
1

Real-Time Model-Based Quantitative Ultrasound
and Radar

Tom Sharon, Yonina C. Eldar Fellow, IEEE

Abstract—Ultrasound and radar signals are highly benefi-
cial for medical imaging as they are non-invasive and non-
ionizing. Traditional imaging techniques have limitations in terms
of contrast and physical interpretation. Quantitative medical
imaging can display various physical properties such as speed
of sound, density, conductivity, and relative permittivity. This
makes it useful for a wider range of applications, including
improving cancer detection, diagnosing fatty liver, and fast stroke
imaging. However, current quantitative imaging techniques that
estimate physical properties from received signals, such as Full
Waveform Inversion, are time-consuming and tend to converge
to local minima, making them unsuitable for medical imaging.
To address these challenges, we propose a neural network based
on the physical model of wave propagation, which defines the
relationship between the received signals and physical properties.
Our network can reconstruct multiple physical properties in less
than one second for complex and realistic scenarios, using data
from only eight elements. We demonstrate the effectiveness of
our approach for both radar and ultrasound signals.

Index Terms—Deep learning, Full Waveform Inversion, med-
ical imaging, model-based, quantitative imaging, radar, ultra-
sound.

I. INTRODUCTION

MDEICALimaging constitutes a non-invasive method to
see inside the human body and improve diagnoses,

treatment and monitoring of diverse medical conditions. Ultra-
sound (US) and radar are two primary signals for this purpose
allowing non-ionizing, non-invasive, and accessible medical
imaging. The image is created based on the received signals,
referred to as Channel Data (CD), created from reflections
from the medium by the transmitted US or radar signals.
Standard imaging is based on beamforming algorithms such as
Delay-And-Sum (DAS) beamforming that applies a weighted
sum over the receiving signals, after an appropriate delay
based on the receiving array geometry [1], [2]. These methods
often have limited resolution and contrast, and lack physical
interpretation.

Quantitative imaging displays different physical properties
of each pixel of the scanned medium. For instance, since ma-
lignant tumor cells have higher Speed of Sound (SoS) values
than benign cells [3], a quantitative image of the SoS values
of the scanned medium may allow better cancer detection.
Additionally, density quantitative imaging is beneficial for
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fatty liver disease treatment as it allows better quantification
of the fat percentage of the liver [4]. Previous studies [5], [6],
[7] also highlighted the importance of quantitative imaging of
the brain, specifically for cost-effective and fast stroke imaging
and classification.

In order to achieve quantitative imaging, a non-linear In-
verse Scattering Problem (ISP) needs to be solved which is the
problem of determining the characteristics of an object, based
on data that is scattered from it. There are known iterative
optimization methods, based on gradient descent, such as the
Full Waveform Inversion (FWI) and the Nonlinear Waveform
Inversion (NWI) for solving the ISP [8], [9]. However, these
techniques are time-consuming and tend to converge to lo-
cal minima. In addition, these algorithms often diverge for
nonhomogeneous background of the scanned medium (large
disparity in the physical values), making them unsuitable for
medical imaging [10].

Recently deep learning methods were suggested for solving
the ISP to achieve real-time results and to avoid converging
to local minima. To succeed in learning the complex relation
between the CD and the physical properties mappings, it was
suggested to use model based deep learning approaches which
combine a known model in the training or network design
[11], [12]. Model-based approaches are known to lead to more
accurate networks while requiring fewer learned parameters
[13], [14]. To address the ISP, we can incorporate the known
model of the wave propagation equation, which calculates the
CD given the physical properties of the medium. However,
previous works have several limitations which have precluded
their adoption in real-time systems, as we explain in the next
subsection. Here, we present a neural network based on the
physical model of wave propagation that reconstructs in real-
time physical properties mappings from either radar or US
signals, using only eight elements and for diverse transmission
setups.

A. Literature Review

Various model-based deep-learning approaches have been used
to solve the ISP and can be classified into three categories
based on their design [11]. The first category consists of
networks that enhance the reconstructed images produced
by conventional physical methods [15]. The second involves
networks that impose physics constraints, such as in the
training loss [16], [17]. The third category comprises networks
that are designed based on the physics model itself. This
type of network benefits from the known physics model, as
the network only needs to learn the unknown relationships
between physical properties and the CD, rather than learning
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the physics model from scratch. Examples of these networks
include the method proposed in [18] which uses a U-Net to
reconstruct SoS maps for seismic data. The network’s input
in each layer includes the SoS estimation map and a set of
gradient calculations for each source. However, this approach
tends to lead to errors due to implementation approximations
of the multiple gradient calculations and incurs long computa-
tional time. Furthermore, the network needs 200 elements for
the received CD. In [19] the authors use a CNN to learn the
proximal operator in the Primal-Dual Hybrid Gradient (PFHG)
method, and a U-Net based frequency-to-image domain net-
work to replace the adjoint operator calculations. However,
the network is based on the paraxial approximation which
assumes that the elements are around the object in a circle, and
therefore are not suitable for different transmission setups such
as a linear probe. Transmission setups of elements in different
sides or surrounding the object are assumed in most of the
works for radar or US signals, which created symmetries in
the received signals and made the reconstruction process easier
[20], [21], [17], [22], [23], [7], [24], [25].

Other techniques for solving the ISP involve defining the
reconstructed physical property as a learned property in a wave
propagation model, such as SWINet for the reconstruction of
SoS for seismic data [26] or in [27] for relative permittivity.
These methods may be less stable due to the dependency on
the Partial Differential Equation (PDE) in the backpropagation
calculations and require a significant number of elements (for
instance, 384 receivers’ data for SWINet). Moreover, these
methods need to be trained for each example, making them
unsuitable for real-time imaging.

