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Spectrum Breathing: Protecting Over-the-Air

Federated Learning Against Interference
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Abstract

Federated Learning (FL) is a widely embraced paradigm for distilling artificial intelligence from

distributed mobile data. However, the deployment of FL in mobile networks can be compromised by

exposure to interference from neighboring cells or jammers. Existing interference mitigation techniques

require multi-cell cooperation or at least interference channel state information, which is expensive in

practice. On the other hand, power control that treats interference as noise may not be effective due to

limited power budgets, and also that this mechanism can trigger countermeasures by interference sources.

As a practical approach for protecting FL against interference, we propose Spectrum Breathing, which

cascades stochastic-gradient pruning and spread spectrum to suppress interference without bandwidth

expansion. The cost is higher learning latency by exploiting the graceful degradation of learning speed

due to pruning. We synchronize the two operations such that their levels are controlled by the same

parameter, Breathing Depth. To optimally control the parameter, we develop a martingale-based approach

to convergence analysis of Over-the-Air FL with spectrum breathing, termed AirBreathing FL. We show

a performance tradeoff between gradient-pruning and interference-induced error as regulated by the

breathing depth. Given receive SIR and model size, the optimization of the tradeoff yields two schemes

for controlling the breathing depth that can be either fixed or adaptive to channels and the learning

process. As shown by experiments, in scenarios where traditional Over-the-Air FL fails to converge in

the presence of strong interference, AirBreahing FL with either fixed or adaptive breathing depth can

ensure convergence where the adaptive scheme achieves close-to-ideal performance.
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I. INTRODUCTION

A key operation of the sixth-generation (6G) mobile network is to distill intelligence from

enormous mobile data at the network edge using distributed machine learning algorithms, re-

sulting in an active area termed edge learning [1], [2]. The obtained Artificial Intelligence (AI)

is expected to empower many Internet-of-Things (IoT) applications ranging from smart cities

to auto-pilots to extended reality. Federated Learning (FL) is arguably the most popular edge-

learning framework for its preservation of data ownership and being considered for the 6G

standard [3], [4]. FL protects users’ data privacy by distributing the learning task and requiring

users to upload local model updates instead of raw data [5]. Among others, two key challenges

stymieing the deployment of FL in a mobile network are 1) a communication bottleneck resulting

from the transmission of high-dimensional model updates and 2) exposure to interference from

neighboring cells, and jammers [2], [6]–[8]. To simultaneously tackle these two challenges, we

propose a spectrum-efficient method for suppressing interference to FL in mobile networks,

termed Spectrum Breathing.

The key operation of FL is for a server to upload local updates from devices, which are

computed using local data, for aggregation to update the global model. To overcome the resultant

communication bottleneck, previous works focus on designing task-oriented wireless techniques

for FL with the aim to alleviate the effects of channel hostility on learning performance. Diversi-

fied approaches have been proposed including radio resource management [9], [10], power control

[11], [12], and device scheduling [13], [14]. On the other hand, the direct approach to reduce

communication overhead is to prune local model updates, namely local models or stochastic

gradients, and furthermore adapt the pruning operation to wireless channels [15]–[17]. Instead

of incurring unrecoverable distortion, gradient pruning can be translated via randomization into

longer learning latency with small accuracy degradation [18].

Recently, a new class of techniques, termed Over-the-Air FL (AirFL), has emerged to address

the scalability issue in multi-access by many devices under a constraint on radio resources [19]–

[21]. Underpinning AirFL is the use of so-called Over-the-Air Computing (AirComp) to realize

over-the-air aggregation of local updates by exploiting the waveform superposition property of

a multi-access channel, and thereby enable simultaneous access [22]. Building on AirComp, the

efficiency of AirFL can be enhanced by beamforming [20], gradient pruning [21], broadband

transmission [19] and power control [12], [23], and even the use of Intelligent Reflecting Surface
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(IRS) [24]. Different from traditional designs, such techniques aim to realize the required signal-

magnitude alignment at the server to implement AirComp despite channel distortion. For instance,

an IRS can help to overcome such distortion to suppress the alignment error [24]. Furthermore,

the optimization of AirFL techniques enables them to be adapted to not only channel states but

also learning operations (e.g., gradient statistics in the current round [12]). The effectiveness

of AirFL and AirComp at large hinges on the use of uncoded linear analog modulation for

transmission. This exposes AirFL to interference and gives rise to the challenge of how to make

AirFL robust. Gradient pruning techniques mentioned earlier do not address this challenge as they

merely reduce communication overhead without making any attempt at interference suppression.

An alternative approach is to treat interference as noise and regulate it using existing power-

control techniques for AirFL [25], [26]. This class of techniques’ effectiveness in dealing with

interference is limited for two reasons. First, interference power may be comparable with that

of the signal if not larger and far exceeds the noise power. Second, unlike noise, an interference

source (e.g., a neighboring access point or a jammer) is active and can react to the power control

of a signal source in a way that renders it ineffective.

An additional line of work is to adapt the rich set of existing interference-mitigation techniques

to suit AirFL [6], [7], [27]–[29]. Previous works share the common principle of relying on

cooperation between interfering nodes to mitigate the effects of their mutual interference on

the learning performance. This principle is materialized in diversified techniques for multi-cell

AirFL systems, including spatial interference cancellation [6], signal-and-interference alignment

into orthogonal signal sub-spaces [7], and cooperative power control and devices scheduling

[28], [29]. However, their implementation requires accurate Channel State Informantion (CSI)

of interference channels. Acquiring such information can incur extra overhead and latency due to

inter-cell messaging in multi-cell systems, and is infeasible in scenarios where the interference

sources are in other networks or jammers.

One classic interference mitigation technique, called spread spectrum, has no such limitations

but has not been explored in the context of AirFL due to its low efficiency in spectrum uti-

lization [30]. This technique can reduce interference power by a factor, called the Processing

Gain denoted as G, if a narrowband signal is spread in the spectrum by G via scrambling

using a Pseudo-Noise (PN) sequence at the transmitter and using the same sequence to reverse

the operation, called despreading, at the receiver. These operations neither require multi-cell

cooperation nor interference CSI. Its invention served the purpose of anti-jamming for secured
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communication in World War II while its commercial success was due to the use for mitigating

multi-user interference in a resultant multi-access scheme, termed Code-Divison Multi-Access

(CDMA), for 3G [30], [31].

Gradient pruning and spread spectrum are two well-known techniques. The novelty of the

proposed spectrum breathing approach lies in their integration to cope with interference in an

AirFL system under a bandwidth constraint. Specifically, deployed at each device, the technique

cascades two operations before transmission – random pruning of local gradient, called spectrum

contraction, and spread spectrum on the pruned gradient. Note that random pruning is more suit-

able for AirFL than the alternative of magnitude-based pruning [32] (also see discussion in Sec.

III). The spectrum contraction and spreading are governed by parameter, call breathing depth.

As mentioned, the former mainly results in lengthened learning latency; the latter suppresses

interference power by the factor of breathing depth. As a result, AirFL can converge even in the

presence of strong interference. In the iterative FL algorithm, the alternating spectrum contraction

and spreading are analogous to human breathing, giving the technique its name. We optimally

control the spectrum breathing parameter so as to maximize its performance gain.

