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The use of fluorescent molecules to create long sequences of low-density, diffraction-limited im-

ages enables highly-precise molecule localization. However, this methodology requires lengthy

imaging times, which limits the ability to view dynamic interactions of live cells on short

time scales. Many techniques have been developed to reduce the number of frames needed

for localization, from classic iterative optimization to deep neural networks. Particularly, deep

algorithm unrolling utilizes both the structure of iterative sparse recovery algorithms and the

performance gains of supervised deep learning. However, the robustness of this approach is

highly dependant on having sufficient training data. In this paper we introduce deep unrolled

self-supervised learning, which alleviates the need for such data by training a sequence-specific,

model-based autoencoder that learns only from given measurements. Our proposed method

exceeds the performance of its supervised counterparts, thus allowing for robust, dynamic

imaging well below the diffraction limit without any labeled training samples. Furthermore,

the suggested model-based autoencoder scheme can be utilized to enhance generalization in

any sparse recovery framework, without the need for external training data.

1 Introduction

The resolution limit of optical imaging systems was long considered to be determined by Abbe’s

diffraction limit, which is hundreds of nanometers at best for modern light microscopes. When

dealing with labeled samples, like in fluorescence microscopy, one may overcome the diffraction

limit by distinguishing between the photons coming from two neighboring fluorophores [1]. One

way to distinguish neighboring molecules, is by utilizing photo-activated or photo-switching fluo-

rophores to separate fluorescent emission in time; this is the basis for Single Molecule Localization

Microscopy (SMLM) techniques such as Photo-Activated Localization Microscopy (PALM) and

Stochastic Optical Reconstruction Microscopy (STORM) [2, 3]. These methods take a sequence

of diffraction-limited images, produced by a sparse set of emitting fluorophores with minimally
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overlapping point-spread functions (PSFs). This allows for the emitters to be localized with high

precision by relatively simple post-processing. This enables imaging sub-cellular features and or-

ganelles within biological cells with unprecedented resolution. The low emitter density concept

requires lengthy imaging times to achieve full coverage of the imaged specimen on the one hand,

and minimal overlap between PSFs on the other. Thus, this concept in its classical form has

low temporal resolution, limiting its application to slow-changing specimens and precluding more

general live-cell imaging.

To circumvent the long acquisition periods required for SMLM methods, a variety of techniques

have emerged, which enable the use of a smaller number of frames for reconstructing the 2-D

super-resolved image [4, 5, 6, 7, 8, 9, 10, 11]. These techniques take advantage of prior information

regarding either the optical setup, the geometry of the sample, or the statistics of the emitters. In

[4, 5], molecule localization is performed via frame-by-frame recovery using sparse coding techniques

[12, 13]. Super-resolution optical fluctuation imaging (SOFI) employs high-order statistical analysis

(cumulants) of temporal fluctuations [6] to enhance spatial resolution by reducing the effective point

spread function size based on the square root of the cumulant order. However, the use of statistical

orders higher than two is limited due to signal-to-noise ratio (SNR), dynamic range expansion,

and temporal resolution considerations, collectively resulting in considerably lower spatial resolu-

tion than that achieved by PALM and STORM techniques. Solomon et al. suggested combining

sparse recovery principles with SOFI, resulting in a sparsity-based approach for super-resolution

microscopy from correlation information of high emitter-density frames, dubbed SPARCOM [7, 8].

SPARCOM capitalizes on sparsity within the correlation domain while assuming that the blink-

ing emitters are uncorrelated across both time and space. The use of SPARCOM was shown to

increase the number of detected emitter locations when compared to sparse recovery performed

directly on the signal itself [14], leading to notable enhancements in both temporal and spatial

resolution when compared to its counterparts. However, SPARCOM requires adjustment of opti-

mization parameters and explicit knowledge of the impulse response of the imaging system. It is

also computationally expensive and converges slowly.

Deep learning approaches have overcome some of these disadvantages [10, 11, 15, 16]. One such

approach is Deep-STORM [10], which takes high-emitter-density frames as inputs and employs

a U-net architecture to reconstruct a super-resolved image. It leverages prior knowledge about

the optical setup by training on a dataset generated through simulation with the matching op-

tical parameters. However, as demonstrated in the results section, Deep-STORM’s performance

deteriorates when applied to test data with dissimilar imaging parameters compared to those seen

during training. Additionally, Deep-STORM has many trainable parameters and lacks an easily

interpretable structure, which could be particularly valuable in biological contexts. An alterna-

tive deep learning technique is DECODE (deep context dependant) [11], which uses information

2



from multiple consecutive frames to predict the probability of detection, along with the sub-pixel

localization and localization uncertainty of each detected emitter. Similar to Deep-STORM, it is

also trained via simulator learning: the training set is comprised of random ground-truth (GT)

emitter coordinates and matching synthetic images simulated from a forward model of the image

formation process. DECODE allows for 20-fold improvement in prediction speed and reduces the

localization error up to twofold compared to Deep-STORM, thanks to the use of temporal context

and continuous sub-pixel coordinates instead of super-resolved voxels. However, as in the case of

Deep-STORM, it relies on an accurate PSF model and proper parameters. In cases where there

are substantial differences in imaging parameters, artifacts dominate the model’s predictions, as

shown in the results section.

The limitations of learning-based techniques can be overcome by taking advantage of both the

interpretability of iterative techniques and the flexibility of deep learning, via algorithm unrolling

[17, 18]. Algorithm unrolling replaces the iterations of iterative algorithms with neural networks

which perform the same mathematical operation. By doing so, parameters which would have to

be specified explicitly or tuned empirically are learned automatically, and relevant context ignored

by the algorithm may be incorporated into the learned model. Gregor and LeCun [19] applied the

unrolling framework to the Iterative Shrinkage and Thresholding Algorithm (ISTA), resulting in

Learned ISTA (LISTA). For a given number of iterations/layers, the trained LISTA network obtains

lower prediction error than ISTA, and achieves faster convergence. Dardikman-Yoffe et al. have

recently incorporated LISTA into SPARCOM, resulting in a method called Learned SPARCOM

(LSPARCOM) [20], which outperforms classical algorithms such as SPARCOM and generalizes

better than learning-based methods like Deep-STORM. This was facilitated by the use of a compact

neural network which utilizes a model-based framework, thus eliminating the need for data-specific

training both in terms of structure and imaging parameters. However, similar to previous learning-

based methods, LSPARCOM is trained using supervised learning from simulated data. Thus, as

shown in the results section, recovery performance degrades when the data used to train the model

is generated differently from that being analyzed, leaving the challenge of generalization yet to be

resolved.

