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Federated Deep Learning Meets Autonomous Vehicle
Perception: Design and Verification

Shuai Wang∗, Chengyang Li∗, Qi Hao, Chengzhong Xu, Derrick Wing Kwan Ng,
Yonina C. Eldar, and H. Vincent Poor

Abstract—Realizing human-like perception is a challenge in
open driving scenarios due to corner cases and visual occlusions.
To gather knowledge of rare and occluded instances, federated
learning empowered connected autonomous vehicle (FLCAV) has
been proposed, which leverages vehicular networks to establish
federated deep neural networks (DNNs) from distributed data
captured by vehicles and road sensors. Without the need of
data aggregation, FLCAV preserves privacy while reducing
communication and annotation costs compared with conventional
centralized learning. However, it is challenging to determine the
network resources and road sensor poses for multi-stage training
with multi-modal datasets in multi-variant scenarios. This article
presents networking and training frameworks for FLCAV per-
ception. Multi-layer graph resource allocation and vehicle-road
pose contrastive methods are proposed to address the network
management and sensor pose problems, respectively. We also
develop CarlaFLCAV, a software platform that implements the
above system and methods. Experimental results confirm the
superiority of the proposed techniques compared with various
benchmarks.

Index Terms—Autonomous driving, federated learning, per-
ception, simulation

I. INTRODUCTION

Perception determines the way a connected autonomous
vehicle (CAV) understands the world by transforming envi-
ronments into digits via sensors, signal processors, and deep
neural networks (DNNs) [1]. Conventionally, DNN training
is based on centralized learning, which collects the datasets
from CAVs, trains the DNNs at the cloud, and deploys trained
DNNs on CAVs for inference. This paradigm is effective in
closed driving areas under the L2–L3 autonomous driving re-
quirements, where the owner of data-collection vehicles is also
the DNN provider. However, future L4–L5 CAV systems must
cope with multi-variate open scenarios, which involves corner
cases due to infinite scenario space and visual occlusions due
to high scenario complexity [1]. CAV companies, e.g., Tesla,
Waymo, Baidu, suggested that these challenges be tackled via
lifelong multi-stage training that updates the DNN parameters
whenever rare or occluded objects are detected (e.g., Tesla
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Autopilot solution https://karpathy.ai/). In this case, sensor data
is inherently distributed at customers’ vehicles and contains
high-resolution human-related private information, leading to
the potential of sensitive information leakage [2].

Federated (deep) learning empowered CAV (FLCAV) is an
emerging paradigm to overcome the privacy issue by training
DNNs via parameter and output aggregation instead of dataset
aggregation [2]–[7]: parameter aggregation leverages vehicular
networks to migrate knowledge among different vehicles [4],
[5]; output aggregation leverages road sensors’ perception re-
sults to annotate occluded objects for local parameter updates
[6], [7]. The performance of FLCAV highly depends on the
associated network resources and road sensor poses. Existing
works on FLCAV design these factors from either a driving
(e.g., [2], [3]) or networking (e.g., [4], [5]) perspective, which
ignores the interdependency between driving tasks (i.e., data
consumer) and vehicular networks (i.e., data provider). This
research gap has been identified as the core issue in CAV
systems [8]. Yet, for FLCAV systems, how to close this gap
is still an open issue.

This article integrates driving and networking features for
more robust system-level FLCAV perception under practical
network resource constraints. Frameworks of vehicle-edge-
cloud networking, multi-stage DNN training, and scenario-
task matching, are presented. On top of these frameworks,
multi-layer graph resource allocation (MLGRA) and vehicle-
road pose contrastive (VRPC) approaches are proposed. The
MLGRA jointly allocates the limited network resources across
different stages, tasks, and modalities to minimize perception
errors. The VRPC automatically reduces (increases) the num-
ber of sensors in low (high) complexity scenarios. To verify the
above methods, it is necessary to implement a simulator with
high-fidelity rendering qualities, driving behaviors, and soft-
ware interfaces [9]. However, currently there is no such close-
to-reality FLCAV simulator. We thus develop CarlaFLCAV
(https://github.com/SIAT-INVS/CarlaFLCAV), an open-source
software platform for design and verification of FLCAV sys-
tems. The platform contains dataset generation, perception
tasks, FL frameworks, and optimization modules, and aims
to provide a concrete step towards FLCAV in the real world.

