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Theoretical Perspectives on Deep
Learning Methods in Inverse Problems

Jonathan Scarlett, Reinhard Heckel, Miguel R. D. Rodrigues, Paul Hand, and Yonina C. Eldar

Abstract—In recent years, there have been significant advances
in the use of deep learning methods in inverse problems such as
denoising, compressive sensing, inpainting, and super-resolution.
While this line of works has predominantly been driven by
practical algorithms and experiments, it has also given rise to
a variety of intriguing theoretical problems. In this paper, we
survey some of the prominent theoretical developments in this line
of works, focusing in particular on generative priors, untrained
neural network priors, and unfolding algorithms. In addition to
summarizing existing results in these topics, we highlight several
ongoing challenges and open problems.

Index Terms—Inverse problems, generative priors, untrained
neural networks, unfolding algorithms, compressive sensing,
denoising, theoretical guarantees, information-theoretic limits.

I. INTRODUCTION

The study of inverse problems spans several research com-
munities, covering problems such as inpainting, denoising,
super-resolution, medical imaging, and more. Over the years,
research on inverse problems has seen a series of paradigm
shifts and new perspectives; for instance, the incorporation
of low-dimensional structure such as sparsity led to extensive
research on compressive sensing [40], [37], [32].

The most prominent new trend in inverse problems is the
incorporation of deep learning methods, which have been
utilized for signal modeling, decoder design, measurement
design, and more. These methods frequently attain state-of-
the-art performance in domains such as imaging, signal pro-
cessing, and communications. While research in this direction
has predominantly been practically-oriented and relied on ex-
periments for evaluation, it has also given rise to a wide variety
of interesting theoretical developments and challenges. In this
paper, we provide an introductory overview of theoretical
frameworks and results relating to deep learning methods in
inverse problems, and highlight their strengths, limitations, and
directions for further research.

A. Background: Inverse Problems
The goal of an inverse problem is to recover (either exactly

or approximately) an unknown signal x∗ ∈ Rn from a set of
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measurements y ∈ Rm (often referred to as observations),1

which are related via a measurement model A (often referred
to as the forward model):

y = A(x∗) + η, (1)

where η represents possible additive noise. The measurement
model A may be known, unknown, or partially known.

An important special case is the class of linear models, in
which A is a linear operation:

y = Ax∗ + η (2)

for some measurement matrix A ∈ Rm×n. We focus on the
case that A is known (unless stated otherwise), and the goal
is to design an algorithm that recovers x∗ from (A,y).

Linear models already capture numerous important prob-
lems, including denoising, inpainting, deblurring, and super-
resolution. Among these, we highlight the seemingly simplest
problem of denoising, in which A is the identity matrix:

y = x∗ + η. (3)

While this problem may appear limited in scope compared to
general linear or non-linear measurement models, it turns out
that effective solutions to the denoising problem can be used
as a powerful building block to solve more general inverse
problems via plug-and-play methods [126], [87], [103].

A crucial component of inverse problems and their associ-
ated algorithms/theory is the assumed prior knowledge on the
underlying signal x∗. Such prior knowledge typically amounts
to an assumption that x∗ lies in or near some restricted set X ,
which may be intrinsically low-dimensional despite Rn being
a high-dimensional space. A ubiquitous example is the set of
sparse signals:

Xs =
{
x ∈ Rn : ‖x‖0 ≤ s

}
, (4)

where ‖x‖0 denotes the number of non-zero entries in x, and
s is a suitably-chosen sparsity level, typically with s � n.
Related notions include structured sparsity [10], [36], low-
rankness [99], and manifold structure [11], [57].

B. Deep Learning Methods for Solving Inverse Problems

Advances in neural networks and deep learning have re-
shaped the field of machine learning, and are increasingly
impacting other domains throughout academia and industry.
As hinted above, inverse problems are no exception to this

1The reals can also be replaced by the complex numbers or other mathe-
matical types, depending on the application.
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trend. Previous surveys on deep learning methods in inverse
problems can be found in [84], [94], and the key distinction
of our survey is our focus on mathematical theory. The reader
is assumed to be familiar with basic neural network concepts
such as depth, width, training, empirical risk minimization,
gradient descent, generalization, convolutional neural net-
works, and recurrent neural networks; an introduction to these
concepts can be found in [138], among many others.

There are many different ways in which deep learning can
play a role in designing methods for inverse problems. We
will focus on the following three themes in this survey:

1) Generative priors: One of the tremendous successes of
deep learning has been deep generative modeling, in which a
neural network is trained on a large data set of signals/images,
and the resulting network G : Rk → Rn (typically with k �
n) serves as a model for the underlying class of signals, i.e., for
each input z ∈ Rk, the output G(z) corresponds to some signal
(or image in vectorized form). The network is generative in
the sense that it can generate new images different to those
used for training.

Building on practically-oriented works such as [34], [135],
[73], Bora et al. [15] introduced a theoretical framework for
studying generative model based priors in inverse problems.
In comparison to sparse modeling, the idea is to replace the
set Xs in (4) by the set

XG = Range(G). (5)

By doing so, the prior knowledge can be much more specifi-
cally geared to the task at hand. For instance, while a sparse
prior in a suitably-chosen basis could model nearly all natural
images, a generative prior could specifically target a particular
type of image (e.g., brain scans in medical imaging), thus
providing a much more precise form of prior information,
and leading to improved reconstruction accuracy and/or fewer
required measurements. We survey several relevant theoretical
results in Section II.

2) Untrained neural network priors: It has recently been
observed that even neural networks with no prior training
can serve as excellent priors for inverse problems [124], [53].
In this approach, the prior information is implicitly encoded
in the neural network architecture, and decoding is done by
tuning the weights to produce a single image that fits the
measurements well.

Despite using neural networks, these methods are perhaps
more closely related to sparse priors, in the sense that the
priors are “broad” (e.g., capturing general natural images) and
are not targeted at specific data sets. On the other hand, their
empirical performance often significantly improves on that of
sparsity-based methods. We survey several relevant theoretical
developments in Section III.

3) Unfolding methods: Another component of inverse prob-
lems amenable to deep learning methods is the design of
the decoder, e.g., the algorithm for reconstructing x∗ from
(A,y) in the case of linear measurements. A variety of deep
learning approaches have been devised for this task, consisting
of trainable components that are optimized for the task at hand,
e.g., see [94], [112], [114], [111] for recent surveys.

In Section IV, we consider sparse signal priors and survey
the prominent approach of algorithm unfolding [45], [89],
which frequently provides state-of-the-art practical perfor-
mance. Briefly, the idea is to select a (recurrent) neural
network structure that directly matches a classical iterative
algorithm, but to replace the fixed weights of that algorithm
with learnable weights. A detailed survey of algorithm unfold-
ing techniques can be found in [89], and our survey is again
distinguished by the focus on theory.

These three topics are by no means exhaustive; for instance,
there are many deep learning based decoders beyond unfolding
methods [94], [112], [114], [111] (as mentioned above), and
there are other aspects of inverse problems that also admit
deep learning methods, such as designing the measurement
matrix [132], [91]. In Section V, we will briefly discuss some
further relevant topics beyond the three that we focus on.

C. Theoretical Guarantees for Sparse Recovery

To set the stage for the results that we overview in this
paper, it is useful to summarize some of the related results in
the literature on sparse recovery. For concreteness, we focus
on linear models of the form (2), and signals that are exactly or
approximate sparse according to (4), though many results are
known beyond this setting (e.g., see [40]). Among the wide
range of concepts and results in the literature, we focus on
a small sample that are particularly relevant to this survey,
and for which we consider closely-related notions for deep
learning methods throughout Sections II–IV.

Recovery guarantees. Theoretical results on sparse recov-
ery can differ considerably depending on the presence/absence
of noise, whether the signal is exactly or approximately sparse,
and the desired recovery guarantee. Particularly relevant to this
survey is the `2/`2 for-each guarantee, which states that there
exists a randomized measurement matrix A such that given
y = Ax∗ (and A), the decoder outputs some x̂ satisfying the
following with high probability:

‖x̂− x∗‖2 ≤ C min
x∈Xs

‖x− x∗‖2 (6)

for some C > 1. That is, the estimation error is within a
constant factor of the best possible sparse approximation. This
guarantee can be achieved with constant probability and m =
O
(
s log n

s

)
[26], or more generally, with probability 1−ρ and

m = O
(
s log n

s + log 1
ρ

)
[41].

To highlight the impact of the recovery criteria, we note that
deterministically attaining (6) (for all x∗) with fixed A is only
possible when m = Ω(n) [26], though analogous guarantees
are possible by using different norms on the left and right
sides of (6), known as `p/`q guarantees (e.g., p = q = 1). In
contrast, when x∗ is exactly sparse and the measurements are
noisy (i.e., y = Ax∗+η), the preceding difficulty is alleviated,
and one can attain a deterministic guarantee of the form

‖x̂− x∗‖2 ≤ C‖η‖2 (7)

for some constant C, with m = O
(
s log n

s

)
[19].

Importantly, the guarantees (6) and (7) (as well as other
related guarantees) with the above-mentioned bounds on m are



3

not only information-theoretically achievable, but are known
to be attained by practical decoding algorithms coupled with
suitably-chosen A. Some common choices of A and decoding
algorithms are discussed below.

Measurement matrix design and properties. The mea-
surement matrix A is often constrained by the application
(e.g., subsampled Fourier matrices in medical imaging), but
can sometimes be designed freely. In theoretical studies,
the most widely-considered type of measurement matrix is
i.i.d. Gaussian, in which each entry of A is independently
drawn from N (0, 1), N

(
0, 1

m

)
, or similar (the choice of

normalization varies for convenience of the analysis). For
probabilistic guarantees such as (6), such designs are often
analyzed directly. For deterministic guarantees such as (7) the
typical approach is to (i) establish deterministic conditions
on A that suffice to obtain the desired recovery guarantee,
and (ii) establish that i.i.d. Gaussian (or other randomized)
measurements satisfy those conditions with high probability.

We highlight in particular the restricted isometry property
(RIP) [17]: The matrix A satisfies the RIP with parameters
(s, δs) if, for every x ∈ Xs, it holds that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22. (8)

Intuitively, this property states that A is nearly orthonormal
when restricted to sparse vectors. Certain works instead only
required the lower bound on ‖Ax‖22 in (8), and this variant is
known as the restricted eigenvalue condition (REC) [14].

Information-theoretic lower bounds. In the above discus-
sion, we highlighted that various upper bounds on the number
of measurements have been obtained for attaining recovery
guarantees such as (6) and (7). These are complemented
by information-theoretic lower bounds, which state that any
sparse recovery algorithm attaining a certain guarantee must
have a minimum number of measurements. Such results are
crucial in certifying the degree of optimality of practical
algorithms, and steering research towards cases where the
greatest improvements are possible.

Lower bounds for sparse recovery have been obtained for a
variety of recovery criteria (e.g., see [18], [7], [96], [41]), often
with scaling laws that match existing upper bounds. Among
these, we highlight the fact that any algorithm attaining the
`2/`2 guarantee in (6) with constant probability must have m =
Ω
(
s log n

s

)
, thus matching the above-mentioned upper bound

to within a constant factor. A proof of this result is given in
[96], based on a reduction to a communication problem over
a Gaussian channel.