For radar signals, there are works that used the Supervised
Descent Method (SDM) to learn a set of descent directions
instead of computing the Fréchet derivative and gradients for
each iteration [25]. However, these techniques suffer from
relatively slow prediction due to multiple calculations of the
forward model in the prediction. Other approaches unroll
and learn simultaneously the forward and inverse models
[24]. However, the background medium (the Green’s function)
needs to be known a priori, and for medical imaging, the
properties are not known precisely in advance.

Most of the previous methods reconstruct only one property,
such as SoS for US or relative permittivity for radar. Recon-
struction of multiple properties is challenging due to the trade-
off effects between different parameters and different orders
of amplitudes in the wave-field, which make the inversion
ill-conditioned [22]. In addition, some model-based networks
were based on a model in the network design which relates
only to a specific property such as SoS in [28], where the
authors use the coherency measure which needs to be calcu-
lated for multiple windows and for each possible discrete SoS.
Many techniques also assume only one transmission, which
limits the input data and network performance. In the radar
domain, previous approaches mainly used a time-harmonic
transmission setup, which is not suitable for pulse transmission
setups as used in US imaging [7], [24], [25]. Finally, previous
methods were typically tested on simple synthetic tests such
as MNIST or various circular shapes [7], and not on realistic
clinical settings, or needed specific hardware [29].

In summary, prior studies utilizing model-based deep learn-
ing methods to address the ISP in medical imaging are not
applicable to broader transmission setups, such as non-time-
harmonic transmissions or setups with elements that do not
encompass the objects, such as linear probe setups. Moreover,
these previous approaches typically use a large number of
elements, often dozens or hundreds, and mainly reconstruct
only a single property.

B. Contribution

We introduce MB-QRUS, which stands for Model-Based
Quantitative Radar and US, a model-based deep learning
method for real-time reconstruction of multiple physical prop-
erties mappings from either US or radar signals. Our method
is based on an unfolding mechanism [14] of FWI with learned
gradients according to a U-Net based block. We use the residu-
als between the measured CD and the predicted CD, according
to physical property estimation and the physical model of wave
propagation, to learn the gradients which are often used to
update the physical properties estimation. We also introduce
a new time-domain and tensor representation of the input
measured CD which captures the spatial representation of the
CD. We compare our network results to FWI [8]. To the best
of our knowledge, this is the only available method in the
literature currently that allows recovering multiple quantitative
physical properties mapping, for general transmission setups
in US and radar.

Our approach leads to a good reconstruction of two physical
properties with lower NRMSE (56% for US, 67% for radar),
higher SSIM (7.5% for US, 11% for radar), and higher
PSNR(7.1% for 433% for radar), which means the network
succeeds to reconstruct the pixels values, besides the shape
and positions of the objects. Moreover, our method uses data
from only eight elements in contrast to previous methods
which need dozens or hundreds of elements. Our network
produces real-time results in less than 1 second for complex
scenarios including noise in the input CD or nonhomogenous
medium background, and realistic data. Finally, our approach
allows using diverse transmission setups such as elements that
surround the object or a linear probe.

The rest of the paper is organized as follows. Section II
formulates the ISP we aim to solve and presents an iterative
algorithm based on FWI which is used for comparison. In
Section III we present our deep learning approach, based
on the wave propagation model, to achieve real-time recon-
struction of multiple physical properties from either US or
radar signals. Section IV demonstrates the performance of our
method, compared to FWI, for both radar and US signals.
Discussion, future directions, and conclusions are presented
in Section V.

II. PROBLEM FORMULATION AND BACKGROUND

A. Problem Formulation

We aim to reconstruct multiple physical properties of a
scanned medium from radar or US signals. The transmission
setup includes nc elements in a known position (antennas for
the radar case and piezoelectric elements for the US case),
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and np known non-interfering pulses, see Fig. 1(a)-(f). We
focus on a setup where each element transmits one pulse and
the rest of the elements receive the scattered field. The next
pulse is transmitted after a time interval of T nano-seconds.
This setup is suitable for the transmission process in medical
imaging applications that employ radar or US technology [1],
[2].

The scattering field, denoted by u(t, x, z), changes in space
and time and is related to the physical properties of the scanned
medium by the wave propagation equation. For US, the wave
propagation equation is expressed as:

c20ρ0

(
∂

∂x

(
1

ρ0

∂u

∂x

)
+

∂

∂z

(
1

ρ0

∂u

∂z

))
+ S =

∂2u

∂t2
+ 2D

∂u

∂t
+D2u,

(1)

where S(t, x, z) represents the source pulse, c0(x, z) is the
SoS of the medium, ρ0(x, z) is the density of the medium, and
D(x, z) is the artificial additional damping term to decrease
the needed size of the reconstructed space, called Perfectly
Matched Layers (PMLs) [30]. For brevity, in (1), we omitted
the brackets in S, c0, ρ0 and D.

To obtain a discrete version of the wave propagation equa-
tions we use a discrete grid with size nx × nz (Fig. 1(a),(d))
and a discrete form of the time and spatial derivatives [30], [8].
The discrete-time derivative is given by a weighted average of
the past time samples, and the discrete-spatial derivative is
given by a convolution with the Laplacian or gradient kernel.
We denote U,S ∈ Rnx×nz×nt as the discrete scattering field
and source pulse, respectively, where nt = T

dt and dt is the
inverse of the sampling rate. We define, U[t] ∈ Rnx×nz as the
discrete scattering field for the t’th time step (similarly S[t]).
The discrete US wave propagation equation, after organizing
the equation such that the scattering U[t], is dependent on the
previous time steps, is given by
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)
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]
.

(2)

Here ⊙ is element-wise multiplication, * is the convolution
operator, ∇D is the discrete gradient filter, ∇2

D is the discrete
Laplacian filter, 1 ∈ Rnx×nz is a matrix of all ones, 2 ∈
Rnx×nz is a matrix of all twos, ∆2

t ∈ Rnx×nz is a matrix
with the value dt for each entry, C,Q,D ∈ Rnx×nz are the
discrete SoS, density, and damping, respectively.

