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Abstract— Key parameters of analog-to-digital converters
(ADCs) are their sampling rate and dynamic range. Power con-
sumption and cost of an ADC are directly proportional to the
sampling rate; hence, it is desirable to keep it as low as possible.
The dynamic range of an ADC also plays an important role, and
ideally, it should be greater than the signal’s; otherwise, the signal
will be clipped. To avoid clipping, modulo folding can be used
before sampling, followed by an unfolding algorithm to recover the
true signal. In this paper, we present a modulo hardware prototype
that can be used before sampling to avoid clipping. Our modulo
hardware operates prior to the sampling mechanism and can fold
higher frequency signals compared to existing hardware. We present
a detailed design of the hardware and also address key issues that
arise during implementation. In terms of applications, we show the
reconstruction of finite-rate-of-innovation signals which are beyond
the dynamic range of the ADC. Our system operates at six times
below the Nyquist rate of the signal and can accommodate eight-
times larger signals than the ADC’s dynamic range.
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I. INTRODUCTION

Analog-to-digital converters (ADCs) bridge real-world
analog signals and digital processors on which signals can
be processed efficiently. Typically, ADCs measure instan-
taneous uniform samples of analog signals to represent
them digitally. A key parameter in such conversion is
the sampling rate. Power consumption and cost of an
ADC increase with the increase in the sampling rate.
Hence, keeping the sampling rate as low as possible
is desirable. Theoretically, the sampling rate has to be
greater than the Nyquist rate for perfect reconstruction of
bandlimited signals. Apart from the sampling rate, there
are several other aspects of an ADC which play a key role
in faithful sampling and reconstruction, especially when
the sampling frameworks are implemented in hardware.

The dynamic range of an ADC plays a crucial role
in sampling an analog signal. Generally, ADC’s dynamic
range should be larger than the signal’s; otherwise, the
signal gets clipped. A few approaches exist to recover the
true samples from clipped ones for bandlimited signals
[1], [2]. These approaches rely on the correlation among
the samples when they are measured at a very high rate
compared to the Nyquist rate. The requirement of a high
sampling rate is a drawback of these approaches.

Several preprocessing approaches to avoid clipping
exist, such as automatic gain control (AGC) [3], [4], com-
panding [5], [6], and modulo folding [7], [8], [9], [10],
[11]. Among these, modulo folding is the most recent
approach that need not be differentiable like companding
and does not suffer from stability issues of the feedback
amplifiers used in AGCs. In the modulo framework, the
signal is folded to lie within the ADC’s dynamic range,
and then the folded signal is sampled using a conventional
ADC. Theoretical guarantees for recovering bandlimited
signals from folded samples are presented in [7]. The
results state that a bandlimited signal can be uniquely
recovered from its folded samples provided that they are
sampled above the Nyquist rate [7].

Several algorithms for unfolding or recovering the true
samples of a bandlimited signal from a modulo or folded
samples are presented in [7], [8], [10]. These unfolding
algorithms can be compared in terms of sampling rate,
amount of unfolding they can handle, and noise robust-
ness. The algorithm proposed in [7] requires almost 17
times higher sampling rate than the Nyquist rate. The
approaches in [8] and [10], [11] operate at relatively
lower sampling rates but require the knowledge of ADC’s
dynamic range. In contrast, the method proposed in [10],
[11] requires a lower sampling rate, even in the presence
of noise, compared to the algorithms presented in [7], [8].
Modulo sampling is also extended to different problems
and signal models such as periodic bandlimited signals
[9], finite-rate-of-innovation (FRI) signals [12], sparse
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vector recovery [13], direction of arrival estimation [14],
computed tomography [15], and graph signals [16].

Beyond theoretical works, there also exist a few
related hardware prototypes. High-dynamic-range ADCs,
also known as self-reset ADCs, are discussed in the
context of imaging [17], [18], [19], [20]. These hardware
architectures measure additional information, such as the
amount of folding for each sample or the sign of the
folding together with the folded samples. The additional
information might enable simpler recovery at the expense
of complex circuitry. Importantly, additional bits are re-
quired during the quantization process to store or transmit
the side information.