Practical decoding techniques. Recovery guarantees, often
with a near-optimal number of measurements, have been
attained for a wide range of practical decoding techniques.
For instance, the RIP and/or REC have been used as a
tool for studying guarantees of convex relaxation algorithms,
thresholding algorithms, and greedy algorithms (e.g., see [40,
Ch. 6] and [14]). The class of convex relaxation algorithms can
roughly be viewed as trying to find x such that both ‖y−Ax‖2
and ‖x‖0 (the number of non-zeros in x) are small, but to
circumvent the combinatorial nature of the latter, the convex
proxy ‖x‖1 is used. A famous example is the least absolute

shrinkage and selection operator (Lasso) method, in which x̂
is the solution to

min
x
‖y −Ax‖22 + λ‖x‖1 (9)

for some regularization parameter λ > 0. This is a convex
optimization problem for which numerous solvers are available
that converge to the optimal solution.

In principle, (9) could be solved using off-the-shelf convex
optimization solvers, but due to the ubiquity of Lasso, several
special-purpose iterative algorithms have also been devised. In
Section IV, one such algorithm called the iterative shrinkage
thresholding algorithm (ISTA) [31] will play a major role.

D. Overview of the Paper

Our goal is to provide an introduction to several theoretical
results on deep learning methods in inverse problems. In
addition, we seek to highlight interesting connections between
these results, and to discuss ongoing challenges and open prob-
lems. We provide intuition behind several of the associated
proofs, but avoid going into significant technical detail.

The structure of the paper is as follows:
• In Section II, we overview several theoretical de-

velopments concerning generative priors in inverse
problems, including statistical guarantees, information-
theoretic limits, and optimization guarantees.

• In Section III, we overview theoretical developments
regarding neural network priors with no prior training,
including provable recovery guarantees for denoising and
compressive sensing.

• In Section IV, we overview theoretical developments
regarding unfolding algorithms, focusing on sparse signal
priors and neural network structures that are based on the
classical ISTA algorithm.

• In Section V, we discuss other uses of deep learning in
inverse problems, highlighting additional relevant existing
theory, as well as scenarios where theory is currently
lacking but may be of interest. Several directions for
future research are additionally mentioned throughout
Sections II–IV.

We emphasize that our goal is not to be exhaustive or near-
exhaustive in covering the existing literature. While we seek
to cover a diverse set of perspectives and results, the ones
that we focus on are naturally heavily influenced by our own
backgrounds and interests.

Notation. We make frequent use of the standard asymptotic
notation O(·) and Ω(·) (note that fn = Ω(gn) ⇐⇒ gn =
O(fn)). The ReLU function is given by relu(z) = max{0, z},
and is applied element-wise when applied to vectors. Further
notation will be introduced throughout the relevant sections.

II. GENERATIVE PRIORS

In this section, we overview a recent line of works studying
theoretical guarantees for inverse problems with generative
priors. We begin by outlining the relevant background, and
then state some statistical upper and lower bounds. We then
turn to guarantees for specific optimization procedures.
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Fig. 1. High-level structure of a typical deep generative model. In the case
of 2D images, the length-n vector represents the vectorized form.

A. Background

As outlined in Section I-B, the idea of this line of works is
to replace conventional priors (e.g., sparse or low-rank models)
by data-driven generative priors that can be much more
specifically targeted to the task at hand. Given a generative
network G : Rk → Rn that accurately models the signals we
are interested in, it is natural to decode by outputting a signal
in Range(G) that best matches the measurements in some
sense (e.g., ‖y−AG(z)‖2 is small). This idea is captured by
equations (11)–(12) and (14)–(15) to follow.

The structure of a typical generative model is depicted
in Figure 1. The function G maps a low-dimensional input
z ∈ Rk to a high-dimensional signal x ∈ Rn, with the internal
structure of G typically being a neural network. As a toy
example, with k = 1 and n = 2, the function

G(z) =
[

sin(z), cos(z)
]T

(10)

maps z ∈ [−π, π] to points on the unit circle in R2. As a
more realistic example, for a relatively simple data set such as
MNIST, G might consist of k in the tens and produce 28×28
images (i.e., n = 784), whereas a generative model for face
images might have k in the hundreds, and a number of pixels
in the thousands or more. Prominent techniques for learning
the generative model from training data include generative
adversarial networks [43] and variational autoencoders [43].

At first glance, performing a theoretical analysis for signal
recovery in this setup may appear to be daunting. A typi-
cal neural network induces a highly complicated non-linear
mapping; the network architecture and training algorithm may
play a major role; and using training data inevitably leads to
challenges relating to generalization error.

The pioneering work of Bora et al. [15] circumvented
these challenges by identifying simple properties of typical
generative models that suffice to give meaningful recovery
guarantees. As a result, more fine-grained issues centered
around training, generalization, and representation error are
essentially abstracted away (though their further study would
still be of significant interest).

Specifically, the following two mathematical classes of
generative models were proposed in [15]:

(i) G is a Lipschitz continuous function, with Lipschitz
constant denoted by L;

(ii) G is a neural network with ReLU activations,2 and the
width and depth of the network are denoted by w and d.

The Lipschitz assumption can easily be shown to be satisfied
by neural networks with Lipschitz activation functions (e.g.,
ReLU, sigmoid, and more) and bounded weights, and the
ReLU network assumption is also natural in view of the
ubiquity of ReLU networks in practice. While the second class
is essentially encompassed by the first, it is still of interest
to study it separately, since doing so yields slightly stronger
results, as well as further insights via a distinct analysis.

B. Statistical Upper Bounds on the Reconstruction Error

The following two theorems give upper bounds on the
reconstruction error (in terms of the number of measurements
m) under the Lipschitz and ReLU assumptions, respectively,
considering a (possibly impractical) decoding rule based on
solving a constrained `2-minimization problem.

Theorem 1. (Upper Bound for Lipschitz Generative Models
[15, Thm. 1.2]) Let G : Rk → Rn be an L-Lipschitz gen-
erative model, and let the measurement matrix A ∈ Rm×n
have i.i.d. N

(
0, 1

m

)
entries. Suppose that, upon observing

y = Ax∗ + η for some noise vector η, the decoder forms
the estimate

x̂ = G(ẑ), where (11)
ẑ = arg min

z∈Rk : ‖z‖2≤r
‖y −AG(z)‖2. (12)

Then, for any δ ∈ (0, 1), if m = Ω
(
k log Lr

δ

)
with a suffi-

ciently large implied constant, then it holds with probability
1− e−Ω(m) that

‖x̂−x∗‖2 ≤ 6 min
z∈Rk : ‖z‖2≤r

‖G(z)−x∗‖2 +3‖η‖2 +2δ. (13)

Theorem 2. (Upper Bound for ReLU Generative Models [15,
Thm. 1.1]) Let G : Rk → Rn be a neural network with ReLU
activations, width w, and depth d, and let the measurement
matrix A ∈ Rm×n have i.i.d. N

(
0, 1

m

)
entries. Suppose that,

upon observing y = Ax∗ + η for some noise vector η, the
decoder forms the estimate

x̂ = G(ẑ), where (14)
ẑ = arg min

z∈Rk

‖y −AG(z)‖2. (15)

Then, if m = Ω(kd logw) with a sufficiently large implied
constant, then it holds with probability 1− e−Ω(m) that

‖x̂− x∗‖2 ≤ 6 min
z∈Rk

‖G(z)− x∗‖2 + 3‖η‖2. (16)

The first term in (13) (and (16)) amounts to being within a
constant factor of the best approximation (thus measuring the
representation error), and the second term captures the effect
of noise. The 2δ term in (13) is more subtle, and captures the
fact that more measurements are needed to accurately recover
details of the signal at increasingly fine scales [15]. In contrast,
no such term is present in (16).

2Other piecewise linear activations can also be considered, but ReLU is of
primary interest due to its widespread use in practice.
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The number of measurements above can be contrasted with
the typical O(s log n) scaling for sparse priors. The most
important distinction here is not the different logarithmic
terms, but rather, the fact that for accurate modeling, the
required k (generative priors) may be much smaller than the
required s (sparse priors) due to G being more targeted to the
task at hand.

Slightly more general statements are given in [15], in which
the minimization problem in (12) or (15) is only solved to
within ε, and 2ε is added to the right-hand side of (13) or
(16). While gradient-based methods can be highly effective in
practice [15], rigorously guaranteeing ε-optimality for small
ε > 0 may be very difficult due to the potentially complicated
(e.g., highly non-convex) optimization landscape. In Section
II-D, we summarize some results that overcome this limitation,
at the expense of imposing stronger assumptions on G.

Overview of proofs: The proofs of both Theorems 1 and 2
are based on the set-restricted eigenvalue condition (S-REC),
which formalizes the intuition that Ax1 and Ax2 should not
be too close relative to the separation between two possible
signals x1 and x2. For instance, if Ax1 = Ax2 then clearly
the two cannot be distinguished. More generally, x1 − x2

should be far from the nullspace of A.

Definition 1. (Set-Restricted Eigenvalue Condition (S-REC)
[15, Def. 1]) Fix S ⊆ Rn, along with γ > 0 and δ ≥ 0.
The matrix A ∈ Rm×n is said to satisfy the S-REC(S, γ, δ)
if, for all x1 and x2 in S, it holds that ‖A(x1 − x2)‖2 ≥
γ‖x1 − x2‖2 − δ.

Notice that this definition bounds ‖A(x1 − x2)‖2, whereas
analogous definitions based on sparsity simply bound ‖Ax‖2
for sparse x (e.g., see (8)). Intuitively, this is because ‖A(x1−
x2)‖2 is the more directly relevant quantity, but ‖Ax‖ can
be used for sparse signals since the difference of two sparse
signals is still sparse (unlike for general generative priors).

It is shown in [15] that the S-REC(S, γ, δ) with γ = 1
2 ,

coupled with a simpler property of the form ‖Ax‖ ≤ 2‖x‖
(for some fixed x), suffices to establish a recovery guarantee of
the form (13) or (16), with the minimum being taken over S.
Since ‖Ax‖2 ≤ 2‖x‖2 holds with high probability by standard
Gaussian concentration, it only remains to show that Gaussian
matrices satisfy the S-REC with high probability.

When G satisfies the Lipschitz property (Theorem 1), the
idea is to establish the desired behavior on a finite subset of
S = {G(z) : ‖z‖2 ≤ r}, and then transfer this to the full set.3

When working with a finite subset, one can study the norm-
preserving properties of Gaussian matrices, as pioneered by
Johnson and Lindenstrauss [66]. The rough intuition behind
the scaling on m is that we need to cover S such that every
signal in S is δ-close to some point, and by the Lipschitz
property of G, this amounts to similarly covering {z ∈ Rk :
‖z‖2 ≤ r} with closeness δ

L . This is known to be possible
with a set of size exp

(
O
(
k log Lr

δ

))
, and the scaling on m

arises as the log of this size.

3More precisely, to avoid a worsened logarithmic factor, [15] adopts a
chaining argument that studies a sequence of finite sets corresponding to
increasingly fine scales.

