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Abstract

Enabling cognitive radio (CR) requires revisiting the traditional task of spec-
trum sensing with specific and demanding requirements in terms of detection
performance, real-time processing, and robustness to noise. Unfortunately, con-
ventional spectrum sensing methods do not satisfy these demands. In particular,
the Nyquist rate of signals typically sensed by a CR is prohibitively high so
that sampling at this rate necessitates sophisticated and expensive analog to
digital converters, which lead to a torrent of samples. Over the past few years,
several sampling methods have been proposed that exploit signals’ a priori
known structure to sample them below Nyquist. In this chapter, we review
some of these techniques and tie them to the task of spectrum sensing for
CRs. We then show how other spectrum sensing challenges can be tackled in
the sub-Nyquist regime. First, to cope with low signal-to-noise ratios, spectrum
sensing may be based on second-order statistics recovered from the low rate
samples. In particular, cyclostationary detection allows to differentiate between
communication signals and stationary noise. Next, CR networks, that perform
collaborative low rate spectrum sensing, have been proposed to overcome fading
and shadowing channel effects. Last, to enhance CR efficiency, we present joint
spectrum sensing and direction of arrival estimation methods from sub-Nyquist
samples. These allow to map the temporarily vacant bands both in terms of
frequency and space. Throughout this chapter, we highlight the relation between
theoretical algorithms and results and their practical implementation. We show
hardware simulations performed on a prototype built with off-the-shelf devices,
demonstrating the feasibility of sub-Nyquist spectrum sensing in the context
of CR.
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Introduction

In order to increase the chance of finding an unoccupied spectral band, cognitive
radios (CRs) have to sense a wide band of spectrum. Nyquist rates of wideband
signals are high and can even exceed today’s best analog to digital converters
(ADCs) front-end bandwidths. In addition, such high sampling rates generate a
large number of samples to process, affecting speed and power consumption. To
overcome the rate bottleneck, several sampling methods have been proposed that
leverage the a priori known received signal’s structure, enabling sampling rate
reduction [1,2]. These include the random demodulator [3], multi-rate sampling [4],
multicoset sampling, and the modulated wideband converter (MWC) [5–8].

The CR then performs spectrum sensing on the acquired samples to detect the
presence of primary users’ (PUs) transmissions. The simplest and most common
spectrum sensing approach is energy detection [9], which does not require any
a priori knowledge on the input signal. Unfortunately, energy detection is very
sensitive to noise and performs poorly in low signal-to-noise ratio (SNR) regimes.
This becomes even more critical in sub-Nyquist regimes since the sensitivity of
energy detection is amplified due to aliasing of the noise [10]. Therefore, this
scheme fails to meet CR performance requirements in low SNRs. In contrast,
matched filter (MF) detection [11, 12], which correlates a known waveform with
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the input signal to detect the presence of a transmission, is the optimal linear filter
for maximizing SNR in the presence of additive stochastic noise. However, this
technique requires perfect knowledge of the potential received transmission. When
no a priori knowledge is assumed on the received signals’ waveform, MF is difficult
to implement. A compromise between both methods is cyclostationary detection
[13, 14]. This strategy is more robust to noise than energy detection but at the
same time only assumes that the signal of interest exhibits cyclostationarity, which
is a typical characteristic of communication signals. Consequently, cyclostationary
detection is a natural candidate for spectrum sensing from sub-Nyquist samples in
low SNRs.

Besides noise, the task of spectrum sensing for CRs is further complicated
due to path loss, fading, and shadowing [15]. These phenomena are due to the
signal’s propagation that can be affected by obstacles and multipath and result in the
attenuation of the signal’s power. To overcome these practical issues, collaborative
CR networks have been considered, where different users share their sensing results
and cooperatively decide on the licensed spectrum occupancy [15–17]. Cooperative
spectrum sensing can be classified into three categories based on the way the data
is shared by the CRs in the network: centralized, distributed, and relay-assisted. In
each of these settings, two options of data fusion arise: decision fusion, or hard
decision, where the CRs only report their binary local decisions, and measurement
fusion, or soft decision, where they share their samples [15]. Cooperation has
been shown to improve detection performance and relax sensitivity requirements
by exploiting spatial diversity.

