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5. LASSO-𝑩𝑩𝟐𝟐𝑹𝑹𝟐𝟐

❯ Time-Domain Separation

�̂�𝑧 𝑛𝑛 is a finite 𝑁𝑁-length signal

❯ Fourier-Domain Separation:

❯ Observation

�̂�𝑧 𝑛𝑛 is a sparse signal

LASSO-𝑩𝑩𝟐𝟐𝑹𝑹𝟐𝟐:  
𝑚𝑚𝑚𝑚𝑛𝑛�𝒛𝒛

1
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∥ �𝐅𝐅𝜆𝜆 − 𝐕𝐕�𝐳𝐳 ∥22 +𝛾𝛾 ∥ �𝐳𝐳 ∥1

ISTA Algorithm:

�𝐳𝐳(𝒊𝒊+𝟏𝟏) = 𝑆𝑆𝛾𝛾𝛾𝛾 �𝐳𝐳 𝒊𝒊 − 𝜏𝜏𝐕𝐕𝐇𝐇 𝐕𝐕�𝐳𝐳 𝒊𝒊 − �𝐅𝐅𝜆𝜆

where 𝑆𝑆𝛾𝛾𝛾𝛾 𝑥𝑥 = sign 𝑥𝑥 max( 𝑥𝑥 − 𝛾𝛾𝜏𝜏, 0)

7. Conclusions

❯ We proposed a fast and robust 
algorithm to recover the residual 
signal in modulo sampling

❯ We showed that the residual 
signal’s first-order difference is a 
sparse vector 

❯ Then, the problem of recovering 
the residual signal is formulated as 
a sparse recovery problem

❯ Through simulations, we 
demonstrated that the proposed 
algorithm is fast and robust 
compared to existing methods 

1. Motivation and Contributions

❯ Analog-to-digital-converters (ADCs) play a vital role in modern information processing systems
❯ Ideally, the dynamic range (DR) of an ADC should be greater than the DR of the input signal, 

otherwise, it leads to loss of information

❯ Sampling is an important building block in an ADC. Typically, a band-limited signal is sampled 
at Nyquist rate, which is greater than twice the signal’s maximum frequency component

❯ High sampling rate                Expensive and power consuming ADCs
❯ Desirable: High-DR-ADCs that operate at lower sampling rate 
❯ This paper addresses the high DR issue of an ADC using the non-linear modulo operator
❯ We propose a fast and robust algorithm called LASSO-𝐵𝐵2𝑅𝑅2 for recovering bandlimited true 

samples from folding samples
❯ We show that the first-order difference of the residual samples is sparse and can be recovered 

from its partial Fourier measurements by formulating a sparse recovery problem 
❯ We demonstrate that the proposed algorithm is robust to noise and computationally efficient 

compared to the existing methods 
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Loss of 
information

𝑓𝑓 𝑡𝑡 ∈ 𝑳𝑳𝟐𝟐 ℝ ∩ 𝑩𝑩wm: Finite-energy band-limited signal

𝑓𝑓𝜆𝜆 𝑛𝑛 = 𝑓𝑓 𝑛𝑛 + 𝑧𝑧 𝑛𝑛 , 𝑧𝑧 𝑛𝑛 ∈ 2𝜆𝜆ℤ𝑓𝑓𝜆𝜆(𝑡𝑡) = 𝑓𝑓(𝑡𝑡) + 𝑧𝑧(𝑡𝑡)

3. Properties of Finite-Energy BL Signals

❯ Time-Domain Separation:

−𝑇𝑇𝜆𝜆
= −𝑁𝑁𝜆𝜆𝑇𝑇𝑠𝑠

𝑇𝑇𝜆𝜆
= 𝑁𝑁𝜆𝜆𝑇𝑇𝑠𝑠

−𝑇𝑇
= −𝑁𝑁𝑇𝑇𝑠𝑠

𝑇𝑇
= 𝑁𝑁𝑇𝑇𝑠𝑠

Riemann-Lebesgue Lemma: lim
|t|→∞

𝑓𝑓 𝑡𝑡 = 0

• 𝑇𝑇 = 𝑁𝑁𝑇𝑇𝑠𝑠: Covers 98 − 99% of energy 
of 𝑓𝑓 𝑡𝑡

• 𝑇𝑇𝜆𝜆 = 𝑁𝑁𝜆𝜆𝑇𝑇𝑠𝑠:  𝑓𝑓𝜆𝜆 𝑡𝑡 = 𝑓𝑓 𝑡𝑡 ,∀ 𝑡𝑡 > 𝑇𝑇𝜆𝜆
and 𝑓𝑓𝜆𝜆[𝑛𝑛] = 𝑓𝑓[𝑛𝑛],∀ 𝑛𝑛 > 𝑁𝑁𝜆𝜆

𝑧𝑧(𝑡𝑡)/𝑧𝑧[𝑛𝑛]: Finite 𝑻𝑻-duration/𝑵𝑵-length signal

❯ Frequency-Domain Separation:

where 𝜌𝜌 = 2𝑤𝑤𝑚𝑚
𝑤𝑤𝑠𝑠

= 1
𝑂𝑂𝑂𝑂 𝑤𝑤

𝜋𝜋−𝜋𝜋 𝜌𝜌𝜋𝜋−𝜌𝜌𝜋𝜋

𝑍𝑍 𝑒𝑒𝑗𝑗𝑤𝑤 = 𝐹𝐹𝜆𝜆 𝑒𝑒𝑗𝑗𝑤𝑤 ,∀ 𝜌𝜌𝜋𝜋 < 𝑤𝑤 < 𝜋𝜋
[1] A. Bhandari et al. IEEE TSP 2020. [2] E. Romanov et al. IEEE SPL 2019. [3] E. Azar et al. ICASSP 2022.

2. Problem Statement

❯ Modulo Sampling:  

❯ Existing Literature:

𝑀𝑀𝜆𝜆 𝑎𝑎 = 𝑎𝑎 + 𝜆𝜆 𝑚𝑚𝑚𝑚𝑚𝑚 2𝜆𝜆 − 𝜆𝜆

𝑓𝑓𝜆𝜆 𝑛𝑛 = 𝑓𝑓 𝑛𝑛 + 𝑧𝑧 𝑛𝑛 , 𝑧𝑧 𝑛𝑛 ∈ 2𝜆𝜆ℤ

Higher-Order Differences (HODs) Based [1]: Sensitive to 
noise and requires a sampling rate of 𝟐𝟐𝟐𝟐𝟐𝟐 times Nyquist rate

Prediction-Based [2]:  Improved upon HODs and required a 
sampling rate that is greater than Nyquist rate 

Beyond Bandwith Residual Recovery (𝑩𝑩𝟐𝟐𝑹𝑹𝟐𝟐) [3]: Improved 
upon prediction-based; requires a sampling rate slightly 
higher than Nyquist. Computationally expensive and not fast 
enough 

R: Robust, fast, and operates at low sampling 
rate

4. Observation

�𝒇𝒇𝝀𝝀 𝑛𝑛 = �𝒇𝒇 𝑛𝑛 + �𝒛𝒛 𝑛𝑛 , �̂�𝑧 𝑛𝑛 = Δz[n] is sparse

𝐿𝐿 ≤ min 4𝐾𝐾 + 4𝐾𝐾
𝑓𝑓 𝑡𝑡 ∞−𝜆𝜆

2𝜆𝜆
, N , 𝐾𝐾 = 𝑁𝑁

2𝑂𝑂𝑂𝑂

❯ In practice, the 
actual 𝐿𝐿 value is 
far less than its 
upper bound

𝜆𝜆 decreases→ 𝐿𝐿 increases

Simulation: Over-Sampling

Limitation

6. Results

[4] S. Mulleti et al. IET 2023
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