For ReLU neural networks (Theorem 2), the idea is that
since the ReLU activation function is piecewise linear, so is
the overall function G (possibly with a huge number of pieces).
Within a linear region, one can again appeal to standard norm-
preserving properties of Gaussian matrices, and a union bound
can then be applied over all pieces. A counting argument
reveals that there are wO(kd) such pieces, and the bound on
m arises as the log of this number.

C. Information-Theoretic Lower Bounds

To assess the degree of optimality of the upper bounds,
it is useful to establish information-theoretic lower bounds
(i.e., converse/impossibility results) stating that no estimation
procedure can hope to improve beyond a certain limit, in
terms of the estimation error and/or number of measurements.
The following theorem of Kamath, Price, and Karmalkar
[68] provides such a lower bound in the case of Lipschitz
continuous generative priors, and serves as a counterpart to
the upper bound in Theorem 1.

Theorem 3. (Lower Bound for Lipschitz Generative Models
[68, Thm. 1.1]) For any input/output sizes k and n, and
positive constants L, r, and δ such that log Lr

δ ≥ 1, there exists
a generative model G : Rk → Rn such that the following
holds: If there exists a random measurement matrix A and a
decoder (with access to A and y = Ax∗) that is guaranteed
to return x̂ satisfying

‖x̂− x∗‖2 ≤ C min
z∈Rk : ‖z‖≤r

‖G(z)− x∗‖2 + δ (17)

with probability at least 3
4 for some absolute constant C, then

it must be the case that

m = Ω
(

min
{
k log

Lr

δ
, n
})
. (18)

This result establishes that O
(
k log Lr

δ

)
is indeed the correct

scaling (in the most interesting regime where this quantity is
below O(n)), and that the additive dependence on δ in (13)
is unavoidable, unlike the case of a sparse prior (see (6)). We
note that this result holds for a “worst-case” generative model
satisfying the assumptions of Theorem 1; it may very well
be the case that further assumptions on G can decrease the
required m.

Theorem 3 concerns the case that there is no noise (i.e.,
η = 0), but crucially relies on considering signals with
representation error in order to establish the hardness result.
The opposite approach was taken by Liu and Scarlett [82],
who assumed that there is no representation error, but that η
is present in the form of i.i.d. Gaussian noise. An analog of
Theorem 3 was given, though Theorem 3 has the advantage
of holding for general combinations of (n, k, L, r, δ), whereas
[82] requires n to be large enough such that log Lr

δ =
O(log n

k ).
An advantage of the approach in [82], on the other hand, is

that it also provides a lower bound establishing conditions
under which Theorem 2 is near-optimal, i.e., handling the
specific case of ReLU generative models, and characterizing
the dependence on the network depth and width.
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Before stating this lower bound for ReLU networks, it is
useful to highlight what the upper bound in Theorem 2 gives
in the case of Gaussian noise and no representation error. As
stated in [82, Cor. 2], if we have

x∗ ∈ Range(G), and η ∼ N
(
0,
α

m
Im

)
(19)

for some α > 0, then there exists a measurement matrix4

A ∈ Rm×n with squared Frobenius norm ‖A‖2F ≤ n such
that the mean squared error is upper bounded by

E
[
‖x̂− x∗‖22

]
≤ O(α). (20)

Intuitively, this amounts to accurately reconstructing x with
the amount of error matching the noise level.

The lower bound in this setting is more complicated than
the case of Lipschitz generative models, so we provide an
informal statement, and refer the reader to [82] for the details.

Theorem 4. (Lower Bound for ReLU Networks (Informal)
[82, Thm. 7]) Consider the case that G : Rk → Rn is a ReLU
network with depth d and width w. Suppose that there exists
a measurement matrix A with ‖A‖2F ≤ n and a decoder such
that when (19) holds, the resulting estimate x̂ is guaranteed
to satisfy (20). Then, we have the following:
• There exists G with depth d = 2 and large width w such

that it must be the case that m = Ω(k logw).
• There exists G with width w = O(n) and large depth d

such that it must be the case that m = Ω(kd).
• There exists G with simultaneously large width and large

depth such that it must be the case that m = Ω
(
kd logw

logn

)
.

Observe that the number of measurements matches the
O(kd logw) upper bound to within a constant factor (first
case) or an O(log n) factor (second and third cases).

Overview of proofs: As is common in proving information-
theoretic lower bounds, the high-level idea behind Theorems
3 and 4 is to establish that the relevant recovery guaran-
tee implies being able to reliably distinguish certain well-
separated signals. If there are many such signals, then reliably
distinguishing them amounts to learning a certain amount of
information, and since each measurement only provides a
limited amount of information, a lower bound on the number
of measurements follows.

In [68], the details are based on a reduction to communica-
tion complexity. A subset X0 of well-separated binary-valued
signals is formed with log |X0| = Ω

(
min

{
k log Lr

δ , n
})

,
and x is restricted to be a weighted linear combination of
several such signals plus a small Gaussian perturbation. A
communication game is set up in which one party wishes
to identify one of the binary-valued signals, and for which
a lower bound on the number of bits transmitted is known
for achieving constant-probability success. It is shown that
transmitting a fine discretization of y = Ax∗ ∈ Rm suffices
for such success, from which a lower bound on m follows.

In [82], to prove Theorem 4 and a counterpart to Theorem
3, a different approach is taken. The idea is to construct a

4Equation (20) also holds when A is i.i.d. Gaussian according to Theorem
2, but it is convenient to work with fixed A in this part. Note that the upper
bound with fixed A crucially relies on having no representation error.

x1 x2
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Fig. 2. Example function mapping z ∈ R to x = (x1, x2, x3, x4) ∈ R4

such that the resulting signal is 1-sparse (or is the zero vector).

generative model G that produces sparse signals,5 and then
apply standard lower bounding techniques (e.g., based on
Fano’s inequality) that characterize the hardness of sparse
recovery. By studying the Lipschitz constant and/or the depth
and width of G, and combining these with the relevant lower
bounds for sparse recovery, the desired results follow. An
illustration of why neural networks can produce sparse signals
is shown in Figure 2; the piecewise linear functions can readily
be implemented using ReLU networks. An analog of Theorem
1 is obtained by forming a network that produces k-sparse
signals (with input z ∈ Rk), whereas Theorem 2 is based on
producing kk0-sparse signals with k0 > 1, using recursively-
defined mappings that operate at k0 different scales.

We refer the reader to [68], [82] for the full details of the
above proof outlines.

D. Optimization Guarantees for Random Generative Priors

As we mentioned above, finding an optimal or near-optimal
solution to problems such as (12) and (15) may not be
possible with an efficient algorithm. Thus, there is substantial
motivation to give recovery guarantees for specific tractable
optimization procedures (which comes at the expense of
stronger assumptions on G). In this subsection, we outline
some examples of such guarantees.

We again consider G : Rk → Rn being a ReLU neural
network, but now with two main additional assumptions,
namely, (i) sufficient expansivity (i.e., increase in the number
of nodes) from layer to layer, and (ii) random Gaussian net-
work weights. Due to the second assumption, such networks
would not produce meaningful signals in practice. However,
as noted in [51], some trained networks do exhibit Gaussian-
like statistics, and more importantly, understanding random
networks is already highly challenging and serves as a good
starting point towards increasingly more realistic scenarios.

We focus primarily on the results of Hand and Voroninski
[51] and Huang et al. [58]. It was first shown in [51] that that
the optimization landscape in formulation (15) is favorable for
gradient algorithms if the network architecture satisfies certain
deterministic properties and if there are a sufficient number of
random Gaussian measurements. Inspired by this landscape,
[58] introduced a specific subgradient algorithm that provably
converges. It was additionally established in [51] that under

5The ability of ReLU networks to produce sparse signals was also noted
in [68], but no analog of Theorem 4 was sought.
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the above-mentioned assumptions of expansivity and random
weights, the desired deterministic properties are satisfied with
high probability. The assumptions made were then relaxed in
various subsequent works [30], [67], [25], several of which
we will discuss in Section II-E.

1) Model for G: We consider a generator G : Rk → Rn
given by a d-layer fully connected neural network with ReLU
activations and no bias terms. That is,

G(z) = relu(Wd . . . relu(W2 relu(W1z)) . . .), (21)

where relu(·) = max{·, 0} applies entry-wise, Wi ∈
Rni×ni−1 for i = 1, . . . , d, and n0 = k and nd = n.

2) Deterministic conditions used in the analysis: Here we
present two useful deterministic conditions on the genera-
tive model and measurement model. The results to follow
will show that these deterministic conditions are sufficient
for certain recovery guarantees, and are satisfied with high
probability for i.i.d. Gaussian distributions on G and A.

The first condition is the Weight Distribution Condition
(WDC), which applies to individual weight matrices Wi.

Definition 2 (Weight Distribution Condition (WDC) [51]). A
matrix W ∈ Rκ×` satisfies the Weight Distribution Condition
with constant ε if, for all non-zero u,v ∈ R`, it holds that∥∥∥∥∥

κ∑
i=1

1wi·u>01wi·v>0 ·wiw
T
i −Qu,v

∥∥∥∥∥
2

≤ ε,

with Qu,v =
π − θ

2π
I +

sin θ

2π
Mu,v, (22)

where wT
i ∈ R` is the i-th row of W; θ is the angle

between u and v; Mu,v ∈ R`×` is the matrix that maps
u
‖u‖2 7→

v
‖v‖2 , v

‖v‖2 7→
u
‖u‖2 , and t 7→ 0 for all t orthogonal

to span({u,v}); and 1S is the indicator function on S.

This condition can be viewed as a generalization of an
approximate isotropy condition; for example, if u = v, the
condition states that

∑κ
i=1 1wi·u>01wi·v>0 · wiw

T
i is close

to 1
2I. The indicator functions in the summation arise from

taking the derivative of the ReLU function.
The second condition is the Range Restricted Isometry

Condition (RRIC), which applies to the pair (G,A).

Definition 3 (Range Restricted Isometry Condition (RRIC)
[51]). A matrix A ∈ Rm×n satisfies the Range Restricted
Isometry Condition with respect to G with constant ε if, for
all z1, z2, z3, z4 ∈ Rk, it holds that∣∣∣〈A(G(z1)−G(z2)),A(G(z3)−G(z4))〉

− 〈G(z1)−G(z2), G(z3)−G(z4)〉
∣∣∣

≤ ε‖G(z1)−G(z2)‖2‖G(z3)−G(z4)‖2. (23)

This condition states that A acts like an isometry when
acting on pairs of secant directions (i.e., differences of two
signals) with respect to the range of G.

3) Favorable landscape for compressive sensing with gra-
dient algorithm under deterministic conditions: Under the
deterministic conditions given above, it can be established
that the loss landscape is favorable for optimization. Consider

a signal given by x∗ = G(z∗) for some z∗, and let the
measurement vector be y = Ax∗ + η with i.i.d. Gaussian
η. We are interested in the optimization problem

min
z
f(z), f(z) := ‖AG(z)− y‖22. (24)

The following result shows that under the WDC and RRIC,
f does not have any spurious local minima outside of z and
a negative multiple of z. Here and subsequently, when we
write poly(d), we mean that the result holds true when this is
replaced by dc for a suitable constant c > 0 (possibly differing
in each occurrence). In addition, we let Dvf(z) denote the
directional derivative with direction v ∈ Rk, and let B(z, r)
denote the radius-r ball centered at z.