We address this challenge by utilizing self-supervised learning. Self-supervised image super-resolution

methods [21, 22, 23, 24, 25] enhance the resolution of images without relying on external high-

resolution reference images or paired training data. Instead, they leverage the information present

within the same low-resolution image to guide the up-scaling process. One of these methods is Zero-

Shot Super-Resolution (ZSSR) [22], which exploits the internal recurrence of information within

a single image by training a compact, image-specific model during testing, using examples exclu-

sively extracted from the provided low-resolution input image. As a result, the trained model is

adapted to the specific settings of the input image. This alleviates the need for prior training data
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and allows for super-resolution on images where the image formation process is unknown and non-

ideal. However, it still requires a rough estimate of the down-scaling kernel, and its generic model

architecture does not adapt well to the SMLM setting, as demonstrated in the results section.

In this paper, we introduce Self-STORM: a new approach to analyze SMLM data, which incorpo-

rates self-supervised learning into the unrolling framework. Self-STORM integrates the previously-

supervised unrolled model (i.e., LISTA) into a model-based autoencoder, which learns only from

low-resolution measurements. This relieves the need for external training samples, resulting in

a learned model that generalizes well, is interpretable, and requires only a small number of pa-

rameters, without relying on explicit knowledge of the optical setup or requiring fine-tuning of

optimization parameters. We compare Self-STORM against formerly known methods for SMLM

image reconstruction: the classical iterative algorithm, SPARCOM [7], leading deep-learning based

localization methods for high emitter-density frames, Deep-STORM [10] and DECODE [11], the

unrolled supervised model, LSPARCOM [20], and a self-supervised technique, based on ZSSR [22].

We do so by analyzing their performance on both simulated and experimental data. The results

show that Self-STORM yields results that are on par with those obtained by other supervised

techniques, on data that is similar to their training sets. The results show that Self-STORM out-

performs any other method for data that is substantially different than the data it was trained on.

Moreover, Self-STORM yields results that are on par with those obtained by other supervised tech-

niques, on data that is similar to their training datasets. In addition, we show that Self-STORM

produces excellent reconstructions for SMLM data with ultra-high emitter densities, thus paving

the way to fast dynamic live-cell imaging. This is made possible by the use of a parameter-efficient

neural network which utilizes a self-supervised model-based framework, thus not requiring labeled

training data of any kind. Furthermore, runtime comparison shows that even though our network

is trained at test time, its train and test runtime is comparable to the test runtime of any other

method. Thus, Self-STORM paves the way to true live-cell SMLM imaging using a compact, inter-

pretable deep network that requires no pre-training, can generalize well to any setting, and requires

a small number of frames over time. Furthermore, the self-supervised model-based framework has

the potential to be applied across various sparse recovery scenarios, offering an effective means to

improve generalization without the need for pre-existing training data. This versatile approach can

be harnessed to enhance performance in diverse contexts where sparse recovery is a fundamental

task, obviating the necessity for prior data-dependent training.

The rest of the paper is organized as follows. In Section 2 we formulate the super-resolution local-

ization task as a sparse recovery problem. In Section 3, we describe iterative sparse recovery and

its limitations, and how algorithmic unrolling may be adapted to address some of its shortcomings.

Section 4 details the proposed integration of self-supervised learning into the unrolling framework,

resulting in Self-STORM. In Section 5, we provide representative results of Self-STORM, com-
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pared to other known techniques for SMLM data analysis. Finally, we discuss both the impact and

limitations of our approach in Section 6.

Throughout the paper, t represents time, x represents a scalar, x denotes a vector, X denotes a

matrix, and IN is the N ×N identity matrix. Subscript xl is the l’th element of x, and xl is the

l’th column of X. Superscript x(k) represents x at iteration k, and AT is the transpose of A.

2 Problem Formulation

In the SMLM setting, we aim to recover a single N × N high-resolution image, corresponding to

the locations of the emitters on a fine grid, from a set of T low-resolution M ×M frames, with

N > M . For each frame i ∈ {1, 2, ..., T}, we consider the field-of-view (FOV) as a high-resolution

grid which is vectorized to form xi ∈ RN2
. The locations of emitters in the sample are modeled by

assigning each element of xi a value related to the number of photons emitted from that location

within the FOV. Given that the imaging sensor has M × M pixels (with N > M), we model

the imaging process as multiplication by a matrix A ∈ RM2×N2
, in which element (i, j) is the

proportion of signal emitted from location j on the high-resolution grid that will be detected at

pixel i of the sensor. Thus defined, the columns of A represent the PSF of the imaging system,

such that column j of A is the PSF of the system for a point source at location j. The (vectorized)

measured image frame is then yi = Axi, with y ∈ RM2
. Note that the non-zero entries in each xi

correspond to the locations of activated emitters. Thus, given y1, ...,yT and A, we aim to recover

x1, ...,xT .The support of the sum over xi yields all emitters’ locations on the high-resolution grid,

which we reshape to our desired N ×N image.

This inference problem can be formulated as a least-squares optimization problem:

x̂i = argmin
x

∥yi −Ax∥22. (1)

Even if A is known perfectly, as long as N > M , A will have a nontrivial null space, so that the

optimization problem is under-determined. Leveraging knowledge of the biological structure of x

can resolve this issue. Specifically for SMLM, we know that each frame contains a sparse set of

light-emitting molecules. Let K be the number of emitters on the N × N grid. The sparsity of

emitters in each frame implies that K << N , and that every column xi of X is at least K-sparse.

This allows us to choose a sparse optimization technique [12][13], such as the well-known LASSO

[26], to recover xi:
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x̂i = min
xi

∥yi −Axi∥22 + λ∥xi∥1. (2)

In particular, by correctly tuning λ, the support of the sum over minimizers {x̂i}i=i...T provides

the locations of all emitters. Since we wish to circumvent long acquisition periods, T should be

as small as possible (i.e., minimal number of frames per super-resolved image), such that we can

successfully recover all emitters’ locations.

