝜔−𝜔𝑛+1
𝑘

)4(
�̂�𝑆𝐶𝐺 (𝜔)−�̂�𝑛+1𝑘 (𝜔)−

∑𝑘−1
𝑖=1 �̂�𝑖(𝜔)+�̂�(𝜔)∕2

)

1+𝛼2
(

𝜔−𝜔𝑛+1
𝑘

)4

]

−
∑𝑘−1

𝑖=1 �̂�𝑖(𝜔)

1+𝛼2
(

𝜔−𝜔𝑛+1
𝑘

)4 +
∑𝑘−1

𝑖=1 �̂�𝑖(𝜔)

)]

,

until convergence:
‖

‖

‖

�̂�𝑛+1𝑘 (𝜔)−�̂�𝑛𝑘(𝜔)
‖

‖

‖

2

2
‖

‖

‖

�̂�𝑛𝑘(𝜔)
‖

‖

‖

2

2

< 𝜀1

until convergence: |𝜎2 − 1
𝑇 ‖𝑠𝑆𝐶𝐺(𝑡) −

∑𝑘
𝑖=1 𝑢𝑖(𝑡)‖

2
2|∕𝜎

2 < 𝜀2

Fig. 6. Running time comparison. The duration of the tested signal is 10 s. All the
experiments are implemented with Matlab 2018b on a PC with the 11th Gen Intel(R)
Core(TM) i5-1135G7 CPU @ 2.40 GHz.

See Fig. 7(a) and (b) as an example. To remove these spurious peaks,
we apply seventh power operation upon the AO signal prior to the
envelope extraction, which yields a cleaner envelope. We then use
window sliding for envelope smoothing, detailed in the following.

2.4.1. Seventh power law detection
Intuitively, the high-order (>2) power of the reconstructed AO

signal magnifies the significant peaks while weakens the weak parts rel-
atively, which enlarges the difference between the significant and weak
parts in the signal. The theoretical analysis in [57] shows that as pulse
duration decreases the order of the optimal power law should increase
accordingly in order to improve the detection performance. Therefore,
7

in the case of AO signal detection, of which the pulse duration is
very short, a higher power law detector is preferable. Empirically, we
find that the seventh power law detector well suppressed unwanted
small peaks around the desired ones and achieved a higher detection
probability, given by:

�̃�𝐴𝑂(𝑡) = 𝑠7𝐴𝑂(𝑡). (24)

An example is given in Fig. 7(c) and (d). Compared to Fig. 7(a) and (b),
the seventh power law detector yields a much cleaner envelope.

2.4.2. Envelope smoothing and AO peak detection
After the seventh power operation and obtaining the signal envelope

by the Hilbert transformation [58], we further smooth the obtained
envelope, in order to remove remaining spurious peaks [33]. This is
achieved by a sliding average filter. Denote the envelope of �̃�𝐴𝑂(𝑡) by
𝑠𝐸𝑁 (𝑡). The average filter outputs the sliding local average to yield the
smoothed envelope, given by

̄𝐸𝑁 (𝑡) = 1
𝑇

𝑡+𝑇−1
∑

𝑖=𝑡
𝑠𝐸𝑁 (𝑖), (25)

where the window width 𝑇 is empirically set to correspond to the
duration of 1/10 s.

After envelope smoothing, the significant peaks are considered as
the AO points. We illustrate the processing results over a raw SCG
signal in Fig. 8. As shown in Fig. 8(b), the IMF components selected by
the waveform factor criterion have a more significant peak at AO peak
time. Fig. 8(c) shows that the AO peaks are highlighted by the seventh
power law detector and other information is effectively suppressed.
The results of Fig. 8(d) and (e) demonstrate that the AO peaks in the
heartbeat cycle are more conspicuous after the envelope extraction and
the moving average filtering. Finally, the position of the AO peak is
determined by finding the main peak of the envelope.

2.5. Heart rate estimation

As can be seen from Fig. 8(e), the AO peaks appear periodically
in the smoothed envelope. The AO-AO interval is considered as the
instantaneous heart rate of the subject.