II. CAV MEETS FL

A. CAV Perception: Concept, Challenges, and Trends

1) CAV Perception: As shown in Fig. 1a, a CAV per-
ception system is an ensemble of the following modules
[1]: 1) semantic perception, e.g., recognition of lanes, road
arrows, traffic signs, and weather, which outputs semantics
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Fig. 1: a) Categories and functionalities of CAV perception outputs. b) Multi-modal deep learning for CAV perception. From
left to right: FoVs, hardwares, raw data, preprocessing methods, and DNNs for sign recognition, object detection, and weather
classification. The datasets and perception outputs are generated by the CarlaFLCAV platform.

for rule-based behavior planning; 2) geometry perception,
e.g., road edge detection and object detection, which out-
puts poses (positions, sizes, and orientations) for collision-
avoidance motion planning; 3) motion perception, e.g., object
tracking and intention prediction, which outputs kinematic data
(velocities) for multi-agent interaction. Each module further
consists of a cluster of tasks that may vary in different
scenarios, but shares a common structure shown in Fig. 1b:
1) sensors transform the environment into digits (raw data)
using active or passive electromagnetic waves; 2) digital
signal processors clean/rotate/crop/complete the raw data; 3)
DNNs extract features and generate semantic, geometry, mo-
tion outputs for subsequent CAV planning. CAV Perception
tasks are highly-heterogenous, calling for multi-modal sensors
such as RGB/infrared camera, LiDAR, radar, GPS and IMU
to exploit their complementary features, e.g., field of views
(FoVs). Consequently, multi-modal deep learning techniques
are indispensable for CAV perception.

2) Perception Challenges: Major challenges of CAV per-
ception in multi-variate open scenarios are summarized below.

• Corner Case. Scenario space in open areas grows expo-
nentially, making it impossible to enumerate all the pos-
sible cases during the training stage [1]. In other words,
there always exists new data outiside the distribution of
training datasets, which are corner case instances.

• Visual Occlusion. In complex urban scenarios (e.g.,
cross-road, T-junction, roundabout), an object can be oc-
cluded by another in the FoV, which leads to incomplete
data and perception errors [6].

• Verification Cost. Releasing new CAV perception DNNs
requires rigorous verification. The cost of real-word test-
ing is not acceptable due to the expensive infrastructures
(e.g., vehicles, clouds, and networks to connect them all)
and difficulties of testing in dangerous scenarios (e.g.,
crashes, overtaking, bad weather) [11].

3) Research Trends: Possible solutions to address the above
challenges are as follows.
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• Lifelong multi-stage training, which updates the param-
eters whenever a corner case is detected, is a promising
solution to address the first challenge [3]. The update is
executed on DNN copies, making sure that the inference
DNNs are fixed during the training process. Releasing
new-version DNNs requires the acknowledgement of
DNN providers and costumers.

• As for the occlusion issue, the major solution is cooper-
ative perception with road sensors. Practical road sen-
sors are authoritative, having absolute positions, broader
FoVs, and highly-optimized hardware units [6]. Further-
more, the probability of a target object being occluded in
FoVs of all road sensors is significantly smaller than that
in the FoV of a CAV. As such, the perception error due
to occlusions is significantly mitigated.

• To reduce the high verification cost in reality, CAV
simulation becomes a necessity [9]. Various CAV sim-
ulators have been released, e.g., Intel Car-Learning-
to-Act (CARLA), NVIDIA DRIVE, Aerial-Informatics-
and-Robotics-Simulation (AirSim), LG Silicon-Valley-
Lab (LGSVL), Baidu Augmented-Autonomous-Driving-
Simulation (AADS), OpenCDA, V2X-Sim [9], [11].

B. Paradigm Shift: From Centralized to Federated Learning

1) Federated Learning: The need for multi-stage training
results in the shift of learning paradigms. In one-stage train-
ing, the owner of data-collection vehicles is also the DNN
provider and the aggregated datasets can be directly fed to
DNN training pipelines. However, for multi-stage training,
the abnormal data is distributed at customers’ vehicles and
contains human-related private information. As a consequence,
conventional centralized learning is no longer applicable. To
this end, FLCAV emerges, which trains the DNNs from dis-
tributed datasets via parameter aggregation, thus conveying the
knowledge of corner cases to other vehicles and remote servers
while preserving data privacy [2]. In addition, communication
costs are reduced, since the size of a DNN is significantly
smaller than that of a data sequence, e.g., the size of a
1-minute point-cloud sequence is 1000MB while that of a
standard object detection DNN is 60MB [1] (note that FL
takes multiple rounds of communication; but in multi-stage
training, only a few rounds are needed after pre-training).

