
1

A Tutorial on MIMO-OFDM ISAC:
From Far-Field to Near-Field

Qianglong Dai, Yong Zeng, Fellow, IEEE, Huizhi Wang, Changsheng You, Member, IEEE, Chao Zhou,
Hongqiang Cheng, Xiaoli Xu, Member, IEEE, Shi Jin, Fellow, IEEE, A. Lee Swindlehurst, Fellow, IEEE,

Yonina C. Eldar, Fellow, IEEE, Robert Schober, Fellow, IEEE, Rui Zhang, Fellow, IEEE
and Xiaohu You, Fellow, IEEE

Abstract—Integrated sensing and communication (ISAC) is one
of the key usage scenarios for future sixth-generation (6G) mobile
communication networks, where communication and sensing
(C&S) services are simultaneously provided through shared
wireless spectrum, signal processing modules, hardware, and
network infrastructure. Such an integration is strengthened by
the technology trends in 6G, such as denser network nodes,
larger antenna arrays, wider bandwidths, higher frequency
bands, and more efficient utilization of spectrum and hardware
resources, which incentivize and empower enhanced sensing
capabilities. Moreover, emerging applications such as Internet-
of-Everything (IoE), autonomous ground and aerial vehicles,
virtual reality/augmented reality (VR/AR), and connected in-
telligence have intensified the demands for both high-quality
C&S services, accelerating the development and implementation
of ISAC in wireless networks. As the dominant waveform used
in contemporary communication systems, orthogonal frequency
division multiplexing (OFDM) is still expected to be a very
competitive technology for 6G, rendering it necessary to thor-
oughly investigate the potential and challenges of OFDM ISAC.
Thus, this paper aims to provide a comprehensive tutorial
overview of ISAC systems enabled by large-scale multi-input
multi-output (MIMO) and OFDM technologies and to discuss
their fundamental principles, advantages, and enabling signal
processing methods. To this end, a unified MIMO-OFDM ISAC
system model is first introduced, followed by four frameworks
for estimating parameters across the spatial, delay, and Doppler
domains, including parallel one-domain, sequential one-domain,
joint two-domain, and joint three-domain parameter estimation.
Next, sensing algorithms and performance analyses are presented
in detail for far-field scenarios where uniform plane wave (UPW)
propagation is valid, followed by their extensions to near-field
scenarios where uniform spherical wave (USW) characteristics
need to be considered. Finally, this paper points out open
challenges and outlines promising avenues for future research
on MIMO-OFDM ISAC.

Index Terms—Integrated sensing and communication (ISAC),
MIMO-OFDM ISAC, far-field, near-field, super resolution.

I. INTRODUCTION

In June 2023, the International Telecommunication Union
Radiocommunication Sector (ITU-R) agreed on a draft of
new recommendations regarding the framework and overall
objectives for the future development of international mobile
telecommunications (IMT) for 2030 and beyond, where 6G
usage scenarios were addressed [1]. Among these novel sce-
narios, integrated sensing and communication (ISAC) stands
out as a transformative paradigm. In fact, the 3rd Generation
Partnership Project (3GPP) Service and System Aspects work-
ing group had already initiated a feasibility study on ISAC in

2022 [2]. Generally speaking, ISAC refers to a new paradigm
that integrates wireless communication and sensing (C&S) ca-
pabilities into a unified system, by efficiently sharing wireless
spectrum, signal processing modules, hardware, and network
infrastructure, with potential joint design of waveforms and
signal processing techniques [3]–[7]. The deep integration
of C&S functionalities facilitates concurrent transmission of
communication data and sensing of environmental informa-
tion, including both static background and moving targets,
thus enhancing spectrum/energy/cost efficiency and achieving
appealing cooperation gains [7]–[9]. Leveraging these advan-
tages, ISAC is expected to find a wide range of applications
such as high-accuracy localization and tracking [10], target
classification/imaging, environmental monitoring, augmented
human senses, autonomous vehicles [11], and posture/gesture
recognition [12].

ISAC originated from radar-communication coexistence
(RCC) studies [13], which initially focused on interference
mitigation for collocated radar and communication systems.
With the evolution of wireless communication and digital
radar technologies, such as multi-input multi-output (MIMO)
[14], [15] and orthogonal frequency division multiplexing
(OFDM) [16], the gap between C&S has been gradually
bridged. This technological convergence drove the emergence
of dual functional radar communication (DFRC) systems
[17], [18] that achieve higher spectral efficiency (SE) and
hardware integration. To enable the coexistence of radar and
communication systems within the same frequency band, a
portion of the sub-6 GHz bands was released for radar and
communication [19], which promoted the evolution of DFRC
towards ISAC. Afterwards, extensive research efforts have
been devoted to optimizing ISAC performance by virtue of
information theory [20]–[22], waveform design [23]–[29],
signal processing techniques [30], [31], and experiments and
prototyping [32], [33].

There are three typical design paradigms for ISAC, namely,
communication-centric design, sensing-centric design, and co-
design of C&S. In this paper, we focus on communication-
centric designs that exploit communication waveforms and
design frameworks to achieve sensing functions. Leveraging
globally and densely deployed wireless infrastructure and
networks, communication-centric ISAC has emerged as one
of the most promising approaches for 6G systems, providing
significant advantages over separate C&S designs as follows.
• Efficient spectrum utilization: The massive number of
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Internet-of-Things (IoT) devices and soaring demands for
high-speed data services have imposed an unprecedented strain
on the limited spectrum resources available for C&S [34].
In conventional DFRC systems, C&S are performed in non-
overlapping frequency bands, resulting in fragmented and
poor utilization of spectrum resources. Communication-centric
ISAC provides an efficient means to greatly improve spectrum
efficiency, since the spectrum pool can be flexibly allocated
and even completely reused by C&S tasks, as will be discussed
in Section II-B.
• Pervasive sensing via wireless communication networks:
Pervasive sensing is an important ISAC vision for 6G that
cannot be achieved by traditional radar sensing networks
with limited sensing coverage. This issue can be resolved by
leveraging existing wireless infrastructure, including cellular
base stations (BSs) and backhaul links that are globally
and densely deployed. Working cooperatively, a collection of
wireless networks can form a powerful and pervasive sensor
network with ubiquitous coverage and connectivity.
• Enhanced cost/energy efficiency: Enhancing energy ef-
ficiency (EE) and cost efficiency (CE) is an important goal
for 6G and ISAC. Pervasive sensing that relies on conven-
tional standalone radars would require the deployment of a
large amount of radar equipment, thus greatly degrading the
EE/CE. Instead, leveraging existing communication systems to
perform wireless sensing can significantly reduce the hardware
cost and energy consumption for sensing, bringing great value
to 6G.

Among other communication-centric designs, OFDM ISAC
has received significant attention from both academia and
industry due to its effective C&S performance. OFDM is
the most popular waveform in contemporary communication
systems, thanks to the following advantages.
• High SE: OFDM systems employ inverse fast Fourier
transform (IFFT)/ fast Fourier transform (FFT) operations
to achieve frequency domain transformations, dividing the
channel bandwidth into multiple orthogonal subcarriers for
parallel data transmission, thus significantly improving SE.
• Robustness against ISI: The use of a cyclic prefix (CP) in
OFDM is a pivotal technique that can efficiently mitigate the
impact of ISI caused by multipath.
• Easy equalization: Since OFDM equalization is performed
in the frequency domain, the receiver only needs to perform
one-tap equalization on each subcarrier, making it much
simpler and more efficient than time-domain equalization in
single-carrier systems.
• Flexible time-frequency resource allocation: The number
and spacing of subcarriers, together with the power and
bit loading to each subcarrier can be dynamically adjusted
based on available channel state information (CSI), thereby
maximizing network throughput and minimizing error rates
while ensuring desired performance for individual users.

For target sensing, OFDM has also been considered as a
promising waveform with the following advantages.
• Array-manifold-like structure in the subcarrier and
symbol domains: After removing random information-bearing
symbols, the remaining OFDM signal exhibits an array-
manifold-like structure in both the subcarrier and symbol do-

mains, enabling efficient estimation of the delay and Doppler
frequency for the sensing targets, as will be shown in detail
in Section IV-B.
• Efficient decoupled estimation of delay and Doppler:
The phase variations in OFDM channels induced by delay
and Doppler in the subcarrier and symbol domains are in-
dependent. This allows for efficient decoupled estimation of
delay and Doppler, where the data in the symbol domain can
be used as snapshots for delay estimation and vice versa.
• “Thumbtack-shaped” ambiguity function: In both the
subcarrier and symbol domains, the ambiguity function of
OFDM signals with the information-bearing symbols removed
exhibits a thumbtack shape, endowing OFDM waveforms
with high delay and Doppler resolution, especially when the
channel bandwidth is large and/or the coherent processing
interval (CPI) is long.

For the above reasons, OFDM is expected to be a compet-
itive technology for ISAC systems. Besides, its compatibility
with legacy communication systems makes it a direct and
standard-compliant evolutionary solution. For OFDM wave-
forms used in existing mobile communication systems, numer-
ous studies have demonstrated that sensing can be achieved
by using either pilot reference signals [35], [36] or the entire
data frame [37] of OFDM signals, highlighting its significant
potential for future 6G ISAC scenarios. However, the sensing
capabilities of OFDM require further exploration. Some re-
search has focused on optimizing MIMO-OFDM ISAC trans-
mitter designs, such as waveforms and signal optimization [5],
[38], interference management [39], power and time-frequency
resource allocation [40], and beamforming design [41], but
further investigation into efficient receiver signal processing
techniques is still required.

To this end, three key challenges must be addressed. First,
a unified mathematical model for MIMO-OFDM ISAC is
required to reveal the relationship between the system con-
figuration and sensing performance. For instance, increasing
the number of subcarriers and symbols can enhance the delay
and Doppler resolution of OFDM waveforms, but this also
significantly increases the complexity of delay and Doppler
estimation. Moreover, joint estimation of target parameters
across the spatial, delay, and Doppler domains, significantly
escalates signal processing complexity at the receiver, hinder-
ing real-time ISAC implementation in practice. Finally, the
uniform spherical wave (USW) characteristics in near-field
scenarios invalidate traditional far-field algorithms designed
based on the conventional uniform plane wave (UPW) model,
posing new challenges in computational complexity and esti-
mation performance for extending far-field methods to near-
field scenarios. Therefore, a comprehensive and in-depth study
of mathematical models and signal processing techniques for
MIMO-OFDM ISAC systems is of paramount importance.

Existing relevant overview papers [4], [6], [7], [42] have pri-
marily focused on the fundamental limits, waveform designs,
application scenarios, and challenges of generic ISAC, without
focusing on MIMO-OFDM ISAC. In [5], the authors consid-
ered ISAC signal design and optimization based on OFDM,
but signal processing techniques were designed only for far-
field scenarios, and joint processing of three-dimensional
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signals under MIMO-OFDM ISAC was not considered. Unlike
prior work, this paper aims to provide a comprehensive and in-
depth tutorial overview on MIMO-OFDM ISAC that focuses
on signal processing techniques at the receiver side, extending
from far-field to near-field scenarios. The main contributions
of this work are summarized as follows.

• First, based on the six basic ISAC modes discussed by
3GPP, we present a unified mathematical ISAC model and
characterize the signal transceiving relationships among
different ISAC transmitters and receivers. Based on this
unified model, various input-output relationships and
corresponding signal processing approaches for MIMO-
OFDM ISAC systems are elaborated. Moreover, we pro-
pose four frameworks for estimating parameters across
the spatial, delay, and Doppler domains, including parallel
one-domain, sequential one-domain, joint two-domain
and joint three-domain parameter estimation. Then, a
comprehensive comparison of the four frameworks is
provided.

• Next, we elaborate the four parameter estimation frame-
works and corresponding estimation algorithms for far-
field scenarios. To this end, the application and per-
formance of various classical radar algorithms are dis-
cussed in the context of MIMO-OFDM ISAC, includ-
ing inverse discrete Fourier transform/discrete Fourier
transform (IDFT/DFT)-based methods, subspace-based
super-resolution methods, and compressed sensing (CS)
methods. Theoretical analysis and numerical results are
presented to compare the computational complexity, es-
timation accuracy, and resolution of these algorithms.

• Finally, we present target sensing algorithms for the more
general near-field scenarios. In particular, we point out
the challenges that arise when directly applying far-field
based algorithms to near-field sensing problems. Subse-
quently, we extend the far-field algorithms to near-field
sensing and study representative near-field algorithms
with low complexity and super resolution. Performance
comparisons and analysis of these near-field algorithms
are also conducted.

The rest of this paper is organized as follows. Section II
introduces the Key Performance Indicators (KPIs) and key
technologies of ISAC, as well as the reasons for adopt-
ing OFDM waveforms. Section III presents a unified ISAC
framework and the corresponding MIMO-OFDM ISAC signal
model. Section IV and Section V detail parameter estimation
methods for far-field and near-field target sensing, respectively.
Section VI provides directions worthy of further investigation,
and Section VII concludes this paper.

Notations: Bold face lower- and upper-case letters denote
vectors and matrices, respectively. The notations (·)T , (·)∗,
(·)H denote transpose, conjugate, and conjugate transpose
operations, respectively. The modulus of a complex scalar is
given by |a|, |a| and |A| denote the element-wise modulus
of vector a and matrix A. The transformation of vector a
into a diagonal matrix is represented as diag{a}, and [a]m
denotes the mth element of vector a. The operator vec (A)
converts matrix A into a column vector by sequentially

stacking its columns. The average of all elements of A is
obtained by mean{A}, and angle(a) represents the phase of
a complex number a. The operators A† and det(A) denote the
pseudoinverse and determinant of matrix A, respectively. The
symbols ⊗ and ⊙ denote the Kronecker product and Hadamard
product, respectively. The rectangle pulse function is denoted
as rect(t) = 1, t ∈ [0, 1].

II. ISAC TECHNOLOGIES AND WHY OFDM ISAC
A. Key ISAC Technologies

1) Primary ISAC Tasks and KPIs: To evaluate the perfor-
mance of ISAC systems, several KPIs have been specified for
C&S services. The performance of communication tasks can
be assessed from two key perspectives: efficiency and reliabil-
ity. Efficiency is used to assess the amount of information suc-
cessfully delivered from the transmitter to the receiver given
limited resources. Reliability refers to the ability of the system
to withstand adverse communication environments, such as
channel fading, interference, and noise. This metric focuses
on transmission quality, aiming to ensure that information is
not corrupted or lost during transmission. On the other hand,
sensing tasks can be generally classified into three categories,
i.e., target detection, parameter estimation, and object imaging,
with different KPIs. Target detection refers to determining
the presence or absence of targets obscured by clutter and
interference [43]. Parameter estimation refers to the problem
of extracting relevant parameters from target reflections. For
unbiased estimators, the Cramér-Rao bound (CRB) charac-
terizes the theoretical lower bound on mean squared error
(MSE) between the actual parameters and their estimates [22],
[40]. The number of sensing degrees of freedom (SDoF) is
also an important KPI for parameter estimation, characterizing
the maximum number of targets whose parameters can be
estimated. For multi-target sensing, resolution is an essential
KPI that refers to the ability of the system to distinguish
objects with similar parameter values. Object imaging is a
sensing task that aims to determine the type and shape of
sensed objects. Imaging deviation is used as a KPI in this
case to measure the accuracy of the imaging process [44]. In
addition, image entropy and image contrast can be employed
to evaluate the quality of the imaging results [45].

2) ISAC transmitter: The design of ISAC transmission
systems involves key considerations aimed at optimizing both
C&S functions, such as waveform design, resource allocation,
antenna configuration, and beam management. Communi-
cation is typically BS-centric with single-hop propagation,
whereas sensing is governed by the classical radar distance
equation [46]. A dedicated waveform that can achieve higher
degrees of integration between C&S without interference is
crucial. One straightforward solution is to schedule C&S on
orthogonal resource blocks, so that they do not interfere with
each other [47]–[49]. However, orthogonal resource allocation
usually suffers from poor SE and EE. Therefore, in order
to maximize the integration gain between C&S, it is more
favorable to design a fully unified ISAC waveform.

Multi-antenna technology has evolved from MIMO in
fourth-generation (4G) networks to massive MIMO in fifth-
generation (5G) networks. For future 6G systems, several
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emerging technologies may greatly improve the number of
available spatial DoFs, such as extremely large-scale MIMO
(XL-MIMO) [50], [51], sparse MIMO [52], [53], modular
MIMO [54], [55] and fluid [56]/movable antennas [57]–[60].
As array apertures increase, the beams of future XL-MIMO
and mmWave/THz ISAC systems may be extremely narrow,
increasing the challenges of beam management in achieving
high gain and avoiding misalignment. In the literature, transmit
beamformers are often designed to minimize the discrepancy
between the resulting and targeted beampattern for sensing,
while minimizing multi-user interference [61]–[64]. To further
address the complexity and cost incurred by fully digital
MIMO, hybrid beamforming has been studied for enhancing
ISAC performance in full-duplex systems [65], [66].

3) ISAC Channel: The mathematical models for C&S chan-
nels differ significantly. Communication channel models are
typically stochastic, focusing on signal transmission quality,
while sensing channels are deterministic, incorporating target
scattering. The transmitters and receivers in communication
systems are usually assumed to be spatially separated, while
the sensing transmitters and receivers can be collocated or
separated, corresponding to “monostatic sensing” or “bistatic
sensing”, respectively. While multipath environments can en-
hance the spatial diversity of communication systems, radar
sensing usually requires a line-of-sight (LoS) link for target
detection. Channel fading models are also different for C&S.
For instance, large- and small-scale fading are typically used
to model the propagation effects in communication channels,
while for radar sensing, channel fading is usually characterized
in terms of target scattering characteristics, such as the radar
cross section (RCS).