Theorem 5. (Favorable Optimization Landscape [52, Thm. 4])
Fix ε > 0 such that K1poly(d)ε1/4 ≤ 1, and let d ≥ 2.
Suppose that G is such that Wi satisfies the WDC with
constant ε for all i = 1, . . . , d, and that A satisfies the RRIC
with respect to G with constant ε. Then, for all non-zero z and
z∗, there exists vz,z∗ ∈ Rk such that the one-sided directional
derivatives of f satisfy

D−vz,z∗ f(z) < −K3

√
εpoly(d)

2d
max

{
‖z‖2, ‖z∗‖2

}
,

(25)

Dtf(0) < − 1

8π2d
‖z∗‖2,

∀t 6= 0, z 6∈ {0} ∪ B(z∗,K2poly(d)ε1/4‖z∗‖2)

∪ B(−ρz∗,K2poly(d)ε1/4‖z∗‖2), (26)

where ρ = ρd is a positive number that converges to 1 as
d→∞, and K1, K2, and K3 are universal constants.

While the above expressions are somewhat technical, the
simple idea is that except for points close to z∗ and −ρz∗,
we have a negative upper bound on the directional derivative,
which precludes spurious minima. Moreover, the radius around
z∗ and −ρz∗ becomes arbitrarily small as ε decreases.

There is an explicit formula for vz,z∗ , given by

vz,z∗ =

{
∇f(z) differentiable at z,
limδ↓0∇f(z + δz′) otherwise,

(27)

where z′ can be arbitrarily chosen such that G is differentiable
at z + δz′ for sufficiently small δ. Such a z′ exists by the
piecewise linearity of G, and can be generated randomly with
probability one.

Note that the dependence on 2d in the bounds is an artifact
of the underlying scaling of f(z), and does not indicate a
vanishingly small derivative. Roughly speaking, the ReLU
activation functions zero out around half of its arguments.
Hence, while Wi has spectral norm approximately one, the
rows of Wi that are retained by the ReLU will have spectral
norm approximately 1

2 . Thus, f(z) itself is on the order of
2−d under the RRIC and WDC for appropriately small ε.

4) Subgradient algorithm and convergence guarantee un-
der deterministic conditions: Building on Theorem 5, [58]
proposed a subgradient algorithm and showed that it has
a rigorous convergence guarantee. Since the cost function
f(z) is continuous, piecewise quadratic, and not differentiable
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everywhere, the algorithm is defined with respect to a gener-
alized gradient, called the Clarke subdifferential, generalized
subdifferential, or generalized subgradient (e.g., see [24] for
the definition).

The algorithm operates as follows given some initialization:
• Compute a vector in the subgradient of the objective at

the current iterate;
• Update the current position using the subgradient and a

fixed step size;
• If negating the current iterate reduces the value of the

objective, then do so;
• Repeat until a stopping criterion is met.

Note that the third step is non-standard, and is motivated by
the landscape properties stated in Theorem 5.

Theorem 6. (Optimization Guarantee [58, Thm. 1]) Suppose
that the WDC and RRIC hold with ε ≤ C1

poly(d) , and the

noise η satisfies ‖η‖2 ≤ C2‖z∗‖2
poly(d)2d/2 . Consider the iterates

{zt} generated by the preceding algorithm with step size
ν = C3

2d

poly(d) . There exists a number of iterations, denoted

by τ and upper bounded by τ ≤ C4f(z0)2d

poly(d)ε‖z∗‖2 when the
initialization is z0, such that

‖zτ − z∗‖2 ≤ C5poly(d)
√
ε‖z∗‖2 + C6poly(d)2d/2‖η‖2.

(28)
In addition, for all t ≥ τ , we have

‖zt+1 − z∗‖2 ≤ Ct+1−τ‖zτ − z∗‖2 + C72d/2‖η‖2, (29)

and

‖G(zt+1)−G(z∗)‖2 ≤
1.2

2d/2
Ct+1−τ‖zτ − z∗‖2 + 1.2C7‖η‖2,

(30)

where C = 1− ν
2d

7
8 ∈ (0, 1). Here, C1, . . . , C7 are universal

positive constants.

In accordance with the above discussion on the dependence
on 2d, the initial value f(z0) scales as 2−d with high prob-
ability. Hence, and in view of the assumption ε ≤ C1

poly(d) ,
we find that Theorem 6 establishes that after a number of
iterations that is polynomial in d, the modified subgradient
algorithm converges linearly to z∗, up to the noise level.

5) Random G satisfies the deterministic conditions with
high probability: Finally, the following result establishes that
the WDC (Definition 2) and RRIC (Definition 3) are satisfied
with high probability provided that (i) G has i.i.d. Gaus-
sian weights and is sufficiently expansive, and (ii) A has
i.i.d. Gaussian entries and sufficiently many rows.

Proposition 1. (High-Probability Behavior of Random Mod-
els [52, Prop. 6]) Fix 0 < ε < 1. Assume that G follows the
structure in (21) with ni ≥ cni−1 log ni−1 for all i = 1, . . . , d,
and that m > ckd log Πd

i=1ni. Moreover, assume that the
entries of Wi are i.i.d. N

(
0, 1

ni

)
, and the entries of A are

i.i.d. N
(
0, 1

m

)
. Then, Wi satisfies the WDC with constant ε

for all i and A satisfies the RRIC with respect to G with
constant ε with probability at least 1−O

(∑d
i=1 nie

−γni−1 −
e−γm

)
. Here c and γ−1 are constants that depend polynomi-

ally on ε−1.

Observe that the leading term in the number of measure-
ments is kd, as is the case in Theorem 2. However, depending
on the expansivity, the logarithmic term log Πd

i=1ni can be
order-wise larger than logw, and accordingly could potentially
be improved.

The proof of Proposition 1 relies on tools from non-
asymptotic random matrix theory [127]. Typically, establishing
a matrix concentration result like the WDC with high prob-
ability would involve three steps: showing high probability
concentration of the matrix applied to fixed vectors (u,v),
bounding an appropriate Lipschitz constant, and taking a union
bound over a net whose size depends on that Lipshitz constant.
Because the matrix in the WDC is discontinuous with respect
to (u,v), this approach must be modified. The authors of
[52] show that the discontinuity can be smoothed to provide a
semidefinite upper bound on the desired expression, and also
smoothed to provide a semidefinite lower bound. Each of these
can then be controlled by the standard approach mentioned
above.

Along similar lines to the proof of Theorem 2, establishing
the RRIC involves showing that the output of linear maps with
ReLU activations live in a union of linear spaces, and counting
the number of such subspaces.

E. Further Developments
In this subsection, we provide several examples of follow-

up theoretical results related to those outlined above. We keep
this summary brief, and refer the reader to the references given
for further details.

1) Statistical Guarantees: Some further developments re-
lated to the results in Section II-B (and to a lesser extent,
Section II-C) are outlined as follows.

Mitigating representation error. While generative priors
have clear benefits over conventional priors, they can suffer
from the issue of representation error: If the signal x∗ is not
exactly in the range of G, then an optimization procedure
such as (12) will always incur some amount of error no
matter how many measurements m we take. In contrast, it
is straightforward to devise sparsity-based solutions that are
guaranteed to become arbitrarily accurate as m increases. To
overcome this limitation, [33] proposed to model x∗ as the sum
of a generative component and a sparse component, and gave
a theoretical guarantee that combines the features of Theorem
1 and analogous sparse recovery results.

With a similar motivation but a very different approach,
various methods were proposed in [59], [28], [46] based on
optimizing intermediate layers in the neural network defining
G, which helps to expand the range of the generator and
mitigate representation error. Conditions were given under
which the required number of measurements is provably
smaller than Theorem 2, and improvements in the out-of-
distribution robustness were observed experimentally.

Non-linear measurement models. While Theorem 1 con-
cerns linear observation models, analogous guarantees have
been provided for a variety of non-linear measurement models,
including 1-bit observations [78], [98], [65], spiked matrix
models [6], [25], phase retrieval [77], [49], principal com-
ponent analysis [80], and general single-index models [81],
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[76], [79]. While these each come with their own challenges,
the intuition behind their associated results is often similar
to that discussed above for the linear model, with the m =
O
(
k log Lr

δ

)
scaling typically remaining.

Robustness to outliers. Theorem 1 is primarily suited to
well-behaved noise, such as Gaussian or sub-Gaussian. In con-
trast, heavy-tailed noise with large outliers can considerably
worsen the performance, both in theory (e.g., due to the size of
‖η‖2 in (13)) and in practice (e.g., since (12) is not a robust
objective). Algorithms and theory addressing this challenge
were given in [129], [64]. Briefly, using robust estimation
techniques, one can attain an analog of Theorem 1 even when
a constant fraction of the data is drawn from a heavy-tailed
distribution that yields large outliers. See also [136] for a
theoretical study of outlier detection using generative models.

General probabilistic priors. Theorems 1 and 2 treat
G as a fixed function satisfying certain properties, without
addressing the fact that even over the range of G, some
signals may be more likely than others. This distinction is
particularly important when it comes to generative models that
fail to satisfy k � n (e.g., invertible generative models with
k = n [4]). To address this, compressive sensing with general
probabilistic priors was studied in [63]. Analogous to how
covering properties play a key role in the proof of Theorem 1,
it was shown that a probabilistic form of covering dictates the
required number of measurements. Moreover, it was shown
that in broad scenarios, using i.i.d. Gaussian measurements
and letting x̂ be a random sample from the posterior of x∗ is
near-optimal for estimation.

2) Optimization Guarantees: Some further developments
related to the results in Section II-D are outlined as follows.

Weakening the expansivity condition. In Proposition 1, the
WDC and RRIC were established with high probability in the
case of layer-wise expansivity, that is, ni ≥ cni−1 log ni−1.
This assumption was weakened in [30] to ni ≥ cni−1 by
introducing the notion of pseudo-Lipschitzness and by placing
nets over spheres in a suitably non-uniform manner.

Subsequently, it was shown in [67] and [25] that layer-
wise expansivity is not necessary. Specifically, the recovery
guarantee is possible even if some layers are contractive,
provided that all layers are sufficiently large relative to the
input dimensionality k. This is shown in [67] in the case of a
modified gradient algorithm, and [25] observed that the WDC
of a given layer only needs to hold restricted to the range of
previous layers.

Alternative architectures. The model (21) assumes that
the architecture of the neural network G is fully-connected. In
[83], the authors established a similar recovery guarantee in
the case that G has a convolutional architecture.

Other inverse problems. Signal recovery guarantees with
random generative priors have been established for a variety
of inverse problems, including denoising, blind demodulation,
phase retrieval, and spiked matrix models.

Various results on denoising can be found in [51], [71],
[1], [54].6 In particular, it is shown in [54] that solving

6These works also study the question of when z∗ can be recovered from
G(z∗) even in the absence of noise (e.g., see [71] for an NP-hardness result).

the optimization problem minz ‖y − G(z)‖22 with a gradient
method yields an optimal denoising rate of O

(
k
n

)
provided

that the noise is sufficiently small and the generative model has
Gaussian weights and is sufficiently expansive. An alternative
approach that avoids the need for random weights and expan-
sivity is given in [1], instead considering sparsity properties
of the hidden layers (resulting from relu(z) = 0 for z ≤ 0).