3. Experimental results and analysis

To verify the proposed method, we utilize the SCG data from a
typical public dataset, i.e., CEBS [42]. The CEBS dataset contains
ECG data, respiratory data and SCG data recorded from 20 healthy
individuals using Biopac MP36 signal acquisition system, in which
subjects were asked to lie awake on a comfortable single bed in a supine
position. Firstly, about 5 min of the basal state data were measured
(records b001 to b020). Subsequently, approximately 50 min data were
collected while listening to classical music (records m001 to m020).
Finally, about 5 min data were recorded after the music ended (records
p001 to p020).

To reduce the computational cost, the original SCG signal is dec-
imated by reducing the sampling rate from 5 KHz to 500 Hz. The
CEBS database is diverse and representative, in which many cardiac
activities and typical statuses were considered, e.g., narrower or wider
systolic outline signals of SCG, sudden changes in cardiac amplitude,
irregularity of cardiac rhythm, motion artifacts, trend effects, baseline
drift, low AO amplitude [13,35].

Here, in order to correspond to the data in the Refs. [13,35], we
only use first 200 s data for b001 to b020 in Tables 1 and 2, and then
separate the data of 10 s as a segment to sequentially input them into
the proposed method. More details on the results of all the data can be
found in Tables 3–6.
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Fig. 7. Comparison between envelope extraction with and without seventh power law detection for b016. (a) Reconstructed signal (black) and envelope (green) without the
seventh power detection, (c) the counterparts with the seventh power detection, (b) and (d) are peak detection results for (a) and (c), respectively. Red dots and black ‘×’ denotes
the AO peaks and spurious peaks, respectively.
Fig. 8. An example of processing for b016. (a) Original SCG signal, 𝑠(𝑡) (b) reconstructed AO signal after preprocessing, SVMD and IMF selection, 𝑠𝐴𝑂(𝑡), (c) seventh power law
etection, �̃�𝐴𝑂(𝑡), (d) envelop signal, 𝑠𝐸𝑁 (𝑡), and (e) smoothed envelope �̄�𝐸𝑁 (𝑡) and extracted AO peaks.
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.1. Overall performance

We consider four metrics, the detection error rate (DER), accuracy
ACC), sensitivity (SE), and peak accuracy (P), to evaluate the perfor-
ance of the AO peak detection. The four metrics are defined as follows

35]:

ER = FP + FN
TP + FN

× 100%, (26)

ACC = TP
TP + FP + FN

× 100%, (27)

E = TP
TP + FN

× 100%, (28)

P = TP
TP + FP

× 100%, (29)

here true-positive (TP), false-negative (FN), and false-positive (FP)
enote that the AO peak is correctly identified, the AO peak is miss-
ng, and the AO peak is incorrectly identified due to the noise peak,
espectively.
8

p

Table 1 summarizes the performance of the proposed method in
erms of these four metrics. From Table 1, the proposed method can
ind the AO peak accurately even when several SCG signals change
ver time following noise and motion artifacts. It is noted that the
EBS dataset is diverse, in which some AO points are not the most
rominent peak under certain circumstances and the amplitudes of
ther base point peaks are larger than that of the AO peak [13,35].
n other words, the whole SCG signal waveform may be relatively flat.
owever, even under such unfavorable factors, the proposed method
an still yield good performance. Our technique produces 43 FPs and
5 FNs heartbeats out of a total of 4594 analyzed heartbeats with
verage sensitivity of 99.02%, average prediction rate of 99.06%, mean
ccuracy of 98.10%, and mean error rate of 1.92%. It should be noted
hat the performance of our technique is almost completely comparable
o the performance of manual annotation in [59], in which the average
ensitivity is 99.5% and the average prediction rate is 99.1%.

Moreover, the results of entire dataset from the proposed method
re also available in Tables 3–5 for b001–b020, m001–m020, and
001–p020, respectively.
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Table 1
Algorithm performance evaluation for signals in CEBS dataset (first 200 s of records
b001 to b020).