3 Algorithm Unrolling for Super-Resolution Microscopy

Once a problem is framed as a sparse optimization of the form (2), one may use an iterative

algorithm such as ISTA to find x̂i, as described in Algorithm 1. Given (2), ISTA estimates x, taking

as inputs the measurement matrix A, the measurement vector yi, the regularization parameter λ,

and L, a Lipschitz constant of ∇∥Axi − yi∥22.

Algorithm 1 ISTA

Input: yi, A, λ, L, number of iterations kmax

Output: x̂i

1: x̂
(1)
i = 0, k = 1

2: while k < kmax do
3: x̂

(k+1)
i = T λ

L
(x̂

(k)
i − 2LAT(Ax̂

(k)
i − yi))

4: k ← k + 1
5: end while
6: x̂i = x̂

(kmax)
i

The operator T λ
L
(·) in Algorithm 1 is the positive soft thresholding operation, which is equal to the

shifted rectified linear unit (ReLU), defined by:

T λ
L
(x) = ReLU

(
x− λ

L

)
= max

{
x− λ

L
, 0

}
, (3)

where x is scalar. When applied to vectors and matrices, T λ
L
operates element-wise. The use of the

soft thresholding operator is derived from (2), as it is the proximal operator of the L1-norm. The

elements of xi represent the intensity of the emitters, and therefore are necessarily non-negative.

Thus, we use a positive soft thresholding operator, rather than a standard soft thresholding operator

(after which the original ISTA is named). Note that the argument of T λ
L
(·) can be rewritten as the
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sum of matrix-vector products with y and x̂
(k)
i :

x̂
(k)
i − 2LAT (Ax̂

(k)
i − yi) = W0yi + (I−W)x̂

(k)
i , (4)

where W0 = 2LAT and W = 2LATA.

The iterative approach described above requires both prior knowledge of the PSF of the optical

setup for the calculation of the measurement matrix, which is not always available, and a wise

choice of regularization factor λ, which is generally performed heuristically. In order to overcome

these shortcomings, we may apply algorithm unrolling and use LISTA instead of ISTA. The idea

at the core of deep algorithm unfolding, as first suggested by Gregor and LeCun [19], is using

the algorithmic framework to gain interpretability and domain knowledge, while inferring optimal

parameters from the data itself. In this strategy, the design of a neural network architecture is

tailored to the specific problem, based on a well-founded iterative mathematical formulation for

solving the problem.

In the case of ISTA, (3) and (4) imply that the iterative step of the algorithm can be modeled

by the sum of fully-connected layers and an activation function with learned threshold. Moreover,

in our setting, we may replace the multiplication by W0 and multiplication by W in (4) with

convolutions: Recall that each column j of A is an M2 long vector representing the PSF of the

system for a point source at location j. Thus, each row j in W0 = 2LAT corresponds to the

PSF of the system for a point source at location j (multiplied by a constant). Therefore, the first

multiplication operation in (4) is equivalent to convolving the low-resolution input yi with the

system’s PSF, using sub-pixel strides of size M
N , creating an up-sampling effect. Similarly, we note

that ATA is a symmetric N2 × N2 matrix, where each column (and row) j is a N2 long vector

corresponding to a specific kernel, shifted to location j. This kernel is composed of the sum of the

PSF from each point on the high-resolution grid, shifted and weighted according to the PSF from

every other point on the high-resolution grid. This implies that the second multiplication operation

in (4) is equivalent to convolving x̂
(k)
i with said kernel.

To increase sparsity, we replace the positive soft thresholding operator with a differentiable, sigmoid-

based approximation of the positive hard-thresholding operator [27], which effectively changes the

L1 regularization in (2) to L0 regularization [20]. This smooth activation function, denoted as

S+
α,β(·), has two trainable parameters (α, β):

S+
α,β(x) =

ReLU(x)

1 + exp(−β(|x| − α)
, (5)

where x is scalar. When applied to vectors and matrices, S+
α,β(·) operates element-wise. Since
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different frames typically have different emitter intensities, e.g. due to heterogeneous illumination,

we adopt the variation of S+
α,β(·) offered in [20], and define the trainable values of the smooth

activation function to be relative rather than absolute, denoted as α0 and β0:

α = i1 + (i99 − i1)α0,

β =
β0
α
,

(6)

where 0 ≤ α0 ≤ 1 and i1, i99 are the first and 99-th percentiles of the input to the activation layer.

This enables applying a specific threshold per each input frame, as opposed to a global threshold

across all frames.

Finally, we concatenate these convolution and activation layers together, resulting in a deep neural

network (i.e. LISTA), that has the same form as the operation performed by running ISTA over

multiple iterations. The LISTA network may be optimized using supervised learning, with training

data consisting of paired examples of the locations xi and measurements yi from (2). Training data

may be obtained, for example, from measurement simulations with known ground truth locations

[10, 11]. As a result, we get highly accurate results when test data is similar to the training

data; this is shown in Figure 2, where the best-performing method is the supervised, LISTA-based

LSPARCOM, whose training set had identical structure to that of the test set. On the other

hand, reliance on labelled training examples leads to poor localization accuracy for data that is

significantly different than the training set. This is shown in Figure 3, where supervised algorithms

yield inaccurate results for data that is different from their respective training sets. Therefore, we

propose Self-STORM: a self-supervised learning scheme, which enhances robustness by alleviating

the need for labeled input-output examples.

4 Deep Unrolled Self-Supervised Learning

Considering the limited generalization capabilities of supervised learning methods for the task

at hand, our proposed approach substitutes supervised training with a self-supervised learning

scheme. Instead of training a model that maps yi to x̂i, we train a sequence-specific, model-based

autoencoder, which maps yi to itself. The input yi, interpolated to the output size and reshaped

to a N × N image, is fed to an autoencoder, which is comprised of two parts: an encoder which

encodes yi to sparse code x̂i (i.e., approximated emitters’ locations), and a decoder which decodes

x̂i to an approximation of the input ŷi.

The architecture of both the encoder and the decoder is model-based, as illustrated in Figure 1.

