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Future Trends Outlines

> Near-field Communication for 6G
> Joint radar comm

> Task-based quantization

> Automotive radar

> Power Efficient Hardware
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Near-Field Communication for 6G
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Emerging Applications for 6G Communication

> Fifth-Generation (5G) involves an increased scope of communication scale from within humans to
among countless human beings, machines and things

> The evolution from 5G to 6G will further fuse the digital worlds and real worlds

> Emerging new applications: Extended Reality, Holographic Video, Digital Replica, and Intelligent Transport
and Logistics

Extended Reality Holographic Video Digital Replica Intelligent Transport and

Logistics
[1] ITU FG-NET-2030, “Network 2030-A Blueprint of Technology, Applications and Market Drivers towards the Year 2030 and Beyond,” https://www.itu.int/en/ITUT/ focusgroups/net2030/Documents/
White_Paper.pdf, document ITU-T FG-NET-2030, ITU, Geneva, Switzerland, May 2019.



Key Performance Indicators (KPI) of 6G

100x peak data rate Peak data ate: 1Tbps Spectral efcency:Kops/z 10x spectral efficiency

= ¢ 1024
20 Gbps 100-b/s/Hz\ 6G

Number of antennas

p— Access density: 100 users/m? Coverage: 0%
1024 x1024 elements for 128
THz band (0.06-10THz) B! - 2:8 _
4G 5G 6G
0 Near-field_o+ﬂeld> > 5G with massive MIMO: Users are located in the far-field region
Y Spherical wave f o Plamarwave - 6G. Users are more likely located in the near-field region

Table I. Rayleigh distance [m]

| 0.1 m 0.5m 1m 3m
[T 2.6 GHz - 4.3 17 156
28 GHz 1.9 47 187 \
100 GHz 6.7 167 667 \
142 GHz 9.5 237 947 \

[1] W. Jiang, B. Han, M. A. Habibi and H. D. Schotten, “The Road Towards 6G: A Comprehensive Survey,” IEEE Open J. Commun. Soc., vol. 2, pp. 334-366, Feb. 2021.
[2] I. F. Akyildiz, and J. M. Jornet, “Realizing ultra-massive MIMO (1024 x1024) communication in the (0.06—10) terahertz band,” Nano Commun. Netw., vol. 8, pp. 46-54, Jun. 2016.



Metasurface Antennas with Low-Bit ADCs

> Exploit analog precoding for task-based quantization
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> Frequency selectivity
> Suitable for wideband signaling ‘ D
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[1]. Wang, N. Shlezinger, Y. C. Eldar, S. Jin, M. F. Imani, I. Yoo, D. R. Smith, "Dynamic Metasurface Antennas for MIMO-OFDM Receivers with Bit-Limited ADCs", IEEE Transactions on Communications, vol.
69, issue 4, pp. 2643-2659, April 2021



DMA with reduced numbers of Radio Frequency (RF) chains

Reliably communicate with reduced numbers of Radio Frequency (RF) chains
Exploit inherent analog signal processing flexibility
Frequency-Selective Analog Beamforming

Reduces number of

frequencies
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[1]. N. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, "Dynamic Metasurface Antennas for 6G Extreme Massive MIMO Communications”, IEEE Wireless Communications
Magazine, vol. 28, issue 2, pp. 106-113, April 2021




Hybrid Reflecting and Sensing RIS (Reconfigurable Intelligent Surfaces)

[1]

Steered reflected beam Phase sensed at the sampling waveguides

> Challenges
> No signal processing ability

> Only cascaded channel is available

Phase difference of adjacent wavegnide (rad)

> Large number of channel coefficients [eaE==topy 71/ T IS
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[1]. G. C. Alexandropoulos, N. Shlezinger, I. Alamzadeh, M. F. Imani, H. Zhang and Y. C. Eldar, "Hybrid Reconfigurable Intelligent Metasurfaces: Enabling Simultaneous Tunable Reflections and Sensing for 6G
Wireless Communications", Submitted to IEEE Transactions on Signal Processing, April 2021.