The contributions of this paper are summarized as follows.

• Convergence Analysis: Adjusting the breathing depth provides a mechanism for controlling

AirFL using spectrum breathing, termed AirBreathing FL. To facilitate optimal control, we

analyze the learning convergence by extending an existing supermartingale-based approach

to account for AirComp, spectrum breathing and fading. The derived results reveal a

tradeoff as regulated by the breathing depth. Specifically, increasing the parameter has two

opposite effects – one is to improve the successful convergence probability by interference

suppression and the other is to decrease it due to more aggressive gradient pruning. This

gives rise to the need of optimal control.

• Control of Spectrum Breathing: Using the preceding tradeoff, the optimization of breath-

ing depth yields two schemes for controlling AirBreathing FL under given receive SIR

and model size. First, without CSI and Gradient State Information (GSI) at the server, the

parameter is fixed over rounds and its optimal value is derived in closed form. Second,

when CSI and GSI are available as in [12], the optimal strategy is designed to be adapted

to CSI and GSI.

• Experimental Results: The results from experiments on AirBreathing FL demonstrate

satisfactory learning performance even in the cases with strong interference that could fail
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Fig. 1. System diagram of AirFL system perturbed by interference.

the learning task without spectrum breathing. Moreover, spectrum breathing with depth

adaptation outperforms the case with a fixed breathing depth.

The remainder of this paper is organized as follows. Models and metrics are introduced in

Sec. II. The effects of pruning on generic data and FL is demonstrated in Sec. III. Overview

design of spectrum breathing is illustrated in Sec. IV. Convergence analysis and breathing depth

optimization are analyzed in Sec. V and VI, respectively. Experimental results are provided in

Sec. VII, followed by concluding remarks in Sec. VIII.

II. MODELS AND METRICS

We consider an AirFL system as illustrated in Fig. 1 that comprises one server and K devices.

The learning process is perturbed by external interference (e.g. from other cells). The learning

and communication models are described separately in the following sub-sections.

A. Learning Model

We first describe the FL process underpinning AirFL. Each device, say k, maintains its local

dataset Dk including |Dk| pairs of data sample xj and label yj , denoted as {(xj, yj)} ∈ Dk, j ∈

{1, 2, . . . , |Dk|}. The server coordinates K devices to optimize the weights of the global model

w ∈ RD where D is the model size, under the criterion of minimizing a global loss defined as

F (w) ,
1∑K

k=1 |Dk|

K∑
k=1

∑
(xj ,yj)∈Dk

f(w,xj, yj), (1)
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where f(w,xj, yj) is the empirical loss function indicating the prediction error on model w using

a data sample (xj, yj). For simplicity, we denote f(w,xj, yj) as fj(w). Distributed Stochastic

Gradient Descent (SGD) is applied to minimize the global loss. Specifically, time is divided

into N rounds with index n ∈ {0, 1, . . . , N − 1}. Considering round n, each device computes

the gradient of the empirical loss function using a mini-batch of local dataset. The gradient of

device k is given as

gk(n) =
1

|Bk|
∑
j∈Bk

∇fj(w(n)), (2)

where Bk ⊆ Dk is the selected mini-batch of Dk, and ∇ represents the gradient operation. If

local gradients can be reliably transmitted to the server, the global estimate of the gradient of

the loss function in (1) is obtained as

g(n) =
1

K

K∑
k=1

gk(n). (3)

Then, g(n) is broadcast back to each device, by which the current model is updated via gradient

descent:

w(n+ 1) = w(n)− η · g(n), (4)

where η denotes the learning rate. The distributed SGD is thus to iterate (2) and (4) until a

convergence condition is met.

B. Communication Model

The uploading of the gradients using AirComp is perturbed by interference. To combat

interference, each transmitted signal undergoes the operations of random pruning and spread

spectrum. The two operations of AirBreathing FL are elaborated in Section IV. For the current

exposition, some useful notation is introduced. Considering round n, the s-th element of the

pruned local gradient transmitted by device k is scrambled by spread spectrum into a sequence,

denoted g̃k,s(n), with each element called a chip and the `-th chip denoted as [g̃k,s(n)]`.

Using the above notation, AirComp can be modelled as follows. Assume chip-level syn-

chronization between devices using a standard technique such as Timing Advance [33]. The

simultaneous transmission of the (s, `)-th chips, i.e., [g̃k,s(n)]`, enables AirComp to yield the

corresponding received chip symbol, given as

[ys(n)]` =
K∑
k=1

hk(n)
√
pk(n)[g̃k,s(n)]` + [zs(n)]`, ∀(s, `), (5)
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where hk(n) ∼ N (0, 1) represents the k-th fading channel-gain that remains constant with

round n, pk(n) the transmission power, [zs(n)]` ∼ N (0, PI) is additive Gaussian interference.

We consider the worst-case interference distribution that is Gaussian over chip duration [34].

Given an interference-limited system, channel noise is assumed negligible.

The downloading of the aggregated gradient can be implemented using digital or analog

transmission [35]. Besides the availability of full bandwidth, transmission power at the server

is much larger than that of the devices. Thus, gradient broadcasting is much more reliable than

local gradient uploading such that the distortion to downlink is negligible.

C. Performance Metric

To quantify the distortion from gradient-pruning and interference, we introduce an AirComp

error. Consider round n and active device set K(n) ⊆ {1, 2, . . . , K}. After post-processing the

received signal y(n) in (5), the output at the server is denoted as y′(n) specified in Sec. IV.

Then AirComp error is defined as the Mean Squared Error (MSE) between y′(n) and its desired

ground-truth, namely 1
|K(n)|

∑
k∈K(n) gk(n), as

MSE(n) = E

∥∥∥∥∥∥ 1

|K(n)|
∑

k∈K(n)

gk(n)− y′(n)

∥∥∥∥∥∥
2 , (6)

where the expectation is taken over the distributions of the transmitted symbols, interference,

channel fading, and pruning pattern.

III. DISTORTION FROM PRUNING - GENERIC DATA VERSUS FEDERATED LEARNING

The spectrum-contraction operation of AirBreathing FL is realized via pruning local gradients

in the FL process. Its effect on the system performance is fundamentally different from that of

pruning a generic data sequence. This can be better understood by analyzing and comparing the

two effects in the remainder of this section.

A. Generic Data Pruning

Consider gradient gk(n) ∈ RD, that is i.i.d. distributed with each element having zero-mean

and variance of σ2. The desired ground truth 1
|K(n)|

∑
k∈K(n) gk(n) is compressed by random

pruning, namely a function that randomly replaces elements with zeros. Let gsp(n) and γ denote

the pruned gradient and the remaining fraction of nonzero elements, called the pruning ratio.
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For generic data, the distortion from pruning is commonly quantified as the MSE between the

pruned sequence and its ideal version:

MSE(n) = E

∥∥∥∥∥∥gsp(n)− 1

|K(n)|
∑

k∈K(n)

gk(n)

∥∥∥∥∥∥
2 = (1− γ)

Dσ2

|K(n)|
. (7)

One can see that the distortion increases linearly with the level of pruning (1−γ). If the pruning

represents channel erasures, then the lost information can not be recovered at the server.