First, the LISTA-based encoder, whose layers resemble a single ISTA iteration. The thresholding
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Figure 1: Architecture of the model-based autoencoder. First, the input yi is upsampled according to

the given scale factor. Then, it is fed into a LISTA-based encoder, which performs sparse recovery to

approximate xi. It is comprised of convolutional layers with trainable weights {W0
(i),W(i)}i=1,2, and

activation layers S+
α0,β0

(·) with trainable parameters {α(i)
0 , β

(i)
0 }i=1...3. The first three layers (shown in blue)

produce an initial approximation x̂
(0)
i , which is then iteratively modified via the latter four layers (shown in

orange). After kmax iterations, the approximated sparse code x̂
(kmax)
i is fed through a decoder that mimics

the physical measurement process, via convolution with learned filters. It has two blocks of convolutional

layers with trainable weights {WD
(i)}i=1,2, followed by ReLU activations. The decoder outputs ŷi, which

is an approximation of the input image.

step of the ISTA algorithm is replaced with the smooth activation function S+
α0,β0

(·), with trainable

parameters α0, β0, as defined in (5) and (6). Each matrix-multiplication operation in (4) is replaced

by a convolution operation with a learned kernel. Furthermore, to reduce the number of parameters

in the model and avoid over-parameterized kernels, while still retaining a large enough receptive

field, we decomposed each convolution operation into three layers: convolution, activation and

another convolution, where each convolution kernel is significantly smaller. Dardikman et al. used

kernels of size 29 × 29 and 25 × 25 in LISTA-based LSPARCOM [20]; here, we use kernels of size

15 × 15. To mimic several iterations of ISTA, we repeat the same layers, with the same trainable

weights and parameters, for a set number of iterations kmax. This keeps the number of model

parameters to a minimum and enables efficient training and inference.

The decoder is a simple convolutional model which mimics the actual, physical “decoding” process

of the data. We assume an image formation model of the form yi = Axi, where each column j of A

represents the PSF of the system for a point source at location j. Thus, the multiplication operation

Axi is equivalent to convolving the high-resolution xi with the system’s PSF, with stride of size N
M ,

creating a down-sampling effect. We consider this process as a single convolution operation. Similar

to the encoder, we reduce the number of parameters in the model and avoid over-parameterized
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kernels by decomposing the convolution operation into three layers: convolution, activation and

another convolution. This results in a shallow convolutional neural network, with two convolutional

layers followed by ReLU activations. This allows for the decoder to emulate the physical image

generation process, with its parameters optimized to map the sparse code generated by the encoder

to the actual measurements.

The full forward pass of the model-based autoencoder is described in Algorithm 2. It takes as input

the low-resolution measurement yi and number of iterations kmax. The input is interpolated to

match the resolution of xi, and is then put through the encoder’s initial convolutional and activation

layers, with filters {W0
(i)}i=1,2 and parameters α

(1)
0 , β

(1)
0 , respectively. This is equivalent to the

first matrix multiplication operation in (4), W0yi. The result of the first three layers is then fed

through another activation layer, with parameters α
(3)
0 , β

(3)
0 , which is equivalent to the positive

soft thresholding operation in Algorithm 1. This results in an initial estimation of xi, denoted as

x̂
(0)
i . The approximation of xi, denoted as x̂

(k)
i , is iteratively updated via the latter convolutional

and activation layers, with filters {W(i)}i=1,2 and parameters α
(2)
0 , β

(2)
0 , respectively. This update

is equivalent to the second matrix multiplication operation in (4), (I−W)x̂
(k)
i . Following the

same arithmetic logic of the original ISTA update step, the outputs of the first three layers and

the latter three layers are combined and fed through the final activation layer, with parameters

α
(3)
0 , β

(3)
0 . This yields the updated approximation of xi, denoted as x̂

(k+1)
i . Upon reaching kmax

iterations, The approximated x̂
(kmax)
i is fed through the decoder’s two blocks of convolution with

filters {WD
(i)}i=1,2, followed by ReLU activations. The decoder’s output, denoted as ŷi, is the

approximation of the low-resolution input measurement.

Algorithm 2 Forward Pass

Input: yi, number of iterations kmax

Output: ŷi

1: yi =Upsample(yi)

2: x̂
(0)
i = S+

α
(3)
0 ,β

(3)
0

(W0
(2) ∗ (S+

α
(1)
0 ,β

(1)
0

(W0
(1) ∗ yi)))

3: while k < kmax do
4: x̂

(k+1)
i = S+

α
(3)
0 ,β

(3)
0

(x̂
(k)
i −W(2) ∗ (S+

α
(2
0 ,β

(2)
0

(W(1) ∗ x̂(k)
i )) +W0

(2) ∗ (S+

α
(1)
0 ,β

(1)
0

(W0
(1) ∗ yi)))

5: k ← k + 1
6: end while
7: ŷi = ReLU(W

(2)
D ∗ ReLU(W

(1)
D ∗ x̂

(kmax)
i ))

Training of the autoencoder is fully self-supervised, since it maps its input to itself. Therefore,

our training set consists only of {yi}i=1,...,T . The weights are optimized using L1 loss with the

ADAM optimizer [28], given β1 = 0.9, β2 = 0.999 and an initial learning rate of 1e−3, using

the PyTorch library. The trainable weights of the convolutional layers were initialized according

to their respective tasks: {WD
(i),W0

(i),W(i)}i=1,2, which imitate multiplication by A,AT and
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ATA respectively, were initialized as a 15 × 15 Gaussian filter with σ = 1. The activation layers

are initialized α0 = 0.95, β0 = 8 for all layers.

5 Results

In this section, we compare the reconstruction quality achieved using Self-STORM to that achieved

by other methods for SMLM reconstruction: iterative algorithm, SPARCOM [7] and its unrolled, su-

pervised version, LSPARCOM [20]; prominent learning-based localization methods for high emitter-

density frame sequences, Deep-STORM [10] and DECODE [11]; and a generic self-supervised tech-

nique, based on ZSSR [22]. All algorithms tested for comparison take high emitter-density frame

sequences as input, and thus allow similarly high temporal resolution. Therefore, the comparison

focuses on the quality of the reconstruction based on the exact same input frames. When possi-

ble, we also compare the results to the ground truth localization. We further compare runtimes

for all algorithms; all timings were conducted while running on a Nvidia Tesla V100 32GB GPU.

