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Abstract—Due to its ability to precisely control wireless
beams, holographic multiple-input multiple-output (HMIMO) is
expected to be a promising solution to achieve high-accuracy
localization. However, as the scale of HMIMO increases to
improve beam control capability, the corresponding near-field
(NF) region expands, indicating that users may exist in both
NF and far-field (FF) regions with different electromagnetic
transmission characteristics. As a result, existing methods for
pure NF or FF localization are no longer applicable. We consider
a hybrid NF and FF localization scenario in this paper, where a
base station (BS) locates multiple users in both NF and FF regions
with the aid of a reconfigurable intelligent surface (RIS), which
is a low-cost implementation of HMIMO. In such a scenario, it
is difficult to locate the users and optimize the RIS phase shifts
because whether the location of the user is in the NF or FF region
is unknown, and the channels of different users are coupled.
To tackle this challenge, we propose a RIS-enabled localization
method that searches the users in both NF and FF regions
and tackles the coupling issue by jointly estimating all user
locations. We derive the localization error bound by considering
the channel coupling and propose an RIS phase shift optimization
algorithm that minimizes the derived bound. Simulations show
the effectiveness of the proposed method and demonstrate the
performance gain compared to pure NF and FF techniques.

Index Terms—Holographic multiple-input multiple-
output (HMIMO), reconfigurable intelligent surface (RIS),
near-field localization, far-field localization.

I. INTRODUCTION

Future sixth-generation (6G) wireless systems will support
a wide range of applications such as autonomous driving
and augmented reality [2] that require not only ubiquitous
communication but also user localization capabilities. Con-
sequently, research interest in advanced localization methods
has surged, among which holographic multiple-input multiple-
output (HMIMO)-based localization methods are expected
to play a critical role due to its potential to achieve high
localization accuracy. Specifically, HMIMO is an electromag-
netic surface containing a massive number of antennas or
reconfigurable metamaterial elements [3] [4]. Due to the large
number of tunable elements in the surface, HMIMO can
precisely manipulate wireless beams to accurately locate users.
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A. Literature Review and Motivation

Traditional HMIMO-based localization works mainly fall
into two categories: far-field (FF) [5]–[11] and near-field (NF)
localization schemes [12]–[17]. In the FF region, the distances
between the HMIMO and users are sufficiently large, and
the signal channel is effectively described using a plane
wave model. In [5], the fundamental bounds and localiza-
tion feasibility condition are examined for FF localization
in orthogonal frequency division multiplexing (OFDM) sys-
tems aided by HMIMO. The authors in [6] considered a
single-input-single-output (SISO) HMIMO-aided localization
system with imperfect HMIMO geometry information, and
derived the misspecified Cramér-Rao bound (CRB). In [7], the
positioning estimation error and orientation estimation error
are investigated for a HMIMO-aided multiple-input multiple
output system. In [8], the authors analyzed the CRB for a
localization scenario that both the line-of-sight (LOS) path and
the reflected path via the HMIMO exist simultaneously. Two
HMIMO phase design methods were proposed and a max-
imum likelihood (ML) direction of arrival (DOA) estimator
was designed in [8]. In [9], the authors considered FF user
localization aided by millimeter wave (mmWave) HMIMO,
and a ML location estimator and two sub-optimal estimators
with lower complexity were derived. In [10], the localization
method leveraged the dynamic regulation of HMIMO to
cancel non-line-of-sight signals at the receiver and preserve
LOS signals for precise indoor localization. HMIMO-based
localization without base stations (BSs) was also investigated
in [11], where the user transmitted the signal and received the
signal reflected from the HMIMO.

HMIMO-based NF localization schemes have attracted
much attention recently due to the increasing interest in
large-scale HMIMO. Specifically, to improve beam control
capability, the scale of HMIMO is enlarged, leading to the
expansion of the NF region [18]. Different from the FF case,
the spherical wave model has to be employed to characterize
the NF channel because the signal transmission characteristics
of the NF are determined by both the range and angle of
the user location. The authors in [12] and [13] considered
a SISO localization scenario for NF user, and the CRB is
derived. In [14], a HMIMO functioning as a lens receiver
was utilized to achieve NF localization. The authors in [15]
developed a received signal strength-based localization method
for NF users and a RIS phase shift adjustment method to
enhance accuracy. In [16], the authors utilized light detection
and ranging to estimate scatter locations and improve NF user
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localization accuracy. A signaling and positioning method is
proposed in [17], and the coverage capability under different
levels of obstruction of the HMIMO is analyzed.

In practical scenarios, users may exist in both the NF and
FF regions of the HMIMO. Existing algorithms for pure NF or
FF users are therefore not always applicable. Specifically, FF
localization methods suffer from low localization accuracy for
NF users due to the significant error in describing NF channels
using the plane wave model. Meanwhile, NF localization
techniques are not ideal for FF users because the coupling of
range and angle in the spherical model brings extra complexity,
which has two main effects: first, it prolongs the running time
of the algorithm; second, the more complex NF model hinders
convergence of the method and leads to accuracy degradation.
In addition, the localization gain for the FF users brought
by the NF model is limited. Hence, a localization scheme is
required to adapt to both the NF and FF users.

B. Main Contributions

In this paper, a HMIMO-based localization scheme is pro-
posed for users in both NF and FF regions. Specifically, in the
considered scenario, a base station (BS) and a reconfigurable
intelligent surface (RIS) cooperate to locate multiple users in
a multipath environment. The RIS is widely acknowledged
as a low-cost implementation of HMIMO that can create a
customized reflection beam by varying the phase shifts of its
reflection elements. In the localization process, the RIS reflects
the signals emitted from several single-antenna users to the BS.
Then, the BS uses the received signal to estimate the locations
of the users in both NF and FF regions. The phase shifts of
the RIS are optimized based on the estimated locations of the
users. The location estimation and RIS phase shift optimization
are performed iteratively to improve localization accuracy.

Several challenges in this scenario need to be addressed.
First, it is unknown whether each user or scatter is in the
NF or the FF region, leading to difficulty in designing the
localization algorithm. Second, the channels of different users
are coupled due to shared RIS phase shifts and common
scatters. To tackle the above challenges efficiently, a hybrid
NF and FF localization algorithm is proposed, in which we
first sample the NF and FF regions separately, and then
compare the received signals with the reconstructed signals
at the sampled locations to locate the users and scatters. The
locations of the users and scatters are jointly estimated by
considering the channel coupling effect. Then, a RIS phase
shift optimization problem is formulated to minimize the sum
of the Cramér-Rao bounds (CRBs) of the user localization
errors. A complex circle manifold-based method is proposed
to solve the optimization problem with the coupled CRBs.

Our contributions can be summarized as follows.

• We consider a hybrid NF and FF localization scenario,
where the BS locates multiple users in hybrid regions
with the aid of an RIS. A hybrid NF and FF localization
framework is proposed, where the localization of the
users and the RIS phase shifts optimization are iteratively
conducted to improve localization accuracy.
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Fig. 1. RIS-enabled multi-user localization system.

• Based on the principle of minimizing localization loss,
the location estimation problem is formulated and a multi-
user localization algorithm is developed, which localizes
users in the hybrid NF and FF region under the channel
coupling effect.

• We formulate the RIS phase shift optimization problem
to minimize the sum of CRBs of the location estimation
errors. A complex circle manifold-based algorithm is then
devised to obtain optimal RIS phase shifts.

• We compare the performance of the proposed approach
and other RIS-enabled localization techniques. Simula-
tion results show that the proposed approach outperforms
other methods by more than 30% in the root mean square
error (RMSE) of angle estimation for both NF and FF
users and by 60% in the RMSE of range estimation for
NF users given −10 ≤ SNR ≤ 0.

