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1 Introduction 

Almost all modern world systems rely on digital acquisition of the underlying 
continuous entities (e.g., Wi-Fi signals, temperatures, and audiovisual information 
among others). Not surprisingly, the digital acquisition protocol is critical to the 
data being captured through various modalities such as medical devices, smart-
home sensors, autonomous vehicles, communication systems, and more. Typically, 
the data or signal is analog in nature, but different tasks that are performed on the 
data, such as extracting information, storing, or transmitting, can be more efficiently 
carried out in the digital domain. Signal processing algorithms implemented on 
digital signal processors are easier to control, less expensive, and more flexible than 
their analog counterparts. In addition, digital data is easier to store and transmit. 

Sampling Theory acts as a bridge between the analog and the digital worlds. 
Specifically, sampling is a process of discrete representation of analog signals. There 
could be multiple discrete representations for a given analog signal depending on 
the application and the end goal. For example, the end goal could be a perfect 
reconstruction of the analog signal or estimating a few of its parameters from 
its discrete measurements. Hence, the discrete representation should capture the 
necessary information of the analog signal through the sampling mechanism. In 
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practice, sampling is realized by an analog-to-digital converter (ADC) [1]. The 
process of an ADC is logically divided into two steps: 

1. Sampling: mapping analog signals to a set of discrete-time, continuous-valued 
measurements, and 

2. Quantization: the continuous-valued measurements are digitized—mapped to 
discrete-amplitudes—by assigning a finite number of bits to each measurement. 

The analog signal can be perfectly recovered from the sampled measurements 
provided that there are a sufficient number of measurements. However, quantization 
is a lossy process, leading to distortion in the reconstruction. The architecture and 
working principles of ADCs depend on their digital representation. For example, the 
ADCs can be designed to measure instantaneous samples of the analog signal [1–4] 
or measure time instants when the analog signal crosses a certain threshold [5–14]. 

While designing systems such as handheld ultrasound scanners, miniature 
satellites, wireless sensors, and other compact devices, much importance is given to 
lower power consumption as these systems operate on a battery or a solar powered 
device. Such compact systems have a wider reach compared to their conventional 
counterparts. For example, a handheld ultrasound device can be used to diagnose 
patients in rural areas and underdeveloped regions where installing a conventional 
ultrasound device is not possible due to its high cost and power requirements 
[15, 16]. Since ADCs are an integral component of such systems, it is desirable 
to use a low-power ADC to reduce the cost and enable long-term operation. The 
power consumption of an ADC is closely tied to its architecture. The design 
parameters of an ADC, such as the sampling rate, dynamic range, and the number 
of quantization levels, dictate the power requirements. In addition, analog signals 
are often measured in a multi-channel format, e.g., multiple receivers are deployed 
in applications such as multi-input multi-output (MIMO) communication and radar 
imaging. In such cases, the overall power consumption increases with the number 
of radio-frequency (RF) chains, where each RF chain includes an ADC. 

Among different architectures and approaches to reduce power consumption of 
ADCs, the following three methods have gained popularity in the recent literature: 

• Time-encoding machines (TEM) [5–14]. 
• Unlimited/modulo sampling [17–27]. 
• Task-based sampling [28–35]. 

These approaches focus on different frameworks and aspects of ADCs to reduce 
power consumption. For example, the TEM architecture is an alternative to the con-
ventional clock-based instantaneous sampling mechanism. In the TEM framework, 
an analog signal is discretely represented by the time instances at which the integral 
of the analog signal crosses a threshold. The sampling mechanism does not require 
a clock, as in the conventional instantaneous sampling, to control it, which makes it 
power efficient. 

In unlimited or modulo sampling, the focus is on the dynamic range of an ADC, 
which plays a crucial role in determining its power consumption and a number 
of quantization levels. In general, the dynamic range of an ADC is higher than
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that of the signal, or else the sampled values which are beyond the ADC’s range 
will be clipped. Clipping is a lossy process, and generally, high-rate high-power 
ADCs are used for signal reconstruction from clipped samples. To avoid clipping, 
the dynamic range of the ADC has to be chosen according to that of the signal. 
In an unlimited sampling framework, it is shown that by using a suitable analog 
preprocessing before sampling, high-dynamic-range signals can be sampled with 
lower-dynamic-range ADCs. The preprocessing operation is realized by a modulo 
operation where the signal is folded back to fit within the ADC’s dynamic range. 

Several algorithms have been suggested to reconstruct the signals from TEM 
and modulo measurements by using signals’ priors. For example, bandlimitedness 
and finite rate of innovation (FRI) models are used to reconstruct signals from 
TEM measurements in [6] and [8], respectively. Similarly, reconstruction algorithms 
are proposed for modulo samples for different signal models, namely, bandlimited 
functions [17, 18, 20], spline spaces [36], parametric classes [37], and sparse signals 
[38, 39]. The previously mentioned works focus on recovering the analog signal 
from discrete measurements by assuming an infinite number of quantization levels. 
However, in many applications, the goal is to extract limited information from 
the digital (quantized) measurements rather than the reconstruction. For example, 
in a direction of arrival estimation problem, the parameters of interest are often 
recovered from the signal correlation, and in this case, the task is to determine the 
auto-correlation matrix from the measurements. In such task-limited applications, 
the number of measurements can be combined to reduce their dimensionality 
before extracting the desired information. The reduced dimensionality allows 
low-resolution, low-power quantizers to be used without increasing the memory 
requirements. 

In this chapter, we discuss the abovementioned frameworks. Specifically, we 
focus on the theory and algorithms of these methods for different signal models 
and applications. Beyond theoretical underpinnings, we also discuss hardware 
implementations of these frameworks, which were built in our labs. For more details 
we refer the reader to the following weblinks: 

• https://www.weizmann.ac.il/math/yonina/software-hardware/hardware. 
• http://alumni.media.mit.edu/~ayush/usf.html. 

1.1 Symbols and Notations 

We use the following notations throughout the chapter. The set of reals, integers, 
and complex numbers are denoted by . R, . Z, and . C, and the set of square-integrable 
functions is denoted by . L2. Vectors and matrices are represented by lowercase and 
uppercase boldfaced letters, respectively. For a matrix . A, matrices .AT and . A−1

denote its transpose and inverse, respectively. Trace of a matrix . A is denoted by 
.Tr(A). For any matrix . A, its .(m, n)-th element is denoted as .(A)m,n. A vector . vec(A)

is constructed from . A by using columnwise vectorization. The statistical expectation
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operator is denoted as .E[·]. For any .a ∈ R and .λ ∈ R
+, the modulo operation . Mλ(·)

is given as 

.Mλ(a) = (a + λ) mod 2λ − λ. (1) 

Uniform samples of a signal .f (t) are denoted by .f (nTs); The continuous-time 
Fourier transform of a signal .f (t) is denoted as .F(ω) = ∫

f (t)e−jωtdt where . ω ∈ R

is in rad/sec. The discrete-time Fourier transform (DTFT) of the samples .y(nTs) is 
given by 

. Y (ejωTs ) =
∑

n∈Z y(nTs)e
jωTs .

1.2 Signal Models 

In this chapter, we consider bandlimited and FRI signals. The set .B� denotes 
bandlimited functions whose Fourier spectrum is zero outside .[−�,�]. An  L-th 
order FRI signal consisting of a stream of L pulses is given as 

.g(t) =
L∑

�=1

a� h(t − τ�), (2) 

where .h(t) is a known pulse or a filter and the FRI parameters .{a�, τ�}L�=1 are a set 
of amplitude and time delays [1, Chapter 15][16, 40, 41]. We assume that all the 
quantities are real-valued. Further, we assume that .τ� ∈ (0, T0] where the maximum 
time delay . T0 is known. 

In the next section, we discuss time-encoding machines followed by modulo 
sampling in Sect. 3. In Sect. 4, we present the task-based sampling framework, and 
concluding remarks are discussed in Sect. 5. 

2 Time-Encoding Machines 

Analog signals are commonly represented by their instantaneous values measured 
at a set of time instants for digital processing. A continuous-time signal . f (t)

is represented in discrete time by its samples .{f (tn)}n∈Z where . tn’s denote the 
sampling locations. Typically, the set of time instants is uniformly spaced, which 
results in uniform or synchronous sampling. Specifically, .tn = nTs where . Ts > 0
is sampling interval. Uniform sampling has several advantages, such as it allows 
the use of standard Fourier and harmonic analysis. These analyses are useful 
in establishing a relationship between the samples or their spectrum with the 
corresponding analog signal. These relationships are used to derive bounds on
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the sampling rates for perfect reconstruction of the analog signals and often lead 
to closed-form reconstitution formulae. The Shannon-Nyquist sampling theorem 
for bandlimited signals is an example of a uniform sampling framework [2, 3]. 
Despite being a widely used approach, uniform sampling has its disadvantages. 
While realizing ADCs for uniform sampling, a critical concern is the requirement 
of a clock that controls the sampling rate. It is desirable to use a high-precision 
clock to reduce timing jitters. ADCs with high-precision clocks are expensive and 
power-consuming. In addition, clocks are prone to electromagnetic interference. 

