Duplex Joint Radar-Communications System Based on FMCW MIMO Radar

Yanhao Wang¹, Yihan Su¹, Dingyou Ma¹, Tianyao Huang¹, Yimin Liu¹, Oded Cohen², Shlomi Savariego², Nimrod Glazer², Eliya Reznitskiy² and Yonina C. Eldar²

¹ Department of Electrical Engineering, Tsinghua University, Beijing, China
² Faculty of Math and CS, Weizmann Institute of Science, Rehovot, Israel
Contact: wyh21@mails.tsinghua.edu.cn
Paper number: 27

Introduction

● Duplex DFRC Systems for Vehicular Applications
 ➢ Future cars implement both radar and communications on the same platform
 ➢ Two implementing approaches
 • Use individual systems
 • Jointly design a dual function radar-communications (DFRC) system
 ➢ Benefits of full-duplex DFRC systems
 • Improve the spectrum efficiency
 • Reduce system size, weight and power consumption
 • High real-time: Detect the target, transmit and receive the communication signal simultaneously

Theory

● Index Modulation based duplex DFRC System
 ➢ Index modulation (IM)
 • Embed message into the combinations of radar waveform parameters
 • Possible domains: Spatial, spectral and time
 • Have minimal degradation to radar performance
 ➢ Full-duplex technique
 • Separate communication signals and radar echo from mixed echoes
 • Two-way communication in every radar pulse

Contributions

● Contribution of This Prototype
 ➢ Full-duplex design, realizes real-time information sharing and detection between users
 ➢ Implementing IM based DFRC system using low-cost commercial automotive radar
 ➢ Promising to be applied in future intelligent transportation applications

Hardware Implementation

● Architecture of the Prototype

Graphical User Interface

● Trade-off between Bit Rate & Radar Performance

\[
\text{bit rate} = \frac{\log_2 \text{Symbols}}{\text{T}_{\text{chirp}}} = R_{\text{res}} \frac{2^{\text{chirpSlope} + \log_2 \text{Symbols}}}{c} \text{ bit/s}
\]

Parameters in the prototype:

\[
\text{bit rate} = 28.82 \text{Kbit/s} \rightarrow \text{Range resolution} = 0.286 \text{m}
\]

Simulation Results

Communication BER

Radar Recovery