In the case of phase retrieval with random weights and
expansivity, solving the optimization problem minz ‖y −
|AG(z)|‖22 allows for signal recovery with m being propor-
tional to k (ignoring the n and d dependence) [49]. This depen-
dence is information-theoretically optimal, and it is noteworthy
that it is attained with an efficient algorithm under random
generative priors. In contrast, for sparse priors, there is no
known practical algorithm that achieves a recovery guarantee
with a linear dependence on the sparsity s, even though doing
so is known to be information-theoretically possible. See also
[50] for simplified arguments in the case of phase retrieval
without prior information (i.e., general signals in Rn).

Random generative priors have also allowed for recovery
results for the case of spiked matrix models [6], [25]. The
number of measurements is again shown to be information-
theoretically order-optimal using an efficient algorithm, unlike
in the case of sparse models.

Other optimization algorithms. Analogous guarantees to
Theorem 2 were given in [110], [95] for projected gradient
descent, which alternates between gradient steps and projec-
tions onto the range of G. However, a notable limitation of
such guarantees is that the projection step itself depends on the
landscape of G(z), and may accordingly be intractable. The re-
sults in Section II-D overcome this limitation at the expense as-
suming random weights (along with expansivity). Two further
works gave guarantees that require neither random weights
nor exact projections, but instead adopt further deterministic
assumptions on G, roughly amounting to certain forms of
smoothness. Specifically, [42] studied an algorithm based on
Alternating Direction Method-of-Multipliers (ADMM), and
[93] studied an algorithm based on Langevin dynamics.

Another important class of algorithms uses approximate
message passing (AMP), which is a powerful technique that
has been utilized extensively in high-dimensional statistics
[38]. Variants of AMP have successfully been devised with
theoretical guarantees in several inverse problems with gen-
erative priors, including linear forward models [86], [39],
spiked matrix recovery [6], and phase retrieval [5]. Similar
to Section II-D, these results consider generative models
with random weights and architectural assumptions such as
expansivity. A key advantage of AMP is that its analysis is
often powerful enough to attain precise constant factors, unlike
typical analyses of gradient descent algorithms.

F. Ongoing Challenges

Compared to explicit priors such as sparsity and low rank-
ness, the study of generative priors remains in its relatively
early stages. In this subsection, we overview some of the
ongoing challenges and open problems that may be considered
in future work.
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Generative model properties. While the Lipschitz constant
and the depth/width are natural parameters to consider for
the generative model, these are “global” properties that may
not fully capture the precise structure imposed by typical
generative priors. For instance, even if the global Lipschitz
constant is huge, it may be that the function is mostly
sufficiently smooth to ensure that few measurements suffice.
In view of this, it would be of significant interest to identify
additional properties that more precisely dictate the required
number of measurements.

Structured measurements. Studies of compressive sens-
ing with generative priors have predominantly focused on
i.i.d. Gaussian measurement matrices. Non-Gaussian i.i.d. de-
signs have also been considered [64], as well as certain
classes of dependent measurements [92]. However, theory is
still largely lacking for several kinds of measurements that
are used in practice; for instance, in applications such as
medical imaging, one is confined to using subsampled Fourier
measurements due to the inherent design of the hardware.

Optimization guarantees with milder assumptions. Re-
garding the optimization results outlined in Section II-D and
the related follow-up works, perhaps the most significant
ongoing challenge is to expand the applicability of the theory
beyond the case of random generative models, and more
generally, to give analogous guarantees with as few restrictive
assumptions on G, A, and η as possible.

Constant factors. As exemplified in the results that we
stated, most existing works on the theory of inverse problems
with generative models have typically sought to characterize
the scaling laws of the number of measurements, and not
the finer question of precise constants. As discussed above,
progress has been made in addressing this question using
approximate message passing (AMP), but broadly speaking,
there remains substantial room for progress in understanding
the constant factors associated with bounds on the number of
measurements with generative priors.

Role of training data. As we discussed earlier, the consid-
eration of properties such as the Lipschitz constant essentially
abstracts away the complicated details of how the generative
model was trained. On the other hand, to attain a more com-
plete picture of the entire learning and information processing
pipeline, a refined theory might explicitly incorporate such
aspects, e.g., explicitly quantifying notions such as represen-
tation and generalization, and unifying such considerations
with the number of measurements in the inverse problem, the
optimization algorithm used for decoding, and so on. While a
completely holistic theory may be challenging, future research
could potentially take gradual steps towards this.

Out-of-distribution performance. One of the main poten-
tial concerns of generative priors is that they may perform
poorly under distribution shift, i.e., when the training data is
not fully representative of the actual signal being recovered.
Various works have started to address this limitation (see
Section II-E), but overall, we believe that it remains under-
explored relative to its importance.

III. UNTRAINED NEURAL NETWORK PRIORS

In this section, we consider untrained neural network priors,
which, in contrast to the pre-trained generative priors consid-
ered above, work without any training data and solely based on
the network architecture and the choice of optimization proce-
dure for fitting the signal/image at inference time. For instance,
one of the earliest such techniques called Deep Image Prior
(DIP) [124] works by fitting a standard convolutional auto-
encoder (the popular U-net [105]) to a single noisy image via
gradient descent, and regularizing by early stopping. Untrained
networks have emerged as a highly successful alternative
to data-driven methods, yielding excellent performance for
a variety of problems, including denoising [124], [53] and
compressive sensing [137], [125], [62], [16], [128], [60].

Despite being neural network based, this class of methods
is conceptually related to sparsity-based methods, in that it is
not directly data-driven7 and it relies on broader properties of
signals/images (e.g., smoothness) rather than capturing the be-
havior of highly specific data distributions. On the other hand,
untrained networks can provide significant improvements over
sparsity-based methods, e.g., giving better image quality for
accelerated magnetic resonance imaging [29].

In this section, we first discuss how signal recovery can be
performed using untrained neural networks, and then overview
the existing theory behind this approach.

A. Background

Consider the problem of reconstructing a signal x∗ ∈ Rn
from noisy linear measurements, y = Ax∗ + η ∈ Rm.
The signal is often an image, in which case these equations
correspond to its vectorized form.

We let G : Rp → Rn represent a neural network with
p weights; in contrast to the previous section, here G is a
function of the network weights w ∈ Rp with a fixed input z
(typically chosen at random and then fixed thereafter). This is
the opposite of the previous section, where we treated w as
fixed (pre-learned) and z as varying. The function G(w) is our
untrained neural network, and the fixed input z is considered
part of the network.

The architecture of the network is critical, and is discussed
in more detail later. For now, we note that a good choice
for images is a simple five-layer convolutional network. We
reconstruct an image by applying an optimization procedure
(typically gradient descent) starting from a random initializa-
tion of the network weights, using the least-squares loss:

L(w) = ‖y −AG(w)‖22 . (31)

This optimization procedure, possibly with early-stopped iter-
ations for regularization, yields the estimate ŵ, from which
we estimate the unknown signal as x̂ = G(ŵ).

This general approach is based on the empirical observation
that untrained convolutional networks tend to fit a single natu-
ral image significantly faster than pure noise when optimized
with gradient descent. However, for the method to work well,

7Data may still be used for tasks such as hyperparameter tuning, but this
is a much less significant use of data compared to training a generative prior.
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a good choice of architecture, optimization procedure, and
regularization (e.g., early stopping) can be critical.

Deep image prior. Ulyanov et al. [124] first observed
that using a standard convolutional auto-encoder (the popular
U-net [105]) as a generator network, and regularizing with
early stopping, enables excellent denoising performance. This
method has been termed deep image prior.

Deep decoder. Many elements of auto-encoders turn out
to be largely irrelevant to the strong performance of deep
image prior. A more recent paper of Heckel and Hand [53]
proposed a much simpler network architecture, termed the
deep decoder. This network can be seen as retaining only
the most relevant components of a convolutional autoencoder
architecture to function as an image prior, and can be obtained
from a standard convolutional autoencoder by removing the
encoder, the skip connections, and perhaps most notably, the
trainable convolutional filters of spatial extent larger than one.

B. Theory

Untrained neural networks enable provable denoising and
compressive sensing. Here we discuss the associated recovery
guarantees, along with intuition on when and why untrained
neural networks enable accurate signal reconstruction.

1) Under-parametrized untrained neural networks: We say
that an untrained neural network is under-parametrized if it
has fewer parameters p (i.e., the dimension of w) than its
output dimension n, and over-parametrized otherwise. Un-
trained networks enable signal reconstruction in both regimes.
We start with the under-parametrized regime, since it is
conceptually simpler.

The deep decoder [53] is a neural network that transforms
a random input volume8 B0 ∈ Rn0×k0 to an output image by
applying convolutions with a fixed convolutional upsampling
kernel, followed by weighted linear combinations of the chan-
nels, followed by an application of ReLU nonlinearities, and
repeating these operations several times, e.g., five times for
a five-layer network. See Figure 3 for a visualization. In the
simpler case of only two layers, we have B0 ∈ Rn

2×k0 , and
the deep decoder network is described as follows:

G(w) = relu(U0B0W0)w1, (32)

where U0 ∈ Rn×n
2 is a linear operator implementing a con-

volution with a fixed upsampling operator, and W0 ∈ Rk0×k0
is a parameter matrix forming linear combinations of the
channels U0B0. Finally, we apply a ReLU non-linearity and
again form linear combinations through multiplication with the
parameter vector w1 ∈ Rk0 , which yields the output image.
The parameters of the network are the weights w = (W0,w1).

When the number of layers and the number of channels
k0 are not too large, this network is a concise image model,
in that it can represent a natural image with much fewer
network parameters than pixels. For example, [53, Fig. 1]
shows that representing (or compressing) natural images with a
deep decoder network that has 30 times fewer parameters than
weights gives only a small loss in image quality. Moreover,

8The input vector that we previously denoted by z corresponds to the
vectorization of B0. Here it is convenient to work with a matrix-valued input.

1x1 convolutions + convolution with fixed kernel + ReLU

Linear combinations, sigmoid

Fig. 3. A rough illustration of the deep decoder, a five-layer untrained
convolutional neural network. The network performs 1x1 convolutions (i.e.,
linear combinations of channels) followed by convolutions with a fixed kernel
to map one volume to another. Convolution with a fixed kernel often includes
an upsampling operation, as displayed here.

for a given storage requirement, the image quality typically
surpasses that of sparse wavelet representation, which is the
basis for the JPEG2000 compression standard.

To summarize, the deep decoder can represent a natural
image with very few parameters. At the same time, in the
under-parametrized regime, it cannot represent random noise
well; informally, an n-dimensional Gaussian noise vector
requires roughly p parameters to represent a fraction of p

n of
its energy. For the two-layer deep decoder, this is formalized
in the following proposition.

Proposition 2. (Lack of Noise Fitting with Under-
parametrized Networks [53, Prop. 1]) Consider the two-layer
deep decoder (32) with p parameters and arbitrary upsam-
pling and input matrices. Let η be zero-mean Gaussian noise
with identity covariance matrix. Then, with high probability,

min
w
‖G(w)− η‖22 ≥ ‖η‖

2
2

(
1− cp log n

n

)
, (33)

where c is a numerical constant.

Here and throughout this section, we state most results with
the terminology “with high probability” used informally to
avoid overly technical statements, but the precise forms can
be found in the references given.