Finally, CRs may require, or at least benefit from, joint spectrum sensing and
direction of arrival (DOA) estimation. DOA recovery can enhance CR performance
by allowing exploitation of vacant bands in space in addition to the frequency
domain. For example, a spectral band occupied by a PU situated in a certain
direction with respect to the CR may be used by the latter for transmission to the
opposite direction, where receivers do not sense the PU’s signal. In order to estimate
jointly the carrier frequencies and DOAs of the received transmissions, arrays of
sensors have been considered. DOA recovery techniques, such as MUSIC [18, 19],
ESPRIT [20], or compressed sensing (CS) [21] techniques, may then be adapted
to the joint carrier and DOA estimation problem both in Nyquist and sub-Nyquist
regimes.

This chapter focuses on the spectrum sensing challenges for CR outlined
above. We first review sub-Nyquist sampling methods for multiband signals and
then consider different aspects of spectrum sensing performed on low rate sam-
ples, including cyclostationary detection, collaborative spectrum sensing, and joint
carrier frequency and DOA estimation. Our emphasis is on practical low rate
acquisition schemes and tailored recovery that can be implemented in real CR
settings. The approach adopted here focuses on the analog to digital interface of
CRs. In particular, we are concerned with compressive spectrum sensing, including
the application of CS to analog signals. Modeling the analog to digital conversion
allows demonstrating the realization of the theoretical concepts on hardware
prototypes. We focus on the implementation of one sampling scheme reviewed here,
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the MWC, and show how the same low rate samples can be used in the different
extensions of spectrum sensing described above.

Sub-Nyquist Sampling for CR

CR receivers sense signals composed of several transmissions with unknown
support, spread over a wide spectrum. Such sparse wideband signals belong to the
so-called multiband model [6, 7]. An example of a multiband signal x.t/ with K
bands is illustrated in Fig. 1. The bandwidth of each band is no greater than B and
is centered around unknown carrier frequencies jfi j � fNyq=2, where fNyq denotes
the signals’ Nyquist rate and i indexes the transmissions. Note that, for real-valued
signals, K is an even integer due to spectral conjugate symmetry and the number of
transmissions is Nsig D K=2.

When the frequency support of x.t/ is known, classic sampling methods such
as demodulation, undersampling ADCs, and interleaved ADCs (see [1, 2] and
references therein) may be used to reduce the sampling rate below Nyquist. Here,
since the frequency location of the transmissions are unknown, classic processing
first samples x.t/ at its Nyquist rate fNyq, which may be prohibitively high. To
overcome the sampling rate bottleneck, several blind sub-Nyquist sampling and
recovery schemes have been proposed that exploit the signal’s structure and in
particular its sparsity in the frequency domain, but do not require knowledge of
the carrier frequencies. It has been shown in [6] that the minimal sampling rate
for perfect blind recovery in multiband settings is twice the Landau rate [22], that
is twice the occupied bandwidth. This rate can be orders of magnitude lower than
Nyquist. In the remainder of this section, we survey several sub-Nyquist methods
that theoretically achieve this minimal sampling rate.

Multitone Model and the Random Demodulator

Tropp et al. [3] consider a discrete multitone model for multiband signals and
suggest sampling using the random demodulator, depicted in Fig. 2. Multitone
functions are composed of K active tones spread over a bandwidth W , such that

Fig. 1 Multiband model with K D 6 bands. Each band does not exceed the bandwidth B and is
modulated by an unknown carrier frequency jfi j � fNyq=2, for i D 1; 2; 3
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Fig. 2 Block diagram for the random demodulator, including a random number generator, a mixer,
an accumulator, and a sampler [3]

f .t/ D
X

!2˝

b!e�2�i!t ; t 2 Œ0; 1/ : (1)

Here, ˝ is a set of K normalized frequencies, or tones, that satisfies

˝ � f0;˙1;˙2; : : : ;˙.W =2 � 1/;˙W =2g; (2)

and b! , for ! 2 ˝, are a set of complex-valued amplitudes. The number of active
tonesK is assumed to be much smaller than the bandwidthW . The goal is to recover
both the tones ! and the corresponding amplitudes b! .