For all figures, the colormap is such that white corresponds to the highest value, then yellow, red

and black. For the ground-truth, Self-STORM, ZSSR, Deep-STORM and DECODE reconstruc-

tions, the value obtained corresponds to the integrated emitter intensity. For the SPARCOM and

LSPARCOM reconstructions, the value obtained corresponds to the variance of the emitter. Since

the values per pixel is usually not of interest, but rather only the support of the image which

indicates the location of the emitters, the maximal and minimal values mapped to the edges of the

colormap at each image were chosen to obtain optimal visibility.

5.1 Pre-processing, Training and Inference

5.1.1 Self-STORM

As explained in section 4, Self-STORM utilizes an autoencoder to infer high-resolution localizations

x̂i from low-resolution measurements yi, for i = 1, ..., T . During training, the autoencoder maps

yi to itself; therefore, our training set consists only of {yi}i=1,...,T . During inference, we ignore the

decoder and only use the encoder to approximate x̂i from yi. Finally, the support of the sum over

{x̂i}i=i...T gives us the super-resolved image of localized molecules. The chosen scale factor for the

super-resolved images is N
M = 4. The maximal number of unrolled LISTA iterations in the encoder

was empirically optimized during both training and inference. The best results were obtained with

kmax = 1 during training and kmax = 2 during inference (for all datasets). Training of the model

was stopped after 2-8 epochs (optimized per dataset to achieve the best possible result).
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Pre-processing of the data was included a designated normalization scheme, designed to address the

fact that emitter concentrations and their intensities often vary significantly across different parts

of the frame sequence. Standard image normalization techniques lead to unequal representation of

different regions in the FOV, to the point where a significant amount of the emitters are inseparable

from background noise. Therefore, we used a normalization scheme tailored for this problem: first,

we label the pixels of each frame according to their value, where the top percentiles of each frame

are labeled as non-background, and the rest of the pixels are labeled as background. The exact

percentile chosen as threshold was optimized to obtain the best possible result per dataset. Second,

we detect the “centroids” in each frame: non-background pixels whose value is higher than all their

neighbors. Then, we set a bounding box around each centroid according to the non-background

pixels surrounding it. Finally, the pixels within each bounding box are normalized according to

their mean and standard deviation.

5.1.2 LSPARCOM

In LSPARCOM [20], the super-resolved localization image is generated by inputting a single image,

which is constructed by calculating the temporal variance of all the low-resolution inputs. We used

a pretrained version of LSPARCOM, as released by their authors [29]. LSPARCOM was trained

on a publicly-available simulated dataset of 12,000, 64 × 64 frames, composing a single FoV with

an underlying structure of biological microtubules [30]; the ground truth positions can be seen in

Figure 2(a). To increase emitter density per frame, random combinations of 40 frames from the

original sequence were summed together, generating a new sequence of 360 high density frames.

The training set itself contains 10,000, 16 × 16 patch-stacks, randomly extracted from the high

density frame sequence. Pre-processing of the data, both prior to training and testing, includes

normalizing the movie intensity to have a maximal value of 256, and removing the temporal median

of the movie from each frame.

5.1.3 Deep-STORM

In Deep-STORM [10], each low-resolution input is processed independently, and the final high-

resolution reconstruction is achieved via summation, similar to our proposed method. The training

set contains 10,000 random 26×26 patches, extracted from 20, 64×64 simulated images containing

randomly positioned emitters. These images were generated via the ThunderSTORM ImageJ plugin

[31], ideally with the exact same imaging parameters as the test set. These parameters include the

camera base level, photo-electrons per A/D count, PSF, emitter FWHM range, emitter intensity

range and mean photon background. Pre-processing in Deep-STORM includes resizing the input
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frame to the desired dimensions of the output (determining the final grid size), projecting each

frame to the range [0 1], and normalizing each frame by removing the mean value of the training

dataset and dividing by its standard deviation, as specified in the code released by the authors [32].

5.1.4 DECODE

The DECODE model [11] takes each low-resolution frame as input, along with its temporally-

neighboring frames as temporal context. For each frame, it predicts multiple channels: the first

two channels indicate the probability for the presence on an emitter in each pixel, as well as its

intensity. The next three channels describe the sub-pixel coordinates of the emitter (with respect

to the center of the pixel). An additional channel predicts the background intensity in each pixel.

The super-resolved localization image is generated by aggregating the results from all low-resolution

frames on a high-resolution grid, according to the desired scale factor (which was set to N
M = 4 in our

case). We used a pretrained version of DECODE, as released by their authors [11]. The model was

trained on 20000 simulated images containing randomly positioned emitters, generated by a custom

simulation provided by the authors [11]. Similar to Deep-STORM, the imaging parameters of the

simulation are also ideally set to be the same as those of the test set. There is no pre-processing

on the input data.

5.1.5 ZSSR

Self-supervised approaches for single image super-resolution, such as ZSSR [22], essentially follow

the same scheme presented above for Self-STORM. The only major difference is in the architecture

of the learned model. In Self-STORM, our architecture is based on deep unrolling of an iterative

algorithm. This is not the case for other methods (ZSSR included). which use a generic convolu-

tional neural network, therefore not exploiting any prior domain knowledge on the problem at hand

and designing the model’s architecture accordingly. Thus, to demonstrate the significance of using

a model-based architecture as opposed to a generic one, we train an autoencoder similar to the one

described in Section 4, but with a simple convolutional neural network as its encoder, instead of the

LISTA-based model. In this case, the encoder is composed of six consecutive convolutional layers,

each followed by ReLU activation. All other parameters, pre-processing, training and inference

schemes are the same as previously described for Self-STORM.
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5.1.6 SPARCOM

In SPARCOM [7], similar to LSPARCOM, the super-resolved localization image is generated by

inputting a single image, which is constructed by calculating the temporal variance of all the

low-resolution inputs. We used the classical version of SPARCOM, executed over 100 iterations,

without using a weighing matrix or applying the sparsity prior in another transformation domain

[8], to keep the basic LISTA algorithm similar to the one used for unrolling. To achieve optimal

performance, we used fast ISTA (FISTA) [33] and the Fourier-domain implementation of the original

algorithm [8]. The regularization factor λ was hand-picked and fine-tuned to fit each tested dataset.