To integrate the acquisition of communication CSI with
sensing services, several challenges need to be addressed.
First, both monostatic and bistatic sensing need to be con-
sistent with the communication system architecture. Second,
the propagation characteristics exhibited by scatterers must be
considered in the communication channel. In addition, precise
channel models that can accurately characterize user/target
mobility are needed for high-mobility applications. Recently,
stochastic models and hybrid ISAC channel modeling have
been proposed [67]–[69].

With the ever-increasing array apertures and the use of
mmWave/terahertz frequencies, the (radiative) near-field re-
gion will significantly expand, even up to several hundreds of
meters. Thus, it is crucial to consider algorithm development
and performance for ISAC systems that operate in near-field
scenarios. In the near-field region, the more accurate USW
model needs to be considered to characterize both the phase
and amplitude variations across array elements [50], [51]. The
USW models for ISAC enable the joint estimation of target
angle and range even with only single-anchor array processing.

Furthermore, as the operating frequency increases, ISAC
signals become more susceptible to blockages, which can
significantly degrade C&S performance. Fortunately, several
techniques have been proposed to address this issue, such
as using intelligent reflecting surfaces (IRSs) [70], [71] and
fully passive metal reflectors [72] that establish virtual wireless
links. Furthermore, one can also exploit prior knowledge

of the local environment to enhance C&S performance. For
example, approaches based on a channel channel knowledge
map (CKM) have been proposed to acquire CSI for achieving
environment-aware C&S [73], [74].

4) ISAC receiver: Advanced signal processing techniques
need to be developed for the ISAC receiver to achieve favor-
able C&S performance, addressing issues such as transceiver
synchronization, interference management, clutter suppression
and target parameter estimation. For monostatic sensing, the
receiver is collocated with the ISAC transmitter, and thus it has
full knowledge of the transmitted signals. As such, the sensing
receiver does not need to perform a dedicated synchronization
or demodulation of the communication symbols. However,
self-interference occurs due to signal leakage between the
transmitter and receiver, which may lead to non-linear dis-
tortion and difficulty in sensing weak targets [75], [76]. For
bistatic sensing, the ISAC receiver needs to estimate and
compensate for clock bias, and the communication symbols
need to be demodulated before performing sensing.

Typical parameters that need to be estimated include the
angle of arrival (AoA), distance, and velocity of targets.
Sensing receivers usually estimate the distance and velocity
parameters by analyzing the propagation delays and Doppler
shifts of the echo signals, respectively. For AoA estima-
tion, multiple antennas are needed to provide spatial res-
olution. These estimation problems have been studied for
many decades. For example, data-based algorithms such as
Capon beamforming [77] and amplitude and phase estimation
(APES) [78] can be used to improve the angle estimation
accuracy by optimizing the beamforming gain at the receiver.
Subspace-based techniques, such as multiple signal classi-
fication (MUSIC) [79] and estimation of signal parameters
via rotational invariance techniques (ESPRIT) [80], exploit
the orthogonality between the signal subspace and the noise
subspace to achieve super-resolution angle estimation. Com-
pared to subspace-based algorithms, CS and sparse recovery
methods exploit channel sparsity to reconstruct the transmit-
ted signals and extract target parameters. However, sparse
recovery inherently involves NP-hard ℓ0-norm optimization,
which is typically approximated using greedy algorithms like
orthogonal matching pursuit (OMP) [81]. In [82], the authors
demonstrated that the ℓ0-norm problem can be relaxed to an
ℓ1-norm formulation to achieve tractable solutions involving
convex optimization algorithms based on the ℓ1-norm [83],
[84] or the ℓ1-singular value decomposition (SVD) [85]. While
both ℓ0− and ℓ1−norm minimization require discrete grids
that introduce potential basis mismatch and degraded sensing
accuracy, atomic norm minimization (ANM) [86], [87] avoids
grid dependency but incurs higher computational complexity.
ISAC techniques that use super-resolution sensing algorithms
fall under the heading integrated super-resolution sensing and
communication (IS2AC) [25], [88], [89], and can provide
highly accurate parameter estimates. However, such algorithms
are known to be sensitive to array modeling errors, and they
are costly to implement for large-scale arrays. These factors
must be taken into account when considering them for ISAC
scenarios.
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B. Potential ISAC Waveforms and OFDM ISAC

To meet the diverse C&S requirements of 6G ISAC appli-
cations, using an appropriate waveform is critical. For high
communication performance, such as high data rates and low
BER, waveforms should feature high SE, low peak-to-average
power ratio (PAPR), robustness to Doppler effects and phase
noise, resilience to nonlinear power amplifier noise, low signal
processing complexity, and compatibility with legacy MIMO
systems. For radar sensing, waveforms should enhance reso-
lution, estimation accuracy, clutter rejection, and interference
resistance by exhibiting low PAPR and favorable ambiguity
function characteristics, such as narrow mainlobe width, low
peak-to-sidelobe ratio (PSLR) or low integrated sidelobe ratio
(ISLR). However, achieving all these attributes simultaneously
is challenging, resulting in trade-offs between C&S perfor-
mance. Based on these trade-offs, one can classify waveform
design approaches as either sensing-centric, communication-
centric, or joint designs.

In this paper, we focus on communication-centric ISAC
systems. Communication-centric approaches leverage existing
communication waveforms with various modifications to en-
able or enhance their sensing capability. However, the inherent
randomness of communication waveforms typically degrades
sensing performance due to issues like high PAPR, random
autocorrelation properties, and reduced resolution [16]. Com-
munication waveforms can be categorized as either single-
carrier or multi-carrier. Single-carrier waveforms feature low
PAPR and minimal nonlinear distortion [104], making them
suitable for scenarios with limited coverage but high commu-
nication quality requirements. Examples include single-carrier
frequency division multiple access (SC-FDMA) [90] methods,
such as DFT-spread-OFDM (DFT-s-OFDM) [16], [91], widely
used in the uplink of 4G and 5G systems. The authors of
[23] and [92] studied single-carrier ISAC using the delay-
Doppler alignment modulation (DDAM) technique, which
eliminates inter-symbol interference (ISI) through path-based
beamforming and delay compensation. On the other hand,
multi-carrier waveforms enable increased communication rates
and SE [104]. OFDM [16], [25] is a quintessential example
of multi-carrier waveforms and is ubiquitously used in 4G
and 5G systems, featuring a “thumbtack-shaped” ambiguity
function that provides an inherent sensing capability. Ad-
ditionally, emerging multi-carrier waveforms like orthogonal
time frequency space (OTFS) [26], orthogonal chirp division
multiplexing (OCDM) [27], and affine frequency division
multiplexing (AFDM) [28] exhibit greater robustness against
Doppler for high-mobility ISAC applications at the cost of
higher implementation complexity.

Table I presents the main types of ISAC waveforms along
with their advantages and disadvantages. In summary, sensing-
centric waveforms are limited by low communication rates.
For joint designs, multiplexing methods suffer from ineffi-
cient radio resource utilization, while fusion methods entail
high implementation complexity and/or complex optimization
problems. For communication-centric waveforms, emerging
technologies like DDAM, OTFS, OCDM, and AFDM exhibit
superior sensing performance in high-mobility scenarios but

UE-side sensing

(b) (c) 

(d) (e) (f) 

(a) 

BS-side sensing

UE-side sensing

(b) (c) 

(d) (e) (f) 

(a) 

BS-side sensing

Fig. 1: Six basic ISAC modes discussed by 3GPP, with BS-
side sensing modes: (a) BS monostatic, (b) UE-to-BS bistatic,
(c) BS-to-BS bistatic modes, and UE-side sensing modes: (d)
UE monostatic, (e) BS-to-UE bistatic, (f) UE-to-UE bistatic
modes.

are often accompanied by complex signal processing and
high computational demands. Consequently, OFDM remains
a highly promising waveform for future ISAC wireless net-
works. For MIMO-OFDM ISAC systems, the use of XL-
MIMO and large time-frequency bandwidths significantly en-
hances the sensing performance, while they simultaneously
introduce substantial computational complexity for parameter
estimation. This challenge becomes particularly pronounced
when performing joint estimation across the spatial, delay, and
Doppler domains, compounded by the additional complexity
of near-field parameter estimation. Thus, in this paper, we
present a tutorial overview of rigorous and unified models
of MIMO-OFDM ISAC, the methods and corresponding al-
gorithms for parameter estimation across the three domains,
as well as their performance and complexity. Furthermore, the
extension of far-field methods to near-field scenarios will be
elaborated.

III. FUNDAMENTAL ISAC MODELS

Considering the universal applicability of ISAC frameworks
to all possible waveforms, we first introduce various ISAC
modes, characterizing the relationships among transmitter and
receiver signals and considering the required signal process-
ing. As shown in Fig. 1, 3GPP standardization bodies have
discussed six basic ISAC modes [105], which can be divided
into two categories depending on whether the sensing signal
is received and processed at the BS or UE side. For BS-side
sensing, as shown in Fig. 1 (a)-(c), ISAC signals could be sent
by either the BS itself, a UE, or another BS, corresponding to
the BS monostatic, UE-to-BS bistatic, and BS-to-BS bistatic
modes, respectively. Similarly, for UE-side sensing, as shown
in Fig. 1 (d)-(f), ISAC signals could be sent by either the
UE itself, a BS, or another UE, corresponding to the UE
monostatic, BS-to-UE bistatic, and UE-to-UE bistatic modes,
respectively. In the following, we present the signal input-
output relationships for C&S based on a unified ISAC model
that is applicable to all the six modes above.

A. Unified ISAC Model

Fig. 2 shows a generic ISAC setup that includes the afore-
mentioned six modes as special cases. It consists of three
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TABLE I: Comparison of advantages and limitations for various ISAC waveforms.

Wavefroms Pros Cons

Communication-
centric

Single-carrier [16], [23], [90]–[92]
• Low PAPR
• Low energy consumption

• Low SE
• Sensitivity to ISI
• Compromised sensing performance

DDAM [23], [92]

• Low PAPR
• Low guard interval overhead
• High SE
• Low complexity

• Reliance on channel sparsity

OFDM [16], [25]

• High SE
• Robust against ISI
• Flexible time-frequency resource allocation
• Array-manifold-like structure in

subcarrier and symbol domains
• Efficient decoupled estimation

of delay and Doppler
• “Thumbtack-shaped” ambiguity function
• Backward compatibility

• High PAPR
• Challenging self-interference cancellation
• Sensitivity to high Doppler spread

OTFS [26]/OCDM [27]/AFDM [28]
• Robust against Doppler spread
• High C&S performance

• Complex signal processing
• High computational complexity

Sensing-centric

Plused [93]
• Simple for implementation
• Wide detection range

• Low communication rate
• Short-range sensing blind spot
• Long-range ambiguities

Linear frequency modulation [29]

• High distance resolution
• Low PAPR
• Robust against Doppler spread
• No short-range sensing blind spot

• Low communication rate

Joint design
Multiplexing [3], [94]–[96]

• Balance C&S
• Simple for implementation

• Low radio resource utilization
• CDM raises the noise floor
• SDM limits C&S coverage

Fusion [21], [97]–[103] • High C&S performance
• Implementation challenges
• Complex optimization problems

Target k
q

( , )
c
tH

ISAC-TX

Sen-RX

Com-RX

Clutter ( , )tH

t
M

r
M

c
M

R
k

a q

T

k

a
q

Environment 

Scatterers

Fig. 2: A generic ISAC setup that includes all the six modes
shown in Fig. 1 as special cases.

components, namely an ISAC transmitter (ISAC-TX), a com-
munication receiver (Com-RX) and a sensing receiver (Sen-
RX). The ISAC-TX transmits ISAC signals to the Com-RX to
provide communication services, and to the Sen-RX for sens-
ing K targets whose locations denoted as qk, k = 1, 2, · · · ,K.
Denote the number of antennas at the ISAC-TX, Com-RX,
and Sen-RX by Mt, Mc, and Mr, respectively. For sensing,
we assume that each target has an LoS path with the ISAC-TX
and the Sen-RX, while such an assumption is not needed for
communication. The array response vector between the ISAC-
TX and target k is denoted as aT(qk) ∈ CMt×1, which is a
function of the sensing target location qk in general. Similarly,
the RX array response vector is denoted as aR(qk) ∈ CMr×1.
Specific expressions for aT(qk) and aR(qk) in far-field and

near-field scenarios will be provided in Section III-B.

Denote the ISAC signal transmitted by the ISAC-TX as
x(t) ∈ CMt×1 and the communication channel impulse
response between the ISAC-TX and Com-RX as Hc (t, τ) ∈
CMc×Mt , where t and τ denote observation time and delay,
respectively. Then, the communication signal yc(t) ∈ CMc×1

received by the Mc-antenna Com-RX array is
yc (t) = Hc (t, τ) ∗ x(t) + n (t) , (1)

where ∗ denotes convolution, and n
(
t
)
∼ CN

(
0, σ2IMc

)
is

circularly symmetric additive white Gaussian noise (AWGN)
with zero mean and variance σ2. Communication signal pro-
cessing methods remain consistent with traditional communi-
cation systems and will not be detailed here.

For target sensing, the ISAC signal sent by the ISAC-TX is
reflected/scattered by the K targets and other scatterers in the
surrounding environment, and then received by the Sen-RX.
An LoS link between the ISAC-TX and Sen-RX may also
exist. Thus, the sensing signal ys (t) ∈ CMr×1 received by
the Mr-antenna Sen-RX array can be expressed as

ys(t) =

K∑
k=1

αkaR
(
qk
)
aHT
(
qk
)
x
(
t− τk − τ∆

)
× ej2π(f∆+υk)t +HClutter (t, τ) ∗ x (t) + z̃ (t) ,

(2)

where αk, τk, and υk denote the complex-valued channel
coefficient, the propagation delay, and Doppler frequency of
the path corresponding to the k-th sensing target, respectively,
τ∆ and f∆ are the symbol time offset (STO) and carrier
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frequency offset (CFO) caused by the difference between the
reference clock and local oscillators (LO) at the ISAC-TX
and Sen-RX. Note that we may assume τ∆ = 0 and f∆ = 0
for monostaic ISAC modes, while τ∆ ̸= 0 and f∆ ̸= 0 in
general for bistatic ISAC modes. The term HClutter (t, τ) is
the channel impulse response of the clutter, which consists
of the signals scattered/reflected by other scatterers irrelevant
to the K sensing targets and the LoS link signal between
the ISAC-TX and Sen-RX. Note that for monostatic ISAC
systems, the ISAC-TX and Sen-RX are collocated and operate
in full-duplex mode to achieve maximum SE, making them
vulnerable to self-interference (SI) due to imperfect isolation.
The residual SI after the application of various cancellation
techniques can also be considered as a component of the
clutter. Finally, z̃ (t) is the AWGN at the Sen-RX.

The presence of clutter signals and SI makes it more
challenging to distinguish the targets from the complex en-
vironment, and the STO and CFO will cause biases in the
estimation of target parameters. Thus, SI cancellation, clutter
rejection, and synchronization are essential for efficient ISAC
signal processing, which will be discussed in Section VI. After
time and frequency synchronization, clutter rejection and SI
cancellation, the resulting sensing signal ys(t) ∈ CMr×1 in
(2) reduces to

ys(t) =

K∑
k=1

αkaR
(
qk
)
aHT
(
qk
)
x
(
t− τk

)
ej2πυkt + z(t),

(3)
where the clutter rejection and SI cancellation residuals are
typically considered as random noise and lumped together with
the AWGN in z(t). The sensing signal in (3) is then exploited
to estimate the parameters of the K sensing targets, including
the reflection coefficient αk, target location qk, propagation
delay τk, and Doppler frequency shift υk.

Note that except for some differences in the number of
antennas and computational capabilities, BS-side and UE-side
sensing are symmetric in terms of signal modeling and pro-
cessing. Therefore, in the following, we will present detailed
models and signal processing techniques for ISAC systems of
the three BS-side sensing modes based on the unified ISAC
model, while similar results can be applied to UE-side sensing
as well. To this end, we first show that the generic ISAC setup
in Fig. 2 and the resulting signal in (3) can be reduced to the
three BS-side sensing modes shown in Figs. 1 (a)-(c).

• BS monostatic ISAC mode: For BS monostatic ISAC
mode, the ISAC-TX and Sen-RX shown in Fig. 2 are
collocated at the BS. In order to maximize the SE, the
ISAC BS needs to employ in-band full-duplex operation
for simultaneous downlink ISAC signal transmission and
uplink sensing signal reception. Note that while col-
located at the BS, we assume that the ISAC-TX and
Sen-RX use different sets of antennas for ease of SI
cancellation. The Com-RX in Fig. 2 corresponds to a UE.
In this case, the generic ISAC setup in Fig. 2 reduces to
the BS monostatic setup in Fig. 3(a). Furthermore, the
ISAC signal x(t) in (1)-(3) is transmitted by the BS, and
is denoted as xBS(t) ∈ CMt×1.