For radar signals, we get a similar expression with slight
changes due to the electromagnetic wave propagation instead
of sound waves:

∇2u =
ϵr
c20

∂2u

∂t2
+ σµ0

∂u

∂t
+ S, (3)

where ϵr(x, z) is the relative permittivity of the medium,
σ(x, z) is the conductivity of the medium, c0, and µ0 are the

Fig. 1. Illustration of the grid setup and data creation. (a)-(c) show an example
of the grid setup of a brain with a stroke and 8 antennas surrounding the
brain, while (d)-(f) show an example of a US setup with a linear probe and
two circles with different physical properties. (b)-(c) demonstrate the wave
propagation from one antenna over the grid for two successive time samples,
similarly to (e)-(f) for US. (g) displays the creation process of the data, when
the CD is created from the simulated physical properties, a known pulse (that
defines S(t, x, z)), and utilizing the wave propagation (2) and, (4).

velocity of light and the permeability of the medium (which
are constant over the grid), respectively. For brevity, in (3),
we omitted the brackets in S, u, c0, µ0, ϵr and σ.

The discrete version of (3), similar to the discretization of
the wave propagation equation for the US case, is given by:

U[t] =
(∆tC)2

ϵr
⊙

(
∇2

D ∗ U[t− 1]
)
+

(
2− σµ∆tC

2

ϵr

)
⊙

U[t− 1] +

(
σµ∆tC

2

ϵr
− 1

)
⊙ U[t− 2]−

(
(∆tC)2

ϵr

)
⊙ S[t].

(4)

Here C ∈ Rnx×nz is a matrix consists of the value co in each
entry, ϵr, σ ∈ Rnx×nz are the discrete relative permittivity and
conductivity, respectively.

We define the measured CD for the p’th transmission as
M[p] ∈ Rnt×nc which consists of nt time samples and nc

receiving channels. It is obtained by a linear mapping, from
the scattering field U using a mapping R̃ from the spatial
signal space to the CD space as follows:

M[p] = R̃U. (5)

This mapping can be used for each transmission to obtain the
measured CD M ∈ Rnp×nt×nc .

Our goal is to reconstruct from the measured CD M, which
is related to the scattering field U according to (5), the physical
properties mappings θj ∈ Rnx×nz for j = 1, ..., nm where nm

is the number of physical properties. In our case nm = 2 and
θj represent the SoS and density for the US case, or relative
permittivity and conductivity for the radar case, see Fig. 2.

We aim to design a neural network for this purpose with an
unfolding mechanism, that will learn the gradient directions
in FWI, based on predicted channel data according to the
physical model (2) or (4). Using this architecture we not
only reconstruct the location and shape of the scanned objects
but also achieve precise imaging of their physical properties
values.
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Fig. 2. Inference time. The goal of the network is to reconstruct the physical
properties mapping from the CD signals.

B. Full Waveform Inversion

Full Waveform Inversion (FWI) is an iterative optimization
algorithm based on gradient descent to solve the ISP and re-
construct the physical properties mappings from the measured
CD, using the knowledge of the wave propagation equations
(2), (4). We denote the predicted CD as M̂ = F ({θi}nm

i=1),
where F (·) represents the forward wave propagation equations
(2) or (4), and θi ∈ Rnx×nz is the i-th physical property. FWI
(and similar algorithms such as NWI [8]) try to minimize the
loss between the predicted and measured CD, given by the
equation:

L =
1

2
||M̂−M||22. (6)

The loss function in (6) depends on the predicted physical
properties of the scanned medium. In some cases, a regu-
larization term is added to the loss function to improve its
performance resulting in:

L({θi}nm
i=1) =

1

2
||M − F ({θi}nm

i=1)||
2 + λR({θi}nm

i=1). (7)

Here, {θi}nm
i=1 are the predicted physical properties, and

R({θi}nm
i=1) is the regularization with weight λ.

At each iteration, the FWI algorithm computes the deriva-
tives of the loss function with respect to the physical properties
and uses this information to update the estimation of the
physical properties. The derivative calculation can be done
using methods explained in [8].

FWI based methods are time consuming because of their
iterative nature and can take more than 20 minutes and
up to hours, depending on the grid size and the CD size.
Additionally, FWI algorithms tend to converge to local minima
as a result of the high dependency on the choice of the initial
guess. The methods also tend to diverge when applied on
nonhomogeneous background, meaning when there is large
disparity in the physical properties pixels values θ. This
phenomenon is due to the use of the wave propagation PDE
model in (7) which is sensitive to small changes in the input
physical properties [10], [19]. Therefore, these techniques are
generally not suitable for medical imaging applications and
are currently not implemented in medical imaging systems.

III. MODEL-BASED QUANTITATIVE RADAR AND
ULTRASOUND

We present MB-QRUS, a model-based deep learning method
to reconstruct multiple real-time physical properties mappings
from radar or US signals. Our network is designed to learn the
gradient ∂L

∂θi
based on the FWI loss (6). We denote G = ∂L

∂θi
∈

Rnm×nx×nz and learn it using an U-Net based block, as in Fig.
3. Our network incorporates in its design the physical model
of wave propagation (2) to calculate a predicted CD M̂ ∈
Rnp×nt×nc and uses the differences between the measured and
predicted CD, M − M̂, as input to the U-Net block to learn
G. To calculate the predicted CD, a set of initial mappings
{θ0j}

nm
j=1 ∈ Rnx×nz for nm physical properties are given as

input to our network, as well as the measured CD. The initial
guesses were chosen, similarly to FWI initialization, to be the
average physical properties of the background medium, which
is suitable for medical applications.

By adopting this particular architecture, we have replicated
the functionality of known optimization methods such as FWI.
However, rather than computing the gradient tensor for the loss
during each iteration, which entails calculating the difference
M−M̂, we learned the tensor G related to this loss, therefore,
achieving convergence in fewer steps and data, and to a more
accurate solution.