Number TP FP FN Beats DER (%) SE (%) P (%) ACC (%)

b001 218 3 2 220 2.273 99.091 98.643 97.758
b002 205 1 0 205 0.488 100.000 99.515 99.515
b003 228 2 3 231 2.165 98.701 99.130 97.854
b004 217 0 0 217 0.000 100.000 100.000 100.000
b005 241 0 0 241 0.000 100.000 100.000 100.000
b006 205 2 0 205 0.976 100.000 99.034 99.034
b007 180 5 1 181 3.315 99.448 97.297 96.774
b008 316 0 0 316 0.000 100.000 100.000 100.000
b009 207 2 0 207 0.966 100.000 99.043 99.043
b010 205 1 0 205 0.488 100.000 99.515 99.515
b011 225 1 0 225 0.444 100.000 99.558 99.558
b012 269 0 1 270 0.370 99.630 100.000 99.630
b013 238 0 0 238 0.000 100.000 100.000 100.000
b014 228 0 1 229 0.437 99.563 100.000 99.563
b015 219 1 0 219 0.457 100.000 99.545 99.545
b016 238 0 0 238 0.000 100.000 100.000 100.000
b017 241 1 0 241 0.415 100.000 99.587 99.587
b018 255 4 13 268 6.343 95.149 98.456 93.750
b019 210 0 0 210 0.000 100.000 100.000 100.000
b020 204 20 24 228 19.298 89.474 91.071 82.258
Total 4549 43 45 4594 1.916 99.020 99.064 98.102
STD – – – – 4.37 2.44 1.94 3.94

Table 2
The proposed method is compared with previous peak detection methods (first 200 s
of records b001 to b020).

Method Test dataset (#B;#S) Performance

[43] CEBS – ; 20 SE: 98.5, P: 98.6, ACC: –
[13] CEBS 4585; 20 SE: 94.3, P: 90.2, ACC: 85.6
[35] CEBS 4585; 20 SE: 97.4, P: 97.4, ACC: 95.1
Proposed CEBS 4594; 20 SE: 99.0, P: 99.1, ACC: 98.1

#B:Number of beats analyzed, #S: Number of subjects for data.
The unit of indicators such as SE, P and ACC is %. The sign ‘‘–’’ means that the
corresponding value cannot be answered.

3.2. Comparison with other methods

Comparison between the proposed method and several state-of-the-
art AO peak detection methods is provided in Table 2. It is worth
mentioning that the corresponding performance metrics in [35] are
the average sensitivity of 97.4%, the average prediction rate of 97.4%,
the average accuracy rate of 95.1%, and mean error rate of 5.18%.
Although both the proposed method and the method in [35] employ
the signal decomposition method to extract IMFs, there is a main
difference between them. Our approach combines two simple MTI
filters to form a bandpass filter, which can remove both low frequency
and high frequency artifacts at very low computational cost. After the
interference cancellation, SVMD is employed to decompose the signal
without specifying the number of modes. The method in [35] employs
two stage VMD with specifying the number of modes, in which VMD
in the first stage is used to remove low frequency artifacts at high
computational cost. In addition, we use the waveform factor criterion
to select the proper IMFs for the heartbeat signal reconstruction. Then,
we design a seventh power law detector followed by the Hilbert trans-
formation and moving average, since this facilitates to emphasize the
AO peak. Moreover, it is observed that our technique is superior to [43]
about 0.5%. The experimental results show that, the proposed method
outperforms those counterparts in [13,35,43] on CEBS dataset across
all performance metrics.

In addition, a comparison of the detection performance for all data
between the proposed method and the method employed in [30] is
shown in Table 6. It is interesting to note that the proposed method is
about on average 10%, 5%, and 12% better than the method employed
in [30] for b001–b020, m001–m020, and p001–p020, respectively.
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Table 3
Algorithm performance evaluation of the entire data of records b001–b020.

