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Abstract Index modulation (IM) is a promising communications technique gain-
ing growing interest due to its high energy and spectral efficiency. In addition to
using conventional modulations, IM also embeds data bits into the indices of certain
waveform parameters, such as the selection of active antennas and the sub-carriers.
Recently, IM has been introduced to design ISAC systems by embedding the digital
message into the combinations of waveform parameters. Through IM, the infor-
mation is encapsulated in the combinations of waveform parameters as well as the
symbol constellation, leading to an increase in data rates. For the radar subsystem, the
randomization in the waveform parameters, such as carrier frequencies and antenna
elements, enables to reduce the hardware complexity while has minimal influence
to the radar resolution, which is attractive to many cost limited applications. In this
chapter, we provide an overview of IM for ISAC. We begin by formulating the
generic model of IM-based ISAC systems. Subsequently, some instances of existing
IM-based ISAC systems are discussed using the generic model. In the next, the sig-
nal processing algorithms for both radar and communications systems are surveyed.
The performance metrics of IM-based ISAC systems are discussed, and evaluated
through simulation. Finally, concluding remarks and future challenges are provided.
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1 Introduction

Index modulation (IM) is an emerging communication technique for its advantages
of high energy and power efficiency [2, 7, 12, 29]. In IM, the information is not
only conveyed through traditional constellation symbols, but also embedded into the
combinations of waveform parameters, such as the carrier frequencies, the transmit
antennas, and the selection of orthogonal waveforms. Recently, IM has been utilized
to design the integrated sensing and communication (ISAC) system by dynamically
controlling the parameters of multi-dimensional waveforms according to the data
flow, referred as IM-based ISAC [4–6, 16, 18, 24–27, 35, 36, 38–41]. The utiliza-
tion of IM improves the waveform flexibility and provides a new perspective to the
design of ISAC system. For communications subsystem, the data rate is increased by
embedding additional information into the combinations of waveform parameters.
For radar subsystem, frequency agile narrowband waveforms and sparse array can
be employed to reduce the hardware complexity while leading to minimal reduction
to the radar resolution [18, 24, 25, 27].

In recent years, many IM-based ISAC systemswere proposed leveraging different
waveform transmission strategies or antenna architecture. For waveform transmis-
sion, some schemes utilize the IM to facilitate the coexistence of separated coordi-
nated signals [23, 25], while the other approaches aim to realize the dual functional-
ities by radiating joint waveforms [18, 27]. From the aspect of the antenna architec-
ture, multiple kinds of array forms, including the phased array [18], multiple-input
multiple-output (MIMO) array [16, 39] and the sparse array [27, 35], are utilized in
the existing schemes. The proliferation of different IM-based ISAC systems makes
it difficult to identify what scheme is most suitable for which scenario. In order to
promote the development of the IM-based ISAC technique, it is necessary to sort out
and summarize the current methods based on IM, so as to provide a guidance for
future research.

The goal of this chapter is to review the IM-based ISAC systems. We begin
by formulating a generic model and describing the general information embedding
strategy, and discuss some existing IM-based ISAC schemes utilizing the generic
model, identifying the differences of these schemes in the transmission model and
information embedding strategy. We next introduce the signal processing algorithms
for radar subsystems and communications subsystem.Subsequently,we introduce the
performance metrics, and provides some simulation results based on these metrics.
Finally, we conclude this chapter and discuss some possible research directions for
IM-based ISAC systems.
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2 Generic Model of IM-Based ISAC Systems

The ISAC system consists of an ISAC transmitter, a radar receiver and several com-
munications receivers. An illustration of the ISAC system is depicted in Fig. 1. Typ-
ically, the ISAC transmitter and the radar receiver are located on the same device,
whereas the communication receiver is remotely located [25]. The ISAC transmitter,
the radar receiver, and the communications receiver are equipped with P , Qr, and
Qc antenna elements, respectively.

To obtain the generic model of IM-based ISAC systems, we begin by introducing
the transmission model in Sect. 2.1. Subsequently, we formulate the information
embeddingmodel based on the transmissionmodel, and further discuss some specific
IM-based ISAC systems in Sect. 2.2. Finally, the receive model of both radar and
communications subsystems are derived in Sect. 2.3.

2.1 Transmission Model

A schematic transmission model is shown in Fig. 2. Let dT denote the adjacent ele-
ment distance of the transmit array. During each transmission cycle, the waveform
x̌ p (t) is multiplied with the weight ap, and then transmitted from the pth element
of the array. The weight ap is a complex value, and may be varied between adjacent
transmission cycles. When no waveform is transmitted from the pth antenna ele-
ment, the transmit waveform is set as x̌ p (t) = 0. We next discuss how to construct

Fig. 1 An illustration of the ISAC system
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Fig. 2 An illustration of the ISAC transmission model

the transmit waveform, and illustrate how to embed the communication information
into the transmit waveform.

Define the waveform set X = {x0 (t) , x1 (t) , . . . , xM−1 (t)}, where {xm (t)} are
orthogonal to each other, and m ∈ {0, 1, . . . , M − 1}. The M waveforms in the set
X can be combined into a waveform vector x (t), expressed as

x (t) = [
x0 (t) , x1 (t) , . . . , xM−1 (t)

]T
. (1)

During each transmission cycle, K waveforms are first selected from the waveform
set X . Let x̃k (t) denote the kth selected waveform. The K selected waveforms can
be composed into a set denoted by XK = {x̃0 (t) , x̃1 (t) , . . . , x̃K−1 (t)}. Next, the K
selected waveforms are combined in a vector, denoted by x̃ (t), and expressed as

x̃ (t) = [
x̃0 (t) , x̃1 (t) , . . . , x̃K−1 (t)

]T
. (2)

The selection of the K waveforms can be described through the linear equation, given
by

x̃ (t) = �x (t) , (3)

where � is a selection matrix of size K × M . In each row of the matrix �, only one
element equals the value 1, and the rest of elements equal 0. Then, the selected K
waveforms are allocated to P transmit antennas according to a certain arrangement
pattern. Let x̌ p (t) denote the waveform assigned to the pth element of the antenna
array. The waveforms assigned to the antennas are written as a vector given by

x̌ (t) = [
x̌0 (t) , x̌1 (t) , . . . , x̌P−1 (t)

]
. (4)