To sample the signal f .t/, it is first modulated by a high rate sequence pc.t/
created by a pseudorandom number generator. It is then integrated and sampled
at a low rate, as shown in Fig. 2. The random sequence used for modulation is a
square wave, which alternates between the levels˙1 with equal probability. The K
tones present in f .t/ are thus aliased by the pseudorandom sequence. The resulting
modulated signal y.t/ D f .t/pc.t/ is integrated over a period 1=R and sampled at
the low rate R. This integrate-and-dump approach results in the following samples

ym D R

Z .mC1/=R

m=R

y.t/dt; m D 0; 1; : : : ; R � 1: (3)

The samples ym acquired by the random demodulator can be written as a linear
combination of the W � 1 sparse amplitude vector b that contains the coefficients
b! at the corresponding locations ! [3]. In matrix form, we write

y D Ab; (4)

where y is the vector of size R that contains the samples ym and A is the known
sampling matrix that describes the overall action of the system on the vector
of amplitudes b, namely, modulation and filtering (see [3] for more details).
Capitalizing on the sparsity of the vector b, the amplitudes b! and their respective
locations ! can be recovered from the low rate samples y using CS [21] techniques,
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in turn allowing for the recovery of f .t/. CS provides a framework for simultaneous
sensing and compression of finite-dimensional vectors, which relies on linear
dimensionality reduction. It provides both recovery conditions and algorithms to
reconstruct sparse vectors from low-dimensional measurement vectors, represented
as linear combinations of the former. Here, the minimal required number of samples
R for perfect recovery of f .t/ in noiseless settings is 2K [21].

The random demodulator is one of the pioneer attempts to extend the inherently
discrete and finite CS theory to analog signals. However, truly analog signals,
as those we consider here, require a prohibitively large number of harmonics to
approximate them well within the discrete model. When attempting to approximate
signals such as those from the multiband model, the number of tones W is on the
order of the Nyquist rate, and the number of samples R is a multiple ofKB . This in
turn renders the reconstruction computationally prohibitive and very sensitive to the
grid choice (see [1] for a detailed analysis). Furthermore, the time domain approach
precludes processing at a low rate, even for multitone inputs since interpolation
to the Nyquist rate is an essential ingredient of signal reconstruction. In terms of
hardware and practical implementation, the random demodulator requires accurate
modulation by a periodic square mixing sequence and accurate integration, which
may be challenging when using analog signal generators, mixers, and filters.

In contrast to the random demodulator, which adopts a discrete multitone model,
the rest of the approaches we focus on treat the analog multiband model, illustrated
in Fig. 1, which is of interest to us in the context of CR.

Multi-rate Sampling

An alternative sampling approach is based on the synchronous multi-rate sampling
(SMRS) [4] scheme, which has been proposed in the context of electro-optical
systems to undersample multiband signals. The SMRS samples the input signal
at P different sampling rates Fi , each of which is an integer multiple of a basic
sampling rate�f . This procedure aliases the signal with different aliasing intervals,
as illustrated in Fig. 3. The Fourier transform of the undersampled signals is then
related to the original signal through an underdetermined system of linear equations,

z.f / D Qx.f /: (5)

Here, x.f / contains frequency slices of size �f of the original signal x.t/ and
z.f / is composed of the Fourier transform of the sampled signal. Each channel
contributes Mi D Fi=�f equations to the system (5), which concatenates the
observation vector of all the channels. The measurement matrix Q has exactly P
nonzero elements in every column that correspond to the locations of the spectral
replica in each channel baseband Œ0; Fi �.

This approach assumes that either the signal or the sampling time window is
finite. The continuous variable f is then discretized to a frequency resolution of
�f . Since x.t/ is sparse in the frequency domain, the vector x.f / is sparse and
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Fig. 3 Action of the SMRS
on a multiband signal: (a) the
input signal with K D 2

bands, (b) signals sampled at
rate F1 in channel 1, (c)
signals sampled at rate F2 in
channel 2, and (d) possible
support which is the
intersection of the supports in
channel 1 and 2 [4]

Original signals

Signals sampled at rate  

3

Signals sampled at rate 

Possible occupied support

2

2

a

b

c

d

can be recovered from (5) using CS techniques, for each discrete frequency f .
An alternative recovery method, referred to as the reduction procedure, consists
of detecting baseband frequencies in which there is no signal, by observing the
samples. These frequencies are assumed to account for the absence of signals of
interest in all the frequencies that are down-converted to that baseband frequency.
This allows to reduce the number of sampling channels. This assumption does not
hold in the case where two or more frequency components cancel each other due to
aliasing, which happens with probability zero. The procedure is illustrated in Fig. 3.
Once the corresponding components are eliminated from (5), the reduced system
can be inverted using the Moore-Penrose pseudo-inverse to recover x.f /.