B. Stochastic Gradient Pruning

The reliability of a generic communication system is measured by data distortion as we have

discussed. On the contrary, the performance of an FL system is measured using an End-to-End

(E2E) metric such as convergence rate or learning accuracy. In such a system, the pruning of

transmitted data has the effect of slowing down the learning speed. Recall that FL is essentially

a distributed implementation of SGD. To substantiate the above claim, we consider randomly

pruned SGD implemented using classic Block Coordinate Descent (BCD) [18]. Let the loss

function, F (w) comprise a smooth and convex loss function, f(w), that is regularized by a

block separable function, Φ(w):

F (w) = f(w) + Φ(w). (8)

The regularization Φ(w) =
∑B

b=1 Φb(wb) is a sum of B convex, closed functions Φb(wb) where

wb is a block of model parameters. The blocks are non-overlapping and together they constitute

the whole model. Considering round n, the server selects one block randomly and notifies devices.

Then each device computes the gradient locally based on w(n) and uploads the specified block

of coefficients to the server. Thus, only one selected block is updated using a pruned gradient

aggregated from devices, i.e., gsp(n), while others remain unchanged. Mathematically,

w(n+ 1) = w(n)− ηgsp(n). (9)

Equivalently, BCD can be seen as distributed SGD updated with pruned gradients where the

pruning ratio is γ = 1
B

. Its convergence rate is measured by the required number of iterations,

say Nε,ρ, guaranteeing ε-accuracy with probability of at least 1− ρ, ρ ∈ (0, 1]:

Pr{F (w(Nε,ρ))− F (w∗) ≤ ε} ≥ 1− ρ, (10)
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where w∗ represents the global optimality point. It can be proved that [18],

Nε,ρ ≤ O
(
B

ε
log

(
1

ρ

))
=O

(
1

γε
log

(
1

ρ

))
. (11)

One can observe that the required number of iterations (i.e, learning latency) is inversely pro-

portional to the pruning ratio.

C. Why Random Pruning for AirFL?

Random gradient/model pruning is popularly adopted for FL (see e.g., [15], [32]). The al-

ternative scheme, importance-aware pruning that prunes gradient coefficients with the small-

est magnitudes, does not allow efficient implementation for several reasons discussed in [32].

First, AirComp requires local gradient coefficients pruned by different devices to have iden-

tical positions in the local gradient vectors. This cannot be guaranteed if devices perform

independent importance-aware pruning. Second, doing so requires devices to upload indices of

pruned/remaining coefficients to the server to facilitate aggregation, thereby incurring additional,

significant communication overhead [36]. Finally, importance-aware pruning increases devices’

computation loads due to the coefficient sorting of high-dimensional gradient vectors.

IV. OVERVIEW OF SPECTRUM BREATHING

As illustrated in Fig. 2, the proposed spectrum breathing technique consists of operations at

the transmitter of a device and at the receiver of the server. They are described separately in the

following sub-sections.

A. Transmitter Design

The transmitter design is shown in Fig. 2(a), comprising three cascaded operations, i.e.,

spectrum contraction, channel inversion, and spectrum spreading.

1) Spectrum Contraction: The operation is to randomly prune the elements of a local gradient

at each device. The purpose is to create extra bandwidth for the latter operation of spread

spectrum. The operation compresses the spectrum required for transmitting a local gradient,

giving the name of spectrum contraction. Consider round n and local gradient gk(n) at device

k. Let ψn, Sn , |ψn|, and Ωn denote the selected element set, number of selected elements,

and the set of all Sn-element subsets of {1, 2, . . . , D}, respectively. At the server, ψn is chosen

randomly from Ωn before being broadcast to devices. Using ψn, device k compresses gk(n) into
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Fig. 2. Transceiver of the spectrum breathing system.

an Sn × 1 vector, denoted as gco
k (n) = Ψ(gk(n)), using the pruning function Ψ(·) : RD → RSn .

Note that the pruning pattern ψn is identical for all devices as required for AirComp to realize

element alignment. Since the gradient statistics may change over iterations, normalization is

needed in each round to meet the power constraint [37]. The normalized pruned gradient of the

compressed version is given as

ĝco
k (n) =

gco
k (n)−M(n)1

V (n)
, (12)

where 1 is an all-one vector. Considering i.i.d data distribution as in [6], [19] and random

pruning, the elements of gco
k (n) can be modeled as identically distributed random variables over

k with mean M(n) and variance V 2(n). This enables normalized gradient symbol power, i.e.,
1
Sn
E[‖ĝcok (n)‖2] = 1.

2) Channel Inversion: Following [19], truncated channel inversion is performed to achieve

amplitude alignment as required for AirComp. We consider block fading channels such that the

channel state is constant in each round. To avoid deep fading, device k is inverted only if its

gain exceeds a given threshold, denoted as Gth, or otherwise device k is absent in this round by

setting its power as zero. Mathematically,

pk(n) =


P0

|hk(n)|2 , |hk(n)|2 ≥ Gth

0, |hk(n)|2 < Gth,
, (13)

where P0 is the signal-magnitude-alignment factor. Transmission of each device is subject to a

long-term power constraint over N rounds:
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E

[
N−1∑
n=0

GnSnpk(n)

]
≤ Pmax, (14)

where the expectation is taken over the randomness of channel coefficients and transmitted

symbols. Given (5), P0

PI
determines the receive SIR of the model-update from each device [19].

The probability that device k avoids truncation, called activation probability, is denoted by ξa

and obtained as

ξa = Pr(|hk(n)|2 ≥ Gth) = e−Gth . (15)

Due to random truncation, the random set of active devices of round n is denoted as K(n),

which varies over rounds.

3) Spectrum Spreading: For interference suppression, spectrum spreading [30] is performed to

expand the data bandwidth, denoted as Bs(n), into the whole available bandwidth, denoted as Bc,

using PN sequences. Let Ts(n) = 1
Bs(n)

and Tc = 1
Bc

denote the duration of one gradient symbol

and one chip of PN sequences, respectively. Then a PN sequence comprises Gn = Ts(n)/Tc chips,

when Gn is called the processing gain. The key operation of the spreader is to upsample and

scramble the input elements by the corresponding PN sequences to realize spectrum expansion.

Given the s-th input element of the spreader, say [ĝco
k (n)]s, the corresponding PN sequence is

represented as Cs(n) ∈ RG wherein [Cs(n)]` ∈ {+1,−1}, s ∈ {1, 2, . . . , Sn}, ` ∈ {1, 2, . . . , Gn}

is the `-th chip and is generated at the server through Bernoulli trails with the probability

0.5. The set of PN sequences, denoted as C(n) , {C1(n), . . . ,CSn(n)}, is broadcast to all

devices. For device k, the output of the spreader is represented by a GnSn × 1 vector, say

g̃k(n) = [[g̃k,1(n)]T , . . . , [g̃k,s(n)]T , . . . , [g̃k,Sn(n)]T ]T , where g̃k,s(n) ∈ RG is a Gn-entry vector

representing the spreading chips of [ĝco
k (n)]s, given as

g̃k,s(n) = [ĝco
k (n)]sCs(n), ∀(s, k). (16)

Note that for all s ∈ {1, 2, . . . , Sn}, 1
Gn

∑Gn

`=1[Cs(n)]2` = 1 holds.