C. Organization

The rest of this paper is organized as follows. The localiza-
tion scenario, the signal model, and the localization protocol
are provided in Sec. II. In Sec. III, we propose the localization
algorithm. Then, the RIS phase shift optimization algorithm
is designed in Sec. IV. The performance of the proposed
method is analyzed in Sec. V. In Sec. VI, we present the
simulation results and discussions. Finally, conclusions are
drawn in Sec. VII.

Notation: The transpose and conjugate transpose are de-
noted by (·)T and (·)H , respectively. We use ∥x∥2 and ∥x∥0
mean the l2 and l0 norm of vector x, and | · | denotes the
number of elements in a set. Unbolded x, bold lower-case
x and bold upper-case X denote scalar, vector and matrix,
respectively. The collection of all complex numbers is denoted
by C. The Hadamard product is represented by ⊙.

II. SYSTEM MODEL

In this section, we first introduce the scenario of multi-user
localization. Then, we describe the signal model and introduce
a localization protocol for the proposed scenario.
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TABLE I
MAJOR NOTATIONS

Notation Description

N Number of RIS elements
K Number of users
L Number of scatters
C Number of localization cycles
β RIS phase shifts
B(c) RIS phase shifts for c cycles
hk Channel between the k-th user and the BS
hA
k Channel between the RIS and the BS

ht
k Channel between the RIS and the k-th user

sk The transmitted signal by the k-th user
pk Location of the k-th user
Q Locations of all scatters
g
(c)
k The received signal of the c-th cycle

Z The sampled locations
F Atom channel in the NF and FF regions
uk Gains of the atom channels for the k-th
uP
k The direct path component in uk

uQ
k The scattering path component in uk

Λk Atom signals for the k-th user
DNF , DFF NF and FF region
DR, Dθ, Dϕ CRBs for range and angle

A. Localization Scenario

As shown in Fig. 1, we consider a localization scenario
consisting of K users, a RIS, and a BS1. The users are
stationary or low-speed compared with the localization time.
Users and the BS are each equipped with a single antenna.
The RIS containing N = N1 ×N2 elements is placed on the
Y-Z plane, where the center of the RIS is at the origin of the
coordinate system. There also exist obstacles, which reflect the
signals and create multipath channels. We assume the line-of-
sight path between each user and the BS is blocked, and there
only exist the reflection paths via the RIS.

During the localization process, each user sends a narrow-
band signal to the RIS, and the RIS reflects it to the BS.
To avoid multi-user interference, frequency division multiplex-
ing (FDM) is for different users, i.e. the k-th user sends the
signal over frequency fk, where fk ̸= f ′

k (k ̸= k′). The BS
then estimates the locations of the users using the received
signals. We assume the locations of the RIS and the BS are
known, while the locations of the users and scattering centers
in the obstacles [19] are unknown. Whether the users are
located in the NF or the FF regions of the RIS is also unknown.

B. Signal Model

In the uplink transmission of the k-th user, the signal yk
received by the BS is given by

yk = βThk(pk,Q)sk + ϵ, (1)

where β = [β1, β2, ..., βN ]T ∈ CN×1 is the phase shift vector
of the RIS which is shared for all K users, βn represents

1In this work, we use reflective reconfigurable intelligent surface (RIS) as
an example to implement HMIMO, and it can be easily replaced with other
surfaces, such as transmissive RIS and reconfigurable holographic surface.

the phase shift of the n-th RIS element with |βn| = 1,
sk ∈ C1×1 represents the narrowband signal transmitted by
the k-th user, and ϵ represents received Gaussian noise with
noise power σ2 and mean 0. The location of the k-th user
is given by pk = [Rk, θk, ϕk]

T , with Rk, θk, ϕk being
the range, polar angle, and azimuth angle, respectively. Here
Q = [q1, ..., qLmax ] ∈ C3×Lmax denotes the locations of the
scatters, where the number of scatters is assumed to be less
than Lmax, and the location of the l-th scatter is given by
ql = (rl, ϑl, φl)

T . The cascaded channel between the k-th
user and the BS hk(pk,Q) is given by to hA

k ⊙ ht
k(pk,Q),

where hA
k , ⊙, and ht

k(pk,Q) denote the RIS-BS channel for
the k-th user, the Hadamard product, and the channel between
the RIS and the k-th user, respectively. The channel between
the k-th user and the RIS is given by [20]

ht
k(pk,Q) = ht

k0(pk) +

L∑
l=1

ht
kl(pk, ql), (2)

where ht
kl(pk, ql) represents the l-th path between the RIS and

the k-th user, and L is the number of scatters in the scenario.
We assume l = 0 is associated with the direct path between the
k-th user and RIS, while l ̸= 0 are the paths via scatters. Since
users or scatters could be in either NF or FF regions of the
RIS, the channels in these two cases are modeled separately.

1) Channel Models for the NF Region: When the user or
the scatter is located in the NF region, the signal received
by the RIS is described using the spherical wave model and
cannot be approximated as a plane wave for the RIS. Thus,
the direct user-RIS channel is modeled by [21]

ht
k0(pk) = αkb(Rk, θk, ϕk), pk ∈ DNF , (3)

where αk is the channel gain including the effects of path
loss and the directivity of the RIS elements [22], and b is the
steering vector in the NF region, given as

b(Rk, θk, ϕk)=

[
exp

(
−j

2π

λ
dtk1

)
, . . . , exp

(
−j

2π

λ
dtkN

)]T
. (4)

Here, dtkn is the distance between the k-th user and the n-
th RIS element, and DNF represents the NF region. Based
on [18], the NF region is defined as the region where the
maximum phase error between the phase shift calculated under
plane wave approximation and the real phase shift is more
than π/8. Mathematically, the NF region is given by DNF =
{p|∆φ(p) > π/8}, where ∆φ(p) is the maximum phase error
across all the RIS elements, given by

∆φ(p)=max
n

2π

λ

(
dtn − (R− yn sin θ sinϕ−zn cos θ)

)
, (5)

where dtn is the distance to the n-th RIS element, and
(0, yn, zn) is the coordinate of the n-th RIS element.

Similarly, we model the paths via the scatters. Specifically,
when the l-th scatter is located in the NF region, the path
between the l-th scatter and the RIS is given by

ht
kl(pk, ql) = αklb(rl, ϑl, φl), ql ∈ DNF , (6)

where b(rl, ϑl, φl) = [exp(−j 2π
λ dtl1), ..., exp(−j 2π

λ dtlN )]T ,
and dtln is the distance between l-th scatter and n-th element
of the RIS. Here αkl is the channel gain of the l-th path.
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2) Channel Models for the FF Region: When the user is
located in the FF region, we adopt the plane wave approxima-
tion to model the received signals. The direct user-RIS channel
is modeled by [21]

ht
k0(pk) = αka(θk, ϕk), pk ∈ DFF , (7)

where a(θk, ϕk) is the FF steering vector and is given
as [23] [24]

a(θk, ϕk) =

[
exp

(
−j

2π

λ
(−y1 sin θk sinϕk − z1 cos θk)

)
,

..., exp

(
−j

2π

λ
(−yN sin θk sinϕk − zN cos θk)

)]T
. (8)

In (7), DFF represents the FF region, which is defined as the
area where the maximum phase error is less than π/8, i.e.,
DFF = {p|∆φ(p) < π/8}. When the l-th scatter is located
in the FF region, the path between the l-th scatter and the RIS
can be modeled by

ht
kl(pk, ql) = αkla(ϑl, φl), ql ∈ DFF . (9)

C. Localization Protocol

We propose an RIS-enabled hybrid NF and FF localization
protocol, which improves localization accuracy by iteratively
localizing the users and optimizing the RIS phase shifts
based on the estimated locations. The localization process
is divided into C cycles with cycle duration being δ. Note
that cycle duration δ can be adjusted for different systems.
Each cycle contains three steps: transmission, localization,
and optimization. The process of the localization protocol is
illustrated in Fig. 2.

