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Abstract—We consider the problem of estimating, in the pres-
ence of model uncertainties, a random vector x that is observed
through a linear transformation H and corrupted by additive
noise. We first assume that both the covariance matrix of x and
the transformation H are not completely specified and develop
the linear estimator that minimizes the worst-case mean-squared
error (MSE) across all possible covariance matrices and transfor-
mations H in the region of uncertainty. Although the minimax
approach has enjoyed widespread use in the design of robust
methods, we show that its performance is often unsatisfactory. To
improve the performance over the minimax MSE estimator, we
develop a competitive minimax approach for the case where H
is known but the covariance of x is subject to uncertainties and
seek the linear estimator that minimizes the worst-case regret,
namely, the worst-case difference between the MSE attainable
using a linear estimator, ignorant of the signal covariance, and
the optimal MSE attained using a linear estimator that knows the
signal covariance. The linear minimax regret estimator is shown
to be equal to a minimum MSE (MMSE) estimator corresponding
to a certain choice of signal covariance that depends explicitly on
the uncertainty region. We demonstrate, through examples, that
the minimax regret approach can improve the performance over
both the minimax MSE approach and a “plug in” approach, in
which the estimator is chosen to be equal to the MMSE estimator
with an estimated covariance matrix replacing the true unknown
covariance. We then show that although the optimal minimax
regret estimator in the case in which the signal and noise are
jointly Gaussian is nonlinear, we often do not lose much by
restricting attention to linear estimators.

Index Terms—Covariance uncertainty, linear estimation, min-
imax mean squared error, regret, robust estimation.

I. INTRODUCTION

THE theory of estimation in linear models has been studied
extensively in the past century, following the classical

works of Wiener [1] and Kolmogorov [2]. A fundamental
problem considered by Wiener and Kolmogorov is that of
estimating a stationary random signal in additive stationary
noise, where the signal may be filtered by a linear time invariant
(LTI) channel. The desired signal is estimated using a linear
estimator that is obtained by filtering the received signal with
an LTI estimation filter. When the signal and noise spectral
densities as well as the channel are completely specified, the
estimation filter minimizing the mean-squared error (MSE) is
the well-known Wiener filter.
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In practice, the actual spectral densities and the channel
may not be known exactly. If the spectral densities and the
channel deviate from the ones assumed, then the performance
of the Wiener filter matched to the assumed spectral densities
and channel can deteriorate considerably [3]. In such cases,
it is desirable to design a robust filter whose performance
is reasonably good across all possible spectral densities and
channels in the region of uncertainty.

The most common approach for designing robust estimation
filters is in the spirit of the minimax MSE approach, initiated by
Huber [4], [5], in which the estimation filter is chosen to mini-
mize the worst-case MSE over an appropriately chosen class of
spectral densities [3], [6]–[9], where the channel is assumed to
be known. A similar approach has also been used to develop a
robust estimator for the case in which the spectral densities are
known, and the channel is subject to uncertainties [10]. The min-
imax approach, in which the goal is to optimize the worst-case
performance, is one of the major techniques for designing robust
systems with respect to modeling uncertainties and has been ap-
plied to many problems in detection and estimation [11]–[13].

In this paper, we consider a finite-dimensional analog of
the classical Wiener filtering problem so that we consider
estimating a finite number of parameters from finitely many
observations, where the motivation is to obtain nonasymptotic
results. Specifically, we treat the problem of estimating a
random vector that is observed through a linear transforma-
tion and corrupted by additive noise . If the signal and
noise covariance matrices as well as the transformation are
completely specified, then the linear minimum MSE (MMSE)
estimator of for this problem is well known [14].

In many practical applications, the covariance matrix of the
noise can be assumed known in the sense that it can be estimated
within high accuracy. This is especially true if the noise compo-
nents are uncorrelated and identically distributed, which is often
the case in practice. The signal, on the other hand, will typically
have a broader correlation function so that estimating this cor-
relation from the data with high accuracy often necessitates a
larger sample size than is available. Therefore, in this paper, we
develop methods for designing robust estimators in the case in
which the covariance of the noise is known precisely, but the
covariance of the desired signal and the model matrix are
not completely specified.

Following the popular minimax approach, in Section III,
we consider the case in which is known and seek the linear
estimator that minimizes the worst-case MSE over all pos-
sible covariance matrices. As we show, the resulting estimator,
which is referred to as the minimax MSE estimator, is an
MMSE estimator that is matched to the worst possible choice
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of covariance matrix. In Section IV, we develop a minimax
estimator that minimizes the worst-case MSE when both the
covariance matrix and the model matrix are subject to un-
certainties. In this case, we show that the optimal estimator
can be found by solving a semidefinite programming (SDP)
problem [15]–[17], which is a convex optimization problem
that can be solved very efficiently, e.g., using interior point
methods [17], [18].

Although the minimax approach has enjoyed widespread use
in the design of robust methods for signal processing and com-
munication [11], [13], its performance is often unsatisfactory.
The main limitation of this approach is that it tends to be overly
conservative since it optimizes the performance for the worst
possible choice of unknowns. As we show in the context of con-
crete examples in Section VI, this can often lead to degraded
performance.