Assume that thewaveform x̃k (t) inXK is assigned to be transmitted from Lk elements
in the antenna array, where Lk is an integer no less than 1 and no larger than P . The
process of assigning the selected K waveforms to the P transmit antennas can be
described as the following equation

x̌ (t) = �x̃ (t) , (5)

where � is a distribution matrix of size P × K . In each row of the matrix �, either
all the entries equal 0, or only one entry equals 1 while the rest entries are 0. In the
kth column of the matrix �, Lk entries are set to 1.
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In order to convey the information through conventional symbols or realize the
beamforming, the waveform assigned to each antenna is multiplied with the weight
ap, respectively. The generation of the weight ap is as following: When the commu-
nication symbol is to be modulated on the waveform x̌ p (t), ap is the communication
symbol; when the waveform x̌ p (t) is beamformed to a desired direction, ap is the
weight required for beamforming; when there is no waveform transmitted from the
pth transmit antenna, i.e., x̌ p (t) = 0, ap is set to be 1. The weighting process can be
expressed as sp (t) = ap · x̌ p (t), where sp (t) is the waveform transmitted from the
pth antenna. This weighting process can also be written as a matrix form, expressed
as

s (t) = Ax̌ (t) , (6)

where A is a diagonal matrix of size P × P , and can be expressed as

A = diag
([
a0, a1, . . . , aP−1

])
. (7)

Using (3), (5) and (6), the generation of the transmit waveform vector can be repre-
sented as the following equation

s (t) = A��x (t) . (8)

In (8), the matrices� and� determines the selection pattern of the waveform and
how the waveform is distributed among the antenna array. The diagonal entries of the
matrix A is composed of the weights multiplied to the waveforms. In the following,
we describe how to embed the communication information through the realization
of matrices �, � and A.

2.2 Information Embedding Strategy

The reviewed ISAC systems in this chapter embed the information bits through IM [2,
7, 12, 29]. Different from traditional modulation approaches that only convey bits
through constellation symbols, such as quadrature amplitude modulation (QAM)
and phase shift keying (PSK), IM conveys additional information in the indices of
the building blocks of communication systems, such as the selection of transmit
antennas [34, 43], sub-carriers [3, 9], and spreading codes [20]. In IM-based ISAC
systems, the IM is employed to facilitate the coexistence of radar and communications
in the spatial domain [28], and utilized to design the dual functional waveform
through spatial index modulation [35], frequency index modulation [38, 39], or joint
spatial-frequency index modulation [18, 27].

In this subsection, we first describe the generic model of information embedding
strategy which is based on the IM. Subsequently, some existing IM-based ISAC
schemes are discussed using this information embedding model.
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2.2.1 Information Embedding Model

According to (8), it can be found that the vector of transmit waveform s (t) is obtained
by sequentially multiplying the vector x (t) with the matrices �, � and A, respec-
tively. The information can be embedded into different kinds of waveform realiza-
tions by varying the selection of waveforms, the arrangement of the waveforms on
antennas, and the multiplied weights on the waveforms. During the transmission, the
data flow is split into several blocks, which can be utilized to control the selection
of the matrices �, � and A. Here, the communications bits carried by the waveform
selection and the waveform arrangement on the transmit antenna are referred to IM
bits, while the information carried by the multiplied weights are named as constel-
lation bits. In the sequel, we describe how many bits can be embedded through IM
and constellation in each transmission cycle, which can be a whole pulse [18, 27] or
a single chip in a pulse [39].

Index Bits
We now derive the number of bits can be embedded in to IM with given waveform
parameters. According the waveform generation process described in Sect. 2.1, there
are

(M
K

)
combinations for the realizations of the selection matrix �, where

(M
K

) :=
M !

K !(M−K )! . For the allocation matrix �, the possible number of combinations is

K−1∏

k=0

(
P − ∑k

k ′=0Lk ′−1

Lk

)
, (9)

where we define L−1 = 0. Therefore, the number of bits that can be embedded
through IM depend on the total number of realizations of the matrices � and �,
which is given by

NIM = �log2
(
M

K

)
� + �log2

K−1∏

k=0

(
P − ∑k

k ′=0Lk ′−1

Lk

)
�, (10)

where �·� is the integer floor operation.
Constellation Bits
The constellation bits are conveyed by traditional constellation symbols, which is
realized bymultiplying the diagonal entries ofA to the waveforms x̌ (t). Assume that
among the P weights, D weights are realized as communication symbols, while the
other P − D weights are utilized for beamforming. If the order of the constellation
symbol is J , then the number of bits can be carried by constellation symbol is

NConst = D log2 J. (11)
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2.2.2 Specific IM-Based ISAC Schemes

Spatial Modulation Based Coexistence
The spatial modulation based communication-radar (SpaCoR) system proposed in
[28] implements the ISAC transmitter illustrated in Fig. 2 while incorporating IM in
the formof generalized spatialmodulation (GSM) [34].By employingGSM,SpaCoR
achieves increased communication rate while acquiring the same angle resolution as
using the full antenna array for radar. The transmit array of SpaCoR is a uniform linear
array. The transmit waveforms of radar and communications are orthogonal, and the
waveform set X is expressed as X = {

s(r) (t) , s(c) (t)
}
, where s(r) (t) is the radar

waveform, s(c) (t) is the communication waveform without modulating symbols.
In SpaCoR, both the communication waveform and the radar waveform are

selected for transmission. Therefore the selection matrix � = I2. During the trans-
mission of each waveform, P r

T antenna elements are utilized to transmit radar wave-
forms, while P − P r

T antenna elements are employed to transmit communication
waveforms. The antenna allocation pattern between radar waveforms and commu-
nications waveforms can be utilized to convey information. This is achieved by
changing the value of the allocation matrix �. According to the generic model pro-
vided in Sect. 2, the number of elements allocated to radar is L0 = P r

T, while the
number of antenna elements assigned for communication is L1 = P − P r

T. Using
(9), the allocation matrix � has a total of

( P
P r
T

)
realizations. Therefore, the number of

bits embedded through spatial index modulation is

NSM = �log2
(
P

P r
T

)
�. (12)

To direct the radar beam to a desired direction θ , the weight multiplied to the
radar waveform is set according to the principle of phased array [33, Chap. 8.2],
i.e., ap = e j2πd sin θ/λ if the pth antenna element is chosen to transmit the radar
waveform during this cycle, where λ is the wavelength of the carrier frequency. In
addition to embedding the information into spatial index modulation, the data bits
can also be conveyed by traditional constellation symbols in SpaCoR. Therefore,
P r
T diagonal entries of A are radar beamforming weights, while the other D = P −

P r
T diagonal entries are communication symbols. Assume that the cardinality of

the communications symbol is J , the number of bits conveyed by constellation
modulation per transmission cycle is D log2 J . The total number of bits conveyed in
each transmission cycle is

NSpaCoR = D log2 J + �log2
(
P

P r
T

)
�. (13)

Hybrid Spatial-Frequency IM
In addition to using a single-dimensional index to carry information, it is also pos-
sible to jointly use multiple-dimensional indexes to design the waveforms of ISAC
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systems. The literature [18] proposed the multi-carrier agile joint radar communica-
tion (MAJoRCom) system, which embeds the information through the selection of
multi-carrier frequencies and the arrangement of these frequencies on the transmit
antennas. MAJoRCom only utilizes radar waveforms chosen from an orthogonal
waveform set. As a result, the communication message is conveyed only via IM,
which includes the selection of the orthogonal waveforms to be transmitted (spectral
IM) as well as in their division among the antenna elements (spatial IM).