An alternative to uniform sampling is the non-uniform sampling framework [42]. 
Non-uniform sampling patterns can be divided into two categories: (i) non-adaptive 
or signal-independent, where the sampling patterns do not change for different 
signals within a signal class of interest, and (ii) adaptive or signal-dependent 
sampling, where the pattern varies from signal to signal. In the non-uniform non-
adaptive sampling frameworks [43–49], the sampling locations, . {tn}, are determined 
in advance for a class of signals and are fixed. For example, in random sampling, 
the sampling locations, . {tn}, follow a certain probability distribution function that 
depends on the class of signals to be sampled. Few of these schemes, such as 
random sampling, do not require external clocks for sampling and, hence, are free of 
electromagnetic interference [50]. In the uniform sampling framework, knowledge 
of the amplitude samples .f (nTs) is sufficient for recovery. However, in non-adaptive 
non-uniform frameworks, one must know the sampling locations . tn’s together with 
the amplitudes .f (tn) for reconstruction, which increases the amount of storage and 
transmission cost. Moreover, while implementing these schemes in hardware, one 
requires to have precise control of the sampling locations; otherwise, distortions due 
to timing jitter arise as in the uniform sampling framework. 

On the other hand, in the signal adaptive framework, such as time-encoding 
sampling [5–12], the sampling locations vary with signals within a class. Unlike 
uniform sampling and random sampling, where the analog signal is measured at a 
predefined set of time instants, in time encoding, time instants are measured when 
the analog signal or its function crosses a predefined fixed set of amplitudes or 
levels. These time encodings are signal-dependent and act as a digital representation, 
and hence these ADCs are called time-encoding machines (TEMs). Time-encoding 
architectures include level-crossing methods or crossing-TEMs [9–14] and inte-
grated and fire time-encoding machines (IF-TEMs) [5–8]. 

In level-crossing methods, the input signal is compared against a set of predefined 
functions. The time instants at which the signal crosses these functions are then 
recorded. A popular level-crossing sampling architecture is zero-crossing detectors 
where the signal is represented by its zero-crossing instants [13, 14]. Alternatively, 
one can use a set of constant amplitude levels for time encoding [9–12]. 

Another popular time-encoding framework is IF-TEMs which are inspired 
by the mechanism of biological neurons [5–8]. A neuron outputs a series of 
action potentials whose timings encode the original input in response to an input. 
Similarly, IF-TEM outputs signal-dependent time encodings. Compared to multi-
level-crossings-based encoding, the IF-TEMs use a single threshold or level, and 
hence a single cooperator is required. IF-TEMs also provided better control over
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the sampling rate by using tunable parameters compared to a single-channel level-
crossing sampler, such as zero-crossing ADC. 

In the next subsection, we present theory of IF-TEM and then discuss reconstruc-
tion of bandlimited and FRI signals in the following subsections. 

2.1 Theory of IF-TEM Framework 

Consider a real-valued, bounded, analog signal .f (t). In an IF-TEM, the signal is first 
made positive valued by adding a bias b to it where .b > c ≥ |f (t)|. The positive 
signal, .b + f (t), is scaled by a factor . 1

κ
for some .κ > 0. The scaling can be used to 

control the dynamic range of the signal. Then the signal . 1
κ

(b + f (t)) is integrated 
and is compared to a threshold . � by using a comparator (C) as illustrated in Fig. 1. 
When the integrated signal crosses the threshold, the time instant is recorded and 
the integrator is set to zero. The process is repeated to generate a monotonically 
increasing set of time instants .{tn}n∈Z, which encodes the analog signal. The input 
signal .f (t), IF-TEM parameters .(b, κ,�), and the time encodings .{tn}n∈Z are 
related as 

.
1

κ

∫ tn

t=tn−1

(b + f (t)) dt = �. (3) 

Since .f (t) is bounded, that is, .|f (t)| ≤ c, we can bound the integral in (3) and 
arrive at the following inequalities 

.
κ�

(b + c)
≤ tn − tn−1 ≤ κ�

(b − c)
. (4) 

The implication is that the difference between any two consecutive firing instants 
is upper and lower bounded by .

κ�
(b+c)

and .
κ�

(b−c)
, respectively. Alternatively, one can 

derive the maximum and minimum number of time encodings per second or firing 
rates (FR) as 

.FRmax = (b + c)

κ�
, and FRmin = (b − c)

κ�
, (5) 

f(t) 

b 

+ 

Δ 

1 
κ {tn} 

Reset signal 

C 

Fig. 1 A schematic of IF-TEM: A signal .f (t) is represented by time encodings .{tn}



Power-Aware Analog to Digital Converters 421

Fig. 2 Time encodings of a 
bandlimited signal .f (t): 
Time encodings are dense in 
regions of large amplitude 
variations compared to 
low-variation regions 

t 
f
(t

) 

respectively. The firing rate is equivalent to the sampling rate in a uniform sampling 
framework or sampling density in a non-uniform sampling case. But unlike in 
uniform sampling or random sampling, the firing rate is not fixed and is signal 
dependent. 

In Fig. 2, we illustrate sampling instants of a bandlimited function .f (t) (in 
blue), which are measured via an IF-TEM. In particular a set of time encodings 
.{tn} are generated by using an IF-TEM for .f (t) and measurements .{tn, f (tn)} are 
plotted together with .f (t). We observe that the signal is densely sampled when the 
amplitude varies sharply compared to the slowly varying regions. This illustrates 
the signal-dependent nature of IF-TEM measurements. Depending upon the signal 
reconstruction approach, the variation of the firing rate between its minimum 
and maximum values may be an undesirable feature of IF-TEM. For example, 
as discussed in the subsequent sections, there exists an algorithm to reconstruct 
bandlimited signals from their time encodings, provided that the minimum firing 
rate is below the Nyquist rate. By choosing the IF-TEM parameters .(b, κ,�), one 
can adjust the minimum firings to satisfy such conditions. Hence, by following (4), 
the time encodings might have a much higher density compared to the Nyquist rate, 
which amounts to a larger number of measurements compared to uniform sampling. 
A similar oversampling is also noted while reconstructing any non-uniform samples 
by using iterative reconstruction algorithms (cf. [51, Th. 8.13]). 

An important question is whether .f (t) can be reconstructed from its time 
encodings .{tn}n∈Z by adjusting the IF-TEM parameters. It was shown that perfect 
reconstruction is possible for bandlimited and FRI signals as long as .FRmin is above 
the Nyquist rate or rate of innovation [6, 8, 52, 53]. Before that, we first discuss a 
general philosophy for reconstruction. 

Following average values of the signal .f (t) can be measured by rearranging (3): 

.yn =
∫ tn

t=tn−1

f (t) dt = κ� − b(tn − tn−1). (6) 

The set of average values, .{yn}n∈Z, are an alternative discrete representation of .f (t). 
If .f (t) is differentiable, then by using the mean value theorem, we have from (6)
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.
yn

tn − tn−1
= 1

tn − tn−1

∫ tn

t=tn−1

f (t) dt = f (t ′n), (7) 

where .t ′n ∈ [tn−1, tn]. This implies that for smooth signals, non-uniform, instanta-
neous samples can be measured from the time encodings and IF-TEM parameters. 

Given .{t ′n, f (t ′n)}n∈Z, one can directly apply existing algorithms for signal 
reconstruction from non-uniform samples provided that the sampling locations 
satisfy the desired density criteria [51, Ch. 8]. Alternatively, one can use signal’s 
average values .{yn} to reconstruct the smooth signals (see Ch. 8 in [51] for details). 
Reconstruction from the average values is the basic approach algorithms use to 
reconstruct different classes of signals from their time encoding. We shall discuss 
these algorithms for bandlimited and FRI signals in the next two subsections. 

2.2 Reconstruction Algorithm for Bandlimited Signals 

In this subsection, we consider finite-energy, bandlimited signals and discuss their 
reconstruction from time encodings. Specifically, the signals considered are in 
.B� ∩L2(R) (Paley–Wiener class). For bandlimited signals, a perfect reconstruction 
algorithm was proposed by Lazar and Tóth [6]. The algorithm is iterative, and 
in each successive iteration, it approximates a bandlimited function by using the 
average measurements from the previous iteration. An operator that projects the 
average values to .B� ∩ L2(R) is defined as 

.B�f (t) =
∑

n∈Z yn h(t − τn), (8) 

f (t)  =
∑

n∈Z 
yn h(t − τn), f ∈ B�

where .τn = tn−1+tn
2 and .h(t) = sin(�t)

πt
is the lowpass filter corresponding to the 

bandlimited space . B�. The operator outputs a bandlimited signal by summing 
shifted sinc functions similar to the standard Shannon-Nyquist reconstruction 
framework for uniform samples. However, the shifts are not uniform and are placed 
midway between two consecutive firing instants. High-density firing rates occur 
when .f (t) varies rapidly. This, in turn, results in large values of average values . yns 
(cf. (6)) and high-density shift values . {τn}. From  (8), we observe that the operators 
are densely placed with larger weights in such high-density regions. Similarly, when 
.f (t) is slowly varying, delayed copies of . h(t)s are placed far from each other with 
small weights. In this way, the operator produces a good approximation of .f (t) from 
the time encodings. 