2) Federated Distillation: FL can be integrated with coop-
erative perception, giving rise to the federated distillation (FD)
technique [7] that simultaneously exploits distributed comput-
ing platforms and multi-view sensory data. In the FDCAV
framework, all road sensors upload their bounding boxes and
perception uncertainties to a road server. The server computes
the weighted average of these outputs and this road-average
output is downloaded to surrounding vehicles. Each vehicle
updates its local parameters by minimizing the contrastive
loss between the its bounding boxes and the road-average
boxes [7]. In other words, the road’s aggregated outputs are
considered as noisy labels for occluded objects, which signif-
icantly saves the annotation cost compared with conventional
manual labeling. For instance, the Road Experience Man-
agement (REM) of Mobileye (https://www.mobileye.com/our-

technology/rem/) adopts road sensors to realize automated
road semantic identification and annotation.

C. Related Work on FLCAV

1) Limitations of Existing Work: Current literature on
FLCAV can be categorized into two types: 1) network-layer
designs for vehicular FL, and 2) application-layer designs
for FL perception and planning. Specifically, network-layer
designs for FL, e.g., [4], [5], [10], aim to improve FL per-
formance by controlling the communication-related variables
such as topology, throughput, latency, and device scheduling.
These works address the challenges of FL from the network
perspective while taking the high mobility of vehicles into
account. However, they fail in matching FL to domain-
specific CAV scenarios, tasks, datasets, and DNNs. On the
other hand, application-layer designs e.g., [2], [3], [6], [7],
improve the safety and efficacy of CAV systems by designing
DNN structures and associated information fusion methods.
These works provide solutions to CAV issues such as train-
ing, inference, synchronization, calibration, and simulation.
Nonetheless, communications among CAVs, edge servers, and
cloud servers therein are assumed to be perfect, which does
not hold for practical CAV systems with limited resources.

2) Research Opportunities: Since both types of designs
have different pros and cons, it is necessary to integrate them
to achieve lower detection/classification/tracking errors under
network resource and sensor implementation constraints. This
leads to new technical problems, which cannot be tackled by
conventional methods.

• Opportunity 1 (Network Resource Allocation): How
can we effectively distribute the network resources across
different stages, tasks, and modalities to minimize the
perception errors of final-stage DNNs while satisfy-
ing the stringent wireless and wireline communication
constraints? Existing literature does not analyze CAV-
domain-specific datasets and ignores the interdependency
across different stages, tasks, or modalities.

• Opportunity 2 (Sensor Pose Optimization): How can
we efficiently optimize the poses of road sensors to detect
and annotate more occluded objects under the implemen-
tation cost constraint? Conventional approaches adopt
integer programming (IP) solvers or heuristic methods to
maximize the coverage with a fixed number of sensors,
which ignores the learning requirements for FLCAV.

• Opportunity 3 (Software Engineering): How can we
implement a high-fidelity FLCAV simulator that is close
to reality? Existing methods for network-level FLCAV are
tested in simple classification tasks (e.g., recognition of
handwritten digits). Emerging autonomous driving sim-
ulators do not support FL (and associated optimization)
functionalities.

III. SYSTEM-LEVEL DESIGN FOR FLCAV PERCEPTION

A. Network Architecture

As shown in Fig. 2a, FLCAV consists of CAV, road,
and cloud components, forming a wide-range cyber-physical

https://www.mobileye.com/our-technology/rem/
https://www.mobileye.com/our-technology/rem/
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Fig. 2: a) Network architecture of FLCAV with the vehicle, road, and cloud modules and their associated V2X and the Internet
links; b) Multi-stage training pipeline of FLCAV with intra-stage and inter-stage network flows.

system. CAVs are integrated systems equipped with multi-
modal sensors, mobile computing platforms, and advanced
communication units that 1) connect the vehicle sensors,
computers, and chassis via controller area network (CAN), and
2) connect the vehicles with the cloud and road via vehicle-
to-everything (V2X) technology [13]. CAV is a server within
its CAN and a client within its V2X network.