There are several drawbacks to the SMRS that limit its performance and potential
implementation. First, the discretization process affects the SNR since some of the
samples are thrown out. Furthermore, spectral components down-converted to off
the grid frequencies are missed. In addition, the first recovery approach requires a
large number of sampling channels, proportional to the number of active bands K,
whereas the reduction procedure does not ensure a unique solution and the inversion
problem is ill-posed in many cases. Finally, in practice, synchronization between
channels sampling at different rates is challenging. Moreover, this scheme samples
wideband signals using low rate samplers. Practical ADCs introduce an inherent
bandwidth limitation, modeled by an anti-aliasing low-pass filter (LPF) with cutoff
frequency determined by the sampling rate, which distorts the samples. To avoid
this issue, the multi-rate strategy would require low rate samplers with large analog
bandwidth.



8 D. Cohen et al.

Fig. 4 Illustration of
multicoset sampling

out of 
active cosets

Multicoset Sampling

A popular sampling scheme for sampling wideband signals at the Nyquist rate is
multicoset or interleaved ADCs [1, 6, 23] in which several channels are used, each
operating at a lower rate. We now discuss how such systems can be used in the
sub-Nyquist regime.

Multicoset sampling may be described as the selection of certain samples from
the uniform Nyquist grid, as shown in Fig. 4, where TNyq D 1=fNyq denotes
the Nyquist period. More precisely, the uniform grid is divided into blocks of N
consecutive samples, from which only M < N are kept. Mathematically, the i th
sampling sequence is defined as

xci Œn� D

�
x.nTNyq/; n D mN C ci ; m 2 Z

0; otherwise;
(6)

where the cosets ci are ordered integers so that 0 � c1 < c2 < � � � < cM < N .
A possible implementation of the sampling sequences (6) is depicted in Fig. 5. The
building blocks are M uniform samplers at rate 1=NTNyq, where the i th sampler is
shifted by ciTNyq from the origin. When sampling at the Nyquist rate, M D N and
ci D .i � 1/.

The samples in the Fourier domain can be written as linear combinations of
spectrum slices of x.t/, such that [6]

z.f / D Ax.f /; f 2 Fs : (7)

Here, Fs D Œ�fs=2; fs=2� with fs D 1
NTNyq

� B the sampling rate of each channel.

The mth row of z.f / contains the discrete time Fourier transform of the samples
zmŒn�. The N � 1 vector x.f / denotes the spectrum slices of x.t/, where the i th
row of x.f / is xi .f / D X.f C .i � b.N C 2/=2c/fp/, and X.f / is the Fourier
transform of x.t/. Since x.t/ is assumed to be sparse, x.f / is sparse as well, and its
support, that is the set that contains the indices corresponding to its nonzero rows,
is determined by the frequency locations of the transmissions of x.t/. The M � N
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Δ

Time Shifts

Fig. 5 Schematic implementation of multicoset sampling. The input signal x.t/ is inserted into the
multicoset sampler that splits the signal intoM branches and delays each one by a fixed coefficient
ciTNyq. Every branch is sampled at the low rate 1=.NTNyq/ and then digitally processed to perform
spectrum sensing and signal reconstruction

sampling matrix A is a Vandermonde matrix with factors determined by the selected
delays or cosets ci . This relation is illustrated in Fig. 6. In the Nyquist regime, when
M D N , A is the Fourier matrix. The recovery processing described below is
performed in the time domain, where we have

zŒn� D AxŒn�; n 2 Z: (8)

The vector zŒn� collects the measurements at t D n=fs and xŒn� contains the sample
sequences corresponding to the spectrum slices of x.t/. Obviously, the sparsity
pattern of xŒn� is identical to that of x.f /, and it follows that xŒn� are jointly sparse
over time.

Our goal is to recover xŒn� from the samples zŒn�. The system (8) is underde-
termined due to the sub-Nyquist setup and known as infinite measurement vector
(IMV) in the CS literature [2, 21]. The digital reconstruction algorithm consists of
the following three stages [6] that we explain in more detail below:

1. The continuous-to-finite (CTF) block constructs a finite frame (or basis) from the
samples.

2. The support recovery formulates an optimization problem whose solution’s
support is identical to the support S of xŒn�, that is the active slices.