Starting from the approximation .f0(t) = B�f (t), an iterative algorithm is 
proposed where the approximation at the k-th iteration is 

.fk(t) = fk−1(t) + B� (f (t) − fk−1(t)) . (9)
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Then, by using the principle of induction, we have that [54] 

.fk(t) =
k∑

l=0

(I− B�)l B�f (t), (10) 

where . I is an identity operator. If .‖I−B�‖L2 < 1 then the operator . B� is invertible. 
By using the Neumann series representation, the inverse is expanded as 

.B−1
� =

∞∑

l=0

(I− B�)l. (11) 

Hence, if .‖I− B�‖L2 < 1, we have the following convergence 

. lim
k→∞ fk(t) =

∞∑

l=0

(I− B�)l B�f (t) = B−1
� B�f (t) = f (t). (12) 

The IF-TEM parameters can be chosen to ensure that the norm is bounded. In 
particular, it can be shown that 

.‖I− B�‖L2 ≤ κ�

(b − c)

�

π
. (13) 

If the parameters are chosen such that 

.
�

π
<

(b − c)

κ�
, (14) 

then the norm condition is satisfied and the algorithm converges. The quantity . �
π
is 

the Nyquist rate (in Hz) for the signals in . B�. Hence the inequality (14) signifies 
that the minimum firing rate of the IF-TEM (cf. (5)) should be strictly greater than 
the Nyquist rate. 

It can be shown that 

.‖f (t) − fk(t)‖L2 ≤
(

κ�

(b − c)

�

π

)(k+1)

‖f (t)‖L2 . (15) 

This inequality allows the determination of the number of iterations required to 
achieve desired reconstruction accuracy. The recovery approach is summarized in 
the following theorem. 

Theorem 1 (Bandlimited Signal Recovery Using IF-TEM [6]) Consider a ban-
dlimited signal .f (t) ∈ B� ∩ L2(R) with .|f (t)| < c. Let .{tn} denote a set of time 
encodings for .f (t) which are measured from an IF-TEM with parameters . (b, κ,�)

(see Fig. 1). Let .fk(t) be given as in (10). Then
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. lim
k→∞ fk(t) = f (t), (16) 

provided that 

.
�

π
<

(b − c)

κ�
. (17) 

The recovery methods from IF-TEM observations require that the input has a 
restricted amplitude .|f (t)| ≤ c. Recently, it was shown that the input amplitude 
could be extended beyond this range without changing the IF-TEM parameters by 
applying a modulo nonlinearity [24, 27]. 

Multi-channel extension of IF-TEM sampling for bandlimited signals is consid-
ered in [55–57]. It is shown that each channel can operate at a much lower rate than 
the single-channel framework as in the conventional multichannel sampling scheme. 
Lowrate IF-TEMs in each channel reduce the power requirements. An extension 
to signals in shift-invariant spaces is presented in [58]. Next, we discuss IF-TEM 
sampling for FRI signals. 

2.3 Reconstruction of FRI Signals 

FRI signals, as in (2), use a sampling kernel prior to ADC, which facilitates sub-
Nyquist sampling [1]. Specifically, the filter acts as an anti-aliasing filter during the 
sampling process and aids in reconstruction (see [59–61, Chapter 15]). Hence before 
discussing sampling of FRI signals by IF-TEM, we first discuss sub-Nyquist aspects 
of FRI signals. 

Sub-Nyquist Sampling of FRI Signals 

The FRI parameters are typically estimated from frequency domain samples [1, 16, 
62]. Consider the FRI signal model in (2). Let  .G(kω0) and .H(kω0) be uniform 
samples of the Fourier transforms of the FRI signal .g(t) and pulse . h(t), respectively. 
Here, . ω0 is the sampling interval in the Fourier domain and .k ∈ K ⊂ Z is the sample 
index set. Then by assuming that .H(kω0) �= 0 it can be shown that 

.S(kω0) = G(kω0)

H(kω0)
=

L∑

�=1

a� e−jkω0τ� , k ∈ K. (18) 

These measurements in the form of a sum of exponentials and high-resolution 
spectral estimation (HRSE) methods can be applied to determine .{a�, τ�}L�=1 from 
them [63, Ch. 4] [64–67]. The estimation is unique provided that .ω0 = 2π

T0
and . K is a 

set of consecutive integers with .|K| ≥ 2L. Further, by assuming that the time delays
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are on a grid, compressive sensing (CS) approaches can also be applied to determine 
the FRI parameters [68]. Unlike HRSE approaches, in the CS-based reconstruction, 
. K need not be a set of consecutive integers and the condition .|K| ≥ 2L is sufficient. 

Since .H(kω0) can be computed in advance from the known pulse . h(t), one 
has to determine .{G(kω0)}k∈K for constructing the measurements as in (18) and 
subsequent estimation of FRI parameters. These Fourier samples can be determined 
by time samples by using a sum-of-sincs (SoS) filter prior to sampling [16, 62]. 
To keep the response of the filters to be real-valued, we choose the set . K as 
.{−K, · · · ,K} where .K ≥ L. The response of the SoS filter to the FRI signal in (2) 
is given as 

.f (t) =
K∑

k=−K

G(kω0) ejkω0t . (19) 

Then from uniform samples of .f (t), the Fourier samples .G(kω0) can be determined 
provided that there are at least .2K +1 samples and the sampling interval is less than 
or equal to .

T0
2K+1 . 

Note that .f (t) is a periodic bandlimited signal or a trigonometric polynomial 
(TP) of order K . For  .K ≥ L, all the information of the FRI signal .g(t) resides 
in .f (t) in terms of the Fourier samples. Hence, any sampling framework that 
ensures perfect recovery of .f (t) from its measurements is also applicable for the 
reconstruction of FRI signals. Next, we discuss the IF-TEM sampling framework 
for FRI signals. 

IF-TEM Sampling 

As in the bandlimited case, FRI signals can be reconstructed from time encodings 
[8, 52, 53, 69, 70]. Different sampling kernels can be used prior to IF-TEM sampling, 
such as polynomial generating kernels [69], hyperbolic functions [70], and the SoS 
kernel [8, 53]. In the following, we discuss sampling using an SoS kernel and so 
that the input to the IF-TEM is given as in (19). The main results of this section are 
summarized in the following theorem [8, 52]. 

Theorem 2 Consider a L-th order FRI signal .g(t) as in (2) its filtered response 
.f (t) as in (19). Consider the sampling mechanism shown in Fig. 1 where TEM 
parameters .{b, κ, δ} are real and positive with .b > c = ‖f (t)‖∞ and 

.
b − c

κδ
≥ 2K + 2

T0
. (20) 

Then, the parameters .{a�, τ�}L�=1 can be perfectly recovered from the TEM outputs 
if .K ≥ L.
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We discuss a brief outline of the proof (see [8] for a detailed proof). Since .f (t) is a 
K-th order TP, the results discussed in this section are also applicable to the problem 
of sampling and reconstruction of trigonometric polynomials by using IF-TEM. 

To generate the time encodings, bias .b > c = ‖f (t)‖∞ is added to .f (t); then 
the sum is scaled by . 1

κ
, integrated, and compared against threshold . � as discussed 

earlier. Since .f (t) is periodic with time period . T0, we focus on the time encodings 
in an interval of length . T0. Let there be N time encodings .{tn}Nn=1 within an interval 
of length . T0. Substituting (19) in (6), we have  

.yn =
K∑

k=−K
k �=0

G(kω0)
ejkω0tn − ejkω0tn−1

jkω0
+ G(0) (tn − tn−1), (21) 

for .n = 2, · · · , N . We can rewrite the measurements in matrix form as 

.Ag = y, (22) 

where 

.A =

⎛

⎜
⎜
⎜
⎝

e−jKω0t2 − e−jKω0t1 · · · t2 − t1 · · · ejKω0t2 − ejKω0t1

e−jKω0t3 − e−jKω0t2 · · · t3 − t2 · · · ejKω0t3 − ejKω0t2

...
. . .

...
. . .

...

e−jKω0tN − e−jKω0tN−1 · · · tN − tN−1 · · · ejKω0tN − ejKω0tN−1

⎞

⎟
⎟
⎟
⎠

, (23) 

.g = [G(−Kω0), · · · ,G(0), · · · ,G(Kω0)]T, and .y = [y2, · · · , yN ]T. In [8], it 
is shown that the matrix . A is left invertible if .N ≥ 2K + 2, and hence the 
Fourier samples . g can be computed from the time encodings as . A†y. Then the FRI 
parameters can be determined from the Fourier using HRSE methods. The condition 
.N ≥ 2K + 2 implies that there should be at least .2K + 2 firings within an interval 
of length . T0. This can be ensured by choosing the IF-TEM parameters such that the 
minimum firing rate is greater than .

2K+2
T0

, that is, 

.
b − c

κ�
≥ 2K + 2

T0
, (24) 

where .K ≥ L. Simulation results for reconstruction of an FRI signal consisting of 
three third-order b-splines are shown in Fig. 3. Perfect reconstruction is achieved 
from the IF-TEM measurements. 