Krishna et al. presented a hardware prototype that
encodes the side information by using two bits [20]. The
architecture is designed to record the sign of the slope
of the signal at each sample that lies outside the ADC’s
dynamic range. In a conventional ADC, a sample and
hold (S/H) circuit is used to hold the sampled value for
a prescribed period of time, during which quantization
is performed on the sample. A folding circuit is used
after S/H to realize the modulo sampling [20]. In this
architecture, the S/H circuit has to hold the sampled value
for folding and quantization, resulting in a larger holding
time than a conventional ADC. A large holding time
results in slower ADCs, which may not be helpful in
applications with high-frequency signals. The resulting
hardware circuit is able to fold signals up to 300 Hz,
where the signal’s amplitude should be less than three
times the ADC’s dynamic range.

Modulo hardware prototypes where the modulo part
is implemented prior to the sampler are presented in
[9], [21], [22]. In these works, the authors are focused
on different signal models, hardware limitations, and
algorithms rather than providing details of the hardware
circuitry. It was shown that the modulo hardware is able
to fold low-frequency (< 300 Hz) signals that are tenfold
larger than the ADC’s dynamic range. However, it is
not clear how the hardware performs for high-frequency
signals, and many details of the circuitry are omitted.

In practical applications, the frequency range of the
signals can vary from a few kHz to several MHz. For ex-
ample, the finite-rate-of-innovation (FRI) model is widely
used to represent signals in time-of-flight applications
such as ultrasound, sonar, and radar [23], [24]. These FRI
signals have frequencies much higher than 300 Hz, and
hence current hardware prototypes can be used, especially
when the signal’s bandwidth ranges up to a few kHz.
Hence it is desirable to design and develop a modulo
sampler that can operate at high frequencies while folding
signals faithfully.

In this paper, we present a modulo hardware prototype
that can be used for modulo sampling of signals up to
10 kHz. We show that by using our algorithm [10], it is
able to reconstruct bandlimited and FRI signals faithfully.
In the following, we present the contributions and the
features of the proposed hardware system.

e We design our hardware components to be able to
fold signals up to 10kHz. Existing hardware shows
results for signals below 300 Hz.

e The hardware prototype is designed to perform fold-
ing prior to the sampler, unlike the hardware in [20],
which operates in the hold part of the sampler. Thus,
the suggested system can utilize faster ADCs with
shorter hold times.

e In the proposed hardware prototype, modulo folding
is realized through a feedback mechanism. At the
time instants when the input signal goes beyond the
ADC’s dynamic range, a trigger signal is generated
by using comparators. The trigger then activates
a direct voltage generator that adds to the input
signal to bring it within the dynamic range. This
mechanism imposes a delay between the trigger time
and the folding instance. We address this key issue
of the hardware, which is not considered in previous
works. By using the signal’s smoothness and the
feedback loop’s time delay, we propose a hardware
solution to avoid clipping that occurs due to the delay
issue.

e The designed hardware prototype can operate at
a maximum voltage of 11.75 v. The limitation is
largely due to the use of a 15v subtractor or adder
in the feedback loop, which enables a fast slew rate
in the transitions of +2)\. At high frequencies, these
components can not be used at voltage above 15 v.
In addition, we used an ADC with a dynamic range
[—1.25,1.25]. Hence, the hardware can fold signals
which are eight times larger than the dynamic range
of the signal.

e For demonstration, we consider sampling and recon-
struction of bandlimited and FRI signals. For FRI
signals, we use a lowpass sampling kernel prior
to modulo folding. The filter removes unwanted
information in the signal and allows sub-Nyquist
sampling. Using our algorithm presented in [10],
[11], we show reconstruction of bandlimited signals
from their folded samples measured through the
hardware. We show that the combination of the
proposed hardware and low-rate algorithm is able to
reconstruct the signals by using a low-dynamic range
ADC. In particular, for FRI signals, we show that the
FRI parameters can be estimated with sub-Nyquist
samples by utilizing the fact that our algorithm
operates at the lowest possible rate.