1) Transmission: In this step, the users send signals
to the RIS, which are reflected to the BS. Let g(c) =
[g

(c)
1 , ..., g

(c)
K ]T ∈ CK×1 denote the signal received by the BS

in the c-th cycle. The RIS phase shifts are set randomly in the
first cycle, while in the following C−1 cycles, the phase shifts
are selected based on the optimization results in the previous
cycle, which will be described in the optimization step.

2) Localization: In the next step, the BS estimates users’
locations using the received signals. Specifically, in the c-th
cycle, based on the received signals G(c) = [g(1), ..., g(c)]T ∈
CK×c, we determine whether the users and the scatters are
located in the NF or the FF region and jointly estimate their
locations P (c) = [p

(c)
1 , ...,p

(c)
K ] and Q(c) = [q

(c)
1 , ..., q

(c)
L ].

This step focuses on the problem of accurately locating users
given the received signals and the RIS phase shifts. The details
of the localization algorithm are introduced in Sec. III.

3) Optimization: In the rest time of the c-th cycle, the
optimal RIS phase shifts β(c+1) are selected according to the
estimated locations in the former step. Note that this step is
not executed in the last cycle. This step focuses on the task
of calculating the optimal RIS phase shifts for the next cycle
based on the user localization results of the previous step. The
details of optimization are introduced in Sec. IV.

RIS
phase shift

BS

User 1

User K

…

…

…

…

Transmission Localization Optimization

…

(1) ( −1)C ( )C

fK fK fK

f1 f1 f1

Fig. 2. RIS-enabled hybrid NF and FF source localization protocol.

III. RIS-ENABLED HYBRID NEAR-FIELD AND FAR-FIELD
LOCALIZATION

In this section, we first formulate the localization problem
and then propose a localization algorithm to solve the formu-
lated problem.

A. Localization Problem Formulation

We formulate the multi-user localization problem to mini-
mize the user localization loss, which is defined as the sum
of the l2-norm of the residual between the received signals
and the signals reconstructed given user locations. Thus, the
localization problem is formulated as

P1 : min
P

K∑
k=1

∥∥∥g(c)
k − (B(c))Thk(pk,Q)sk

∥∥∥2
2
, (10a)

s.t. pk ∈ DNF ∪DFF ,∀k, (10b)

where g
(c)
k = [g

(1)
k , ..., g

(c)
k ]T ∈ Cc×1 is the received signals of

the k-th user in the previous c cycles, i.e., the k-th row of G(c).
Here B(c) = [β(1), ...,β(c)] ∈ CN×c is the phase shifts of the
RIS in the previous c cycles, P = [p1, ...,pK ] is the locations
of the users, Q is the ground truth of scatter locations. It can
be observed from (10a) that the objective function is affected
by the accuracy of user location estimation. By solving (P1),
we can minimize the estimation error of the user location and
eliminate the interference caused by the scattering paths.

Compared to single-user localization, multi-user localization
is more challenging because the channels of different users are
coupled with each other. Specifically, the signals transmitted
by different users at different frequencies may pass through
the same scatter. Thus, the localization loss of each user,
i.e., a term in the summation (10a), is affected by not only
the location of each user but also the scatter locations Q.
This is different from the single-user localization case where
the locations of a user and the scatters are optimized to
minimize only one localization loss term and the coupling of
the localization losses among different users is not considered.

Due to the non-convex nature of the above problem (P1),
conventional algorithms like gradient descent can easily fall
into local minima. To solve it effectively, a location estimation
method by modifying the grid search method is proposed
to perform a global search. Specifically, we first sample the
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search domain in NF and FF regions to create a grid map of the
sampled candidate locations, denoted by Z = [Znear,Zfar],
where Znear and Zfar are the sampled candidate locations in
the NF and FF, respectively. Then, the most suitable sample
locations are selected to minimize the localization loss.

Considering the different signal models in the NF and FF
regions, the locations in these two regions are sampled in
different ways, which are elaborated in the following.

NF case: In the NF region, R, θ, ϕ are uniformly sampled
with sampling spacings ∆R,∆θ = π/Nθ,∆ϕ = π/Nϕ,
respectively, where Nθ and Nϕ are predetermined parameters.
Thus, S sampled candidate locations in the NF are obtained.

Znear =
[
[R1, θ1, ϕ1]

T
, ..., [RS , θS , ϕS ]

T
]
. (11)

We define the atom channels as the user-RIS channels or
the scatter-RIS channels between the RIS and every possible
candidate location of the users or the scatters. The atom
channel in the NF region is given by [25]

Fnear = [b(R1, θ1, ϕ1), ..., b(RS , θS , ϕS)] ∈ CN×S , (12)

where b(Ri, θi, ϕi) is the NF steering vector given the location
[Ri, θi, ϕi]

T .
FF case: In the FF region, only the angles θ, ϕ are sampled.

The range R is not sampled because it does not affect the FF
steering vector and it cannot be estimated similarly to NF case.
The primary reason lies in the angular relationships between
the user and the RIS elements. Specifically, in the NF, the
angles between the user and each RIS element are different.
This leads to different phase shift changes for paths from the
user to each RIS element and varied received signals when
the range varies, which allows for the estimation of the range
R. In contrast, for FF users, since the angles between the user
and each RIS element are almost the same, when the range
changes, the phase shift changes for the path from the user
to each RIS element are the same. This uniform phase shift
leads to an overall phase change in the received signal, hence
range estimation cannot be achieved.

As a result, the number of candidate locations and the
algorithm complexity are significantly reduced compared with
NF. We apply the same angle sampling methods in the FF as
in the NF. The atom channel of the FF region is given by [26]

Ffar = [a(θ1, ϕ1), ...,a(θNθNϕ
, ϕNθNϕ

)] ∈ CN×NθNϕ , (13)

where a(θi, ϕi) is the FF steering vector of the angle [θi, ϕi].
We define F = [Fnear,Ffar] ∈ CN×M as the atom

channels for the hybrid field, where M = S + NθNϕ. For
better illustration, the sampled locations at θ = π/2 plane for
both the NF and FF regions are shown in Fig. 3.

Based on the channel model (2) and the atom channels (12)
and (13), each user-RIS channel can be approximated as a
linear combination of multiple atom channels. We define uk ∈
CM×1 as the gains of the atom channels for the k-th user-RIS
channels, which can be decomposed into two components: uP

k

for the direct path, and uQ
k for the scattering path. Both uP

k

and uQ
k are unknown, and our aim is to accurately estimate

uP
k , which contains user locations information. Specifically,

uP
ik, the i-th element of uP

k , denotes the gain of the i-th atom

RIS

NF

FF

b( , , )Rs s s� �

a( , )� �i i

Fig. 3. Illustration of the sampled locations at θ = π/2.

channel in the direct path between the k-th user and the RIS.
If uP

ik = 0, it indicates that the k-th user is not at location zi,
the i-th column of the candidate locations Z. Otherwise, the
k-th user is located at zi, and the estimated gain is uP

ik. In
contrast, we do not care about the estimation accuracy of uQ

k ,
because it is only influenced by scatter locations.

