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Abstract—Hardware-limited task-based quantization is a new
design paradigm for data acquisition systems equipped with serial
scalar analog-to-digital converters using a small number of bits.
By taking into account the underlying system task, task-based
quantizers can efficiently recover the desired parameters from
the low-bit quantized observation. Current design and analysis
frameworks for hardware-limited task-based quantization are
only applicable to inputs with bounded support and uniform
quantizers with non-subtractive dithering. Here, we propose a
new framework based on generalized Bussgang decomposition
that enables the design and analysis of hardware-limited task-
based quantizers that are equipped with non-uniform scalar
quantizers or that have inputs with unbounded support. We first
consider the scenario in which the task is linear. Under this
scenario, we derive new pre-quantization and post-quantization
linear mappings for task-based quantizers with mean squared
error (MSE) that closely matches the theoretical MSE. Next, we
extend the proposed analysis framework to quadratic tasks. We
demonstrate that our derived analytical expression for the MSE
accurately predicts the performance of task-based quantizers
with quadratic tasks.

Index Terms—Quantization, Analog-to-digital conversion

I. INTRODUCTION

D IGITAL systems are equipped with quantizers to fa-
cilitate the processing, storage, and communication of

information embedded in continuous-amplitude samples. In
principle, the most accurate digital representation of a sampled
signal is obtained by jointly mapping the samples to the
digital domain via vector quantization [1], [2]. The optimal
trade-off between compression and fidelity is fundamentally
described by rate-distortion theory [3]. However, in practice,
the quantization process is performed by analog-to-digital
converters (ADC) which typically operate in a serial scalar
manner [4]. Under this setup, the incoming continuous-time
analog signal is first sampled and the samples are sequentially
mapped by the quantizer in digital form using a finite number
of quantization bits [5]. A linear increase in the number of
quantization bits corresponds to an exponential increase in
power consumption [6]. Therefore, there is growing interest in
the use of low-resolution data converters. For instance, recent
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works on low-power communication receivers, such as [7]–
[12], have focused on investigating the performance limits
of low-resolution receiver architectures and designing novel
methods that enable various receiver functionalities (detection,
channel estimation, and synchronization) to work in the low-
resolution regime.

Data acquisition systems are often designed such that the
input and output of the quantizers are close with respect to
some pre-defined distortion measure [13, Ch. 10][14]. This
design approach, however, does not take into account the un-
derlying system task. In several signal processing and commu-
nication applications, the objective is not to faithfully recover
the input signal, but rather to extract some low-dimensional
parameters/features embedded in the quantized measurements.
Such systems that take into account the underlying task are
generally referred to as task-based quantization, and task-
based quantization systems equipped with serial scalar ADCs
are specifically referred to as hardware-limited task-based
quantization [15].

Previous works [15]–[18] have shown that, by exploiting
the a priori knowledge regarding the system task, hardware-
limited task-based quantizers can outperform digital systems
that simply extract the desired parameters from the quantized
measurements. Performance gain in task-based quantization is
achieved by employing a hybrid analog/digital (A/D) architec-
ture and jointly designing the analog pre-quantization mapping
and digital post-quantization mapping in light of the underly-
ing system task. The task-based quantization framework has
been applied in various tasks such as channel estimation [15],
empirical covariance estimation [18], multiple-input multiple-
output (MIMO) radar receivers [19], task-specific beamform-
ing [20], MIMO communication [21]–[23], symbol detection
[24], [25], and graph signal compression [26]. Moreover, the
combined effect of sampling and quantization in hardware-
limited task-based systems has been studied in [27], [28] and
it is shown that the optimal performance of bitrate-constrained
data acquisition systems is generally achieved by sampling
below the Nyquist rate. The optimal sampling and quantization
scheme for task-based data acquisition may also be learned via
data-driven approaches if the input distribution is not known
[29].

Despite the aforementioned benefits and the wide range of
applications of task-based quantization, the existing framework
for analyzing hardware-limited task-based quantization is only
applicable to scalar uniform ADCs with non-subtractive dither-
ing. While dithering offers analytical tractability, dithered
quantizers generally have subpar performance compared to
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Figure 1: System model for task-based quantization.

their non-dithered counterpart. Also, the theory of nonsub-
tractive dithering [30] only applies to uniform quantizers.
Mathematical tools [31] for analyzing dithered non-uniform
quantization exist but only for subtractive dithering, which
is often impractical. As such, the current framework does
not fully capture the actual performance of task-based quan-
tization. Simulation results of [15] depict large performance
gaps between the dithered and non-dithered case when the
number of quantization levels per scalar quantizer is low.
Furthermore, the analysis framework relies on the assumption
that the overload probability (i.e. the probability that the ADC
input does not exceed the specified dynamic range of the
ADC) is zero. This assumption can be quite restrictive so that
the analysis framework only holds approximately for input
signals with infinite support. Guidelines on how to set the
overload probability for a given number of quantization levels
are provided in [27]. Still, the simulated distortion of dithered
task-based quantization is approximately 5% higher than what
the analytical expression predicts in the numerical results.