In MAJoRCom, the transmit waveform set X is composed of M waveforms
orthogonal in frequency, which is the same as the frequency hopping schemes,

i.e., X =
{
x (r)
0 (t)

}M−1

m=0
, where x (r)

m (t) = xbase (t) e j2π fm t denotes a radar waveform

whose carrier frequency is fm , and xbase(t) denotes the radar waveform in baseband.
During the transmission of each cycle, K waveforms are first chosen from X , thus
the size of the waveform selection matrix � is K × P . Each waveform is allocated
to some antennas for transmission, and the number of elements allocated to the kth
selected waveform is denoted by Lk . Therefore, there are Lk entries equaling 1 in the
kth column of the allocation matrix �. In MAJoRCom, since the multiplied weights
are utilized to direct the radar beam to the desired direction, the diagonal entries of
the weight matrix A is generated according to the beamforming weights as in the
phased array radar [33, Chap. 8.2].

The number of bits conveyed by MAJoRCom is determined by the possible num-
ber of realizations of the matrices � and �. In particular, the number of possible
selection patterns in � is

(M
K

)
, and the number of possible allocation patterns is

K−1∏

k=0

(
P − ∑k

k ′=0Lk ′−1

Lk

)
, (14)

where we define L−1 = 0. Therefore, the number of bits that can be carried in each
cycle is given by

NMAJoRCom = �log2
(
M

K

)
� + �log2

K−1∏

k=0

(
P − ∑k

k ′=0Lk ′−1

Lk

)
�. (15)

Hybrid Spatial-Frequency IM Combining PM
For the scenarios with limited hardware complexity and cost, a FMCW based joint
radar-communications system (FRaC) was proposed to embed the data bits through
hybrid IM combining phase modulation (PM). The FRaC system operates at reduced
cost and complexity by transmitting using a reduced number of radio frequency (RF)
modules, combined with narrowband frequency modulated continuous waveform
(FMCW) signalling. This is achieved via array sparsification in transmission, for-
mulating a virtual MIMO array by combining the signals in one coherent processing
interval (CPI), in which the narrowband waveforms are transmitted according to the
mapping rule of IM. In FRaC, communication information is conveyed by spatial-
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frequency IM and PM. The IM is realized by controlling the selection of the transmit
waveforms, which have different carrier frequency, and arranging the allocation pat-
tern of the selected waveforms to the transmit array. The PM is accomplished by
modulating the communication symbols on the transmit waveforms. In the follow-
ing, we describe the transmit model of FRaC using the generic model, and describe
the information embedding strategy.

In FRaC, the waveform set X is defined as X = {
x (r)
fm (t)

}M−1
m=0 , where x (r)

fm (t)
represents the FMCW whose carrier frequency is fm . At each transmission cycle,
K waveforms are first selected from the set X . Therefore, the selection matrix �

has
(M
K

)
implementations. Then each selected waveform is allocated to 1 antenna

for transmission, thus a total of K antennas are utilized for transmission, while the
remaining P − K antennas are not used for transmission. According to the generic
model, it can be seen that the number of antennas allocated to each waveform is
Lk = 1. Following (9), the number of possible realizations for the allocation matrix
� is given by

K−1∏

k=0

(
P − k

1

)
=

(
P

K

)
· K !. (16)

Themultipliedweights of FRaC are generated as PM symbols or equal to 1.When the
pth antenna is chosen to transmit waveform, the corresponding weight ap is selected
from the set of PM symbols with an order of J . Since each transmit waveform
is modulated to an independent symbol, the number of symbols conveyed in each
transmission cycle is D = K , which conveys K log2 J PM bits. In summary, the
number of bits can be conveyed in each transmission cycle of FRaC is

NFRaC = �log2
(
M

K

)
� + �log2

(
P

K

)
� + �log2 K !� + K log2 J. (17)

2.3 Receive Model

We next derive the receive models for both communications and radar subsystems
in this subsection. These models are utilized in Sect. 3 for developing the signal
processing algorithms.

2.3.1 Communication Receive Model

The communication receive model formulates the relationship between the transmit
waveform and the receive communications signals. Consider that the communica-
tions receiver is synchronized with the ISAC transmitter, which can be realized by
periodically transmitting preambles from the ISAC transmitter. For mathematical
brevity, the channel response between the ISAC transmitter and the communications
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receiver is assumed to follow the memoryless channel obeying flat fading, thus the
channel state information can be expressed by a matrix denoted byH ∈ C

Qc×P . The
entry located at the pth row and the qcth column of H is denoted by h p,qc , which
describes the channel response between the pth transmit antenna and the qcth com-
munications receive antenna. For the other kinds of channel responses, such as the
frequency selection channel, the received signal model should be adjusted according
the corresponding channel models [27].

Let y(c)
qc (t) denote the signal received at the qcth antenna of the communications

receiver. The received signal y(c)
qc (t) is given by

y(c)
qc (t) =

P−1∑

p=0

hqc,p · ap · xmp (t) + w(c)
qc (t) , (18)

wheremp represents which waveform is transmitted in the pth transmit antenna. The
continuous received signal is converted to the discrete format after sampling. Let T c

s
denote the sampling interval. The samples received at the qcth antenna in the nth
pulse are stacked as the vector

y(c)
qc := [

y(c)
qc [0] , y(c)

qc [1] , . . . , y(c)
qc [U − 1]

]T
, (19)

where U denotes the number of received samples. The uth entry of y(c)
qc is given by

y(c)
qc [u] =

P−1∑

p=0

hqc,p · ap · xmp [u] + w(c)
qc [u] , (20)

where u ∈ {0, 1, . . . ,U − 1}, w(c)
n [u] is the white Gaussian noise with variance σ 2

c ,
and xp [u] := xp

(
uT c

s

)
.