The k-th user-RIS channels are thus given as

ht
k(pk,Q) = Fuk = F (uP

k + uQ
k ). (14)

The cascaded channel of the k-th user is given by

hk(pk,Q) = hA
k ⊙ ht

k = diag{hA
k }F (uP

k + uQ
k ). (15)

Since the number of users and scatters are generally much
smaller than the number of atom channels, uk can be di-
rectly solved base on traditional sparse recovery method
like orthogonal matching pursuit (OMP). However, the user
location estimated in this way is not accurate enough due to
interference of scattering paths. To mitigate this interference
and improve user localization accuracy, (P1) is approximated
as

P1’ : min
uP

k ,∀k

K∑
k=1

∥∥∥g(c)
k −Λk(uP

k + uQ
k )
∥∥∥2
2
, (16a)

s.t.
∥∥uP

k

∥∥
0
= 1,∀k, (16b)

where uQ
k is the ground truth of uQ

k . Here, Λk =
(B(c))T diag{hA

k }F sk ∈ Cc×M is the atom signals, which
are the linear transformation of the atom channels F by
considering the effect of RIS phase shift B(c), the RIS-BS
channel hA

k , and the transmit signal sk.

B. Localization Algorithm

From (P1’), it is evident that we cannot directly estimate
the user’s location since the scatter locations are unknown.
Therefore, we need to estimate the locations of the scatters.
However, considering that scattering paths are typically weaker
than direct user-RIS path, it is difficult to estimate the scatter
locations directly from the received signals. To tackle this
issue, we leverage the idea of successive interference cancel-
lation (SIC) that first estimates the stronger direct user-RIS
paths, and then estimates the weaker scattering paths.
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Algorithm 1 The proposed localization algorithm

Input: Recieved signal G(c), the atom channels matrix F ,
max number of scatters Lmax

Output: The estimated locations of the users P (c)

1: Initialization: the atom signals Λk, the received signals
energy E, the support set X = ∅.

2: for k = 1, ...,K do
3: Obtain the coarse estimated user locations based on (20)
4: Calculate residual signal by (21) and (22)
5: end for
6: Initialize the residual signal einik = ek
7: for l = 1, ..., Lmax do
8: Obtain the estimated l-th scatter location by (24)
9: Update support set X = X ∪ i

10: Calculate residual signals by (25) and (27)
11: Calculate the energy of the residual signal Er

12: if Er < γE then break end if
13: end for
14: for k = 1, ...,K do
15: Calculate the new residual signal by (28)
16: Obtain the estimated location of k-th user by (30)
17: end for
18: Return: P (c) = [p

(c)
1 , ...,p

(c)
K ]

Therefore, we devise a three-step algorithm to solve (P1’).
Specifically, we first ignore the scattering path and roughly
estimate the locations of the users based on the received
signal. The residual signal is then calculated by subtracting
the direct user-RIS path component from the received signal
to improve the estimation accuracy of scatter locations. Next,
the scatter locations are estimated using the residual signal. In
the third step, we subtract the scattering path from the received
signal and re-estimate the user’s location to achieve higher
user localization accuracy. In the following, we introduce
these subproblems and the algorithm in detail. The proposed
algorithm is summarized in Algorithm 1.

1) User Location Estimation: In this part, we estimate the
location of each user using the corresponding received signal.
This is a coarse estimate because we ignore the scattering
path in this step. Specifically, we find the atom signal with
the highest energy contribution to the received signals and
estimate the gain of the atom channel [27] [28]. For example,
for the k-th user, we use the gk to estimate its location, i.e.,

P1-a : min
uP

k ,∀k

K∑
k=1

∥∥∥g(c)
k −ΛkuP

k

∥∥∥2
2
, (17a)

s.t.
∥∥uP

k

∥∥
0
= 1,∀k. (17b)

Only one element in uP
k is nonzero, therefore uP

k is a 1-
sparse vector, which enables the sparse recovery method to
efficiently recover it [29]. Note that the terms of summation
in (17a) are independent, therefore (P1-a) can be decoupled
into K independent subproblems, given by

P1-a-k : min
uP

k

∥∥∥g(c)
k −ΛkuP

k

∥∥∥2
2
, (18a)

s.t.
∥∥uP

k

∥∥
0
= 1. (18b)

The received signal g(c)
k contains multiple paths. Since the

gain of the direct path is larger than that of the scattering paths,
we choose the atom signal with the strongest correlation with
received signal as the direct path corresponding to the user’s
location. Mathematically, for the k-th user, we have

ik = argmax
i

∣∣∣(Λk
i )

Hg
(c)
k

∣∣∣ (19)

where Λk
i ∈ CN×1 is the i-th column of Λk that corresponds

to zi, the i-th location in Z. Then, we have p̂k = zik , and
the estimated location for all K users is given by

P̂ = [zi1 , ...,ziK ] . (20)

Note that the optimal gain for any given atom signal can be
given in closed form as a function i

ûP
ik = Λk

i

†
g
(c)
k , (21)

where ûP
ik is the estimated value of the i-th element in uP

k ,
and † represents the pseudo-inverse. The residual signal for
the k-th user can be given by

e
(c)
k = g

(c)
k − ûP

ikΛ
k
i . (22)

In this way, signals with smaller interference for scatter
localization is obtained.

2) Scatter Location Estimation: In this part, the locations
of the scatters are estimated using all the residual signals.
This part is iteratively conducted until the energy of the new
residual signal is less than a percentage of the energy of the
received signals or the number of iterations reaches Lmax.
This subproblem is modeled as

P1-b : min
uQ

k ,∀k

K∑
k=1

∥∥∥e(c)k −ΛkuQ
k

∥∥∥2
2
, (23a)

s.t. |{i|vi ̸= 0}| ≤ Lmax, (23b)

where vi = [uQ
i1, ..., u

Q
iK ] ∈ C1×K . Since the numbers of

scatters are generally much smaller than the number of atom
channels [30], we can use the sparse recovery method [27] to
estimate the sparse vector uQ

k [29]. We define the support
set X as the indices of the atom signals corresponding to
the estimated scatter locations. In each iteration, a new index
is added to the support set. Note that the atom signal for
each user is different, the residual signal for different users
is approximated using their corresponding atom signals, and
then the location with the maximum correlation with the
residual signal is selected as the estimated location of a scatter.
Mathematically, we have

i = argmax
i

K∑
k=1

∣∣∣(Λk
i )

He
(c)
k

∣∣∣ (24)

Then, we update the support set as X = X ∪ i. The gains of
all the support signals in the support set are calculated through
orthogonal least square, which is given by

ûQ
k,X = (Λk

X )†einik , (25)
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where einik is the initial residual signal, and Λk
X is the matrix

generated by the atom signals selected by the indices in the
support set, which is given by

Λk
X = [Λk

j ], j ∈ X . (26)

Using the estimated gain, the residual signal is updated by

e
(c)
k = einik −Λk

X ûQ
k,X . (27)

Then the energy of the new residual signal ek is calculated
and denoted by Er. If Er < γE, the iteration terminates, else
the steps (24) to (27) are repeated, where γ is a predetermined
parameter and E is the energy of the original received signals.