[2]. H. Zhang, N. Shlezinger, G. C. Alexandropoulos, A. Shultzman, I. Alamzadeh, M. F. Imani and Y. C. Eldar, "Channel Estimation with Hybrid Reconfigurable Intelligent Metasurfaces", Submitted to IEEE
Transactions on Communications, June 2022.

[3] H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, and Y. C. Eldar, “6G Wireless Communications: From Far-field Beam Steering to Near-field Beam Focusing”, Submitted to IEEE Wireless Communications, March g
2022.




Multi-User Wireless Power Transfer (WPT) Systems

O Energy Receiver

> Current wireless charging devices

> Inductive coupling or Electro magnetics
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[1]. H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, M. F. Imani, and Y. C. Eldar, "Near-field Wireless Power Transfer for 6G Internet-of-Everything Mobile Networks: Opportunities and Challenges”, to appear in
IEEE Communications Magazine. 9



Joint radar comm
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Integrated Sensing and Communication

> Enabling many new technologies such as
connected cities, connected vehicles, and
remote health caring

> Perceptive Networks: Sensing as a Service
> Sensing aided resource management

> Traffic monitoring
> Weather observation

> Human activity recognition

> Smart home and smart city applications

ISAC: Convergence of sensing and communication to

efficiently utilize congested resources

https://isac.committees.comsoc.org/ 1


https://isac.committees.comsoc.org/

Index Modulation for DFRC

> Collaboration with the groups of Profs. Tianyao Huang

0 1
. . . . S =
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> SpaCoR: Spatial Modulation Based Communication-Radar

> Orthogonal transmissions with distinct bands and antennas
> Toggle antenna selection

%108

1
i 0.8
h 0.6
0.4
0.2

-0.5 0.5

74/second
74/second

4
-2
0
2
4

0 1
1
i05
0
0 05

fo/2m
(a) Full Antenna Array

-0.5

=]

fo?ZW
(b) SpaCoR
> FRaC: FMCW-based joint radar-communications

> Higher bit rate than MAJoRCom, through an extra level of
phase modulation
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FMCW-Based Joint Radar and Communications: Index Modulation

> Based on FMCW modulation

> Commercial automotive
radars

> Eliminate the limitation of
sampling rate

> QObtain acceptable
performance of both radar
and communications in a
time-division mode

Higher bit rate than
MAJoRCom, through an

extra level of phase
modulation

>Ma et al. 21
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Duplex FRaC: FMCW-based joint radar-communications

Radar Waveform-Based
DFRC System

o

Full-duplex DFRC
System

> Full-duplex spectral-spatial

Index modulation

> Real-time Information sharing and detection

> Low-cost commercial automotive radars
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Task-Based Hardware-Limited Quantization

> Shlezinger, Eldar, Rodrigues 19-21
> Neuhaus et. al 21-22

> Optimal quantization typically using vector quantizers
> ADCs are usually serial scalar quantizers
> Signals are often acquired for a task: i —

* Channel estimation

* Source localization... wa Em G :
DSP
ADC / )
‘ \\ A (x)|, (z) e
'»! Scalar quantizer (§)1 R
T§T : Analog : Digital
] . : combiner : procesing .
§34 f f (X) (Z)p scal i (g)k >
2 n calar quantizer
a . (0 \% ¥ »
— Input Task
4 h12
S(iakakaiialain 5.0 xmjéﬂ 1® Jointly optimize in light of the task
Number of bt fog, M Analog Quantizer Digital
combining support processing

Tools: Majorization theory, dithering, water filling

Exploit task to reduce number of bits and

simplify hardware
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Task-based Quantization for Multi-user Implementation

Massive MIMQ reciver
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Spectrum Sharing: Cognitive Radio + Radar

>

Find frequency white spaces to transmit communication signals

Use remaining spectrum for radar signals
Challenges:

> Fast and efficient spectrum sensing

> Transmit radar signals with limited bandwidth

Solution based on Sub-Nyquist sampling

Power

A

Spectrum for radar

Frequency

M‘:Qg

Tlme

Spectrum holes for
communications

Analog-to-Digital
cognmve Radio

ampling, detection, and hordwore
Tempora. el ond pomal compression
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Radar With Unknown Pulse Shape