• UE-to-BS bistatic ISAC mode: For UE-to-BS bistatic

ISAC mode, the ISAC-TX in Fig. 2 corresponds to a
UE, while the Com-RX and Sen-RX are collocated at
the BS, as shown in Fig. 3(b). Note that unlike the BS
monostatic mode in Fig. 3(a), since only signal reception
needs to be performed at the BS in Fig. 3(b), the Com-
RX and Sen-RX may use the same set of antennas.
However, synchronization is essential due to the use of
different local oscillators (LO) and reference clocks by
the ISAC BS and the UE. Furthermore, the ISAC signal
x(t) in (1)-(3) is transmitted by the UE, and is denoted
as xUE(t) ∈ CMt×1.

• BS-to-BS bistatic ISAC mode: For BS-to-BS bistatic
ISAC mode, the ISAC-TX in Fig. 2 corresponds to a
BS, while the Com-RX and Sen-RX occur at a UE and
another BS, respectively, as shown in Fig. 3(c). Note that
unlike UE-to-BS bistatic mode in Fig. 3(b), although BS
bistatic mode also requires synchronization, it can be
achieved through a wired connection between the two
ISAC BSs. Furthermore, the ISAC signal x(t) in (1)-
(3) is broadcast by the transmit BS, and is denoted as
xBS(t) ∈ CMt×1.

The corresponding ISAC-TX, Com-RX, and Sen-RX of the
unified model in Fig. 2, as well as the required processing for
the six ISAC modes, are summarized in Table II.

In the following, we focus on ISAC systems implemented
with OFDM waveforms, which is the dominant waveform in
4G and 5G communication systems, and is likely to continue
to play a critical role for 6G. In OFDM-ISAC systems,
target sensing can be performed based on pilots only or on
the fully reconstructed transmitted OFDM data frame. The
former approach can be easily implemented, but its sensing
performance is limited by the availability of time-frequency
resources allocated to pilots. The latter can fully exploit
all of the time-frequency resources for target sensing using
known (for monostatic sensing) or demodulated communica-
tion symbols (for bistatic sensing) for parameter estimation,
at the expense of increased complexity. In this paper, we
employ the OFDM frame-based approach for sensing tasks
using all time-frequency resources allocated to both pilots and
communication data.

B. MIMO-OFDM ISAC Signal Processing and Modeling

For MIMO-OFDM ISAC, the ISAC-TX transmits OFDM
signals over N subcarriers and P OFDM symbols. The
subcarrier spacing and the OFDM symbol duration without the
CP are denoted by ∆f and T , respectively, where T = 1

∆f .
The system bandwidth is thus B = N∆f . Let Tcp denote
the CP duration, so the OFDM symbol duration including CP
is Ts = T + Tcp. To avoid ISI for communication, the CP
duration should be no smaller than the multi-path delay spread
τcom of the communication channel Hc(t, τ), since the Com-
RX only begins receiving communication signals upon receiv-
ing its first path. However, for target sensing, the CP duration
should be larger than the propagation delay τsen corresponding
to the ISI-free sensing distance [106], which is different from
the case of communications since the Sen-RX begins to receive
signals as soon as the ISAC-TX transmits, so that no nearby
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Fig. 3: An illustration of the three BS-side sensing ISAC modes.

TABLE II: The unified ISAC model and its special cases corresponding to the six basic modes.

ISAC modes Transmitter and receiver Required processing

Unified model ISAC-TX Com-RX Sen-RX SI cancellation Synchronization
Clutter

rejection

BS-side
sensing

BS monostatic BS UE BS ✓ ✓
UE-to-BS bistatic UE BS BS ✓ ✓
BS-to-BS bistatic BS-1 UE BS-2 ✓ ✓

UE-side
sensing

UE monostatic UE BS UE ✓ ✓
BS-to-UE bistatic BS UE UE ✓ ✓
UE-to-UE bistatic UE-1 UE-2 UE-2 ✓ ✓

targets are missed. Thus, in ISAC systems, the CP should be
set as Tcp ≥ τmax, where τmax = max{τcom, τsen}. Thus, the
OFDM signal x(t) ∈ CMt×1 transmitted by the Mt-antenna
ISAC-TX array is given by

x(t) =

P−1∑
p=0

N−1∑
n=0

wn,pbn,pe
j2πn∆f(t−pTs−Tcp)rect

(
t− pTs
Ts

)
,

(4)
where wn,p ∈ CMt×1 and bn,p are the transmit beamforming
vector and the transmitted symbol on the n-th subcarrier of
the p-th OFDM symbol, respectively. Contrary to traditional
OFDM radar, where all subcarriers and symbols can be
exploited to sense targets, a user typically cannot be allocated
all of the time-frequency resources for communications. Thus,
wn,p depends on the users’ resource allocation and beam
management. In addition, if a user occupies the (n, p)-th
resource element (RE), bn,p ̸= 0 is the information-bearing
symbol; otherwise, bn,p = 0. Later, in Section VI-C, we will
further discuss this issue.

Substituting (4) into (3), the resulting sensing signal ys(t) ∈
CMr×1 for radar processing at the Sen-RX is

ys(t) =

K∑
k=1

P−1∑
p=0

N−1∑
n=0

αn,pk aR(qk)bn,pe
j2πn∆f(t−τk−pTs−Tcp)

× ej2πυktrect

(
t− τk − pTs

Ts

)
+ z(t), (5)

where αn,pk = αka
H
T (qk)wn,p is the equivalent channel coef-

ficient including the impact of transmit beamforming. Then,
the signal in (5) is partitioned into P blocks, each of duration
Ts. After discarding the CP, the p-th (p = 0, · · · , P −1) block
is given by

yps (t) = ys (t+ pTs + Tcp) rect

(
t

T

)
, t ∈ [0, T ). (6)

The Sen-RX samples the sensing signal with sampling rate
B = N∆f . To avoid inter-carrier interference (ICI) caused
by large Doppler frequency shifts, the subcarrier spacing
is typically assumed to be much larger than the Doppler
frequency shift, i.e., ∆f ≫ |υk|,∀k = 1, 2, · · · ,K. Under
this assumption, the q-th (q = 0, 1, . . . , N − 1) sample of the
p-th block can be expressed as

yps [q] =yps (q/B)

=

K∑
k=1

N−1∑
n=0

αn,pk aR(qk)bn,pe
j2πn∆f(q/B−τk)

× ej2πυk(q/B+pTs+Tcp) + zp [q]

≈
K∑
k=1

N−1∑
n=0

αn,pk aR(qk)bn,pe
j2πnq/Ne−j2πn∆fτk

× ej2πpTsυk + zp[q],

(7)

where αn,pk = αn,pk ej2πυkTcp , zp[q] is the resulting noise at
the p-th block. Note that in (7), we have used the fact that
B = N∆f and |vkq/B| < |vkN/B| = |vk|/∆f , so that
ej2πυkq/B ≈ 1 for |υk|/∆f ≪ 1.

After performing an N -point DFT for each of the P blocks
in (7), we obtain the following frequency-domain signal for
the n-th (n = 0, 1, · · · , N − 1) subcarrier of the p-th (p =
0, 1, · · · , P − 1) OFDM block ȳps [n] ∈ CMr×1 as

ȳps [n] =
1

N

N−1∑
q=0

yps [q]e
−j2πnq/N

= bn,p

K∑
k=1

αn,pk aR(qk)e
−j2πn∆fτkej2πpTsυk + z̄p[n],

(8)

where z̄p[n] is the resulting AWGN in the frequency domain.
As a result, we obtain a total of Mr × N × P signal values
across the spatial, subcarrier, and symbol domains, which can
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Fig. 4: The four parameter estimation frameworks in MIMO-
OFDM ISAC.

be organized as a tensor Ys ∈ CMr×N×P by setting
Ys(:, n, p) = ȳps [n]. (9)

Parameter estimation is one of the most important sensing
tasks in ISAC systems, as it underpins functions like target
localization, tracking, and imaging. Therefore, in the follow-
ing, we will focus on the estimation of the location qk (or the
angle θk in the far-field case), the propagation delay τk, and the
Doppler frequency shift υk of the sensing targets. Generally
speaking, the three parameters of each target can be estimated
from the spatial, delay and Doppler domains. Inspired by
traditional joint parameter estimation methods [107], [108], we
propose four frameworks to estimate target parameters across
the three domains. As shown in Fig. 4, depending on whether
the parameters are estimated jointly or separately in each do-
main, the four frameworks are parallel one-domain, sequential
one-domain, joint two-domain and joint three-domain param-
eter estimation. The parallel one-domain approach separately
estimates the sets of target locations Sq = {q1, · · · ,qK} or
angles Sθ = {θ1, · · · , θK}, delays Sτ = {τ1, · · · , τK} and
Doppler shifts Sυ = {υ1, · · · , υK}, and then associates the
individual parameter estimated into groups (qk/θk, τk, υk) for
each of the K sensing targets. This approach has a relatively
low computational complexity, but its sensing performance is
limited by potential errors in the parameter grouping.

On the other hand, the sequential one-domain approach per-
forms spatial, delay and Doppler domain estimation sequen-
tially. For example, spatial domain estimation can be applied
first to determine the Kq̂ distinguishable locations/angles.
When the spatial resolution is limited, it may not be possible
to distinguish all K targets in the spatial domain alone.
Thus, in general, Kq̂ ≤ K. After location/angle estimation,
beamforming can be applied to separate the Kq̂ signals
in the spatial domain, denoted as Xkq̂ , kq̂ = 1, · · · ,Kq̂.

(a) Uniform plane wave. (b) Non-uniform spherical wave.

Fig. 5: Illustration of far-field UPW versus near-field USW.

Subsequently, delay and Doppler domain processing can be
applied. Note that the order in which the different types of
parameters are estimated depends on the resolution and target
separation in the three domains. The sequential one-domain
estimation method does not require parameter grouping, but
its complexity is greater than parallel one-domain processing.

Similar to the sequential one-domain method, joint two-
domain parameter estimation first determines the parameter
in one domain, and then exploits beamforming methods to
separate the signals of different targets, but it jointly estimates
the parameters in the remaining two domains. Fig. 4 illustrates
the special case of joint processing of the delay-Doppler
domains after location/angle estimation has been performed,
while other combinations are also possible. This method can
achieve higher estimation accuracy, but its complexity is much
higher than that of the decoupled estimation methods. Last,
joint three-domain parameter estimation refers to joint estima-
tion of all parameters. This approach can achieve the highest
estimation accuracy but also incurs the highest computational
complexity.

The details of each method will be discussed in Sections IV
and V for the far-field and near-field cases, respectively. Note
that the TX and RX steering vectors aT(qk) and aR(qk) are
functions of target location qk, which in general depend on
both the angle of departure (AoD)/AoA θk and distance rk
between the target and the reference antenna. In the following,
we present expressions for the RX steering vectors for the far-
field and near-field scenarios. Similar results can be obtained
for the TX array response.

C. Array Response Vector: From Far-Field to Near-Field

When the BS array aperture is small, targets are typically
located in the far-field region, and the conventional UPW
model accurately characterizes the variations of signal phases
across the array, as shown in Fig. 5(a). However, for large
scale arrays, targets are more likely to be located in the near-
field region, and the USW assumption should be used [50],
[51], as shown in Fig. 5(b). Let the location of target k
be represented as qk = [rk cos θk, rk sin θk]

T , k = 1, ...,K,
where rk is the distance between target k and a given reference
antenna, and θk ∈

[
−π

2 ,
π
2

]
is the angle of target k with respect

to the normal vector of the array. Then, the receive steering
vector aR(qk) can be expressed as

[aR(qk)]m = ej
2π
λ (rk,m−rk),m = 1, ...,Mr, (10)
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where rk,m denotes the distance between the k-th target
and the m-th receive antenna. For narrowband signals, half-
wavelength inter-antenna spacing is typically assumed, i.e.,
d = λ

2 . If we assume the r-th antenna is the reference located
at the origin of the array’s coordinate system, the positions of
the Mr antennas can be written as [0, εmd],m = 1, · · · ,Mr,
where |εmd| is the distance between the m-th antenna and the
reference, and εr = 0. Thus, rk,m can be written as

rk,m =
√
r2k − 2εmdrk sin θk + ε2md

2. (11)

The classical criterion for distinguishing the near- and far-field
regions is the Rayleigh distance, given by rRayleigh = 2D2

λ ,
where D is the aperture of the antenna array [51], [109], [110].
When rk > rRayleigh, the target is assumed to be located
in the far-field, so that the UPW model is appropriate and
rk,m can be simplified by performing a first-order Taylor series
approximation of (11), as shown in Fig. 5(a). Thus, rk,m can
be simplified as

rk,m ≈ rk − εmd sin θk, (12)
and the corresponding steering vector in (10) becomes

aR(θk) =
[
e−j

2π
λ εmd sin θk

]
,m = 1, ...,Mr. (13)

For near-field sensing with rk < rRayleigh shown in Fig. 5(b),
substituting the more general expression in (11) into (10) leads
to

aR(rk, θk) =

[
e
j 2π

λ

(√
r2k−2εmdrk sin θk+ε2md

2−rk
)]
. (14)

Comparing (13) and (14), we see that in the far-field, only the
angle can be estimated from one snapshot signal on different
antenna elements, while both target angle and distance can be
estimated in the near-field. The general expression in (14) can
be simplified using a second-order Taylor approximation of
(11) [51], leading to

rk,m ≈ rk − εmd sin θk +
ε2md

2

2rk
cos2θk, (15)

with corresponding array response vector

aR(rk, θk) =
[
ej(ωkεm+ψkε

2
m)
]
,m = 1, ...,Mr, (16)

where ωk = − 2πd sin θk
λ and ψk = πd2cos2θk

λrk
. Note that in this

model ωk only depends on θk, while ψk depends on both θk
and rk. The quadratic phase model of (16) is referred to as
the Fresnel approximation for near-field sources.

In Sections IV and V, we will present typical parameter
estimation algorithms based on the four methods presented in
Fig. 4, first for far-field and then for near-field scenarios.

IV. FAR-FIELD MIMO-OFDM ISAC

In this section, we elaborate on how to sense far-field
targets based on the signal processing methods illustrated in
Fig. 4, demonstrate the application variants of various standard
radar algorithms under MIMO-OFDM ISAC and analyze their
complexity and performance.

A. Far-field Sensing Signal Model

For ease of exposition, we assume that the Sen-RX is
equipped with a ULA with half-wavelength inter-antenna

spacing. Setting the first element as the reference element,
the position of the m-th element can be obtained as

εmd = (m− 1)d,m = 1, . . . ,Mr. (17)
Substituting (17) into (13), the steering vector aR(qk) =
aR(θk) ∈ CMr×1 of the k-th target can be written as

aR (θk) =
[
1, ej2π

d
λ sinθk , · · · , ej2π(Mr−1) d

λ sinθk
]H

, (18)

and the steering matrix Aθ ∈ CMr×K is defined as
Aθ =

[
aR
(
θ1
)
,aR

(
θ2
)
, · · · ,aR

(
θK
)]
. (19)

Substituting (18) into (8) and (9), the resulting sensing data
tensor Ys for far-field MIMO-OFDM ISAC can be expressed
as

Ys(:, n, p) =bn,p

K∑
k=1

αn,pk aR(θk)e
−j2πn∆fτkej2πpTsυk

+ z̄p[n].

(20)

For far-field MIMO-OFDM ISAC, the parameters to be
estimated for each sensing target are the AoA θk, propagation
delay τk, and Doppler frequency υk. In the following, we will
discuss how various classic radar algorithms for parameter
estimation can be applied to far-field MIMO-OFDM ISAC
systems, such as the IDFT/DFT and subspace-based methods.
IDFT/DFT-based methods like the periodogram [111] can
be easily implemented, but the resolution is limited by the
array aperture, signal bandwidth and CPI, respectively. On
the other hand, subspace-based methods such as MUSIC [79]
and ESPRIT [80], can achieve super-resolution parameter
estimation, but they usually require high computational com-
plexity. Additionally, CS and sparse recovery methods, such as
OMP [81], are also commonly used for parameter estimation.
Compared to IDFT/DFT and subspace-based methods, CS
achieves higher accuracy under low SNR and sparse channel
conditions but incurs higher complexity, especially with large
signal dimensions, making it difficult to implement in real
time. Moreover, in scenarios with dense targets or clutter, CS
methods are prone to locally optimal or suboptimal solutions,
hence degrading estimation performance.

The signals to/from different users can be separated us-
ing orthogonal time-frequency resources and then processed
individually in OFDM ISAC systems. In the following, for
ease of exposition, we consider the case of a single user
with collocated time-frequency allocation, namely, the transmit
beamforming vectors wn,p in (4) are identical for all subcar-
riers and symbols αn,pk = αk = αka

H
T (qk)we

j2πυkTcp ,∀n =
0, 1, · · · , N − 1, p = 0, 1, · · · , P − 1. As a result, the signal
in (20) reduces to

Ys(:, n, p) =bn,p

K∑
k=1

αkaR(θk)e
−j2πn∆fτkej2πpTsυk

+ z̄p[n].

(21)

Based on the signal model in (21), we below detail the var-
ious far-field MIMO-OFDM ISAC signal processing methods
illustrated in Fig. 4.

B. Decoupled Parameter Estimation

Since the phase variations of the sensing signal in (21) in the
angle, delay and Doppler domains are completely decoupled,
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the three parameters (θk, τk, υk) can be estimated separately
or sequentially using the parallel and sequential one-domain
parameter estimation methods in Fig. 4.