To improve the performance of the minimax MSE estimator,
in Section V, we propose a new competitive approach to robust
estimation for the case where is known and seek a linear es-
timator whose performance is as close as possible to that of
the optimal estimator for all possible values of the covariance
matrix. Specifically, we seek the estimator that minimizes the
worst-case regret, which is the difference between the MSE of
the estimator, ignorant of the signal covariance, and the smallest
attainable MSE with a linear estimator that knows the signal co-
variance. By considering the difference between the MSE and
the optimal MSE rather than the MSE directly, we can counter-
balance the conservative character of the minimax approach, as
is evident in the examples we consider in Section VI. It would
also be desirable to develop the minimax estimator that min-
imizes the worst-case regret when both and the covariance
matrix are subject to uncertainties. However, since this problem
is very difficult, for analytical tractability, we restrict our atten-
tion to the case in which is known.

The minimax regret concept has recently been used to
develop a linear estimator for the unknown in the same
linear model considered in this paper, where it is assumed
that is deterministic but unknown [19]. Similar competitive
approaches have been used in a variety of other contexts,
for example, universal source coding [20], hypothesis testing
[21], [22], and prediction (see [23] for a survey and references
therein).

For analytical tractability, in our development, we restrict
attention to the class of linear estimators. In some cases, there
is also theoretical justification for this restriction. As is well
known [14], if and are jointly Gaussian vectors with
known covariance matrices, then the estimator that minimizes
the MSE, among all linear and nonlinear estimators, is the
linear MMSE estimator. In Section VII, we show that this
property does not hold when minimizing the worst-case regret
with covariance uncertainties, even in the Gaussian case. Nev-
ertheless, we demonstrate that in many cases, we do not lose
much by confining ourselves to linear estimators. In particular,
we develop a lower bound on the smallest possible worst-case
regret attainable with a third-order (cubic) nonlinear estimator,
when estimating a Gaussian random variable contaminated by
independent Gaussian noise, and show that the linear minimax
regret estimator often nearly achieves this bound, particularly

at high SNR. This provides additional justification for the
restriction to linear estimators in the context of minimax regret
estimation.

Before proceeding to the detailed development, in Section II,
we provide an overview of our problem.

II. PROBLEM FORMULATION

In the sequel, we denote vectors in by boldface lower-
case letters and matrices in by boldface uppercase let-
ters. The matrix denotes the identity matrix of the appropriate
dimension, denotes the Hermitian conjugate of the corre-
sponding matrix, and denotes an estimated vector or matrix.
The cross-covariance matrix between the random vectors and

is denoted by , and the covariance matrix of is denoted
by . The Gaussian distribution with mean and covariance

is denoted by .
Consider the problem of estimating the unknown parameters
in the linear model

(1)

where is an matrix with rank , is a zero-mean,
length- random vector with covariance matrix , and is
a zero-mean, length- random vector with positive definite co-
variance , uncorrelated with . We assume that is known
completely but that we may only have partial information about
the covariance and the model matrix .

We seek to estimate using a linear estimator so that
for some matrix . We would like to design an estimator

of to minimize the MSE, which is given by

Tr Tr Tr

Tr Tr Tr

Tr Tr (2)

If and are known and is positive definite, then the
linear estimator minimizing (2) is the MMSE estimator [14]

(3)

An alternative form for , that is sometimes more convenient,
can be obtained by applying the matrix inversion lemma [24] to

, resulting in

(4)

Substituting (4) into (3), the MMSE estimator can be ex-
pressed as

(5)

If or are unknown, then we cannot implement the
MMSE estimator (3). Instead, we may seek the estimator that
minimizes the worst-case MSE over all possible choices of
and that are consistent with our prior information on these
unknowns. In Sections III and V–VII, we consider the case in
which is a known matrix with rank , and is
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not completely specified. In Section IV, we consider the case in
which both and are subject to uncertainties.

To reflect the uncertainty in our knowledge of the true covari-
ance matrix, we consider two different models of uncertainty
that resemble the “band model” widely used in the contin-
uous-time case [3], [7], [25], [26]. Although these models
are similar in nature, depending on the optimality criteria, a
particular model may be mathematically more convenient. In
the first model, we assume that and have the
same eigenvector matrix1 and that each of the non-negative
eigenvalues , of satisfies

(6)

where and are known.
The assumption that and have the same eigen-

vector matrix is made for analytical tractability. If is a sta-
tionary random vector and represents convolution of with
some filter, then both and will be Toeplitz matrices and
are therefore approximately diagonalized by a Fourier transform
matrix so that in this general case, and approxi-
mately have the same eigenvector matrix [27].

In our development, we explicitly assume that the joint eigen-
vector matrix of and is given. In practice, if the
eigenvalues of have geometric multiplicity one, then
we choose the eigenvector matrix of to be equal to the eigen-
vector matrix of . In the case in which the eigenvector
matrix of is not uniquely specified, e.g., in the case in
which is proportional to , as in one of the examples
in Section VI, we may resolve this ambiguity by estimating the
eigenvector matrix of from the data.

The model (6) is reasonable when the covariance is estimated
from the data. Specifically, denoting by ,

for , the conditions in (6) can equivalently
be expressed as

(7)

so that each of the eigenvalues of lies in an interval of length
around some nominal value , which we can think of as an

estimate of the th eigenvalue of from the data vector . The
interval specified by may be regarded as a confidence interval
around our estimate and can be chosen to be proportional to
the standard deviation of the estimate .