Roadside infrastructure can be categorized into road sen-
sors, road communication units, and road computing servers
[8]. First, the pose of a road sensor includes position,
yaw/roll/pitch angle, and resolution, which directly determines
the coverage of the environment and objects therein. Second,
road communication units adopt the V2X to link surrounding
vehicles, forming a vehicular edge network. Finally, road
servers process real-time tasks, e.g., feeding the data of road
sensors into road DNNs, merging the multi-sensor data using
fusion techniques (e.g., iterative closest point (ICP)), and
acting as parameter servers for edge FL.

A cloud server differs from a road (edge) server since the
Internet is a part of the end-to-end communication. Therefore,
cloud servers execute long-term tasks, e.g., storage and anno-
tation of datasets, training of perception DNNs, simulation
and verification, and task and resource management. Note
that to prevent potential cyber attacks, any vehicle joining
FLCAV should be registered with a unique identifier allocated
by authorities. The cloud server is responsible for maintaining
the identifier and also executes security key generation and
certification [8].

B. Training Pipeline

Training FLCAV perception systems in Fig. 2b consists of
cloud pretraining, edge FL, and cloud FL stages. Specifically,
cloud pretraining adopts annotated datasets on the cloud to
transform initial DNNs into pretrained DNNs that are released
to all CAVs. Then, an FL request is generated at the CAV
upon a false detection event (e.g., due to occlusions or corner
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cases). The FL request is sent to the edge parameter sever,
who calls for roadside infrastructures and other vehicles to
join the edge FL group via V2X. This helps the CAV fix
the bug residing in its local DNN, as the knowledge migrates
from other agents to it and vice versa. With a few rounds
of output and parameter exchange, the edge parameter server
can form edge DNNs that serve as good representations of the
local region. Finally, the FL group can be enlarged by cloud
FL, which aggregates the edge DNNs from remote areas via
the Internet. To improve robustness, the cloud FL stage may
adopt personalization such that each edge client trains its own
regional DNNs while contributing to the global cloud DNNs
[12].

From an application perspective, the FLCAV system needs
to train a set (let N denote its cardinality) of FLCAV DNNs for
associated perception tasks in 3 (or more) consecutive stages.
From a network perspective, FLCAV involves two types of
communications, i.e., wireless and wireline communication,
and their transmission capacities are finite. Combining both,
we conclude that the summation of wireless/wireline through-
put (in MBytes) over N tasks and 3 stages should be smaller
than the corresponding network throughput budgets, and there
exists a tradeoff among different tasks and stages. Here we
consider the uplink transmission in Fig. 2b, as the downlink
counterpart is usually not the bottleneck in practice.

• For Stage I, data samples should be uploaded from
vehicles to the edge and then to the cloud. The number
of samples × the data size of each sample should not
exceed the minimum throughput of wireless and wireline
communication allocated to Stage I.

• For Stage II, parameters are exchanged between the edge
server and vehicles through wireless communication. The
number of edge FL rounds × the number of vehicles in
each FL group× the data size of DNNs should not exceed
the wireless throughput allocated to Stage II.

• For Stage III, parameters are exchanged between the edge
and cloud servers through wireline communication. The
number of cloud FL rounds × the number of edge servers
× the data size of DNNs should not exceed the wireline
throughput allocated to Stage III.

Note that perception outputs (e.g., bounding boxes) are also
shared among nodes, but the associated communication over-
head is negligible compared with those of samples and DNNs.

C. Task Generation

Tasks should match scenarios [14] and their construction
shown in Fig. 3a consists of the following 4 steps.

1) Operational Design Domain (ODD) Specification.
Given the target ODD, e.g., urban (focus of this paper),
rural, campus, mine, port, or parking-lot, we define the
key parameters including traffic density, speed limits,
rules, and FoV requirements [15].

2) Scenario Sampling. Scenarios are sampled inside the
ODD according to industrial standards such as ISO and
SAE [15]. Learning and optimization based methods can
also be adopted for scenario space exploration. Car-

laFLCAV provides straight-road, cross-road, T-road, and
roundabout scenarios.

3) Task Generation. Scenario-specific tasks are generated,
where each task is defined as a set of data, labels and
DNNs [14]. We construct fewer tasks for low-complexity
scenarios to save computational costs and redundant tasks
for high-complexity scenarios to guarantee driving safety.

