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Wireless Communications

> Wireless communication era
> Major enabler technology
> Constantly increasing demands

Cell Digital Technolagy
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Machine Learning (ML)

> A rapidly growing technology
> Revolutionized many fields

> Rely on data

> Unprecedent empirical success
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The Deep Learning Revolution

> Deep neural networks (DNNSs) achieve ARTIFICIAL INTELLIGENCE

Engineering of making Intelligent
Machines and Programs

superior performance in multiple areas: MACHINE LEARNING

F explicitly programme
« Computer vision il T Rl

+ Natural language processing

* Problems that are difficult to tackle using
conventional optimization methods.

Speech Signal :
labels



Model-Based Methods

> Classical methods rely on knowledge of principled
mathematical models

> Established models arise in many applications

Signal processing
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> Established algorithms designed for such models

> Sensitive to inaccuracies, complex, delay
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Hybrid Methods

Relying on data has its pros and cons
Relying on knowledge has its pros and cons
In signal processing and communications we often have both

Hybrid techniques combining
* Principled mathematical models

« Data-driven systems

Model-Based D eep L,g'l"r"'rljjlg
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> What is model-based deep learning?

(Only) two representative examples

 KalmanNet

* Unfolding for hyperparameter optimization

> The elephant in the room....

Training
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What is model-based deep learning?



W Is There a Middle Ground?
| : E—E

Data-driven > Benefit from (partial) domain knowledge? Model-based

Data

{xc}

: Domain knowledge py s
Data i

{sr}é > Exploit (limited) data?
—_—

Iterative procedure

> How to combine?

~*~... Deep neural network el
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There is a Middle Ground!

I Domain kno
Model-based machine learning

Model-based

Data-driven i
: Data {s;,x;} {  Domain knowled
: H B€ Px|s
Data Data : Data Data i
I Ix .
{xr} {Sr} { t} {st} Iterative procedure Iterative procedure

"‘-‘.h__.[.)eep neural network ' ""*-.;____‘ Model-aided networks /." RO Sl Model-based algorithnl. .-
_‘Data_ el 2
> Inferusingadeep T e 0 --Y Infer using a model-
network T BRSSO based algorithm
> Integrate model-based Input Inference mapping P[egi;t > Augment algorithm with
S

xXeEX
[i X oS deep neural networks

methods in architecture

Recent reviews:
N. Shlezinger, J]. Whang, Y. C. Eldar, and A. G. Dimakis. “Model-Based Deep Learning." arXiv 2012.08405

N. Shlezinger, Y. C. Eldar, and S. P. Boyd. “Model-Based Deep Learning: On the Intersection of Deep
[ earning and Optimization”, IEEE Access ,2022



(Only) two representative examples



Structure-Oriented DNN-Aided Inference

> Often, we have knowledge of statistical structures
» Physical characteristics
» System operation
* Understanding of underlying dynamics
» Established approximations

> The model subtleties may be intractable...

Structure-
oriented

PHYSICIST ENGINEER COsMOLOGIST
APPROMIMATIONS APPROXIMATIONS APPROXIMATIONS
> Structures are exploited by algorithms UELL ASSUME THE | | LET'S ASSUME THIS | | ASSUME P1 15 ONE.
. . " . CURVE OF THIS RAIL | | CURVE DEVIATES FROM PRETTY SURE ITS
4 - ) - F - 15 A CRCULAR ARC | | A CIRCLE BY NO MORE RIGGER THAN THAT.
WITH RADIUS A, THAN 1 PART IN 1000 | | o WE cAN MAKE \
IT TEN. WHATEVER. ~

> Learn the missing model subtleties
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| DNN-Aided Kalman Filter as)

Real-time tracking of dynamic systems Input Predict
> Observations: x; € RY x; € RN . S, € RK
Desired RK Inference mapping
> Desired state: s € f;: RN 5 RK
> State-space model:
« State evolution model: st = f(sq—1) + e
* Observations model: x; = h(s;) + v;
> Example applications: localization, tracking ... s win Estimate improves
rough estimate as more data used
Kalman
@ filter @ l
@--a--0_—_—

. _ by True Onboard
B trajectory measurements @
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Classic Kalman Filter o5

Kalman Filter: Linear Gaussian state-space model

> Provides minimal MSE estimate of s; given {x;}:_,

* From current observation x;
* Previous estimate §;_4

st =Fs;_; +e. (~N(0,Q))

xt = HSt + vt ("’ N(O, R))

So -

Xt

Xt =
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KalmanNet 5

> Kalman filter (and its variants) require
knowledge of the state-space model

> Noise statistics dictate the Kalman gain

> In practice we are likely to only have
an approximation of the state-space

> Learn the Kalman gain from data
* Not enforcing a model on the noise
* Learn to handle mismatches

* Preserve Kalman operation

Xt

Ak + . * Pt
AXy 4 , , /2 5C

Kalman gain

Keg—1
z-1 5= “ h
z—l
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-1 + -
=] AT

Recurrent Neural Network

* G.Revach, N. Shlezinger, X. Ni, A. L. Escoriza, R.]. G. van Sloun, and Y. C. Eldar, “KalmanNet: Neural Network Aided
Kalman Filtering for Partially Known Dynamics”, IEEE Transactions on Signal Processing, 2022. 16