B. Receiver Design

The receiver design is illustrated in Fig. 2(b) comprising three cascaded operations, i.e.,

spectrum de-spreading, signal de-normalization and zero padding.

1) Spectrum De-spreading: The operation targets mining the desired gradient symbols hidden

in the interference using the de-spreader to be elaborated in the following. Perfect synchroniza-
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tion between transmitters and receiver is assumed such that chip-level operations of spectrum

de-spreading can be realized. Considering round n, the received signals at the server are the

superimposed waveform due to the simultaneous transmission of devices. Let ỹ(n) ∈ RSn denote

the output vector of spectrum de-spreading. By introducing the truncated channel inversion in

(13), the s-th output element, say [ỹ(n)]s, is given as

[ỹ(n)]s =
1

Gn

Gn∑
`=1

[Cs(n)]`[ys(n)]` =
∑

k∈K(n)

√
P0

Gn

Gn∑
`=1

[Cs(n)]2` [ĝ
co
k (n)]s + [z̃(n)]s,

=
√
P0

∑
k∈K(n)

[ĝcok (n)]s + [z̃(n)]s,

(17)

where [z̃(n)]s ∼ N (0, PI

Gn
) is zero-mean Gaussian interference, whose power is inversely pro-

portional to Gn [38].

2) Signal De-normalization: This operation is performed to eliminate the impact of nor-

malization and channel inversion to obtain the noisy averaged gradient symbols, denoted as

ŷ(n) ∈ RSn , given as

ŷ(n) =
V (n)√
P0|K(n)|

ỹ(n) + |K(n)|M(n)1

=
1

|K(n)|
∑

k∈K(n)

gco
k (n) +

V (n)√
P0|K(n)|

z̃(n).
(18)

3) Gradient Zero-padding: To facilitate global-model updating, zero padding executes the

inverse of pruning Ψ−1(·) : RSn → RD to restore the D-dimensional update by inserting zeros

into the punctured dimensions. The zero-padded gradient, denoted as y′(n), is represented as

y′(n) = R

 1

|K(n)|
∑

k∈K(n)

gk(n) + ẑ(n)

 , (19)

where ẑ(n) ∈ RD represents the interference vector distributed as N (0, V 2(n)PI

P0|K(n)|2Gn
ID), and

R(·) : RD × Ωn → RD is the zero-padding operation; Finally, devices update the global model

using the gradient y′(n) after its broadcasting from the server.

V. CONVERGENCE ANALYSIS OF AIRBREATHING FEDERATED LEARNING

In this section, we analyze the convergence of AirBreathing FL. The results are useful for

optimizing the spectrum breathing in the next section.
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A. Assumptions, Definitions, and Known Results

For tractable analysis, some commonly used assumptions, definitions, and known results

are provided below. First, we consider a strongly-convex loss function with bounded gradient

estimates. These assumptions are commonly used in the literature (see, e.g., [36], [39], [40]).

Assumption 1. The differentiable loss function F (·) is c-strongly convex, i.e., ∀w1,w2 ∈ RD,

F (w1)− F (w2) ≥ ∇F (w1)T (w2 −w1) +
c

2
‖w2 −w1‖2. (20)

Assumption 2. Let w∗ ∈ RD denote the optimality point of F (·). For ε > 0, there exists a

success region indicating the convergence, defined as S = {w|‖w −w∗‖2 ≤ ε}.

Assumption 3. Local gradients gk(n) are i.i.d. over devices k ∈ {1, 2, . . . , K} with unbiased

estimate of the ground truth g(n) and bounded variance, i.e.,

E[gk(n)] = g(n), E[‖gk(n)− g(n)‖2] ≤ σ2
g , E[‖g(n)‖2] ≤ ζ2, (21)

for all (n, k), where σ2
g and ζ2 are constants.

Next, we adopt the method of martingale-based convergence analysis in [39]. To this end, a

useful definition and some known results from [39] are provided below.

Definition 1 ( [39]). A non-negative process Wn(w(n),w(n−1), . . . ,w(0)) : RD×(n+1) → R is

defined as a rate supermartingale with a scalar parameter A, called the horizon, if the following

conditions hold.

1) It must be a supermartingale [41], i.e., for any sequence w(n),w(n − 1), . . . ,w(0) and

∀n ≤ A,

E[Wn+1(w(n+ 1),w(n), . . . ,w(0))] ≤ Wn(w(n), . . . ,w(0)). (22)

2) For all rounds N ≤ A and for any sequence w(n),w(n − 1), . . . ,w(0), if the algorithm

has not converged into the success region by N (i.e., w(n) /∈ S,∀n ≤ N ),

WN(w(N),w(N − 1), . . . ,w(0)) ≥ N. (23)

Lemma 1 ( [39], Lemma 1). Consider an FL system updating as in (4) with a learning rate

η < 2cεG2. If the algorithm has not converged by round n, the process defined as
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Wn(w(n), . . . ,w(0)) ,
ε

2ηcε− η2G2
log

(
e ‖w(n)−w∗‖2

ε

)
+ n, (24)

is a rate supermartingale with horizon A = ∞, where G2 ≥ ζ2 + σ2
g is the upper bound of

the squared norm of aggregated gradients. Under Assumptions 1-2, Wn(w(n), . . . ,w(0)) is also

H-Lipschitz smooth in the first coordinate, with H = 2
√
ε(2ηcε− η2G2)−1. In other words, for

any n ≥ 1,w1,w2 ∈ RD and any sequence w(n− 1), . . . ,w(0), it satisfies

‖Wn(w1,w(n− 1), . . . ,w(0))−Wn(w2,w(n− 1), . . . ,w(0))‖ ≤ H‖w1 −w2‖. (25)

Intuitively, the rate supermaringale represents the level of satisfaction for model weights

w(n),w(n − 1), . . . ,w(0) over n + 1 rounds. Some intuition into the preceding assumptions

are as follows. First, (22) reflects the fact that obtained model weights are more satisfactory as

they approach the optimality point. Second, as specified in (23), the satisfaction is reduced if the

algorithm is executed for many rounds without convergence. FL updating as in (4) is considered

as the vanilla SGD satisfying the properties of rate supermartingale. It is a commonly used

analytical method in the convergence analysis of SGD [36], [39], [40].

B. Convergence Analysis

Based on the preceding assumptions, we further develop the mentioned rate-supermartingale

approach to study the convergence of AirBreathing FL. The new approach is able to account for

channel fading, and the system operations such as AirComp and spread spectrum. Specifically,

several useful intermediate results are obtained as shown in the following lemmas.

We first upper bound the gap between the vanilla SGD and AirBreathing FL using the results

on the AirComp error (see Lemmas 2 and 3). Next, based on Lemma 3, a supermartingale for

AirBreathing FL is constructed in Lemma 4. Furthermore, the upper bound of the convergence

rate is derived using the theory of martingale as shown in Lemma 5.