An additional novelty in our architecture is a spatial rep-
resentation of the CD tensor in the time domain, inspired by
FWI. We work with a three-dimensional CD, in contrast to
a flattened vector used in previous works, and we utilize the
time domain instead of using discrete multi-frequency data
as in previous works [19], [7], [24], [25]. This allows us
to refer to the time samples nt and receiving channels nc

dimensions as spatial dimensions in the convolution layers,
whereas the transmission dimension np is equivalent to the
channels in the convolution layers. The time and receiving
channels represent information from different pixels in the
grid, therefore referring to them as spatial dimensions enables
us to benefit from known methods in convolution networks
for images, such as stride convolution for learning the grid
properties from the overall CD information.

The U-Net block for learning the tensor G is composed of
stride convolution, batch normalization, dropout layers, and
skip connection, each with unique benefits for processing CD
for medical imaging. The stride convolutions increase the
receptive field of the network, allowing it to have a global
view of the input. This enhances the network’s ability to
learn the grid properties from the overall CD information by
analyzing data from non-neighboring receiving channels and
time samples. Batch normalization is a powerful technique that
addresses the problem of exploding and vanishing gradients
when training networks that involve PDEs [31]. We used
dropout layers with 0.5 probability to avoid overfitting which
can occur when the network learns the statistical noise of the
training data. Skip connections help the network learn from a
global view while preserving fine details and can also mitigate
the problem of vanishing gradients, making them beneficial
for learning complex relations between input CD and output
physical properties mappings.



5

Fig. 3. An Example of MB-QRUS architecture for US case. The inputs to the network are initial guesses for the properties and the measured CD. The input
to the U-Net block is the CD differences and the output is the gradient tensor G. The output channels number after each convolution is presented.

The contracting and expansive parts of the U-Net use differ-
ent activation functions. Leaky ReLU activation is applied in
the contracting part to gradually reduce negative values, while
ReLU activation is used in the expansive part for the convolu-
tion layers. The last convolution layer in the U-Net block has a
1×1 kernel to sum over the different transmission channels and
output the gradient tensor G for multiple physical properties.
Additionally, We focus on a square grid (nx = nz), and since
nt > nx while nc < nx, we first apply a bilinear interpolation
rescaling operator to achieve square spatial dimensions for the
input to the U-Net block, which leads to square output spatial
dimensions for the gradient tensor G.

The update step for iteration i + 1 is calculated for each
property θj according to:

θi+1
j = ReLU(θij −Gj), (8)

where Gj ∈ Rnx×nz is the gradient matrix for the j-th physical
property. We repeat (8) for L layers. We used a loss combined
from the Mean-Squared Error (MSE) between the Ground
Truth (GT) physical properties and the predicted ones and a
Sobel regularization for each predicted property [8]:

Loss =
nm∑
j=1

αj ||θj − θ̂j||22 + βjR(θ̂j), (9)

where θj and θ̂j are the GT and predicted j-th physical
property, respectively. Here R(θ̂j) is a Sobel regularization on
the j-th predicted property. A scaling factor for each property
to achieve a similar influence effect in the back-propagation
process is denoted as αj , and βj is a scaling factor for the
influence of the regularization of each property. Additionally,
we normalized the training set of the input-measured CD
according to the mean and standard deviation of the flattened
vector to achieve better performance in the learning process.
The training process is summarized in Algorithm 1 and the
inference process is summarized in Algorithm 2.

Algorithm 1 Training MB-QRUS

Initialization of UNet weights and biases
Initialization of αj , βj for j = 1, ..., nm

for epoch=1 to epochs do
Inputs:

M ∈ Rnp×nt×nc the measured CD
θ0j ∈ Rnx×nz for j = 1, ..., nm set of initial

properties
for i = 1 to L do

M̂ = F ({θi−1
j }nm

j=1) predicted CD from the physical
model
G = UNet(M − M̂)
θij = ReLU(θi−1

j −Gj) for j = 1, ..., nm

end for
Loss =

∑nm

j=1 αj ||θLj − θ̂j||22 + βjR(θLj ) where θ̂j is the
GT property
Update Unet weights and biases using an optimizer.

end for
Output: trained MB-QRUS model

Algorithm 2 MB-QRUS inference

Inputs:
M ∈ Rnp×nt×nc the measured CD
θ0j ∈ Rnx×nz for j = 1, ..., nm set of initial properties

for i = 1 to L do
M̂ = F ({θi−1

j }nm
j=1) predicted CD from the physical

model
G = UNet(M − M̂)
θij = ReLU(θi−1

j −Gj) for j = 1, ..., nm

end for
Output: {θLj }

nm
j=1
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IV. NUMERICAL RESULTS

In this section we evaluate the performance of our method,
using US and radar. The training set consists of normalized
CD from 1000 images for each dataset, and the validation
set consists of CD from 200 images, normalized according to
the mean and variance of the training set. We used the loss
function as in (9) with nm = 2. For the US case, j = 1 and
j = 2 respectively correspond to SoS and density whereas for
the radar case j = 1 and j = 2 respectively correspond to
conductivity and relative permittivity. Additionally βj = 0 for
the radar scenario. We train all models on a single NVIDIA
Quadro RTX8000 GPU with 45GB of memory, and all the
experiments are implemented in Pytorch 1.11.0. For both
US and radar cases the ADAM optimizer is used, with a
learning rate of 0.0001, and a CosineAnnealingLR scheduler
with Tmax = 20 and ηmin = 0. We use a batch size of
8 for US cases and 16 for radar cases. Each epoch takes
approximately 70 seconds for training and we train each
network until convergence and without overfitting.