3) User Location Refinement: In this part, we optimize the
locations of users based on the estimated scatter locations, i.e.,
re-solve the locations of users given the locations of scatters.
First, we calculate the residual signal r(c)k by subtracting the
scattering path from the original received signal.

r
(c)
k = g

(c)
k −Λk

XΛk
X

†
g
(c)
k . (28)

Then similar to the method of the user location estimation
step, by solving the following subproblem,

P1-c : min
uP

k ,∀k

K∑
k=1

∥∥∥r(c)k −ΛkuP
k

∥∥∥2
2
, (29a)

s.t.
∥∥uP

k

∥∥
0
= 1,∀k, (29b)

the index of the refined k-th user location is given by

ik = argmax
i

∣∣∣(Λk
i )

Hr
(c)
k

∣∣∣ . (30)

Then we have p̂k = zik and P̂ = [zi1 , ...,ziK ].

IV. RIS PHASE SHIFT OPTIMIZATION

In this section, we first formulate the RIS phase shift
optimization problem and propose an algorithm to solve it.

A. Phase Shift Optimization Problem Formulation

The selected optimization metric is CRB, a standard metric
for assessing the parameter estimation error [31]. The CRB is
derived from the model of the received signal for c+1 cycles,
which is given by

yk = [y
(1)
k , ..., y

(c+1)
k ]T = (B(c+1))Thks+ ϵ, (31)

where ϵ = [ϵ(1), ..., ϵ(c+1)]T is the independent and identically
distributed zero-mean Gaussian noise with variance σ2. Note
that the received signal is influenced by the RIS phase shift
β(c+1), which is the (c + 1)-th column of B(c+1). Thus, we
can obtain the expressions between β(c+1) and CRB, listed in
the following. By optimizing the RIS phase shifts β(c+1), we
can minimize the CRB to improve the localization accuracy.

Specifically, we formulate the optimization problem to min-
imize the sum of weighted CRBs of range and angle estimation
errors. We introduce a weight matrix to address the different
unit of angle and range CRBs [32]. Note that we estimate
angles and ranges for NF users, while only angles for FF users.
Hence, we give the expressions of the weighted CRBs for NF
and FF users separately.

1) CRBs for NF Users: If the estimated location p
(c)
k is in

the NF region in the c-th cycle, we expect that in the (c+1)-
th cycle, the range and angles of the k-th user are estimated,
denoted by p

(c+1)
k = [Rk, θk, ϕk]

T . The expressions of CRBs
for the NF case are provided in proposition 1.

Proposition 1: For the NF case, the CRBs of the unknown
parameters pk = [Rk, θk, ϕk]

T are given by

DR =
(
J−1
NF

)
1,1

, (32)

Dθ =
(
J−1
NF

)
2,2

, (33)

Dϕ =
(
J−1
NF

)
3,3

, (34)

where JNF is the 3×3 Fisher information matrix of pk in the
NF region, and the (i, j)-th element in JNF is given by [33]

[JNF ]i,j =
2

σ2

c+1∑
m=1

Re

{
∂(µ(m))H

∂pi

∂µ(m)

∂pj

}
, (35)

where µ(m) is defined as the noise-free received signal

µ(m) = (β(m))ThNF
k sk. (36)

Here hNF
k is the channel calculated by using p

(c)
k ∈ DNF

and Q(c), and pi is the i-th element in pk.
Proof: See Appendix A.

2) CRBs for FF Users: If the estimated location p
(c)
k is in

the FF region, we expect that only the angles are estimated
for the k-th user in the (c+1)-th cycle, and the estimated pa-
rameters are denoted by p

(c+1)
k = [θk, ϕk]

T . The expressions
of CRBs for the FF case are provided in proposition 2.

Proposition 2: For the FF case, the CRBs of the unknown
parameters pk are given by

Dθ =
(
J−1
FF

)
1,1

, (37)

Dϕ =
(
J−1
FF

)
2,2

, (38)

where JFF is the 2 × 2 Fisher information matrix of pk in
the FF region, and the (i, j)-th element is given by [33]

[JFF ]i,j =
2

σ2

c+1∑
m=1

Re

{
∂(µ(m))H

∂pi

∂µ(m)

∂pj

}
, (39)

where µ(m) is defined as the noise-free received signal

µ(m) = (β(m))ThFF
k sk, (40)

and hFF
k is the channel calculated using p

(c)
k and Q(c).

Proof: See Appendix B.

3) Optimization Problem Formulation: To achieve high
localization accuracy for multiple users, we optimize the phase
shifts β(c+1) by minimizing the sum of CRBs of all the users.
The optimization problem can be formulated as

P2 : min
β(c+1)

f(P ,β(c+1)) =
∑

k∈ΨNF

tr
(
J−1
NF,kWNF

)
+

∑
k∈ΨFF

tr
(
J−1
FF,kWFF

)
, (41a)

s.t. |β(c+1)
n | = 1, ∀n = 1, 2, ...N, (41b)
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where JNF,k or JFF,k is the Fisher information matrix of
pk when the k-th user is located in the NF or FF region
and is a function of the RIS phase shifts β(c+1). Here
WNF = diag{w1, w2, w3} and WFF = diag{w4, w5} are
the weight matrices of the CRBs in the NF and FF regions,
respectively [32]. ΨNF and ΨFF are the sets of estimated NF
and FF users, which are mathematically given by

ΨNF = {k|p(c)
k ∈ DNF }, (42)

ΨFF = {k|p(c)
k ∈ DFF }. (43)

β
(c+1)
n is the RIS phase shift of the n-th element in the (c+1)-

th cycle, satisfying the constant modulus constraint (41b).

B. RIS Phase Shift Optimization Algorithm

We design an optimization algorithm based on the complex
circle manifold (CCM) method to tackle (P2). Due to the
constant modulus constraint (41b), the problem (P2) is non-
convex, which is numerically difficult to handle. Fortunately,
the solution can be considered as lying on the CCM to satisfy
the constant modulus, where the manifold is represented as

MN =
{
β(c+1) ∈ CN : |β(c+1)

1 | = ...= |β(c+1)
N | = 1

}
. (44)

The main idea of the CCM-based optimization method is
to iteratively apply gradient descent in the manifold space.
After several iterations, the algorithm terminates when the
difference between two iterations of f(P ,β(c+1)) is less than
a constant ζ or the number of iterations exceeds I , where
ζ and I are selected to comply with the time constraints of
the optimization step. The CCM-based optimization method
is composed of four main steps in each iteration:

1) Compute the gradient in Euclidean space: We use the
Euclidean gradient as the search direction for the minimiza-
tion problem in Euclidean space. The Euclidean gradient of
f(β(c+1)) is given by

∇f(β(c+1))=2
( ∑
k∈ΨNF

[
w1∂DR,k

∂β(c+1)∗
+
w2∂Dθ,k

∂β(c+1)∗
+
w3∂Dϕ,k

∂β(c+1)∗

]
+
∑

k∈ΨFF

[
w4∂Dθ,k

∂β(c+1)∗
+

w5∂Dϕ,k

∂β(c+1)∗

])
, (45)

where the variable P is omitted in f(P ,β(c+1)) for simplicity.
Similar to the proof in [8], the specific expressions of the
differentials of CRBs are given in Appendix C.

2) Compute the Riemannian gradient: The Riemannian
gradient is the projection of the Euclidean gradient onto the
tangent space of the complex circle manifold. The Riemannian
gradient of the objective function f(β(c+1)) at the point
β
(c+1)
j on the complex circle manifold M is given as [8]

∇Mf(β
(c+1)
j ) = −∇f(β

(c+1)
j )

−Re
{(

∇f(β
(c+1)
j )

)∗
⊙ β

(c+1)
j

}
⊙ β

(c+1)
j . (46)

3) Update over the Tangent Space: We choose a step size
to update the current point, which is mathematically given as

β̄
(c+1)
j = β

(c+1)
j + αj∇Mg(β

(c+1)
j ), (47)

where αj is the step size in the j-th iteration.