1) Parallel One-domain Parameter Estimation:
AoA estimation problem: In far-field scenarios, the spatial

domain processing can only provide AoA information for each
target. In this case, the resulting OFDM sensing data in the
subcarrier and symbol domains can be treated as snapshots.
As such, the Mr ×N ×P dimensional signal Ys in (21) can
be re-organized as an Mr × QN,P dimensional matrix Xθ,
with QN,P = NP , where Xθ(:, qn,p) = Ys(:, n, p), qn,p =
n + pN, n ∈ [0, N − 1], p ∈ [0, P − 1]. Thus, Xθ can be
equivalently expressed in matrix form as

Xθ = AθSθ + Zθ, (22)
where Aθ ∈ CMr×K is the steering matrix given in (19), Zθ
is the resulting noise, and Sθ ∈ CK×QN,P is given by

Sθ(k, qn,p) = bn,pαke
−j2πn∆fτkej2πpTsυk . (23)

The AoA estimation problem corresponds to estimating the an-
gles Sθ = {θ1, · · · , θK} of the K sensing targets embedded in
steering matrix Aθ, given data matrix Xθ. Specific algorithms
to address this problem will be presented in Section IV-B3.

Delay estimation problem: The random information-
bearing symbols bn,p in (21) depend only on subcarrier index
n and symbol index p, not on antenna index m. They affect
the manifold structure in the subcarrier and symbol domains,
but not in the spatial domain. Thus, unlike AoA estimation
in (22), to ensure the manifold structure in the subcarrier and
symbol domains, the information-bearing symbols bn,p in (21)
need to be removed. The transmitted data is known a priori
at the Sen-RX in the monostatic ISAC mode, or it can be
demodulated and detected in the bi-static ISAC mode. Thus,
the communication symbols can be removed by performing
element-wise division on the received signal in (21), i.e.,

Ys(:, n, p) =
Ys(:, n, p)

bn,p

=

K∑
k=1

αkaR(θk)e
−j2πn∆fτkej2πpTsυk + Z(:, n, p),

(24)

where Z(:, n, p) = z̄p[n]
bn,p

is the resulting noise.
For delay estimation, the data in the antenna and symbol

domains can be treated as snapshots. As such, the Mr×N×P
dimensional data matrix after element-wise symbol division in
(24) can be restructured into an N×QMr,P dimensional matrix
Xτ , with QMr,P = MrP , where Xτ (:, qm,p) = Ys(m, :
, p), qm,p = m+ pMr,m ∈ [0,Mr − 1], p ∈ [0, P − 1]. Then,
matrix Xτ can be expressed as

Xτ = AτSτ + Zτ , (25)
where Aτ ∈ CN×K is the steering matrix in the subcarrier
domain given by

Aτ = [aτ (τ1), · · · ,aτ (τK)] , (26)
and aτ (τk) ∈ CN×1 is the steering vector in the delay domain
given by

aτ (τk) =
[
1, ej2π∆fτk , · · · , ej2π(N−1)∆fτk

]H
. (27)

Besides, the (k, qm,p)-th element of Sτ ∈ CK×QMr,P is

Sτ (k, qm,p) = αke
−j2πm d

λ sin(θk)ej2πpTsυk . (28)

The delay estimation problem is to estimate the propagation
delays Sτ = {τ1, · · · , τK} of the K sensing targets embedded
in steering matrix Aτ , given data matrix Xτ in (25).

Doppler estimation problem: For Doppler estimation, the
data in the antenna and subcarrier domains can be treated
as snapshots. The signal after element-wise symbol division
in (24) can be restructured into a P × QMr,N dimensional
matrix Xυ , with QMr,N = MrN , where Xυ(:, qm,n) =
Ys(m,n, :), qm,n = m + nMr. Then, matrix Xυ can be
written as

Xυ = AυSυ + Zυ, (29)

where Zυ is corresponding noise, and Aυ ∈ CP×K is the
steering matrix in the Doppler domain, given by

Aυ = [aυ(υ1), · · · ,aυ(υK)] , (30)
and aυ(υk) ∈ CP×1 is the steering vector in the symbol
domain given by

aυ (υk) =
[
1, e−j2πTsυk , · · · , e−j2π(P−1)Tsυk

]H
. (31)

The (k, qm,n)-th element of Sυ ∈ CK×QMr,N is given by

Sυ(k, qm,p) = αke
−j2πm d

λ sin(θk)e−j2πn∆fτk . (32)
The Doppler estimation problem is to estimate the Doppler
frequencies Sυ = {υ1, · · · , υK} of the K sensing targets
based on steering matrix Aυ , given data matrix Xυ in (29).

After estimating the AoAs Sθ̂ = {θ̂1, · · · , θ̂Kθ̂
}, de-

lays Sτ̂ = {τ̂1, · · · , τ̂Kτ̂
}, and Doppler frequencies Sυ̂ =

{υ̂1, · · · , υ̂Kυ̂
} separately via parallel one-domain parameter

estimation, the individual estimation results have to be associ-
ated with the corresponding targets. In general, Kθ̂,Kτ̂ ,Kυ̂ ≤
K, since the targets are not necessarily distinguishable in all
three domains. Two common parameter grouping methods are
based on signal correlation and power detection, which first
group the parameters estimated from the three domains one
by one.

There are a total of Kθ̂Kτ̂Kυ̂ possible parameter groups,
obtained as

(
θ̂kθ̂ , τ̂kτ̂ , υ̂kυ̂

)
,∀kθ̂ = 1, · · · ,Kθ̂, kτ̂ =

1, · · · ,Kτ̂ , kυ̂ = 1, · · · ,Kυ̂ . In the signal correlation method,
the reconstructed signal Ŷkθ̂,kτ̂ ,kυ̂

∈ CMr×N×P for parameter

group
(
θ̂kθ̂ , τ̂kτ̂ , υ̂kυ̂

)
is expressed as

Ŷ(m,n, p) = e
−j2πm d

λ sin θ̂k
θ̂ e−j2πn∆fτ̂kτ̂ ej2πpTsυ̂kυ̂ , (33)

where m ∈ [0,Mr − 1], n ∈ [0, N − 1], p ∈ [0, P − 1]. Then,
the correlation coefficient Ĉ between Ŷ and Ys in (24) is
calculated as

Ĉ =
∣∣∣mean

{
Ŷ∗ ⊙Ys

}∣∣∣ . (34)

The correct parameter groups will exhibit a strong correlation
between the reconstructed signal and signal Ys. Thus, the K
parameter pairs

(
θ̂kθ̂ , τ̂kτ̂ , υ̂kυ̂

)
with the highest correlation

coefficient Ĉ correspond to the K sensing targets.
For power based detection, the power of Ys in (24) in the

angle-delay-Doppler domain at the location of each parameter
group

(
θ̂kθ̂ , τ̂kτ̂ , υ̂kυ̂

)
can be obtained as

P̂ =
1

MrNP

∣∣∣aHτ (τ̂kτ̂ )
(
aHR (θ̂kθ̂ )Ys

)
a∗υ(υ̂kυ̂ )

∣∣∣2 , (35)

where aR(θ̂kθ̂ ), aτ (τ̂kτ̂ ), and aυ(υ̂kυ̂ ) are the steering vectors
in the spatial, delay, and Doppler domains in (18), (27), and
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(31), respectively. The K parameter groups
(
θ̂kθ̂ , τ̂kτ̂ , υ̂kυ̂

)
with the highest power P̂ are taken to be the parameters of
the K sensing targets.

2) Sequential One-domain Parameter Estimation:
The sequential one-domain parameter estimation method, as

shown in Fig. 4, estimates the target parameters in sequence
over the three domains. It typically begins in the domain with
the highest resolution so that more targets can be distinguished.
For example, consider a case in which the array has many
elements, while the bandwidth is narrow and the CPI is short.
In this case, the angular resolution is highest, followed by the
delay and Doppler resolutions, so it is best to first estimate
the AoA of the sensing targets using Xθ in (22), and then use
beamforming to extract the signal of targets at different angles.
Then, the delays are estimated for targets at each angle. Since
there may be multiple targets at the same angle, beamforming
(matched filtering) can be applied in the delay domain to
further distinguish targets with different delays. Finally, the
corresponding Doppler frequency shift is estimated for targets
at each delay. Thus, the target parameters in the three domains
are directly grouped in this sequential method.

Specifically, as shown in Fig. 4, assume that a total of
Kθ̂ AoAs are estimated as θ̂kθ̂ , kθ̂ = 1, · · · ,Kθ̂, based on
(22), where Kθ̂ ≤ K since not all targets are distinguishable
in the spatial domain. Let Nkθ̂ ≥ 1 denote the number of
targets at each estimated angle and K =

∑Kθ̂

kθ̂=1Nkθ̂ . Before
performing delay domain estimation, we first apply spatial
domain beamforming based on the estimated AoAs in order
to exploit the beamforming gain and to decouple the signals
in the spatial domain. After performing beamforming on (24),
the resulting signal Xkθ̂

∈ CN×P , kθ̂ = 1, · · · ,Kθ̂, is

Xkθ̂
(n, p) = rH(θ̂kθ̂ )Ys(:, n, p)

=
∑
k∈Ωk

θ̂

αkr
H(θ̂kθ̂ )aR(θk)e

−j2πn∆fτkej2πpTsυk

+
∑
k/∈Ωk

θ̂

αkr
H(θ̂kθ̂ )aR(θk)e

−j2πn∆fτkej2πpTsυk + z (qn,p)

≈
Nk

θ̂∑
i=1

α̃i,kθ̂e
−j2πn∆fτi,k

θ̂ e
j2πpTsυi,k

θ̂ + z (qn,p) , (36)

where Ωkθ̂ =
{
k|θk ≈ θ̂kθ̂

}
, α̃i,kθ̂ = αi,kθ̂r

H(θ̂kθ̂ )aR(θi,kθ̂ )

is the resulting complex channel gain, τi,kθ̂ and υi,kθ̂ are the
delay and Doppler of the i-th target at the estimated angle
θ̂kθ̂ , and r

(
θ̂kθ̂

)
is the beamforming vector used in the spatial

domain for the estimated angle θ̂kθ̂ .
There are three classic beamforming methods that are used

to achieve a balance between complexity and performance.
These methods include maximum-ratio combining (MRC),
zero-forcing (ZF), and MMSE. The expressions for the corre-
sponding beamforming vectors are given by

rMRC

(
θ̂kθ̂

)
≜ aR

(
θ̂kθ̂

)/∥∥∥aR (θ̂kθ̂)∥∥∥,
rZF

(
θ̂kθ̂

)
≜ Âkθ̂

aR

(
θ̂kθ̂

)/∥∥∥Âkθ̂
aR

(
θ̂kθ̂

)∥∥∥,
rMMSE

(
θ̂kθ̂

)
≜ C−1

kθ̂
aR

(
θ̂kθ̂

)/∥∥∥C−1
kθ̂

aR

(
θ̂kθ̂

)∥∥∥,
(37)

where Âkθ̂
≜ IMr − Akθ̂

(
AH
kθ̂
Akθ̂

)−1

AH
kθ̂

, Akθ̂
=[

aR

(
θ̂1

)
, · · · ,aR

(
θ̂kθ̂−1

)
,aR

(
θ̂kθ̂+1

)
, · · · ,aR

(
θ̂Kθ̂

)]
,

and Ckθ̂
=
∑Kθ̂

k ̸=kθ̂
|αk|2
σ2 aR

(
θ̂k

)
aHR

(
θ̂k

)
+ IMr

. In the
delay and Doppler domains, similar beamformers can be
employed.

The approximation in (36) holds if different AoA clusters
are sufficiently separated such that the residual signals from
other angles can be considered as noise. Then, Xkθ̂

in (36)
can be expressed in matrix form as

Xkθ̂
= Aτ,kθ̂

diag(α̃)AT
υ,kθ̂

+ Zkθ̂ , (38)
where α̃ = [α̃1, · · · , α̃Nk

θ̂
]T is the vector of resulting

complex-valued gains, Aτ,kθ̂
= [aτ

(
τ1
)
, · · · ,aτ (τNk

θ̂
)] and

Aυ,kθ̂
= [aυ(υ1), · · · ,aυ(υNk

θ̂
)] are the steering matrices in

the delay and Doppler domains for the targets located at angle
θ̂kθ̂ . Then, the matrices Xkθ̂

, kθ̂ = 1, · · · ,Kθ̂, can be exploited
to estimate the delays Sτ,kθ̂ =

{
τi,kθ̂ |i = 1, · · · , Nkθ̂

}
of

the targets at different angles. Furthermore, for targets with
different delays at each angle, further target discrimination
can be achieved through beamforming in the delay domain.
In particular, the signal for a target whose AoA and delay
are estimated as (θ̂kθ̂ , τ̂i,kθ̂ ) can be reduced to xTi,kθ̂

=

rH
(
τ̂i,kθ̂

)
Xkθ̂

, i = 1, · · · , Nkθ̂ . Then, the Doppler υ̂i,kθ̂ can
be estimated from xkθ̂ ∈ CP×1 for the target.

3) One-dimensional Parameter Estimation Algorithms:
In the previous subsections, we have modeled the one-

dimensional (1D) parameter estimation problems in (22), (25),
(29), (38) for AoA, delay, and Doppler estimation. It is not
difficult to see that all these problems share a similar structure,
and thus the problems can be solved using essentially the same
algorithms. In this section, we provide examples of 1D AoA
estimation algorithms, while they can be easily modified for
delay and Doppler estimation.

Periodogram: For any snapshot qn,p of signal Xθ ∈
CMr×QN,P in (22), the noise-free power spectrum f(θ) in
the angular domain can be obtained as

f(θ) =
1

Mr

∣∣∣∣aHR (θ)Xθ(:, qn,p)

∣∣∣∣2
=

1

Mr

∣∣∣∣bn,p K∑
k=1

αke
−j2πn∆fτkej2πpTsυk

×
Mr−1∑
m=0

ej2πm
d
λ (sin θ−sin θk)

∣∣∣∣2 (39)

=
1

Mr

∣∣∣∣bn,p K∑
k=1

αke
−j2πn∆fτkej2πpTsυk

×
sin
(
π dλMr(sin θ − sin θk)

)
sin
(
π dλ (sin θ − sin θk)

) ∣∣∣∣2
(a)
≈ |bn,p|2

Mr

K∑
k=1

|αk|2
∣∣∣∣∣ sin

(
π dλMr(sin θ − sin θk)

)
sin
(
π dλ (sin θ − sin θk)

) ∣∣∣∣∣
2

where aR(θ) is the steering vector in the spatial domain
in (18), θ ∈ [−90◦, 90◦] is the observation angle, and θk
is the k-th target angle. The approximation in (a) holds if
the angular difference between the targets is larger than the



13

angular resolution of the array. The angular resolution of an
array is based on the Rayleigh limit [112], which corresponds
to half the width between the null points of a focused beam
of the array. Form (39), the null points for a beam pointed at
θk can be obtained by π dλMr(sin θ − sin θk) = ±π, so the
beamwidth is given by

BWθ = sin θ − sin θk =
2λ

Mrd
≈ 2λ

D
, (40)

where D = Mrd denotes the array aperture. The maximum
resolution is achieved when θk → 0◦, and then

∆θ = arcsin

(
λ

Mrd

)
≈ λ

D
. (41)

Thus, the angular resolution of a ULA is inversely proportional
to the effective array aperture. This means that as the effective
array aperture increases, the beamwidth becomes narrower,
thus enhancing the ability of the array to resolve different
targets.

Similarly, for delay and Doppler estimation, the power
spectrum in the delay and Doppler domains can be derived
from signals Xτ and Xυ in (25) and (29), respectively.
By calculating the corresponding null-to-null bandwidth, the
minimum resolvable difference in the target delay and Doppler
frequency are given by

∆τ =
1

N∆f
=

1

B
, ∆υ =

1

PTs
=

1

CPI
. (42)

Thus, the delay and Doppler resolution are inversely propor-
tional to system bandwidth B and CPI, respectively. In contrast
to the angular resolution, which depends on the target angle,
the delay and Doppler resolution are independent of the target
parameters.

In practice, calculating the power spectrum in the angu-
lar domain (see (39)) involves an exhaustive search over
θ ∈ [−90◦, 90◦], resulting in high computational complexity.
To address this issue, the periodogram algorithm discretizes
the phase φθ = d

λ sin θ ∈
[
− d
λ ,

d
λ

]
in the angular domain

into N IFFT
θ points and employs the IFFT to accelerate the

computation. When N IFFT
θ > Mr, zero-padding is utilized to

convert Xθ ∈ CMr×QN,P in (22) to XZP
θ ∈ CN IFFT

θ ×QN,P . In
particular, the periodogram fθ ∈ CN IFFT

θ ×1 can be obtained
by performing an IFFT on each column of matrix XZP

θ and
then applying column-wise summation, which is given by

fθ =
1

QN,P

QN,P−1∑
q=0

∣∣∣IFFTN IFFT
θ

{
XZP
θ (:, q)

}∣∣∣2
=

1

QN,P

QN,P−1∑
q=0

1

Mr

∣∣∣WN IFFT
θ

XZP
θ (:, q)

∣∣∣2 ,
(43)

where | · | denotes element-wise modulus, and WN is the N -
point IDFT matrix, expressed as

WN =


1 1 · · · 1
1 W−1 · · · W−(N−1)

...
...

. . .
...