In the second model

(8)

where is known, denotes the matrix spectral norm [24],
i.e., the largest singular value of the corresponding matrix, and

is chosen such that for all . In
this model, is not assumed to have the same eigenvector
matrix as . As a consequence, we can no longer con-
strain each of the eigenvalues of as we did in the first model,
but rather, we can only restrict the largest eigenvalue or, equiv-
alently, the spectral norm. If is constrained to have the same

1If the eigenvalues of H C H and C have geometric multiplicity
1, then H C H and C have the same eigenvector matrix if and only
if they commute [24].

eigenvector matrix as for all , then the uncer-
tainty model (8) is equivalent to the uncertainty model (7) with

equal to the eigenvalues of and ,
.

Given in the first model or in the second model, a
straightforward approach to estimating is to use an MMSE
estimate corresponding to the estimated covariance. However,
as we demonstrate through examples in Section VI, by taking
an uncertainty interval around into account, and seeking a
competitive minimax estimator in this interval, we can further
improve the estimation performance.

In Section III, we develop the minimax estimators that min-
imize the worst-case MSE over all covariance matrices
that satisfy each of the two uncertainty models (6) and (8). As we
show, the resulting estimators are MMSE estimators matched to
the worst possible choice of eigenvalues, i.e., in the first
model and in the second model. Since these esti-
mators are matched to the worst possible choice of parameters,
in general, they tend to be overly conservative, which can often
lead to degraded performance, as is evident in the examples in
Section VI. In these examples, the minimax MSE estimator per-
forms worse than the “plug in” estimator, which is the MMSE
estimator matched to the estimated covariance matrix.

In Section IV, we consider the case in which the model matrix
is also subject to uncertainties and develop a minimax MSE

estimator that minimizes the worst-case MSE over all possible
covariance matrices and model matrices . We assume that
both and obey an uncertainty model of the form (8).

To improve the performance of the minimax estimators, in
Section V, we consider a competitive approach in which we seek
the linear estimator that minimizes the worst-case regret. In this
case, for analytical tractability, we consider only the first uncer-
tainty model (6). As we show, the resulting estimator can also
be interpreted as an MMSE estimator matched to a covariance
matrix that depends on the nominal value and the uncertainty
interval , as well as on the eigenvalues of . In the ex-
amples in Section VI, we demonstrate that the minimax regret
estimator can improve the performance over both the minimax
MSE estimator and the MMSE estimator matched to the esti-
mated covariance matrix.

III. MINIMAX MSE FOR KNOWN

We first consider the case in which the model matrix is
known, and we seek the linear estimator that minimizes the
worst-case MSE over all possible values of that have the
same eigenvector matrix as and with eigenvalues
satisfying (6). Thus, let have an eigendecomposition

(9)

where is a unitary matrix, and is a diagonal matrix with
strictly positive diagonal elements . Then, has the form

(10)

where is a diagonal matrix with strictly positive diagonal ele-
ments , with , . Note that we assume
that the diagonalizing matrix is known.
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We now consider the problem

Tr (11)

where from (2)

Tr (12)

To find the maximum value of , we rely on the following
lemma.

Lemma 1: Let , and be non-negative definite ma-
trices with . Then, Tr Tr .

Proof: Since and , we can define the
non-negative symmetric square-roots and .
Denoting , we have

Tr

Tr

Tr (13)

since Tr for any . Thus, Tr Tr .

Let be an arbitrary matrix of the form (10) with eigen-
values . Then

(14)

where is a diagonal matrix with diagonal elements . This
then implies from Lemma 1 that

Tr

Tr (15)

with equality if so that is maximized for
the worst possible choice of eigenvalues, i.e., for all
. The problem of (11), therefore, reduces to minimizing the

MSE of (2), where we substitute . The optimal
estimator is then the linear MMSE estimator of (3) or (5) with

.
Using the eigendecomposition of given by (9), we

can express of (5) as

(16)

where is an diagonal matrix with diagonal elements

(17)

We now seek the linear estimator that minimizes the
worst-case MSE over all covariance matrices of the form
(8). Thus, we consider the problem

Tr (18)

where

Tr (19)

Since the condition is equivalent to the condition
, we can use Lemma 1 to conclude that

Tr

Tr (20)

with equality for . Therefore, (18) reduces to min-
imizing the MSE of (2), where we substitute , and
the optimal estimator is the linear MMSE estimator with

.
We summarize our results on minimax MSE estimation with

known in the following theorem.
Theorem 1 (Minimax MSE Estimators): Let denote the

unknown parameters in the model , where
is a known matrix with rank , is a zero-mean
random vector uncorrelated with with covariance , and

is a zero-mean random vector with covariance . Let
, where is a unitary matrix, and is an

diagonal matrix with diagonal elements , let
denote the set of matrices , where is an
diagonal matrix with diagonal elements ,
and let denote the set of matrices , where

is known, and . Here, is chosen such that
for all . Then, we have the following.