K alm anN et ( 4 /5) Model MB KS Benchmark [19] RTSNet
MSE |dB]| —10.071 —15.346 —15.56
Inference time [sec] 9.93 30.5 5.007
Training time [hours/epoch] N/A 0.4 0.16
) (Extended) Kalman fllter Number of trainable parameters N/A 41,236 33,270

Parrr i g
el o xr
Xe p ; x lalman Gain
VS. SO ij : S o AXey
1

P 5.
_ True Trajectory Observation
> KalmanNet -
Xt
Kalman Gain
Extended Kalman KalmanNet
Recurrent Neural Network Filter

> Model-agnostic

True Trajectory Observation

Extended Kalman Filter

> Not enforcing a model on the noise

> Learn to handle mismatches

Vanilla RNN

> Preserve Kalman real-time operation 18 v

* A.L.Escoriza, G. Revach, N. Shlezinger, and R. J. G. van Sloun. “Data-Driven Kalman-Based Velocity Estimation for
Autonomous Racing”, IEEE ICAS 2021 17



Gains of Model-Based Design 58

> What do we gain from being interpretable?

1. Less complex network architectures
* Applicable in real-time on limited hardware

Ground Truth

2. Measure of uncertainty 1 — Kb
« Holds also under mismatched models ’

3. Can be trained in an unsupervised manner sl
*  Track variations in the state-space model 731 oo T

KalmanNet Empirical Error
=== KalmanNet Predicted Error

4. Extends naturally to other Kalman-type tasks | = W \
001 YA AR AN WA -&
—Online Moving Average Loss
O Start online learning
—Offline KNet before online training
—Offline KNet after online training

- -KF partial information

KF full information

A. L. Escoriza, G. Revach, N. Shlezinger, and R. J. G. van Sloun. “Data-Driven
Kalman-Based Velocity Estimation for Autonomous Racing”, IEEE ICAS 2021

I. Klein, G. Revach, N. Shlezinger, J. Mehr, R. ]. G. van Sloun, and Y. C. Eldar, “
Uncertainty in Data-Driven Kalman Filtering for Partially Known State-Space
Models”, IEEE ICASSP 2022

G. Revach, N. Shlezinger, T. Locher, X. Ni, R. J. G. van Sloun, and Y. C. Eldar,
“Unsupervised Learned Kalman Filtering”, EUSIPCO 2022

Stgte PrgedictioAn MSE [dB]

X. Ni, G. Revach, N. Shlezinger, R. J. G. van Sloun, and Y. C. Eldar, “RTSNet: & S T ——
Deep Learning Aided Kalman Smoothing”, IEEE ICASSP 2022 ww STimeSteps te o
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Deep Unfolding/Unrolling

Iterative optimization algecrithm

Deep

Unfolding

2 Deep networks inspired by iterative

Input

model-based algorithm:
> Unfold iterations into layers

> Learn parameters of the layer from data
> Model-driven network

> Benetfits:
Faster convergence

Input

Iterative procedure
) P i Output
Input‘ ’— Stop criteria? —» Outpl{l —
processing oy processing
fol imizat it
Iteration 1 Iteration 2 Iteration t
Output

Input
processing

’.

- » Output
processing

Deep unfolding

>
> Less trainable parameters
> Interpretable network

>

Better performance, less training ™.

Input
processing

Iteration 1

uONEARIY

Ll

lteration2

Iteration t
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Output |
processing
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LISTA for Sparse Recovery

> Sparse recovery via £, relaxation

§* = argmin||x — H‘Ps||12: + p||s||1
S

X
> Solve by ISTA e
Seer = Typ(se = WTHT(HWs, —x)) 1 "
> Unfold Q iterations | :
Seer = Tp,(Wihsp +W,x)) 807
> Coincides when Wi=1-nWTHTHY 1 S---------m--oooo--
wi =nPTHT T T TR

ﬁt = NP

Compressed image

* K. Gregor and Y. LeCun. "Learning Fast Approximations of Sparse Coding." in ICML 2010 20



! Deep Unrolling Options

2
Ly(s) = [lx—HWs|| +p|lsl|, v =¥,
> Iterative algorithms are also parameterized | Sts1 = Ty,p(sc — 1. PTHT (HWs, — x)) B 1= {1}

* Objective parameters 3 Y :

Iterative alg.