Since the estimation of the Fourier coefficients requires the inversion of the 
matrix . A, it is desirable to have a stable inverse, especially when the time encodings 
are perturbed. In [8], it was shown that if the trigonometric polynomial .f (t) in (19) 
does not include the term corresponding to .k = 0, then the resulting matrix is more 
stable than . A. This can be achieved by designing an SoS filter that excludes the 
zeroth frequency. The resulting matrix will have a Vandermonde structure, and it is
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Fig. 3 Sampling and 
reconstruction of a stream of 
pulses using IF-TEM by 
applying the SoS kernel. (a): 
the input signal and its 
reconstruction for .L = 3. (b): 
the filtered signal .f (t) and 
the time instants . tn for . L = 3
[8] 

left invertible if .N ≥ 2K + 1. With the exclusion of the zeroth frequency, . K ≥ 2L
to estimate a set of 2L consecutive Fourier samples. This, in turn, increases the 
firing rate as it is proportional to K (cf. (24)). However, in the presence of noise 
or perturbations in the time encodings, both with and without zero approaches 
require a larger number of measurements to achieve a desirable accuracy. In this 
case, it is shown that the without-zero approach results in a lower error in the 
estimation of time delays compared to the with-zero approach for the same number 
of measurements [8]. An alternative is to assume that the time delays are on a grid 
and use CS methods for reconstruction. For both off-grid and on-grid time delays, 
the without-zero approach results in a lower reconstruction error than the with-zero 
approach for the same number of samples. 

2.4 TEM Hardware 

A hardware prototype of an IF-TEM-based sub-Nyquist sampler for FRI signals was 
developed in the SAMPL lab https://www.weizmann.ac.il/math/yonina/software-
hardware/hardware and demonstrated in [71]. A prototype of the hardware board 
is shown in Fig. 4. The board acts as an ADC, which is based on the IF-TEM 
principle and has a bias and threshold. The scaling factor, . κ , is set as unity. In this 
demonstration, FRI signals of bandwidth 20MHz (the Nyquist rate .≥40MHz) are 
generated, and a lowpass filter with a cutoff frequency of 0.5MHz is used as a 
sampling kernel. The filtered signal is then discretized by using the IF-TEM module

https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
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Fig. 4 A hardware prototype 
board of IF-TEM sampler 
developed in SAMPL Lab 
[71]. For further details, refer 
to the webpage: https://www. 
weizmann.ac.il/math/yonina/ 
software-hardware/hardware 

Fig. 5 Reconstruction of FRI 
pulses by using the hardware 
board shown in Fig. 4 

shown in Fig. 4 by selecting appropriate values of bias and threshold. In the demo 
setup, the maximum firing rate is 1.6MHz. From the measured time encodings, 
the FRI parameters are estimated by using the algorithm derived in [8]. The true 
FRI pulses and the reconstructed ones are shown in Fig. 5. We observe that FRI 
signals were reconstructed from IF-TEM encodings with a firing rate that is 12.5 
times less than the Nyquist rate. Hence, sub-Nyquist sampling is possible with 
an IF-TEM. Another relevant point is that the hardware does not use any clock, 
unlike conventional ADCs, which makes it power efficient and immune to any 
electromagnetic interference. 

3 Modulo Sampling 

We now turn to discuss modulo sampling with the aim of sampling signals with low-
dynamic range ADCs without losing any information due to saturation. Saturation 
occurs when the analog signal exceeds the dynamic range of the ADC, and 
it results in clipped measurements. Clipped measurements via ADC saturation 
pose severe challenges in a variety of applications such as high-dynamic-range 
(HDR) photography [72], autonomous navigation [73], radar imaging [74], seismic 
imaging [75], communication systems [76], ultrasound imaging [77], music signal 
processing [78], and more. A simple solution to avoid clipping is to increase the 
dynamic range of the ADC. However, high-dynamic-range ADCs require high

https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
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power to operate. Moreover, they require a large number of quantization levels to 
accurately represent the samples which in turn increases the memory requirements. 

Due to the widespread nature of the clipping problem, several papers have 
studied this problem in different contexts [77–86]. These approaches are based on 
hardware-only or algorithms-only solutions. In particular, hardware-based solutions 
tackle the dynamic range problem at the electronic level, and they do not lever-
age the potential benefits of algorithms [79–81]. This amounts to sophisticated 
hardware architectures, such as automatic gain control, that require application-
specific tailoring. On the other hand, algorithm-based de-clipping is based on signal 
interpolation, inpainting, or optimization [77, 78, 82–86] where the goal is to recover 
lost samples under certain assumptions, typically related to the smoothness of the 
underlying signal. A drawback of the algorithm-based de-clipping is that theoretical 
guarantees are largely unexplored. For instance, the question of overcoming clipping 
by oversampling has no clear answer. 

To overcome the dynamic range bottleneck, the unlimited sampling or modulo 
sampling framework was recently introduced in [17–27]. In this framework, a 
modulo operation is applied prior to sampling to restrict the signal’s dynamic range 
by folding it. This operation is realized in the hardware. The folded or modulo 
signal is then sampled by using an ADC such as a conventional instantaneous 
sampler [17–23] or a TEM  [24, 27]. Since the modulo operation is nonlinear, the 
modulo samples are distorted versions of the true (unfolded) samples. However, the 
distortion is structured, and this fact, together with the signal model, is used for 
recovering unfolded samples from the folded ones. Recovery algorithms vary based 
on how they exploit the distortion and signal model. In the following, we discuss 
the modulo sampling framework in the context of bandlimited and FRI signals. We 
discuss theoretical aspects, recovery algorithms, and hardware prototypes. 

3.1 Theory of Modulo Sampling 

Consider a real-valued, analog signal .f (t). The objective is to sample the signal 
by using an ADC which has a dynamic range .[−λ, λ] for some known .λ > 0. By  
considering a conventional uniform-sampling ADC framework, the samples of the 
ADC are given by .sgn(f (nTs)) max(λ, |f (nTs)|) where .sgn(f (nTs)) denotes the 
sign of the measurement. In this case, when the samples are beyond the dynamic 
range of the ADC, they are clipped, and the output is .λ sgn(f (nTs)). 

To avoid clipping, a modulo operation is used prior to sampling, as shown in 
Fig. 6. The output of the modulo operator .fλ(t) = Mλ(f (t)) is sampled to obtain 
the measurements .fλ(nTs). The modulo operator, together with the sampler, is 
termed modulo-ADC. Unlike the conventional ADC, modulo-ADC accommodates 
signals which are beyond its dynamic range and information is not lost due 
to clipping. A comparison of the two sampling frameworks is shown in Fig. 7. 
Depending on the signal class, a sampling kernel can be used prior to the modulo 
operation. For example, for the reconstruction of signals in shift-invariant spaces,
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Mλ(·) 
Ts 

Unfolding 
Algorithm 

Modulo-ADC 

f(t) f(nTs) 
fλ(nTs) 

Fig. 6 Modulo sampling framework: Signal .f (t) is folded by modulo operation before sampling 
to avoid clipping. The folded signal is sampled, and an unfolding algorithm is applied to determine 
the actual samples from folded ones for further processing 

Fig. 7 Demonstration of conventional sampling with clipping and modulo sampling: (a) Conven-
tional sampling: Original signal (in black) is clipped (in blue) when it crosses the dynamic range of 
the ADC. The clipped samples are shown in red. (b) The original signal (in black) is folded back 
(in blue) to avoid clipping, and samples of the folded signal (in red) are measured 

prefiltering is applied [36] before the modulo operation. During reconstruction, 
unfolded samples .f (nTs) are determined by the folded samples .fλ(nTs) by applying 
an unfolding algorithm. These algorithms may differ from each other in terms of 
their working principle, but most of them use the fact that the modulo signal . fλ(t)

can be decomposed as 

.fλ(t) = f (t) + z(t), (25) 

where the residual signal .z(t) is a piecewise constant signal whose values are integer 
multiple of . 2λ. The transition times between pieces of .z(t) indicate locations at 
which .f (t) is folded. Mathematically, .z(t) can be written as 

.z(t) =
Q∑

q=1

dq u(t − τq), (26) 

where .dq ∈ 2λZ and .u(t) is step function. Folding instances are denoted by . τq . The  
number of foldings, Q, could be either finite or countably infinite depending on the 
signal .f (t). Hence, .z(t) is structured and depends on .f (t). This decomposition, or 
specific structure of . z(t), is used together with signal priors for reconstruction. 

In the following section, we discuss modulo sampling for bandlimited signals 
and then present results for periodic bandlimited signals.
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3.2 Modulo Sampling for Bandlimited Signals 

We consider the problem of reconstructing a bandlimited signal . f (t) ∈ B� ∩L2(R)

from its modulo samples. To this end, first, the samples .f (nTs) are recovered from 
.fλ(nTs) by using an unfolding algorithm and then .f (t) is recovered by using 
Shannon-Nyquist interpolation. For perfect reconstruction of .f (t) from .f (nTs), 
it is required to sample at or above the Nyquist rate. The question is whether 
sampling at or above is also sufficient to unfold. Or, what should be the sampling 
rate (independent of any algorithm) to uniquely identify .f (t) from modulo samples 
.fλ(nTs)? The answer to the question is given in the following theorem [21, 87]. 