Using (20), y(c)
qc is rewritten as

y(c)
qc = �qce + w(c)

qc , (21)

where e ∈ E ⊂ ({diag (A)} ∪ {0})PM denotes the transmit symbol vector of the nth
pulse in the ISAC transmitter. The selections of the waveforms. the arrangement
pattern of the waveforms on the arrays, and the constellation symbols can be obtained
from e. The structure of e is given by

e = [
(e1)T, (e2)T, . . . , (eM)T

]T
, (22)

where em is a vector with size P × 1. The entries of em is either all zero, or
only has one non-zero entry at the pth entry if the waveform smp (t) is transmit-
ted from the pth antenna. The value of this nonzero entry is [em]p = ap. The vec-

tor w(c)
qc := [

w(c)
qc [0] , . . . , w(c)

qc [U − 1]
]T

represents the additive noise. The matrix
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�qc ∈ CU×PM is comprised of M − 1 sub-matrices, the size of which is U × P , via

�qc := [
ψqc,0,ψqc,1, · · · ,ψqc,M−1

]
. (23)

Each sub-matrix ψqc,m is given by

ψqc,m := [
ψ0

qc,m,ψ1
qc,m, · · · ,ψ P−1

qc,m

]
, (24)

where ψ p
qc,m := hqc,mxm , and xm is the discrete sampling of the signal xm (t).

The signal received in all the antennas is stacked as the vector

y(c) := [(
y(c)
0

)T
,
(
y(c)
1

)T
, . . . ,

(
y(c)
Qc−1

)T]T
(25)

By defining � := [
�T

0 , �T
1 , . . . , �T

Qc−1

]T
, and

w(c) := [ (
w(c)

0

)T
,
(
w(c)

1

)T
, . . . ,

(
w(c)

Qc−1

)T
, (26)

the received signal is given by

y(c) = �e + w(c). (27)

The received signal model in (21) is utilized to formulate the decoding algorithm for
recovering e from y(c).

2.3.2 Radar Receive Model

The radar receive model describes the relationship between the radar received signal
and the target parameters. To derive the radar receive model, L targets are assumed
in the scenario. Let rl , vl , θl and βl denote the range, the velocity, the angle, and
the reflective factor of the lth target, respectively. One radar CPI is composed of N
pulses. After down conversion by mixing with the carrier, the echoes received in
each radar receive antenna are sampled into discrete signals. The echoes of the N
transmit signals received in the Qr antennas are combined into one signal denoted
by y(r), expressed as

y(r) =
L−1∑

l=0

βl φ̃
(
S̃ (t) , θ l

)
+ w(r), (28)

where S̃ (t) := [
s0 (t) , s1 (t) , . . . , sN−1 (t)

]
is composed by the signals transmitted

in the N transmission cycles, sn (t) is the signal vector transmitted in the nth trans-
mission cycle, θ l := [vl , rl , θl ], w(r) is the additive noise in the radar receiver, and
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φ̃
(
S̃ (t) , θ l

)
denotes the noiseless echo generated according to the parameters of

the lth target. The expression of φ̃
(
S̃ (t) , θ l

)
is generated according to the target

parameter θ l and the shape of the antenna array, which is determined by the spe-
cific realization of ISAC systems. The readers can refer to [18, 25, 27] for detailed
expressions.

To recover the parameters of radar targets, the range, velocity and angle are divided
into M̃ , Ñ and Q̃ grids, respectively, in the interest observation area. Typically, the
interval between adjacent grids in each dimension is set according to the resolution
in the corresponding dimension. The m̃th, ñth and q̃th grid of the range, velocity and

angle are denoted by r̃m̃ , ṽñ and θ̃q̃ , respectively, where m̃ ∈
{
0, 1, . . . , M̃ − 1

}
, ñ ∈

{
0, 1, . . . , Ñ − 1

}
and q̃ ∈

{
0, 1, . . . , Q̃ − 1

}
. Assume that the targets are located

on these grids. The target scene can be indicated by B ∈ C Ñ×M̃×Q̃ with entries

[B]ñ,m̃,q̃ :=
⎧
⎨

⎩
βl , if exists (vl , rl , θl) =

(
ṽñ, r̃m̃, θ̃θ̃

)
,

0, otherwise.
(29)

Following (28) and (29), it holds that

y(r) = 
b + w(r), (30)

where 
 := [
φ0,φ1, . . . ,φ Ñ M̃ Q̃−1

]
is the observation matrix, b is the vectorized

form of B, i.e., bñ M̃ Q̃+m̃ Q̃+q̃ = [B]ñ,m̃,q̃ . The ñ M̃ Q̃ + m̃ Q̃ + q̃th column of 
 is
defined as

φñ M̃ Q̃+m̃ Q̃+q̃ := φ̃
(
S̃ (t) , θ ñ,m̃,q̃

)
, (31)

where θ ñ,m̃,q̃ :=
[
ṽñ, r̃m̃, θ̃q̃

]
.

3 Signal Processing

Joint radar and communications systems are required to realize the radar and commu-
nications functionalities by signal processing. For radar, it is necessary to recover the
parameters of radar targets using the echoes. For communications, the received signal
are processed to decode the message from the transmitter. In this section, the sig-
nal processing algorithms of radar and communications subsystems are introduced,
respectively.
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3.1 Communication Processing

We next discuss how the digital message is recovered from the communications
receiver of the ISAC systems. In IM-based ISAC system, the information is decoded
by recovering the index of the transmit waveforms as well as the symbols modulated
on the waveform. In the sequel, we begin by formulating the received model of
the communications receiver. Then we describe the maximum likelihood (ML) rule,
which has the optimal performance for recovering the transmit message. Since ML
algorithm may be computationally prohibitive, we also introduce an algorithm with
reduced complexity building upon the inherent orthogonality of the waveforms.

3.1.1 Maximum Likelihood Algorithm

Assume that the receiver has full channel state information (CSI), i.e., knowledge of
the matrix � and the distribution ofw(c). The message can be decoded with minimal
probability of error using the maximum a-posteriori probability rule. If the data bits
are equiprobable, this symbol detection rule is given by

ê = argmax
e∈E

p
(
y(c)|e, �)

. (32)

As the noise obeys a proper-complex white Gaussian distribution, it holds that (32)
specializes to the minimum distance detector.

ê = argmin
e∈E

‖y(c) − �e‖22. (33)

In (32) and (33), the vector e is constructed according to the specific information
embedding strategy realized in the ISAC system. Thus, recovering e via (32) gen-
erally involves searching over the set E whose cardinality is 2NTotal , where NTotal is
the number of bits conveyed in each transmission cycle. This implies that the com-
putational complexity grows with the dimensionality of the system, i.e., the number
of antenna elements, as well as with the cardinality of the search space. To facil-
itate decoding, we next introduce a sub-optimal decoding algorithm with reduced
complexity.