4) Task Evaluation. Perception tasks are categorized into
different priorities via a task importance evaluator, which
removes a task from the task list and a task is deemed
important if the performance loss is significant [14].

IV. RESOURCE OPTIMIZATION FOR FLCAV PERCEPTION

A. Multi-Modal Resource Allocation

1) Motivation: Intuitively, more resources should be al-
located to perception tasks accomplished by deeper neural
networks rather than equally allocated to different tasks. Con-
sider training a convolution neural network (CNN) for weather
classification and a sparsely embedded convolutional detection
(SECOND) network for object detection. Due to larger number
of parameters (∼5 millions) in SECOND, the FLCAV network
should allocate more communication resources to vehicles that
upload point clouds for pretraining SECOND in Stage I, and
call for more vehicles and FL rounds for updating SECOND
in Stages II and III. In current vehicular networks, the purpose
of resource optimization is to improve key communication
metrics such as throughput, connectivity, and latency, which
treats data equally and violates the above intuition.

2) Method: Since communication (i.e., a data pipeline)
becomes a sub-task in the FLCAV paradigm, we need to
directly minimize the perception error instead of the communi-
cation costs. The problem becomes how to model the relation
between perception errors and network flows. Here we present
a multi-layer graph resource allocation (MLGRA) approach
shown in Fig. 3a, where each vertex represents some task,
DNN, modality, or CAV, and each edge represents training
weight, data priority (i.e., number of samples and FL rounds
allocated to each DNN), or vehicle throughput.

• Task-DNN Graph. Tasks are clustered into groups via a
task-DNN graph such that similar tasks share the same
DNN and annotated dataset. For example, the tasks of
box regression (i.e., determining the poses of objects),
object classification (e.g., determining if the object is
a car or a truck), and orientation classification (e.g.,
determining the front side) can be accomplished by one
DNN with a common feature extractor and 3 separate
headers. The training loss function is the weighted sum
of three metrics.

• DNN-Modality Graph. Different DNNs may be trained
with different data modalities, and their connections form
a DNN-modality graph. Edges of the graph represent
priorities of different data modalities, which can be mea-
sured by fitting performance predictors (e.g., parametric
inverse-power model in Fig. 3a) to historical KPI datasets
(e.g., perception accuracy) as shown in Fig. 3a.

• Modality-Vehicle Graph. For each data modality (e.g.,
point cloud data), the associated data samples may come
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Fig. 3: a) Illustration of the MLGRA method and the good fitness of the performance predictor to the experimental data
generated by CarlaFLCAV; b) Illustration of the road-assisted FD and the VRPC principle. The black box is the ground truth;
the blue box is from the CAVs; the red box is from the road sensors.

from multiple autonomous vehicles. If the data is inde-
pendent and identically distributed (IID) among different
vehicles, we can maximize the total throughout via water-
filling algorithms. If the data is non-IID due to different
weather and FoVs, it is necessary to evaluate the quality
of vehicles’ data using the uncertainty sampling method.
For example, a throughput limit should be imposed on
CAVs that repeat uploading the same data to improve the
dataset quality.

B. Road Sensor Pose Optimization

1) Motivation: For FLCAV, the key is to train the vehicle
DNNs instead of monitoring the environment. Therefore, in
contrast to conventional methods that maximize the number
of visible objects [6], our principle places sensors at critical
scenarios that contain adversarial objects that can defeat the

DNNs. To illustrate their difference, we adopt CarlaFLCAV
to generate an urban traffic map with straight-road and cross-
road scenarios, where 9 possible sensor locations are marked
as red boxes in the middle of Fig. 3b.

• Conventional methods [6] place the road sensor at loca-
tion 8, as we set its nearby traffic density to the highest
value. However, the vehicle DNN would not learn any
new knowledge, as the bounding boxes generated by the
vehicle (e.g., CAV 2) and the road sensor 8 are similar.