3. The signal is then digitally recovered by reducing (8) to the support of xŒn�.

The recovery of xŒn� for every n independently is inefficient and not robust to
noise. Instead, the CTF method, developed in [6], exploits the fact that the bands
occupy continuous spectral intervals so that xŒn� are jointly sparse, that is they have
the same spectral support S over time. The CTF then produces a finite system of
equations, called multiple measurement vectors (MMV) [2, 21] from the infinite
number of linear systems described by (8). The samples are first summed as
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Fig. 6 The spectrum slices of the input signal x.f / are shown here to be multiplied by the
coefficients ail of the sensing matrix A, resulting in the measurements zi for the i th channel.
Note that in multicoset sampling, only the slices’ complex phase is modified by the coefficients
ail . In the MWC sampling described below, both the phases and amplitudes are affected

Q D
X

n

zŒn�zH Œn�; (9)

and then decomposed to a frame V such that Q D VVH . Clearly, there are many
possible ways to select V. One option is to construct it by performing an eigen-
decomposition of Q and choosing V as the matrix of eigenvectors corresponding to
the nonzero (or large enough) eigenvalues. The finite-dimensional MMV system

V D AU (10)

is then solved for the sparsest matrix U with minimal number of nonidentically zero
rows using CS techniques [2, 21]. The key observation of this recovery strategy is
that the indices of the nonzero rows of U coincide with the active spectrum slices of
zŒn� [6]. These indices are referred to as the support of zŒn� and are denoted by S .

Once the support S is known, xŒn� is recovered by reducing the system of
equations (8) to S . The resulting matrix AS , that contains the columns of A
corresponding to S , is then inverted

xS Œn� D A�
SzŒn�: (11)
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Here, xS Œn� denotes the vector xŒn� reduced to its support. The remaining entries of
xŒn� are equal to zero.

The overall sampling rate of the multicoset system is

fTotal DMfs D
M

N
fNyq: (12)

The minimal number of channels is dictated by CS results [21] which imply that
M � 2K with fs � B per channel. The sampling rate can thus be as low as 2KB ,
which is twice the Landau rate [22].

Although this sampling scheme seems relatively simple and straightforward, it
suffers from several practical drawbacks [1]. First, as in the multi-rate approach,
multicoset sampling requires low rate ADCs with large analog bandwidth. Another
issue arises from the time shift elements, since maintaining accurate time delays
between the ADCs on the order of the Nyquist interval TNyq is difficult. Last, the
number of channelsM required for recovery of the active bands can be prohibitively
high. The MWC, presented in the next section, uses similar recovery techniques
while overcoming these practical sampling issues.

MWC Sampling

The MWC [7] exploits the blind recovery ideas developed in [6] and combines
them with the advantages of analog RF demodulation. To circumvent the analog
bandwidth issue in the ADCs, an RF front-end mixes the input signal x.t/ with
periodic waveforms. This operation imitates the effect of delayed undersampling
used in the multicoset scheme and results in folding the spectrum to baseband
with different weights for each frequency interval. The MWC achieves aliasing by
mixing the signal, which is filtered prior to sampling. The ADC’s input is thus a
narrowband signal in contrast with multicoset which samples a wideband signal
at a low rate to create aliasing. This characteristic of the MWC enables practical
hardware implementation, which will be described in section “MWC Hardware”.

More specifically, the MWC is composed of M parallel channels. In each
channel, x.t/ is multiplied by a periodic mixing function pi .t/ with period Tp D
1=fp and Fourier expansion

pi .t/ D

1X

lD�1

aile
j 2�Tp

lt
: (13)

The mixing process aliases the spectrum, such that each band appears in baseband.
The signal then goes through a LPF with cutoff frequency fs=2 and is sampled at
rate fs � fp . The analog mixture boils down to the same mathematical relation
between the samples and the N D fNyq=fs frequency slices of x.t/ as in multicoset
sampling, namely, (7) in frequency and (8) in time, as shown in Fig. 6. Here, theM�
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N sampling matrix A contains the Fourier coefficients ail of the periodic mixing
functions. The recovery conditions and algorithm are identical to those described
for multicoset sampling.