Here, we provide a new approach to design and analyze
hardware-limited task-based quantization systems with analog
pre-quantization and digital post-quantization linear mappings
based on generalized Bussgang decomposition [32]. In contrast
to the state-of-the-art (SOTA) analysis framework [15], the
proposed framework does not rely on the zero overload prob-
ability assumption and is also applicable to non-uniform scalar
quantizers and non-dithered settings. Our proposed framework
restricts the pre-quantization mapping to be within the class of
linear mappings that make the inputs of the scalar quantizers
uncorrelated. While this restriction may lead to suboptimal
performance, our numerical results show that the proposed
framework can achieve lower distortion than previous results
when the quantization budget is limited. More importantly,
a crucial advantage of our analysis is that the simulated
distortion of task-based quantizers designed using our method
fits well with the predictions of our theoretical framework,
even if the underlying system task is nonlinear. This is in
contrast to previous results which only hold approximately.
The main contributions of our work are the following:

• We provide descriptions of the analog and digital linear
mappings of task-based quantization under a linear task
assumption (i.e. the task is a linear function of the obser-
vations). The derived linear mappings are conceptually
different from the linear mappings in previous works.
We present numerical results showing that, in some
cases, task-based quantizers designed using our approach
can outperform task-based quantizers designed using the

SOTA analysis framework [15].
• We show that the actual mean squared error (MSE)

of the task-based system under the derived analog and
digital linear mappings fits the theoretical MSE in con-
trast to previous results. Moreover, the proposed analysis
framework also enables a model-based analysis of task-
based quantization with non-uniform quantizers. To the
best of our knowledge, there is no framework in the
literature that facilitates model-based analysis of task-
based quantization with non-uniform quantizers.

• We show how to extend the proposed framework to non-
linear tasks. More specifically, we consider the quadratic
task problem of empirical covariance estimation and show
that the task-based quantization system designed using
our proposed framework achieves lower MSE than the
simulated MSE of the task-based system designed using
the framework presented in [18].

The rest of the paper is organized as follows: Section II
formulates the system model and states the model assumptions
for the linear task scenario. Section III presents the new
analysis framework. Section IV provides numerical results and
analysis for the proposed framework in Section III. Section V
extends the developed framework to quadratic tasks. Finally,
Section VI concludes the paper.

II. PROBLEM FORMULATION AND ANALYSIS TOOLS

A. Problem Setup and Model Assumptions

The system model of the task-based quantization with
hardware constraints is illustrated in Figure 1. The task vector
s ∈ RK×1 contains the parameters we aim to recover.
However, the input to the task-based quantizer is not s but the
measurement vector x ∈ RN×1. The statistical relationship
between s and x is described by the conditional probability
fX|S(x|s). With slight abuse of notation, we simply write the
conditional probability as fX|S. We also assume that s and
x are both zero-mean random vectors and have covariance
matrices given by Σs and Σx, respectively.

The measurement vector x is projected to RP×1, where
P ≤ N , using an analog pre-quantization mapping, denoted
ha. The P outputs of the analog pre-quantization mapping are
fed to P scalar quantizers. From [15, Corollary 1], the optimal
choice of P must not exceed K. Each scalar quantizer has
M̃ = bM 1

P c number of quantization levels, where M is a
constraint on the overall number of quantization levels. As
pointed out in [15], the parameter M̃ is directly related to the
power consumption of an ADC. We allow the quantization
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Figure 2: Task-based quantization with analog combining matrix and digital processing matrix.

levels of the scalar quantizers to have non-uniform and non-
identical structure. In this work, we assume that the scalar
quantizers are designed using the Lloyd-Max algorithm [33].
Note that quantizers designed using the Lloyd-Max algorithm
satisfy E{Xin|Q(Xin)} = Q(Xin), where Xin is the input
to the quantizer (i.e. each quantization interval is represented
by its mean value). This property of the scalar quantizers is
crucial in the derivation of our main results. Finally, the P
outputs of the scalar quantizers, denoted z ∈ RP×1, are fed to
a digital post-processing function to estimate the task vector
s. We represent the estimate of the task vector as ŝ ∈ RK×1.

The goal is to recover s from quantized measurements
z. This problem setup is referred in the information theory
community as the indirect source coding problem1, and was
first introduced in [34]. We design ha and hd such that the
MSE between s and ŝ is minimized. Mathematically, we have
the following optimization problem:

min
ha,hd

E
{
||s− ŝ||2

}
= E

{
||s− s̃||2

}
+ min
ha,hd

E
{
||̃s− ŝ||2

}
, (1)

where s̃ = E {s|x} is the minimum MSE (MMSE) estimator
of s given the measurement vector x. The RHS of (1) shows
that the MSE can be written as a sum of two terms. The first
term quantifies the minimum estimation error of s from x
whereas the second term accounts for the minimal distortion in
quantizing the MMSE estimate. The first term is independent
on the actual structure of the scalar quantizers and design of
the pre- and post-quantization mappings [15]. Thus, we can
focus our attention on minimizing the second MSE term. We
shall refer to this MSE term as the quantizer-dependent MSE.