1) The solution to
is an MMSE estimator matched to the covariance

, where is an diagonal matrix
with diagonal elements and can be expressed as

where is an diagonal matrix with diagonal
elements

2) The solution to is an
MMSE estimator matched to the covariance

.

IV. MINIMAX MSE FOR UNKNOWN

In Section III, we developed the minimax MSE estimator
under the assumption that the model matrix is known exactly.
In many engineering applications, the model matrix is also
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subject to uncertainties. For example, the matrix may be es-
timated from noisy data, in which case, is an approximation
to some nominal underlying matrix. If the actual data matrix is

for some unknown matrix , then an estimator de-
signed based on alone may perform poorly.

To explicitly take uncertainties in into account, we now
consider a robust estimator that minimizes the worst-case MSE
over all possible covariance and model matrices. Specifically,
suppose now that the model matrix is not known exactly but
rather is given by

(21)

where is known. Similarly, the covariance matrix is given
by (8). We then seek the linear estimator that is the solution to
the problem in (22), shown at the bottom of the page.

We now show that the problem (22) can be formulated as a
convex semidefinite programming (SDP) problem [15]–[17],
which is the problem of minimizing a linear functional subject
to linear matrix inequalities (LMIs), i.e., matrix inequalities in
which the matrices depend linearly on the unknowns. (Note
that even though the matrices are linear in the unknowns,
the inequalities are nonlinear since a positive semidefinite
constraint on a matrix reduces to nonlinear constraints on the
matrix elements.) The main advantage of the SDP formulation
is that it readily lends itself to efficient computational methods.
Specifically, by exploiting the many well-known algorithms
for solving SDPs [15], [16], e.g., interior point methods2

[17], [18], which are guaranteed to converge to the global
optimum, the optimal estimator can be computed very efficiently
in polynomial time. Using principles of duality theory in vector
space optimization, the SDP formulation can also be used to
derive optimality conditions.

After a description of the general SDP problem in Section
IV-A, in Section IV-B, we show that our minimax problem can
be formulated as an SDP. In Section V, we use the SDP formu-
lation to develop the estimator that minimizes the worst-case
regret in the case in which is known.

A. Semidefinite Programming

A standard SDP is the problem of minimizing

(23)

2Interior point methods are iterative algorithms that terminate once a
prespecified accuracy has been reached. A worst-case analysis of interior
point methods shows that the effort required to solve an SDP to a given
accuracy grows no faster than a polynomial of the problem size. In practice,
the algorithms behave much better than predicted by the worst-case analysis,
and in fact, in many cases, the number of iterations is almost constant
in the size of the problem.

subject to

(24)

where

(25)

Here, is the vector to be optimized, denotes the th
component of , is a given vector in , and are given
matrices in the space of Hermitian matrices.3

The constraint (24) is an LMI, in which the unknowns
appear linearly. Indeed, any constraint of the form ,
where the matrix depends linearly on , can be put in the
form of (24).

The problem of (23) and (24) is referred to as the primal
problem. A vector is said to be primal feasible if and
is strictly primal feasible if . If there exists a strictly
feasible point, then the primal problem is said to be strictly
feasible.

An SDP is a convex optimization problem and can be solved
very efficiently. Furthermore, iterative algorithms for solving
SDPs are guaranteed to converge to the global minimum. The
SDP formulation can also be used to derive conditions for opti-
mality by exploiting principles of duality theory. Specifically, it
can be shown that if the primal problem is strictly feasible, then

is an optimal primal point if and only if is primal feasible,
and there exists an matrix such that

Tr

(26)

It can also be shown that if there exists an matrix such
that , and Tr , , and in addition,
there exists a feasible and an matrix satisfying (26),
then is optimal.

B. Semidefinite Programming Formulation of the Estimation
Problem

In Theorem 2 below, we show that the problem (22) can be
formulated as an SDP.

Theorem 2: Let denote the unknown parameters in the
model , where is a known
matrix, and is an unknown matrix satisfying ,
is a zero-mean random vector uncorrelated with with covari-

3Although typically in the literature the matrices F are restricted to be real
and symmetric, the SDP formulation can be easily extended to include Her-
mitian matrices F ; see, e.g., [28]. In addition, many of the standard software
packages for efficiently solving SDPs, for example the self-dual-minimization
(SeDuMi) package [29], [30], allow for Hermitian matrices.

Tr Tr (22)
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ance , where is a known matrix, and
is an unknown matrix satisfying with chosen such
that for all , and is a zero-mean
random vector with covariance . Then, the problem

is equivalent to the semidefinite programming problem

subject to

Tr Tr

Proof: We begin by noting that

(27)

subject to

Tr (28)

Tr

(29)

To simplify (29), we rely on the following proposition, the proof
of which is provided in Appendix A.

Proposition 1: Let and be non-negative ma-
trices that are functions of the matrices and , respectively.
Then, the problem

(30)

subject to

Tr (31)

is equivalent to the problem of (30) subject to

Tr (32)

(33)

Using Proposition 1, we can express the constraint (29) as

Tr (34)

(35)

From Lemma 1 and the fact that (35) implies that

Tr Tr (36)

so that (34) reduces to

Tr (37)

Since we would like to minimize , the optimal choice is
Tr .