• Our principle places the road sensor at location 3, despite
the fact that its nearby traffic density is low. Here, the
CAV could change its local parameters to the maximum
extent with the road’s outputs. This is because the bound-
ing boxes generated by the vehicle and road sensor 3 are
very different. For example, CAV 1 it misses two objects
and generates one inaccurate box due to its FoV being
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blocked by its front car.
2) Method: To find the critical scenarios, our VRPC princi-

ple minimizes the pose similarity between the detected objects
at the CAV and those at the road sensor. In particular, we
deploy the pretrained DNN on a CAV and test the vehicle
in a target map containing multiple scenarios, each specified
with zone limits. If the CAV fails to detect an object or
generates a false positive in its FoV, the 3D position of this
object (false positive) e is registered into a database. Let
the set E = {e1, e2, · · · } denote all registered error items
after sufficient simulation time, and scenarios containing false
detections are deemed important. The cardinality of the set
{e ∈ E : ‖e − x‖ ≤ r} represents the expected number of
false detections that could be calibrated by the road sensor,
which is to be maximized, where x and r are the position and
accurate-detection range of the road sensor. The problem of
optimizing x is then a discrete optimization problem where a
finite set of possible locations is available, as sensors can only
be attached to utility poles and traffic lights. In addition, r is a
monotonically increasing function of the implementation cost,
which can also be obtained via curve fitting. For example,
for LiDAR object detection, the detection error is determined
by the number of sensed points on the object, which is
monotonically decreasing w.r.t. the sensor-object distance and
increasing w.r.t. the number of laser channels. Increasing the
number of laser channels will increase r, but will also increase
the LiDAR price, e.g., with the same budget we can buy 1x
64-line LiDAR or 3x 32-line LiDAR or 9x 16-line LiDAR.
Consequently, r controls the trade-off between the perception
performance and the infrastructure cost.

V. IMPLEMENTATION AND EXPERIMENTS

A. Software Architecture

CarlaFLCAV (shown in Fig. 4a) is an open-source FLCAV
simulation platform that supports: (1) multi-modal dataset

generation, including point-cloud, image, radar data with asso-
ciated calibration, synchronization, and annotation; (2) training
and inference examples for CAV perception, including object
detection, traffic sign detection, and weather classification; (3)
various FL frameworks, including FedAvg, device selection,
noisy aggregation, parameter selection, distillation, and per-
sonalization; and (4) optimization modules, including network
resource and road sensor pose optimization. The implemen-
tation of (2) is based on OpenPCDet, Yolov5, LeNet-5, with
the associated results shown in Fig. 1b. The implementation
of (4) is illustrated in Fig. 3. Below we focus on (1) and (3).

Specifically, raw sensory data is recorded using CARLA
[11], which adopts Unreal Engine 4 for state-of-the-art visual
rendering and physics simulation. Then, calibration represents
sensed information in a common coordinate system via ro-
tation and transition matrices. CarlaFLCAV assumes perfect
calibration, but practical systems may involve errors since
sensors’ intrinsic (e.g., shape of the camera lens) and extrinsic
(i.e., pose) parameters need to be estimated. Time stamping
adopts LiDAR as a reference, i.e., each laser spin is a frame.
Synchronization among different sensors can be realized via
hardware or software trigger, and the worst-case time differ-
ence is at the millisecond level. Finally, data annotation tracks
the categories, poses, and occlusions of objects via CARLA
APIs (https://carla.readthedocs.io/en/latest/).

For wireline FL, the DNN parameter exchange can be im-
plemented based on the Robot Operating System (ROS) com-
munication, which offers inter-process communication among
distributed nodes by publishing or subscribing topics. For
wireless FL, due to limited capacity of wireless channels, only
a subset of CAVs can be selected to convey their parameter
updates at each FL round. Thus, CarlaFLCAV implements
importance-aware device selection, where vehicles with larger
gradient norms are assigned a higher probability to be sched-
uled. Besides, CarlaFLCAV includes noisy aggregation, which

https://carla.readthedocs.io/en/latest/
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Fig. 5: a) Comparison among different schemes for single-task perception. Dataset: 5000 point-cloud samples in Town02 for
pretraining; 4 CAVs (each with 500 samples) in Town05 for edge FL; 3 CAVs (each with 500 samples) in Town03 for cloud
FL; 2432 samples in Town05 for testing. b) Comparison among different schemes for multi-task perception. Task-1 dataset:
4000 RGB images in Town02 for pretraining dataset; 4 CAVs (each with 100 images) in Town05 for edge FL; 3 CAVs (each
with 100 images) in Town03 for cloud FL; 2000 images in Town02 for testing. Task-2 dataset: 2500 RGB images in Town02
for pretraining; 4 CAVs (each with 1000 images) in Town05 for edge FL;3 CAVs (each with 1000 images) in Town03 for
cloud FL; 3279 images in Town05 for testing. Task-3 dataset: the same as Fig. 5a with road sensor placed at position 3.

injects random noises into the DNN parameters as a mask
to protect the data privacy against model inversion attacks.
DNN frozen is optional, which fixes partial layer parameters
to reduce the communication cost.