To facilitate recovery of the task vector s under practical
hardware setting, we follow the approach of [15] which is
to impose ha and hd to be linear mappings, as shown in
Figure 2. That is, we introduce an analog combining matrix
A ∈ RP×N and a digital processing matrix D ∈ RK×P to
operate as ha and hd, respectively. The quantities {Apx}Pp=1

are the P outputs of the analog combining matrix. The use of
linear mappings in the analog and digital domain offers a lot
of benefits from a practical viewpoint and is already done in
various hybrid A/D receiver architectures (see [35]–[38]).

Similar to previous works, we further relax the problem by
considering linear tasks, i.e. s̃ = Γx for some Γ ∈ RK×N .
Under the linear task scenario, we are able to derive closed-
form expressions for A, D, and MSE than what were obtained

1Other names used in the literature are remote source coding and noisy
source coding.

in the previous work. The framework developed for the linear
task will be later extended to the more general nonlinear tasks.

B. Analysis Techniques for Task-based Quantization

The previous work[15] carried out the analysis assuming
the system is equipped with non-subtractive uniform dithered
quantizers. Whenever the input falls inside the dynamic range
of a uniform dithered quantizer, the output can be written as a
sum of the input and an additive zero-mean white quantization
noise that is uncorrelated with the input. This simplication
enables the derivation of the optimal linear mappings and MSE
under a uniform dithered setting. Numerical results show that
using these linear mappings on uniform undithered quantizers
can further reduce the distortion. However, the theoretical
framework established in [15] is unable to accurately predict
the actual MSE of the task-based quantizer. We present nu-
merical results in Sections IV and V to demonstrate this issue.
Moreover, the non-subtractive dithering framework [30] does
not apply to non-uniform quantization.

To avoid the shortcomings of the previous work, we con-
sider a different analysis technique to represent the output of
the scalar quantizers in a more analytically tractable form.
More precisely, we use the generalized Bussgang decompo-
sition to represent the quantization process as a noisy linear
function of the input. That is,

z =Q1:P
M̃

(Ax)

=BAx + η. (2)

Here, Qi:j
M̃

(·) denotes the outputs of the scalar quantizers from
index i to index j. The square matrix B ∈ RP×P is called
the Bussgang gain and η ∈ RP×1 is the distortion vector
uncorrelated with the quantizer input Ax. The Bussgang gain
matrix can be written as

B = ΣzxAT
(
AΣxAT

)−1
, (3)

where Σzx is the cross-covariance between z and x. The co-
variance of the distortion vector, denoted Ση , can be expressed
as

Ση = Σz −B
(
AΣxAT

)
BT , (4)

where Σz is the covariance of z.
The generalized Bussgang decomposition is exact; the intu-

ition is that BAx is the linear MMSE estimate of z given the
observation Ax (not necessarily Gaussian) [32]. However, the
distribution of η is not known and the Bussgang gain matrix is,
in general, not diagonal. Therefore, we introduce a restriction
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on the structure of A that makes the Bussgang gain matrix
B diagonal, regardless of the distribution of the measurement
vector x.

Restriction 1. Suppose we denote Ai to be the i-th row of
the analog combining matrix A. Then, we pick Ai such that,
for any i 6= j, we have AiΣ

1
2
x ⊥ AjΣ

1
2
x , where Σ

1
2
x is the

matrix square root of Σx.

Note that imposing Restriction 1 may yield sub-optimal
task-based quantizer designs. In fact, we demonstrate in Sec-
tion IV that our design framework, which is based on Re-
striction 1, does not always produce the task-based quantizer
design with the lowest MSE. Nonetheless, our framework
can achieve better performance than the current design and
analysis frameworks when the scalar quantizers have very low
resolution. Restriction 1 also forces the elements of η to be
uncorrelated2.

In the next section, we will show how imposing Restric-
tion 1 forces B to be diagonal. We will then use Restriction 1
in conjunction with the generalized Bussgang decomposition
to establish a new framework for analyzing and designing
hardware-limited task-based quantizers.

III. MAIN RESULTS

We now characterize the hardware-limited task-based quan-
tizer which minimizes (1) under Restriction 1. We first define a
quantity that is crucial in stating the main results of the paper.

Definition 1. Suppose Ap ∈ R1×N is the p-th row of A.
Then, the distortion factor of the p-th quantizer, denoted ρ(p)q ,
accounts for the relative amount of distortion introduced by
the p-th quantizer to its input and is expressed as

ρ(p)q =
E{(Zp −Apx)2}

E{(Apx)2} , (5)

where Zp is the output of the p-th scalar quantizer and the
denominator term is the energy of the quantizer input.

A typical scenario in which the MMSE estimator s̃ is
a linear function of x is when the task vector s and the
measurement vector x are jointly Gaussian [40, Section 3.2.7].
Conveniently, the quantizer inputs Ax are also Gaussian. The
distortion factor ρ(p)q for a Gaussian input and Lloyd-Max
scalar quantizer is tabulated in [41] for M̃ = 1 up to M̃ = 36
levels. For high-rate quantizers, the distortion factors of non-
uniform and uniform quantizers under a Gaussian input are
ρ
(p)
q ≈ π

√
3

2 · M̃−2 and ρ(p)q ≈ 1.47 · M̃−1.74, respectively [2],
[41].

The following proposition characterizes the diagonal entries
of the Bussgang gain matrix under Restriction 1.