To treat the constraint (35), we rely on the following lemma
[24, p. 472]:

Lemma 2: Let

be a Hermitian matrix. Then, with , if and only
if , where is the Schur complement of in and
is given by

From Lemma 2, it follows that (35) is equivalent to the
condition

(38)
which can be expressed as

(39)
where

(40)

We now exploit the following proposition, the proof4 of which
can be found in Appendix B.

Proposition 2: Given matrices , , and with

if and only if there exists a such that

From Proposition 2, it follows that (39) is satisfied if and only
if there exists a such that

(41)

so that (29) is equivalent to (37) and (41), which are both LMIs.
Finally, (28) can be expressed as

Tr (42)

(43)

which, using Lemma 2, is equivalent to

(44)

completing the proof of the theorem.

V. MINIMAX REGRET

To improve the performance over the minimax MSE ap-
proach, we now consider a competitive approach in which

4This proof is due to A. Nemirovski.



ELDAR AND MERHAV: COMPETITIVE MINIMAX APPROACH TO ROBUST ESTIMATION 1937

we seek a linear estimator whose performance is as close as
possible to that of the optimal estimator for all possible values
of satisfying (6), where we assume, as in Section III, that

is completely specified. Thus, instead of choosing a linear
estimator to minimize the worst-case MSE, we now seek the
linear estimator that minimizes the worst-case regret so that
we partially compensate for the conservative character of the
minimax approach.

The regret is defined as the difference between
the MSE using an estimator and the smallest possible
MSE attainable with an estimator of the form
when the covariance is known, which we denote by MSE .
If is known, then the MMSE estimator is given by (3), and
the resulting optimal MSE is

MSE

Tr

Tr Tr (45)

From (4) and (5), we have that
, so that (45) can be written in

the equivalent form

MSE Tr

Tr (46)

which will be more convenient for our derivations.
Thus, we seek the matrix that is the solution to the problem

(47)

where has an eigendecomposition of the form (10), and

MSE

Tr Tr

Tr (48)

The linear estimator that minimizes the worst-case regret is
given by the following theorem.

Theorem 3 (Minimax Regret Estimator): Let denote the
unknown parameters in the model , where
is a known matrix with rank , is a zero-mean
random vector uncorrelated with with covariance , and

is a zero-mean random vector with covariance . Let
, where is a unitary matrix, and is an

diagonal matrix with diagonal elements , and
let , where is an diagonal matrix with
diagonal elements . Then, the solution to the
problem

is

where is an diagonal matrix with diagonal elements

(49)

, and .
Proof: The proof of Theorem 3 is comprised of three parts.

First, we show that the optimal minimizing the worst-case
regret has the form

(50)

for some matrix . We then show that must be a
diagonal matrix. Finally, we show that the diagonal elements
of are given by (49).

We begin by showing that the optimal has the form given
by (50). To this end, note that the regret of (48) de-
pends on only through and Tr . Now, for any
choice of

Tr

Tr Tr

Tr (51)

where

(52)

is the orthogonal projection onto the range space of .
In addition, since

. Thus, to minimize Tr , it is sufficient to
consider matrices that satisfy

(53)

Substituting (52) into (53), we have

(54)

for some matrix . Denoting and using
the fact that , (54) reduces to (50).

We now show that must be a diagonal matrix. Substi-
tuting and of (54) into (48), we can express

as

Tr Tr Tr

(55)

We conclude that the problem (47) reduces to finding that
minimizes

(56)

where

Tr Tr Tr

(57)
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Clearly, is strictly convex in . Therefore, for any

(58)

so that is also strictly convex in and, consequently, has
a unique global minimum. Let be any diagonal matrix with
diagonal elements equal to . Using the fact that and
for any diagonal matrix , we have

Tr Tr

Tr Tr (59)

which implies that . Since has a unique
minimizer, we conclude that the matrix that minimizes
satisfies for any diagonal matrix with diagonal
elements equal to , which in turn implies that must be a
diagonal matrix.

Denote by , , and the diagonal elements of , , and
, respectively. Then, we can express as

(60)

The problem of minimizing can now be formulated as

(61)

subject to

(62)

which can be separated into independent problems of the
form

(63)

subject to

(64)

or, equivalently

(65)

To develop a solution to (61) and (62), we thus consider the
problem of (63) and (65), where, for brevity, we omit the index
.

Let , where . Then, the condition
is equivalent to the condition , where

so that (65) can be written as

(66)

which in turn is equivalent to the following implication:

(67)

where

(68)

We now rely on the following lemma [31, p. 23].
Lemma 3: [ -procedure] Let and

be two quadratic functions of ,
where and are symmetric, and there exists a satisfying

. Then, the implication

holds true if and only if there exists an such that

Combining (67) with Lemma 3, it follows immediately that (65)
is equivalent to (69), shown at the bottom of the page. Note that
if (69) is satisfied, then , which implies that

. Therefore, the problem of (63) and (65) is equivalent to

(70)

subject to (69).
To develop a solution to (70), we first express (69) as an LMI

and then use the conditions for optimality of Section IV-A. To
this end, we note that (69) can be written as

(71)

where

(72)

and

(73)

(69)
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From Lemma 2 with and , (71) is equivalent to
the LMI

(74)
Using the conditions for optimality of Section IV-A, we now

show that the solution of (70) is given by the smallest value of
such that there exists a triplet satisfying ,

which results in

(75)