The paper is organized as follows. In the next section,
we discuss the signal model considered and the sampling
and reconstruction framework in the presence of modulo
hardware. In Section III, we present the hardware system
by explaining its working principle and discussing the
components of the system. In Section IV, we show the
hardware’s signal folding and reconstruction abilities.
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II. Signal Model and System Description

In this section, we consider modulo sampling for
signals whose amplitudes lie beyond the bandwidth of
the ADC’s dynamic range. The class of signals that
can be folded by modulo hardware can be very large;
however, the recovery is limited by existing unfolding
algorithms. For example, most unfolding algorithms are
designed for bandlimited signals. Given this, we consider
bandlimited signals as input to the modulo hardware and
corresponding unfolding algorithms. We use a lowpass
sampling kernel for FRI signals to make them bandlimited
and, at the same time, reduce the sampling rate following
the sub-Nyquist framework [24], [25].

Consider a w.-bandlimited signal y(¢) such that its
Fourier transform Y (w) vanishes outside the frequency in-
terval [—w.,w,]. The signal can be perfectly reconstructed
from its uniform samples measured at the Nyquist rate
WNyq = 2w, rad/sec. provided that the ADC’s dynamic
range is above the signal’s dynamic range. Specifically,
if the dynamic range of the ADC is [—\, A] for some
A > 0 then it is assumed that |y(¢)| < X for perfect
reconstruction. If |y(¢)] > A, then the signal and its
samples will be clipped, and perfect reconstruction is not
guaranteed. In the latter scenario where |y(t)| > A, one
can either increase the dynamic range of the ADC or use
prepossessing to avoid clipping. We consider the later
solution where the modulo operation M (-) is applied
to the signal y(t) to restrict its dynamic range to [— A, A].
The output of the modulo operator in response to input
y(t) is given as

ya(t) = Mi(y(®)) = (y(¢) +A) mod 2A — A, (1)

The folded signal y,(¢) is then sampled to get discrete
measurements yy(nTs). Due to modulo folding, yy(¢) is
no longer bandlimited. To recover y(t) while sampling
slightly above the Nyquist rate of the input, one first
applies an unfolding algorithm to recover y(nT,) from
yx(nTs) [10], [11], [26]. Then y(¢) is reconstructed from
y(nTs) by assuming that the sampling is performed above
the Nyquist rate.

A schematic of modulo sampling and reconstruction
framework is shown in Fig. 1. It consists of a modulo-
ADC followed by unfolding and reconstruction blocks.
The modulo-ADC is comprised of a modulo-folding block
followed by a conventional uniform sampler. The unfold-
ing operation is implemented in the digital domain, and
it should operate at the lowest possible sampling rate.
To this end, we use the B2R? algorithm for unfolding
[10], [11], which samples efficiently compared to other
algorithms for bandlimited signals. Low-rate sampling
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and low-dynamic range requirements significantly reduce
the power consumption and cost of the ADC.

Our objective is to demonstrate a robust hardware
prototype of modulo ADC as discussed next.

Ill. Modulo Hardware Prototype

In this section, we discuss the prototype of our modulo
hardware. The modulo block’s working principle and
design will be discussed first, followed by its hardware
implementation.

A. Working Principle of Modulo Block

The principle of computing yy(¢) from y(t) is shown
by the block diagram in Fig. 2. The system comprises
an adder S, a direct-voltage generator (DVG), and two
comparators, Comp-1 and Comp-2. To understand the
working flow, let us first assume that for some time
instant ¢;, we have that |y(¢)| < A for all ¢ < ¢;. Hence
ya(t) = y(t) and z(t) = 0 for all ¢ < t;. At t = ¢y,
let |y(t)| cross A. If y(t1) > A, then Comp-1 triggers
a positive value. Else if, y(t1) < A, Comp-2 triggers a
negative value. The DVG is designed such that for each
positive input value, its output signal level increases by
—2), whereas, for a negative input value, it decreases
its output voltage by 2. Hence, in the current example,
DVG generates a signal z(t) = sgn(ya(t1))2 u(t — t1)
where w(t) is the unit-step function. In this way, by
adding or subtracting (using .S) constant DC signals from
y(t) whenever it crosses the dynamic range [—A, A, the
amplitude levels of y,(¢) are kept within the ADC’s
dynamic range.