3.1.2 Low Complexity Decoding Algorithm

The high computational complexity of the ML detector follows from the need to
search over the entire set E . To decrease the complexity of detection, we introduce
an algorithm with reduced complexity, which utilizes the orthogonality of the wave-
forms. The detection algorithm has two steps: First, the selection of the transmit
waveforms is estimated via matched filtering. Then, the arrangement pattern of the
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waveforms on the array and the symbols modulated on the waveforms are detected
as detailed in the next.

Defineψ p
m := [(

ψ
p
0,m

)T
,
(
ψ

p
1,m

)T
, . . . ,

(
ψ

p
Qc−1,m

)T]T
,which is the

(
(m − 1) P +

p
)
th column of �. The received signal y(c)

n is first matched with MP normalized

filters. Each filter is given by ψ̃
p
m := ψ p

m
‖ψ p

m‖2 . Define ψm := [
ψT

0,m,ψT
1,m, · · · ,

ψT
Qc−1,m

]T
. The output of each matched filter is denoted by gp

m := (
ψ̃

p
m

)H
y(c)
n . As the

transmit waveforms are orthogonal to each other whenm 	= m ′, i.e.,
(
ψ̃

p
m

)H
ψm ′ = 0,

the output is expressed as

gp
m = (

ψ̃
p
m

)H
ψmem + (

ψ̃
p
m

)H
w(c). (34)

Let gmax
m be the maximum amplitude output, i.e.,

∣∣gmax
m

∣∣ := maxp

∣∣gp
m

∣∣. To identify
the selected waveforms, the matched outputs gmax

m are sorted by descending order
according to their amplitudes. Let {gmax

m
′
0

, gmax
m

′
1

, · · · , gmax
m

′
K−1

} denote the K largest out-

puts that belong to the transmit waveform set, then the estimated index of the transmit
waveforms, denoted by {m̂k}, are obtained via m̂k = m

′
k .

After determining the selected transmit waveforms, the receiver needs to further
estimate the arrangement pattern of the waveform on the array, and the constellation
symbols modulated on each waveform. Once the selected transmit waveforms have
been found, detection of the waveform arrangement pattern and the constellation
symbols are carried out by searching over the subset Esub ⊂ E , which is composed
of all vectors e corresponding to the transmission patterns that transmit waveforms
with the detected carrier frequencies. The estimation is expressed as

ê = argmin
e∈Esub

‖y(c) − �e‖22. (35)

Neglecting the computation in the first step, the computational complexity is reduced
by a factor of 2�log2 (M

K)� compared to the ML rule, as the cardinality of E is 2�log2 (M
K)�

times the cardinality of Esub.

3.2 Radar Processing

The task of radar detection is to recover the range, velocity and angle of the targets. In
the next, we first derive the receive model of the radar subsystem. Then we introduce
the radar detection algorithms according to different conditions of the receive model.
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3.2.1 Radar Detection Algorithm

The range, velocity and angle can be estimated by recovering b from the observation
function (30). According to the specific implementation approach of the integrated
system, the observation equation in (30) can be classified into two types. The first
type transmits broadband waveforms through a full array. Therefore, the radar range
resolution and angle resolution are realized without bandwidth synthesizing or aper-
ture synthesizing. In this condition, the observation equation is well-determined or
over-determined, i.e., the number of rows in the observation matrix 
 is no less than
the number of columns, and the rank of
 equals Ñ M̃ Q̃r. In the second type of obser-
vation equation, sparse arrays or frequency agile narrowbandwaveforms are utilized,
thus the radar range resolution or the angle resolution are enhanced by synthesizing
a wide bandwidth or a large aperture through signal processing. In this condition,
the observation equation (30) is under-determined, i.e., the number of rows of the
observation equation is less than the number of columns.

According to the above classifications to the observation equation, we next intro-
duce the target recovery algorithms. We begin by introducing the matched filtering
method which is suitable to solving both the well-determined/over-determined equa-
tions and the under-determined equations. In the next, we describe the target recov-
ery algorithms which are only suitable to solve the well-determined/over-determined
condition or the under-determined conditions, respectively.

Matched Filtering
Traditional radar utilizes matched filtering to detect the target echoes contaminated
by noise [31, Chap. 4.2]. The matched filtering is realized by the correlation of the
received echo and the reference signal, which is generated as the noiseless echo with
respect to specific target parameters. Note that, in (30), the column of the observation
matrix 
 is defined as the noiseless echo in terms of the parameters on the grid of
b. Hence, the matched filtering method can be calculated by multiplying 
H to the
received signal, i.e.,

b̂ = 
Hy(r). (36)

The advantage of the matched filtering method is that the computational complexity
is low, and it can be utilized to solve both the well-determined/over-determined and
the under-determined cases. Nonetheless, when the matched filtering is utilized to
solve the under-determined observation equations, a relative high side-lobe may be
generated by the sparsity of the waveforms in frequency or array aperture, which
may lead to obvious interference between multiple targets.

Well-Determined/Over-Determined Cases
When the observation equation is well-determined or over-determined, the recovery
of b, denoted by b̂, can be directly solved by the ML algorithm, i.e.,

b̂ = argmax
b

p
(
y(r)|b)

. (37)
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Under the additive white Gaussian noise assumption, the ML estimation can be
obtained by minimizing the following cost function given by

b̂ = argmin
b

‖y(r) − 
b‖22. (38)

The minimizing of (38) is the least squares problem, the solution of which is given
by [21, Chap. 8]

b̂ = (

H


)−1

Hy(r). (39)

Under-Determined Cases
When (30) is an under-determined problem, the recovery of b̂ can be solved using
sparse recovery methods considering the sparsity of b, which is often assumed in the
radar studies [17, 19]. The sparse recovery problem is formulated as

min
b

‖b‖0, subject to ‖y(r) − 
b‖ ≤ ε, (40)

where ε is related to the noise level. The optimization problem (40) can be solved by
compressed sensing (CS) algorithms, such as greedy approaches and �1 relaxation-
based optimization [10, 13]. One can increase the speed of solving (40) by utilizing
hardware accelerators, e.g., graphics processing units. Furthermore, recent advances
in deep learning for CS have shown that model-based and structured neural networks
can be trained to rapidly solve problems of the form of (40) [32], e.g., via deep
unfolding of sparse recovery algorithms [15].

4 System Performance

We next evaluate the performance of IM-based ISAC systems, including the perfor-
mances of the radar subsystem and communication subsystems. For each subsystem,
we first introduce the metrics to measure the performance, and then utilize the intro-
ducedmetrics to evaluate the performance of some existing IM-based ISAC systems.