Proposition 1. Under Restriction 1, the Bussgang gain matrix
B is a diagonal matrix and can be expressed as

B = diag{1− ρq}, (6)

2The requirements mentioned in [39, page 3] to make Ση diagonal are
satisfied since AΣxAT and B are diagonal.

where the diag{·} operator generates a P×P diagonal matrix
with entries coming from the P × 1 vector {·}, and ρq =

[ρ
(1)
q , ρ

(2)
q , · · · , ρ(P )

q ]T .

Proof. See Appendix A.

We now present the main results of our work.

Proposition 2. For any analog combining matrix A that
satisfies Restriction 1, the optimal digital processing matrix,
denoted D◦, which minimizes the MSE is given by

D◦ (A) = ΓΣxAT (AΣxAT )−1. (7)

Consequently, the quantizer-dependent MSE can be expressed
as

E{||̃s− ŝ||2}
= Tr

(
ΓΣxΓT

)
− Tr

(
ΓΣxATB

(
AΣxAT

)−1
AΣxΓT

)
(8)

Proof. See Appendix B.

Theorem 1. Under Restriction 1, the optimal analog combin-
ing matrix, denoted A◦, is

A◦ = VT
optΣ

− 1
2

x , (9)

where the rows of VT
opt ∈ RP×N are the P right singular

vectors of Γ̃ = ΓΣ
1
2
x corresponding to the P largest singular

values. The optimal digital processing matrix for a given A =
A◦, denoted D◦(A◦), is

D◦(A◦) = ΓΣ
1
2
x Vopt. (10)

Using A◦ and D◦ gives the following quantizer-dependent
MSE:

E{||̃s− ŝ||2}

=

{∑K
i=1 λΓ̃,i · ρ

(i)
q , if P ≥ K∑K

i=1 λΓ̃,i · ρ
(i)
q +

∑K
i=P+1 λΓ̃,i , otherwise

(11)

where λΓ̃,i is the i-th eigenvalue of Γ̃Γ̃
T

(arranged in de-
scending order).

Proof. See Appendix C.

When the number of quantization levels per quantizer is
sufficiently large and P = K, the distortion vector η becomes
negligible, and the estimate of the task vector can be expressed
as

ŝ ≈D◦A◦x

≈ΓΣ
1
2
x VoptV

T
optΣ

− 1
2

x x

≈Γx ≈ s̃

(i.e. our estimate of the task vector approaches the MMSE
estimate). Consequently, the quantizer-dependent MSE term
approaches zero since ρ(p)q → 0 as M̃ →∞.

The design of the task-based quantizer in Theorem 1 has
a nice intuition. The optimal analog combiner first applies a
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task: channel estimation with K = 2 channel taps.

whitening filter to the measurement vector x. Then, the matrix
VT

opt maps the “whitened” signal from the measurement space
to a space with lower number of dimensions. We shall call this
the task space. Quantization is performed in the task space to
get z. In the digital domain, the Σ

1
2
x Vopt term in D◦ inverts

the operation of A◦ to get some intermediate result x̂, a linear
estimate of x given z. Finally, we compute ŝ = Γx̂ to get an
estimate of the task vector.

There are several differences between the linear mappings
and MSE expressions derived in Theorem 1, and their coun-
terparts in [15, Theorem 1]. First, the linear mappings we
derived are independent of the actual structure of the scalar
quantizers and their parameters. The linear mappings only
depend on the underlying system task Γ and the statistics
of the measurement vector x. Thus, we get the same analog
linear mappings for both uniform and non-uniform quantizers.
In contrast, the optimal linear mappings in [15, Theorem 1]
change as the quantizer parameters (e.g. M , dynamic range,
spacing, etc) are varied. Second, we looked for the optimal A
within the class of analog combiners that satisfy Restriction 1.
However, we have not shown that there is no loss of optimality
if we restrict the search space within this class. In fact, the
analog linear mappings obtained using the SOTA approach
do not necessarily satisfy this property. Third, the quantizer-
dependent MSE expressions have different structures. The
quantizer-dependent MSE expression in our new approach is
a linear combination of the eigenvalues of Γ̃Γ̃

T
, weighed

by the distortion factors of the scalar quantizers. On the
other hand, the quantizer-dependent MSE in [15, Theorem 1]
and the eigenvalues of Γ̃Γ̃

T
exhibit a nonlinear relationship.

We provide a more in-depth comparison of the two analysis
frameworks in the next section.

IV. NUMERICAL STUDY FOR LINEAR TASK

We now apply our proposed analysis framework for the
hardware-limited task-based quantization in a scenario which

20 30 40 50 60 70 80
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Figure 4: MSE vs overall number of bits of Systems A-D,
task: channel estimation with K = 8 channel taps.

involves parameter acquisition from quantized observations.
More precisely, we consider a scalar channel estimation prob-
lem where samples are corrupted by intersymbol interference
(ISI) and noise, as in [15, Section VI-A]. The task vector s
represents the coefficients of a K-taps multipath channel that
we want to estimate. We aim to recover the task vector s from
the N = 120 noisy observations contained in x, where the n-
th element of x is given by

xn =

K∑
l=1

slan−l+1 + wn ∀n ∈ {1, 2, · · · , N}. (12)

The coefficients {al} account for a deterministic training
sequence that is known by the task-based quantizer. The
quantities {wn}Nn=1 represent the i.i.d. zero-mean Gaussian
noise process that has unit variance and is independent of s.
The channel s is modeled as a zero-mean Gaussian vector with
the i-th row and j-th column of its covariance matrix is given
by

Σ(i,j)
s = e−|i−j|, ∀i, j ∈ {1, 2, · · · ,K}.