While the parts such as comparators Comp-1 and
Comp-2, and adder S can be realized by using off-
the-shelf components, DVG is a more involved system
due to its feedback nature and requires careful design.
Specifically, the feedback loop should follow changes in
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Fig. 3.

Discrete Voltage Generator (DVG).

the input signal in the desired frequency and amplitude
ranges. A detailed architecture of DVG is shown in Fig. 3.
Its task is to generate a constant voltage signal whose am-
plitude is a constant multiple of 2. Importantly, its output
voltage z(t) should increase (or decrease) by 2\ v for
every negative (or positive trigger) at its input. To realize
this task in the hardware, we use an up/down counter, a
digital-to-analog converter (DAC), a multiplexer (MUX),
and a multiplier M.

In the hardware design, we set A = 1.25 v. We start
with the DAC, which can generate piecewise constant
voltage output s(¢) in response to its digital input. Let
the resolution, or step size of the DAC, be a v. Then,
when the input bits of DAC go from one state to the
next, the DAC output increases by « v. On the other
hand, when the bits change from the present state to the
previous state, output voltage s(¢) reduces by a v. Hence,
the ADC works in a fashion expected by DVG with the
following exceptions: (1) Input to the DAC is bits and one
needs to map positive/negative trigger from comparators
to these bits; (2) Output of the DAC takes only positive
values and are multiple of «. A scaling is required to
make them multiple of £2\. To address the first issue,
we employ a UP/DOWN counter whose inputs are the
trigger voltages from the capacitors Comp-1 and Comp-
2, and the output is bits. For every positive trigger at the
input counter, output bits change to the next state, whereas
for a negative trigger, they go back to the previous state.
By connecting these bits to the input of the DAC, the
output of the DAC is controlled by triggers.

To address the scaling issue, we use a MUX and a
voltage multiplier M. The MUX and the multiplier are
designed, together with a set of amplifiers, such that
s(t) is scaled to z(t). A sign bit at the output of the
counter, which is a function of the trigger’s sign, is used
as input to the MUX, which in turn controls the sign of
the multiplier’s output or z(¢)’s sign.

To explain the sequences of events in DVG, let us
consider our previous scenario where |y(t)| < A for some
t < t; and at ty, |y(¢)| crosses A. For ¢t < ¢;, we have
y(t) = ya(t), s(t) =0, z(¢t) = 0, and all the output bits
of the counter are set to be zero. If y(¢t;) > A, Comp-1
triggers a positive voltage, and the counter’s output bits
state changes. Specifically, the least significant bit changes
to one, and in response, the DAC’s output voltage changes

to o v. Meanwhile, after the positive trigger, the MUX
outputs a voltage —2\/« which is multiplied to s(¢) and
outputs z(t) as —2Au(t — t1) as desired.

Next, we discuss the hardware board that realizes the
folding operation discussed in this section.

TABLE I
List of Hardware Components
Component Model Number Make
Comparator LM339 Texas Instruments
UP/DOWN Counter TEENSY4.1 PJRC
Analog MUX ADG1608 Analog Devices
Analog Multiplier AD835 Analog Devices
Adder LT1364 Analog Devices
TABLE II

Up/down counter operation.

