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Wireless Communications

❯ Wireless communication era

❯ Major enabler technology

❯ Constantly increasing demands
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Machine Learning (ML)

❯ A rapidly growing technology

❯ Revolutionized many fields

❯ Rely on data

❯ Unprecedent empirical success
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The Deep Learning Revolution

❯ Deep neural networks (DNNs) achieve 
superior performance in multiple areas:

• Computer vision

• Natural language processing

• ….

• Problems that are difficult to tackle using 
conventional optimization methods.
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Model-Based Methods

❯ Classical methods rely on knowledge of principled 
mathematical models

❯ Established models arise in many applications

❯ Established algorithms designed for such models

❯ Sensitive to inaccuracies, complex, delay

Signal processing
Communications

Control
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Hybrid Methods

❯ Relying on data has its pros and cons

❯ Relying on knowledge has its pros and cons

❯ In signal processing and communications we often have both

❯ Hybrid techniques combining

• Principled mathematical models 

• Data-driven systems

Model-Based Deep Learning
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Talk Outline

❯ Overview and motivation 

❯ What is model-based deep learning?

❯ (Only) two representative examples

• KalmanNet

• Unfolding for hyperparameter optimization

❯ The elephant in the room.... 
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About Us

❯ PI: Nir Shlezinger

• Research areas:

• Model-based AI

• Deep learning for communications

• Learning over communication channels

• Metasurfaces for communication

• Learning on the edge

• Joint radar-comm. systems

• Analog-to-digital conversion
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What is model-based deep learning?



10

Is There a Middle Ground?

❯ Benefit from (partial) domain knowledge?

❯ Exploit (limited) data?

❯ How to combine?



11

There is a Middle Ground!

❯ Infer using a deep 
network

❯ Integrate model-based 
methods in architecture

❯ Infer using a model-
based algorithm

❯ Augment algorithm with 
deep neural networks

Model-aided networks DNN-aided inference

Recent reviews:
N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis. “Model-Based Deep Learning." arXiv 2012.08405
N. Shlezinger, Y. C. Eldar, and S. P. Boyd. “Model-Based Deep Learning: On the Intersection of Deep 
Learning and Optimization”, IEEE Access ,2022
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(Only) two representative examples
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Structure-Oriented DNN-Aided Inference

❯ Often, we have knowledge of statistical structures

• Physical characteristics

• System operation

• Understanding of underlying dynamics

• Established approximations

❯ The model subtleties may be intractable…

❯ Structures are exploited by algorithms

❯ Learn the missing model subtleties 

Structure-
oriented
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DNN-Aided Kalman Filter (1/5)

Real-time tracking of dynamic systems

❯ Observations: 𝒙𝑡 ∈ ℛ
𝑁

❯ Desired state: 𝒔𝑡 ∈ ℛ𝐾

❯ State-space model:

• State evolution model:

• Observations model:

❯ Example applications: localization, tracking

Inference mapping
𝑓𝑡:ℛ

𝑁 ↦ ℛ𝐾

Input 
𝒙𝑡 ∈ ℛ

𝑁

Predict 
ො𝒔𝑡 ∈ ℛ𝐾

𝒔𝑡 = 𝒇 𝒔𝑡−1 + 𝒆𝑡

𝒙𝑡 = 𝒉 𝒔𝑡 + 𝒗𝑡
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Classic Kalman Filter (2/5)

Kalman Filter: Linear Gaussian state-space model

❯ Provides minimal MSE estimate of 𝒔𝑡 given {𝒙𝜏}𝜏=0
𝑡

• From current observation 𝒙𝑡
• Previous estimate ො𝒔𝑡−1

𝒔𝑡 = 𝑭𝒔𝑡−1 + 𝒆𝑡 (∼ 𝒩 𝟎,𝑸 )

𝒙𝒕 = 𝑯𝒔𝑡 + 𝒗𝑡 (∼ 𝒩 𝟎,𝑹 )

ො𝒔𝑡

𝒔0

𝒙𝑡

Kalman gain 
computation
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KalmanNet (3/5)