Algorithm 2 CCM-based RIS Phase Shift Optimization Al-
gorithm

Input: Estimated location p̂(c), RIS phase shift for previous
c cycles B(c)

Output: Optimal RIS phase shift β(c+1)

1: Initialize: j = 0, β0 ∈ M;
2: while |g(β(c+1)

j+1 )− g(β
(c+1)
j )| > ζ and j < I do

3: Compute the Euclidean gradient ∇f(β
(c+1)
j ) according

to (45)
4: Calculate the Riemannian gradient ∇Mf(β

(c+1)
j ) ac-

cording to (46);
5: Compute the RIS phase shift update on the tangent

space β̄
(k+1)
j according to (47);

6: Update RIS phase shift β(k+1)
j+1 according to (48);

7: j = j + 1;
8: end while

4) Retract onto the manifold: After the update, the new
point β̄

(c+1)
j generally does not lie on the manifold M. By

using the retraction operator, the new point is mapped into the
manifold. The retraction operator is given as

β
(c+1)
j+1 = β̄

(c+1)
j ⊙ 1

|β̄(c+1)
j |

. (48)

The proposed algorithm is summarized in Algorithm 2.

V. PERFORMANCE ANALYSIS

In this section, we analyze the complexity of the proposed
method and discuss its localization performance.

A. Algorithm Complexity

1) Complexity of the localization algorithm: For the user
location estimation step of the localization algorithm, the
method is similar with the first iteration of the OMP method.
Therefore, the computational cost of the user estimation step
is O(cMK) [34]. In the scatter location estimation step, the
complexity of this algorithm has been analyzed in [35]. We
estimate the scatter locations for at most Lmax rounds. Hence,
the computational cost is O(cKMLmax). Then, similar with
the user location estimation step, the computational cost of
user location refinement step is O(cMK).

Hence, the overall cost of the localization algorithm for
the c-th cycle is O(cMK) + O(cKMLmax). The overall
complexity for a C-cycle localization algorithm is O(C(C +
1)MK) +O(C(C + 1)KMLmax).

2) Complexity of the RIS optimization algorithm: The com-
plexity of the CCM algorithm has been analyzed in [36]. Let
us denote the total number of iterations required to converge
by TCCM . Then the total complexity of the optimization
algorithm is O(TCCMN2). Since the optimization algorithm
is conducted for C − 1 times, the overall complexity for the
optimization algorithm is O((C − 1)TCCMN2).



9

B. Localization Performance

Localization errors primarily arise from two sources: one is
the failure to estimate the grid closest to the user, which we
refer to as grid misjudgment; the other is the error between
the user’s continuous location in actual space and the discrete
grids, known as grid mismatch, reflecting the inherent limi-
tation of discretizing continuous space [37]. Mathematically,
suppose the real location of the k-th user is pk, the estimation
result is zm′ , and the nearest grid for the k-th user is zm.
Then the average localization error can be given by

E(le) = E{∥pk − zm′∥}
≤ E{∥pk − zm∥}+ E{∥zm − zm′∥}, (49)

where the first term corresponds to grid mismatch, and the
second term is grid misjudgment. In the following, we analyze
these two sources of errors respectively.

1) Number of Cycles: The expectation of localization error
can be given by [38]

E(le)=
M∑

m=1

γk
m

∫
g
(C)
k ∈Rkm

P(g(C)
k |B(C),pk,Q)dg

(C)
k , (50)

where Rkm is the decision region for the m-th candidate
location. The integral in (50) is the probability that the
estimated location is the m-th candidate location, given the
ground truth that the location of the k-th user is pk. Here γk

m

is the error parameter, defined as γk
m = ∥pk − zm∥.

We assume all locations have the same prior probabilities.
Hence, the decision region can be given by

Rkm = {g(C)
k :P(g(C)

k |B(C), zm,Q)

≥ P(g(C)
k |B(C), zm′ ,Q),∀m′ ̸= m}. (51)

Since the noise obeys Gaussian distribution, we have

Rkm={g(C)
k : |g(C)

k −µm|2≤|g(C)
k −µm′ |2,∀m′ ̸=m}, (52)

where µm = [µ
(1)
m , ..., µ

(C)
m ]T is the noise-free signal for the

m-th grid. Let ξk = g
(C)
k − µm, we have [38]

Rkm ={g(C)
k : |ξk|2 ≤ |ξk + µm − µm′ |2,∀m′ ̸= m},

={g(C)
k : |µm − µm′ |2 + 2ξk(µm − µm′) ≥ 0, (53)

∀m′ ̸= m}.

Assuming the user is located at a grid location zm, when
C → ∞, the first term is greater than 0, and the second term
converges to 0 because ξk and µm−µm′ are independent and
E(ξk) = 0. Therefore, we have

lim
C→∞

P(g(C)
k ∈ Rkm) = 1. (54)

Hence, when ignoring grid mismatch, the grid misjudgment
error E{∥zm − zm′∥} converges to 0.

When the user is not at a grid, if we assume the midpoint of
zm and zm′ also corresponds the midpoint of µm and µm′ ,
then we have E(ξk) ≤ |µm − µm′ |/2. Hence, the |µm −
µm′ |2 +2ξk(µm − µm′) ≥ 0 is still alwasy true, and we still
have limC→∞ P(g(C)

k ∈ Rkm) = 1. However, the number of
cycles does not affect the grid mismatch error. Therefore, the
localization error would converge to a non-zero number.

Remark 1: By increasing the number of estimation cycles C,
the localization error first decreases and then remains fixed.

2) Sampling Spacing: First, we consider the scenario C →
∞. According to the previous analysis, the localization error

E(le) ≤ E{∥pk − zm∥}+ E{∥zm − zm′∥},
C→∞
≈ E{∥pk − zm∥}, (55)

where E{∥pk − zm∥} is directly related to the sampling
spacing. Hence, a finer grid sampling could alleviate the grid
mismatch problem [37].

When constrained by a limited number of cycle, the approx-
imation in (55) no longer holds. Note that ξk = g

(C)
k −µm in

(53) follows Gaussian distribution. At a given SNR, decreas-
ing the sampling spacing raises the probability that |ξk| >
|µm − µm′ |/2. This leads to a reduction in the probability
of correctly estimating the nearest grid and an increase in the
expected error between the estimated and nearest grid points,
i.e. E{∥zm − zm′∥}. Furthermore, the effectiveness of sparse
recovery methods is constrained by the restricted isometry
property (RIP) or the mutual coherence condition. Reducing
the sampling spacing may breach this condition, leading to a
decline in localization accuracy [39].

3) Number of RIS Elements: Similarly to [40], we charac-
terize the average received power with respect to the number
of RIS elements as N → ∞. We consider two different RIS
phase shifts: random phase shifts and optimal phase shifts that
maximize the SNR. We consider C = 1 as an example.

Proposition 3: Assume hA
k ∼ CN (0, ρ2AI) and ht

k ∼
CN (0, ρ2tI), the average received power holds that

lim
N→∞

P =

Nρ2Aρ
2
t , β = [1, ..., 1]T ,

N2π
2ρ2Aρ

2
t

16
, max SNR phase shifts.

(56)

Proof: The two cases are discussed as follows:
• The channel h = (hA

k )
Hdiag{β}ht

k = (hA
k )

Hht
k. Ac-

cording to Lindeberg-Lévy central limit theorem, we have
h ∼ CN (0, Nρ2Aρ

2
t ) as N → ∞. The average user

received power is given by

lim
N→∞

P = E|h|2 = Nρ2Aρ
2
t . (57)

• For RIS phase shifts of max SNR, we have |h| =
(hA

k )
Hdiag{β}ht

k =
∑N

n=1 |hA
k,n||ht

k,n|, where hA
k,n and

ht
k,n are the n-th element in hA

k and ht
k, respectively.