To show that the values given by (75) are optimal, it is sufficient
to show that there exists a matrix such that

Tr

Tr

Tr (76)

where is the matrix in (74)

(77)

In addition, we must show that there exists a matrix satisfying

Tr

Tr

Tr (78)

Let

(79)

where

(80)

and is chosen such that . We can immediately
verify that satisfies (78). Next, solving (76) for results in
(81), shown at the bottom of the page, where for brevity, we
defined

(82)

Since satisfies (76), the values given by (75) are optimal.
The linear minimax estimator is therefore

(83)

where is the diagonal matrix with diagonal ele-
ments , and

(84)

which completes the proof of the theorem.
As we now show, we can interpret the estimator of Theorem

3 as an MMSE estimator matched to a covariance matrix

(85)

where is a diagonal matrix with diagonal elements

(86)

Note that if so that the th eigenvalue of the true covari-
ance of is equal to , then, as we expect, .

From (5), the MMSE estimate of with covariance given
by (85) and is

(87)

Since

(88)

the estimator of (87) is equivalent to the estimator given by
Theorem 3. We thus have the following corollary to Theorem 3.

Corollary 1: Let denote the unknown parameters in the
model . Then, under the assumptions of Theorem
3, the solution to the problem

(81)
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is an MMSE estimator matched to the covariance
, where is a diagonal matrix with diag-

onal elements

with and .
Since the minimax regret estimator minimizes the regret for

, we may view the covariance as
the “least-favorable” covariance in the regret sense.

It is interesting to note that while the minimax MSE estimator
of Theorem 1 for the model (6) is matched to a covariance ma-
trix with eigenvalues , the minimax regret estimator of
Theorem 3 is matched to a covariance matrix with eigenvalues

. Indeed, from (86), we have that

(89)

Expressing as

(90)

where

(91)

(since ) and using the first-order approximation
for , we have that

(92)

Thus, the correction to the nominal covariance is approxi-
mately , which is quadratic in the length of
the uncertainty interval .

The minimax estimators for the uncertainty model (7) often
lie in a different class than the estimator matched to the nom-
inal covariance matrix. For example, suppose that ,

, and , so that both
and the nominal covariance matrix of are proportional to the
identity. In this case, the MMSE estimator matched to the nom-
inal covariance matrix is for some constant so that
is simply a scaled version of . This property also holds for the
minimax MSE estimator of Theorem 1 with covariance uncer-
tainty given by (8). However, for the minimax regret estimator
and the minimax MSE estimator with covariance uncertainty
given by (7), this property no longer holds in general. In par-
ticular, if for some and , then the optimal estimators
will no longer be a scaled version of .

VI. EXAMPLE OF THE MINIMAX REGRET ESTIMATOR

We now consider examples illustrating the minimax regret
estimator of Theorem 3. The purpose of these examples is to
demonstrate the performance advantage in using the minimax

regret estimator and to outline the steps in implementing the
estimator, rather than a detailed practical application, which is
beyond the scope of the paper.

Consider the estimation problem in which

(93)

where is a length- segment of a zero-mean stationary first-
order AR process with components so that

(94)

for some parameter , and is a zero-mean random vector
uncorrelated with with known covariance . We as-
sume that we know the model (93) and that is a segment of a
stationary process; however, its covariance is unknown.

To estimate , we may first estimate from the observa-
tions . A natural estimate of is given by

(95)

where

(96)

is an estimate of the covariance of , and denotes the
matrix in which the negative eigenvalues of are replaced
by 0. Thus, if has an eigendecomposition ,
where is a diagonal matrix with diagonal elements , then

, where is a diagonal matrix with the
th diagonal element equal to . The estimate (95) can

be regarded as the analog for finite-length processes of the spec-
trum estimate based on the spectral subtraction method for infi-
nite-length processes [32], [33].

Given , we may estimate using an MMSE estimate
matched to , which we refer to as a plug-in estimator.
However, as can be seen in Fig. 1, we can further improve the
estimation performance by using the minimax regret estimator
of Theorem 3.

To compute the minimax regret estimator, we choose to
be equal to the eigenvector matrix of the estimated covariance
matrix , and , where are the eigenvalues of .
We would then like to choose to reflect the uncertainty in our
estimate . Since computing the standard deviation of is dif-
ficult, we choose to be proportional to the standard deviation
of an estimator of the variance of , where

(97)

We further assume that and are uncorrelated Gaussian
random vectors. The variance of is given by

(98)
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Fig. 1. MSE in estimating x as a function of SNR using the minimax regret
estimator, the minimax MSE estimator, and the plug-in MMSE estimator
matched to the estimated covariance matrix.

where . Since

(99)

If and are Gaussian, then so is , so that

(100)

where is the th element of . Combining
(98)–(100), we have

(101)
Since and are unknown, we substitute their esti-
mates , . Finally, to ensure that , we
choose

(102)
where is a proportionality factor.