Proposition 2 reveals that when fitting an under-
parametrized deep decoder to a noisy image (by minimizing
the loss in (31)), we expect to fit only a small amount of noise,
thus enabling denoising. The number of network parameters,
p, trades off how well the network fits the underlying signal
(larger is better) and how much noise it fits (smaller is better).

Beyond denoising, similar ideas can be applied to compres-
sive sensing. Specifically, the proof of Proposition 2 estab-
lishes that any signal generated by an under-parametrized deep
decoder lies in a union of low-dimensional subspaces. Hence,
taking measurements with sufficiently many i.i.d. Gaussian
measurements guarantees that only one such signal is con-
sistent with the measurements.

2) Over-parametrized untrained neural networks: A suf-
ficiently over-parametrized convolutional neural network can
fit any single image perfectly, including noise. Thus, at first
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Fig. 4. Fitting an over-parametrized deep decoder network to (a) a noisy
image, (b) a clean image, and (c) pure noise. Here, MSE denotes Mean
Square Error of the network output with respect to the clean image in (a) and
fitted images in (b) and (c). While the network can fit the noise due to over-
parameterization, it fits natural images with significantly fewer iterations than
noise. Hence, when fitting a noisy image, the image component is fitted faster
than the noise component, which enables denoising via early stopping. The
curves when using other common convolution networks (e.g., a convolutional
generator network of a U-net) are very similar.

sight, it may seem surprising that over-parametrized untrained
networks can enable accurate signal reconstruction. The reason
reconstruction is still possible is that, when optimization is
performed with gradient descent, the network fits a natural
image significantly faster than it fits noise. This is illustrated in
Figure 4, where gradient descent is applied to fit a clean image
(Fig. 4(b)) and pure noise (Fig. 4(c)), by minimizing the least-
squares loss (31) with A = I. After about 300 iterations the
network fits the clean example image, but it requires around
3000 iterations to fit the noise. If we apply gradient descent
with a noisy image (Fig. 4(a)), the network first fits the image
part of the noisy image and only later the noise part. Thus,
early stopping at about 300 iterations denoises the image.

For denoising with an over-parametrized untrained network,
regularization via early stopping is critical for performance,
since with enough iterations the network fits the entire noisy
image. The early stopping time plays an analogous role to
the number of parameters for image reconstruction with an
under-parametrized neural network: More iterations amounts
to fitting the image part better, but also fitting more noise.

Empirically, untrained neural networks often perform best
in the over-parametrized regime. Several variants of convo-
lutional generator networks work well, including the deep
decoder, a U-net, and a convolutional generator network [53],
[29], [124].

Provable denoising with over-parametrized convolu-
tional networks. Here we state a theoretical result formalizing
the statement that convolutional generators optimized with
gradient descent fit natural images faster than noise, and
that fitting convolutional generators via early stopped gradient
descent provably denoises “natural” images.

As a suitable model for natural images, we consider smooth
signals. Specifically, a signal x ∈ Rn is q-smooth if it can be
represented as a linear combination of the q first trigonometric
basis functions (illustrated in Figure 5). As motivation for this
definition, [116, Fig. 4] shows that the power spectrum (i.e.,

v1 v2 v6 v21

Fig. 5. The 1st, 2nd, 6th, and 21st trigonometric basis functions in dimension
n = 300.

the energy distribution by frequency) of a natural image decays
rapidly from low frequencies to high frequencies.

We consider a randomly initialized network of the
form (32). The result stated below relies on the insight that
the behavior of large over-parametrized neural networks is
dictated by the spectral properties of its Jacobian mapping
at initialization.9 The left-singular values of the expected
Jacobian of this convolutional network at initialization are the
trigonometric basis functions v1, . . . ,vn. Provided that the
fixed convolutional filter of the convolution operation U0 in
the deep decoder network is relatively narrow (which it is in
practice), the associated singular values σ1 > σ2 > . . . > σn
decay rapidly, so that large singular values are associated with
low-frequency trigonometric basis functions and small singular
values are associated with high-frequency basis functions.

The following result shows that for untrained convolutional
networks, gradient descent fits the components of the noisy
measurement y = x∗ + η that align with the trigonometric
basis functions at speeds determined by the associated singular
values.

Theorem 7. (Denoising Guarantees with Over-parametrized
Networks [56, Thm. 2]) Assume that x∗ is a p-smooth sig-
nal, and let η be an arbitrary noise vector. Suppose that
we fit a randomly initialized network of the form (32) via
gradient descent with step size α ≤ 1

σ2
1

for t iterations to

minimize the least-squares loss L(w) = ‖G(w)− y‖22 with
y = x∗ + η. Suppose that the network is sufficiently wide,
namely, k ≥ Ω

(
n
ε4

)
, for some ε > 0. Then the estimate of the

untrained network based on the t-th iterate wt obeys, with
high probability over the random initialization,

‖G(wt)− x∗‖2 ≤ (1− ασ2
p)t ‖x∗‖2

+

(
n∑
i=1

((1− ασ2
i )t − 1)2ηTvi

)1/2

+ ε,

(34)

where {σi}ni=1 are the singular values described above.

In this result, ε is an error term that becomes negligible if
the network is sufficiently wide. The first term is the error
for fitting the signal, and the second term corresponds to the
noise fitted after t iterations. After sufficiently many iterations,
(1 − ασ2

p)t is small, and thus so is the signal fitting error.
At the same time, after such a number of iterations, only
the components of the noise that align with (roughly) the p-
many lowest frequency trigonometric basis functions are fitted,
provided that the singular values decay sufficiently fast.

9The Jacobian of the function G : Rp → Rn is the matrix J ∈ Rn×p

whose (i, j)-th entry is equal to the derivative of the i-th output value with
respect to the j-th input value.
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A consequence of this result (see [56, Thm. 1]) is that there
is an optimal number of iterations such that for denoising
a signal corrupted with Gaussian noise η ∼ N (0, I), the
estimate based on early-stopped gradient descent obeys

‖G(wt)− x∗‖2 ≤ O
( p
n

)
.

This ensures that only a fraction p
n of the noise energy is

fitted, and the rest of the noise that lies outside of the signal
subspace spanned by the p-lowest frequency trigonometric
basis functions is filtered out. That is, up to a constant factor,
one attains optimal performance for denoising a p-smooth
signal with Gaussian noise.

Provable compressive sensing with over-parametrized
convolutional networks. Here we consider signal reconstruc-
tion from m � n noiseless random Gaussian measurements
with an untrained network, using gradient descent applied to
the loss (31). For this setup, perhaps surprisingly, no regu-
larization is necessary (in contrast to the denoising problem
discussed above) since the network has an interesting self-
regularization property.

The following result is a specialized version of that in
[55, Thm. 2], which considers general decay patterns of the
singular values of the Jacobian. Sufficiently fast decay is
needed for accurate reconstruction, and the following result
focuses on geometric decay, which is motivated by the fast
decay typically observed in practice.

Theorem 8. (Compressive Sensing Guarantees with Over-
parametrized Networks; Corollary of [55, Theorem 2]) Let
A ∈ Rm×n be an i.i.d. Gaussian random matrix, and suppose
that we are given noiseless measurements y = Ax∗ of an m

3 -
smooth signal x∗. Consider the two-layer neural network (31),
with the convolutional kernel (of the convolution operator U0)
chosen so that the singular values of the Jacobian of the
network at initialization decay geometrically, i.e., σ2

i = γi for
some γ ∈ (0, 1). Moreover, suppose the network is sufficiently
wide, namely, the number of channels satisfies k0 ≥ C m

ξ8 for
some ξ ∈ (0, 1) and a numerical constant C. Then, with high
probability, the estimate w∞ obtained by applying gradient
descent to the loss (31) until convergence satisfies

‖G(w∞)− x∗‖22 ≤ O
(
γm/3

1− γ ‖x‖
2
2

)
+ ξ2‖x∗‖22. (35)

This result guarantees the almost perfect recovery of an m
3 -

smooth signal from only m noiseless measurements, which is
optimal up to a constant. The mechanism underlying this result
is that gradient descent fits the lowest-frequency components
of the signal before the higher frequency component, similar
to the denoising result stated in Theorem 7.

C. Discussion and Ongoing Challenges

Linear approximation and its limitations. The proofs of
Theorems 7 and 8 rely on relating the dynamics of gradient
descent applied to fitting an over-parametrized network to that
of gradient descent of an associated linear network. This proof
technique has been used in a variety of recent works [119],
[35], [104], [61]. As such, the analysis readily extends to
deeper neural networks.

However, the main shortcoming of the analysis is that it is
constrained to networks operating in a regime where it behaves
similar to an associated linear model (implicitly entering via
the large-width assumption). This is a reasonable first-order
approximation of what untrained networks actually do, but
in practice untrained networks typically do not operate in the
regime where they behave like associated linear models. What
makes untrained networks work so well compared to linear
models for denoising and signal reconstruction cannot be
captured by this analysis, and therefore, an important avenue
for future research is to develop a finer analysis for lower-
width untrained networks.

Beyond convolutional networks. In this section, we fo-
cused on image reconstruction with untrained convolutional
neural networks. We end this section by discussing archi-
tectures beyond convolutional networks, and signals beyond
images, for which untrained neural networks can still serve as
a powerful approach.

For example, coordinate-based neural representations for
images, 3D shapes, and other signals have recently emerged
as an alternative for traditional discrete representations such as
sparse representations or convolutional neural networks. They
have been employed for surface reconstruction [130], repre-
senting scenes and view synthesis [88], and for representing
and working with images. Such networks are untrained neural
networks, as they perform reconstruction without any training,
in a similar fashion to convolutional networks.

A key component of many of the coordinate-based neural
representations are sinusoidal mappings in the first layer [88],
[122], [117]. These networks are closely related to convolu-
tional untrained neural networks, since they can be shown to be
equivalent to convolutional architectures if sufficiently wide.

Finally, untrained neural networks have also been used
to reconstruct graph signals [102], as well as continuously-
indexed objects through fitting probabilistic models [139],
[106]. We expect that there is significant potential for further
theoretical (and practical) developments in these directions.

IV. UNFOLDING METHODS

Recent years have witnessed a surge of interest in algorithm
unfolding (also known as unrolling) techniques to tackle
various inverse problems arising in signal processing, image
processing, and machine learning [89], [108].

Unfolding methods map an iterative solver (algorithm) of
an inverse problem onto a recurrent neural network structure.
The different iterations of the iterative algorithm correspond
to different layers of the neural network structure, with layer
parameters corresponding to solver parameters. Instead of
fixing the layer parameters, they are optimized in a data-driven
manner using learning algorithms, such as empirical risk
minimization via stochastic gradient descent, by leveraging
a dataset consisting of input-output examples (i.e., training
data). Compared to most standard neural network architec-
tures, unfolding methods directly capture domain knowledge
according to the iterative algorithm they are based on, and
they often contain considerably fewer parameters. Empirically,
unfolding methods have achieved state-of-the-art performance
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in a variety of applications of interest, e.g., being featured
prominently in the fastMRI competition.10

We will focus our attention on how unfolding techniques
apply to the classical sparse recovery problem, in view of the
fact that – in addition to its myriad of applications – this is
where much of the existing theory-oriented work has arisen.
Moreover, sparse recovery is the problem for which algorithm
unfolding was originally proposed in the pioneering work of
Gregor and LeCun [45]. We refer the reader to recent review
articles that overview how unfolding applies to numerous other
inverse problems in various fields [89], [112], [111], [108].