Choosing the channels’ sampling rate fs to be equal to the mixing rate fp results
in a similar configuration as the multicoset scheme in terms of the number of
channels. In this case, the minimal number of channels required for the recovery
of K bands is 2K. The number of branches dictates the total number of hardware
devices and thus governs the level of complexity of the practical implementation.
Reducing the number of channels is a crucial challenge for practical implementation
of a CR receiver. The MWC architecture presents an interesting flexibility property
that permits trading channels for sampling rate, allowing to drastically reduce the
number of channels, even down to a single channel.

Consider a configuration where fs D qfp , with odd q. In this case, the i th
physical channel provides q equations over Fp D Œ�fp=2; fp=2�, as illustrated in
Fig. 7. Conceptually, M physical channels sampled at rate fs D qfp are equivalent
toMq channels sampled at fs D fp . The number of channels is thus reduced at the
expense of higher sampling rate fs in each channel and additional digital processing.
The output of each of the M physical channels is digitally demodulated and filtered
to produce samples that would result from Mq equivalent virtual branches. This
happens in the so-called expander module, directly after the sampling stage and
before the digital processing described above, in the context of multicoset sampling.
At its brink, this strategy allows to collapse a system with M channels to a single
branch with sampling rate fs DMfp (further details can be found in [7, 24, 25]).

The MWC sampling and recovery processes are illustrated in Fig. 8. This
approach results in a hardware-efficient sub-Nyquist sampling method that does not
suffer from the practical limitations described in previous sections, in particular,

a

b

Fig. 7 Illustration of the expander configuration for q D 5. (a) Spectrum of the output Qzi Œn� of the
physical i th channel, (b) spectrum of the samples zi;j Œn� of the q D 5 equivalent virtual channels,
for j D 1; : : : ; 5, after digital expansion
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Fig. 8 Schematic implementation of the MWC analog sampling front-end and digital signal
recovery from low rate samples

the analog bandwidth limitation of low rate ADCs. In addition, the number of
MWC channels can be drastically reduced below 2K to as few as one, using a
higher sampling rate fs in each channel and additional digital processing. This
tremendously reduces the burden on hardware implementation. However, the choice
of appropriate periodic functions pi .t/ to ensure correct recovery is challenging.
Some guidelines are provided in [2, 26, 27].

Uniform Linear Array-Based MWC

An alternative sensing configuration, composed of a uniform linear array (ULA) and
relying on the sampling paradigm of the MWC, is presented in [28]. The sensing
system consists of a ULA composed of M sensors, with two adjacent sensors
separated by a distance d , such that d < c=.j cos.�/jfNyq/, where c is the speed
of light and � is the angle representing the DOA of the signal x.t/. This system,
illustrated in Fig. 9, capitalizes on the different accumulated phases of the input
signal between sensors, given by ej 2�fi �m , where

�m D
dm

c
cos.�/ (14)

is the delay at the mth sensor with respect to the first one. Each sensor implements
one channel of the MWC, that is the input signal is mixed with a periodic function,
low-pass filtered and then sampled at a low rate.

This configuration has three main advantages over the standard MWC. First,
it allows for a simpler design of the mixing functions which can be identical
in all sensors. The only requirement on p.t/, besides being periodic with period
Tp � 1=B , is that none of its Fourier series coefficients within the signal’s Nyquist
bandwidth is zero. Second, the ULA-based system outperforms the MWC in terms
of recovery performance in low SNR regimes. Since all the MWC channels belong
to the same sensor, they are all affected by the same additive sensor noise. In the
ULA architecture, each channel belongs to a different sensor with uncorrelated
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Fig. 9 ULA configuration with M sensors, with distance d between two adjacent sensors. Each
sensor includes an analog front-end composed of a mixer with the same periodic function p.t/, a
LPF and a sampler, at rate fs

sensor noise between channels. The alternative approach benefits from the same
flexibility as the standard MWC in terms of collapsing the channels, which translates
into reducing the antennas in the alternative configuration. This lead to a trade-off
exists between hardware complexity, governed by the number of antennas, and SNR.
Finally, as will be shown in section “The CaSCADE System”, the modified system
can be easily extended to enable joint spectrum sensing and DOA estimation.