1 W−(N−1) · · · W−(N−1)(N−1)

 , (44)

with W = e−j
2π
N . Additionally, since the default phase of the

IFFT is [0, π], a period transformation for fθ is required to shift

TABLE III: Simulation setup for monostatic MIMO-OFDM
ISAC.

Parameters Values
Number of antennas at the Sen-RX Mr = 16

Number of subcarriers N = 128

Number of OFDM symbols P = 64

Subcarrier spacing ∆f = 120 kHz

CP duration Tcp = T/4 = 8.33 µs

Carrier frequency fc = 28 GHz

SNR of the radar processing signal
at the Sen-RX in (5)

SNR = 10 dB

Number of targets K = 3

AoA (−20, 10, 45)◦

Distance (20, 80, 50) m

Delay (0.13, 0.53, 0.33) µs

Radial velocity (8, 12, 20) m/s

Doppler frequency (1.49, 2.24, 3.73) kHz
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Fig. 6: Periodogram spectrum for AoA estimation in MIMO-
OFDM ISAC.
the period to [−π/2, π/2]. Then, the peak index n̂kθ of the
periodogram fθ ∈ CN IFFT

θ ×1 indicates the phase d
λ sin θ̂k =

n̂k
θ

N IFFT
θ

, n̂kθ ∈
[
−N IFFT

θ

2 ,
N IFFT

θ

2

]
, in the angular domain. As

such, the AoAs of the sensing targets can be estimated as

θ̂k = arcsin

(
n̂kθλ

N IFFT
θ d

)
,∀k = 1, · · · ,K. (45)

Consider a monostatic ISAC with the simulation setup given
in Table III. The periodogram spectrum for AoA estimation
after normalization and conversion to dB is shown in Fig. 6.
It is observed that higher spectral peaks occur at groundtruth
AoAs, while lower sidelobes are present at other angles. The
height of the spectral peaks correspond to the strength of
the target echos, and targets with weaker echo signals may
be obscured by the sidelobes of stronger targets. When the
target angle approaches 0◦, the width of the spectral peak
becomes narrower, which indicates that it can be more easily
distinguished by the periodogram method.

MUSIC: The MUSIC algorithm exploits the orthogo-
nality between the noise and signal subspaces to estimate
AoAs/delays/Doppler frequencies. These subspaces can be
obtained via an eigenvalue decomposition (EVD) of the
covariance matrix of Xθ in (22). This can be expressed
mathematically as

RX =
1

NP
XθX

H
θ = AθRsA

H
θ + σ2IMr

= EsΣsE
H
s +EnΣnE

H
n ,

(46)



14

-80 -60 -40 -20 0 20 40 60 80

(°)

-50

-40

-30

-20

-10

0

P
M

U
S

IC
(d

B
)

MUSIC spectrum

Groundtruth AoAs

Fig. 7: MUSIC spectrum for AoA estimation in MIMO-OFDM
ISAC.

where Rs = 1
NP SθS

H
θ , σ2 is the noise power, Σs and Σn

are diagonal matrices composed of the K largest eigenvalues
and the remaining Mr −K eigenvalues, respectively, Es and
En denote the eigenvectors that span the signal and noise
subspaces. As such, the MUSIC spectrum can be written as

PMUSIC(θ) =
1

aHR (θ)EnEHn aR(θ)
, (47)

where aR(θ) is the steering vector in the spatial domain in
(18), and the peaks of the MUSIC spectrum correspond to the
AoAs of sensing targets.

For the simulation setup in Table III, the AoA spectrum of
the MUSIC algorithm after normalization is shown in Fig. 7. It
is observed that both the MUSIC and periodogram algorithms
can accurately estimate the AoAs of all three targets. However,
the spectrum of MUSIC and periodogram differ primarily in
two aspects. First, the spectral peaks of MUSIC are sharper,
leading to higher angular resolution. Second, the spectrum
of MUSIC is smoother than the periodogram, which can
prevent weaker targets from being obscured by the sidelobes
of stronger targets, hence reducing estimation errors. It is also
important to note that subspace methods such as MUSIC and
ESPRIT (discussed next) rely on knowledge of the number of
AoAs in order to work properly. This is a drawback compared
with the non-parametric periodogram approach.

ESPRIT: The ESPRIT algorithm exploits the rotational
invariance between two subarrays in an array to estimate
AoAs. For the signal model in (22), by taking the first
Mr − 1 antennas of the ULA as subarray 1, and the last
Mr − 1 antennas as subarray 2, the received signals of the
two subarrays can be expressed as
X1 = Xθ(1 :Mr − 1, :) = A1Sθ + Z1,

X2 = Xθ(2 :Mr, :) = A2Sθ + Z2 = A1ΦSθ + Z2,
(48)

where A1 = Aθ(1 :Mr−1, :) and A2 = Aθ(2 :Mr, :) denote
the steering matrices of the two subarrays, respectively, Z1

and Z2 are corresponding noises. The two subarray steering
matrices are related by A2 = A1Φ, where Φ denotes the
rotation operator determined by the target angles, and is
expressed as

Φ = diag

(
e−j

2πdsinθ1
λ , · · · , e−j

2πdsinθK
λ

)
. (49)

Thus, the target AoAs can be estimated by solving the rotation

operator.

For ease of calculation, the data from the two subarrays are
concatenated into a new data matrix, i.e.,

X̄ =

[
X1

X2

]
=

[
A1

A1Φ

]
Sθ +

[
Z1

Z2

]
. (50)

Then, the signal subspace Es and noise subspace En can be
obtained by performing an EVD on the covariance matrix of
the data matrix X̄, given by

RX̄ =
1

NP
X̄X̄H = EsΛsE

H
s +EnΛnE

H
n . (51)

Due to the rotational invariance between the two subarrays,
the signal subspace can be decomposed as

Es =

[
Es1
Es2

]
=

[
A1T
A1ΦT

]
, (52)

where Es1 = Es(1 : Mr − 1, :), Es2 = Es(2 : Mr, :), and T
denotes a nonsingular matrix. Therefore, we have

Es2 = A1ΦT = Es1T
−1ΦT. (53)

Let Ψ = T−1ΦT, and note that the eigenvalues of Ψ are
given by the diagonal elements of Φ. A least squares estimate
of Φ can be obtained by

Ψ̂ = E†
s1Es2. (54)

The diagonal elements of Ψ can be obtained by computing
the eigenvalues λ̂k of the estimated Ψ̂, so the AoAs of the
targets can be estimated as
θk = − arcsin

(
λangle

(
λ̂k
)
/2πd

)
, k = 1, 2, · · · ,K. (55)

OMP: The OMP algorithm is an efficient sparse recovery
method based on iteratively selecting the basis vectors most
correlated with the received signal to estimate target pa-
rameters, thereby avoiding complex optimization procedures.
For AoA estimation, by discretizing observation angle θ ∈
[−90◦, 90◦] into Ns points, the steering dictionary matrix is
defined as

Adic = [aR(θ1), · · · ,aR(θNs
)] ∈ CMr×Ns

, (56)
where each spatial steering vector aR(θ) serves as an atom.
Then, the matrix Xθ in (22) is reduced to

Xθ = AθSθ + Zθ = AdicΛSθ + Zθ, (57)
where Λ is the sparse representation basis. For any snapshot
q of Sθ, the sparse recovery problem can be formulated as

min
Sθ(:,q)

∥Sθ(:, q)∥0

s.t. Xθ(:, q) = AdicΛSθ(:, q) + Zθ(:, q),
(58)

where ∥ · ∥0 denotes the ℓ0 norm. Since ℓ0-norm minimiza-
tion is NP-hard, greedy optimization algorithms are typically
employed to approximate the original signal via a sparse
representation. The OMP algorithm iteratively selects the
most correlated atoms from the discretized dictionary, updates
the residual via least squares minimization, and ultimately
estimates the angles of K targets.

Specifically, OMP first initializes the residual as the signal
Xθ in (22) and the support set as the empty set ∅, i.e.,

R0 = Xθ,Sθ̂ = ∅. (59)
The algorithm then performs K iterations, each selecting the
atom most correlated with the current residual, which can be
expressed by
ik = argmax

i
∥Adic(:, i)

HRk−1∥22, i = 1, 2, · · · , Ns, (60)
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Fig. 8: Comparison of periodogram, MUSIC, OMP for AoA
estimation in MIMO-OFDM ISAC with closely spaced targets.

and then the support set is updated as Sθ̂ = Sθ̂ ∪ {ik}. Here,
∥ · ∥2 is the Frobenius norm and Rk the residual after the k-
th iteration, where the sparse recovery signal is estimated via
least squares as

Ŝθ,k = argmax
S

∥Xθ −Adic(:,Sθ̂)S∥2

= Adic(:,Sθ̂)
†Xθ,

(61)

and the residual is obtained by
Rk = Xθ −Adic(:,Sθ̂)Ŝθ,k. (62)

Finally, the AoAs are estimated as θ̂ = θgrid(Sθ̂), where θgrid
denotes the discretized angular grid.

From (41), the angular resolution of the 16-antenna ULA
is ∆θ = 7.1◦. As a further illustration, we consider an-
other scenario with more closely spaced targets located at
(−5, 0, 10)◦, while the other parameters in Table III remain
unchanged. We show a comparison in Fig. 8 between the
periodogram, MUSIC, and OMP. It is observed that when the
angle difference between targets is smaller than the resolution
limit of the array, their spectral peaks blend together in the
periodogram, making them indistinguishable. However, the
OMP and MUSIC algorithms are still able to resolve all three
targets. Unlike MUSIC, although the OMP algorithm can also
achieve super-resolution, its estimation accuracy significantly
deteriorates due to mutual interference between the closely
spaced targets. In general, the OMP algorithm exhibits de-
graded estimation performance in scenarios where targets are
densely distributed. For the OMP algorithm, the parameters of
each target are estimated separately, preventing weak targets
from being masked by strong ones. The sequential one-domain
estimation approach in Fig. 4 is fundamentally based on the
path-separation idea.

In Section IV-B, we introduced the two decoupled param-
eter estimation methods and the corresponding 1D estimation
algorithms. In Figs. 6, 7 and 8, results for the periodogram,
MUSIC, and OMP are presented for AoA estimation in paral-
lel one-domain estimation. In the following, we give an exam-
ple of using MUSIC for sequential one-domain estimation. For
the simulation setup in Table III, we consider K = 5 targets
with AoA, distance, and radial velocity parameters being
(−20◦,20 m,8 m/s), (10◦,45 m,14 m/s), (10◦,80 m,20 m/s),
(45◦, 60 m, 6 m/s), (45◦, 45 m, 12 m/s). The correspond-
ing delays and Doppler frequency shifts of the five
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Fig. 9: Sequential one-domain parameter estimation based
on MUSIC for estimating the target with parameters
(10◦, 0.3µs, 2.61kHz) in MIMO-OFDM ISAC.

sensing targets are (0.13 µs, 1.49 kHz), (0.3 µs, 2.61 kHz),
(0.53 µs, 3.73 kHz), (0.4 µs, 1.12 kHz), (0.3 µs, 2.24 kHz),
respectively. Under the above setting, the estimation re-
sults of sequential one-domain estimation based on MU-
SIC in the three domains for the target with parameters
(10◦, 0.3 µs, 2.61 kHz) are shown in Fig. 9, where ZF-based
beamforming is exploited to separate the target signals with
different AoAs and delays. It is observed that for step 1,
only three AoAs can be estimated for the five sensing targets.
After spatial domain beamforming towards 10◦, two delays are
estimated in step 2. Finally, after delay domain beamforming
for the target with delay 0.3 µs, the Doppler frequency
2.61 kHz can be estimated in step 3.

The sequential domain method first performs AoA estima-
tion once, followed by performing spatial domain beamform-
ing and delay estimation Kθ̂ times, and finally delay domain
beamforming and Doppler estimation K times. Compared to
sequential one-domain estimation, parallel one-domain estima-
tion requires performing AoA, delay, and Doppler estimation
only once, thus reducing complexity. However, the parallel
method requires the extra step of parameter grouping, whereas
the sequential method associates the parameters automatically.
If the sensing targets cannot be distinguished in a single
domain, the parallel method may result in poor estimation
performance caused by a failure in parameter grouping. In con-
trast, the sequential method can use beamforming to extract the
signal of each target as long as the targets can be distinguished
based on one parameter, thus enabling accurate estimation of
the other two target parameters. The sequential method can
also effectively prevent weaker targets from being obscured
by the sidelobes of stronger targets by first separating out the
signals of the stronger targets [113]. Therefore, the parallel
method is preferred if the AoA, delay, and Doppler resolutions
are all high; otherwise, the sequential method is preferable.
Moreover, for sequential one-domain parameter estimation,
since the failure to distinguish different targets before per-
forming beamforming will degrade estimation performance,
the target parameter with the highest resolution should be
estimated first, followed by that with the second highest one
and finally that with the lowest one.
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C. Joint Two-domain Parameter Estimation

1) Joint Two-domain Parameter Estimation Model:
In this subsection, we present the joint two-domain param-

eter estimation methods shown in Fig. 4. Compared to the
decoupled parameter estimation discussed in Section IV-B,
joint two-domain parameter estimation can achieve higher
accuracy at the cost of higher computational complexity. The
two-dimensional (2D) joint target parameter estimation can
be divided into three cases, corresponding to joint delay-
Doppler estimation, joint AoA-delay estimation, and joint
AoA-Doppler estimation. Since the three cases have mathe-
matically similar forms, we focus on the joint delay-Doppler
estimation, while all signal processing techniques and algo-
rithms can be similarly applied to joint AoA-delay estimation
and joint AoA-Doppler estimation.

As illustrated in Fig. 4, before performing joint delay-
Doppler estimation, we first estimate the AoAs of the sensing
targets based on (22), and then perform beamforming on
(24) to decouple signals from different angles. However, joint
two-domain parameter estimation aims to jointly estimate the
delay and Doppler for the targets at each angle, rather than
sequentially estimating these two parameters. Assume that Kθ̂

AoAs are estimated, with Nkθ̂ targets at angle θ̂kθ̂ . After
spatial domain beamforming, the extracted signals Xkθ̂

in
(38) for each estimated angle are exploited to simultaneously
estimate delay τk and Doppler frequency shift υk of the
sensing targets.

2) 2D Joint Parameter Estimation Algorithms:
2D-Periodogram: For the joint delay-Doppler estimation

problem, based on the signal in (38), the 2D power spectrum
f(τ, υ) in the delay-Doppler domain with noise ignored can be
obtained in (63) as shown on top of the next page, where aτ (τ)
and aυ(υ) are the steering vectors in the delay and Doppler
domains in (27) and (31), τ ∈

[
0, 1

∆f

]
and υ ∈

[
− 1

2Ts
, 1
2Ts

]
are the observation delay and Doppler frequency, respectively.
The approximation (a) in (63) holds if the delay or Doppler
difference between sensing targets exceeds the corresponding
resolution. (63) reveals that the power spectrum in the delay-
Doppler domain is the product of the powers in the two
domains, and the two components are mutually independent.
Therefore, as long as the targets can be distinguished in either
domain, the power spectrum can be used to distinguish the
targets.

Similar to the 1D-periodogram, to reduce the computational
complexity of searching f(τ, υ) over observation delay τ
and Doppler υ, an N IFFT

τ -point IFFT and NFFT
υ -point FFT

can be performed in the subcarrier and symbol domains of
Xkθ̂

in (38) for fast computation. When N IFFT
τ > N or

NFFT
υ > P , zero-padding is utilized to convert Xkθ̂

∈ CN×P

to XZP
kθ̂

∈ CN IFFT
τ ×NFFT

υ . Then, the resulting 2D-periodogram

F ∈ CN IFFT
τ ×NFFT

υ can be expressed as

F =
∣∣∣FFT2

NFFT
υ

{
IFFT1

N IFFT
τ

{
XZP
kθ̂

}}∣∣∣2
=

1

NP

∣∣∣WN IFFT
τ

XZP
kθ̂

W∗
NFFT

υ

∣∣∣2 , (64)

where W∗ is the conjugate of IDFT matrix W. Negative
Doppler frequency estimation necessitates a spectral shift in

the Doppler domain of F to center the zero frequency compo-
nent within the spectrum. Then, the peak index

(
n̂
i,kθ̂
τ , n̂

i,kθ̂
υ

)
of F indicates the phases ∆f τ̂i,kθ̂ = n̂

i,k
θ̂

τ

N IFFT
τ

and Tsυ̂i,kθ̂ =

n̂
i,k

θ̂
υ

NFFT
υ

in the delay and Doppler domains, respectively. Thus,
the delay τ̂i,kθ̂ and Doppler frequency υ̂i,kθ̂ , ∀i = 1, · · · , Nkθ̂ ,
of the Nkθ̂ sensing targets at angle θ̂kθ̂ can be estimated as

τ̂i,kθ̂ =
n̂
i,kθ̂
τ

∆fN IFFT
τ

, υ̂i,kθ̂ =
n̂
i,kθ̂
υ

TsNFFT
υ

. (65)

2D-MUSIC: In order to apply super-resolution algorithms
to the joint delay-Doppler estimation problem, the data matrix
Xkθ̂

∈ CN×P in (38) is vectorized as xkθ̂ ∈ CNP×1, leading
to

xkθ̂ = vec
(
Xkθ̂

)
=

Nk
θ̂∑

i=1

α̃i,kθ̂aυ(υi,kθ̂ )⊗ aτ (τi,kθ̂ ) + vec
(
Zkθ̂

)
.