4.1 Radar Performance

In the following, we first characterize the radar ambiguity function in Sect. 4.1.1,
which can be utilized to evaluate the resolutions of the radar subsystem. Then, we
study the relationship between the maximum number of recoverable targets and the
waveform parameters using the theory of phase transition in Sect. 4.1.2.
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4.1.1 Ambiguity Function

The ambiguity function is a useful measure for characterizing the radar resolution
and the mutual interference between multiple targets [31, Chap. 4]. The ambiguity
function is defined as the correlation of the noiseless received signal and the reference
signal. In particular, the parameters of the receive signal are {β = 1, θ = [r, v, θ ]},
and the parameters of the reference signal are {β = 1, θ = [rref , vref , θref ]}. Using the
definition in Sect. 2.3.2, the received signal and the reference signal are denoted by

φ̃
(
S̃ (t) , θ

)
and φ̃

(
S̃ (t) , θ ref

)
, respectively. Thus, the expression of the ambiguity

function, denoted by χ (δr, δv, δθ), is written as

χ (δr, δv, δθ) = φ̃H
(
S̃ (t) , θ ref

)
φ̃

(
S̃ (t) , θ

)
, (41)

where δr := r − rref , δv := v − vref , and δθ := θ − θref .
Since the transmit waveform and the antenna allocation pattern are determined

by the transmitted message, the ambiguity function is a random quantity which
takes a different realization on each CPI. To study the performance of the radar
subsystem, the stochastic properties of the ambiguity function are often evaluated,
as done in [17, 25, 27]. The analysis in [25, 27] indicates that when the transmit
waveform is randomly chosen in the frequency domain or in the antenna domain, the
expectation of the ambiguity function is identical to that of the systems transmitting
widebandwaveform or using full antenna array. Thus the randomization in the spatial
enables to reduce the hardware complexity by using less radio frequency modules,
while the randomization in frequency domain decreases the instantaneous bandwith,
without affecting the radar resolution. For a CPI with a finite number of pulses, the
difference between the random instantaneous ambiguity function and its expected
value is dictated by its variance [30, Chap. 5]. The variance of the ambiguity function
is studied in [25], which shows that the variance decreases when the number of
pulses increases. Since the variance can indicate the side-lobe level of the ambiguity
function. The analysis in [25] also indicates that the side-lobe level decreases with
the increasing of the number of pulses in one CPI.

We next show how to utilize the ambiguity function to evaluate the performance
of radar subsystem. In particular, we take the FRaC system [27] as an example.
We empirically evaluate the ambiguity function of FRaC, and compare it with the
theoretical expected ambiguity function provided in [27]. To show the ambiguity
function of FRaC, a single realization of the ambiguity function is calculated. Since
the ambiguity function has three arguments, two cross sections of the ambiguity
function at χ (δ fr , 0, δ fθ ) and χ (0, δ fv, δ fθ ) are shown in Figs. 3a, b, respectively.
For comparison, we depict the theoretical expected ambiguity function in Fig. 3c,
d. Here, fr , fv and fθ denote the normalized range, velocity and angle frequencies,
which is linear related to the values of range, velocity and angle, respectively, and the
expression. To obtain the detailed expressions of the normalized frequencies, please
refer to [27].
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Fig. 3 Numerically evaluated ambiguity functions. Readers can refer to detailed simulation param-
eters from Fig. 5 of [27]

The similarity between the instantaneous ambiguity function and its theoretically
evaluated expectation is observed in Fig. 3. The resolution is obtained from the width
of the mainlobe. Comparing Fig. 3a–d, we find that the mainlobe width of both
ambiguity functions are nearly the same. According to the analysis in [27], the
mailobe width of the expected ambiguity function of FRaC equals to that of the
system which transmit a wideband waveform and using a large antenna array [37,
Chap. 2.10]. This indicates that the randomization in the antenna selection and the
frequency division, which FRaC utilizes to embed communication messages and
reduce hardware complexity, also contributes to its resolution.

4.1.2 Phase Transition Threshold

Ambiguity function can be utilized to analyze the resolution and the sidelobe level
of the radar subsystem. Nonetheless, ambiguity function cannot provide an accurate
recovery performance with respect to the transmit waveform. When the observation
function iswell-determined/over-determined, the radar recovery accuracy canbe ana-
lyzed through the classical statistical theory, such as the Cramér lower bound [21].
However, the theory to analyze the recovery accuracy of the under-determined obser-
vation equations is still an emerging research. For this purpose,we introduce the phase
transition theory [1], which is a breakthrough in evaluating the recovery accuracy of



Index Modulation Based ISAC 259

the under-determined observation equations, in this section. In CS, phase transition
thresholds divide the plane of parameters into regions where recovery succeeds and
fails with high probability. Although existing phase transition results are focused on
Gaussian matrices, numerical simulations have been utilized to show that such an
analysis also reflects on radar systems whose recovery can be expressed as CS with
structured measurement matrices, such as frequency agile radar (FAR) [22]. In the
sequel, we introduce the application of the phase transition theory to analyze the radar
subsystem of the IM-based ISAC system. By doing so, the number of recoverable
targets is characterized as a function of the waveform parameters.

We begin by providing some preliminaries on phase transition in the context of
CS. Consider an under-determined problem y = �x, where y ∈ CN1 , � ∈ CN1×N2 is
a complex Gaussian matrix, and x ∈ CN2 is a sparse vector with Ns nonzero entries.
CS recovers x by solving the following optimization problem

min
x

‖x‖0, subject to y = �x, (42)

which is typically relaxed into an �1 norm minimization [13],

min
x

‖x‖1, subject to y = �x. (43)

Problem (43) is convex, and its recovery limits can be characterized using the
phase transition theory. The phase transition threshold of (43) indicates the maxi-
mum sparse degree, denoted by N ∗

s , for a given N1 and N2. This threshold is the
demarcation point that separates the successful recovery and failing recovery with
high probability. Namely, when Ns ≤ N ∗

s , x can be recovered with high probabil-
ity, while when Ns > N ∗

s , the probability of exact recovery dramatically decreases.
The phase transition threshold of solving (43) can be computed via the following
lemma [22]:

Lemma 1 The sparse vector x can be exactly recovered via (43) with high proba-
bility, when Ns ≤ N ∗

s , where N ∗
s is related to N1 and N2 via

N1 = inf
γ≥0

1

2

{
N ∗
s

(
2 + γ 2) + (

N2 − N ∗
s

) ∫ ∞

β

(u − γ )2 φ2 (u) du
}
, (44)

where φ2 (u) = ue−u2/2.

Using Lemma 1, we can obtain the target recovery performance of IM-based
ISAC systems, which may employ the frequency IM or spatial IM. In particular, we
consider a noiseless scenario, as commonly assumed in such studies [1, 11, 14], i.e.,
the noise term in (30) is omitted. In this case, the target recovery problem formulated
in (40), tackled via �1 norm minimization, is given by the convex problem

min
b

‖b‖1, subject to y(r) = 
b. (45)
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The main difference between (43), used in Lemma 1, and (45), is in the structure of
measurement matrices. Although phase transition results such as Lemma 1 assume
Gaussian measurements, it was numerically shown that the analysis for Gaussian
matrices is also accurate for structured measurements which arise in FAR [22].