Lemma 2. The AirComp error defined in (6) for round n, can be expressed as the sum of the

gradient-pruning error and interference-induced error:

MSE(n) = (1− γn)E[α2(n)]︸ ︷︷ ︸
gradient-pruning error

+
γnDPI
GnP0

E
[
V 2(n)

|K(n)|2

]
︸ ︷︷ ︸

interference-induced error

,
(26)

where γn = Sn

D
represents the pruning ratio in round n, and α2(n) is defined as

May 11, 2023 DRAFT



15

α2(n) =

∥∥∥∥∥∥ 1

|K(n)|
∑

k∈K(n)

gk(n)

∥∥∥∥∥∥
2

. (27)

Proof. See Appendix A.

Lemma 3. Considering round n, the gap between vanilla SGD and AirBreathing FL is defined as

the expected difference between the update of vanilla SGD, namely 1
K

∑K
k=1 gk(n), and spectrum

breathing, namely y′(n). The gap can be bounded as

E

[∥∥∥∥∥ 1

K

K∑
k=1

gk(n)− y′(n)

∥∥∥∥∥
]
≤ u(n), (28)

where u(n) is defined as

u(n) =
2− ξa
Kξa

σ2
g +

√
MSE(n), (29)

where ξa and σ2
g is the activation probability in (15) and gradient variance in (21), respec-

tively. The first and second terms of the bound result from 1) the fading channel and gradient

randomness and 2) the AirComp error in (26), respectively.

Proof. See Appendix B.

The process defined in Lamma 3, {u(n)}, serves as indicators of performance loss caused by

the air interface and is hence termed propagation-loss process. To this end, we use the result in

Lamma 3 to define a new stochastic process pertaining to spectrum breathing and show it to be

a supermartingale. The details are as follows.

Lemma 4. Define a stochastic process, {Un}, as

Un(w(n), . . . ,w(0)) , Wn(w(n), . . . ,w(0))− ηH
n−1∑
i=0

u(i), (30)

for ∀i ≤ n and w(i) /∈ S, {Un} is a supermartingale process.

Proof. See Appendix C.

Note that, Un has a negative term, which is a function of the propagation-loss process,

removes from the model under training the effect of the air interface. Thereby, the result in

Lemma 4 facilitates the use of supermartingale theory to quantify the convergence probability
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of AirBreathing FL as shown below.

Lemma 5. Consider N rounds and AirBreathing FL for minimizing the loss function F (w). If

the learning rate satisfies

η <
2
√
ε
(
c
√
εN −

∑N−1
n=0 u(n)

)
NG2

, (31)

the event of failing to converge to the success region, denoted as FN , has a probability bounded

as

Pr{FN} ≤
ε log (e‖w(0)−w∗‖2ε−1)

(2ηcε− η2G2)N − 2η
√
ε
∑N−1

n=0 u(n)
. (32)

where G2 is the upper bound of aggregated gradient defined in Lemma 1.

Proof: See Appendix D.

Definition 2 (Breathing Depth). In the considered scenario of constrained bandwidth-and-

latency, it is necessary to fix the product of processing gain and pruning ratio: Gnγn = 1. Under

this constraint, the tradeoff between spread spectrum and gradient pruning can be regulated by

the processing gain Gn = 1
γn

. To be more instructive, it is renamed the Breathing Depth, that is

the most important control variable of spectrum breathing.

Substituting Gn = 1
γn

into the result in Lemma 5 yields the following main result.

Theorem 1. Consider AirBreathing FL with breathing depths {Gn} and N rounds. If the learning

rate satisfies (31), the probability of failing to converge to the success region is bounded as

Pr{FN} ≤
ε log (e‖w(0)−w∗‖2ε−1)(

2cε− ηG2 − 2
√

(2−ξa)ε
Mξa

σg

)
ηN − 2η

√
εβΣ

. (33)

Here βΣ =
∑N−1

n=0

√
βn(Gn) is a sum of error terms where each term βn(Gn) represents the

air-interface error in round n, given as

βn(Gn) =

(
1− 1

Gn

)
E[α2(n)]︸ ︷︷ ︸

gradient-pruning error

+
DPI
G2
nP0

E
[
V 2(n)

|K(n)|2

]
︸ ︷︷ ︸
interference-induced error

. (34)

Consider the air-interface error term in (34). One can see that increasing the breathing depth,

Gn, corresponds to decreasing the pruning ratio and thus causes the pruning error to grow. On the
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other hand, increasing Gn enhances the process gain and thereby reduces interference perturbation

(and its corresponding error term). The above tradeoff suggests the need of optimizing {Gn},

which is the topic of the next section.

Comparing Theorem 1 to the convergence analysis in related works [25], [36], our results

have two main differences: First, our results reflect the effect of spectrum breathing depth, Gn,

in (34), which does not exist in prior work. When Gn = 1 (no breathing, pruning), (34) reduces

to the mean squared norm of the introduced noise in [25, (18)]. Second, the effect of fading

channels on convergence is characterized in (34) by the term 1
|K(n)|2 , while the |K(n)| in [36] is

assumed to be constant.

VI. OPTIMIZATION OF SPECTRUM BREATHING

In this section, the results from the preceding convergence analysis are applied to the optimiza-

tion of the breathing depth of AirBreathing FL. To enhance convergence, Theorem 1 imposes

the need of minimizing (34). Before that, the assumptions on known and unknown parameters

are specified as follows. The predefined parameters, i.e., model size D and receive SIR P0

PI
, are

assumed to be known. Let Gradient State Information (GSI) refer to the statistical parameters

of the stochastic gradient in the current round, namely α(n) and V (n) in (34), which are not

accessible but can be estimated at each round using local gradients. Moreover, let CSI refer

to the channel-dependent number of active devices in the current round, namely |K(n)|. It is

known to the server by assuming perfect channel estimation over rounds. Then we consider the

optimization in two cases: (1) without GSI and CSI, and (2) with GSI and CSI at the server.

A. Breathing Depth Optimization without GSI and CSI Feedback

Without GSI and CSI feedback, we deploy fixed breathing depth for all rounds, i.e., Gn =

G,∀n. Consider the term βΣ in Theorem 1, which is the only term related to the breathing

depth, G. Then G is optimized to minimize βΣ, thereby accelerating convergence. The difficulty

of such optimization lies in the lack of the required GSI and CSI. To address the issue, we resort

to minimizing an upper bound on βΣ that requires no such information.

Lemma 6. Consider gradient gk(n), k ∈ K(n). There exists a positive constant Γ(n), satisfying

Γ(n) ≥ 1
D

(‖g(n)‖2 + σ2
g), such that βΣ is upper bounded as

βΣ ≤ βF (G)
N−1∑
n=0

√
DΓ(n), (35)
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where βF (G) is a function of G, given as

βF (G) =

√
1− 1

G
+

6PI
G2K2ξ2

aP0

. (36)

Proof. See Appendix E.