(66)

Based on this observation vector, the delay and Doppler can be
jointly estimated based on the corresponding steering vector
a (τ, υ) = aυ (υ)⊗ aτ (τ) ∈ CNP×1. However, since there is
only one snapshot in (66) for joint delay-Doppler estimation, it
is not possible to estimate the covariance matrix for xkθ̂ . Thus,
modified “spatial smoothing” preprocessing (MSSP) [114]is
performed to achieve decoherence. By performing MSSP in
the subcarrier and symbol domains of Xkθ̂

∈ CN×P in (38)
with a Nsub×Psub window, and reformulating each submatrix
into a vector, Nsnap =

(
N −Nsub + 1

)
×
(
P − Psub + 1

)
snapshots can thus be obtained. Mathematically, the submatrix
of each smoothing window is

Xns,ps
kθ̂

= Xkθ̂
(ns : ns +Nsub − 1, ps : ps + Psub − 1) ,

ns = 1, · · · , N −Nsub + 1, ps = 1, · · · , P − Psub + 1.
(67)

By reconstructing each submatrix into a column vector with
xSqns,ps

= vec
(
Xns,ps
kθ̂

)
∈ CNsubPsub×1, qns,ps = ns+ps(N−

Nsub + 1), Nsnap vectors can be obtained. Then, a new
observation matrix can be created by combining these vectors
as columns of the matrix

XS
kθ̂

=
[
xS1 ,x

S
2 , · · · ,xSNsnap

]
∈ CNsubPsub×Nsnap . (68)

Similar to (46) and (47), the 2D-MUSIC spectrum for joint
delay and Doppler estimation can be obtained by

PMUSIC (τ, υ) =
1

aHS (τ, υ)EnEHn aS (τ, υ)
, (69)

where En denotes the noise subspace, aS (τ, υ) =
aυ (υ, Psub)⊗ aτ (τ,Nsub) ∈ CNsubPsub×1 is the correspond-
ing steering vector, aτ (τ,Nsub) and aυ (υ, Psub) are the
steering vectors in the delay and Doppler domains in (27) and
(31). The peaks of PMUSIC (τ, υ) correspond to the delays and
Doppler frequency shifts of the sensing targets.

For the simulation setup in Table III, consider the challeng-
ing scenario where the AoAs of the three targets are all 10◦,
while the other parameters remain unchanged. A compari-
son of the 2D-periodogram and 2D-MUSIC for joint delay-
Doppler estimation in this case is shown in Figs. 10(a) and
10(b), where MSSP is perfomed for the 2D-MUSIC algorithm
with a window size of Nsub×Psub = N

2 ×
P
2 = 64×32. Similar

to the 1D-periodogram and 1D-MUSIC, the spectrum of 2D-
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f(τ, υ) =
1

NP

∣∣∣∣aHτ (τ)Xkθ̂
a∗υ(υ)

∣∣∣∣2
=

1

NP

∣∣∣∣∣
Nk
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N−1∑
n=0

e
j2πn∆f

(
τ−τi,k

θ̂

) P−1∑
p=0

e
j2πpTs

(
υi,k

θ̂
−υ

)∣∣∣∣∣
2

(a)
≈

Nk
θ̂∑

i=1

∣∣α̃i,kθ̂ ∣∣2
NP

∣∣∣∣∣ sin
(
πN∆f

(
τ − τi,kθ̂

))
sin
(
π∆f

(
τ − τi,kθ̂

)) ∣∣∣∣∣
2∣∣∣∣∣ sin

(
πPTs

(
υ − υi,kθ̂

))
sin
(
πTs

(
υ − υi,kθ̂

)) ∣∣∣∣∣
2

.

(63)

(a) 2D-Periodogram spectrum.

(b) 2D-MUSIC spectrum.

Fig. 10: A comparison of 2D-periodogram and 2D-MUSIC for
joint delay-Doppler estimation in MIMO-OFDM ISAC.

MUSIC is smoother and exhibits sharper peaks compared to
that of the 2D-periodogram. Consequently, in principle 2D-
MUSIC offers higher delay and Doppler resolution and can
prevent weak targets from being obscured by the sidelobes
of strong targets, thereby reducing inter-target interference
and achieving better sensing accuracy. However, for 2D-
MUSIC, one must correctly choose the dimension of the signal
subspace in order to include the impact of the weak targets,
and this is a difficult task in general.

D. Joint Three-domain Parameter Estimation
In this subsection, we present the joint three-domain param-

eter estimation method shown in Fig. 4. The joint AoA-delay-
Doppler estimation simultaneously determines the angles, de-
lays, and Doppler frequency shifts of the sensing targets using
the signal Ys after element-wise symbol division in (24).

3D-Periodogram: To reduce the computational complexity
of calculating f(θ, τ, υ) over the observation angle θ, delay
τ , and Doppler υ, an N IFFT

θ -point IFFT, N IFFT
τ -point IFFT,

and NFFT
υ -point FFT are performed in the antenna, subcarrier,

and symbol domains of Ys in (24). When N IFFT
θ > Mr,

N IFFT
τ > N or NFFT

υ > P , zero-padding is utilized to convert
Ys ∈ CMr×N×P into Y

ZP

s ∈ CN IFFT
θ ×N IFFT

τ ×NFFT
υ . Then,

the resulting 3D-periodogram F3D ∈ CN IFFT
θ ×N IFFT

τ ×NFFT
υ

can be expressed as

F3D =
∣∣∣FFT3

NFFT
υ

{
IFFT2

N IFFT
τ

{
IFFT1

N IFFT
θ

{
Y

ZP

s

}}}∣∣∣2 .
(70)

Similar to 1D and 2D cases, a spectral shift in the angle
and Doppler domains of F3D to center the zero frequency
component within the spectrum is required. Then, from the
peak indices

(
n̂kθ , n̂

k
τ , n̂

k
υ

)
of F3D, the angle θ̂k, delay τ̂k,

and Doppler frequency υ̂k, ∀k = 1, · · · ,K, of the K sensing
targets can be estimated as

θ̂k = arcsin

(
n̂kθλ

N IFFT
θ d

)
, τ̂k =

n̂kτ
∆fN IFFT

τ

, υ̂k =
n̂kυ

TsNFFT
υ

.

(71)
3D-MUSIC: Similar to 2D-MUSIC, MSSP is essential

for decoherence. With a smoothing window size of Msub ×
Nsub × Psub over Ys in (24), Nsnap =

(
M −Msub + 1

)
×(

N −Nsub + 1
)
×
(
P − Psub + 1

)
snapshots can be ob-

tained. Then, the resulting observation matrix ỸS ∈
CMsubNsubPsub×Nsnap after MSSP is

ỸS =
[
yS1 ,y

S
2 , · · · ,ySNsnap

]
. (72)

Thus, the 3D-MUSIC spectrum for joint AoA-delay-Doppler
estimation can be obtained as

PMUSIC (θ, τ, υ) =
1

aHS (θ, τ, υ)EnEHn aS (θ, τ, υ)
, (73)

where aS (θ, τ, υ) = aυ (υ, Psub) ⊗ aτ (τ,Nsub) ⊗
aR (θ,Msub) ∈ CMsubNsubPsub×1 is the corresponding steering
vector. The peaks of PMUSIC (θ, τ, υ) correspond to the AoA,
delay, and Doppler frequency shift of the sensing targets,
provided the signal subspace dimension is correctly chosen.

The ESPRIT and OMP algorithms can also be applied
to the 2D and 3D parameter estimation problems. Similar
to the MUSIC algorithm, spatial smoothing is also required
for ESPRIT to achieve decorrelation. The conventional 2D
and 3D ESPRIT algorithms require parameter grouping [115]
to match the estimation results of the different domains,
whereas some modified ESPRIT algorithms [116], [117] can
achieve automatic grouping. Furthermore, extensive efforts
have been devoted to reducing the complexity for super-
resolution methods. For example, the ROOT-MUSIC [118],
[119] algorithm replaces the spectrum search in MUSIC with
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TABLE IV: Complexity of 1D parameter estimation algo-
rithms for AoA estimation in MIMO-OFDM ISAC.

Algorithm Theoretical complexity

Periodogram [111] QN IFFT
θ log2N

IFFT
θ

MUSIC [79] QM2
r +M3

r + (2Mr (Mr −K) +Mr)N s
θ

PM-MUSIC [120], [121]
QM2

r +MrK (Mr −K)+

(2Mr (Mr −K) +Mr)N s
θ

FFT-MUSIC [122] QM2
r +M3

r + (Mr −K)N IFFT
θ log2N

IFFT
θ

LS-ESPRIT [80] QM2
r +M3

r +K2 (Mr − 1) +K3

TLS-ESPRIT [80] QM2
r +M3

r + (2K)2 (Mr − 1) + 10K3

PM-ESPRIT [120], [121]
QM2

r +MrK (Mr −K)+

Q2 (Mr − 1) +K3

OMP [81], [123], [124] KMNs
θQ+MK3 +MK2Q

polynomial rooting, the propagator method (PM) [120], [121]
uses an alternative to achieve the eigenvalue decomposition,
and the FFT-MUSIC [122] algorithm accelerates the MUSIC
spectrum peak search using FFT operations. In the following,
we analyze the complexity and estimation accuracy of the
aforementioned algorithms.

E. Complexity and Performance Analysis

1) Complexity Analysis:
We examine the theoretical computational complexity of the

aforementioned algorithms in terms of their required number
of complex-valued multiplications. As such, the complexity of
the multiplication of M×Q and Q×N matrices is O(QMN),
and that of the EVD of an M ×M matrix is O(M3). The
complexity of various 1D parameter estimation algorithms for
AoA estimation is shown in Table IV, while these results also
apply to delay and Doppler estimation. In these expressions,
Q denotes the number of snapshots, NFFT/N IFFT and N s

denote the number of FFT/IFFT points and spectrum search
points respectively, which are determined by the estimation
interval η, and NFFT = N IFFT = N s = ∆max

η with ∆max

representing the maximum estimation range. The estimation
interval affects estimation accuracy, and it should be adjustable
in order to achieve specific accuracy requirements. To our best
knowledge, it is difficult to express the theoretical complexity
of ROOT-MUSIC due to the difficulty of quantifying the
complexity of the polynomial rooting process. For a typical
example, we set the number of OFDM subcarriers and symbols
as N = 128 and P = 64, respectively, the number of targets is
K = 3, the estimation interval is η = 0.1◦, and the estimation
range is [−90◦, 90◦]. Then, the theoretical complexity of the
various 1D estimation algorithms for different numbers of Sen-
RX antennas Mr is shown in Table V.

As shown in Table V, for MIMO-OFDM ISAC systems,
when the numbers of antennas is small, while the number
of subcarriers and OFDM symbols are large, numerous snap-
shots are provided for AoA estimation, and the periodogram
algorithm even exhibits higher complexity than MUSIC and
ESPRIT. However, the situation changes as the number of
antennas increases, the periodogram becomes more compu-
tationally efficient due to the fast computation of the FFT,

TABLE V: The complexity of 1D algorithms for different
numbers of antennas for AoA estimation in MIMO-OFDM
ISAC.

Algorithm

Basic setup and complexity
N = 128, P = 64, Q = NP = 8192,

K = 3, Ns = N IFFT
θ = 1800

Mr = 16 Mr = 64 Mr = 256 Mr = 512

Periodogram 1.596e8 1.596e8 1.596e8 1.596e8
MUSIC 2.879e6 4.799e7 7.874e8 3.221e9

PM-MUSIC 2.876e6 4.774e7 7.708e8 3.088e9
FFT-MUSIC 2.354e6 3.500e7 5.586e8 2.292e9
LS-ESPRIT 2.101e6 3.382e7 5.537e8 2.282e9

TLS-ESPRIT 2.102e6 3.382e7 5.537e8 2.282e9
PM-ESPRIT 2.098e6 3.357e7 5.371e8 2.148e9

OMP 7.094e8 2.837e9 1.135e10 2.270e10

followed by ESPRIT and MUSIC, while OMP has the high-
est complexity. The periodogram and OMP algorithms can
estimate the desired parameters using only partial snapshots
or even a single snapshot to reduce complexity, at the cost
of increased error. Among MUSIC’s variants, FFT-MUSIC
has the lowest complexity, followed by ROOT-MUSIC, with
PM-MUSIC offering the least reduction in complexity. Total
LS (TLS)-ESPRIT [80] is a variation of the LS-ESPRIT
algorithm that offers slightly improved performance, but with a
corresponding slight increase in computation. Unlike MUSIC,
the PM algorithm has the potential to significantly reduce
the complexity of ESPRIT. Overall, the periodogram, FFT-
MUSIC, and PM-ESPRIT algorithms offer the lowest com-
plexity.

The complexity analysis for the 2D/3D algorithms follows a
similar approach as 1D algorithms and will not be elaborated
further here. Note that 2D/3D algorithms not only have a high
computational complexity but also involve calculations with
large-dimensional matrices, imposing significant demands on
computer hardware. To achieve high-accuracy parameter es-
timation while mitigating these challenges, coarse-fine grid
search [125] and signal decimation [81], [126] techniques
can significantly reduce both computational complexity and
hardware requirements.

2) Estimation Accuracy and Resolution Analysis:
To study the relative performance of the 1D parameter

estimation algorithms discussed above, we consider a scenario
similar to that outlined in Table III, but with the spacing
between the parameters increased to guarantee that all the
algorithms resolve the targets. We conducted 300 Monte Carlo
experiments to estimate parameters in three domains via these
1D parameter estimation algorithms for the SNR in (8) varying
from -40 dB to 20 dB. The root mean-squared error (RMSE)
for each algorithm in the three domains is shown in Fig. 11.

We observe a threshold effect at approximately -20 dB
where the algorithm performance improves dramatically for
the above setup. Among them, the periodogram shows the
best performance, followed by MUSIC, with ESPRIT being
the least estimation accuracy. The performance of PM and
ESPRIT in the spatial domain surpasses that in the delay and
Doppler domains since ICI affects the latter, while signals in
spatial domain remain approximately orthogonal. For delay
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Fig. 11: Estimation accuracy of the considered 1D algorithms in the three individual domains for MIMO-OFDM ISAC.
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(a) Probability of successfully distinguishing two AoAs for
SNR = −10dB.
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(b) Probability of successfully distinguishing two AoAs for
SNR = 10dB.

Fig. 12: Probability of successfully resolving two targets using
the periodogram, MUSIC, and ESPRIT algorithms for SNR =
−10dB and SNR = 10dB with the angle difference varying
from 0.2◦ to 9◦ in MIMO-OFDM ISAC.

estimation, PM-MUSIC fails due to signal coherence at high
SNR, although this can be addressed by spatial smoothing.
FFT-MUSIC and MUSIC have similar estimation accuracy,
while ROOT-MUSIC performs poorly at low SNR but ap-
proaches MUSIC at high SNR. Finally, TLS-ESPRIT has
slightly higher accuracy than LS-ESPRIT at low SNR. PM-
ESPRIT exhibits superior performance exclusively at high
SNR, particularly for delay and Doppler estimation.

Regarding resolution, we derived the theoretical resolution
of the periodogram algorithm for AoA, delay, and Doppler
estimation in (41) and (42). However, deriving the theoretical

resolution for super-resolution algorithms such as MUSIC and
ESPRIT is challenging. Therefore, we design a simulation
experiment to study this issue. Using the estimation error of
two closely positioned targets as a constraint, we statistically
determine the probability of successfully resolving the two
targets for each of the considered algorithm to analyze their
resolution. Taking the angular resolution as an example, the
Sen-RX is set as a ULA equipped with Mr = 16 antennas with
half-wavelength element-spacing. The ISAC-TX transmits an
OFDM signal with N = 128, the CPI P = 64 symbols, sub-
carrier spacing ∆f = 120 kHz, and CP duration Tcp = 1

4T .
Since the theoretical resolution of the periodogram is 7.1◦

under these conditions, we establish two targets, for which
the AoA of the first target is 0◦, and that of the second one
varies from 0.2◦ to 9◦. An algorithm is considered to have
resolved the two targets successfully if the RMSE is within
0.5◦ for SNR = −10 dB, and within 0.3◦ for SNR = 10 dB.
As the angle of the second target changes, the probabilities of
successfully resolving the two targets using the periodogram,
MUSIC, and ESPRIT algorithms for SNR = −10dB and
SNR = 10dB are shown in Figs. 12(a) and 12(b), respectively,
based on 200 Monte Carlo experiments.

The simulation results in Figs. 12(a) and 12(b) show the
angular resolution of the periodogram algorithm is 7◦ for
both SNR = −10dB and SNR = 10dB, consistent with the
theoretical resolution in (41). The resolution of the MUSIC
and ESPRIT algorithms depends on the SNR. For lower SNR,
MUSIC and ESPRIT exhibit similar resolution, approximately
4◦. For higher SNR, ESPRIT achieves superior resolution
around 0.6◦, whereas MUSIC provides resolution around 1◦.
Overall, compared to the periodogram, super-resolution algo-
rithms significantly enhance parameter estimation resolution,
particularly at high SNR levels.

V. NEAR-FIELD MIMO-OFDM ISAC
In this section, we extend the results in Section IV to the

case where the targets are located in the near-field region
of the Sen-RX. While the main signal processing strategies
outlined in Fig. 4 are still valid in the near-field, the spatial
domain estimation must be extended from AoA estimation
only in far-field to joint angle-range estimation in the near-
field by exploiting the characteristics of spherical wavefronts.
Therefore, this section focuses mainly on spatial domain
estimation.
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Fig. 13: Near-field sensing for MIMO-OFDM ISAC.