The phase transition threshold of (45) indicates the maximum number of exactly
recovered targets, denoted by L∗, for given waveform parameters. An application
of the phase transition theory to analyze the target recovery with respect to the
waveform parameters is provided in [27], which indicates the maximum number of
recoverable targets for given waveform parameters, i.e., pulse number N , number of
active antennas K , amount of available transmit antennas P , number of sub-carriers
M , and amount of radar receive antennas Qr . In particular, when the number of targets
obeys L ≤ L∗, then they can be exactly recovered with high probability, while when
L > L∗, the probability of exact recovery dramatically decreases. The relationship
between this threshold and the ISAC waveform {N , K , M, P, Qr} is obtained from
Lemma 1 as stated in the following corollary [27]:

Corollary 1 For a given {N , K , M, P, Qr}, the phase transition threshold L∗ for
(45) with Gaussian measurements � satisfies

NK Qr = inf
γ≥0

1

2

{
L∗ (

2 + γ 2
)

+ (
NMPQr − L∗)

∫ ∞

β

(u − γ )2 φ2 (u) du

}
.

(46)

To show that the threshold is accurate to reveal the target recovery performance
with respect to the waveform parameters, the simulated phase transition threshold
is compared with the theoretical quantities computed via (46). The simulated phase
transition threshold is observed from the behavior of recovery probability curve
versus the number of targets, as shown in Fig. 4. We observe in Fig. 4 that, for each
waveform parameter setting, the exact recovery probability drastically decreases
around the theoretical threshold of (46). Thus, the phase transition can be obtained
by theoretical calculation, while accurately reflecting the empirical performance. For
other IM-based ISAC systems, the target recovery performance can also be obtained
by substituting specific waveform parameters into (44).

4.2 Communication Performance

The communications performance of the ISAC systems can be evaluated by the bit
error rate (BER) and the achievable rate. Since there is no close form expression of the
BER and achievable rate for the proposed generic model of IM-based ISAC systems,
we evaluate the performance of the IM-based ISAC system through simulation in this
section. Through the simulation, we show that the communication performance is
improved by embedding additional bits through IM. This gain follows from the fact
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Fig. 4 Exact recovery probabilities versus the number of targets. In each subfigure, only one
waveform parameter varies, i.e. varying K in (a), varying M in (b), varying P in (c) and varying N
in (d). The vertical dash lines describe the locations of the theoretical phase transition thresholds of
the corresponding waveform parameters indicated by different colors

that IM utilizes less denser constellations compared to the traditional scheme with
the same data rate. To that aim, the FRaC system proposed in [27], the MAJoRCom
system proposed in [18], and the ISAC system, which only exploits PM for data
conveying, are compared. For these schemes, the achievable rate and the uncoded
BER are utilized as the performance measures.

4.2.1 Achievable Rate

We numerically compare the achievable rates of FRaC, MAJoRCom and the wide-
band FMCW with PM. Following [42], the achievable rate is computed via

I
(
e; y(c)

) = −Qc log2 e

− E�

{

Ey(c)|�

{

log2

(
1

|E |
∑

e∈E
e

−‖y(c)−�e‖22
σ2c

)}}

. (47)
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The stochastic expectations are computed via empirical averaging. Similarly, the
achievable rates of MAJoRCom and the compared PM scheme are obtained by
substituting the corresponding input vector into (47).

To compare the achievable rates of FRaC and the PM-only based scheme,
we keep the data rates of FRaC and the compared PM system to be the same,
using 6 bits/pulse and 7 bits/pulse. The waveform parameters are configured as
{M, P, Qc, K } = {8, 4, 4, 1}. As FRaC uses IM to convey NIM = �log2

(M
K

)� +
�log2

(P
K

)� + �log2 K !� = 5 bits per pulse, binary phase shift keying (BPSK) and
quadrature phase shift keying (QPSK) are utilized to realize the data rates of 6
bits/pulse and 7 bits/pulse, respectively. The PM-only based benchmark thus utilizes
the constellations of orders 64 and 128, to convey the same amounts of 6 bits/pulse
and 7 bits/pulse, respectively. To compare the achievable rates of FRaC andMAJoR-
Com in a fair manner, the number of RF modules in the transmitter are set as the
same in FRaC andMAJoRCom. To meet this condition, we also simulate FRaC with
the waveform parameters of FRaC configured as {M, P, Qc, K , J } = {8, 4, 4, 2, 2},
while the waveform parameters of MAJoRCom are set as {M, P, Qc, K , LK } =
{8, 2, 4, 2, 1}. With this parameter setting, according to (17) and (15), the data rates
of FRaC and MAJoRCom are �log2

(M
K

)� + �log2
(P
K

)� + �log2 K !� + log2 J = 9
bits/pulse and �log2

(P
K

)� + �log2 P!
(PK !)K � = 5 bits/pulse, respectively.

The evaluated achievable rates are depicted in Fig. 5. Observing Fig. 5, we note
that, as expected, the achievable rate does not exceed the cardinality of E , i.e., the
maximal rates of FRaC-K1-BPSK and 64-BPSK are 6 bits/pulse, while the maximal
rates of FRaC-K1-QPSK and 128-BPSK are 7 bits/pulse. However, these rates are
only achieved at high signal-to-noise ratio (SNR) values. In lowSNRs, the achievable
rates of FRaC outperform that of the PMwideband FMCW, indicating the improved
spectral efficiency of combining IM with PM in ISAC signalling. We also observe in
Fig. 5 that the rates achieved in FRaC-K2-BPSK are higher than that of the MAJoR-
Com in all considered SNRs. As expected, in high SNRs, the maximal achievable
rates of FRaC-K2-BPSK and MAJoRCom approaches 9 bits/pulse and 5 bits/pulse,
respectively. This is because more bits can be embedded in FRaC by utilizing the
sparse array and combining the PM. These results indicate FRaC can convey more
information than MAJoRCom while utilizing the same number of RF modules.