❯ Kalman filter (and its variants) require 
knowledge of the state-space model

❯ Noise statistics dictate the Kalman gain

❯ In practice we are likely to only have 
an approximation of the state-space

❯ Learn the Kalman gain from data

• Not enforcing a model on the noise

• Learn to handle mismatches

• Preserve Kalman operation

ො𝒔𝑡

𝒔0

𝒙𝑡

ො𝒔𝑡

𝒔0

𝒙𝑡

• G. Revach, N. Shlezinger, X. Ni, A. L. Escoriza, R. J. G. van Sloun, and Y. C. Eldar, “KalmanNet: Neural Network Aided
Kalman Filtering for Partially Known Dynamics”, IEEE Transactions on Signal Processing, 2022.

Kalman gain
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KalmanNet (4/5)

❯ (Extended) Kalman filter

vs.

❯ KalmanNet

❯ Model-agnostic

❯ Not enforcing a model on the noise

❯ Learn to handle mismatches

❯ Preserve Kalman real-time operation

• A. L. Escoriza, G. Revach , N. Shlezinger, and R. J. G. van Sloun. “Data-Driven Kalman-Based Velocity Estimation for
Autonomous Racing”, IEEE ICAS 2021
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Gains of Model-Based Design (5/5)

❯ What do we gain from being interpretable?

1. Less complex network architectures

• Applicable in real-time on limited hardware

2. Measure of uncertainty

• Holds also under mismatched models

3. Can be trained in an unsupervised manner

• Track variations in the state-space model

4. Extends naturally to other Kalman-type tasks
• A. L. Escoriza, G. Revach , N. Shlezinger, and R. J. G. van Sloun. “Data-Driven

Kalman-Based Velocity Estimation for Autonomous Racing”, IEEE ICAS 2021

• I. Klein, G. Revach, N. Shlezinger, J. Mehr, R. J. G. van Sloun, and Y. C. Eldar, “
Uncertainty in Data-Driven Kalman Filtering for Partially Known State-Space
Models”, IEEE ICASSP 2022

• G. Revach, N. Shlezinger, T. Locher, X. Ni, R. J. G. van Sloun, and Y. C. Eldar,
“Unsupervised Learned Kalman Filtering”, EUSIPCO 2022

• X. Ni, G. Revach, N. Shlezinger, R. J. G. van Sloun, and Y. C. Eldar, “RTSNet:
Deep Learning Aided Kalman Smoothing”, IEEE ICASSP 2022
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Deep Unfolding/Unrolling

Deep networks inspired by iterative 
model-based algorithm:

❯ Unfold iterations into layers

❯ Learn parameters of the layer from data

❯ Model-driven network

M
o

d
el-b

ased
         →

D
eep

 n
etw

o
rk

Benefits: 
❯ Faster convergence
❯ Less trainable parameters
❯ Interpretable network
❯ Better performance, less training

Deep 
Unfolding
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LISTA for Sparse Recovery

❯ Sparse recovery via ℓ1 relaxation

❯ Solve by ISTA
𝒔𝑡+1 = 𝒯𝜂𝑡𝜌(𝒔𝑡 − 𝜂𝑡𝚿

𝑻𝑯𝑻(𝑯𝚿𝒔𝒕 − 𝒙 ))

❯ Unfold 𝑄 iterations

❯ Coincides when

Distortion

Compressed image

𝒔
𝒙 = 𝑯𝒔 + 𝒘

Decision 
𝑓 ⋅

ො𝒔

ො𝐬0 𝑊1
1

𝐱

Σ

𝑊1
2 𝛽1

𝒯𝛽1

ො𝐬1

Layer 1

ො𝐬𝑄−1
. . . 

Unfolded network

. . .