We next formulate the optimization problem

min
G

βF (G)

s.t. G ∈ {1, 2, . . . , D}.
(37)

Problem (37) can be solved by integer relaxation as follows. Given a continuous variable

x > 0, setting ∇xβF (x) = 0 yields the optimal solution x∗ = 12PI

P0K2ξ2a
. Thus, for the discrete

function βF (G), ∀G ∈ {1, 2, . . . , D}, the fixed breathing depth, denoted G∗, can be obtained

approximately by

G∗ =


1, x∗ < 1,

bx∗cβF (G) , 1 ≤ x∗ ≤ D,

D, x∗ > D,

(38)

where bx̂cβF (x) is equal to bx̂c if βF (bx̂c) ≤ βF (dx̂e), and is otherwise equal to dx̂e.

In the above results, G∗ is a monotonous decreasing function of the receive SIR P0

PI
. It implies

that for a low receive SIR, we allocate more bandwidth resources for interference suppression to

guarantee convergence at cost of more aggressive gradient compression. On the other hand, for a

high receive SIR, the spectrum-breathing control favours uploading as many gradient dimensions

as possible to attain faster convergence. Increasing the expected number of active devices Kξa

directly enhances the received signal power, which suppresses the interference by aggregation

gain and hence reduces the need of interference suppression via spectrum spreading.

B. Breathing Depth Optimization with GSI and CSI Feedback

Given GSI and CSI feedback, the breathing depth can be adapted over rounds and hence re-

denoted as Gn for round n. The optimization criteria is to minimize the estimate of the relevant

term, βn(Gn), of the successful convergence probability in the Theorem 1. Let the estimate be

denoted as β̂n(Gn):

β̂n(Gn) =

(
1− 1

Gn

)
α̂2(n) +

DPI V̂
2(n)

G2
nP0|K(n)|2

, (39)
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where α̂(n) and V̂ (n) are estimates of α(n) and V (n), respectively, while the number of active

devices, |K(n)|, is perfectly known at the server from CSI. Based on feedback statistics of local

gradients, the estimation is similar to that in [12] given as

α̂2(n) =
1

|K(n)|
∑

k∈K(n)

‖gk(n)‖2, V̂ 2(n) =
1

|K(n)|
∑

k∈K(n)

V̂ 2
k (n), (40)

where V̂ 2
k (n) is the local gradient variance:

V̂ 2
k (n) =

1

D

D∑
d=1

(
[gk(n)]d −

1

D

D∑
d=1

[gk(n)]d

)2

. (41)

Consider an arbitrary round n of AirBreathing FL. Based on (39) and (40), the problem of

optimizing the breathing depth can be formulated as

min
Gn

β̂n(Gn)

s.t. Gn ∈ {1, 2, . . . , D},

∀n ∈ {0, 1, . . . , N − 1}.

(42)

Again, by integer relaxation of Gn into x > 0, ∇xβ̂n(x) = 0 yields the optimal solution x∗n =

2PIDV̂
2(n)

P0|K(n)|2α̂2(n)
such that β̂n(x∗n) is the minimum. Then an approximate of the adaptive breathing

depth is given as

G∗n =


1, x∗n < 1,

bx∗ncβ̂n(Gn) , 1 ≤ x∗n ≤ D,

D, x∗n ≥ D.

(43)

Note that the adaptive breathing depth is a clipping function of x∗n, truncated by the smallest

and largest achievable value. For the general case, 1 ≤ x∗n ≤ D, G∗n is found to be inversely pro-

portional to the receive SIR P0

PI
, number of active devices |K(n)|2 and estimate of gradient squared

norm α̂2(n). Enlarging these parameters reduces the impact of interference on convergence so

that breathing depth decreases accordingly. On the other hand, the breathing depth increases with

the rise of gradient-variance estimate due to the scaling of interference in de-normalization. The

resultant protocol for adaptive spectrum breathing is summarized in Algorithm 1.
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Algorithm 1: Adaptive Breathing Depth Protocol
Input: Receive SIR P0/PI , Model size D;

1: Initialisation : w(0) in all devices;
2: for Round: n = 0 to N do
3: for each device k ∈ K(n) in parallel do
4: Computes gk(n) via (2);
5: Computes ‖gk(n)‖2 ;
6: Computes V̂ 2

k (n) via (41);
7: Uploads ‖gk(n)‖2 and V̂ 2

k (n) to server;
8: end for
9: Server estimates α̂2(n) and V̂ 2(n) via (40);

10: Server computes adaptive breathing depth G∗n via (43);
11: Server generates selected index set ψn and set of PN sequence C(n) w.r.t. G∗n;
12: Server broadcasts ψn and C(n) to all devices;
13: Spectrum Breathing Process returns w(n+ 1)
14: end for
15: return w(n+ 1)

VII. EXPERIMENTAL RESULTS

In this section, the preceding fixed and adaptive breathing depth protocols are simulated. Based

on this, we evaluate the performance of AirBreathing FL by comparing it with six benchmarks

to be specified below.

A. Experimental Settings

The default experimental settings are as follows unless specified otherwise.

• Communication Settings: We consider an AirBreathing FL system comprising one server

and 10 devices. In each round, the PN sequence shared by devices is generated by having

i.i.d. chips following the unbiased Bernoulli distribution; the sequence is varied over rounds.

Each chip spans unit time and a transmitted gradient coefficient occupies Gn chips with

Gn being the breathing depth. The interference at the server’s receiver is modelled as a

sequence of i.i.d Gaussian symbols. Assuming Rayleigh fading, all channel coefficients are

modelled as CN (0, 1) random variables. Consider the scenario of strong interference. The

devices’ fixed transmission power and the interference power are set such the expected

receive SIR is −23dB, which can be enhanced by aggregation and spectrum de-spreading

in AirBreathing. Finally, the threshold of truncated channel inversion is set as Gth = 0.2

and the resultant activation probability of each device is ξa = 0.82.
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• Learning Settings: We consider the learning task of handwritten digit classification using

the popular MNIST dataset. To model non-i.i.d data at devices, each of which comprises

3000 randomly drawn samples of one class. Two randomly chosen shards with different

labels are assigned to each device. The task is to train a CNN model having 21,840

parameters. The model consists of two 5 × 5 convolutional layers with ReLU activation

(with 10, 20 channels, respectively), and the ensuing 2× 2 max pooling, a fully connected

layer with 50 units and ReLU activation, and a final softmax output layer. Furthermore, the

pruning for spectrum contraction is executed on model weights (99.8% of all parameters)

but not bias to avoid divergence.

Six benchmarking schemes with their legends in brackets are described below.

• Ideal Case: The ideal FL system without pruning and channel distortion.

• No Spectrum Breathing (No SB): This is equivalent to AirBreathing FL with Gn = 1,∀n.

The resultant system is exposed to strong interference.

• Pruning without Spectrum Spreading: Gradients are pruned randomly with a fixed ratio,

γ, and uploaded without spread spectrum. This results in the exposure of pruned gradients

to strong interference.

• Convergent OTA FL (COTAF) [25]: Given the same power constraint and interference,

time-varying scalar precoding (equivalent to power control) with full-dimensional gradient

uploading is simulated by accounting for the gradually decreasing squared norm of gradient

over rounds. Note that COTAF requires offline simulation to estimate the scalar precoder,

while AirBreathing FL does not need this as a result of online estimation from GSI feedback

with negligible communication overhead.