Number TP FP FN Beats DER (%) SE (%) P (%) ACC (%)

b001 296 6 3 299 3.010 98.997 98.013 97.049
b002 308 1 0 308 0.325 100.000 99.676 99.676
b003 344 2 4 348 1.724 98.851 99.422 98.286
b004 325 1 0 325 0.308 100.000 99.693 99.693
b005 363 0 0 363 0.000 100.000 100.000 100.000
b006 310 2 0 310 0.645 100.000 99.359 99.359
b007 270 8 2 272 3.676 99.265 97.122 96.429
b008 480 0 0 480 0.000 100.000 100.000 100.000
b009 313 2 0 313 0.639 100.000 99.365 99.365
b010 309 3 0 309 0.971 100.000 99.038 99.038
b011 338 1 0 338 0.296 100.000 99.705 99.705
b012 404 0 1 405 0.247 99.753 100.000 99.753
b013 359 0 0 359 0.000 100.000 100.000 100.000
b014 344 0 1 345 0.290 99.710 100.000 99.710
b015 330 1 0 330 0.303 100.000 99.698 99.698
b016 352 0 0 352 0.000 100.000 100.000 100.000
b017 366 0 0 366 0.000 100.000 100.000 100.000
b018 383 5 17 400 5.500 95.750 98.711 94.568
b019 316 0 0 316 0.000 100.000 100.000 100.000
b020 304 31 34 338 19.231 89.941 90.746 82.385
Total 6814 63 62 6876 1.818 99.098 99.084 98.199
STD – – – – 4.34 2.31 2.04 3.90

Table 4
Algorithm performance evaluation of the entire data of records m001–m020.

Number TP FP FN Beats DER (%) SE (%) P (%) ACC (%)

m001 3065 40 18 3083 1.881 99.416 98.712 98.143
m002 3235 7 0 3235 0.216 100.000 99.784 99.784
m003 3432 167 18 3450 5.362 99.478 95.360 94.885
m004 3407 28 0 3407 0.822 100.000 99.185 99.185
m005 3561 14 33 3594 1.308 99.082 99.608 98.697
m006 3107 17 9 3116 0.834 99.711 99.456 99.170
m007 2615 38 0 2615 1.453 100.000 98.568 98.568
m008 4998 2 19 5017 0.419 99.621 99.960 99.582
m009 3161 17 0 3161 0.538 100.000 99.465 99.465
m010 2988 330 1 2989 11.074 99.967 90.054 90.027
m011 3597 0 2 3599 0.056 99.944 100.000 99.944
m012 3983 2 4 3987 0.150 99.900 99.950 99.850
m013 3708 2 4 3712 0.162 99.892 99.946 99.838
m014 3394 9 24 3418 0.965 99.298 99.736 99.037
m015 3205 2 0 3205 0.062 100.000 99.938 99.938
m016 3859 0 3 3862 0.078 99.922 100.000 99.922
m017 3517 71 71 3588 3.958 98.021 98.021 96.119
m018 3587 1 0 3587 0.028 100.000 99.972 99.972
m019 3197 3 0 3197 0.094 100.000 99.906 99.906
m020 3364 13 35 3399 1.412 98.970 99.615 98.593
Total 68 980 763 241 69 221 1.450 99.652 98.906 98.565
STD – – – – 2.63 0.51 2.34 2.4

3.3. Comparison with ECG

In this subsection, we compare the results from the proposed method
for SCG with the counterpart of ECG. Fig. 9 shows the R wave of
ECG as the gold reference for the detected actual AO peak position.
Incidentally, Fig. 9 also reveals the time delay between the R peak and
the AO peak. Fig. 10 shows an example of AO-AO and R–R gap diagram
of the b016 subject in order to illustrate the reliability of the method.
These results demonstrate that the AO peak position yielded by the
proposed method can match up with the ECG reference.

To further show the reliability of our approach, the instantaneous
heart rate from SCG is also compared with the instantaneous heart rate
obtained from the ECG data in the CEBS dataset. Four commonly used
statistical metrics, Mean, average value relative error (ARE), average
absolute error (AAE), and average absolute error percentage (AAEP),
are used to measure the error between the measured value and the
reference value [60,61]. The last three indicators are defined as follows:

ARE =
|

|

SCGave − ECGave
|

| , (30)

ECGave
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Fig. 9. Detection results of SCG via the proposed method. (a) Reference from ECG, (b) AO peak positions (red dots) for SCG of b016 via our technique.
Fig. 10. R–R gaps graph of ECG (above) and AO–AO gaps graph of SCG (below) for b016 subject.
Table 5
Algorithm performance evaluation of the entire data of records p001–p020.