SPARCOM also requires explicit prior knowledge of the PSF: for the simulated data, the PSF used

for generating the data was accurately given; for the experimental data we used the same PSF as the

simulated data (having no better choice, since the actual PSF is unknown). Similar to LSPARCOM,

pre-processing in SPARCOM includes normalizing the movie intensity to have a maximal value of

256, and removing the temporal median of the movie from each frame.

5.2 Simulation Results

In this subsection, we evaluate the methods using simulated realistic data, where we have precise

knowledge of the ground truth localizations. Having access to the ground truth enables measuring

the quality of the results using the SNR metric, which was also previously used in the SMLM

challenge [30]. The SNR is defined as follows:

SNR ≡ 10 log10
∥XGT ∥2

∥XGT − X̂∥2
, (7)

where XGT is the ground-truth binary image of molecule locations, and X̂ is the approximated

super-resolved image of localized molecules. Since this metric compares locations (i.e., binary

images), all output images were binarized prior to calculating the SNR; the thresholding step was

optimized to obtain the best possible score per each method and dataset.

Figure 2 shows the results for a dataset of 361 high density frames, whose structure is identical to

the one used for creating the training set of LSPARCOM, with a slightly different set of imaging

parameters (simulating imaging with a different microscope). As can be seen, Self-STORM yields

results which are second only to LSPARCOM (which was trained on data with the exact same

structure), in terms of both SNR and visual resemblance of ground-truth structure. Deep-STORM

achieves slightly higher SNR than Self-STORM, but fails to properly separate close microtubules

to the same degree as Self-STORM and LSPARCOM. Other methods are not nearly as accurate, as
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Figure 2: Super-resolved reconstruction of a simulated microtubules dataset [30], composed of 361 high
density frames. (a) Ground truth. (b) Self-STORM reconstruction. (c) Deep-STORM reconstruction.
(d) DECODE reconstruction. (e) ZSSR reconstruction. (f) LSPARCOM reconstruction. (g) SPARCOM
reconstruction executed over 100 iterations with λ = 0.0105. SNR is shown in the upper-left corner of
each reconstructed image. It is evident that LSPARCOM gives the best results, as it was trained on data
with identical ground-truth structure. Self-STORM and Deep-STORM achieve similar visual reconstruction
quality, while all other methods yield far less accurate results.

the ZSSR-based reconstruction, which utilizes generic self-supervision without incorporating any

prior knowledge to the learned model, merely smears the input image without pinpointing the

locations of the molecules. The DECODE and SPARCOM reconstructions are both grainy and

inaccurate, underperforming all other methods. In terms of runtime, the training and inference

time of Self-STORM and ZSSR was 31.83 sec. By comparison, Deep-STORM reconstruction took

4.32 sec, the DECODE reconstruction took 15.54 sec, the LSPARCOM reconstruction took 2.73

sec, and the SPARCOM reconstruction took 10.41 sec for 361, 64× 64 input frames.

Figure 3 shows the results for a dataset of 2500 high density frames, whose structure and imaging

parameters are different than any of the training sets used to train LSPARCOM, Deep-STORM or

DECODE. In this case, Self-STORM is clearly the top performer, having the highest SNR (by a

very large margin of over 1.5dB) and being the most visually similar to the ground-truth structure.

In the enlarged region, it is evident that Self-STORM is very close to accurately localize the emitters

in that region, where other methods fail to be anywhere close to the ground-truth positions. Deep-

STORM, DECODE and LSPARCOM were all trained on substantially different data than this

dataset, which led to their poor performance in this case. The ZSSR-based method produces a

blurry, imprecise reconstruction, as it did for the first dataset. The SPARCOM reconstruction is

also very inaccurate and partial, compared to its higher-performing learning-based counterparts.

In terms of runtime, the training and inference time of Self-STORM and ZSSR was 48.76 sec. By
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Figure 3: Super-resolved reconstruction of a simulated microtubules dataset [30], composed of 2500 high
density frames. (a) Ground truth. (b) Self-STORM reconstruction. (c) Deep-STORM reconstruction.
(d) DECODE reconstruction. (e) ZSSR reconstruction. (f) LSPARCOM reconstruction. (g) SPARCOM
reconstruction executed over 100 iterations with λ = 0.003. SNR is shown in the upper-left corner of each
reconstructed image. In this case, Self-STORM provides an accurate reconstruction of the ground-truth,
while all other methods fail to achieve similar reconstruction quality.

comparison, Deep-STORM reconstruction took 9.21 sec, the DECODE reconstruction took 27.31

sec, the LSPARCOM reconstruction took 3.11 sec, and the SPARCOM reconstruction took 12.56

sec for 2500, 64× 64 input frames.

Figure 4 presents the results for a 10x denser dataset than the one shown in Figure 2, obtained by

summing every 10 consecutive frames in the original dataset, to a total of 36 highly dense input

frames. This extremely dense input leads to substantial degradation in reconstruction quality for

most methods, as the increase in density has made the reconstructions appear more fragmented.

Self-STORM and LSPARCOM are the only two methods that manage to produce adequate recon-

structions compared to their results on the original dataset. In terms of SNR, Self-STORM seems

to maintain its accuracy despite the increased emitter density, with only a slight decrease of 0.17dB;

LSPARCOM, on the other hand, has a major decrease of 1.11dB. In terms of runtime, the training

and inference time of Self-STORM and ZSSR was 5.09 sec. By comparison, Deep-STORM recon-

struction took 2.12 sec, the DECODE reconstruction took 3.71 sec, the LSPARCOM reconstruction

took 3.07 sec, and the SPARCOM reconstruction took 9.85 sec for 36, 64 × 64 input frames. It

is evident that the decrease in number of input frames has shortened the inference time of the

methods operating on a frame-by-frame basis. On the other hand, the running time of SPARCOM

and LSPARCOM has remained almost the same, as the number of input frames does not affect the

runtime.
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Figure 4: Super-resolved reconstruction of a simulated microtubules dataset [30], composed of 36 ultra-high
density frames, generated by summing every 10 consecutive frames of the original dataset. (a) Ground truth.
(b) Self-STORM reconstruction. (c) Deep-STORM reconstruction. (d) DECODE reconstruction. (e) ZSSR
reconstruction. (f) LSPARCOM reconstruction. (g) SPARCOM reconstruction executed over 100 iterations
with λ = 0.00105. SNR is shown in the upper-left corner of each reconstructed image. Even with as few
as 36 frames of ultra-high emitter density, Self-STORM manages to successfully reconstruct the underlying
structure of the image without using any prior training data. Similar to Figure 2, it outperforms every other
method besides LSPARCOM, which was on data with identical ground-truth structure.