Effectively, x and s are jointly Gaussian so the linear task
assumption s̃ = Γx is satisfied, where Γ = ΣsxΣ−1x . Finally,
we set the training sequence to be

al =

{
cos
(
2πl
N

)
, l > 0

0 , otherwise
. (13)

Using the above setup, we evaluate the distortion of the
hardware-limited task-based quantizer designed using our
proposed analysis framework, and compare it to that of
the hardware-limited task-based quantizer designed using the
SOTA analysis framework. We consider two channels: (a)
one with K = 2 channel taps, and (b) one with K = 8
channel taps. By default, we set P = K. However, we allow
P to be optimized in some parts of the numerical study.
For our proposed framework, we used the distortion factors
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for a Lloyd-Max non-uniform quantizer with Gaussian input.
Since x is a Gaussian random vector, the quantizer input Apx
for some p ∈ {1, 2, · · · , P} is a linear combination of N
Gaussian random variables. Thus, Apx is also Gaussian. We
also set the range of the overall quantization levels to be
log2M ∈ [2 ·K, 10 ·K]. Our numerical study will evaluate the
distortions incurred by the following quantization systems:

• System A (No quantization): The MMSE E{||s− s̃||2},
which is the optimal distortion of an unquantized system.
This quantity can be expressed as

E{||s− s̃||2} = Tr (Σs)− Tr
(
ΓΣT

sx

)
. (14)

• System B (SOTA Approach w/ dithering): This is
the distortion of the dithered hardware-limited task-based
quantizer in which the analog and digital linear mappings
A and D are designed using [15, Theorem 1]. Both
simulated and theoretical distortions are evaluated. The
simulated MSEs are computed empirically by averaging
the MSE over 500,000 Monte Carlo runs.

• System C (SOTA Approach w/o dithering): Since
dithering increases the energy of the quantization noise,
we also simulate the MSE of the hardware-limited task-
based quantizer without dithering (A and D are still
designed using [15, Theorem 1]).

• System D (New Approach, uniform quantizers): This
is the distortion of the hardware-limited task-based quan-
tizer designed under our proposed analysis framework.
The uniform quantizers are designed using the Lloyd-
Max algorithm for equally-spaced level quantizers (See
[41, Equation 8]). Both simulated and theoretical distor-
tions are evaluated. The simulated MSEs are computed
empirically by averaging the MSE over 500,000 Monte
Carlo runs. Moreover, our analytical expression enables
us to optimize the number of scalar quantizers. We
also present the theoretical MSE using the optimal P ,

denoted P ∗. This is computed by trying all possible
P ∈ {1, 2, · · · ,K} in (11).

• System E (New Approach, non-uniform quantizers):
This is the same as System D but we allow the quantizers
to be non-uniform. The thresholds and representative
levels of the scalar quantizers are designed using the
Lloyd-Max algorithm [41]. Note that we did not change
the configuration of the linear mappings since the derived
linear mappings in Theorem 1 is agnostic of the actual
structure of the scalar quantizers.

Figures 3 and 4 depict the distortions for System A to
System D for K = 2 and K = 8 channel taps, respectively.
In both cases, it can be observed that the MSE of System D
is lower than that of System B. The performance gain is more
pronounced in the low resolution regime but the gap between
the MSEs of the two frameworks diminishes as the overall
number of bits is increased. When all the scalar quantizers in
the quantizer model have at least five bits, i.e. log2M ≥ 5K,
the quantizer-dependent MSE is negligible and most of the
overall MSE comes from (14). We also demonstrate in the
K = 8 setup that using lower P may yield lower MSE when
there is a tight quantization budget.

There is no clear winner between System C and System D.
System D has lower MSE when the overall number of bits
are limited but is slightly outperformed by System C at some
values of log2(M). We conjecture that its subpar performance
at some cases is due to Restriction 1. That is, there is loss
of optimality when restricting the search for the optimal A
within a class of analog linear mappings that satisfy Restriction
1. Nonetheless, we point out that the simulated MSE and
the theoretical MSE (i.e. Equation (14) + Equation (11)) of
System D perfectly coincide in our numerical study. This is
expected since the proposed framework is exact, provided the
assumptions on the scalar quantizers and analog combining
matrix are satisfied. On the other hand, we can see that the
simulated MSE of the dithered task-based quantizer designed
using the SOTA framework does not perfectly match the
theoretical MSE. This is because the overload probabilities of
the quantizers are nonzero. Thus, [15, Theorem 1] only holds
approximately. Furthermore, the SOTA analysis framework is
not capable of accurately predicting the simulated MSE of
System C.