H ¢ b a sgn Counter values s(t) z(t) H
0 0 0 0 0 (0) 0 0
0 0 1 0 1(-1) 1 23 (=2)
0 1 0 o) 2(-2) 2 AN (—4))
0o 1 1 0¢(0 3 (-3) 3 6A (—6)
1 0 0 o) 4 (:3) 48X (=8N

B. Modulo Hardware Board

Our modulo hardware board is presented in Fig. 4,
along with the roles of the major building components.
Table I contains a detailed listing of the hardware’s
components. The board is designed for A\ = 1.25 w.
While selecting components for the MUX, multiplier, and
amplifiers involved, we observe that these components
operate in their linear regions if the operating voltages are
less than 12 v. This implies that |z(¢)| < 12 v which limits
the maximum value of input signal to |y(t)] < 9\ = 11.75
v. This is because if y(t) crosses 9 then z(t) should be
—10\ = 12.5 v to ensure that yy = y(t) + z(t) € [\, A].
Hence, the current design of the hardware can fold and
sample signals eight times larger than ADC’s dynamic
range. This implies that the DVG output should take val-
ues from the set {0, £2X, 4\, £6), £8\}. This requires
the DAC to have five uniform voltage levels at its output
(it produces only positive voltages), and a 3-bit DAC and
hence a 3-bit counter are used as shown in Fig. 3. Instead
of using an off-the-shelf DAC, we build a customized
DAC for the hardware. By noting the DAC’s output is a
linear combination of its three input bits, we used adders
LT1364 to realize the DAC. In Table II, we list the values
of bits and the counter (denoted as counter values). The
three bits (a,b, and c) of the counter are used as input to
the DAC, which converts the bits to an analog DC voltage.
Here the resolution of the DAC is o =1 v.
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Fig. 5. Screenshots of an oscilloscope capturing input signals
(yellow), its folded outputs (green), and the DVG signals (blue): (a)
1kHz sinusoid with maximum amplitude 4\ and (a) 2kHz sinusoid

with maximum amplitude 8.

We further analyze the working of the modulo
hardware by considering a sinusoidal signal y(t) =
A sin(27 fot) where A is amplitude, and fy is the fre-
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quency (in Hz). In this experiment, we set A = 1.25. First,
we analyze the folding ability of the hardware for different
amplitude levels. Figure 5(a) and (b) depict screenshots
of an oscilloscope capturing input y(t) (in yellow), folded
output y, (¢) (in green), and the DVG output z(¢) (in blue),
for two signals with fo = 1 kHz, A = 4X and f, = 2
kHz, A = 8), respectively. We observed that the signals
are folded back to lie within the dynamic range of the
ADC as expected without clipping.

Next, we discuss the frequency response of the mod-
ulo ADC. As in any analog system, the modulo folder’s
response also depends on the input signal’s frequency or
bandwidth. In particular, beyond a particular frequency
range, components of the hardware and the overall feed-
back loop may not respond quickly to fast changes in
the input signal, as demonstrated in Fig. 6. We observed
that for 1kHz and 10 kHz, the hardware folds the signal
accurately. However, for fy = 20 kHz, folding instants
are not symmetric for positive and negative folds.

In the next section, we discuss several challenges of
the modulo hardware and our proposed solutions.

C. Artifacts During Folding

Errors or other artifacts that arise during folding
operations in hardware result from various reasons. One of
the major issues that arise in a modulo ADC is the time
delay in the feedback loop (See Fig. 2). To elaborate,
consider a scenario where y(t) < A for ¢ < ¢; and it
crosses A at time ¢;. To fold the output voltage to the
dynamic range of the ADC, z(t) = 2\u(t — t1) needs to
be subtracted from y(t). However, there is a finite delay
between the trigger time ¢; to generating z(¢). If the time
delay is Ty, then z(t) = 2A\u(t — t; — Ty) is subtracted,
which causes distortion. To illustrate this effect, in Fig. 7,
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we considered a sinusoidal signal (in blue) and its folded
versions with and without delay. We observe that in the
absence of any time delay (7 = 0) the signal folds
perfectly (shown in red) to stay within the dynamic range.
However, for a non-zero value of T,, foldings do not
take place at the folding instants, and the output of the
modulo operator (shown in black) still remains outside
the dynamic range [—A\, ], which results in a clipped
modulo operator output. The proposed hardware solution
addresses this issue and avoids the undesired clipping as
shown in Figs. 5 and 6.