A. The Classical ISTA Algorithm

We consider the problem of recovering a sparse vector x∗

given (noisy) linear measurements of the form y = Ax∗ +
η, as outlined in Section I. A classical iterative algorithm to
recover x∗ is iterative shrinkage thresholding algorithm (ISTA)
[31]. ISTA is closely connected to the Lasso method, whose
optimization problem we repeat here for convenience:

min
x
‖y −Ax‖22 + λ‖x‖1. (36)

The ISTA algorithm is an instance of a more general class of
techniques called proximal gradient methods, which roughly
work by performing gradient steps on one term (‖y −Ax‖22
for Lasso) and applying a so-called proximal mapping that
encourages the other term to be small (λ‖x‖1 for Lasso).

More specifically, given an initialization x0, the ISTA
algorithm produces the following iterates indexed by t:

xt+1 = Ψλ/ξ

(
xt +

1

ξ
·AT (y −Axt)

)
, (37)

where ξ is an upper bound on the largest eigenvalue of
ATA, and Ψθ(z) is the soft-thresholding function that is
applied on each element of a vector argument as follows:
Ψθ(x) = sign(x) ·max{0, |x| − θ}.

The most well-known unfolding method – Learned Iterative
Shrinkage-Thresholding Algorithm (LISTA) [45] – leverages
this approach to solve the sparse recovery problem using a
neural network in a data-driven manner, and is described in
the following subsection.

B. The Unfolding Principle: LISTA

The pioneering work of Gregor and LeCun [45] recognized
that one can map the iterations of the ISTA algorithm to
different layers of a neural network structure. Concretely, by
letting W1 = 1

ξA
T , W2 = I − 1

ξA
TA, θ = λ

ξ in (37), we
can write the τ iterations of the ISTA algorithm as follows:

xt+1 = Ψθ (W1y + W2xt) , t = 0, 1, . . . , τ − 1. (38)

This gives rise to a τ -layer recurrent neural network structure
where different layers correspond to different iterations of the
ISTA algorithm; see Figure 6. The network non-linearity cor-
responds to the soft-threshold operator in lieu of the standard
ReLU.

10https://fastmri.org/
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Fig. 6. (Top) Recurrent neural network structure defined using a feedback
connection. (Bottom) Unrolled feed-forward neural network structure.

Moreover, by letting W1, W2, and θ be iteration-dependent
(and accordingly denoted by W1,t, W2,t, and θt), we can
write the iterations as follows:

xt+1 = Ψθt (W1,ty + W2,tx) , t = 0, 1, . . . , τ − 1.
(39)

This gives rise to a τ -layer feed-forward neural network with
side connections, with weight matrices W1,t and W2,t, and
non-linearity thresholds θt, as illustrated in Figure 6.

In [45], it was proposed to optimize the parameters of the
resulting τ -layer feed-forward neural network in a data-driven
manner. Specifically, given access to a dataset consisting of
various (measurement, target) pairs corresponding to the linear
model in (2), i.e., S = {(y′i,x′i), i = 1, . . . , N} with y′i ∈ Rm
and x′i ∈ Rn, one can consider the following empirical risk
minimization problem:

min
W1,t,W2,t,θt

1

N

N∑
i=1

‖x′i − x̂(y′i)‖
2
2 (40)

where x̂(y′i) is the τ -layer neural network output associated
with the network input y′i.

11 This problem can then be solved
using optimization techniques such as stochastic gradient
descent. Note that the measurement matrix A does not need
to be known to apply LISTA, though knowing it can be useful
for forming other variations (to be described below).

A common variation is to tie the parameters across the
various layers of the network, i.e., W1,t = W1, W2,t = W2,
and θt = θ. This is particularly helpful when the training set
is small.

The reformulation of τ ISTA iterations onto a τ -layer neural
network with parameters that can be further tuned, as described
in (38), (39), and (40), is referred to as LISTA. It is often
referred to as a model-based learning method, because the
network architecture is specifically defined according to a
particular measurement model (the linear model), optimization
procedure (Lasso), and iterative solver (ISTA). This idea can
naturally be extended to many other settings, optimization
problems, and solvers.

It has been shown empirically that, in comparison with
ISTA, LISTA can deliver a more accurate sparse vector with
significantly fewer layers/iterations (e.g., see [45]). The suc-
cess of LISTA has spurred numerous applications of algorithm

11Not to be confused with regression and classification problems in which
y often denotes the label to be predicted.



15

unrolling over the years (see [89], [112], [69], [9], [118]
and the references therein), and, more recently, triggered
significant interest in the theoretical foundations of unfolding
algorithms.

C. Theoretical Foundations of Unfolding Techniques

Theoretical studies of unfolding techniques broadly fall
under the following two categories:

Optimization/Convergence Results: This class of results
regards convergence properties, studying whether LISTA-type
network architectures can produce an accurate solution faster
compared to ISTA under idealized choices of weights.12 This
class of contributions also often demonstrates that one can
simplify the classical LISTA approach of [45], e.g., by ex-
ploring certain relations/dependencies/couplings between the
LISTA learnable parameters. Works giving results of this kind
include [21], [74], [22].

Learning-Theoretic Oriented Results: Another class of con-
tributions concentrates on learning-theoretic aspects, studying
how the generalization error – corresponding to the difference
between the expected error and the empirical error – behaves
as a function of various quantities relating to the learning
problem, including the number of training samples. Works
giving results of this kind include [13], [109], [23], [115].

We proceed by highlighting some key results of both kinds.

1) Optimization/Convergence Results: In [21], Chen et
al. showed that the LISTA learnable weight matrices asymp-
totically admit a partial weight coupling relationship given by

W2,t = I−W1,tA. (41)

Accordingly, they simplified the LISTA structure as follows:

xt+1 = Ψθt

(
xt + WT

t (y −Axt)
)
. (42)

Note that this simplification requires knowledge of the matrix
A, which is not always known in practice. This simplified
version of LISTA – which involves learning only a single
weight matrix and threshold per layer – admits the following
convergence guarantee.

Theorem 9. (Adapted from [21, Thm. 2]) Assume that x∗ ∈
{x ∈ Rn : ‖x‖0 ≤ s, ‖x‖∞ ≤ B} and ‖η‖1 ≤ σ. Moreover,
assume that A satisfies a coherence condition, and that s is
sufficiently small as a function of the associated coherence
parameter (see [21, App. B] for a formal statement). Then,
there exists a sequence of parameters {Wt, θt} such that the
sequence of iterates in (42) with x0 = 0 satisfies

‖xt − x∗‖2 ≤ sB exp(−ct) + Cσ, (43)

where c > 0 and C > 0 are scalars that depend only on the
linear operator A and signal sparsity s.

This result shows that a LISTA-like structure can produce
a sequence of iterates that is linearly convergent for some

12It should be noted, however, that these results typically impose stronger
assumptions on the signal, noise, and measurement matrix compared to
classical ISTA theory.

sequence of parameters. In contrast, ISTA is generally sub-
linearly convergent until its iterates settle on a support [12].13

It should be noted that the sequences of parameters shown
to exist in Theorem 9 do not necessarily correspond to the
parameters learned using empirical risk minimization. Thus,
results of this kind serve as a justification for the architecture,
rather than a justification of the training procedure. Proving
analogous results for empirical risk minimization would be of
significant interest in future work.

Another variation considered in [21] is

xt+1 = Ψss
pt,θt

(
xt + WT

t (y −Axt)
)
, (44)

where one replaces the original soft-thresholding operator
Ψθt(·) with a thresholding operator with support selection
Ψss
pt,θt

(·). This operator retains a proportion pt of the entries as
the “trusted support” at layer t, where pt is a hyper-parameter
that is manually tuned. Specifically, it is proposed to choose
pt proportional to t and capped to a maximal value:

pt = min{pt, pmax}, (45)

leaving only p and pmax to be tuned. This LISTA-like ar-
chitecture with support selection can exhibit a convergence
guarantee that is slightly better than that of Theorem 9, as
stated in the following.

Theorem 10. (Adapted from [21, Thm. 3]) Under the con-
ditions of Theorem 9, there exists a sequence of parameters
{Wt, θt} such that the sequence of iterates in (44) with
x0 = 0 and pt in (45) satisfies

‖xt − x‖2 ≤ sB exp
(
−

t−1∑
i=0

c′i

)
+ C ′σ, (46)

where c′i ≥ c (∀i) and C ′ ≤ C, with (c, C) coming from
Theorem 9. Moreover, under an additional assumption that
the SNR is not too small [21, Assump. 2], we have the strict
inequalities c′i > c for large enough i, and C ′ < C.

Recent works have also shown that the LISTA structure can
be simplified further, without affecting (or even improving) the
convergence rates; we proceed by outlining some examples.

Analytic LISTA (ALISTA). In the noiseless setting, it
was shown in [74] that the LISTA structure in (44) can be
simplified further to

xt+1 = Ψss
pt,θt

(
xt + γtW

T (y −Axt)
)
. (47)

The matrix W – which is fixed across different layers – can
be pre-computed by solving a data-free optimization problem
(which depends only on A), whereas the layer-wise threshold
parameters {θt}τ−1

t=0 and the layer-wise step-size parameters
{γt}τ−1

t=0 are optimized using data. The parameters {pt}τ−1
t=0

are again chosen according to (45). This scheme, known as
analytic LISTA (ALISTA), has considerably fewer parameters
to learn/train compared to the scheme in [21] or conventional
LISTA [45]. Moreover, this simplified structure retains the

13It has been shown that ISTA can exhibit faster convergence rates provided
that one can choose the Lasso regularization parameter λ adaptively over
iterations [48], [133]. This idea is actually adopted in LISTA, because the
parameters {θt}t≥1 correspond to a path of Lasso parameters {λt}t≥1.
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linear convergence properties of the structure in [21]. Note that
this variation requires knowledge of the measurement matrix
A.

Hyper-LISTA. In [22], it was proposed to augment the
ALISTA structure in (47) with an additional momentum term:

xt+1 = Ψss
pt,θt

(
xt + γtW

T (y −Axt) + βt(xt − xt−1)
)
.

(48)

This structure contains the learnable parameters pt, θt, γt,
and βt, with W being pre-computed by solving a data-free
optimization problem (again depending only on A). With
this momentum term, it was shown in [22] that the resulting
network can exhibit a better linear convergence rate. They
also prove that with instance-optimal parameters – where pt,
θt, γt, and βt depend on xt – the network exhibits super-
linear convergence. Importantly, with such instance-optimal
parameters, it is shown that the tuning procedure involves
learning only three hyper-parameters. This ultra lightweight
scheme, known as HyperLISTA, is therefore much simpler
than the original LISTA or even ALISTA.

Other works. There have been various other works sug-
gesting how to further improve unfolded ISTA networks and
its variants [2], [131], [72]. For example, [2] studies strategies
for LISTA that involve learning only step sizes – named Step-
LISTA (SLISTA) – and that can outperform standard LISTA.
Other earlier works studying the merit of unfolding techniques
include [90], [134], and cover distinct algorithms such as
iterative hard thresholding (IHT).

