

Model-Based AI in Communications

Nir Shlezinger

December 2022

Wireless Communications Wireless communication era > Major enabler technology 2010 > Constantly increasing demands > 2000 Cell Digital Technology First Trial of 1990 cellular system Cell Analog Technology 197 www.olaalaa.com What the hell, Samuel! 1980 You're so old-fashioned! Nowadays everything's wireless!? Communications, from 1G to 5G bne 205 1980's 1993 2001 2009 2020? wireless communication lio telephone 2

Machine Learning (ML)

- > A rapidly growing technology
- > Revolutionized many fields
- > Rely on data

KDNU6GETS. COM

> Unprecedent empirical success

I REMEMBER WHEN ONLY A DEEP LEARNING SUPER COMPUTER COULD BEAT ME IN A DATA SCIENCE

COMPETITION!

Solution to nonlinearly separable problems
 Limitations of learning prior knowledge

Big computation, local optima and overfitting
 Kernel function: Human Intervention

eights and Threshold

XOR Problem

Hierarchical feature Learning

The Deep Learning Revolution

- > Deep neural networks (DNNs) achieve superior performance in multiple areas:
 - Computer vision
 - Natural language processing
 -
 - Problems that are difficult to tackle using conventional optimization methods.

Model-Based Methods

- Classical methods rely on knowledge of principled mathematical models
- > Established models arise in many applications

> Established algorithms designed for such models

Desired

state

Measured

error

> Sensitive to inaccuracies, complex, delay

System

System

input

Control

Sensor

Controller

Measured

output

System

output

Hybrid Methods

- > Relying on data has its pros and cons
- > Relying on knowledge has its pros and cons
- > In signal processing and communications we often have both
- > Hybrid techniques combining
 - Principled mathematical models
 - Data-driven systems

Model-Based Deep Learning

Talk Outline

- > Overview and motivation
- > What is model-based deep learning?
- > (Only) two representative examples
 - KalmanNet
 - Unfolding for hyperparameter optimization
- > The elephant in the room....

About Us

- > PI: Nir Shlezinger
 - Research areas:
 - Model-based AI
 - Deep learning for communications
 - Learning over communication channels
 - Metasurfaces for communication

• Learning on the edge

01101101..

- Joint radar-comm. systems
- Analog-to-digital conversion

What is model-based deep learning?

Is There a Middle Ground?

There is a Middle Ground!

of Both

Recent reviews:

N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis. "Model-Based Deep Learning." *arXiv* 2012.08405 N. Shlezinger, Y. C. Eldar, and S. P. Boyd. "Model-Based Deep Learning: On the Intersection of Deep Learning and Optimization", *IEEE Access*, 2022

(Only) two representative examples

Structureoriented

Structure-Oriented DNN-Aided Inference

- > Often, we have knowledge of statistical structures
 - Physical characteristics
 - System operation
 - Understanding of underlying dynamics
 - Established approximations
- > The model subtleties may be intractable...
- > Structures are exploited by algorithms

> Learn the missing model subtleties

 x_0 u_1 x_1 x_{n-1} u_n x_n u_1 u_2 u_3 u_4 c

DNN-Aided Kalman Filter (1/5)

Real-time tracking of dynamic systems

- > Observations: $x_t \in \mathcal{R}^N$
- Desired state: $\mathbf{s}_t \in \mathcal{R}^K$
- > State-space model:
 - State evolution model:
 - Observations model: •
- $\boldsymbol{x}_t = \boldsymbol{h}(\boldsymbol{s}_t) + \boldsymbol{v}_t$ Example applications: localization, tracking Filter starts with

 $\mathbf{s}_t = \mathbf{f}(\mathbf{s}_{t-1}) + \mathbf{e}_t$

Classic Kalman Filter (2/5)

Kalman Filter: Linear Gaussian state-space model

- > Provides minimal MSE estimate of s_t given $\{x_{\tau}\}_{\tau=0}^t$
 - From current observation x_t
 - Previous estimate \hat{s}_{t-1}

 $\mathbf{s}_t = \mathbf{F}\mathbf{s}_{t-1} + \mathbf{e}_t (\sim \mathcal{N}(\mathbf{0}, \mathbf{Q}))$

 $\boldsymbol{x}_t = \boldsymbol{H}\boldsymbol{s}_t + \boldsymbol{v}_t \left(\sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{R}) \right)$

KalmanNet (3/5)

- Kalman filter (and its variants) require knowledge of the state-space model
- > Noise statistics dictate the Kalman gain
- > In practice we are likely to only have an approximation of the state-space
- > Learn the Kalman gain from data
 - Not enforcing a model on the noise
 - Learn to handle mismatches
 - Preserve Kalman operation

• G. Revach, N. Shlezinger, X. Ni, A. L. Escoriza, R. J. G. van Sloun, and Y. C. Eldar, "KalmanNet: Neural Network Aided Kalman Filtering for Partially Known Dynamics", *IEEE Transactions on Signal Processing*, 2022.