> Mulleti et. al 20

distorted and unknown
\\\\ . 445'“3”““"1“ > We propose the use of multiple receivers

y lg t! %3 'fom'R“z (at least 2) to recover the targets and pulse

tiz ta to3

) 4 \K > |n practice the pulse shape can be

> Each Rx operates at a sub-Nyquist rate

A’ M P L SINGLE-INPUT MULTI-OUTPUT SUB-NYQUIST
= RADAR WITH UNKNOWN PULSE SHAPE
1D R T
SHZMANN INSTITUTE OF SCIE
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Radar With Unknown Pulse Shape (Cont.)
M;’Ifab

Basebanh signal
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Allows for low power, low BW radar

detection in complicated settings like
automotive radar

Lowpass filters for Rx
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Power Efficient Hardware
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Timing Based Sensing

> Lazar and Toth, 04
Change the information recorded! > Adam, Scholefield, and Vetterli 20

> Naaman, Mulleti, Eldar 22

Time encoding machine:

Event-driven sensing approach 1

.. .. Signal
Quantizing timings

-1t
ad IHINI :

> Biased
t t signal  °]

> No global clock is required: L5

. Signal |
Low power consumption integral
> Increasing the signal’s amplitude i
* Decreases timing quantization 15
dynamic range Encoding ! |
* Decreases required number of bits 05T
per sample " ! : ) s 5
Integrator Comparator Time (sec)
x(© 1J’tdr 6_. = _t?'
i £ ¥ Reduce power and bits while leveraging low-cost,

Spike trigger reset

simple hardware
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Timing Based Sensing implementation

> Naaman, Eldar 21

Only 21 samples were used for reconstruction
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Timing Based Sensing Performance

ECG Input signal Reconstructed signal
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Can We Go Beyond the Dynamic Range Barrier?

> Dynamic range is defined as the difference between the maximum and minimum
values of the displayed signal

> How do we go beyond the dynamic range of a signal without clipping while
maintaining resolution?

> An example of a narrow vs. broad dynamic range in an ultrasound scan:

CHS-2
Abdomen
30dB

(=)

3.6 MHz
DR 30dB
Edge 1
Persist 3
RIS3
Map D
Tint 1

17 fps

Broad dynamic range of IVC Narrow dynam|c range of IVC

A 000w 4 KB 05
'c 1B 1.4 i
P 100 10.71 TIS1.4 751 Yaw Amo Wiafe, et al.
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Modulo Sensing Can Go Beyond the Dynamic Range Barrier

> Conventional sensors
* Have a limited dynamic range — clipped when exceeds the sensor amplitude limit

> Known solutions:
* Automatic Gain Control (AGC)
* Adapt the signal amplitude to the sensing capabilities : ol
* Disadvantage: Modulo operation — fast

* Creates a momentarily clipping and reduces signal resolution adaptation to the signal

Original Clipping

Conventional ADC Modulo ADC

= QOriginal
=== Clipping

[

> Our solution
*  Modulo sampling operation with faster improved dynamic range response

Folded

-1

* Advantage: Clipping prevention within an extended range 27



Modulo Sampling: Overcoming Dynamic Range Restrictions

> Transmission medium or processing
devices have limited dynamic range

> Clipping beyond dynamic range

> A modulo operation is used to limit
dynamic range prior to transmission

> Signal structure e.g. correlation, sparsity,
is used to recover the signal

> Signal can be recovered robustly

[ Standard ADC Modulo ADC \

— Original
=== Clipping
——- a

T

> Bhandari, Krahmer, Poskitt 21
> Romanov and Ordentlich 19
> Azar, Mulleti, Eldar 22

Input signal Comparator Output/ Modulo Signal

UDR
= @» @B UNLIMITTED
7 : S DYNAMIC
Multl;llexer RANGE

ADC

DAC 5,
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Future Communication and Sensing Systems
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