Theorem 3 (Identifiability of Bandlimited Signals from Modulo Samples) Any 
.f (t) ∈ B�∩L2(R) is uniquely determined by its uniform-modulo samples measured 
at a rate greater than the Nyquist rate. 

For unfolding, Itoh suggested an algorithm for smooth signals in the context 
of phase unwrapping [88]. It was shown that if the first-order differences of the 
unfolded samples are bounded by . λ, then unfolding can be achieved up to a 
constant which is multiple of . 2λ [88]. However, it was unclear how to choose the 
sampling rate while applying the algorithm for bandlimited signals. In [17, 18], 
the authors proposed a higher-order version of Itoh’s approach and showed that 
bandlimited samples could be unfolded provided that a minimum sampling density 
condition is satisfied. The algorithm requires a high amount of oversampling (almost 
17 times higher than the Nyquist rate), but the sampling rate is independent of 
the dynamic range of the ADC. A .λ-dependent but sampling-efficient and robust 
unfolding technique is proposed in [22]. Next, we present a few details of these two 
approaches. 

Higher-Order-Difference (HoD)-Based Algorithm 

From the decomposition in (25), the modulo samples can be written as 

.fλ(nTs) = f (nTs) + z(nTs). (27) 

Let .�N be the N -th order difference operator. Then by applying .�N followed by 
.Mλ to .fλ(nTs) in (27), we have the following set of equalities: 

. Mλ(�
N fλ(nTs)) =Mλ(�

N f (nTs) + z(nTs)),

=Mλ(Mλ(�
N f (nTs)) + z(nTs)), (28) 

where we used the additive property of the modulo operator and the fact that 
.Mλ(z(nTs)) = 0 while going from the first to the second equality. If we choose 
the sampling rate such that
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.|�N f (nTs)| ≤ λ, (29) 

then from (28) we have that 

.Mλ(�
N fλ(nTs)) = �N f (nTs). (30) 

The relationship suggests that higher-order differences of the true samples can be 
computed from modulo samples. One can think of applying a N -th order anti-
difference or cumulative-sum operator . SN to .�N f (nTs) to determine .f (nTs). But  
.SN �N f (nTs) �= f (nTs) as polynomials are in the null space of . SN . To circumvent 
this issue, . SN is applied to .�N z(nTs) which is computed from modulo samples as 

. �N z(nTs) = �N fλ(nTs) − �N f (nTs),

= �N fλ(nTs) −Mλ(�
N fλ(nTs)), (31) 

where (28) and (30) are used to derive the above relationship. In this case too, . z(nTs)

are determined up to a polynomial ambiguity from .SN �N z(nTs). The ambiguity 
can be removed up to a constant multiple of . 2λ by using the fact that .z(nTs) is an 
integer multiple of . 2λ. Then .f (nTs) is computed using (27). 

The unfolding discussed is possible only if (29) holds. The following theorem 
states conditions such that the inequality (29) is satisfied [17, 18]. 

Theorem 4 Consider a bounded bandlimited signal .f (t) ∈ B� ∩ L2(R) such that 
.βf ≥ ‖f (t)‖∞ and .βf ∈ 2λZ. Then for any integer N and sampling interval . Ts

chosen such that 

.N� ≥
⌈
log λ − logβf

log (Ts�e)

⌉

, (32) 

and 

.Ts ≤ 1

2�e
, (33) 

ensures .‖�Nf (nTs)‖ ≤ λ. 

From (33), we see that the sampling rate is independent of . λ. Nevertheless, 
compared to the Nyquist rate . �

π
, the HoD-based unfolding algorithm works for 

oversampling factor (OF) of .2πe or 17 times above the Nyquist rate. In addition, 
the method is often not stable in the presence of noise due to HoD. 

To address these issues, in [22], an iterative algorithm is suggested which is stable 
in the presence of noise and operates at lower sampling rates, as discussed next. 
The algorithm recovers the residual signal by using information beyond the signal’s 
bandwidth, and hence it is termed the beyond-bandwidth residual-recovery (.B2R2) 
algorithm.
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B2R2 Algorithm 

The algorithm relies on the following two properties of finite energy BL signals 
[22]. 

• Time-domain separation [21]: By using the Riemann-Lebesgue Lemma, it can 
be shown for any .λ > 0 there exists an integer . Nλ such that .|f (nTs)| < λ, for 
all .|n| > Nλ. Hence, for .|n| > Nλ, we have  .fλ(nTs) = f (nTs) and .z(nTs) = 0. 
Thus the modulo samples are equal to the true samples over a set of indices. 

• Fourier-domain separation: Let the signal be sampled above the Nyquist rate with 
the sampling rate .�s > �

π
. Then by applying DTFT to .fλ(nTs), we have that 

.Fλ(e
jωTs ) = Z(ejωTs ), for � < |ω| < �s/2. (34) 

Here we used bandlimitedness of .f (t) which implies that .F(ejωTs ) = 0, for . � <

|ω| < �s/2. The relationship (34) implies that the DTFT of the true samples and 
that of the residual can be differentiated by oversampling. 

Combining the separation properties in the two domains, the following relationship 
is derived: 

.Fλ(e
jωTs ) =

Nλ∑

n=−Nλ

z(nTs)e
−jnTsω, for � < |ω| < �s/2. (35) 

From (35), .z(nTs)can be determined by sampling .Fλ(e
jωTs ) at .2Nλ + 1 points over 

the interval .ρ = (−�s/2,−�) ∪ (�,�s/2) and inverting the resulting set of linear 
equations. Then the true samples may be recovered by using (25). However, in 
practice, the inversion may not be stable in the presence of noise. To overcome this 
issue, an iterative algorithm is proposed as a solution to the following optimization 
problem [22]: 

.min
z

C(z) = 1

2
‖Fρ(fλ − z)‖2 s.t. z ∈ SNλ, (36) 

where .Fρ(fλ − z) = ∑
n∈Z(fλ(nTs) − z(nTs)) e−jωnTs , ω ∈ ρ, and .SNλ denotes 

sequences that have support over .{−Nλ, · · · , Nλ}. In this formulation, vectors . fλ
and . z denote vector forms of .fλ(nTs) and .z(nTs), respectively. The optimization 
problem can be solved by projected gradient descent (PGD) method where starting 
from an initial point .z0 ∈ SNλ , the steps at the k-th iteration are 

.

yk = zk−1 − γk∇C(zk−1),

zk = PSNλ
(yk).

(37)
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In these steps, .γk > 0 is a suitable step-size, .∇C(z) = F∗
ρFρ(z − fλ) is the gradient 

of .C(z), and .PSNλ
(y) is the orthogonal projection onto .SNλ . The function .C(z) is 

convex as it is a quadratic norm over a convex set .SNλ . Hence, the PGD algorithm 
converges to the global minimum. The estimation accuracy can be improved further 
by rounding the solution of the optimization problem to the nearest integer multiple 
of . 2λ as .z ∈ 2λZ2Nλ+1. 

In addition to HoD and .B2R2 algorithms, Romanov and Ordentlich proposed 
a Chebyshev-polynomial-based recovery algorithm. The algorithm uses the time-
domain separation property and shows that the samples .{f (nTs)}Nλ

n=−Nλ
can be 

recovered from the samples .f (nTs), n < Nλ by linear prediction. Note that for 
.n < Nλ, the samples are within the dynamic range of the ADC and hence 
.fλ(nTs) = f (nTs). The prediction filter is designed by using the Chebyshev 
polynomial. 

In the HoD approach, a high OF is required to ensure that the higher-order 
difference of the samples of the BL signal is bounded by . 2λ. In contrast, both . B2R2

and Chebyshev approaches are independent of higher-order differences and require 
lower oversampling. For example, in Fig. 8 we compare HoD, the Chebyshev, 
and .B2R2 algorithms in terms of mean-squared error (MSE) in reconstruction for 
different values of OF. For signal-to-noise ratio (SNR) of 15 dB, the Chebyshev and 
.B2R2 algorithms result in lower reconstruction error (in terms of MSE) as compared 
to the HoD method for different values of OF as observed in Fig. 8. Next, comparing 
.B2R2 and Chebyshev approaches (see Fig. 9), we observe that the .B2R2 approach 
has lower MSE for a given OF, . λ, and noise level (see [22] for more details). 