When the scalar quantizers in System D are replaced with
non-uniform quantizers, i.e. System E, we observe in Figure 5
that the MSE of the task-based quantizer designed using our
proposed analysis framework slightly improved. The use of
non-uniform quantizers in our proposed framework is expected
to provide performance gain, albeit small, since non-uniform
quantizers generally have lower distortion factor compared to
uniform quantizers. More importantly, we emphasize that the
simulated MSE of the task-based system equipped with non-
uniform quantizers coincides with our theoretical predictions.
The proposed framework enables a model-based analysis of
task-based quantization with non-uniform quantizers. To the
best of our knowledge, only a data-driven approach [29]
for task-based quantization with non-uniform quantizers is
available in the literature.
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x
Analog Quadratic Map

x 7→ A(x̄− E{x̄})
where A ∈ RP×N2

Scalar Quantizer
Q1

M̃
(·)

Scalar Quantizer
QP

M̃
(·)

A1(x̄− E{x̄})

AP (x̄− E{x̄})

··
· Digital Affine Map

x 7→ Dz+ E{s}
where D ∈ RK×P

ŝ

Figure 6: System model of task-based quantization with analog quadratic mapping and digital affine mapping.
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Figure 7: Empirical distributions of the six elements of A◦x̄. The distributions are generated from 1,000,000 Monte Carlo
runs. The red plots correspond to the best-fit Gaussian distributions.

In the next section, we extend the framework to quadratic
tasks.

V. EXTENSION OF THE PROPOSED FRAMEWORK TO
QUADRATIC TASK

A. Setup for the Quadratic Task Problem

To extend the proposed analysis framework to the quadratic
task problem, we consider the task-based quantization model
depicted in Figure 6 and follow the approach of [18]. The
measurement vector x ∈ RN×1 is a zero-mean Gaussian
random vector and the task is to recover a set of quadratic
functions {xTCkx}Kk=1, where each Ck ∈ RN×N satisfies
E
{
xTCkx

}
< ∞. We shall represent the results of these

quadratic functions using a K× 1 task vector s whose entries
are given by sk = xTCkx.

Since we are interested in quadratic tasks, we introduce
the quadratic measurement vector x̄ = vec

(
xxT

)
∈ RN2×1,

where vec(C) ∈ Rmn×1 is the vectorization of Cm×n, i.e.

the vector is a vertical stacking of the columns of C. We also
introduce G ∈ RK×N2

whose k-th row is given by vecT (Ck).
Consequently, we can write the task vector as s = Gx̄. This
formulation “linearizes” the quadratic task problem.

Due to [18, Theorem 2], we can focus on analog mapping
ha of the form

ha : x 7→ A (x̄− E{x̄}) , (15)

where A ∈ RP×N2

is a matrix that applies a rotation and
dimensionality reduction to the shifted quadratic measurement
vector x̄− E{x̄}, and on digital mapping hd of the form

hd : x 7→ Dz + E{s}, (16)

where z ∈ RP×1 are the P outputs of the scalar quantizers.
We find the matrices A and D that minimizes E{||s− ŝ||2},
where ŝ is the output of the task-based quantizer.



8

B. System Design

We now apply our proposed framework to the linearized
quadratic task. First, we let Σx̄ ∈ RN2×N2

be the covariance
matrix of x̄. Since x is a zero-mean Gaussian random vector,
xxT is an N ×N Wishart matrix of degree 1. Thus, the ele-
ments of Σx̄ ∈ RN2×N2

and E{x̄} can be obtained from [42].
Alternatively, these quantities can be computed empirically as
done in [18]. The following corollary of Theorem 1 gives the
quadratic task extension of the proposed framework.

Corollary 1. Under Restriction 1, the optimal analog com-
bining matrix, denoted A◦, is

A◦ = V̄T
optΣ

− 1
2

x̄ , (17)

where the rows of V̄T
opt ∈ RP×N2

are the P right singular

vectors of G̃ = GΣ
1
2
x̄ corresponding to the P largest singular

values. The optimal digital processing matrix for a given A =
A◦, denoted D◦(A◦), is

D◦(A◦) = GΣ
1
2
x̄ V̄opt. (18)

Using A◦ and D◦ gives the following MSE:

E{||s− ŝ||2}

=

{∑K
i=1 λG̃,i · ρ

(i)
q , if P ≥ K∑K

i=1 λG̃,i · ρ
(i)
q +

∑K
i=P+1 λG̃,i , otherwise

(19)

where λG̃,i is the i-th eigenvalue of G̃G̃T (arranged in
descending order).

C. Numerical Results

We now demonstrate the effectiveness of the proposed
framework on the quadratic task problem. We consider the
empirical covariance estimation problem described in [18,
Section V]. The input is given by x = [yT1 , · · · ,yT4 ]T , where
{yl}4l=1 are i.i.d. 3×1 zero mean Gaussian random vectors.
Hence, the measurement vector x is a 12×1 vector. The i-
th row and j-th column of the covariance matrix of each yl,
denoted Σy, is given by

Σ(i,j)
y = e−|i−j|, ∀i, j ∈ {1, 2, 3}.

The parameter we want to recover is a 3×3 empirical covari-
ance matrix 1

4

∑4
l=1 yly

T
l , which is completely determined by

its upper triangular matrix. Thus, the task vector s has length
K = 6.