A. Near-field Sensing Signal Model

As shown in Fig. 13, we assume that the Sen-RX is
equipped with an extremely large-scale ULA, which is placed
along the y-axis with εr = 0, and εm = m − (Mr + 1)/2
in (14). The corresponding steering matrix is denoted as
AR(r, θ) = [aR(r1, θ1), ...,aR(rK , θK)]. Based on the model
in (22), the Mr ×QN,P received signal is given by

X = AR(r, θ)S+ Z, (74)
where S = [s1, s2, · · · , sK ]T ∈ CK×QN,P denotes the
equivalent reflected target signals described in (23). Note
that compared with the far-field model in (22), the array
response vector for near-field sensing is a function of both
the target angle and distance, hence allowing simultaneous
estimation of both parameters independent of delay-based
distance estimation. This will not only improve the distance
estimation accuracy (especially if the distance estimation is
performed jointly in the AoA and delay domains), but it can
also alleviate the synchronization errors that typically arise in
traditional delay-based distance estimation techniques. In order
to estimate the angle and distance parameters based on spatial-
domain processing, several methods are introduced below,
which can be generally categorized into directly applying far-
field algorithms, extending far-field algorithms to three types,
namely, near-field, and low-complexity near-field algorithms.

B. Directly Applying Far-field Algorithms to Near-field Mod-
els

In this section, we illustrate the performance of directly
applying the far-field algorithms discussed in Section IV-B
while ignoring near-field effects. The result for the standard
Periodogram is shown in Fig. 14, where K = 2 targets are
considered. We see that only the target with r = 150m has an
accurate AoA estimate based on (45). For the closer target at
r = 30m, multiple peaks exist around the ground-truth AoA,
which is due to the mismatch between the near-field channel
and the assumed far-field model. This is known as the so-
called energy spread effect, which illustrates the necessity of
developing dedicated near-field target localization algorithms.
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Fig. 14: Directly applying far-field algorithms in near-field
scenario for AoA estimation.

C. Extending Far-field Algorithms to the Near-field

Below we discuss how to extend algorithms developed for
far-field parameter estimation to the near-field case.

1) Near-field Beam Focusing: For near-field models, the
distance and angle parameters are closely coupled in the
near-field array response vector. In addition, the non-linear
phase variation from antenna to antenna in near-field models
also means that the IFFT is no longer directly applicable.
Therefore, we introduce 2D beamforming in both the angle
and distance domains in this section. Based on (74), the spatial
domain sample covariance matrix of X is given by

RX =
1

QNP
XXH , (75)

and the 2D periodogram spectrum can be written as

P2D−BF (r, θ) = aHR (r, θ)RXaR(r, θ). (76)

The peaks of P2D−BF in the 2-D angle-distance can be used
to estimate the target angle and distance parameters.

2) Near-field MUSIC: Similar to (47), by performing EVD
to the covariance matrix RX and obtaining the noise subspace
En, the 2-D MUSIC spectrum can be expressed as

P2D−MUSIC (r, θ) =
1

aHR (r, θ)EnEHn aR(r, θ)
. (77)

3) Near-field ESPRIT and Root-MUSIC: As shown in
Section IV-B, the far-field ESPRIT algorithm exploits the
rotational invariance between identical subarrays, requiring
a linear phase variation with the parameters between the
subarrays. Therefore, conventional ESPRIT is not directly ap-
plicable in near-field sensing. However, for symmetric antenna
arrays, a generalized version of ESPRIT can be performed,
which will be introduced in Section V-D4. Root-MUSIC also
relies on the assumption of steering vectors with a linear phase
shift between adjacent elements, and thus is also not directly
applicable in the near-field case.

4) Simulations and discussions: Figs. 15(a) and 15(b) show
the 2D spectra for near-field beam focusing and MUSIC
respectively. The number of antennas is Mr = 256, and the
locations of the two targets are (r1, θ1) = (5m, 10◦) and
(r2, θ2) = (10m, 20◦), respectively. It is observed that both
beamforming and MUSIC can localize the closer target with
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(a) Near-field beam focusing spectrum.

(b) Near-field 2D-MUSIC spectrum.

Fig. 15: Near-field angle-distance estimation by extending far-
field algorithms to near-field.

higher accuracy than the distant target, primarily due to the
limited accuracy with respect to distance.

We see that several issues arise that complicate parameter
estimation in near-field scenarios. Besides the fact that some
algorithms can no longer be directly applied, we see that 2D
rather than 1D searches are necessary to jointly estimate the
AoAs and ranges, which adds complexity. The accuracy of
the range estimate is considerably less reliable than the AoA
estimate, especially as the range increases to the point where
the far-field model holds [127]. This is due to the decreasing
sensitivity of the model in such scenarios, but is a factor that
must be taken into account when jointly estimating the range
by including the delay domain.

To address these challenges, one feasible approach is to
decouple estimation of the angle and distance parameters to
reduce the complexity of implementing the parameter opti-
mization. Based on this idea, the following low-complexity
near-field sensing algorithms are presented.

D. Low-complexity Near-Field Estimation Algorithms

Recently, several efficient algorithms have been proposed
to improve the accuracy and resolution of near-field sensing
with low computational complexity by efficiently decoupling
the distance and angle parameters. To that end, most existing
works have considered the approximate Fresnel array response

model in (16) based on second-order Taylor approximation,
and the parameters to be estimated are transformed from θk
and rk to ωk = − 2πd sin θk

λ and ψk = πd2cos2θk
λrk

, respectively.
1) Second-order cumulant (SoC): Note that in (16), ωk only

relates to θk, while ψk depends on both θk and rk. Therefore,
dedicated second-order culumants can be constructed to trans-
form the multi-dimensional search into two single-parameter
estimation problems. Based on (74) and (16), the noise-free
correlation sequence between the (am+b)th and mth antenna
elements can be written as [128]

r(am+ b,m) =
1

QN,P
X(am+b+J+1, :)XH(m+J+1, :)

=
1

QN,P
AR,am+b+J+1SS

HAH
R,m+J+1 (78)

(a)
≈

K∑
k=1

pke
j[(a−1)m+b]ωk+j[(a2−1)m2+2abm+b2]ψk ,

where AR,m is the mth row of AR. Approximation (a)
holds by assuming sHp sq ≈ 0, p ̸= q. J = Mr−1

2 and
pk = 1

QN,P
S(k, :)SH(k, :) denotes the equivalent transmitted

signal. Furthermore, by properly choosing a and b, ψk can be
eliminated from the resulting expression, and estimation of the
distance and angle parameters can be decoupled. For instance,
substituting (a, b) = (−1, 0) and (a, b) = (1, 1) into (78), we
obtain the following correlation sequences

r1(−m,m) =

K∑
k=1

pke
−2jωkm,m = 0, 1, ..., J, (79)

r2(m+ 1,m) =

K∑
k=1

pke
j(ωk+ψk)e2jψkm,m = 0, 1, ..., J − 1.

Stacking the r1 and r2 terms into vectors, we obtain the signal
model

r1 = A1p1 ∈ C(J+1)×1, r2 = A2p2 ∈ CJ×1, (80)

where the k-th column of the (J + 1) × K matrix A1 is
a1k = [1, e−2jωk , ..., e−j(Mr−1)ωk ]T , and p1 = [p1, ..., pK ]T .
Similarly, the kth column of A2 and p2 can be ex-
pressed as a2k = [1, e2jψk , ..., e−j(Mr−3)ψk ]T and p2 =
[p1e

j(ω1+ψ1), ..., pKe
j(ωK+ψK)]T , respectively.

It can be observed that r1 and r2 have a form similar to
the far-field model. Thus, ωk and ψk can be obtained using
conventional AoA estimation algorithms. In the following, we
refer to this approach as “SoC-AoA”. However, the spatial
resolution of this approach is reduced to BW = 4λ

D since the
equivalent antenna aperture is half of the physical aperture.
Based on SoC, a weighted linear prediction algorithm has been
proposed for near-field localization [128] and higher-order
cumulants (HoC) have been proposed for higher accuracy and
wider application [129], [130].

2) Reduced dimension (RD) and reduced rank (RR) al-
gorithms: Another method to decouple ωk and ψk is by
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decomposing aR(r, θ) in (16) as [131]
aR (ω, ψ) =

ej(−J)ω

ej(−J+1)ω

. . .
1

. . .

ej(J−1)ω

ejJω


︸ ︷︷ ︸

Γ(ω)

·


ej(−J)

2ψ

ej(−J+1)2ψ

...
ej(−1)2ψ

1


︸ ︷︷ ︸

ξ(ψ)

, (81)

where J = Mr−1
2 , Γ (ω) ∈ C(2J+1)×(J+1) only depends

on the angle, while ξ (ψ) ∈ C(J+1)×1 is related to both
angle and distance. Note that (81) allows the 2D search for
2D-MUSIC (77) to be converted into two 1D searches, thus
reducing the complexity. Specifically, the MUSIC spectrum
can be constructed as

P2D−MUSIC (ω, ψ) =
1

ξH(ψ)ΓH(ω)EnEHn Γ(ω)ξ(ψ)

=
1

ξH(ψ)Q(ω)ξ(ψ)
.

(82)

In the following, we present angle and distance estimation
algorithms for the RD and RR cases, respectively.

Reduced-rank algorithm: Since the rank of En ∈
CMr×(Mr−K) will be no smaller than Mr − K, Q(ω) =
ΓH(ω)EnE

H
n Γ(ω) ∈ C(J+1)×(J+1) can be obtained by per-

forming an EVD on RX , and Q(x) generally has full rank
if Mr − K ≥ (J + 1), i.e., K ≤ J . On the other hand,
when ω ∈ Ω = {ω1, ..., ωK}, we have ξH(ψ)Q(ωk)ξ(ψ) → 0
based on the MUSIC algorithm, which is true only if Q(ω)
is rank deficient since generally ξ(ψ) ̸= 0 [132]. Based on
these observations, the value of θk can be obtained from the
K highest peaks of the following 1D spectral function

ω̂k = argmax
ω

1

det (Q (ω))
, (83)

and the corresponding rk is obtained by searching for peaks
in the distance domain using

r̂k = argmax
r

P2D−MUSIC

(
θ̂k, r

)
. (84)

Reduced-dimension algorithm: The spectrum search in
(82) can also be viewed as the following optimization problem

min
ψ,ω

ξH(ψ)Q(ω)ξ(ψ) s.t. eH1 ξ(ψ) = 1, (85)

where e1 = [0, 0, ..., 1]T ∈ C(J+1)×1. Solving (85), ξ(ψ)
can be expressed as ξ(ψ) = Q†(ω)e1

eH
1 Q†(ω)e1

. Therefore, (82)
can be transformed into a 1D search in terms of the angle
parameter [131]

ω̂k = argmin
ω

1

eH1 Q† (ω) e1
. (86)

Furthermore, ψk can be obtained by constructing the LS
problem

min
ck

∥Pck − ĝk∥2 , (87)

where ck = [ck,0, ψk]
T , ĝk = angle

(
Q†(ω̂)e1

eH
1 Q†(ω̂)e1

)
, and P =(

1, ..., 1
J2, ..., 0

)T
. After finding ψk using (87), the angle and

distance parameters can be estimated as

θ̂k = − arcsin

(
ω̂kλ

2πd

)
, r̂k =

πd2cos2θ̂k

λψ̂k
. (88)

3) FFT-enhanced low-complexity and super-resolution al-
gorithm: In order to further reduce the complexity, the authors
in [133] proposed an efficient algorithm to narrow the search
region for 2D angle-distance estimation in (77). The main idea
of this algorithm is to first eliminate those regions that do
not contain any targets. Afterwards, 2D MUSIC is performed
within a region of reduced size in order to estimate the
angle and distance, hence effectively balancing computational
complexity and super-resolution. This algorithm involves three
steps:

FFT-enhanced angle cluster determination: Applying an
S-point FFT and IFFT to the columns and rows of sample
covariance matrix RX in (75), respectively, the output can be
used to eliminate angle regions where no targets exist. The re-
sulting spectrum can be expressed as p = diag(WRXW−1),
where W is the DFT matrix, and diag(A) means extracting the
diagonal elements of A to form a vector. The nth angle cluster
is represented by the minimum and maximum angle value
within this cluster, denoted as αn = [αn, αn], n = 1, ..., L.
L is the number of clusters.

Distance cluster determination: For each angle cluster
αn = [αn, αn], 1D beamforming is performed over the
distance domain for αn and αn, respectively.

Plow(r) = aHR (r, αn)RXaR(r, αn),

Pup(r) = aHR (r, αn)RXaR(r, αn).
(89)

By setting a threshold Γ, the distance cluster β
n

can be
expressed as Plow(r) < Γ, and β̄n can be obtained simi-
larly. Therefore, the overall distance cluster is expressed as
βn = β

n
∪ β̄n.

Super-resolution 2D sensing: Finally, for each cluster n,
2D MUSIC is performed for θ ∈ αn and r ∈ βn. By clustering
the angles and distance, the number of grids for the 2D search
decreases significantly, thus reducing the overall complexity.

4) Symmetry-based near-field estimation algorithms: An-
other strategy to reduce the computational complexity of
the 2D peak search is by exploiting the symmetry of array
structure. Here, we present two approaches to decouple the
problems of angle and distance estimation by leveraging the
symmetric structure of the antenna array for mutiple targets.

Modified MUSIC [134]: After computing the covariance
matrix of the received signal RX in (75), its anti-diagonal
elements without noise are given by

RX [n,Mr + 1− n] = E{XXH}

= E

{(
K∑
k=1

ej(nωk+n
2ψk)sTk

) (
K∑
k=1

e−j(−nωk+n
2ψk)s∗k

)}

=

K∑
k=1

pke
j2nωk , n = 1, 2, · · · ,M, (90)
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where pk denotes the equivalent transmitted signal power of
target k, i.e., E{sHk sk} = pk. From the anti-diagonal samples
of the covariance samples we can reconstruct a new vector
that depends only on the angle parameters, given by

[ỹ]m =

K∑
k=1

pke
j2mωk . (91)

To perform 1D MUSIC, a full-rank set of observations is
required, so spatial smoothing techniques are employed by
splitting ỹ into L subvectors, each comprising (M + 1 − L)
entries. The ℓ-th split signal can be expressed as

ỹℓ = [[ỹ]ℓ, [ỹ]ℓ+1, · · · , [ỹ]ℓ+M−L]
H
. (92)

Then, ỹℓ can be rewritten as ỹℓ = Apℓ, where A =
[a(α1),a(α2), · · · ,a(αK)] with [a(αk)]i = ej2iωk , i =
1, 2, · · · ,M + 1 − L. Moreover, the k-th entry of pℓ is
[pℓ]k = pke

2(ℓ−1)ωk . The matrix A has the form of a far-
field steering matrix with an array of dimension (M +1−L).
Thus, classical 1D MUSIC can be applied to search for the
target angles. The covariance matrix of ỹℓ is given by

R̃ =
1

L

L∑
ℓ=1

ỹℓỹ
H
ℓ =

1

L
ARpA

H , (93)

where Rp =
∑L
ℓ=1 pℓp

H
ℓ . To ensure that Rp is full-rank, we

impose the constraint K < L. After obtaining the angles of
targets, we can perform a 1D search in the distance domain.

Generalized ESPRIT [138]: For generalized ESPRIT, the
antenna array is partitioned into two subarrays, with the
first subarray comprising the first J antennas arranged in an
ascending order, and the second subarray consisting of the
last J antennas arranged in a descending order. The steering
vectors of the two subarrays can be expressed as

A1 =[a1(r1, θ1), . . . ,a1(rK , θK)] ∈ CJ×K ,
A2 =[a2(r1, θ1), . . . ,a2(rK , θK)] ∈ CJ×K .

(94)

For the k-th target, we have

a1=
[
ej(−Nωk+N

2ψk), · · · , ej((−N+J−1)ωk+(N−J+1)2ψk)
]T
,

a2=
[
ej(Nωk+N

2ψk), · · · , cj((N−J+1)ωk+(N−J+1)2ψk)
]T
.

(95)
The array response matrix A can thus be divided as

A =

 A1

Last (M − J)rows

 =

First (M − J)rows

JA2

 , (96)

where J is used to reverse the order of the matrix rows, and
J2 = I. The array response vector of the second subarray can
be represented as

A2 = [D(θ1)a1(r1, θ1), . . . ,D(θK)a1(rK , θK)] , (97)

where

D(θk) = diag
[
e−j2Nωk , . . . , e−j2(N−L+1)ωk

]
. (98)
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Fig. 16: Theoretical complexity of algorithms for near-field
MIMO-OFDM ISAC. (K = 4, N = 256, P = 10)

Similar to (52), the rotation invariance between the two subar-
rays is manifest in terms of the signal subspace eigenvectors
as follows:

Es1 = A1T, Es2 = JA2T. (99)

Then, we define the new steering matrix

A3(θ) = [D(θ)a1(r1, θ1), . . . ,D(θ)a1(rK , θK)]

= D(θ)A1,
(100)

when θ aligns with the i-th target, and the i-th column of A3

is identical to the i-th column of A1. Matrix F(θ) = JEs2 −
D(θ)Es1 is rank deficient when θ corresponds to one of the
target angles, which means that for an arbitrary full column
rank matrix W ∈ CJ×K , matrix WHF(θk) is singular and
its determinant is zero. The generalized ESPRIT exploits this
observation by defining the following spectrum function whose
peaks will correspond to the angles of targets

f(θ) =
1

det (WHF(θ))
. (101)

Once the targets’ angles are estimated, a 1D search can be
conducted to estimate the distance parameters.