2) Learning Results: We now overview learning-theoretic
oriented results that further illuminate the merits of LISTA net-
works in comparison to standard neural networks. This class
of emerging results expound how the expected (population)
error deviates from the empirical error as a function of certain
quantities relevant to the learning problem.

Suppose that we have access to a training set S =
{(y′i,x′i)}Ni=1 containing a series of input-output i.i.d. samples
of (measurement,target) pairs associated with the model in (2).
This training set is used to learn the learnable parameters of the
model-based network (e.g., LISTA) using a learning algorithm
such as empirical risk minimization.

We define the population error and the empirical error
associated with a certain model-based network h taken from
a class of model-based networks H as

LP(h) = E
[
`(h; (y,x))

]
, LE(h) =

1

N

N∑
i=1

`(h; (y′i,x
′
i)),

(49)

where `(·; ·) represents a per-sample loss function, taken here
to be the `2-loss between the model-based network output for a
given input and the associated ground truth. The generalization
error is defined as follows:

Gen(h) = |LP(h)− LE(h)| , (50)

which quantifies how much the expected error deviates from
the empirical error for a certain model h ∈ H.

The behaviour of the generalization error for a certain class
of model-based networks is discussed by Behboodi et al. [13].

Their structure differs slightly from the classical LISTA struc-
ture and its variations discussed above. Specifically, in view
of the fact that [13] assumes that the signal of interest is
sparse in some orthogonal dictionary rather than being sparse
itself (i.e., they write the vector of interest x in terms of a
sparse vector z as x = Φz for some orthogonal dictionary
Φ ∈ Rn×n), their network structure is composed of a LISTA-
like multi-layer encoder that converts the measurement vector
onto a sparse vector, followed by a linear decoder that converts
the sparse vector onto the vector of interest. For technical
reasons, the final output may also be further scaled to have
a bounded norm. Their network structure is also defined by
various weight matrices – akin to LISTA – that depend on the
forward operator, the dictionary, and other quantities, but the
trainable parameters correspond only to the dictionary entries,
and are tied across layers. (i.e., the dictionary parameterizes
this class of model-based networks). Their approach therefore
also requires knowledge of the forward operator A.

Theorem 11. (Adapted from [13, Thm. 2]) The generalization
error associated with the above-described τ -layer model-
based network behaves as follows with high probability:14

Gen(h) ≤ O
(√

mn log τ + n2 log τ

N

)
, (51)

provided that A has a bounded spectral norm and ‖x∗‖2 is
bounded (see [13] for the precise conditions).

This result, whose proof relies on a Rademacher complexity
analysis, suggests that model-based networks may exhibit bet-
ter generalization capabilities than traditional neural networks,
in line with empirical results [45]. Concretely, this gener-
alization error bound for LISTA-like model-based networks
depends on the number of layers only logarithmically, whereas
generalization error bounds for traditional neural networks
(albeit in classification settings) can scale exponentially in
the number of layers [13], [109]. On the other hand, the
dependence on m and n in (51) remains fairly strong, and
it would be of interest to determine if it can be reduced, e.g.,
by exploiting sparsity (notice that the sparsity level s is absent
in (51)).

Other works. Extensions of the above generalization results
are covered in [13], [109], [115], involving different learnable
parameters or different degrees of weight-sharing between
different layers and a variety of network architectures. Notably,
[115] offers a Rademacher complexity and local Rademacher
complexity analysis of the generalization error and estimation
error of model-based networks, respectively, showing that
the soft-thresholding nonlinearity can play a key role in
guaranteeing that model-based networks perform better than
traditional neural networks. They also show that with a proper
choice of parameters, the generalization error bound decays
as a function of the number of layers. This result does not
hold for standard ReLU networks, demonstrating the power of
model-based networks. In [97], further guarantees were given
for model-based networks, by deriving a bound on the number

14For example, with probability 0.99 or any other fixed value in (0, 1) (the
precise value only affects the hidden constant in the O(·) notation).
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of training samples needed to ensure that the training loss
decreases to zero as the number of training iterations increases.

D. Discussion and Ongoing Challenges

We conclude this section by discussing some limitations of
the existing theory, and the associated ongoing challenges.

Convergence rates and training. As we already high-
lighted, results such as Theorems 9 and 10 demonstrate the
existence of good weights for a given architecture, but it
remains an important open challenge to theoretically determine
how effective training procedures are in finding good weights,
or whether they have provable limitations. Moreover, previous
results in this line of works often impose somewhat restrictive
assumptions (e.g., coherence properties of A and low sparsity)
that it would be of interest to relax or remove.

Improved generalization analyses. Overall, the general-
ization properties of model-based networks deriving from
unrolling techniques are still in their infancy. We highlighted
some recent results showing that such objects can, in principle,
generalize better than classical neural networks. However,
a more complete picture may require a significantly better
understanding of both model-based networks and standard
networks. For instance, in over-parametrized settings, existing
theory may suggest overfitting, but in practice the network
may still generalize exceptionally well. It is of interest to
develop new theoretical machinery that captures the interplay
between key elements of the learning problem, including the
influence of the optimization procedure. Some initial results
exploring the interplay between algorithmic notions (e.g.,
convergence, stability, and sensitivity) and statistical notions
(e.g. generalization) appear in [23] within the context of deep
architectures with (unrolled) reasoning layers.

Beyond sparse recovery. We have focused on model-based
networks for sparse recovery problems, deriving from a Lasso
formulation and an associated ISTA solver. However, one
can also derive model-based networks for numerous other
inverse problems and information processing tasks. Thus, there
remains considerable room for expanding the scope of the
existing theory and algorithms, and understanding how model-
based networks compare to classical methods or standard
neural network architectures.

V. OTHER TOPICS ON DEEP LEARNING METHODS IN
INVERSE PROBLEMS

In this section, we briefly highlight some other topics that
have been considered regarding deep learning methods in
inverse problems (without seeking to be exhaustive), including
certain areas where theory is largely or completely lacking.

Plug-and-play methods. While denoising is a seemingly
relatively simple inverse problem, powerful strategies have
been devised for using denoising as a building block for
considerably more general inverse problems, e.g., [126], [87],
[103]. In particular, the pioneering work [126] interpreted
the iterative ADMM algorithm as alternating between an `2-
regularized recovery problem and a denoising problem, and
accordingly proposed to use a generic denoiser for the latter
(e.g., a pre-trained neural network based denoiser). The prior

information on the signal is then encoded in the denoiser, and
accordingly, this approach was termed plug-and-play priors.
Related ideas have since been used in AMP algorithms [87]
and regularization by denoising [103], among others.

A variety of theoretical guarantees, particularly optimization
convergence guarantees, have been devised for these methods,
e.g., see [20], [85], [85], [107], [100], [123], [120], [75] and
the references therein. In particular, we highlight the recent
work [75], which adopted a restricted eigenvalue condition
(REC) analogous to the one used to prove Theorems 1 and
2. Specifically, the REC is defined with respect to the range
of the denoiser (rather than the range of a generative model),
and it is shown that this leads to accurate estimation of the
underlying signal under suitable boundedness and Lipschitz
assumptions on the residual function induced by the denoiser.

Instabilities in deep learning methods. In the machine
learning literature, it is widely understood that neural networks
for classification (and other tasks) can be highly sensitive
to adversarial perturbations in the input [121]. A detailed
theoretical and empirical study was recently given around
analogous instability issues in inverse problems [44]; we
proceed by highlighting the over-arching idea in this work.

The focus in [44] is on deep learning for the decoder, i.e.,
training a neural network to map y = Ax to x (or similarly
with noise). Suppose that such a network learns an accurate
mapping for two signals x,x′ with outputs y,y′, and that
A(x − x′) is small compared to x − x′ itself (i.e., x − x′

is close to the nullspace or kernel of A). This means that we
have two (relatively) nearby y,y′ being mapped to two distant
x,x′. Then, the network becomes unstable in the sense that the
output is significantly different for two nearby inputs, resulting
in sensitivity to adversarial noise. Perhaps more surprisingly, it
is shown in [44] that even sensitivity to well-behaved random
noise (e.g., Gaussian) can arise from this phenomenon, both
in theory and practice.

In some cases, these difficulties could be circumvented by
considering a sufficiently well-behaved measurement matrix
(e.g., i.i.d. Gaussian). However, when one does not have the
luxury of being able to design the measurements, the results of
[44] point to the idea that learning methods should be kernel-
aware in the sense of avoiding the above behavior for pairs of
signals whose difference is close to the kernel of A. Further
details and discussions can be found in [44], and additional
results on the accuracy/stability trade-off can be found in [27].

Training, generalization, and out-of-distribution perfor-
mance. As we highlighted in Sections II and IV, theoretical
studies of data-driven deep learning methods for inverse prob-
lems still largely lack a good understanding of the precise role
of training data, including the fundamental notion of general-
ization. Beyond the works on unfolding methods highlighted
in Section IV, an example work on the generalization error
in inverse problems is [3], with the generalization bounds
depending on (i) a complexity measure of the signal space,
and (ii) norms of the Jacobian matrices of both the network
itself and the network composed with the forward model.

Moreover, even provably small generalization error on
i.i.d. data may be insufficient in practical scenarios, where
one often requires robustness to out-of-distribution samples.



18

The above-mentioned works on instabilities [44], [27] study an
important special case of such issues, and another example is
mitigating representation error in the case of generative priors
[33], [28], which we discussed in Section II-E.

Overall, despite this initial progress, we believe that much
more remains to be done, and that these issues will play a
crucial role in future studies of data-driven methods.

Measurement matrix design. Beyond signal modeling and
decoding techniques, deep learning methods have been pro-
posed for designing the measurement matrix A in compressive
sensing [132], [91]. However, these works have largely focused
on algorithm design and empirical evaluation, rather than
theory. While theoretical analyses for certain learning-based
measurement designs do exist (e.g., [8]) with the possibility of
specializing to scenarios involving neural networks, the theory
of deep learning based measurement design currently appears
to remain largely open.

Other decoding techniques. As we outlined in Section IV,
there exist a variety of theoretical results for unfolding algo-
rithms of interest. However, unfolding methods are just one
of many classes of deep learning based decoders [94], varying
according to the architecture, the degree of prior knowledge of
A, and so on. Accordingly, there remains considerable room
for expanding the scope of theoretical studies in this domain.

Specialized inverse problems. Theoretical guarantees for
deep learning based inverse problems have largely focused on
the important special cases of denoising and compressive sens-
ing, or problems closely related to these. Further theoretical
studies on other specialized inverse problems (e.g., inpainting,
super-resolution, etc.) could provide significant benefit to this
continually developing research area. We also highlight the
topic of deep learning for coding and communication [47],
[70], [113], [114], [101], which similarly poses a variety of
specialized inverse problems whose study has largely relied
on empirical evaluation.

VI. CONCLUSION

While studies of deep learning methods are typically driven
by their excellent practical performance, they also pose a
variety of unique and exciting theoretical questions. We have
surveyed several prominent examples of the theory behind
deep learning methods for inverse problems, and outlined a
variety of ongoing challenges and open problems. Overall,
despite the rapid growth of this line of works, we believe that
the topic remains in its early stages, with many of the most
exciting developments still to come.
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