ො𝐬𝑘

𝑊Q
1 Σ

𝑊𝑄
2 𝛽𝑄

𝒯𝑄

Layer Q

• K. Gregor and Y. LeCun. "Learning Fast Approximations of Sparse Coding." in ICML 2010

𝒔𝑡+1 = 𝒯𝜷𝒕(𝑾𝒕
𝟏𝒔𝑡 +𝑾𝒆𝒙 ))

𝑾𝒕
𝟏 = 𝑰 − 𝜂𝑡𝚿

𝑻𝑯𝑻𝑯𝚿
𝑾𝒕

𝟐 = 𝜂𝑡𝚿
𝑻𝑯𝑻

𝜷𝑡 = 𝜂𝑡𝜌

ො𝒔∗ = argmin
𝒔

𝒙 − 𝐇𝚿𝐬
𝐹

𝟐
+ 𝜌 𝒔

1
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Deep Unrolling Options

❯ Iterative algorithms are also parameterized

• Objective parameters 𝝍

• Hyperparameters 𝝀

❯ Three unfolding options:

A. Improve convergence speed

• Optimize hyperparameters 𝝀 for each iteration

B. Learn abstract model

• Set iteration parameters for both 𝝍 and 𝝀

• Different objective

• Use iterative solver as principled initialization

C. Convert into abstract deep network

• Design neural layers that imitate the iterations

• Deep architecture inspired by algorithm 

Iteration 1

layer

A
ctivatio

n

Iteration 𝑄

layer

A
ctivatio

n

. 

. 

.

Data
{𝒙𝑡}

Data
{𝒔𝑡}

Iterative alg.

ℒ𝝍 𝒔 = 𝒙 − 𝐇𝚿𝐬
𝐹

𝟐
+ 𝜌 𝒔

1
𝝍 = {𝑯,𝚿, 𝜌}

𝒔𝑡+1 = 𝒯𝜂𝑡𝜌(𝒔𝑡 − 𝜂𝑡𝚿
𝑻𝑯𝑻(𝑯𝚿𝒔𝒕 − 𝒙 )) 𝝀 = {𝜂𝑡}
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Learned Hybrid Beamforming (1/5)

argmax
𝑾𝑎,{𝑾𝑑,𝑏}

𝑅 =
1

𝐵
∑log 𝑰 + ෩𝑯𝑏𝑾𝑎𝑾𝑑,𝑏𝑾𝑑,𝑏

𝐻 𝑾𝑎
𝐻 ෩𝑯𝑏

𝐻

subject to
1

B
∑||𝑾𝑎𝑾𝑑,𝑏||𝐹

2 ≤ 𝑁

Hybrid analog/digital receivers

Precoder in frequency-selective channels

❯ Observations: channel matrix in each bin

• {෩𝑯𝑏}, 𝑏 ∈ 1,… , 𝐵

❯ Output: hybrid precoding setting

• Analog precoder 𝑾𝑎 ∈ 𝒞𝑀×𝐿

• Digital precoders 𝑾𝑑,𝑏 ∈ 𝒞𝐿×𝑁

❯ Problem formulation:

Inference mapping
𝑓:ℛ𝐵×𝑁×𝑀

↦ ℛ𝑀×𝐿 × ℛ𝐵×𝐿×𝑁

Input
{෩𝑯𝑏}

Predict 
𝑾𝑎 ,

{𝑾𝑑,𝑏}

A. Improve 
convergence
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Learned Hybrid Beamforming (2/5)

❯ Set hybrid precoder for channel {෩𝑯𝑏}

❯ Projected gradient ascent (PGA)

❯ Fix 𝑄 iterations

❯ Use past channels to optimize 𝝀 = 𝜇𝑎
𝑘
, 𝜇𝑑.𝑏

𝑘

𝒃 𝒌

❯ Preserve pros of iterative optimizer

• Suitability, interpretability, flexibility

❯ Improved convergence speed 

• O. Agiv and  N. Shlezinger, “Learn-to-Optimize for Rapid and Interpretable Hybrid Precoding”, IEEE SPAWC 2022

𝑾𝑎
(𝑘+1)

= Π 𝑾𝑎
𝑘
− 𝜇𝑎

𝑘
∇𝑾𝑎

𝑅 𝑾𝑎
𝑘
, 𝑾𝑑,𝑏

𝑘

𝑾𝒅,𝒃
(𝑘+1)