We compare our method to the non-learning optimization
based FWI algorithm with loss defined in (7) with Sobel
regularization operator that enforces soft edges as defined
in [8]. The FWI was initialized with the same values as
MB-QRUS of the average scanned medium background. In
addition, we used 150 iterations for the algorithm to converge.
We did not compare our method to other neural networks
because, to the best of our knowledge, there is no such network
that can reconstruct multiple properties and is suitable for
different transmission setups including a linear probe.

Three different numerical metrics are used to evaluate our
method performance, compared to FWI. First we calculate the
Normalized Root Mean Squared Error (NRMSE) to evaluate
the accuracy of our physical properties reconstruction, follow-
ing previous works on SoS estimation [8], [32]. Second, we
examined the Peak Signal-to-Noise Ratio (PSNR) between
the reconstructed and GT images to evaluate the quality of
the reconstructed properties mapping. Finally, we consider the
Structural Similarity Index Measure (SSIM), to evaluate the
reconstruction of the shape and size of the scanned objects.
The NMRSE is defined as

NRMSE
(
θ̂
)
=

√∣∣∣θ̂ − θGT

∣∣∣2
F
/ (nxnz)

θmax − θmin
, (10)

where θGT , θ̂ are the GT and reconstructed physical properties,
respectively. Here θmax and θmin are the upper and lower
bounds on the property values, respectively. The PSNR is
defined as

PSNR
(
θ̂
)
= 20log10(θmax)− log10||θ̂ − θGT ||2F , (11)

where θmax is the maximum physical property value in the
GT image. The SSIM is defined as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (12)

where µx is the pixel sample mean of x, µy is the pixel sample
mean of y, σ2

x is the variance of x, σ2
y is the variance of y,

σxy is the covariance of x and y, c1 = (k1L)
2, c2 = (k2L)

2

where L is the dynamic range of the pixels values and k1 =
0.01, k2 = 0.03 by default.

A. Radar Results

For the radar cases, a 30cm×30cm grid is used and discretized
into 50 × 50 pixels. A PML of 9 pixels is used to prevent
reflections from the grid’s edges. The permeability is set to
µ0 = 1.255×10−6 H

m and the speed of light, c0 = 3×108 m
s ,

800 times samples are used with dt = 0.005 s and the Courant-
Friedrichs-Lew (CFL) [33] is verified to ensure convergence
of the numerical equation to a valid PDE solution.

We position placed 8 antennas equally on an ellipse, as can
be seen in Fig. 1(a). Each antenna emits a Gaussian pulse as
the transmission source, with a central frequency f of 1 GHz
according to [34]:

Src(t) = N × sin(2πft)e−
2πt2

0.32 , (13)

with an offset of 10 time samples,
Additionally, the network has only one learned layer (L =

1), but we repeat the update step (8) twice (with the same
learned tensor G). We used the MNIST data set [35] when
the digits were placed randomly inside the grid. The digits
represented scattered objects that mimic blood with a con-
ductivity of 1.582900 S

m and relative permittivity of 61.065,
while the background mimics air with physical properties of
conductivity 0.025 S

m and relative permittivity 1.0006. The
second dataset for the radar case consists of a simulated real
brain slice using MRI scans [36] generated with a random
hemorrhagic stroke, see Fig. 1(g). This complex dataset had
a nonhomogeneous background and simulated a real medical
application [34], [37]. The FWI algorithm and MB-QRUS
were initialized with background average values.

1) Brain slices dataset results: Fig. 4 depicts the recon-
struction results of MB-QRUS compared to FWI and GT,
given 4 test cases of a realistic brain slice with a random
stroke and different orientations. Our method successfully
reconstructs the stroke position, shape and values, in addition
to the brain values and structures, using data from only 8
antennas for different positions and orientations. The stroke
was reconstructed even when it was placed in the middle of
the brain and not near the skull, where the skull causes a sig-
nificant decrease in signal quality. Our approach outperforms
FWI for both conductivity and relative permittivity properties
for all the cases and metrics. Overall, our method attains lower
NRMSE values by 83.53% for conductivity reconstruction,
and by 79.72% for relative permittivity reconstruction. In
addition, our network achieves higher PSNR and SSIM values
by 24.61% and 1150.35% for the conductivity reconstruction,
respectively, and by 3.91% and 467.33% for the relative
permittivity reconstruction, respectively. Our method achieved
better reconstruction of physical properties mappings both in
shape, position, and values in less than 0.3 seconds compared
to more than 13-31 minutes for the competing FWI method.

2) MNIST dataset results: Fig. 5 presents visualization of
our method reconstruction compared to FWI and with respect
to the GT. We show our network’s ability to reconstruct
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Fig. 4. Radar properties reconstruction, by MB-QRUS and FWI compared to the GT for 4 test cases of a realistic brain slice with different orientations and
a random stroke.

Fig. 5. Radar properties reconstruction by MB-QRUS and FWI compared to the GT for 4 cases of a scatter object using MNIST digits shapes (0, 1, 6, and
5), using fixed initialization method.

different scatter objects with undefined and complex shapes
such as the digits 0, 1, 6 and 5 from data of only 8 antennas. It
can be seen in Fig. 5 that the competitive FWI method could
not reconstruct any significant results and got only artifacts
near the antennas’ positions. Our approach takes less than
0.3 seconds to reconstruct the mappings, while FWI takes
more than 900 seconds (15 minutes). Overall, our method
achieves lower NRMSE values by 62.09% for conductivity
reconstruction, and by 34.19% for relative permittivity recon-
struction. In addition, our network attains higher PSNR and
SSIM values by 13.15% and 1777.58% for the conductivity
reconstruction, respectively, and by 1.17% and 309.00% for
the relative permittivity reconstruction, respectively.

B. US Results

For the US cases, a 5cm × 5cm grid is used and discretized
into 100× 100 pixels. A PML of size 10 pixels is applied to
the grid to prevent reflections from the edges. The CFL [33]
is checked to ensure convergence of the numerical equation to
a valid PDE solution, and 240 time samples are used with dt
of 1.4077× 10−7 s.