Since x̄ is not a Gaussian random vector, we expect A◦x̄ to
be non-Gaussian as well. Indeed, as illustrated in Figure 7, the
P outputs of the analog quadratic mapping are non-Gaussian.
Therefore, we use the lloyds(·) function of MATLAB to get
the P Lloyd-Max scalar quantizers and their corresponding
distortion factors.

We evaluate the distortion incurred by the following task-
based quantization systems:
• System F (SOTA Approach for Quadratic Task [18]):

This is the distortion of the task-based quantizer where A
and D are designed using [18, Theorem 3]. We present

10 15 20 25 30 35 40 45 50 55 60
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10-1

100

101

New Approach (Simulation)

New Approach (Analytical)

SOTA Approach [18] w/o dithering (Simulation)

SOTA Approach [18] w/ dithering (Analytical)

SOTA Approach [18] w/ dithering (Simulation)

Figure 8: MSE vs overall number of bits, empirical
covariance recovery.

the simulated MSEs of both the dithered and non-dithered
case. The simulated MSEs are computed empirically by
averaging the MSE over 1,000,000 Monte Carlo runs. The
theoretical MSE [18, Theorem 3] is also evaluated.

• System G (New Approach for Quadratic Task, non-
uniform quantizers): This is the distortion of the task-
based quantizer where A and D are designed using
Corollary 1. Both simulated and analytical MSEs are
evaluated. Since the elements of A◦x̄ are non-Gaussian
and non-i.i.d., the distortion factors are first obtained
empirically and then applied to equation (19) to produce
the analytical MSE. The simulated MSE is computed
empirically by averaging the MSE over 1,000,000 Monte
Carlo runs.

Figure 8 shows the distortions of the quantization systems.
It can be observed that the simulated MSE of System G
is lower than that of non-dithered System F. Moreover, the
analytical expression we derived closely matches the simu-
lated MSE of our task-based quantizer. This numerical result
demonstrates that our proposed analysis framework can be
potentially applied to problems with nonlinear tasks. On the
other hand, we see that while the analytical MSE expression
in [18, Theorem 3] expects System F to yield the lowest MSE
in certain scenarios, it does not accurately predict the actual
MSE of the dithered task-based quantizer designed using the
SOTA framework. In fact, the relative discrepancy gets worse
as the number of quantization levels is increased.

VI. CONCLUSION

In this work, we formulated a new analysis framework based
on the Bussgang decomposition for hardware-limited task-
based quantization that overcomes limitations of the current
SOTA framework. More precisely, our framework does not
rely on the zero overload probability assumption and works
for both uniform and non-uniform scalar quantizers without
dithering. Our first contribution is a rigorous derivation of the
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optimal linear mappings and analytical MSE in the linear task
scenario under a restriction on the analog combiner. In contrast
to the linear mappings derived under the SOTA framework,
our mappings do not depend on the structure of the scalar
quantizers. We then demonstrated in our numerical study
that the simulated MSE of the task-based quantizer designed
under our proposed framework coincides with our theoretical
predictions. Additionally, we also extended our framework to
quadratic tasks and showed that our analytical expression for
the MSE continues to hold provided that the distortion factors
are known or can be computed empirically.

One notable research direction is to investigate the appli-
cability of the analysis framework to nonlinear tasks beyond
the quadratic task problem. For instance, can we extend our
proposed method to design and analyze hardware-limited task-
based quantizers performing classification tasks? It is also
interesting to see how the proposed framework can be utilized
to design power-efficient analog mappings.

APPENDIX A
PROOF OF PROPOSITION 1

By Restriction 1, AΣxAT becomes a diagonal matrix. That
is,

AΣxAT = diag{PAx}, (20)

where PAx = [P
(1)
Ax, · · · , P

(P )
Ax ]T and P (i)

Ax = E{(Aix)2}. In
addition, it can be shown that

E{zixTAT
j } =E{(BiiAix + ηi)x

TAT
j }

=BiiAiΣxAT
j + E{ηixTAT

j }
=0

for i 6= j. The quantity Bii is the i-th diagonal entry of B.
The first line follows by applying Bussgang decomposition at
the output of the i-th quantizer. The first term in the second
line is zero due to Restriction 1 while the second term in the
second line is zero since the distortion at the i-th quantizer is
uncorrelated with the input of the j-th quantizer. Thus, ΣzxAT

is a diagonal matrix. Consequently, the Bussgang gain matrix
in (3) is also diagonal.

To derive the diagonal elements of the Bussgang gain
matrix, we expand (1):

ρ(p)q =
E{(zp −Apx)2}

E{(Apx)2}

=
E{z2p} − 2E{zpxTAT

p }+ E{(Apx)2}
E{(Apx)2} .

Note that we considered scalar quantizers that satisfy the
property E{Xin|Q(Xin)} = Q(Xin). As such, we have

E{zpxTAT
p } =E{E{zpxTAT

p |zp}}
=E{z2p}, (21)

where the first line follows from the law of iterated expec-
tation, and the second line follows from E{Xin|Q(Xin)} =
Q(Xin). Effectively, the distortion factor becomes

ρ(p)q =
E{(Apx)2} − E{zpxTAT

p }
E{(Apx)2}

=1− E{zpxTAT
p }

E{(Apx)2}
=1−Bpp.