- > Preserve Kalman real-time operation
 - A. L. Escoriza, G. Revach, N. Shlezinger, and R. J. G. van Sloun. "Data-Driven Kalman-Based Velocity Estimation for Autonomous Racing", *IEEE ICAS 2021*

Gains of Model-Based Design (5/5)

- > What do we gain from being interpretable?
- 1. Less complex network architectures
 - Applicable in real-time on limited hardware
- 2. Measure of *uncertainty*
 - Holds also under mismatched models
- 3. Can be trained in an unsupervised manner
 - Track variations in the state-space model
- 4. Extends naturally to other Kalman-type tasks
- A. L. Escoriza, G. Revach , N. Shlezinger, and R. J. G. van Sloun. "Data-Driven Kalman-Based Velocity Estimation for Autonomous Racing", *IEEE ICAS* 2021
- I. Klein, G. Revach, N. Shlezinger, J. Mehr, R. J. G. van Sloun, and Y. C. Eldar, " Uncertainty in Data-Driven Kalman Filtering for Partially Known State-Space Models", *IEEE ICASSP 2022*
- G. Revach, N. Shlezinger, T. Locher, X. Ni, R. J. G. van Sloun, and Y. C. Eldar, "Unsupervised Learned Kalman Filtering", *EUSIPCO 2022*
- X. Ni, G. Revach, N. Shlezinger, R. J. G. van Sloun, and Y. C. Eldar, "RTSNet: Deep Learning Aided Kalman Smoothing", *IEEE ICASSP* 2022

LISTA for Sparse Recovery

Sparse recovery via ℓ_1 relaxation

 $\hat{s}^* = \operatorname{argmin} ||\boldsymbol{x} - \mathbf{H}\boldsymbol{\Psi}\mathbf{s}||_{E}^{2} + \rho ||\boldsymbol{s}||_{1}$

- Solve by ISTA $\mathbf{s}_{t+1} = \mathcal{T}_{\eta_t \rho} (\mathbf{s}_t - \eta_t \boldsymbol{\Psi}^T \boldsymbol{H}^T (\boldsymbol{H} \boldsymbol{\Psi} \mathbf{s}_t - \boldsymbol{x}))$
- > Unfold *Q* iterations $s_{t+1} = \mathcal{T}_{\boldsymbol{\beta}_t}(\boldsymbol{W}_t^1 \boldsymbol{s}_t + \boldsymbol{W}_e \boldsymbol{x}))$

S

Coincides when

K. Gregor and Y. LeCun. "Learning Fast Approximations of Sparse Coding." in ICML 2010

Deep Unrolling Options

- > Iterative algorithms are also parameterized
 - Objective parameters ψ
 - Hyperparameters λ
- > Three unfolding options:
 - A. Improve convergence speed
 - Optimize hyperparameters λ for each iteration
 - B. Learn abstract model
 - Set iteration parameters for both ψ and λ
 - Different objective
 - Use iterative solver as principled initialization
 - C. Convert into abstract deep network
 - Design neural layers that imitate the iterations
 - Deep architecture inspired by algorithm

Learned Hybrid Beamforming (1/5)

S₁

S₂.

S_L

Ν

Users

Hybrid analog/digital receivers Precoder in frequency-selective channels

- > Observations: channel matrix in each bin
 - $\{\widetilde{\boldsymbol{H}}_b\}, b \in 1, \dots, B$
- > Output: hybrid precoding setting
 - Analog precoder $W_a \in C^{M \times L}$
 - Digital precoders $W_{d,b} \in \mathcal{C}^{L \times N}$
- > Problem formulation:

$$\operatorname{argmax}_{\boldsymbol{W}_{a,b}} R = \frac{1}{B} \sum \log \left| \boldsymbol{I} + \boldsymbol{\tilde{H}}_{b} \boldsymbol{W}_{a} \boldsymbol{W}_{d,b} \boldsymbol{W}_{d,b}^{H} \boldsymbol{W}_{a}^{H} \boldsymbol{\tilde{H}}_{b}^{H} \right|$$

subject to
$$\frac{1}{B} \sum ||\boldsymbol{W}_{a} \boldsymbol{W}_{d,b}||_{F}^{2} \leq N$$

Learned Hybrid Beamforming (2/5)

- > Set hybrid precoder for channel $\{\tilde{H}_b\}$
- > Projected gradient ascent (PGA)

$$W_{a}^{(k+1)} = \Pi \left(W_{a}^{(k)} - \mu_{a}^{(k)} \nabla_{W_{a}} R \left(W_{a}^{(k)}, \{ W_{d,b}^{(k)} \} \right) \right)$$
$$W_{d,b}^{(k+1)} = \Pi \left(W_{d,b}^{(k)} - \mu_{d,b}^{(k)} \nabla_{W_{d,b}} R \left(W_{a}^{(k+1)}, \{ W_{d,b}^{(k)} \} \right) \right)$$