Since hA
k,n and ht

k,n are statistically independent and
follow Rayleigh distribution with mean values

√
πρA/2,√

πρt/2, we have E(|hA
k,n||ht

k,n|) = πρAρt/4. The aver-
age user received power is given by

lim
N→∞

P = lim
N→∞

∣∣∣∣∣
N∑

n=1

|hA
k,n||ht

k,n|

∣∣∣∣∣
2

= N2π
2ρ2Aρ

2
t

16
. (58)

Note that the power gain of order N can be achieved for
fixed phase shifts, which reveals the inherent aperture gain of a
larger RIS by collecting more signal power. Moreover, setting
the RIS phase shifts for max SNR can also achieve another
beamforming power gain of order N simultaneously.
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Fig. 4. (a) Angle estimation accuracy of the proposed algorithm compared with AML and ANM when the user is located in the FF region. (b) Angle
estimation accuracy of the proposed algorithm compared with AML and ANM when the user is located in the NF region. (c) Range estimation accuracy of
the proposed algorithm compared with AML when the user is located in the NF region.

Hence, with an increasing number of RIS elements, the
SNR improves, which enlarges the difference between µm and
µm′ . Consequently, the probability of |ξk| > |µm − µm′ |/2
decreases, which lowers the likelihood of grid misjudgment.
However, the impact of grid mismatch persists.

Remark 2: As the number of RIS elements increases, the
localization accuracy first improves and then remains fixed.

VI. SIMULATION RESULTS

In this section, we present simulation results demonstrating
the performance of the proposed method. The RIS is placed
on the plane x = 0, and its center is at the origin (0, 0, 0)m.
We use an RIS with 10×10 elements and the element spacing
is λ/2 = 0.03m. The localization range is 10m in radius [41].
The NF range for the considered RIS is approximately 4.9m,
while the rest region is FF. The users are equally distributed in
NF and FF regions. We consider a multipath environment with
3 randomly distributed scatters. The azimuth and elevation
angles are both uniformly sampled with spacing π/10, and
the range is sampled with spacing 0.25m. The center transmit
frequency is 5GHz [42]. The number of cycles is set as
20. We conduct T = 1000 independent trials to obtain the
average result. The simulation parameters are listed in Table II
unless otherwise stated. The proposed method is compared
with following methods.

• Approximate maximum likelihood (AML) scheme [22]: a
RIS-enabled NF localization method based on maximum
likelihood. This method decouples the angle and range
parameters and iteratively searches the angle and range
to fit best with the received signal.

• Atomic norm minimization (ANM) scheme [43]: an off-
grid direction of arrival estimation method based on
atomic norm that targets FF users localization.

• NF scheme: The proposed algorithm is combined with
pure NF model to show the gain brought by the hybrid
model, labeled as NF.

• FF scheme: The proposed algorithm is combined with
pure FF model, labeled as FF.

For all compared algorithms, we employ the same system
setup and localization protocol. For NF methods, including
AML and the proposed method with the NF model, the whole
localization range is treated as in the NF, i.e., the range of FF

TABLE II
SIMULATION PARAMETERS

Parameters Values

Number of users K 2
Number of scatters L 3
Transmit center frequency fc 5GHz
RIS center location (0, 0, 0)m
Number of RIS element N 10× 10
RIS element spacing 0.005m
Localization range 10m
Angle sampled spacing ∆θ,∆ϕ π/10 rad
Range sampled spacing ∆R i 0.25m
Number of cycles C 20

is also sampled, while for FF methods, we only sample the
angle.

A. Performance Evaluation

Fig. 4 shows the RMSE of angle or range estimation versus
the signal-to-noise ratio (SNR) for NF or FF users. The
SNR is defined as Ps/σ

2, where Ps = ((hA
k )

T Iht
k0)

2 is
the received signal power of the direct path when the phase
shifts of all the RIS elements are 1. Fig. 4 (a) and (b) show
the angle estimation RMSE of the proposed algorithm and
other comparison algorithms for FF and NF users, respectively.
They indicate that the proposed method outperforms all other
methods for FF and NF user localization. We also observe that
for algorithms other than ANM, as SNR increases, the RMSE
of the angle estimation first decreases and then remains fixed.
The RMSE does not decrease when the SNR is very high
because the estimated location must be at one of the sampled
grids, while the actual location of the users is off-grid. The
ANM does not suffer from the grid mismatch problem since
it is an off-grid algorithm.

Fig. 4 (a) also reveals the RMSEs of the proposed algorithm
with the hybrid model and FF model are similar, indicating
that the hybrid model can achieve the same accuracy for FF
user localization although with the interference of NF candi-
date locations. We also observe that the proposed algorithm
performs worse in the NF model than in the hybrid model
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Fig. 5. Angle estimation performance for different localization scenarios.

for FF users. This is because, for the NF model, the range
of the FF region is also sampled, resulting in more candidate
locations in the FF region and making the algorithm more
difficult to converge. At the same time, the channels of the
sampled FF candidate locations in the NF model have strong
correlations, which leads to energy dispersion especially when
estimating the scatters locations. In Fig. 4 (b), we observe that
the FF model has a higher RMSE than the hybrid model when
estimating the NF angles. This is due to the model mismatch
of the FF model when describing the NF channels.

Fig. 4 (c) shows the range estimation accuracy for NF
users versus SNR. For range estimation, the proposed method
outperforms AML by more than 55% for all SNR conditions.
It shows that the range estimation result of the NF model
is not as good as those of the hybrid model for NF user
localization, which reveals the superiority of the hybrid model.
Additionally, the improvement of the hybrid model over the
NF model is bigger in range compared to angle estimation. The
reason for this phenomenon is that the NF model samples the
range and angle in the whole region, i.e., the range of FF is
also sampled. However, the steering vectors of the different
ranges in the FF are very similar. If a NF user is misestimated
as a FF point, the resulting range error becomes significantly
larger, leading to an overall degradation in estimation accuracy.

In Fig. 4, we can observe that the proposed method signif-
icantly outperforms both AML and ANM. The performance
gain can be attributed to the following reasons: Firstly, neither
AML nor ANM effectively handles the scattering paths, and
the interference of scattering paths reduces localization accu-
racy. Secondly, AML decouples angle and range estimation
and updates them iteratively. While this approximated method
reduces algorithm complexity, it also impacts performance.
Moreover, ANM is a FF localization method and employs
plane wave model, which inaccurately describes NF signals.

In the following, the angle sampling spacing is set as π/20
to reduce grid mismatch. Fig. 5 shows the influence of the
number of users and scatters. We can observe that increasing
the number of users degrades angle estimation accuracy, as the
RIS beamforming becomes less precise when simultaneously
serving multiple users. Moreover, increasing the number of
scatters reduces localization accuracy due to interference from
multipath propagation. Furthermore, by comparing the results
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Fig. 6. Angle estimation performance for different interference power.

obtained directly using the OMP algorithm, i.e., the first step
of the localization algorithm (labeled as coarse) with those
obtained through the three-step localization algorithm (labeled
as refined), it is evident that the scattering path elimination
technique can improve the localization accuracy.

Fig. 6 shows the angle estimation performance versus the
scattering path power. The CRB is calculated given true user
and scatter locations. It is observed that for low scattering
path power and dense angle sampling, the estimation RMSE
can approach the CRB. However, the effectiveness of scat-
tering path elimination becomes limited for high scattering
path interference, causing the RMSE to deviate from the
CRB. Additionally, sparse angle sampling exacerbates the grid
mismatch problem, further leading to accuracy degradation.