The claim is proven by doing the above analysis for all p ∈
{1, · · · , P}.

APPENDIX B
PROOF OF PROPOSITION 2

From (1), we can simply focus on finding D◦ that mini-
mizes the quantizer-dependent MSE for a given A. Under the
assumption that s̃ is a linear task, the optimal D which results
in ŝ being the linear MMSE estimate of s̃ given z = BAx+η
is

D◦(A) =E{s̃zT }E{zzT }−1

=E{s̃(BAx + η)T }E{zzT }−1

=
(
ΓΣxATBT + ΓE{xηT }

) (
ΣzxAT

)−1
=ΓΣxATBT (AΣxAT )−1B−1

=ΓΣxAT (AΣxAT )−1. (22)

The first line follows from the definition of a linear MMSE
estimator. The second line follows from the generalized Buss-
gang decomposition. The third line follows from the linear
task assumption s̃ = Γx and the relationship between Σz and
Σzx established in equation (21). The fourth line is obtained
from the Bussgang gain matrix expression in (3) and fact that
E{xηT } = 0. To see this, we expand E{xηT } as follows:

E{xηT } =E{x (z−BAx)
T }

=ΣT
zx −ΣxATBT

=0,

where the third line holds because of (3). Finally, the last line
in (22) follows from the fact that B and AΣxAT are diagonal
matrices. As such,

BT (AΣxAT )−1B−1 =BTB−1(AΣxAT )−1

=(AΣxAT )−1.

Consequently, the quantizer-dependent MSE term of the linear
MMSE estimator becomes

E{||s̃− ŝ||2} =E{||Γx−D◦z||2}
=Tr

(
ΓΣxΓT

)
− Tr

(
ΓΣxATB

(
AΣxAT

)−1
AΣxΓT

)
,

which proves the claim.



10

APPENDIX C
PROOF OF THEOREM 1

Let Ã = AΣ
1
2
x . Then, the quantized-dependent MSE term

becomes

E{||s̃− ŝ||2} =Tr
(
Γ̃Γ̃

T
)

− Tr
(
Γ̃ÃTB

(
ÃÃT

)−1
ÃΓ̃T

)
=Tr

(
Γ̃Γ̃

T
)

− Tr
(
ÃΓ̃T Γ̃ÃTB

(
ÃÃT

)−1 )
, (23)

where the second line comes from the cyclic property of the
trace function. Since the first term is independent of Ã, the
optimization problem simplifies to

Ã◦ = arg max
Ã

Tr
(
ÃΓ̃T Γ̃ÃTB

(
ÃÃT

)−1 )
. (24)

Due to Restriction 1, ÃÃT is a diagonal matrix. Thus, we
can also represent Ã as

Ã = HÃVT , (25)

where HÃ ∈ RP×N is a scaling matrix whose off-diagonal
entries are zero and whose p-th entry in the main diagonal
corresponds to a scaling of the p-th output of the analog
combining matrix. The matrix V ∈ RN×N is a unitary matrix.
Under this setting, we can reduce the optimization problem to

H◦,V◦ = arg max
HÃ,V

Tr
(
HÃVT Γ̃T Γ̃VHT

Ã
B
(
HÃHT

Ã

)−1 )
.

Due to [43, Theorem II.1], V◦ is the matrix containing
the right singular vectors of Γ̃. This further simplifies the
optimization problem to

H◦ = arg max
HÃ

min(P,K)∑
i=1

λΓ̃,i[1− ρ(i)q ],

where λΓ̃,i is the i-th eigenvalue of Γ̃
T
Γ̃ (arranged in descend-

ing order). It can be observed that the new objective function
is independent of HÃ as long as the entries of main diagonal
of HÃ are positive (otherwise, HÃHT

Ã
will not be invertible).

Without loss of generality, we set H◦ = [IP×P 0P×(N−P )].
Consequently, we get

A◦ =H◦(V◦)TΣ
− 1

2
x

=VT
optΣ

− 1
2

x ,

where the rows of VT
opt are the P right singular vectors of

Γ̃ = ΓΣ
1
2
x corresponding to the P largest singular values. To

verify that A◦ satisfies Restriction 1, note that

A◦Σx(A◦)T =VT
optΣ

− 1
2

x ΣxΣ
− 1

2
x Vopt

=VT
optVopt.

Since the singular vectors are orthogonal to each other, then
VT

optVopt is a diagonal matrix.
By plugging in A◦ to D◦(A), we get

D◦(A◦) = ΓΣ
1
2
x Vopt. (26)

Finally, the quantizer dependent MSE can be written as

E{||s̃− ŝ||2}

=

K∑
i=1

λΓ̃,i −
min(K,P )∑

i=1

λΓ̃,i · [1− ρ(i)q ]

=

{∑K
i=1 λΓ̃,i · ρ

(i)
q , , if P ≥ K∑P

i=1 λΓ̃,i · ρ
(i)
q +

∑K
i=P+1 λΓ̃,i, otherwise.
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