Our solution uses the fact that with a finite time
delay, the amount of overshoot of a smooth signal can
be bounded. To elaborate, assume that the signal that
undergoes the modulo operation is Lipschitz continuous.
Specifically, a signal y(t) is Lipschitz continuous if there
exists a positive real number L, such that for any 7" > 0
we have

ly(t) —y(t+T) <L, T. (2)

With the Lipschitz smoothness condition, we note that
the amplitude of y(¢) can not change more than L, T}
between any folding instant and time of its effect to take
place. Hence, if we choose the dynamic range of the
ADC to be [—(A + A)X), (A + AX)] where AN = L, Ty
then the signal will not clip. We show this extended
dynamic region in the example in Fig. 7. Alternatively,
instead of increasing the ADC’s dynamic range, one can
keep it to be [—A, A] and reduce the threshold values for
comparators. In this case, Comp-1 will trigger when the
input crosses A — A\, and Comp-2 will trigger when the
input goes beyond —\ + A\. In this way, the time delay
issue is addressed by the modulo circuit without altering
ADC’s dynamic range. In our hardware, we choose the
former solution. Specifically, we used an oscilloscope to
measure and display samples. The dynamic range of the
oscilloscope’s ADC was sufficiently higher than [—\, ]
to sample signals of interest without clipping signals due
to the delay in the feedback loop.

In order to apply the solution, the signal must be
Lipschitz continuous. In our design, the modulo operation
input signal is always a bandlimited signal satisfying the
Lipschitz smoothness condition [27]. For a bandlimited
signal y(¢), its Lipschitz constant L, is directly pro-
portional to its bandwidth w. [27]. Hence, for a given
value A\ and Ty (both depend on the modulo circuit),
L, = AM/Ty is fixed and this restricts the maximum
frequency of the input signal that can be faithfully folded.
In the current design, we choose to implement the counter
management using a TEENSY microcontroller, result-
ing in a 1lus time delay. Then for a sinusoidal signal
y(t) = Asin(27 fot), the Lipschitz constant is given as
L, = 2wAfy. For A = 8\, AX = 0.5\, and Ty = 1ps,
we note that the maximum operating frequency is 10 kHz
which is in line with the experimental results discussed
in Fig. 6.
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Fig. 9. Comparison of HOD, CPF and B2R? algorithms (with
unbounded noise) in terms of MSE when recovering a bandlimited
signal from modulo samples with A = 1.25 and OF = 3,6. For a given
SNR and OF, B2R? has the lowest MSE.

IV. Results

In this section, we demonstrate the modulo hardware’s
signal reconstruction capability. We focus on the folding
and reconstruction of bandlimited and FRI signals. In the
hardware, the folded measurements are generally contam-
inated by different noises, including quantization noise.
Since the performance of an unfolding algorithm depends
on the noise levels, we first discuss a few simulated results
to assess the performance of the B2R? algorithm used
for unfolding. Then we demonstrate the results from the
hardware.

A. Simulated Results

In this section, we compare our B2R? algorithm with
the higher-order differences (HOD) approach [28], [7] and
Chebyshev polynomial filter-based (CPF) method [8]. Al-
though a comparison of these methods is analyzed in [10],
the settings are different here. Importantly, quantization
noise is not considered in our previous work.

We consider the noisy measurements as

g)\ (nTs) = y)\(nTs) + U(nTs)a (3)

where v(nT) is the noise term. In the simulations, A
is set to be 1.25 as in the hardware. We normalize the
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bandlimited signals to have a maximum amplitude of 10.

The SR is calculated as SNR = 201og (2751, Re-

construction accuracies of different methods are compared
in terms of the normalized mean-squared errors (MSEs)
as = |y§ﬁj€;ﬁf)’gs)l2, where §(nT,) is an estimate of
y(nTs). For different noise settings and over-sampling
factors (OFs), we considered 100 independent noise re-
alizations and calculated the average MSE for them. We
first consider quantization noise and then present results
for unbounded noise.