3.3 Modulo Sampling for FRI Signals 

Compared to the bandlimited signal model, there are a limited number of results 
for FRI signal reconstruction from modulo samples. Of course, one can extend 
the bandlimited signal results by considering a lowpass sampling kernel for FRI 

Fig. 8 Comparison of 
algorithms in terms of MSE 
in recovering a bandlimited 
signal from modulo samples 
with . λ = 0.025, and SNR = 
25 dB. The higher-order 
difference approach has an 
error of .−60 dB for OF .≥ 30, 
whereas the remaining 
methods are able to achieve 
.−60 dB error for OF = 10 
(see [22] for more details)
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Fig. 9 Comparison of .B2R2 and Chebyshev algorithms in terms of MSE in recovering a 
bandlimited signal from modulo samples with OF = 4, 6, 8, and . λ = 0.05, 0.2 (cf. [22]) 

sampling. In this case, the filtered signal will be a bandlimited signal. Then, as 
with the SoS kernel, one can compute the Fourier samples of the FRI signal from 
the filtered bandlimited signal by applying DTFT at the desired frequencies [40]. 
The FRI parameters are estimated from the Fourier samples by applying HRSE 
approaches. In the modulo framework, the sampling is performed after the modulo 
operation. Hence, unfolding is to be applied before computing the DTFT. Any one 
of the approaches discussed in the previous section can be applied for unfolding. A 
drawback in the lowpass-kernel-based approaches is that the support of the filter 
is infinite and a countably infinite number of modulo samples are measured to 
determine the finite number of FRI parameters. It can be shown that for periodic 
FRI signals, a finite number of time samples measured through a lowpass kernel 
are sufficient for perfect reconstruction. Precisely, for a L-th degree periodic FRI 
signal, its 2L consecutive Fourier samples can be measured from 2L consecutive 
lowpass-filtered signal samples. Hence, for the reconstruction of FRI signals with 
modulo samples, it is required to design a local unfolding method that takes a finite 
number of folded bandlimited samples and estimates 2L or more consecutive unfold 
samples. 

Bhandari et al. [38] proposed such a local reconstruction method for FRI signals 
as well as other parametric signals that can be reconstructed from a finite number 
of samples [37]. Consider a bandlimited signal .f (t) ∈ B� with .‖f ‖∞ ≤ βf . 
Consider K consecutive modulo samples .{fλ(nTs)}Kn=1. Then a sufficient condition 
for recovery . K ′ contiguous samples .f (t) (up to additive multiples of . 2λ) is that
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.Ts ≤ 1

2�e
and K ≥ K ′ + 7

βf

λ
. (38) 

In the case of L-th order FRI signal, by choosing .K ′ ≥ 2L, perfect reconstruction 
from modulo samples is guaranteed. 

The local reconstruction algorithm [38] uses HoD for unfolding and suffers from 
issues of a high sampling rate and low noise robustness. To address these issues, 
recovery methods in the Fourier domain have also been explored [20]. Such methods 
not only offer robustness in the case of system noise [89] and non-ideal folds but 
also allow for reconstruction at lower sampling rates than what is dictated by the 
inequality .Ts ≤ 1

2�e
for HoD approach. 

The proposed Fourier-domain approach considered a K-th order TP signal: 

.f (t) =
K∑

k=−K

ck ejkω0t , (39) 

where .ω0 = 2π
T0

is the fundamental frequency (in rad/s), . T0 is fundamental time 
period, and K is order of the TP. The coefficients . cks have Hermitian symmetry, 
that is, .c∗−k = ck , which makes .f (t) a real-valued function. A L-th order FRI signal 
can be equivalently represented as a K-th order TP by using an SoS sampling kernel 
[16, 62] provided that .K ≥ L. Specifically, for .K ≥ L all the information of the FRI 
signal which is required for its reconstruction is retained in the TP (see Sect. 2.3). 
Hence, modulo sampling and recovery results for a K-th order TP can be extended 
to FRI signals by using an appropriate sampling kernel. Next, we discuss unfolding 
of modulo samples of TP signal by using its Fourier-domain properties. 

By uniformly sampling .f (t) over .(0, T0] using a sampling rate .1/Ts results in 
.P = �T0/Ts� samples in a time period. The TP signal can be perfectly reconstructed 
by determining coefficients . cks from the unfolded samples provided that . P ≥ 2K +
1. Hence, in the modulo framework, it is sufficient to unfold .P ≥ 2K + 1 uniform 
samples measured over a time period for perfect reconstruction. In [20], Fourier-
domain separation property is used to estimate the residual signal by oversampling. 
To understand the approach, let us first note that for .Ts = T0/P with .P > 2K + 1, 
the DTFT samples of .f (t) are given as 

.F(ejmω0Ts ) =

⎧
⎪⎪⎨

⎪⎪⎩

ck, 0 ≤ m ≤ K,

cP+k, P − K ≤ m ≤ P − 1,

0, K + 1 ≤ m ≤ P − K − 1.

(40) 

The zeros in the DTFT are results of the bandlimited nature of the signal. Next, by 
using the modulo decomposition as in (27) and (40), the DTFT samples of . fλ(nTs)

are given as 

.Fλ(e
jmω0Ts ) = Z(ejmω0Ts ), for K + 1 ≤ m ≤ P − K − 1. (41)
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Hence, one can determine Fourier measurements of the residual signal from that 
of the modulo samples. To determine .z(nTs) from its partial DTFT samples, FRI 
nature of .z(t) is used. Specifically, for TP signals, .z(t) is also periodic and the 
number of foldings Q is finite (cf. (26)). Hence, its parameters .{dm, τm}Mm=1 can be 
estimated by applying HRSE approaches such as Prony’s method [64] and more to 
its Fourier samples provided that .P ≥ Q+2K+1. This method is termed as Fourier-
Prony approach. From the estimated .z(nTs), unfolded samples can be computed by 
using (27). The condition .P ≥ Q + 2K + 1 implies that the sampling rate should 
be greater than or equal to .Q+2K+1

T0
for unfolding and reconstruction of K-th order 

TP. Extending these results to FRI signals, it is inferred that to recover L-th order 
FRI signal by using an SoS kernel and modulo ADC, it is sufficient to sample at a 
rate greater than or equal to .Q+2L+1

T0
. Note that the theoretical minimum sampling 

rate or rate of innovation is .
2L+1

T0
and the oversampling is required for unfolding. 

The Fourier domain approach allows handling non-ideal modulo nonlinearity. To 
elaborate, consider the functioning of a conventional modulo system where a step 
function of amplitude . 2λ is subtracted when the analog signal crosses the threshold 
. λ. In practice, due to its non-ideal nature, the modulo system may not generate the 
step function of amplitude . 2λ. In such scenarios, the residual signal can still be 
modeled as in (26) but .dq �∈ 2λZ. Even for such a case, the Fourier-Prony method 
works as it does not depend on the amplitude values of . z(t). Hence Fourier-Prony 
method is immune to such non-ideal acquisitions. There could be other forms of 
non-idealities in modulo sampling, such as hysteresis, folding transients, etc., and 
they can be handled by suitably modifying the algorithms [25, 27, 90]. 

3.4 Modulo Sampling Hardware 

We now discuss a couple of hardware prototypes of modulo ADCs. The US-ADC was 
presented in [20]. The electronic circuit, shown in Fig. 10, transforms a continuous-
time input signal into a continuous-time modulo signal that can be sampled and 
digitized later on in the pipeline. An application of the hardware is shown in Fig. 11 
where an FRI signal is estimated from its modulo samples [39]. 

Another modulo hardware prototype is demonstrated in [91, 92]. In the demon-
stration, the authors presented a high-dynamic-range and wide bandwidth ADC and 
showed reconstruction of bandlimited signals and FRI signals by using the ADC. 
Using the hardware board (shown in Fig. 12), it is shown that the FRI signals can be 
recovered by sampling at 33 times below the Nyquist rate even when the dynamic 
range of the signal is two to three times higher than that of the ADCs. The FRI 
signals are filtered using a lowpass kernel prior to sampling. By using a low-rate, 
robust algorithm [22], it is shown that an FRI signal can be reconstructed up to 
a 5 dB signal to noise ratio. Further, it is shown that the proposed hardware can 
sample and recover bandlimited signals from their modulo samples by using the
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Fig. 10 Modulo ADC Hardware prototype for the Unlimited Sensing Framework. The hardware 
is capable of folding a signal as large as 24 times the modulo threshold . λ. (a) Printed circuit 
board. (b) Assembled electronic circuit. The hardware transforms a continuous-time input signal 
into continuous-time modulo output. (c) An oscilloscope screenshot showing the conventional 
ADC output (yellow) and the Modulo ADC output (pink). Behind the dynamic range of the 
oscilloscope’s built-in ADC, its output measurements are saturated. A YouTube demonstration 
is available at: https://www.youtube.com/watch?v=JuZg80gUr8M 

Fig. 11 Hardware experiment for FRI signal recovery: An FRI signal consisting of two spikes 
is lowpass filtered. The filtered signal (shown in yellow) is sampled by modulo ADC hardware 
(shown in blue). The spikes estimated directly from the unfolded samples (in black) and estimated 
via modulo samples (in red) are almost identical (See [39] for details)

https://www.youtube.com/watch?v=JuZg80gUr8M
https://www.youtube.com/watch?v=JuZg80gUr8M
https://www.youtube.com/watch?v=JuZg80gUr8M
https://www.youtube.com/watch?v=JuZg80gUr8M
https://www.youtube.com/watch?v=JuZg80gUr8M
https://www.youtube.com/watch?v=JuZg80gUr8M
https://www.youtube.com/watch?v=JuZg80gUr8M
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Fig. 12 Hardware board of high dynamic range, wide bandwidth ADC [91, 92]. For further details 
refer to the webpage: https://www.weizmann.ac.il/math/yonina/software-hardware/hardware 

Fig. 13 Hardware experiment for bandlimited signal: A bandlimited signal of 1 kHz is sampled 
using the hardware shown in Fig. 12. (a) Shows the true and folded signal; (b) shows  the  
reconstruction by using HoD method (sampling rate 34 kHz) and .B2R2 algorithm (sampling rate 
6 kHz)  [92] 

.B2R2 algorithm [22] with a sampling rate three times above the Nyquist rate (see 
Fig. 13). 