= Π 𝑾𝑑,𝑏
𝑘
− 𝜇𝑑.𝑏

𝑘
∇𝑾𝑑,𝑏

𝑅 𝑾𝑎
𝑘+1

, 𝑾𝑑,𝑏
𝑘

argmax
𝑾𝑎,{𝑾𝑑,𝑏}

𝑅 =
1

𝐵
∑log 𝑰 + ෩𝑯𝑏𝑾𝑎𝑾𝑑,𝑏𝑾𝑑,𝑏

𝐻 𝑾𝑎
𝐻 ෩𝑯𝑏

𝐻

subject to
1

B
∑||𝑾𝑎𝑾𝑑,𝑏||𝐹

2 ≤ 𝑁

𝝀𝒌+𝟏 = 𝝀𝒌 − 𝜂𝛁𝝀𝑅 𝑾𝑎
𝑄
, 𝑾𝑑,𝑏

𝑄
; 𝝀𝒌

Projection operator
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Trainable Model (3/5)
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Dealing with CSI Errors (4/5)

❯ Precoding requires channel {෩𝑯𝑏}

❯ In practice…

• Likely to observe noisy estimate {෩𝑯𝑏+𝑬𝑏}

❯ How to cope?

• Convert PGA objective to max-min

• Minimax solver: projected conceptual mirror prox (PCMP)

❯ Unfold algorithm

argmax
𝑾𝑎,{𝑾𝑑,𝑏}

𝑅 =
1

𝐵
∑log 𝑰 + ෩𝑯𝑏𝑾𝑎𝑾𝑑,𝑏𝑾𝑑,𝑏

𝐻 𝑾𝑎
𝐻 ෩𝑯𝑏

𝐻

subject to
1

B
∑||𝑾𝑎𝑾𝑑,𝑏||𝐹

2 ≤ 𝑁

argmax
𝑾𝑎,{𝑾𝑑,𝑏}

min
𝑬𝑏 <𝜖

𝑅 =
1

𝐵
∑log 𝑰 + (෩𝑯𝑏+𝑬𝑏)𝑾𝑎𝑾𝑑,𝑏𝑾𝑑,𝑏

𝐻 𝑾𝑎
𝐻෪(𝑯𝑏

𝐻 + 𝑬𝑏
𝐻)

subject to
1

B
∑||𝑾𝑎𝑾𝑑,𝑏||𝐹

2 ≤ 𝑁
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Results – QuadRiGA Channel (5/5)
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Coping with Dynamic Channels
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Dynamic Channels

❯ Challenge: wireless channels statistics change in time

❯ Fundamental difference from traditional learning domains

❯ Model-based algorithms are flexible

❯ Deep learning:

Math. 
operation

Generic 
computation

Math. 
operation

Model 
dependent 

processInput x

(Measurement)

Output s

Many
Inputs Many

OutputsNew x

s
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Online Training of Deep Networks

❯ Key aspects:

• Architecture – apply on wireless devices

• Training algorithm – adapt to dynamic channels

• Data – train online with minimal overhead

❯ Architecture: 

• Instead of using “black boxes” → augment algorithms with AI

• Use light-weight networks which learn model-based algorithms

❯ Training algorithm:

• Allow rapid re-training to track dynamic variations

• Meta-learning to optimize the optimizer with past data

• Interpretable building blocks → train subsets of architecture

❯ Data: 

• Exploit inherent structures of communication protocols

• Incorporate active learning

Algorithm

Data

Architecture

Rx
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Conclusions

❯ Deep learning brings powerful data-driven tools 

• Yet, it’s not magic 

• Highly parameterized optimization

• Large labeled data sets

❯ Understand capabilities and limitations

❯ Model-based deep learning

• Systematic framework for combining knowledge and data

• Enhance established algorithms by learning

❯ Categorizing approaches to facilitate future design
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Conclusions

❯ Many areas dominated by 
model-based algorithms

• Communications

• Radar

• Control

• Various signal processing 
applications

❯ The potential of model-based 
deep learning

• The tip of the iceberg

• N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis. “Model-Based Deep Learning." arXiv 2012.08405
• N. Shlezinger, Y. C. Eldar, and S. P. Boyd. “Model-Based Deep Learning: On the Intersection of Deep 

Learning and Optimization”, IEEE Access 2022
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