In the first simulation, the unfolding algorithms are
applied to quantized folded samples. The MSE in the
estimation of bandlimited signals for a different number
of bits and OFs is shown in Fig. 8. We observe that for a
given OF, B2R? algorithm results in the lowest MSE for
less than 5 bits. For more than five bits, all the algorithms,
except HOD with OF = 3, perform equally well. The
results show that low-resolution quantizers can be used
with the B2 R? algorithm for unfolding, which saves both
power and memory requirements.

Next, for unbounded noise, we assume that the noise
samples v(nTy) are independent and identically dis-
tributed Gaussian random variables with zero means. The
variance of v(nT}) is set to achieve the desired SNR.
We compare the methods for different values of SNR and
OFs with A = 1.25. Fig. 9 shows the MSE of the different
algorithms for OF = 3 and 6. We note that our algorithm
results in the lowest error for a given OF and SNR.

Given the advantages of the B?R? algorithm over the
other approaches, we present the hardware results in the
next section by using this method.

B. Hardware Results for Bandlimited Signals

In this section, we first present results for bandlimited
signals. For generating bandlimited or lowpass signals, we
used an Arduino microcontroller (See Fig. 10) which con-
verts the digital signal to an analog signal via a DAC. The
digital signals were generated using MATLAB software.
Two examples of 1khz bandlimited signal are presented
in Fig. 11(a) and Fig. 11(b). The modulo hardware folds
the signals to stay within the dynamic range, as shown
in Fig. 11. The signals are sampled with an oversampling
factor of five (OF = 5), and the B2 R? algorithm is applied
for unfolding. The unfolded or reconstructed signals are
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Fig. 11.  Screenshots of the oscilloscope capturing the bandlimited
input signals (yellow) and its folded output signals (green).

shown in Fig. 12. We observe that the reconstruction is
close to the true signals except for an amplitude scaling
factor, which is the result of scaling within the hardware.

C. Hardware Results for FRI Signals

Before presenting the results for FRI signals, we
briefly discuss the FRI signal model and its sampling
and reconstruction mechanism for ease of discussion.
Consider an FRI signal consisting of a stream of L pulses:

L
F(8) =" ash(t —t), (4)
=1
where the pulse h(t) a real-valued known pulse. We as-
sume that {a,}_, are real-valued and {t,}_, C (0,7p] C
R for a known Tj.

The FRI signal model in (4) is encountered in sev-
eral scientific applications such as radar imaging [29],
[30], [31], ultrasound imaging [24], [32], [33], light
detection and ranging (LIDAR) [34], time-domain optical
coherence tomography (TDOCT) [35], and other time-
of-flight imaging systems. In these applications, h(t) is
the transmitted pulse and {a, h(t — t,)}_, constitute the
reflections from L point targets. The amplitudes {a,}Z_,
depend on the sizes of the targets and the delays {t,}7_,
are proportional to the distances of the targets from the
transmitter. Here 7}y denotes the maximum time delay of
the targets. The signal f(¢) is specified by {as,t,}%_, and

Estimation

Criginal Signal
Faolded Signal
Reconstructed Signal

Amplitude

056 0.74
TIME (in sec.)
(a)

Estimation

== Original Signal
Folded Signal
Reconstructed Signal

Amplitude

0.59 0.78
TIME (in sec.)
(b)

Fig. 12. Hardware results for bandlimited signals. The B2R?
algorithm is used to unfold y, (¢) (measured at the output of
hardware), and the unfolded signal (¢) is plotted with bandlimited

signal y(t).

can be reconstructed from its sub-Nyquist measurements
acquired using an appropriate sampling kernel [23], [24],
[36], [25]. Given their widespread application, here we
consider sampling and reconstruction of FRI signals by
using our hardware prototype.

