

Single Antenna Joint Radar and Communication Prototype Honghao Li¹, Shlomi Savariego², Nimrod Glazer², Tianyao Huang³, Yimin Liu³, Yu Zhang³ and Yonina C. Eldar²

Introduction

Background

- > We consider a single-antenna radar and communication system in which the radar echo (chirp) and communication (QPSK) signals overlap in time and frequency domain
- Gap: Currently, most joint radar and communication (JRC) methods cannot be applied in single-antenna scenarios
- > We propose a method based on sparse **Bayesian learning (SBL) to separate two** signals simultaneously

Contributions of This Prototype

- > Radar detection: Improved robustness against the communication signal intensity (compared to CS-L1^[1] and pulse compression method)
- CS-L1 is an algorithm based on l_1 -norm minimization
- Pulse compression is a classic method in radar detection
- Communication BER: Approaches the theoretical limit under an additive white Gaussian noise (AWGN) channel
- > The method has higher time complexity, but also better performance

Method

Received signal model

$$y = y_r + y_c + n$$

Where y_r are radar echoes, y_c are communication signals and *n* is Gaussian noise

[1] Zheng L, Lops M, Wang X. Adaptive interference removal for uncoordinated radar/communication coexistence. IEEE Journal of Selected Topics in Signal Processing, 2017, 12(1): 45-60.

¹ Department of Engineering Physics, Tsinghua University, Beijing, China ² Faculty of Math and CS, Weizmann Institute of Science, Rehovot, Israel ³Department of Electrical Engineering, Tsinghua University, Beijing, China Contact: lihh20@mails.tsinghua.edu.cn

Gaussian mixture model (GMM)

- Model communication signal plus Gaussian noise as interference whose distribution is described by GMM $\mathcal{E} = y_c + n$
- Sparse Bayesian learning

 $y = y_r + \varepsilon = \Theta x + \varepsilon$

- x is unknown representing the complex reflection coefficients of the targets. For the scenario that includes Q targets, Q entries are non-zero in x
- Recover sparse vector x under GMM interference using SBL

Hardware Implementation

• Final Design of the Prototype

ICASSP 2023

Tsinghua University

Simulation Results Radar Detection