A simulated transducer array with only 8 elements is
used with two different transmission setups: equally spaced
elements on an ellipse and a linear probe. The transmission
source pulse waveform from each element is a Gaussian pulse
centered at the tc time step, according to the expression:

Src(t) = N × e−f2((t−tc)dt)
2

. (14)

The central frequency of the acoustic pulse, f , is set to 3 MHz
and the shifting of the source time function, tc, is 30 time
steps. The pulse amplitude is multiplied by a normalization
factor, N which is equal to the inverse of the maximum
absolute value of the source pulse, divided by dt2.

We used as a medium synthetic datasets to represent bi-
ological organs in terms of size and shape, see Fig. 1(g).
The first dataset is of random ovals for a fatty liver scenario.
We used physical properties that mimic liver tissue (density
of 1060 kg

m3 and a SoS of 1570 m
s ), while the background

properties represent water (density of 1000 kg
m3 and a SoS

of 1480 m
s ). We initialize the FWI algorithm and MB-QRUS

with the water values. The network has only one layer (L=1).
The second dataset is based on MNIST dataset [35] when the
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digits are placed randomly inside the grid (without the PML
and additional 5 pixels for each direction). The digits shape
represents scatter objects that mimic liver tissue with a SoS
of 1570 m

s and density of 1060 kg
m3 , while the background

mimics water with physical properties of SoS of 1480 m
s and

density of 1000 kg
m3 . The last dataset is based on segmentation

masks derived from authentic CT scans of patients, procured
from Kaggle [38]. We choose layers from different patients
where there is a liver mask, and then upsample them to be
in the grid size. After that we assign a physical properties for
water background with SoS of 1480 m

s and density of 1000
kg
m3 and liver object tissue with a SoS of 1570 m

s and density
of 1060 kg

m3 .

1) Random ovals dataset results: Fig. 6 depicts the re-
construction results of our method compared to FWI and
GT, given 4 test cases: one object with nonhomogeneous
background, noisy CD with additive white noise with a
maximum amplitude of 1% of the maximum value of the
signal, 2 objects with uniform background, and one object for
a linear probe transmission setup. For the first three cases the
network was trained on one random object for each sample
and transmission setup of elements that surround the object.
The network succeeds to reconstruct the objects from data of
only 8 elements even for the nonhomogeneous background or
noisy input CD. Moreover, the network was able to generalize
and reconstruct two objects even though it was trained on
only one object for each sample. Additionally, our network
succeeds in reconstructing the object with a more difficult
transmission setup of a linear probe when there is no infor-
mation about the differences between absorption or regular
continuous propagation of the signals due to different medium
properties. In contrast, FWI was not able to reconstruct any
meaningful image due to the small amount of data. Our
network outperforms the competitive approach for all the
cases, properties, and metrics. Overall, our method attains
compared to FWI lower NRMSE values by 56.33% for SoS
reconstruction, and by 55.43% for density reconstruction. In
addition, our network achieves higher PSNR and SSIM values
by 1.93% and 8.15% for the SoS reconstruction, respectively,
and by 13.15% and 6.10% for the density reconstruction,
respectively.

Our method achieved accurate reconstruction in less than
a second compared to more than 32 minutes for FWI. In
addition, we train an end-to-end network consists of only the
UNet block part which takes as input the measured CD and
output the reconstructed physical properties maps themselves.
The training parameters of the end-to-end UNet and MB-
QRUS were the same, including the use of data from only
8 elements. The UNet only network wasn’t able to learn the
complex relation between the CD signals and the physical
properties mappings and output similar noise mappings as can
be seen in Fig. 6.

We demonstrate our method ability to reconstruct physical
properties mapping, from different level of noise added to the
input channel data signal. We added each time a different
percentage of the maximum value in the overall channel data
tensor to the input signals to the network. This value can

be quite large due to recording of the transmission pulse in
near by elements. An example of reconstruction results can be
found in Fig. 7 which show a reconstruction results up to 4%
of noise.

2) MNIST dataset results: Fig. 8 demonstrates our network
performance compared to FWI with respect to GT. Our method
successfully reconstructs undefined shapes that are suitable
to describe human organs, using data from only 8 elements.
Our approach takes less than 0.2 seconds to reconstruct the
mappings, while FWI takes more than 1200 seconds (20
minutes). For the MNIST dataset, we used a transmission
setup of elements around the objects. FWI results in artifacts
around the positions of the elements as depicted in Fig. 8.
Additionally, it is worth noting the change in scale when
comparing the reconstructed values using FWI, which failed
to produce meaningful data and instead yielded a grid of
pixels with slight perturbations from the initial guesses around
the elements’ locations. Overall, our method achieves lower
NRMSE values by 32.39% for SoS reconstruction, and by
25.22% for density reconstruction. In addition, our network
attains higher PSNR and SSIM values by 0.56% and 5.09%
for the SoS reconstruction, respectively, and by 4.14% and
1.96% for the density reconstruction, respectively.

3) Real liver segmentation maps dataset results: We have
incorporated a realistic more complex evaluation for the US
case, employing liver segmentation masks derived from au-
thentic CT scans of patients, procured from Kaggle [38]. We
trained a model using linear probe transmission setup and a
model with elements in a circle around the liver, both using
only 8 elements. The results show a 65.08% reduction in
the NRMSE, a 1.64% elevation in the PSNR, and a 12.11%
increase in SSIM for the SoS reconstruction. Correspondingly,
the density reconstruction exhibited a reduction of 65.47% in
the NRMSE, a 37.38% increase in the PSNR, and a 19.68%
increase in SSIM compared to FWI. In addition, we achieved
real-time results by less than 0.15 seconds, compared to FWI
which took more than 1778 seconds (almost 30 minutes). A
visual comparison of the reconstructed images is presented in
Fig. 9. This dataset provides a realistic scenario for liver scan
reconstruction, encompassing both the physical properties’
values and the authentic liver shapes. Our network was able to
reconstruct the undefined shapes of real patients’ livers with
high accuracy for both SoS and density mappings, while the
FWI did not output any meaningful results and only some
artifacts (notice the significant difference in scales).