FRI signals can be perfectly reconstructed by applying
high-resolution spectral estimation methods, such as the
annihilating filter (AF) or Prony’s method and its variants
[37], [38], [39], [40], [41], [42], [43] to the Fourier
measurements

F(k)wo)

S(kwo) = m

L
= Zage_jk”‘)tﬂ ke{-K,--- K},

(=1
&)

where we assume that H(kwg) # 0. Here K > L and
wop = QT—Q [44]. The Fourier measurements {S(kwo)}5__
can be determined from the samples (f * g)(nTy)
where ¢(t) is an ideal lowpass filter with bandwidth
[~ Kwy, Kwo] and T, = @[(iﬁ In practice, the du-
ration of the pulse h(t) is very short, and hence f(¢) has
a wide bandwidth. This results in a large sampling rate
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(c) FRI signal reconstruction.
Fig. 13. Reconstruction of FRI signal (L = 2) via the modulo

hardware.

(or Nyquist rate) if f(¢) is sampled directly. However,
the filtered signal y(t) = (f * ¢g)(¢) is bandlimited to
[- Kwp, Kuwg], which is much smaller than that of h(t)
and the sampling rate is much lower than the Nyquist
rate.

As in the bandlimited signal model, a modulo op-
eration can be applied to the filtered signal y(¢) to
avoid clipping. Then y(¢) is sampled. Then to determine
the Fourier samples {S(kwo)}X_ ;. , unfolding is first
applied. Since the filtered signal is bandlimited, we use
the proposed hardware for modulo folding and can apply
the B2R? algorithm from unfolding.

In our setup, to generate the FRI signals, we consider
h(t) to be a short pulse of bandwidth 30kHz (Nyquist
rate = 60kHz). We consider three examples with L =
2,3, and 5. The amplitudes and time delays are generated

MULLETI ET AL.: HIGH-DYNAMIC RANGE ADC HARDWARE
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(c) FRI signal reconstruction.

Fig. 14. Reconstruction of FRI signal (L = 3) via the modulo

hardware.

randomly. The maximum time delay is 7y = 0.1 sec.
Once generated, the FRI signal is lowpass filtered with a
cutoff frequency of 1kHz. MATLAB is used to generate
the samples of filtered FRI signals and then an Arduino
microcontroller is used to generate the analog counterpart
of them. The signal is then folded using the hardware,
and the folded signals are sampled. The sampling rate is
10kHz which is five times higher than the sampling rate
of the lowpass signal. Still, the rate is six times lower
than the Nyquist rate, and hence the system operates at a
sub-Nyquist rate.

We first applied the B2R? algorithm to unfold the
signal and then used ESPRIT [43] to estimate the time
delays and amplitudes of the FRI signals. In Fig. 13,
Fig. 14 and Fig. 15 we show sampling and reconstruction
of FRI signals with L = 2,3,5 respectively. The FRI
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hardware.

signals followed by a lowpass filter are presented in
Fig. 13(a), Fig. 14(a), and Fig. 15(a). The reconstruction
of the lowpass signals displayed in Fig. 13(b), Fig. 14(b)
and Fig. 15(b), where y(t) described the LPF output, y» (¢)
is the folded signal (output of the modulo hardware),
and the unfolded signals are given by ¢(¢). Fig. 13(c),
Fig. 14(c) and Fig. 15(c) show location and amplitude of
the true signal f(¢) and estimated FRI signal f(¢). The
maximum error in the estimation of time delay is —15 dB
which shows that the system can be used in applications
like radar and ultrasound imaging.

V. Conclusions

We presented a hardware prototype for the modulo
folding system and showed that for different bandlimited
and FRI signals, the hardware is able to fold the signal
faithfully. In particular, we were able to sample signals
with 8 times the dynamic range of the ADC roughly. We
also addressed the time delay issue of the modulo system
and presented a hardware solution. The overall system
operates five times below the Nyquist rate, which enables
one to use low-rate, low-dynamic range, power-efficient
ADCs.
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