E. Performance Analysis and Comparison

Table VI shows the properties of the near-field sensing
algorithms discussed above, including their complexity and
resolution capability. Fig. 16 gives a numerical representation
of the theoretical complexity of each algorithm based on the
values in Table VI for receive array sizes of Mr = 64, 128 and
512. The search grids for the angle and distance parameters are
chosen to have ng = 180

0.05 = 3600 and nl = 90
0.1 = 900 cells,

respectively. It is observed that for all Mr, SoC and modified
MUSIC have the lowest complexity, while 2D MUSIC and 2D
BF have the highest. However, as Mr increases, the complexity
gap between 2D MUSIC/2D BF and other algorithms becomes
smaller, because the complexity of the EVD becomes more
dominant for large Mr.

Figs. 17 and 18 show the RMSE of the angle and distance
parameters versus the SNR, respectively. The number of
antenna elements is Mr = 64 with d = λ

4 . The target is located
at (10.2◦, 5.64 m). As the SNR increases, the estimation
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TABLE VI: Performance comparison for near-field sensing algorithms

Algorithm Antenna
spacing

Estimation
resolution

Parameter
pairing

required?
Complexity (Mr = 2J + 1)

2D Beamforming [135] ≤ λ
2

Low No M2
rNP + ngnlM

2
r

2D MUSIC [136] ≤ λ
2

Highest No M3
r +M2

rNP + ngnl(Mr −K)(Mr + 1)

Second order cumulant [137] ≤ λ
4

High Yes J2NP + Slog2S +KnlM
2

Reduced rank algorithm [132] ≤ λ
4

High No M3
r +M2

rNP + (Mr −K)[ng(J + 1)(Mr + J + 1) + nlK(Mr + 1)]

Reduced dimension algorithm [131] ≤ λ
4

High Yes M3
r +M2

rNP + ng [(Mr −K)(J + 1)(M + J + 1) + (J + 1)3]

FFT-enhanced near-field sensing [133] ≤ λ
2

High No M3
r +M2

rNP + 2MrSlog2(S) + 2LnlM
2
r + Ln′

gn
′
l(Mr −K)(Mr + 1)

Modified MUSIC [134] ≤ λ
4

High No M3
r +M2

rNP + (J + 1)3 + ng(J + 1)2 + nlM
2
rK

Generalized ESPRIT [138] ≤ λ
4

High No M3
r +M2

rNP + ngK4(KJ + J2) + nlM
2
rK
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Fig. 17: RMSE of angle parameter for near-field MIMO-
OFDM ISAC.
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Fig. 18: RMSE of distance parameter for near-field MIMO-
OFDM ISAC.

accuracy of all algorithms improves. For angle estimation, RD
and RR perform best, thanks to their high-sensitivity angle
search procedures. On the other hand, SoC based algorithm
performs worst since the exploited structure of the covariance
only holds asymptotically. We further see that 2D BF and
2D MUSIC are sensitive to SNR, and can only achieve good
estimation performance when the SNR exceeds −5 dB.

In practice, several challenges still exist when implementing
the existing algorithms as elaborated below.
• Element spacing requirement: To avoid phase ambiguity
after calculating the second-order correlation for the SoC-
based algorithm, the inter-antenna spacing should satisfy d ≤
λ
4 , which may lead to high mutual coupling between antenna

and is not compatible with existing communication systems
that typically have half-wavelength spacing.
• Reduced resolution: For the SoC algorithm, the dimension
of the data vector in (79) is only dMr/2 due to the process
of constructing cumulants. Therefore, the size of the effective
aperture is reduced, and the spatial resolution decreases from
2λ
D to 4λ

D .
• Prior knowledge of the number of targets: Almost all
the algorithms mentioned above require prior knowledge of
the number of targets, so the ability to accurately obtain this
information will greatly impact the estimation performance.
For MUSIC, this can be achieved by calculating the number
of significantly large eigenvalues. For RR and RD algorithms,
the number of targets is crucial to properly choose the number
of peaks in the angle spectrum.
• Error propagation: By decoupling the angle and distance
parameters, the complexity by parameter search algorithms can
be significantly reduced. However, the accuracy of distance
parameter estimate is highly dependent on the estimation
results for the angle parameter. For the extreme case when
several targets are located in the same direction, SoC and RD
algorithms are no longer applicable, which may lead to severe
errors in the subsequent distance estimation.
• Parameter pairing: Parameter pairing is an additional
step after the estimation of K separate angles and distance
values. For algorithms involving a 2D search, parameters
are naturally paired. In addition, for the SoC-AoA and RR
algorithms, the distances are obtained by performing a 1D
search for each estimated angle, thus avoiding the problem of
parameter pairing as well. For other algorithms, the problem
and complexity associated with parameter pairing should be
considered.

VI. EXTENDED DISCUSSION FOR MIMO-OFDM ISAC

In this section, we point out open problems and out-
line promising avenues that warrant further investigation for
MIMO-OFDM ISAC to inspire future work.

A. Wideband XL-MIMO OFDM ISAC

To achieve higher angular and delay resolution, larger scale
MIMO and wider bandwidths are needed for MIMO-OFDM
ISAC systems. However, wideband XL-MIMO OFDM ISAC
introduces spatial wideband effects [139], [140], also known
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as the beam squint effects [141], where the propagation delay
across the array aperture can not be ignored. The spatial wide-
band effect means that the array steering vector is dependent
not only on the location or angle of the sensing target but also
on frequency. As a result, the phase shift components in the
spatial and subcarrier domains are no longer independent but
become coupled for XL-MIMO OFDM ISAC. In addition, the
use of XL-MIMO causes a variable Doppler frequency across
the array aperture for mobile targets in the near-field, resulting
in the coupling of the phase shift components in the spatial and
Doppler domains. These challenging issues will fundamentally
affect target sensing in XL-MIMO OFDM ISAC systems.
Thus, the sensing methods and results established in this paper
for conventional MIMO OFDM ISAC systems will require
reformulation and modification.

B. Signal Pre-processing for MIMO-OFDM ISAC
Clutter rejection and clustering: Clutter from environ-

mental scatterers makes it difficult to distinguish sensing tar-
gets from other reflections. One efficient approach for clutter
rejection is through the use of adaptive filtering methods,
such as MMSE and Kalman filtering [142]. Additionally,
techniques such as spatial filtering and Doppler processing
can enhance the ability of the radar to distinguish between
targets and clutter, especially in dynamic environments [143].
Clustering methods also play a significant role in improving
the SNR and facilitating more accurate detection in complex
sensing environments. For instance, K-means clustering and
Gaussian mixture models (GMM) can be employed to ef-
fectively separate target echoes from clutter [144]. Emerg-
ing techniques based on machine learning are increasingly
explored for clutter rejection in ISAC systems. For instance,
convolutional neural networks (CNNs) have shown promise
in automatically learning the features that distinguish clutter
from desired signals, leading to improved classification and
interference rejection [145]. Filtering clutter based on pre-
stored channel information in CKM is also an emerging and
promising approach for clutter rejection. As an example, the
authors of [74] proposed a new CKM approach referred to as
CLAM, which can effectively remove environmental clutter
through pre-acquired clutter angle information.

SI cancellation: In BS monostatic ISAC systems, the ISAC
BS needs to operate in full-duplex mode, making it vulnerable
to SI due to imperfect isolation. SI significantly increases the
noise level at the Sen-RX, thereby degrading sensing perfor-
mance. Various methods have been proposed to address this
issue, such as a combination of analog and digital cancellers
[3], where the analog canceller is implemented through an
additional RF chain, while the digital canceller operates in the
baseband of the sampled digital sensing signal.

Synchronization: For bistatic and multi-static ISAC sys-
tems, the ISAC-TX and RX are spatially separated and not
synchronized since they have separate LO and sampling clock
references. Therefore, the received signal experiences an ad-
ditional STO τ∆, CFO f∆, and a sampling frequency offset
(SFO) δ∆ caused by the deviation in the sampling frequency
between the digital-to-analog converters (DAC) at the ISAC-
TX and the analog-to-digital converters (ADC) at the RX

[37]. Typically, synchronization is performed based on the LoS
channel. Therefore, the RX needs to estimate and compensate
for the time offset (TO) τoff = τ0 + τ∆, the frequency offset
(FO) foff = v0 + f∆, and δ∆. The TO must be compensated
for first to determine the starting point for the OFDM signal.
A coarse TO and FO can be estimated based on the C&S
algorithm [146]. Furthermore, cross-correlation between the
received signal and the first preamble symbol is performed
for fine TO estimation [147]. After finding the starting point
of the received signal, the SFO can be estimated based on the
remaining preambles via a weighted LS algorithm [148]. For
more accurate SFO estimation, the entire received signal can
be interpolated by a multi-rate finite impulse response (FIR)
filter [149], [150] and fed into a sample rate converter based
on a polynomial filter [151]. Finally, based on the estimate of
the coarse FO, the residual FO can be obtained by constructing
a delay Doppler profile (DDP) based on pilots [152].

C. Resource Allocation and Beam Management
In practice, an ISAC system cannot continuously occupy all

time-frequency resources to execute a single communication or
sensing task. For example, in 5G NR TDD mode, the slots for
uplink and downlink communications are alternating and non-
uniform [153], [154], presenting a new challenge for sensing
tasks in ISAC systems. For practical multi-user ISAC scenar-
ios, users obtain C&S services through orthogonal frequency
division multiple access (OFDMA). Thus, different users can
only be allocated part of the time-frequency resources and
transmit beamforming is exploited to serve multiple users to
accomplish different C&S tasks in ISAC systems. Therefore,
resource allocation and beam management are two key design
issues in ISAC systems, as discussed in the following.

Resource allocation: In conventional communication sys-
tems, the collocated allocation of time-frequency resources
inherently constrains the achievable delay and Doppler res-
olution for individual users. In ISAC systems, sparse resource
allocation [153], [155] emerges as a promising alternative, en-
hancing sensing resolution by expanding the effective time and
frequency spans. Sparse allocation can be broadly categorized
into uniform and non-uniform approaches. Uniform sparse
allocation employs fixed-interval resource distribution, which
improves sensing resolution at the expense of a significantly
reduced unambiguous range. Non-uniform sparse allocation
maintains the unambiguous range while enhancing resolution,
albeit at the cost of elevated sidelobes in delay/Doppler
periodograms, potentially obscuring weak targets. Pre-storing
non-uniform sparse patterns with suppressed sidelobes via
traversal search and structured allocation based on nested
[156], coprime [154], or minimum redundancy [157], coupled
with differential coarray processing, are feasible non-uniform
sparse allocation strategies. However, traversal search methods
suffer from prohibitive computational complexity, while fixed
allocation structures may conflict with functional reference
signals in mobile communication standards. Consequently,
critical challenges remain in optimizing time-frequency re-
sources and subcarrier power allocation [40], necessitating
further investigation into trade-offs between fairness and effi-
ciency, as well as between C&S performance.
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Beam management: Beam management [158], [159] can
be categorized as referring to beam alignment, beam sweeping,
or beam tracking, based on different transmission or reception
methods. Beam alignment involves aligning the transmission
and reception beams between a transmitter and a receiver to
maximize the signal transmission efficiency. Beam sweeping
is the most commonly used method for achieving beam
alignment, which involves transmitting or receiving beams
from a predefined codebook over a given time interval to
cover a given spatial area. Beam tracking aims to achieve
beam alignment by predicting and tracking the positions or
angles of moving users or targets. These various beam man-
agement techniques alter the transmit beamforming vectors
for different time-frequency resources across different CPIs
and affect the duration of a CPI. The signal processing
methods discussed in this paper are applicable within a
given CPI for each beam management technique. However,
multiple beams under different management schemes may be
transmitted or received simultaneously. Orthogonal multiple
access (OMA) [160] can separate them via orthogonal time-
frequency resources, whereas nonorthogonal multiple access
(NOMA) [161] presents additional challenges. Furthermore,
multi-beam transmission requires power allocation among the
beams, which is another critical consideration.

D. Sparse MIMO ISAC
Looking ahead to future 6G mobile communication net-

works, MIMO systems are expected to provide finer spatial
resolution, not only enhancing the SE of wireless commu-
nication but also enabling more precise wireless sensing.
To tackle higher power consumption and signal process-
ing complexity of MIMO systems, sparse arrays have been
proposed as an alternative configuration to achieve a large
array aperture with a small number of antennas [52] [162].
Sparse MIMO arrays allow for a large virtual MIMO system
for sensing [163], which still enables underdetermined target
parameter estimation. However, sparse MIMO also leads to
a number of challenging issues. For example, since sparse
antenna geometries result in antenna spacing that exceeds half
wavelength, undesired grating lobes are generated. When users
or targets are located within these lobes, severe communication
inter-user interference and radar angle ambiguity occur. For
sparse MIMO sensing, differential or sum co-arrays have been
demonstrated to effectively mitigate grating lobes and prevent
angular ambiguity. However, the application of these tech-
niques to communication or ISAC systems remains unclear.
Moreover, in near-field scenarios, the the spatially nonsta-
tionary phase that results from spherical wave propagation
does not allow formation of a virtual array as in the far-field
case [164]. Therefore, developing methods to enhance DoFs
in the near-field is a critical challenge. Sparse array design
itself is a challenging problem, and more work is needed
to develop designs that provide an effective balance between
C&S performance.

E. NLoS Sensing and Localization in ISAC
The vision of pervasive sensing and connectivity for future

6G wireless networks relies not only on LoS signals but also

on NLoS sensing and localization. Nevertheless, achieving
highly accurate localization, particularly for NLoS compo-
nents, still remains an open issue. The parameter ambiguity
introduced by NLoS propagation presents both challenges and
opportunities in ISAC. Although it is challenging to directly
perform sensing and localization based on NLoS components,
hybrid localization schemes (e.g., RSS-ToA [165] and AoA-
ToA [166]) integrated with prior information (e.g., CSI [167]
and CKM) make NLoS sensing possible. NLoS components
can significantly contribute to more precise localization ser-
vices and transmission coverage. Thus, IRS [70], [71] aided
ISAC is regarded as a promising approach that can enhance
C&S performance by creating additional NLoS paths [168].

F. Mutualism between ISAC and CKM

More comprehensive and environment-aware ISAC net-
works can be designed by establishing a feedback loop in
which ISAC facilitates the construction, updating, and calibra-
tion of CKM. CKM [73] is a site-specific database, marked
with transmitter and/or receiver locations and containing
channel-related information to enable environment-awareness.
CKM provides a structured approach for directly incorporating
environmental characteristics into communication and sensing
processes, allowing for a deeper understanding of the relation-
ship between the physical environment and wireless channel
properties. This breaks the heavy reliance of current ISAC sys-
tems on geometric assumptions and LoS conditions, enabling
more robust and accurate communication and sensing. For
ISAC, CKM can leverage prior knowledge of CSI to facilitate
environment-aware ISAC. This means ISAC systems can ac-
tively adapt to the surrounding environment, reducing frequent
real-time channel estimation, optimizing data transmission,
while enabling environmental clutter rejection, assisting in
target detection and tracking, enabling NLoS localization and
sensing, and enhancing localization and sensing performance.
On the other hand, ISAC can utilize CSI captured through
sensing to achieve initial CKM construction, enabling dynamic
updates and long-term calibration of CKM. The mutualism
between CKM and ISAC warrants more in-depth exploration
for future wireless networks.

G. Prototyping and Experimental Validation

Proof-of-concept prototype design and experimental verifi-
cation are prerequisites for realizing ISAC in practical wireless
networks. Numerous efforts have been devoted to addressing
this issues. Early experiments [169], [170] focused on validat-
ing and analyzing the performance of using OFDM for radar
sensing, which later evolved into system prototype designs
for monostatic OFDM ISAC [171], [172]. In [25], the authors
developed an OFDM ISAC prototype based on the 5G NR
frame structure. A bistatic ISAC prototype system using an
OFDM frame-based approach for sensing tasks was validated
in [37]. OFDM-based simultaneous localization and mapping
(SLAM) [9], synthetic aperture radar (SAR) imaging [173],
and ISAC-enabled CKM prototype [32] systems have been
successful implemented. In contrast, while there are many
mature experimental platforms for MIMO OFDM ISAC in
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far-field scenarios, more prototype designs and experimental
validations are needed for massive MIMO and near-field ISAC
systems as well as the network-level implementations.

VII. CONCLUSION

MIMO-OFDM is the most likely wireless technology to
realize ISAC in future 6G wireless networks due to its predom-
inant use in existing wireless systems. This paper has provided
a comprehensive tutorial overview on ISAC systems enabled
by MIMO-OFDM. A unified approach to modeling MIMO-
OFDM ISAC systems and their enabling signal processing
algorithms were presented, under both far-field and near-field
channel conditions. Open problems for MIMO-OFDM ISAC
that deserve further investigation were also discussed. We hope
that this tutorial will provide a useful guide for researchers
working on ISAC, towards efficiently integrating it into future
6G wireless networks via efficient synergy with MIMO and
OFDM.
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