4) Random ovals objects with changing liver values:
To demonstrate further the reconstruction ability of different
changing nonhomogeneous objects values, we create a dataset
with random ovals with a distribution of liver values. The
object was placed on a water background and was created
using a Gaussian filter with different sigma acted on the
homogeneous liver properties object, to create a distribution
of values around the known average physical values. Fig.
10 shows examples of the reconstruction results using 8
elements around the object in a circle. From the left, the
first two examples were created using a Gaussian filter with
sigma of 1.5 for the velocity and 1.8 for the density, and
used for inference a model that was trained using the same
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Fig. 6. US properties reconstruction, by MB-QRUS compared to GT, reconstruction fron a end-to-end UNet and FWI for 4 test cases: 1. single object - noisy
background, 2. noisy CD, 3. two objects, 4. one object for linear probe. For the first 3 cases the network was trained on one random object for each sample
with uniform background and elements surrounding the object. For the 4’th case the network was trained with a linear probe setup.

Fig. 7. An example of reconstruction SoS and density mapping of random
oval with liver properties in a water background with different added noise
level to the input CD signals.

distributions. The third example from the left, was created
using a Gaussian filter with sigma of 3 for the velocity and
density properties, and added Gaussian noise over all the grid
of 1%. A model that was trained using sigma of 1.5 for
the velocity and 1.8 for the density properties was used for
inference. The forth example from the left, was created using
a Gaussian filter with sigma of 3 for the velocity and density,
and used for inference a model that was trained using sigma
of 1.5 for the velocity and 1.8 for the density properties. The
last example from the left was created using a Gaussian filter
with sigma of 1.5 for the velocity and 1.8 for the density
properties, and used for inference a model that was trained
using sigma of 3 for the velocity and density. A transmission
setup of 8 elements that surround the object in a circle was
used. The results show a 65.10% reduction in the NRMSE,
a 1.57% elevation in the PSNR, and a 3.59% increase in
SSIM for the SoS reconstruction. Correspondingly, the density
reconstruction exhibited a reduction of 66.74% in the NRMSE,
a 18.17% increase in the PSNR, and a 6.34% increase in

SSIM compared to FWI. In addition, we achieved real-time
results by less than 0.15 seconds, compared to FWI which
took almost 30 minutes. Our network was able to reconstruct
the changing values objects, with different distributions, while
the FWI did not output any meaningful results and only some
artifacts (notice the significant difference in scales).

C. Real CD from a phantom scan results

One of our work’s novelties is multiple quantitative imaging
results from real measured CD, besides the extensive simu-
lations results. We used a Verasonics research machine for
US scans with a P4-2v linear probe to acquire recorded CD
from the phantoms scans. It is important to mention that the
common US machines that are being used in hospitals today
lack the capability to directly access the receiving scattering
signals (the CD), only allowing access to the standard B-mode
US images after post-processing of the signals. The Verasoncis
research platform allows us to acquire and retain the raw CD
signals from the US scans for subsequent analysis.

In the course of our experimentation, we employed a linear
probe to scan two different phantoms commonly utilized for
human body US research, the 404GS LE and the 403GS LE
from Gammex. The phantom background properties are of the
average human body commonly used for US scans (SoS of
1540 m

s and density of 1030 kg
m3 ) and targets of a pin with a

diameter of 0.1 mm and physical properties of nylon (SoS of
1070 m

s and density of 1150 kg
m3 ). One phantom has only one

such object, and the second has 3 such nylon objects.
We scan the phantoms with a transmission setup of Raylines

when each element transmits the pulse and the rest record
the scattering field. Then we use the data from only the 8
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Fig. 8. US properties reconstruction by MB-QRUS and FWI compared to the GT, for 4 cases of a scatter object using MNIST digits shapes (2 zeros and 2
ones with different orientations).

Fig. 9. US properties reconstruction by MB-QRUS and FWI compared to the GT, for different realistic livers based on segmentation masks from CT scans.
The first two examples from the left are using linear probe transmission setup, and for the rest, the elements are in a circle around the liver.

Fig. 10. US properties reconstruction by MB-QRUS and FWI compared to the GT, for random ovals with changing liver values distribution.
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Fig. 11. The pulse waveform from Verasonics workspace which is used for
the phantom experiment.

middle elements of the probe as input to the network. We
decrease the dt by downsampling the transmission pulse. We
used a downsample of factor 2 (denoted as r) and we checked
the pulse form after the change in sampling rate to ensure
the shape wasn’t corrupted. Additionally, we adjust all the
transmission and network parameters to the ones fitting the
Verasoncis scan taken from the scan workspace. These include
f = 2.72e6 Hz, T= 1

f = 3.6765e-7 s, dt = T
peaks/r = T

16
= 2.2978e-08 s, nt = 520, dx= 0.0001 m, the piezoelectric
elements positions, and the pulse shape (see Fig. 11. For the
dt calculation, we divided T by 16 as we have 16 samples per
period. In addition, we check the wave propagation simulation
and the CFL condition. Finally, we increase the number of
pixels nx to 200 while nz is equal to 100 to ensure enough
space for the objects’ positions.