Figure 5 presents the results for a 10x denser dataset than the one shown in Figure 3, obtained by

summing every 10 consecutive frames in the original dataset, yielding an overall of 250 highly dense

input frames. Similar to the results on the previous dataset, it is evident that the great increase

in emitter density leads to degraded reconstruction quality for all methods. Self-STORM is still

the only method that succeeds in reconstructing the full underlying structure of the data, as it has

for the original dataset. The Self-STORM reconstruction is the most similar the the ground truth

image, compared to every other reconstruction. In the enlarged region of the image, Self-STORM

demonstrates a remarkable ability to localize emitters very close to their ground-truth positions,

outperforming other methods which struggle to achieve proximity to the ground-truth positions.

However, in terms of SNR, Self-STORM is considerably less accurate, with a decrease of 0.78dB

compared to its result on the original dataset. In terms of runtime, the training and inference time

of Self-STORM and ZSSR was 14.78 sec. By comparison, Deep-STORM reconstruction took 5.98

sec, the DECODE reconstruction took 12.47 sec, the LSPARCOM reconstruction took 4.02 sec,

and the SPARCOM reconstruction took 8.97 sec for 250, 64 × 64 input frames. As in the case of

the previous dataset, the reduction in total number of input frames has accelerated the inference

time for methods operating frame-by-frame. The runtime SPARCOM and LSPARCOM runtime

has remained consistent, unaffected by the total number of input frames.
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Figure 5: Super-resolved reconstruction of a simulated microtubules dataset [30], composed of 250 ultra-
high density frames, generated by summing every 10 consecutive frames of the original dataset. (a) Ground
truth. (b) Self-STORM reconstruction. (c) Deep-STORM reconstruction. (d) DECODE reconstruction.
(e) ZSSR reconstruction. (f) LSPARCOM reconstruction. (g) SPARCOM reconstruction executed over 100
iterations with λ = 0.0003. SNR is shown in the upper-left corner of each reconstructed image. Depsite the
ultra-high density of emitters, Self-STORM provides a fairly accurate reconstruction of the ground-truth,
suffering from slight degradation in quality compared to the results in Figure 3. All other methods perform
far worse, both in terms of SNR and visual resemblance of the ground-truth image.

In summary, the simulations shown illustrate that Self-STORM yields a robust and precise re-

construction, on par with or surpassing other methods, especially when dealing with data that is

considerably different from the training data of these methods. It does so without any external

training samples to learn from, nor any prior knowledge regarding the PSF or imaging parameters

of the system. Its total runtime (training and inference) is comparable to the inference time of

tested methods, and it is able to produce fairly accurate reconstruction with as few as 36 input

frames with very high emitter density.

5.3 Experimental Results

In this subsection, we compare all methods using publicly-available experimental data. Since there

is no ground truth image provided for these sequences of high density input frames, we evaluate

the results qualitatively. We focus on the ability of each method to reconstruct fine details in the

image and their visual resemblance to the input frames (i.e., the diffraction-limited image).

Figure 6 shows the results for an experimental tubulins dataset of 500 high density frames, whose

structure and imaging parameters are unknown and different than any of the training sets used to
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Figure 6: Super-resolved reconstruction of an experimental tubulins dataset [30], composed of 500 high
density frames. (a) Diffraction-limited image. (b) Self-STORM reconstruction. (c) Deep-STORM recon-
struction. (d) DECODE reconstruction. (e) ZSSR reconstruction. (f) LSPARCOM reconstruction. (g)
SPARCOM reconstruction, executed over 100 iterations with λ = 0.0005. Self-STORM achieves the most
similar visual reconstruction of the diffration-limited image. Other methods yield subpar results, with visible
fragmentation and/or artifacts in the reconstructed images.

train LSPARCOM, Deep-STORM or DECODE. Self-STORM seems to obtain the best results, in

terms of visual similarity to the diffraction-limited image, and lack of any fragmentation/artifacts

in the reconstructed image. LSPARCOM achieves similar results but seems to be more frag-

mented, while Deep-STORM and SPARCOM exhibit less accurate reconstructions. DECODE

completely fails to reconstruct the underlying structure of data, resulting in a highly fragmented

image. The ZSSR-based reconstruction produces a blurry reconstruction that is not any better

than the diffraction-limited image, as it did for the simulated datasets. In terms of runtime, the

training and inference time of Self-STORM and ZSSR was 55.38 sec. By comparison, Deep-STORM

reconstruction took 17.45 sec, the DECODE reconstruction took 34.61 sec, the LSPARCOM re-

construction took 7.21 sec, and the SPARCOM reconstruction took 31.15 sec for 500, 128 × 128

input frames.

Figure 7 shows the results for an experimental tubulins dataset ocapturing a glial cell in a culture

of rat hippocampal neurons [34], composed of 599 ultra-high density frames. The structure and

imaging parameters of this dataset are unknown and different than any of the training sets used

to train LSPARCOM, Deep-STORM or DECODE. The original dataset contained 14975 frames;

it was temporally binned in groups of 25 consecutive time frames in order to simulate ultra-high

density of emitters. The Self-STORM reconstruction is most visually similar to the diffraction-

limited image, and also captures fine details of the glial cell structure, as shown in the enlarged

region. LSPARCOM and Deep-STORM also produce reconstructions that are fairly similar to the
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Figure 7: Super-resolved reconstruction of an experimental dataset capturing a glial cell in a culture of
rat hippocampal neurons [34], composed of 599 ultra-high density frames. (a) Diffraction-limited image.
(b) Self-STORM reconstruction. (c) Deep-STORM reconstruction. (d) DECODE reconstruction. (e) ZSSR
reconstruction. (f) LSPARCOM reconstruction. (g) SPARCOM reconstruction, executed over 100 iterations
with λ = 0.0005. It is evident that Self-STORM succeeds in resolving the underlying structure of the glial
cell up to very fine details, where other methods fail to do the same.

input image, but fail to accurately resolve the fine structure of the cell. ZSSR and SPARCOM both

yield reconstructions that are rather blurry and partial that do not reveal the full, fine structure

of the cell. DECODE yields a reconstruction that is notably grainy and imprecise, exhibiting the

least resemblance to the diffraction-limited image. In terms of runtime, the training and inference

time of Self-STORM and ZSSR was 118.97 sec. By comparison, Deep-STORM reconstruction took

31.15 sec, the DECODE reconstruction took 49.87 sec, the LSPARCOM reconstruction took 19.61

sec, and the SPARCOM reconstruction took 78.85 sec for 599, 256× 256 input frames.