B. Localization Accuracy and Complexity Trade-off

This subsection examines the effects of hyperparameters on
localization accuracy and algorithm complexity. We focus on
the sampling spacing, the number of cycles, and the number
of RIS elements, as they are the most important factors for
both according to the analysis in Sec. V.

1) Number of Cycles: Fig. 7 (a) illustrates the angle es-
timation RMSE for different numbers of cycles. It shows
that for the hybrid and FF model, the estimation performance
converges after C = 30 cycles, while for the NF model, the
result remains fixed after C = 35 cycles, proving that the NF
model is harder to converge. Fig. 7 (b) reveals the CPU time
versus number of cycles for three models. The results show the
proposed algorithm has the lowest complexity with FF model,
followed by the hybrid model, and the highest complexity
with NF model. This is because the FF model has the fewest
candidate locations, while the NF model has the most.

2) Sampling Spacing: Fig. 8 (a) shows the average local-
ization RMSE for NF users of the proposed algorithm under
different sampling spacing. The localization RMSE is derived
by computing user positions from estimated angles and ranges,
then comparing them to the ground truth. Fig. 8 (b) shows the
CPU time of the proposed algorithm in three different models.
It can be observed that as the sampling spacing reduces, the
CPU time increases rapidly, while the estimation error first
decreases and then remains fixed, which is consistent with
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Fig. 7. (a) Angle estimation RMSE versus the number of cycles. (b) CPU time of the proposed algorithm versus number of cycles.2
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Fig. 8. (a) Localization of the NF user for different sampling spacing. (b) CPU time versus sampling spacing.

previous analysis. Note that when the spacing is less than
(0.25m, π/40 rad), the accuracy does not improve, but the
complexity still increases.

3) RIS Size: We set the number of cycles as C = 50 to
ensure convergence. Fig. 9 (a) and Fig. 9 (b) show the range
estimation RMSE and the CPU time of the proposed algorithm
versus the number of RIS elements. As the number of RIS
elements increases, the range estimation RMSE decreases,
and CPU time increases. This is because the complexities of
both the localization and optimization algorithms are positively
correlated with the RIS element number. Also, a centimeter-
level accuracy is attainable for a RIS with 900 elements.

VII. CONCLUSION

In this paper, a RIS-enabled multi-user hybrid NF and
FF localization method has been developed. We considered
a multi-user hybrid NF and FF localization scenario and
introduced a localization protocol. A localization algorithm
is designed for location estimation. The CRB of the estimated
location parameters was analyzed and a CCM-based optimiza-
tion method is proposed to optimize RIS phase shifts. We

2Under the specified parameters at SNR = 5 dB, our method achieves an
angle estimation error of 7◦ and a range error of 0.2 m, with a computational
latency of 0.15 s per update. This performance enables applications such as
indoor navigation [44] and asset tracking [45].

analyzed the complexity and the localization performance of
the proposed method. Simulation results have shown that: 1)
the proposed method outperforms the compared algorithm and
can achieve sub-meter accuracy; 2) the hybrid NF and FF
model has the advantages of high accuracy and low algorithm
complexity over pure NF and FF models; 3) by adjusting the
hyperparameters, the trade-off between localization accuracy
and complexity can be achieved.

APPENDIX A
PROOF OF PROPOSITION 1

As mentioned in Section III-A, all previously received sig-
nals are used to estimate the locations, so we need to consider
received signals in all previous c cycles, as modeled in (31), to
obtain the expressions of CRBs. We first derive the expression
of the Fisher information matrix (FIM) related to the unknown
location parameters according to the received signals, denoted
by JNF . The CRB, which gives the localization performance
limit, is then derived from the FIM.

As proved in [33], FIM is given by [12]

[JNF ]i,j = E

{
−∂2 ln f(yk;pk,Q)

∂pi∂pj

}
, (59)

where f(yk;pk,Q) is the likelihood function of the random
vector yk conditioned on pk and Q. Here we assume the trans-
mitted signals are deterministic. Therefore the i-th received
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Fig. 9. (a) Range estimation performance of the NF users versus RIS size. (b) CPU time of the proposed algorithm for different RIS sizes.

signal y(i)k can be assumed to be independent of each other and
follow complex Gaussian distribution, i.e., f(y

(i)
k ;pk,Q) ∼

CN (µ(i), σ2), where µ(i) = (β(i))Thks is the noise-free
received signal. Therefore, we have f(yk) =

∏c+1
i=1 f(y

(i)
k ).

Then, in the NF region, the FIM JNF can be rewritten as

[JNF ]i,j =
2

σ2

c+1∑
m=1

Re

{
∂(µ(m))H

∂pi

∂µ(m)

∂pj

}
, (60)

where ∂µ(m)

∂pi
= (β(m))T

∂hNF
k

∂pi
s. The n-th entry of ∂hNF

k

∂pi
can

be expressed as[
∂hNF

k

∂pi

]
n

= αk

(
−j

2π

λ

)
exp

(
−j

2π

λ
dtkn

)
∂dtkn
∂pi

. (61)

Next, we take the inverse of JNF and obtain the CRBs.
Hence, the proof of proposition 1 is accomplished.

APPENDIX B
PROOF OF PROPOSITION 2

Similar to the proof of proposition 2, the FIM JFF in the
FF region can be written as [12]

[JFF ]i,j =
2

σ2

c+1∑
i=1

Re

{
∂(µ(i))H

∂pi

∂µ(i)

∂pj

}
, (62)

where ∂µ(i)

∂pi
= (β(i))T

∂hFF
k

∂pi
s. In the FF region, we have[

∂hFF
k

∂θk

]
n

=ht
k0n

(
−j

2π

λ

)
(−yncos θksinϕk+znsin θk), (63)[

∂hFF
k

∂ϕk

]
n

=ht
k0n

(
−j

2π

λ

)
(−yn sin θk cosϕk), (64)

where ht
k0n is the n-th element in the direct user-RIS path.

Next, we take the inverse of JFF and obtain the CRBs.
Hence, the proof of proposition 2 is accomplished.

APPENDIX C
THE DIFFERENTIALS OF CRB

We denote the element in the i-th row, j-th column of J
as Jij . In order to find the differentials of CRBs, we need
to find the differentials of Jij . For simplicity, here we use β

to substitute β(k+1). Jij can be considered as a function of
two independent complexed-valued variables β and β∗. The
complex differentials of Jij can be expressed as

dJij =

(
∂Jij
∂β

)
dβ +

(
∂Jij
∂β∗

)
dβ∗. (65)

The complex differentials of Jij are given as

dJij =
1

σ2

[
d

(
sH
(
∂h

∂pi

)H

β∗βT ∂h

∂pj
s

)

+ d

(
sT
(
∂h

∂pi

)T

ββH

(
∂h

∂pj

)∗

s∗

)]
. (66)

By substitude ∂β∗βT

∂β∗
n

and ∂ββH

∂β∗
n

into (66), we can obtain

∂Jij
∂β∗

n

=
|s|2

σ2

[(
∂hn

∂pi

)∗ N∑
m=1

∂hm

∂pj
βm+

(
∂hn

∂pj

)∗ N∑
m=1

∂hm

∂pi
βm

]
. (67)

The derivatives of CRBs with respect to β∗ are given by

∂Di

∂β∗ =

(
∂J−1

∂β∗

)
i,i

=

(
−J−1 ∂J

∂β∗J
−1

)
i,i

. (68)
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