• Optimal Fixed Breathing Depth (Optimal fixed BD): The optimal fixed breathing depth

is obtained using an exhaustive search, as opposed to using the closed-form result in (38).

• AirBreathing with Importance-aware Pruning (AirBreathing with IP): Random prun-

ing is replaced with importance-aware pruning, namely pruning gradient coefficients with

the smallest magnitudes. The difficulty in its implementation is overcome by alternating

rounds of 1) full-gradient uploading to allow the devices to select from aggregated gradient

coefficients an index subset to prune in the next round and 2) using the subset to perform

importance-aware pruning at devices assuming temporal correlation in gradients [32].
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Fig. 3. (a) Performance comparison between AirBreathing FL (in both the cases of fixed and adaptive breathing depth) and
benchmarking schemes; (b) Comparison between pruning without spreading (γ = 0.5, 0.1) and AirBreathing FL.

B. Performance of AirBreathing FL

The learning performance of AirBreathing FL is compared with the benchmarking schemes.

For spectrum breathing, both the schemes of fixed and adaptive breathing depth are considered.

The curves of validation accuracy versus communication time are plotted in Fig. 3 (a). Several

observations can be made. First, AirBreathing in both the cases of fixed and adaptive breathing

depth achieves convergence. This demonstrates its effectiveness in coping with strong interfer-

ence. On the contrary, FL without spectrum breathing, which suffers from strong interference,

fails to converge. Second, there exists a substantial performance gap between the scheme of

fixed breathing depth from the ideal case due to approximation in the former design to obtain

the closed-form result. Thus the gap is largely removed using the proposed scheme of adaptive

breathing depth. Finally, AirBreathing with adaptive depth is observed to approach the ideal

case within a reasonable performance gap. In particular, the converged accuracy for the former

is 96.2% and 94.6% for the latter.

Fig. 3 (b) compares the performance of pruning without spectrum spreading and AirBreathing

FL. One can see the former has a rapid increase in accuracy at the beginning, as a result from

a higher communication rate in the absence of spectrum spreading. However, the corruption of

gradients by interference eventually takes its toll and leads to unsuccessful learning. In contrast,

despite a slower learning speed initially, AirBreathing FL ensures steady increase in accuracy

to achieve convergence.

Fig. 4 (a) compares the performance between COTAF and adaptive AirBreathing FL in coping
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Fig. 4. (a) Performance comparison between COTAF and AirBreathing FL; (b) Comparison between random pruning and
importance-aware pruning for AirBreathing FL.

with strong interference. Several observations can be made. When subjected to the same power

constraints, COTAF avoids divergence by gradually increasing transmit power. Despite this,

COTAF still struggles to achieve a high accuracy due to the discussed limitation of power control

in suppressing interference. In contrast, adaptive AirBreathing FL achieves a significantly higher

accuracy after convergence, albeit with a slower learning speed at the beginning, thanks to its

interference-suppression capability.

C. Random Pruning versus Importance-aware Pruning

In Fig. 4 (b), we compare the learning performance of AirBreathing FL using the proposed

random pruning with that of the benchmarking scheme using importance-aware pruning. The

main observation is that the latter does not yield any performance gain over the proposed scheme.

The reasons are two drawbacks of the importance-aware scheme. First, the full-gradient uploading

in every other round in the benchmarking scheme increases communication overhead. Second,

the pruned gradient coefficients in a round are selected based on those in the preceding round,

resulting in inaccurate choices as gradients vary over rounds.

D. Effects of Network Parameters

We study the effects of two key network parameters, namely the number of devices and the

receive SIR per device, on the learning performance of AirBreathing FL for a given commu-

nication time of 7 × 106 chips. To this end, the curves of validation accuracy versus varying

network parameters are plotted in Fig. 5.
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Fig. 5. The effects of (a) number of devices and (b) receive SIR on the learning performance for given communication time of
7× 106 chips.

From Fig. 5 (a), one can see the continuous performance improvement as the number of devices

increases, as the AirComp’s aggregation over devices suppresses interference by averaging.

Note that AirBreathing realizes interference suppression using a different mechanism of spread

spectrum. On the other hand, as expected, the AirBreathing FL with either fixed or adaptive

breathing depth sees growing performance improvement as the receive SIR per device (before

aggregation) becomes larger.

VIII. CONCLUSION

In this work, we presented a spectrum-efficient method, called spectrum breathing. Lever-

aging the graceful degradation of learning performance due to pruning, the method exploits

signal spectrum contraction via pruning to enable interference suppression via spread spectrum

without requiring extra bandwidth. The breathing depth that controls spectrum contraction level

is optimized and adapted to both the states of gradient descent and channels to amplify the

learning performance gain.

This work establishes a new principle of designing robust AirFL by integrating gradient

pruning and interference suppression. Beyond spread spectrum, this principle can be applied

to other interference management techniques such as adaptive coding and modulation, MIMO

beamforming, and cooperative transmission. The current AirBreathing FL method can also be

generalized to more complex systems such as multi-cell or distributed AirFL. Practical issues

such as synchronization errors and security warrant further investigation.
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APPENDIX

A. Proof of Lemma 2

In this section, the AirComp error of AirBreathing FL using random pruning is derived as

below. For the expression brevity, the round index n is omitted in the following equations.

First, the AirComp error of AirBreathing FL, denoted as MSE(n), is the MSE between received

signal y′(n) and the ideal version 1
|K(n)|

∑
k∈K(n) gk(n), given as

MSE(n) =E

∥∥∥∥∥ 1

|K|
∑
k∈K

gk − y′

∥∥∥∥∥
2


=Eψn

∥∥∥∥∥ 1

|K|
∑
k∈K

gk −R

(
1

|K|
∑
k∈K

gk

)∥∥∥∥∥
2
+ Eẑ

[
‖R(ẑ)‖2]

(a)
=Eψn

∥∥∥∥∥ 1

|K|
∑
k∈K

gk −R

(
1

|K|
∑
k∈K

gk

)∥∥∥∥∥
2
+

SnPI
GnP0

E
[
V 2

|K|2

]

(b)
=

(
1− Sn

D

)
E

∥∥∥∥∥ 1

|K|
∑
k∈K

gk

∥∥∥∥∥
2
+

SnPI
GnP0

E
[
V 2

|K|2

]

= (1− γn)E[α2(n)] +
γnDPI
GnP0

E
[
V 2

|K|2

]
,

(44)

where the expectation is taken over ψn and ẑ(n). (a) is derived from the sum power of Sn i.i.d

zero mean Gaussian random variables. (b) is derived from the expectation of ψn that is chosen

at random from Ωn. That is, for a generic vector x ∈ RD, the MSE between x and R(x) over

ψn can be represented as [42],

Eψn [‖x−R(x)‖2] =
1

|Ωn|
∑
ψn∈Ωn

D∑
d=1

[x]2dI{d /∈ ψn} =
D∑
d=1

[x]2d
∑
ψn∈Ωn

I{d /∈ ψn}
|Ωn|

=
D∑
d=1

[x]2d

(
D−1
Sn

)(
D
Sn

) = (1− Sn
D

)‖x‖2 = (1− γn)‖x‖2.