There are some main differences when working with the real
recorded CD signals compared to the simulative ones. First,
there are large reflections at the beginning of the CD time
samples from the lenses in the probe and the first entrance
to the phantom, see Fig. 12.(a)-(b). These artifacts are not
dependent on the object and therefore can be cut from the
input CD to the network. It is imperative to bear in mind the
necessity of appropriately realigning the reconstruction posi-
tion in light of this excision. For example, if 120 time samples
were removed, with dt = 2.2978e-08 s it means that 2.757e-6
seconds were cut, which are equal to C0 ∗ Tcut = 0.0042m.
Given a spatial resolution of dx = 0.0001 m, a consequent
displacement of 42 pixels along the Z-axis is mandated for
the accurate position reconstruction of the object. It is crucial
to note that retrieval of object reconstruction from this specific
region is unattainable, as the corresponding data is discarded
due to its inherent corruption caused by substantial reflections.
Additionally, Verasonic mentions in their manual that any form
of image is unachievable within this area

Second, there is much more noise in the real recorded CD
signals. To remove the noise, we perform a low-pass filter
(LPF). We choose the cutoff frequency to be 3.8 × 106 Hz
and perform the butter LPF with order 6. Fig. 12.(c) presents

the filtered signal after the LPF.
Finally, the simulative CD that were used for training and

the real measured ones have different ranges of intensity, see
Fig. 12.(c)-(d). To overcome this difficulty, we normalized the
real recorded CD to be in the same order of ranges as the
simulative ones that were used in training.

The reconstruction results using our approach compared to
FWI and GT are shown in Fig. 13 as a proof-of-concept
of our method’s performances on real recorded CD. We
emphasize a remarkable fact of our findings: our network,
trained on data from a single object per example, demonstrated
an exceptional capacity to accurately reconstruct the shapes,
positions, and properties of three distinct objects within the
using real recorded receiving CD signals. This underscores the
versatility and robustness of our approach. Additionally, for the
second phantom with 3 objects, the competitive FWI approach
diverged. At the bottom of Fig. 13, there are the conventional
B-mode US images generated by the machine utilizing data
from 128 elements. The B-mode images show only the shape
and position of the objects and not the different physical
properties of the scanned medium, as can be seen using our
method, which utilizes data from only 8 elements and not 128.
Overall, our method shows promising reconstruction results
using real CD and besides the simulative ones.

V. DISCUSSION AND CONCLUSION

MB-QRUS provides a real-time method for quantitative phys-
ical properties imaging from different signals. Our approach
integrates the model of wave propagation into the network
design to reconstruct mappings from different transmission
setups, including the use of a linear probe. Additionally, we
utilize a U-Net based block to achieve more accurate values
reconstruction for complex scenarios including realistic brain
simulations and real measured phantom data. By leveraging
the power of wave propagation modeling, spatial time rep-
resentation, and the U-Net’s capabilities, our network allows
reconstruction from data of only eight elements. The versatility
of our method, including reconstruction from either radar or
US signals and advanced transmission setups including a linear
probe paves the way for medical quantitative imaging.

Our network mimics the FWI algorithm but learns the
gradients from less data. We examine adding to the loss
in (9) also a MSE loss between the measured (input) CD
and the predicted one according to the network properties
reconstruction and the wave equations ((2), (4)), similarly to
the FWI loss (7). However, adding this loss to the training
process caused a small degradation in the network performance
and even a divergence in the learning process. This can be a
result of the use of the PDE in the backpropagation due to the
calculation of the predicted CD in the loss, which is unstable
and can lead to exploding values.

We perform diverse ablation studies as increasing the num-
ber of elements used to transmit and record the receiving
signals, removing the regularization, or changing the initial
guesses type. First, we analyze the impact of initial guess types
on the network’s performance during both the training and test
phases. The fixed initialization in training generally results in
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Fig. 12. Examples of the real measured CD after the cutting and LPF compared to an example of the simulative one. (a) displays the recorded signal from
one element for the first transmission, with the large artifact reflection at the beginning. (b) shows the signal after removing of the first 120 time samples. (c)
presents the real measured CD after performing the LPF, and (d) displays an example of the simulative CD for comparison.

Fig. 13. The reconstructed results of SoS and density mappings for two different phantom scans using MB-QRUS and FWI compared to GT. On the bottom
row is the B-mode images using Verasonics algorithm for each case. The objects are circled in red.

sharper reconstructions, particularly noticeable in the case of
MNIST digit reconstruction or the stroke itself, irrespective
of the initialization type during test time. In addition, the
fixed initialization option appears to be more resilient to
noise in the CD. However, the random initialization options
yield better numerical results in terms of SSIM and PSNR
(25.39% compared to 0.71% and 29.37% compared to -6.04%
for density reconstruction, respectively. 316.93% compared to
39.11% and 13.15% compared to -14.88% for conductivity,
respectively. For permittivity, 93.28% compared to 66.41% and
1.17% compared to -0.63%, respectively. All the percentages
are improvements of MB-QRUS results compared to FWI for
using the same initialization).

Additionally, we used the brain slices dataset with radar

signal to examine the influence of the number of elements on
the results. As the number of elements increased the recon-
structed stroke was slightly more defined, and the numerical
metrics improved slightly. However, the changes were not
significant. Last, regarding Sobel regularization, we noticed
slightly improved reconstruction results for the noisy CD case
using Sobel regularization. Numeric metrics using US signals,
compared to FWI, reveal a 6.85% SSIM improvement for SoS,
offset by minor PSNR and NRMSE reductions (0.13% and
12.64% respectively). Density reconstruction benefits mod-
erately from Sobel regularization, showing 1.62% NRMSE
reduction, 0.71% PSNR increase, and 2.79% SSIM improve-
ment. We want to mention that the metric results vary for
different examples and cases and overall, Sobel regularization
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contributes slight enhancements but not significantly.
Our method can be extended to a reconstruction of more

physical properties, by using a different wave propagation
equation that includes those properties. In addition, the method
can be extended to the use of CD from different signals, such
as seismology and photoacoustics, by adjusting the used wave
equations. For future work, we intend to extend our method re-
sults using CD from real phantom measurements for complex
phantom and scenarios, including using different transmission
setups. Additionally, we intend to acquire CD from patients’
measurements for diverse applications, for example, patients
who suffer from fatty liver disease, and examine our approach.
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