4.2.2 Bit Error Rate

We next evaluate the uncoded BER performance of the communications subsystem
using the same setups in the achievable rate evaluations. In this experiment, a total of
105 ISACwaveforms are generated anddecoded for eachSNRvalue.Thenumerically
evaluated BER results of FRaC, the PM scheme and MAJoRCom are shown in
Fig. 6. As in the achievable rate study, we compare the BER curves of FRaC-K1-
BPSK, FRaC-K1-QPSK, and FRaC-K2-BPSK with that of 64-PSK, 128-PSK, and
MAJoRCom, respectively. Observing Fig. 6, we find that the BER performances
of FRaC significantly outperform that of the PM system. These improvements stem
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Fig. 5 Achievable rate
comparison. Readers can
refer to detailed simulation
parameters from the
simulation of Fig. 11 in [27]

Fig. 6 BER comparison.
Readers can refer to detailed
simulation parameters from
the simulation of Fig. 12
in [27]

from the fact that FRaC uses less dense PM constellations, since it conveys additional
bits through IM. Comparing the BER curves of FRaC-K2-BPSK with MAJoRCom,
we note that FRaC-K2-BPSK, which conveys almost twice the amount of bits as that
ofMAJoRCom for the considered setup, achieves BERwithin an SNR gap of merely
1 dB, indicating on its ability to achieve higher data rates using coded transmissions.

4.3 Performance Tradeoff Between Radar
and Communications

To show the tradeoff between the performances of radar and communications sub-
systems, we jointly evaluate the aforementioned performance metrics of both sub-
systems by simulation. Here, the performance of the ISAC system proposed in [27]
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Fig. 7 The performance trade-off between radar and communications versus different waveform
parameters. For each curve, M increases from M = K to M = 16. The number of transmit antenna
elements is set as P = 4, and BPSK is utilized to generate the modulated symbols. The number of
pulses in one CPI, the number of transmit elements and radar receive elements are set as N = 32,
P = 4, and Qr = 2, respectively. The other parameters are set the same as those in Fig. 4

is evaluated. The performance of radar is measured by the maximum number of
recoverable targets and calculated according to equation (46). The communication
performance is measured by the number of bits transmitted by each pulse, which
can be calculated according to equation (17). In the simulation, for each curve, the
number of subcarriers, denoted by M , increases from M = K to M = 16, where K
is the number of active subcarriers. The number of transmit antenna elements is set
as P = 4, and BPSK is utilized to generate the modulated symbols.

The vertical axis of Fig. 7 shows the maximum number of targets that can be
accurately recovered by each fine range resolution, and the horizontal axis shows the
number of bits conveyed in each pulse. As can be seen from Fig. 7, when the other
waveform parameters remain unchanged, dividing the frequency band into more
subcarriers, i.e., increasing M , improves the communication rate, but will lead to a
degradation to the number of recoverable targets. This is because increasing the total
number of subcarriers leads to a sparser transmission in the frequency domain.When
other parameters remain unchanged, increasing the number of active array elements
K , which is also the number of active subcarriers, achieves better performances
both in radar and communications. This is because with the waveform parameters
in this simulation, the increase of K enables to embed more bits through IM and
constellation modulation. The performance improvement in the maximum number
of recoverable targets is because more measurements are observed in the frequency
domain and antenna domain.
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4.4 Discussion

The performance metrics discussed in this section can be utilized to evaluate the per-
formance of the ISAC systems and guide the waveform design of practical systems.
Among these metrics, ambiguity function can be utilized to evaluate the resolution
and sidelobe level. The phase transition is a useful tool to design thewaveformparam-
eters according to the maximum number of targets in the scenario. As for the BER
and achievable rate for communications subsystem, these performances are related
to the realistic channel state. In addition, when the system needs to be deployed in
a real environment, some practical problem should be considered, such as the errors
existed in real synchronization and channel estimation.

Using these performance metrics, we evaluated the performance of some existing
IM-based ISAC systems, such as FRaC and MAJoRCom. From these analysis and
simulations, we find that utilizing IM improves thewaveformflexibility, and achieves
a good tradeoff among the radar performance, communications performance, and the
hardware complexity. In particular, the dynamic variation in the carrier frequency
and the active antenna elements enable to reduce the hardware complexity without
degrading the radar resolution. For communications, the additional bits embedded
into the combinations of waveform parameters enables to increase the data rate or
improve the reliability.

5 Conclusions and Future Challenges

The utilization of IM improves the waveform flexibility, and achieves a good tradeoff
among the radar performance, communications performance and the system com-
plexity, making it an attractive approach for ISAC systems. In this chapter, we first
formulated a genericmodel for IM-based ISAC systems. Based on the genericmodel,
we discussed the signal models and information embedding strategies for some spe-
cific ISAC systems utilizing IM in different domains, including spatial modulation
based coexistence, hybrid frequency-spatial IM, and hybrid spatial-frequency IM
combining PM. Then we introduced the signal processing algorithms for radar and
communications subsystems, respectively. For communications subsystem,we intro-
duced the optimumMLdetection algorithm, and the low complexity algorithmwhich
adopts the orthogonal property of the waveforms. For radar subsystem, the observa-
tion equations are classified into the well-determined/over-determined cases and the
under-determined cases. The radar signal processing algorithms of both cases were
introduced. To analyze the performance of ISAC systems, the ambiguity function
as well as the phase transition are utilized as the radar metrics, and the BER and
achievable rate are employed to evaluate the communication performance. We eval-
uated the performances of some IM-based ISAC systems using these metrics, which
shows that the utilization of IM enables to save the spectral and hardware resources
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while leads to minimal influence to the radar resolution, and the communications
performance is improved by embedding additional bits through IM.

While recent years have witnessed a rapid development on IM-based ISAC sys-
tems, there still give rise to a multitude of unexplored research directions. On the
theoretical side, the performance metric, for the radar subsystems having under-
determined observation equations, is derived in noiseless scenario. Traditional radar
performances measured in the noise condition, such as the detection probability and
the estimation accuracy, remain to be studied. The lack of a closed form expression
of the BER and achievable rate makes it difficult to evaluate the communications
performance in an efficient manner. In addition, the current performance metrics on
IM-based ISAC systems cannot directly reveal the tradeoff between radar and com-
munication performance. A unified performance metric for multiple functionalities
will uncover the fundamental limits of ISAC designs, characterizing their optimal
gain overwell-studied separate systems. From the perspective of algorithm, at present
the signal processing of communication is mainly focused on decoding. It is neces-
sary to study the synchronization and channel estimation algorithms to promote the
practical deployment of the ISAC systems. As for the radar signal processing, since
the target parameters are discretized into several grids, the continuous target param-
eters may mot exactly located in the grids, i.e., the off-grid phenomenon. Advanced
algorithms, such as atomic norm minimization [8], can be investigated to solve the
off-grid target recovery problem. Finally, on the practical side, the system constraints
such as sampling rate and receiving bandwidth in the receiver should be considered
in the future investigations. Additionally, the ISAC systems should be tested in real
scenarios in order to facilitate the translation from theory to practical applications.
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