In Fig. 1, we plot the MSE of the minimax regret estimator
averaged over 1000 noise realizations as a function of the SNR
defined by for , , and .
The performance of the “plug-in” MMSE estimator matched
to the estimated covariance matrix and the minimax MSE
estimator are plotted for comparison. As can be seen from the
figure, the minimax regret estimator can increase the estimation
performance, particularly at low to intermediate SNR values.
It is also interesting to note that the popular minimax MSE ap-
proach is useless in these examples since it leads to an estimator
whose performance is worse than the performance of an esti-
mator based on the estimated covariance matrix.

Fig. 2. MSE in estimating x from a noisy filtered version as a function of SNR
using the minimax regret estimator, the minimax MSE estimator, and the plug-in
MMSE estimator matched to the estimated covariance matrix.

We repeated the simulations for different values of , , and
. The values of and had only a very minor impact on the

results. As decreased, the performance of the minimax regret
estimator approached that of the plug-in estimator,since a de-
creasing results in a smaller uncertainty level. Increasing
beyond a certain limit did not influence the results since from
(102), for large values of , the uncertainty level , re-
gardless of the choice of . In general, the performance of the
minimax regret estimator reaches an optimal value as a function
of , which, in our example, was approximately .

We next consider the case in which the vector is filtered
with an LTI filter with length-4 impulse response given by

(103)

In Fig. 2, we plot the MSE of the minimax regret, plug-in, and
minimax estimators averaged over 1000 noise realizations as a
function of the SNR, for , , and . As can
be seen, the performance is similar to the previous example.

VII. NONLINEAR MINIMAX REGRET ESTIMATION

In Sections II–VI, we developed linear estimators for esti-
mating the unknown vector in the linear model (1) when the
covariance is not known precisely. The restriction to linear
estimators was made for analytical tractability since developing
the optimal nonlinear estimator is a difficult problem. If and

are jointly Gaussian vectors with known covariance matrices,
then the estimator that minimizes the MSE among all linear and
nonlinear estimators is the linear MMSE estimator, which pro-
vides theoretical justification for restricting attention to the class
of linear estimators. As we now demonstrate, this property of
the optimal estimator is no longer true when we consider mini-
mizing the worst-case regret with covariance uncertainties, even
if and are Gaussian. Nonetheless, we will demonstrate that
when estimating a Gaussian random variable contaminated by
independent Gaussian noise, the performance of the linear min-
imax regret estimator is close to that of the optimal nonlinear
third-order estimator that minimizes the worst-case regret so
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that, at least in this case, we do not lose much by restricting
our attention to linear estimators.

For the sake of simplicity, we now consider the problem of
estimating the scalar in the linear model

(104)

where , , and and are inde-
pendent. We seek the possibly nonlinear estimator of that
minimizes the worst-case regret over all variances satisfying

for some . In the case of model (104), the
linear MMSE estimator is given by

(105)

where

(106)

and the optimal MSE is

MSE (107)

Therefore, our problem reduces to finding

(108)

Since and are jointly Gaussian, , with
given by (106), so that (108) can be expressed as

(109)

where and denote the probability density func-
tions (pdfs) of and , respectively, with and

. Since there is a one-to-one correspon-
dence between and , instead of maximizing (109) over

, we may maximize it over , where

(110)

with . Thus

(111)

Here

(112)

is the pdf of given the value of . We now note that instead of
maximizing the objective in (111) over , we can imagine that

is a random variable with pdf , which has support on
the interval , and maximize the objective over all
possible pdfs with support on . This follows from the
fact that the objective will be maximized for the pdf

, where maximizes the objective over
. We then have that

(113)
Since the objective in (113) is convex in the minimization ar-
gument and concave (linear) in the maximization argument

, we can exchange the order of the minimization and max-
imization [34] so that

(114)

where is the conditional probability of given in-
duced by .

Differentiating the second integral with respect to and
equating to 0, the optimal that minimizes (114) is

(115)

where with given by
(112), and

Var (116)

with Var denoting the variance of given . Substituting
into (114), the minimax regret is

Var (117)

As we now show, (115) implies that the minimax regret es-
timator must be nonlinear, even though and are jointly
Gaussian. Therefore, contrary to the MMSE estimator for the
Gaussian case where is known, the estimator minimizing the
worst-case regret when is unknown is nonlinear. Nonethe-
less, as we show below, in practice, we do not lose much by
restricting the estimator to be linear.

To show that (115) implies that must be nonlinear in , we
note that since

(118)

we can express as

(119)

where , is the moment-generating function
of , and denotes the support of .
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It is immediate from (115) that is linear if and only if
for some constant . This then implies from (119)

that the derivative of must be equal to a constant, in-
dependent of , which in turn implies that (since

for any moment generating function). Since is
the inverse Fourier transform of , in this case,

, and Var so that from (117), the regret
. Clearly, there are other choices of for which
so that does not maximize the re-

gret, and cannot be equal to a constant.
In order to obtain an explicit expression for the minimax re-

gret estimator of (115), we need to determine the optimal pdf
, which is a difficult problem. Since is the MMSE

estimator of given the random variable , we may approxi-
mate by a linear estimator of of the form
for some and (we have seen already that cannot
be equal to a constant). With this approximation

(120)

where and are the solution to

(121)

Substituting (120) into (121), and are the solution to the
problem

(122)

where we used the fact that since is Gaussian and has
zero mean, . Now, for any choice of and ,

so that

(123)

with equality for . Thus, the optimal estimator of the form
(120) reduces to a linear estimator, which cannot be optimal.