Similarly to the previous sampling schemes, the samples z.f / can be expressed
as a linear transformation of the unknown vector of slices x.f /, such that

z.f / D Ax.f /; f 2 Fs : (15)

Here, x.f / is a non-sparse vector that contains cyclic shifted, scaled, and sampled
versions of the active bands, as shown in Fig. 10. In contrast to the previous methods,
in this configuration, the matrix A, defined by

A D

0

BBB@

ej 2�f1�1 � � � ej 2�fN �1
:::

:::

ej 2�f1�M � � � ej 2�fN �M

1

CCCA ; (16)

depends on the unknown carrier frequencies. As before, in the time domain

zŒn� D AxŒn�; n 2 Z: (17)
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Fig. 10 (a) Original source
signals at baseband (before
modulation), (b) output
signals at baseband x.f /
after modulation, mixing,
filtering, and sampling

0

0

0

0

0

0

a b

Two approaches are presented in [28] to recover the carrier frequencies of the
transmissions composing the input signal. The first is based on CS algorithms and
assumes that the carriers lie on a predefined grid. In this case, the resulting sensing
matrix, which extends A with respect to the grid, is known and the expanded vector
x.f / is sparse. This leads to a similar system as (7) or (8) which can be solved using
the recovery paradigm from [6], described in the context of multicoset sampling.

In the second technique, the grid assumption is dropped, and ESPRIT [20] is
used to estimate the carrier frequencies. This approach first computes the sample
covariance of the measurements

R D
X

n

zŒn�zH Œn� (18)

and performs a singular value decomposition (SVD). The nonzero singular values
correspond to the signal’s subspace, and the carrier frequencies are then estimated
from these. Once the carriers are recovered, the signal itself is reconstructed by
inverting the sampling matrix A in (17).

The minimal number of sensors required by both reconstruction methods in
noiseless settings is M D 2K, with each sensor sampling at the minimal rate of
fs D B to allow for perfect signal recovery [28]. The proposed system thus achieves
the minimal sampling rate 2KB derived in [6]. We note that the expander strategy
proposed in the context of the MWC can be applied in this configuration as well.

MWC Hardware

MWC Prototype

One of the main aspects that distinguish the sub-Nyquist MWC from other
sampling schemes is its practical implementation [24], proving the feasibility
of sub-Nyquist sampling even under distorting effects of analog components and
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NI© PXIe-1071 with DC Coupled 4-Channel ADCThe MWC Card

FPGA Series Generator

XILINX FPGA – VC707

PC - Matlab Based Controller

+

PC - Labview + Matlab Based Controller

Signal Hound® Vector Signal Generator

Fig. 11 Hardware implementation of the MWC prototype, including the RF signal generators,
analog front-end board, FPGA series generator, ADC, and DSP

Fig. 12 MWC CR system prototype: (a) vector signal generator (VSG), (b) FPGA mixing
sequences generator, (c) MWC analog front-end board, (d) RF combiner, (e) spectrum analyzer,
(f) ADC, and DSP

physical phenomena. A hardware prototype, shown in Fig. 11, was developed and
built according to the block diagram in Fig. 8. The main hardware components
that were used in the prototype can be seen in Fig. 11. In particular, the system
receives an input signal with Nyquist rate of 6GHz and spectral occupancy of up
to 200MHz and samples at an effective rate of 480MHz, that is only 8% of the
Nyquist rate and 2:4 times the Landau rate. This rate constitutes a relatively small
oversampling factor of 20% with respect to the theoretical lower sampling bound.
This section describes the different components of the hardware prototype, shown
in Fig. 12, explaining the various considerations that were taken into account when
implementing the theoretical concepts on actual analog components.

At the heart of the system lies the proprietary MWC board [24] that implements
the sub-Nyquist analog front-end. The card uses a high-speed 1-to-4 analog splitter
that duplicates the wideband signal to M D 4 channels, with an expansion factor
of q D 5, yielding Mq D 20 virtual channels after digital expansion. Then,
an analog preprocessing step, composed of preliminary equalization, impedance
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Fig. 13 Hardware RF chain detailed schematics, including amplifiers, attenuators, filters, mixers,
samplers, and synchronization signals required for precise and accurate operation. The distortions
induced by each component are indicated as well

corrections, and gain adjustments, aims at maintaining the dynamic range and
fidelity of the input in each channel. Indeed, the signal and mixing sequences must
be amplified to specific levels before entering the analog mixers to ensure proper
behavior emulating mathematical multiplication with the mixing sequences. The
entire analog path of the multiband input signal is described in Fig. 13.