B. Experimental Validation

First, to evaluate how close CarlaFLCAV is to real-life
conditions, we train the SECOND network (in Fig. 1b) with
3000 point cloud samples generated by CarlaFLCAV for 60
epochs and test the trained SECOND on a real-world dataset
KITTI. The mean average precision (mAP) at IoU= 0.5 is
58% for object detection. Qualitative results are shown in
Fig. 4b, where the DNN trained with CarlaFLCAV detects
all objects in real data.

Next, to verify the effectiveness of the multi-stage FLCAV,
we consider the single-task case (i.e., object detection) and
compare the mAP of final DNNs for different schemes, under
the same wireless and wireline uplink resource budgets (i.e.,
4GB). The settings and results are shown in Fig. 5a. Our major
findings are summarized below.

(i) All FL schemes achieve higher mAPs than centralized
learning. This demonstrates the necessity of exploiting
domain-information of Town05.

(ii) With cloud FL, the mAP is improved, since the CAVs in
Town03 provide new knowledge about corner-case and
occluded objects.

(iii) With equal resources in different stages, the VRPC plac-
ing the road sensor at position 3 significantly improves
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the mAP compared with the conventional method placing
the sensor at position 8.

(iv) By jointly optimizing the network resources across three
stages, the mAP is further increased to 84.58, which
demonstrates the effectiveness of MLGRA. Our result
implies that more wireless (wireline) resources should be
allocated to the edge (cloud) FL stage.

(v) Under the same VRPC and MLGRA methods, the mAP
score with device selection is slightly higher than direct
FL, as the stragglers are removed from FL groups.

Finally, we simulate the multi-task multi-modal perception,
including object detection, sign recognition, and weather clas-
sification tasks. The settings and results are shown in Fig. 5b.
(i) Since our goal is to maximize the perception accuracy of

all tasks, a larger area indicates better performance. The
baseline scheme (i.e., blue dotted-line) has the smallest
area, which can be treated as a worst-case performance
bound.

(ii) Leveraging the performance predictor in Fig. 3a, the equal
MLGRA method (i.e., red dashed-line) achieves a larger
triangle area than that of the baseline. This is because it
automatically allocates more resources to object detection
and sign recognition as shown in Fig. 5b, which are more
important and difficult tasks.

(iii) With joint resource allocation across different stages and
tasks, the proposed MLGRA method (i.e., black solid-
line) achieves the largest triangle in Fig. 5b. The per-
ception accuracies are 99.0, 88.8, 78.16 for tasks 1, 2, 3,
respectively.

(iv) For task 2, the proposed MLGRA successfully detects the
STOP sign in rainy days, while other methods misclassify
the sign as the traffic light. For task 3, the proposed
MLGRA successfully detects all the objects at the cross-
road, while other methods involve inaccurate detections
and false positives. This demonstrates the excellent gen-
eralization performance of MLGRA.

VI. CONCLUSION

This article has reviewed the integration of FL and CAV for
overcoming perception challenges in open driving scenarios.
The vehicle-edge-cloud networking, multi-stage training, and
multi-task generation frameworks of FLCAV were presented.
The MLGRA and VRPC methods were proposed to solve the
network management and sensor pose problems, respectively.
The frameworks and methods were verified in a software
platform CarlaFLCAV. Future directions are listed below.

Simulation-to-reality transfer. Real-world CAV datasets
involve far more physical mechanisms (e.g., illuminations)
and interactive behaviors (e.g., competitions) than simulation
datasets. Deep generative adversarial networks can be adopted
to close the gap between the digital and physical systems.

Autonomous driving under perception uncertainties.
Perception uncertainties will propagate to the subsequent plan-
ning system. Hence, a scientific approach for computing the
perception uncertainties is needed, which adjusts the collision
avoidance constraints to balance safety and efficiency. End-
to-end autonomous driving that directly maps sensor inputs

into vehicle actions is also a promising solution to address the
uncertainty propagation issue.
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