Number TP FP FN Beats DER (%) SE (%) P (%) ACC (%)

p001 324 7 1 325 2.462 99.692 97.885 97.590
p002 308 1 0 308 0.325 100.000 99.676 99.676
p003 344 2 4 348 1.724 98.851 99.422 98.286
p004 324 2 0 324 0.617 100.000 99.387 99.387
p005 363 0 0 363 0.000 100.000 100.000 100.000
p006 310 2 0 310 0.645 100.000 99.359 99.359
p007 272 6 0 272 2.206 100.000 97.842 97.842
p008 474 0 6 480 1.250 98.750 100.000 98.750
p009 313 2 0 313 0.639 100.000 99.365 99.365
p010 309 3 0 309 0.971 100.000 99.038 99.038
p011 338 1 0 338 0.296 100.000 99.705 99.705
p012 403 1 1 404 0.495 99.752 99.752 99.506
p013 359 0 0 359 0.000 100.000 100.000 100.000
p014 341 4 4 345 2.319 98.841 98.841 97.708
p015 330 1 0 330 0.303 100.000 99.698 99.698
p016 352 0 0 352 0.000 100.000 100.000 100.000
p017 366 1 0 366 0.273 100.000 99.728 99.728
p018 385 4 15 400 4.750 96.250 98.972 95.297
p019 316 0 0 316 0.000 100.000 100.000 100.000
p020 333 3 5 338 2.367 98.521 99.107 97.654
Total 6864 40 36 6900 1.101 99.478 99.421 98.905
STD – – – – 1.22 0.93 0.64 1.21
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Table 6
The proposed method is compared with previous peak detection methods for the entire
data.

Test dataset Method (#B;#S) Performance

b001–b020 [30] 6873;20 SE: 89.3, P: 89.6
b001–b020 Proposed 6876;20 SE: 99.1, P: 99.1
m001–m020 [30] 70217;20 SE: 93.9, P: 94.5
m001–m020 Proposed 69221;20 SE: 99.7, P: 98.9
p001–p020 [30] 6864;20 SE: 87.7, P: 85.7
p001–p020 Proposed 6900;20 SE: 99.5, P: 99.4

#B:Number of beats analyzed, #S: Number of subjects for data. The unit of indicators
of SE and P is %.

AAE = 1
𝑁

𝑁
∑

𝑛=1

|

|

SCGest (𝑛) − ECGref (𝑛)|| , (31)

AAEP = 1
𝑁

𝑁
∑

𝑛=1

|

|

|

|

SCGest (𝑛) − ECGref (𝑛)
ECGref (𝑛)

|

|

|

|

, (32)

where SCGave, ECGave denote the average value of SCG and ECG,
respectively. 𝑁 , SCGest (𝑛), and ECGref (𝑛) denote the total number of
heart rate monitors, the 𝑛th SCG instantaneous heart rate, and ECG
reference values, respectively.

As shown in Table 7, the instantaneous heart rate from SCG ob-
tained by the proposed method is almost exactly identical to that of

ECG. As an example, the results of the corresponding correlation and
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Fig. 11. Statistical analyses on beat–beat intervals obtained form ECG and SCG for a total of 204 heartbeats of b002. (a) Linear correlation (b) Bland–Altman analysis. The analyses
re performed on R–R and AO–AO intervals using Matlab toolbox ‘‘cftool’’.
Table 7
Comparison between SCG measurement results and ECG reference values.

Number ECG mean SCG mean ARE AAE AAEP (%)

b001 66.18 67.43 0.01884 – –
b002 61.87 61.96 0.00150 0.4773 0.7730
b003 69.45 70.22 0.01109 – –
b004 65.67 65.61 0.00098 0.6166 0.9189
b005 72.34 72.37 0.00042 1.3003 1.7892
b006 61.88 62.67 0.01277 0.8606 0.0136
b007 54.45 56.26 0.03317 – –
b008 95.45 95.67 0.00230 0.8663 0.9083
b009 62.33 63.39 0.01711 1.0055 0.0147
b010 61.72 61.79 0.00120 1.1325 1.8289
b011 68.08 68.12 0.00057 0.8426 1.2309
b012 81.10 81.01 0.00103 1.4806 1.7973
b013 72.03 72.13 0.00145 1.1529 1.5850
b014 69.10 68.80 0.00433 1.4771 2.1119
b015 66.06 66.02 0.00065 0.6653 1.0062
b016 72.92 72.74 0.00242 1.0171 1.3972
b017 72.61 72.59 0.00020 0.3510 0.4852
b018 81.63 79.53 0.02566 – –
b019 63.05 63.05 0.00001 0.8936 1.4256
b020 68.50 68.22 0.00411 – –