Since the second-order approximation (120) results in a linear
estimator, we next consider a third-order approximation of the
form

(124)

where now, and are the solution to

(125)

Here, we used the fact that is a zero-mean Gaussian random
variable so that [14]

even
odd

(126)

where is the variance of .
Finding the optimal values of and that are the solution

to (125) is a difficult problem. Instead of solving this problem
directly, we develop a lower bound on the minimax regret
that is achievable with a third-order nonlinear estimator of the
from (124) and show that in many cases, it is approximately
achieved by the linear minimax regret estimator of Theorem 3.
In particular, we have the following theorem, the proof of which
is provided in Appendix C.

Theorem 4: Let and , where
is independent of . Let be a third-order

estimator of , where and minimize the worst-case regret
over all values of satisfying
for some . Then, the minimax regret given by

satisfies , where is the solution to the convex opti-
mization problem

subject to (127) and (128), shown at the bottom of the page,
where , and .

Note that a positive semidefinite constraint of the form

(129)

is equivalent to the three inequalities , , and
.
In Fig. 3, we plot the bound as a function of the SNR, which

is defined as for and .
For comparison, we also plot the worst-case regret using the
linear minimax regret estimator of Theorem 3. The value of is
computed using the function on Matlab, which is part
of the Matlab Optimization Toolbox.5 As can be seen from the
figure, the worst-case regret using the linear minimax estimator
is very close to the bound so that in this case, we do not lose in

5For documentation, see http://www.mathworks.com/products/optimization/.

(127)

(128)
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Fig. 3. Worst-case regret in estimating x as a function of SNR using the linear
minimax regret estimator and the bound on the smallest worst-case regret
attainable using a third-order estimator.

performance by using a linear estimator instead of a nonlinear
third-order estimator. In general, the performance of the linear
minimax regret estimator is close to the bound for small values
of . If , then the performance of the linear estimator
approaches the bound only at high SNR.

VIII. CONCLUSION

We considered the problem of estimating a random vector
in the linear model , where the covariance matrix

of and, possibly, also the model matrix are subject to
uncertainties. We developed the minimax MSE estimators for
the case in which is subject to uncertainties and the model
matrix is known and for the case in which both and are
not completely specified.

The main contribution of the paper is the development of
a competitive minimax approach in which we seek the linear
estimator that minimizes the worst-case regret, which is the
difference between the MSE of the estimator and the best pos-
sible MSE attainable with a linear estimator that knows the
covariance . As we demonstrated, the competitive minimax
approach can increase the performance over the traditional min-
imax method, which, in some cases, turns out to be completely
useless.

The minimax regret estimator has the interesting property that
it often lies in a different class than the estimator matched to the
nominal covariance matrix. We have seen an example of this
property in Section V, where the nominal estimator is propor-
tional to the observations , whereas the linear minimax regret
estimator is no longer equal to a constant times . Another ex-
ample was considered in Section VII, where we showed that the
optimal minimax regret estimator for the case in which and
are jointly Gaussian is nonlinear, whereas the nominal estimator
is linear.

In our development of the minimax regret, we assumed that
is completely specified and that and have the

same eigenvector matrix for all possible covariance matrices.
An interesting direction for future research is to develop the

minimax regret estimator for more general classes of as well
as in the presence of uncertainties in . It is also interesting to
investigate the loss in performance with respect to an arbitrary
nonlinear minimax regret estimator in the general linear model.

APPENDIX A
PROOF OF PROPOSITION 1

Let be an arbitrary matrix satisfying (33). Then, from
Lemma 1

Tr Tr

(130)
Since

Tr Tr Tr
(131)

we have that

Tr Tr

Tr (132)

Let subject to (31), let subject to (32)
and (33), and let subject to

Tr

Tr (133)

and (33). It then follows from (130) and (132) that

(134)

Since and for all ,
, and satisfying (33), it follows from Lemma 1

that Tr . Therefore,
to minimize the value of in (133), is chosen such that

Tr . Then, How-
ever, so that from (134), we conclude that ,
completing the proof of the proposition.

APPENDIX B
PROOF OF PROPOSITION 2

To prove the proposition, we first note that

(135)

if and only if for every

(136)

Using the Cauchy–Schwarz inequality, we can express (136) as

(137)

Finally, since is equivalent to
, we can use Lemma 3 to conclude that (137) is satisfied if and

only if there exists a such that

(138)

completing the proof.
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APPENDIX C
PROOF OF THEOREM 4

From (125), it follows that we can express as

(139)

where

(140)

Since

(141)

so that , where

(142)

To compute , we note that (142) can be expressed as

(143)

subject to

(144)

which is equivalent to

(145)

Defining

(146)

we have that

(147)

subject to

(148)

or, equivalently

(149)

(150)

Consider first the constraint (149). Let , where
. Then, is equivalent to ,

where , so that (149) can be expressed as

(151)
which in turn is equivalent to the implication

(152)

where

(153)

From (67) and Lemma 3, it follows that (149) is equivalent to
(127) for some . If (127) is satisfied, then
so that it is not necessary to impose the additional constraint

. Similarly, we can show that (150) is equivalent to (128)
for some , completing the proof of the theorem.
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