(45)

(b) trivially holds by replacing x of (45) with 1
|K|
∑

k∈K gk.

The proof of Lemma 2 is completed.
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B. Proof of Lemma 3

Consider round n, the gap between vanilla SGD and AirBreathing FL is upper bounded as

E

[∥∥∥∥∥ 1

K

K∑
k=1

gk(n)− y′(n)

∥∥∥∥∥
]

= E

[∥∥∥∥∥ 1

K

K∑
k=1

gk −
1

|K|
∑
k∈K

gk +
1

|K|
∑
k∈K

gk − y′

∥∥∥∥∥
]

≤E

[∥∥∥∥∥ 1

K

K∑
k=1

gk −
1

|K|
∑
k∈K

gk

∥∥∥∥∥
]

+ E

[∥∥∥∥∥ 1

|K|
∑
k∈K

gk − y′

∥∥∥∥∥
]

(c)

≤E

[∥∥∥∥∥ 1

K

K∑
k=1

gk −
1

|K|
∑
k∈K

gk

∥∥∥∥∥
]

+

√√√√√E

∥∥∥∥∥ 1

|K|
∑
k∈K

gk − y′

∥∥∥∥∥
2


=E

[∥∥∥∥∥ 1

K

K∑
k=1

gk −
1

|K|
∑
k∈K

gk

∥∥∥∥∥
]

︸ ︷︷ ︸
ν(n)

+
√

MSE(n),

(46)

where (c) comes from Jensen’s inequality on concave function
√
·; ν(n) is upper bounded as

ν(n) =E

[∥∥∥∥∥ 1

K

K∑
k=1

gk −
1

|K|
∑
k∈K

gk

∥∥∥∥∥
]

= E

[∥∥∥∥∥ |K| −KK|K|
∑
k∈K

gk +
1

K

∑
k/∈K

gk

∥∥∥∥∥
]

≤

√√√√√Eg

∥∥∥∥∥ |K| −KK|K|
∑
k∈K

gk +
1

K

∑
k/∈K

gk

∥∥∥∥∥
2


≤

√
E|K|

[(
1

|K|
− 1

K

)]
σ2
g

(d)

≤

√
2− ξa
Kξa

σg,

(47)

where (d) is due to that |K| subjects to binomial distribution B(K, ξa) such that the inequality

below holds [43]:

E
[

1

|K|

]
≤ 2

Kξa
, E

[
1

|K|2

]
≤ 6

K2ξ2
a

. (48)

The proof of Lemma 3 is completed.

C. Proof of Lemma 4

We consider the process defined as follows

Un(w(n), . . . ,w(0)) , Wn(w(n), . . . ,w(0))− ηH
n−1∑
i=0

u(i), (49)
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where u(i) is given in Lemma 3, and global model is updated using (19). When the algorithm

has not entered the success region at round n, we have ∀n ≥ 0,

Un+1(w(n+ 1), . . . ,w(0)) =Wn+1(w(n)− ηy′(n),w(n), . . . ,w(0))− ηH
n∑
i=0

u(i)

(25)

≤Wn+1

(
w(n)− η 1

K

K∑
k=1

gk(n),w(n), . . . ,w(0)

)

+ ηH

∥∥∥∥∥ 1

K

K∑
k=1

gk(n)− y′(n)

∥∥∥∥∥− ηH
n∑
i=0

u(i),

(50)

where the scaling up results from the H-Lipschitz smooth in the first coordinate given in (25).

Then we take the expectation for both sides of the inequality and use the supermartingle

property of Wn. The expectation of Un+1 is bounded by

E[Un+1(w(n+ 1), . . . ,w(0))]

≤E

[
Wn+1

(
w(n)− η 1

K

K∑
k=1

gk(n),w(n), . . . ,w(0)

)]

+ ηHE

[∥∥∥∥∥ 1

K

K∑
k=1

gk(n)− y′(n)

∥∥∥∥∥
]
− ηH

n∑
i=0

E[u(i)]

≤Wn(w(n), . . . ,w(0)) + ηHu(n)− ηH
n∑
i=0

u(i) = Un(w(n), . . . ,w(0)).

(51)

The inequality above still holds in the case when the algorithm has succeeded at round n. Thus,

Un is a supermartingale process for AirBreathing FL.

Proof of Lemma 4 is completed.

D. Proof of Theorem 5

We denote the failure to enter the success region by N as FN , otherwise, the success as ¬FN .

Consider the same model initialization w(0) for Un and Wn, we have

E[W0] = E[U0] ≥ E[Un] = E[Un|FN ]Pr{FN}+ E[Un|¬FN ]Pr{¬FN}

≥ E[Un|FN ]Pr{FN} =

(
E[WN |FN ]− ηH

N−1∑
n=0

u(n)

)
Pr{FN}

≥

(
N − ηH

N−1∑
n=0

u(n)

)
Pr{FN}.

(52)
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Hence, we obtain

Pr{FN} ≤
E[W0]

N − ηH
∑N−1

n=0 u(n)
, (53)

where E[W0] can be obtained by setting n = 0 in (24) and taking expectation.

Proof of theorem 5 is completed.

E. Proof of Lemma 6

The round index is omitted for expression brevity. By taking the expectation over the gradient

and number of active devices, the upper bound of E[α2(n)] is given as

E[α2(n)] = E

∥∥∥∥∥ 1

|K|
∑
k∈K

gk

∥∥∥∥∥
2
 ≤ E

[
‖g‖2 +

σ2
g

|K|

]
(48)

≤ ‖g‖2 +
2σ2

g

Kξa

(e)

≤ ‖g‖2 + σ2
g , (54)

where (e) trivially holds when no less than 2 devices are expected to be active at each round

such that Kξa ≥ 2. By taking the expectation over selected element set ψn, E [V 2(n)] is upper

bounded as below:

E
[
V 2(n)

]
= E

[
1

|K|
∑
k∈K

V 2
k

]
= E [Vk] = E

[
1

Sn

Sn∑
s=1

([gco]s −Mk)
2

]

= E

[
1

Sn

Sn∑
s=1

[gco]2s −M2
k

]
≤ E

[
1

Sn

Sn∑
s=1

[gco]2s

]

=
1

D

D∑
d=1

[gk]
2
d

D

Sn

∑
ψn∈Ωn

I{d ∈ ψn}
|Ωn|

=
1

D
‖gk‖2 D

Sn

(
D−1
Sn−1

)(
D
Sn

) =
1

D
‖gk‖2 ≤ 1

D
(‖g‖2 + σ2

g),

(55)

where Mk = 1
Sn

∑Sn

s=1[gco
k ]s is the mean of local sparse gradient. Building on the analysis

above, E[α2(n)] ≤ DΓ(n) and E[V 2(n)] ≤ Γ(n) holds if the upper bound of GSI is chosen as

Γ(n) ≥ 1
D

(‖g‖2 + σ2
g). Last, the upper bound for CSI can be simply obtained by (48).

Proof of Lemma 6 is completed.
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