Fig. Q it explicitly as a projection operator

- > Fix *Q* iterations
- > Use past channels to optimize $\lambda = \left\{ \mu_a^{(k)}, \left\{ \mu_{d,b}^{(k)} \right\}_b \right\}$ $\lambda^{k+1} = \lambda^k - \eta \nabla_\lambda R \left(W_a^{(Q)}, \left\{ W_{d,b}^{(Q)} \right\}; \lambda^k \right)$
- > Preserve pros of iterative optimizer
 - Suitability, interpretability, flexibility
- > Improved convergence speed
- O. Agiv and N. Shlezinger, "Learn-to-Optimize for Rapid and Interpretable Hybrid Precoding", IEEE SPAWC 2022

$$\operatorname{argmax}_{\boldsymbol{W}_{a,b}} R = \frac{1}{B} \sum \log \left| \boldsymbol{I} + \boldsymbol{\tilde{H}}_{b} \boldsymbol{W}_{a} \boldsymbol{W}_{d,b} \boldsymbol{W}_{d,b}^{H} \boldsymbol{W}_{a}^{H} \boldsymbol{\tilde{H}}_{b}^{H} \right|$$

subject to
$$\frac{1}{B} \sum ||\boldsymbol{W}_{a} \boldsymbol{W}_{d,b}||_{F}^{2} \leq N$$

23

Trainable Model (3/5)

Dealing with CSI Errors (4/5)

- > Precoding requires channel $\{\tilde{H}_b\}$
- > In practice...
 - Likely to observe noisy estimate $\{\tilde{H}_b + E_b\}$

$$\operatorname{argmax}_{\boldsymbol{W}_{a},\{\boldsymbol{W}_{d,b}\}} R = \frac{1}{B} \sum \log \left| \boldsymbol{I} + \widetilde{\boldsymbol{H}}_{b} \boldsymbol{W}_{a} \boldsymbol{W}_{d,b} \boldsymbol{W}_{d,b}^{H} \boldsymbol{W}_{a}^{H} \widetilde{\boldsymbol{H}}_{b}^{H} \right|$$

subject to
$$\frac{1}{B} \sum ||\boldsymbol{W}_{a} \boldsymbol{W}_{d,b}||_{F}^{2} \leq N$$

- > How to cope?
 - Convert PGA objective to max-min

$$\underset{\boldsymbol{W}_{a},\{\boldsymbol{W}_{d,b}\}}{\operatorname{argmax}} \min_{\boldsymbol{||\boldsymbol{E}_{b}|| < \epsilon}} R = \frac{1}{B} \sum \log \left| \boldsymbol{I} + (\boldsymbol{\widetilde{H}}_{b} + \boldsymbol{E}_{b}) \boldsymbol{W}_{a} \boldsymbol{W}_{d,b} \boldsymbol{W}_{d,b}^{H} \boldsymbol{W}_{a}^{H} (\boldsymbol{\widetilde{H}}_{b}^{H} + \boldsymbol{E}_{b}^{H}) \right|$$

subject to
$$\frac{1}{B} \sum ||\boldsymbol{W}_{a} \boldsymbol{W}_{d,b}||_{F}^{2} \leq N$$

• Minimax solver: projected conceptual mirror prox (PCMP)

> Unfold algorithm

Results – QuadRiGA Channel (5/5)

Coping with Dynamic Channels

Online Training of Deep Networks

> Key aspects:

- Architecture apply on wireless devices
- Training algorithm adapt to dynamic channels
- Data train online with minimal overhead
- > Architecture:
 - Instead of using "black boxes" → augment algorithms with AI
 - Use light-weight networks which learn model-based algorithms
- > Training algorithm:
 - Allow rapid re-training to track dynamic variations
 - Meta-learning to optimize the optimizer with past data
 - Interpretable building blocks → train subsets of architecture
- > Data:
 - Exploit inherent structures of communication protocols
 - Incorporate active learning

Conclusions

- > Deep learning brings powerful data-driven tools
 - Yet, it's not magic
 - Highly parameterized optimization
 - Large labeled data sets
- > Understand capabilities and limitations
- > Model-based deep learning
 - Systematic framework for combining knowledge and data
 - Enhance established algorithms by learning
- > Categorizing approaches to facilitate future design

Conclusions

- Many areas dominated by model-based algorithms
 - Communications
 - Radar
 - Control
 - Various signal processing applications
- > The potential of model-based deep learning
 - The tip of the iceberg

N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis. "Model-Based Deep Learning." *arXiv* 2012.08405
N. Shlezinger, Y. C. Eldar, and S. P. Boyd. "Model-Based Deep Learning: On the Intersection of Deep Learning and Optimization", *IEEE Access* 2022