The sign ‘‘–’’ means that the corresponding value cannot be answered. The reason is
that the amounts of R–R and AO–AO heartbeat do not match due to relatively large
FPs and FNs. As for b002, b015, b017 the match can be achieved by removing only
one FP point.

Bland–Altman analyses for b002 are shown in Fig. 11.1 These analyses
show that a slope and intercept of 1.04 and −38.51 ms with 𝑅2 values
of 0.99 and a bias of −0.01 ms (𝑝 = 0.05) with limits of agreement
of (−12.23; 12.21) ms. This example further demonstrates that our
technique can yield accurate heart rate via the acceleration sensor
without ECG as a reference. Our approach can be extended to a variety
of platforms for real-time and reliable assessment of heart rate.

4. Conclusion

In this paper, a high accurate AO peaks detection method is pro-
posed for SCG without reference to the R wave of the ECG. We construct
a first order bandpass filter that is a combination of two simple MTI
filters to cancel out-band artifacts for the raw output signal of the

1 The Bland–Altman results of records b001 to b020 are shown in Table 8.
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Table 8
Bland–Altman Analysis of records b001 to b020.

Number mean mean +
1.96 sd

mean −
1.96 sd

Limits of
agreement

𝑅2

b001 – – – – –
b002 −0.01 12.21 −12.23 95% 0.9894
b003 – – – – –
b004 0.10 23.75 −23.55 95% 1.0000
b005 0.10 32.11 −31.91 95% 1.0000
b006 0.06 42.05 −41.93 95% 1.0000
b007 – – – – –
b008 0.18 30.30 −29.94 95% 1.0000
b009 −1.11 78.00 −80.23 95% 1.0000
b010 −0.07 19.79 −19.93 95% 1.0000
b011 −0.79 105.29 −106.87 95% 1.0000
b012 −0.37 20.00 −20.75 95% 1.0000
b013 0.03 58.24 −58.17 95% 1.0000
b014 0.25 72.20 −71.71 95% 1.0000
b015 −1.40 63.73 −66.53 95% 1.0000
b016 −0.03 25.77 −25.82 95% 1.0000
b017 0.03 8.03 −7.96 95% 1.0000
b018 – – – – –
b019 −0.69 45.67 −47.05 95% 1.0000
b020 – – – – –

The sign ‘‘–’’ means that the corresponding value cannot be answered. The reason is
that the amounts of R–R and AO–AO heartbeat do not match due to relatively large
FPs and FNs.

accelerometer. Due to the purified SCG signal with reduced number
of modes, the computational burden of the signal decomposition stage
can be effectively reduced. Further, SVMD that does not require the
prior knowledge of the number of modes is employed to decompose
the purified SCG signal at a low computational cost. The waveform
factor criterion induced from the pulsatile nature of the AO signal is
utilized to select the subbands with possible AO peaks for AO signal
reconstruction. Subsequently, a seventh power law detector is designed
to enlarge the contrast between the amplitude of AO peaks and the
remaining non-AO peaks, yielding a much cleaner envelope for AO peak
detection. The proposed method achieves an average SE of 99.02%, an
average P of 99.06%, and an average ACC of 98.10% approximately
over 4594 analyzed beats for public CEBS database. The results clearly
show that our approach outperforms several state-of-the-art methods.
In addition, estimates of the instantaneous heart rate of the proposed
method from SCG and the ECG’s instantaneous heart rate are also a

good match. Future work is to detect abnormal cardiac activity in
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patients by evaluating the discriminative characteristics in SCG based
on transfer learning similar to [62,63].
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