* Hyperparameters 4
> Three unfolding options:

A. Improve convergence speed

*  Optimize hyperparameters A for each iteration
B. Learn abstract model

e Set iteration parameters for both ¥ and 1
¢ Different objective Data

Iteration Q

e Use iterative solver as principled initialization — {x;}

119V

\4

C. Convert into abstract deep network
* Design neural layers that imitate the iterations

> > layer »

UOIeADY
uonea

¢ Deep architecture inspired by algorithm




Learned Hybrid Beamforming as

A. Improve
convergence

Predict
Precoder in frequency-selective channels {ﬁb} Inference mapping W,

fi RBXNXM {Wd b}

Hybrid analog/digital receivers Input

> Observations: channel matrix in each bin
- {HY),be1,..B

> Output: hybrid precoding setting e I §
* Analog precoder W, € cM*L 3 —
» Digital precoders W, € C**N

> Problem formulation:

RF Chain

— l 7 H H gH
argmax R = = Ylog |1+ H,W W, Wi WHH]

M ! 1
| Users requency Bands RF Chains Tx Antennas | Frequency Bands 3 Receivers
Wa{Wap} ‘

1
subject to§Z| W W42 <N

22



Learned Hybrid Beamforming o

>

Set hybrid precoder for channel {ﬁ b}

Projected gradient ascent (PGA)

1 —~ —~
argmax R = =Ylog|l + H,W W, ,W5 WHH}
Wao{Wap} B

1
subject to = 3| [W oW | |Z< N

Wi — (ngk) — vy R (ng), {Wékl),}))

(k+1) _ (k) (k) (k+1) (k)
Wap * = H@/d,b ~ HapVwaR (Wa '{Wd,b}))

Fix Q iterations Projection operator —

e

Use past channels to optimize 4 = {,ugk), {
2kt = 2k — v R (W@, {wih}; 1)
Preserve pros of iterative optimizer

* Suitability, interpretability, flexibility
Improved convergence speed
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--+- Realization #1 - Unfolded PGA
-+- Realization #2 - Unfolded PGA
-—+- Realization #3 - Unfolded PGA
—=— Average on all realizations - Unfolded PGA
-+- Realization #1 - Classical PGA
-#- Realization #2 - Classical PGA

Achievable Rate
o
wv

o
o
L

930 7 5.5 / -+~ Realization #3 - Classical PGA
I /] ¢ —e— Average on all realizations - Classical PGA
6.25 oy ’ T T T T T T T
7/ 1 5 10 15 20 25 30
6.00 — Number of Iteration
123 45

O. Agivand N. Shlezinger, “Learn-to-Optimize for Rapid and Interpretable Hybrid Precoding”, IEEE SPAWC 2022
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. Trainable Model s

Unfolded PGA

Iteration#1

gl

jectic

Pra

Q-

-+ 4
(K-1)|+

a1
(H-11] +

Ha.g

Projection
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Dealing with CSI Errors us

> Precoding requires channel {H}}

> In practice... argmax R = —Zlog|I+HbW Wy Wi ,WiH]

* Likely to observe noisy estimate {H,+Ep} | WaWap}

subject to§2| W Wapllz <N

> How to cope?
» Convert PGA objective to max-min

argmax min R = —Zlog|1 + (Hy+E, )W Wy bW CTWHHT + E’;)|
Wa(Wap}|IEbl|<e

subject t0§2| W W42 <N

* Minimax solver: projected conceptual mirror prox (PCMP)

> Unfold algorithm



Results — QuadRiGA Channeles

12.5
12.0 -
11.5 1
11.0 - *
10.5 {2
it 1
10.0 {14
*:! ;‘
9.5 1i4
I
9.0 f
"

12345

Achievable Rate

-*- Unfolded PCMP - eps=0.005
-#- (Classical PCMP - eps=0.005
—+ Unfolded PCMP - eps=0.05
-+- Classical PCMP - eps=0.05
-¥- Unfolded PCMP - eps=0.5
-~ Classical PCMP - eps=0.5

30 40 50 60
Number of Iteration

70
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Dynamic Channels

> Challenge: wireless channels statistics change in time
> Fundamental difference from traditional learning domains
> Model-based algorithms are flexible

Model

dependent

Input x process

(Measurement)

> Deep learning:

Many
Inputs Many
New x Outputs

S

28
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Online Training of Deep Networks
hud

Key aspects: rr
* Architecture — apply on wireless devices j "IIII'I' iy,
» Training algorithm — adapt to dynamic channels ...mmm...
- Data — train online with minimal overhead j e Bty = i
Architecture: S\
» Instead of using “black boxes” - augment algorithms with Al
« Use light-weight networks which learn model-based algorithms
Training algorithm: Architecture

 Allow rapid re-training to track dynamic variations

* Meta-learning to optimize the optimizer with past data

* Interpretable building blocks = train subsets of architecture
Data:

« Exploit inherent structures of communication protocols

» Incorporate active learning

29




Conclusions

> Deep learning brings powerful data-driven tools
* Yet, it’s not magic
« Highly parameterized optimization
« Large labeled data sets

> Understand capabilities and limitations
> Model-based deep learning
 Systematic framework for combining knowledge and data

* Enhance established algorithms by learning

> Categorizing approaches to facilitate future design

E L]
="

30



Conclusions

> Many areas dominated by
model-based algorithms

e Communications
 Radar
* Control

 Various signal processing
applications

> The potential of model-based
deep learning

* The tip of the iceberg

* N. Shlezinger, ]. Whang, Y. C. Eldar, and A. G. Dimakis. “Model-Based Deep Learning." arXiv 2012.08405

* N. Shlezinger, Y. C. Eldar, and S. P. Boyd. “Model-Based Deep Learning: On the Intersection of Deep
Learning and Optimization”, IEEE Access 2022
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