4 Task-Based Sampling 

In the previous sections, the focus is on different sampling frameworks with the goal 
of reconstructing analog signals from their discrete representations. A key step that 
is missing is the quantization of the discrete representations. In practice, an ADC 
first samples an analog received signal and quantizes it. The desired information

https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
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is then extracted from these digital representations. Typically, the sampling rate of 
the conventional ADCs is kept above the Nyquist rate for bandlimited signals (or 
above the rate of innovation for FRI signals), and high-resolution quantization is 
used for close-to-perfect recovery. The large number of measurements generated at 
a high sampling rate and a large number of bits used in high-resolution quantizers 
result in high-power ADCs. In addition, in multi-receiver systems, analog signals 
are captured through multiple sensors. In such systems, each receiver has its 
own ADC, and hence overall power consumption is proportional to the number 
of ADCs. For example, in beyond 5G wireless communication systems, massive 
multiple-input multiple-output (MIMO) antenna systems are being used together 
with large bandwidths in the millimeter-wave (mmWave) bands [93]. Such systems 
with conventional ADCs would be inefficient since the power consumption and 
memory requirements increase with the sampling rate and the number of signals 
to be sampled. In addition, each signal component is sampled using a separate ADC 
and then quantized individually, which increases the power and cost of the overall 
system. 

In many applications, the goal or task is to extract some underlying information 
from the digital samples rather than signal reconstruction. Since the information 
is embedded in a lower dimension compared to the ambient dimension of the 
samples, the samples can be combined before extracting the necessary information. 
Similarly, in a multi-receiver system, the analog signals from multiple sensors can 
be combined by using an analog combiner prior to sampling [28, 29]. Then the 
signals are sampled and quantized in the reduced dimension. This results in a 
smaller number ADCs and hence lower power requirements. Further, assuming that 
the total number of quantization bits is fixed and finite, a higher number of bits 
can be assigned to each sample in the reduced dimension space compared to that 
in the original signal dimension [28, 29]. Hence, the mentioned hardware-limited 
framework resolution can be improved without increasing the memory requirement. 
In the following, we introduce hardware-limited task-based quantization systems 
and discuss systems with linear and quadratic tasks. 

4.1 Theory of Task-Based Quantizers 

In this section, we introduce a general discrete model of the hardware-limited task-
based quantization system [28]. In this discrete model, the sampling part is ignored, 
and only quantization aspects of the ADC are considered. A task-based ADC with 
sampling and quantization is discussed in [29]. Since the signals are in the discrete 
domain, we denote them by vectors. A schematic of the discrete system is shown 
in Fig. 14 where the goal is to recover the information vector .s ∈ R

k , which is 
statistically related to observed signal .x ∈ R

n. The information vector . s and the 
observed signal . x are statistically related with function .fx|s and .k < n. The model 
represents a broad range of applications, such as time-of-flight imaging [94], where
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s fx|s 
x 

ha 

(ha(x))1 

(ha(x))p 

Q1 
M̃p 

(·) 

hd ŝ 

Q1 
M̃p 

(·) 

Fig. 14 A schematic of hardware-limited task-based quantizer [28] 

. s represents the time delays and amplitudes of the pulses and . x denotes the observed 
signal. 

To estimate . s, . x is first projected to a lower-dimensional space . Rp, .p ≤ n, 
by using an analog combiner .ha(·). The low-dimensional signal is then quantized 
as detailed next. Let M denote the overall number of quantization levels, which 
represents the memory requirement of the system. Then, each component of . ha(x)
is quantized with resolution .M̃p � �M1/p�, whose operation is denoted as .Q1

M̃p
(·). 

In .Q1
M̃p

(·), the superscript one signifies that it is a scalar quantizer. Different choices 
of p will result in different levels of quantizations as M is fixed and .(M̃p)p ≤ M . 
After quantization, as estimate of . s, is estimated by the post-quantization processing 
module .hd(·) : Rp �−→ Rk . The estimate is given as 

.ŝ = hd

(
Q1

M̃p
((ha(x))1) , · · · ,Q1

M̃p

(
(ha(x))p

))
. (42) 

Due to quantization, the estimator . ̂s is also denoted as a quantized representation 
of . s. Task-based quantization has been explored in [95, 96] but without any 
dimensionality reduction. While preserving the required information about . s even 
after low-bit simple scalar quantization, the combiners also facilitate low-cost 
hardware implementation by reducing the number of radiofrequency (RF) chains. 

The problem in hardware-limited task-based quantization is to jointly design the 
analog combiner .ha(·), the quantization rule of .Q1

M̃p
(·), and the digital processing 

part .hd(·) according to an appropriate metric. However, explicitly characterizing the 
general quantization system is difficult. Therefore, [28] and [30] focus on scenarios 
in which the stochastic relationship .fx|s is linear or quadratic, as discussed in the 
following subsections. 

4.2 Linear Estimation Tasks 

In this framework, we consider scenarios in which the stochastic relationship 
between the task vector . s and the observations . x is linear. Such a relationship 
exists, for example, in the channel estimation problem of wireless communications 
systems, where the task vector . s represents the unknown channel. By defining the
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pilot matrix as . D, the received signal can be expressed as .x = Ds+w, with . w as the 
additive noise term. 

In this case, the optimal linear estimation of . s from . x is given by .s̃ = �x, 
where . � is the linear minimum mean square error (MMSE) estimation matrix. Since 
the model and MMSE estimator are linear, the analog combiner and the digital 
processing module are set to be linear: .ha(x) = Ax, .A ∈ R

p×n, and . hd(u) =
Bu, .B ∈ R

k×p. Furthermore, dithered quantization model [97] is assumed to  
mathematically characterize the input-output relationship of the quantizer .Q1

M̃p
(·). 

In this model, the quantizer’s output can be written as a sum of the input and a white 
noise term, provided that the input is inside the dynamic range of the quantizer. 
Hence, the overall structure of the system shown in Fig. 14 is linear. 

The accuracy of the estimation is measured in terms of mean-squared error 
(MSE) .E[||s − ŝ||2] which can be decomposed by using the orthogonality principle 
as 

.E[||s − ŝ||2] = E[||s − s̃||2] + E[||s̃ − ŝ||2]. (43) 

In the decomposition, the first term is the error of the MMSE estimate, and the 
second term is the distortion with respect to the MMSE estimate. Since the first 
term does not depend on . ̂s, we refer to the second term as MSE distortion. 

Let . �x be the covariance matrix of observations . x, . γ the dynamic range of the 
scalar quantizers, .zl, l = 1, . . . , p the dither signals, and . A◦ and . B◦, respectively, 
the optimal analog and digital processing matrices that achieve the minimal MSE 
distortion. Then the following results are presented in [28]: 

Theorem 5 For any analog combining matrix . A and dynamic range . γ such that 
.Pr(|(Ax)l + zl | > γ ) = 0, namely, the quantizers operate within their dynamic 
range with probability one, the digital processing matrix which minimizes the MSE 
is given by 

.B◦(A) = ��xAT

(

A�xAT + 2γ 2

3M̃2
p

Ip

)−1

. (44) 

Theorem 6 For the hardware-limited quantization system based on the model 
depicted in Fig. 14, the analog combining matrix .A◦ is given by . A◦ =
UA�AVT

A�
−1/2
x , where 

• .VA ∈ Rn×n is the right singular vectors matrix of .�̃ � ��
1/2
x . 

• .�A ∈ Rp×n is a diagonal matrix with diagonal entries 

.(�A)2i,i = 2κp

3M̃2
p · p

(
ζ · λ�̃,i

− 1
)+

,
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where .κp = η2
(

1 − η2

3M̃2
p

)−1

with . η denoting a constant that is set to guarantee 

that the quantizer operates within the dynamic range [28], .{λ�̃,i
} are singular 

values of . �̃ arranged in a descending order, and . ζ is chosen such that 

. 
2κp

3M̃2
p · p

p∑

i=1

(
ζ · λ�̃,i

− 1
)+ = 1.

• .UA ∈ Rp×p is a unitary matrix which guarantees that .UA�A�T
AU

T
A has identical 

diagonal entries. 

The dynamic range of the quantizer is given by 

.γ 2 = η2

p

(

1 − η2

3M̃2
p

)−1

, (45) 

and the resulting minimal achievable distortion is 

.E[||s̃ − ŝ||2] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑k
i=1

λ2
�̃,i(

ζ ·λ
�̃,i

−1
)++1

, p ≥ k,

∑p

i=1

λ2
�̃,i(

ζ ·λ
�̃,i

−1
)++1

+ ∑k
i=p+1 λ2

�̃,i
, p < k.