In conclusion of the experimental results section, Self-STORM excels in reconstructing experimental

data with high emitter density, outperforming every other tested method while maintaining a

comparable total runtime. The lack of dedicated training (for LSPARCOM, Deep-STORM and

DECODE), model-based architecture (for ZSSR), or prior knowledge of the PSF (for SPARCOM)

is evident in the inferior performance of other methods. In contrast, Self-STORM produces good

reconstructions without requiring any of the above.
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6 Discussion and Conclusions

The core concept of deep unrolled self-supervised learning is to use the algorithmic framework

dictated by the setting of the problem to gain interpretability and domain knowledge, while inferring

optimal parameters from input data only. This approach disrupts the trade-off between reliance

on input data characteristics and dependence on prior knowledge and hyperparameter adjustment.

Classical, non-learning-based algorithms such as SPARCOM have low dependency on the type of

input data (as long as it fits the sparse prior), but are highly dependent on accurate knowledge

of the PSF and additional hyperparameter tuning. On the other hand, standard deep-learning

based methods such as DECODE, Deep-STORM and LSPARCOM do not require hyperparameter

refinement (LSPARCOM also does not require exact knowledge of imaging parameters), but have

very strong dependencies on the type of input data. Unlike other data-driven methods, Self-STORM

is optimized per input, making it suitable for data of any type of structure and imaging parameters

more than others. Figure 3 is a good example of this robustness: Self-STORM provided a full,

precise reconstruction of the ground-truth image, while other tested methods produced results of

very low quality, some of which are completely irrelevant (due to mismatch between the training

and test set). This ability is crucial, since it is not always feasible to generate a specific training

dataset for each and every imaging setting.

It is also important to note the importance of incorporating both model-based learning (via deep

algorithm unrolling) and self-supervision into the pipeline, as opposed to utilizing only one of

these key concepts. This is demonstrated by the poor performance of the ZSSR-based method,

whose generic model architecture results in reconstructions that are smeared, blurry versions of

the diffraction-limited input. On the other hand, the use of model-based learning alone (i.e., in a

supervised fashion), as in LSPARCOM, suffers from the aforementioned problem of performance

degradation for test data that is considerably different than its training dataset. The proposed

approach also leads to a compact model, allowing for fast training and inference, during test time,

which is on the same time scale as the inference time of other methods. Moreover, as demonstrated

in Figures 4 and 5, excellent reconstruction can even be obtained by Self-STORM using a relatively

small number (few hundreds to a few dozens) of high emitter-density input frames, which allows

for high temporal resolution and reduces the total runtime, making the difference between Self-

STORM and other methods almost negligible. This is essential in enabling live-cell imaging via

SMLM, where dynamic interactions on short time scales are of interest.

Self-STORM also has several limitations. First, as evident from the results in Figures 2 and 4,

Self-STORM does not reach the same level of accuracy when compared to supervised learning

methods, on data that is similar to their training sets. This is of course very reasonable, given

that supervised models were fitted to yield optimal results for a specific type of input data, using
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ground-truth labels. Given a relevant training set, this gap in performance may be addressed by pre-

training some of the weights of the model (the LISTA-based encoder, for example) via supervised

learning. Then, in order to achieve optimal results per each specific input, the per-trained model

may be fine-tuned using the self-supervised learning scheme. Second, the reconstruction of Self-

STORM is sometimes fragmented, especially for very dense input sequences (see Figure 4); this can

be overcome by using a smoother regularizer (e.g. total variation) for deriving the iterative scheme

used for unrolling, as shown in [8]. The spatial sparsity prior is also less suitable for samples of

discrete nature, like receptors spread on the surface of a cell. This type of sample is more suitable

for reconstruction considering sparsity in the wavelet domain [8]. Similarly to the fragmentation

problem, this can be addressed by unrolling the appropriate sparse recovery algorithm. Finally,

Self-STORM requires empirical selection of two parameters: the number of unrolled iterations kmax

(once during training and once during inference), and the number of training epochs. The number of

unrolled iterations is a relatively easy choice, since it is very clear that the model performs well when

trained with a single unrolled iteration. This is likely due to the optimal gradient computation and

back-propagation it allows for, as gradients are back-propagated through each iteration. Therefore,

increasing the number of unrolled iterations can result in very small gradients due to the repeated

multiplication of gradients in each iteration. Interestingly, during inference, results improve when

using two iterations instead of just one, aligning with the classical notion where more iterations lead

to better convergence. Yet, adding additional iterations beyond two had negligible impact on the

results. However, these choices might not be optimal if a different sparse recovery algorithm is used

for unrolling. The second parameter is subject to more change, as different input datasets require

a different number of training epochs to achieve optimal performance. To avoid manual stopping

of the training process, an automatic stopping criteria may be used, similar to other self-supervised

learning schemes [21, 22, 23, 24, 25].

To conclude, Self-STORM offers a new method for SMLM data analysis, and sparse recovery in

general, via deep unrolled self-supervised learning. Tested on a variety of datasets with various

imaging parameters and geometries, Self-STORM has proven its ability to perform high-resolution

localization for any given data. By comparison, other techniques fail to achieve similar performance

on data that is significantly different from their external, labeled training sets. Thus, given its robust

capabilities, Self-STORM has great potential for localization of biological structures, potentially

replacing its counterparts for super-resolved imaging at the nanometer scale. On a more general

scope, the combination of self-supervision and model-based learning may be advantageous for any

sparse recovery problem: given a mathematical model that describes the measurement process and

that the information to be recovered is sparse, one may construct the appropriate model-based

encoder and decoder. The resulting pipeline may result in enhanced performance and specifically

robustness to data heterogeneity, without the need for external training samples of any sort.
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