(46) 

Following are some insights based on the characterization of the task-based 
quantization system in Theorem 6 [28]: 

(1) In order to minimize the MSE, p must not be larger than the rank of the 
covariance matrix of the MMSE estimate . ̃s. This implies that reducing the 
dimensionality of the input prior to quantization contributes to recovering the 
task vector as higher resolution quantizers can be used without violating the 
overall bit constraint; and 

(2) when the covariance matrix of . ̃s is non-singular, quantizing the MMSE estimate 
minimizes the MSE if and only if the covariance matrix of . ̃s equals . Ik up to a 
constant factor. This indicates that, except for very specific models, quantizing 
the entries of the MMSE estimate vector, which is the optimal strategy when 
using vector quantizers [98], does not minimize the MSE when using uniform 
scalar ADCs. 

4.3 Quadratic Estimation Tasks 

In this section, we consider a model where the task-vector . s is a quadratic function 
of the observation vector . x. Such scenarios arise in the covariance estimation
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problem [99] and in the problem of direction of arrival (DOA) estimation from 
autocorrelation matrix [100]. To model the quadratic task, we assume that . x ∈ Rn

follows a Gaussian distribution. The task is to recover a set of quadratic functions 
.{xT Cix}ki=1, where each .Ci ∈ Rn×n satisfies .E[xT Cix] < ∞. In the covariance 
estimation problem, we have .k = 1 and . C1 is an identity matrix. 

The quadratic functions .{xT Cix}ki=1 form the elements of the task vectors as 
.(s)i � xT Cix. The task vector can be written as .s = Gx where .x � vec(xxT ) and 

the matrix .G ∈ Rk×n2 whose ith row is given by .vecT (Ci ). In this representation, the 
task vector is a linear combination of the . x, and hence linear task-based quantization 
framework described in the previous is applicable. Under the constraint that the 
overall number of quantization levels, M , is fixed, the achievable MSE is given in 
the following theorem [30, 101]: 

Theorem 7 For any analog combining matrix . A and dynamic range . γ such that 
.Pr

(|(Ax)l + zl | > γ
) = 0, namely, the quantizers operate within their dynamic 

range with probability one, the following MSE is achievable: 

.MSE(A) = Tr

⎛

⎝G�xGT − G�xAT

(

A�xAT + 2γ 2

3M̃2
p

Ip

)−1

A�xGT

⎞

⎠ . (47) 

where . �x denotes the covariance matrix of . x. 
The minimum MSE is achievable by setting the digital matrix . B as 

.B = G�xAT

(

A�xAT + 2γ 2

3M̃2
p

Ip

)−1

, (48) 

and the analog matrix . A as .A = UA�AVT
A�

−1/2
x , where 

• .VA ∈ Rn2×n2 is the right singular vectors matrix of .G̃ � G�
1/2
x . 

• .�A ∈ Rp×n2 is a diagonal matrix with diagonal entries 

. (�A)2i,i = 2κp

3M̃2
p · p

(
ζ · λG̃,i

− 1
)+

,

where .κp = η2
(

1 − η2

3M̃2
p

)−1

with . η denoting a constant that is set to guarantee 

that the quantizer operates within the dynamic range [30], .{λG̃,i
} are singular 

values of . G̃ arranged in descending order, and . ζ is set such that 

.
2κp

3M̃2
p · p

p∑

i=1

(
ζ · λG̃,i

− 1
)+ = 1.
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• .UA ∈ Rp×p is a unitary matrix which guarantees that .UA�A�T
AU

T
A has identical 

diagonal entries. 

The above discussion shows that by properly organizing the observations, 
quadratic tasks can be solved by applying a linear task-based quantization frame-
work, and dimensionality can be reduced from . n2 to p. Hence, under fixed bits 
constraint, more bits are allowed and thus higher resolution for each channel 
compared with the task-ignorant scheme. 

To evaluate the performance of the task-based system, covariance recovery 
problem is considered [28, 30]. In this scenario, the following quantizers are 
evaluated in Fig. 15 in terms of the achievable MSE versus the number of bits [30]: 

1. The quadratic task-based quantization system is presented in the subsection with 
.p = 6. 

2. The linear quantization system. 
3. A task ignorant system which quantizes . x and computes the empirical covariance 

at the output of the ADC. 
4. A system which recovers . s in analog and set . ̂s to be the output of the ADC. 

From Fig. 15, we note that the quadratic task-based quantizer has the lowest MSE. 
While quantizing . s directly results in notable quantization errors when operating 
with a small number of bits, due to the need to set the dynamic range to a 
relatively large value resulting in coarse quantization. The error of the task-ignorant 
quantization and the linear combining ones are comparatively high, even with large 
quantization bits. 

Fig. 15 Distortions of empirical covariance recovery versus number of bits [30]
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In the scenarios where .fx|s is too complex to be represented either 
linearly/quadratically or accurate knowledge of the statistical relationship is not 
available, a data-driven deep-learning approach can be applied [31]. The proposed 
deep task-based quantization scheme learns the analog and digital processing parts, 
parameterized as layers of deep neural networks (DNNs), and the scalar quantizer, 
which is modeled as an activation function between two intermediate layers in an 
end-to-end manner from a set of training data. With such a system architecture, 
tasks including estimation and classification can be performed by, respectively, 
setting the loss functions as empirical MSE and cross-entropy (see [31] for details). 
In addition to the theoretical results, the performance of the hardware-limited 
task-based quantization systems is also evaluated for applications such as finite 
intersymbol interference (ISI) channel estimation and covariance recovery [28, 30]. 
In both the applications, the task-based quantization can achieve comparable 
performance with a small number of bits compared with the conventional high-
resolution quantization scheme and hence addressing the power consumption and 
storage issues of conventional ADCs. Further, task-based quantization is applied 
to massive MIMO communications for estimation of the underlying channel from 
the high-dimensional received signals [32], target identification in radar [33], graph 
signal processing [102], and joint radar communications [34]. In all these problems, 
the analog signals are acquired not with the goal of being reconstructed but for a 
specific task, and applying task-based quantization together with analog combiners 
reduces the power consumption and memory requirements. 

4.4 Task-Based ADC Hardware 

A hardware prototype for MIMO channel reduction with the task of estimating 
the underlying channel is presented in [35]. In order to reduce the number of 
receive RF chains, a hardware prototype implementing analog combining for RF 
chain reduction is demonstrated. The prototype consists of a specially designed 
configurable combining board as well as a dedicated experimental setup as shown in 
Fig. 16. The parameters of the combiners are optimized for the channel estimation 
task. The Kronecker channel model with known second-order statistics of the 
channel (i.e., transmit and receive side covariance matrices) is adopted, and it is 
shown that the optimal combiner corresponds to the first eigenvectors of the receive 
side covariance matrix. Afterwards, the channel estimation with reduced receive 
RF chains is realized following a Bayesian approach, by applying the minimum 
mean squared error (MMSE) channel estimator to the output of our proposed analog 
combiner. In Fig. 17, channel estimation accuracy in terms of MSE is compared for 
different noise levels. We note that combiners that are optimized for their gains 
or phase have lower error than a random combination. A hardware prototype was 
built where the quantization bits are dynamically adjustable [103]. The developed 
hardware platform is applied to the implementation of channel estimation in massive 
MIMO systems.
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Fig. 16 A hardware prototype of task-aware MIMO RF chain reduction system [35]. For 
further details refer to the webpage: https://www.weizmann.ac.il/math/yonina/software-hardware/ 
hardware 
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Fig. 17 A comparison of different analog combiners in terms of channel estimation accuracy vs 
SNR 

Recently, a hardware prototype is demonstrated for task-based quantization for 
multi-user recovery [104]. In this prototype, a configurable quantization hardware 
is designed, consisting of an analog combiner to reduce the input dimensionality 
and scalar quantizers with dynamically adjustable quantization bits. The developed 
hardware platform (see Fig. 18) is then applied to multi-user signal recovery. The 
demonstration platform consists of a .16 × 2 analog combiner and a configurable 
quantizer, including 2, 3, 4 and 12 bits quantization. Using a dedicated GUI, the 
demo shows that the nearly optimal performance of multi-user signal recovery can 
be achieved with a low-bit quantizer by accounting for the task. 

5 Conclusions 

In this chapter, we discussed three ADC frameworks that are based on low-
power consumption. First, we discussed IF-TEM as an alternative to conventional 
sampling. IF-TEM-based ADCs represent analog signals through a set of time 
instances and do not require a clock. Second, we discussed the dynamic range aspect 
of ADC and show that by using a modulo operation prior to sampling a low-dynamic

https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
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https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
https://www.weizmann.ac.il/math/yonina/software-hardware/hardware
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Fig. 18 A hardware prototype board of task-based quantization for multi-user recovery [104] 

range, low-power ADC can sample signals beyond its bandwidth. We discussed 
reconstruction algorithms for bandlimited and FRI signals for IF-TEM and modulo 
sampling. Third, we introduced hardware-limited task-based quantization, including 
the general system model and the specific system design for linear and quadratic 
tasks. By using an analog combiner, the task-based quantization system significantly 
outperforms its task-ignorant counterpart when the total number of quantization bits 
is fixed. For all these three frameworks, we discussed hardware prototypes that are 
developed in our labs. These power-efficient ADCs play a crucial role in designing 
compact, portable medical and communication devices. 
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