The modulated signal next passes through an analog anti-aliasing LPF. The anti-
aliasing filter must be characterized by both an almost linear phase response in the
pass band, between 0 to 50MHz, and an attenuation of more than 20 dB at fs=2 D
60MHz. A Chebyshev LPF of 7th order with cutoff frequency (�3 dB) of 50MHz
was chosen for the implementation. After impedance and gain corrections, the signal
now has a spectral content limited to 50MHz that contains a linear combination of
the occupied bands with different amplitudes and phases, as seen in Fig. 6. Finally
the low rate analog signal is sampled by a National Instruments c� ADC operating at
120MHz, leading to a total sampling rate of 480MHz.

The mixing sequences that modulate the signal play an essential part in signal
recovery. They must have low cross-correlations with each other, while spanning a
large bandwidth determined by the Nyquist rate of the input signal, and yet be easy
enough to generate with relatively cheap, off-the-shelf hardware. The sequences
pi .t/, for i D 1; : : : ; 4, are chosen as truncated versions of Gold Codes [29], which
are commonly used in telecommunication (CDMA) and satellite navigation (GPS).
Mixing sequences based on Gold codes were found to give good results in the MWC
system [26], primarily due to small bounded cross-correlations within a set.

Since Gold codes are binary, the mixing sequences are restricted to alternating
˙1 values. This fact allows to digitally generate the sequences on a dedicated
FPGA. Alternatively, they can be implemented on a small chip with very low power
and complexity. The added benefit of producing the mixing sequences on such
a platform is that the entire sampling scheme can be synchronized and triggered
using the same FPGA with minimally added phase noise and jitter, keeping a closed
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synchronization loop with the samplers and mixers. A XiLinX VC707 FPGA acts as
the central timing unit of the entire sub-Nyquist CR setup by generating the mixing
sequences and the synchronization signals required for successful operation. It is
crucial that both the mixing period Tp D 1=fp and the low rate samplers operating
at .q C 1/fp (due to intended oversampling) are fully synchronized, in order to
ensure correct modeling of the entire system and consequently guarantee accurate
support detection and signal reconstruction.

The digital back-end is implemented using a National Instruments c� PXIe-1065
computer with DC-coupled ADC. Since the digital processing is performed at the
low rate fs , very low computational load is required in order to achieve real-time
recovery. MATLAB R�and LabVIEW R� environments are used for implementing the
various digital operations and provide an easy and flexible research platform for
further experimentations, as discussed in the next sections. The sampling matrix A
is computed once off-line, using the calibration process outlined in [25].

Support Recovery

The prototype is fed with RF signals composed of up to 5 carrier transmissions
with an unknown total bandwidth occupancy of up to 200MHz and Nyquist rate of
6GHz. An RF input x.t/ is generated using vector signal generators (VSG), each
producing one modulated data channel with individual bandwidth of up to 20MHz.
The input transmissions then go through an RF combiner, resulting in a dynamic
multiband input signal. This allows to test the system’s ability to rapidly sense the
input spectrum and adapt to changes, as required by modern CR standards (e.g.,
IEEE 802.22). In addition, the described setup is able to simulate more complex
scenarios, including collaborative spectrum sensing [30,31], joint DOA estimation
[28], cyclostationary-based detection [32], and various modulation schemes such as
PSK, OFDM, and more, for verifying sub-Nyquist data reconstruction capabilities.

Support recovery is digitally performed on the low rate samples, as presented
above in the context of multicoset sampling. The prototype successfully recovers the
support of the transmitted bands transmitted, when SNR levels are above 15 dB, as
demonstrated in Fig. 14. Additional simulations presenting different input scenarios
can be found in [2]. More sophisticated detection schemes, such as cyclostationary
detection, allow to achieve perfect support recovery from the same sub-Nyquist
samples in lower SNR regimes of 0� 10 dB, as seen in Figs. 23 and 24, and will be
further discussed in section “Cyclostationary Detection”.

The main advantage of the MWC is that sensing is performed in real time for the
entire spectral range, even though the operation is performed solely on sub-Nyquist
samples, which results in substantial savings in both computational and memory
complexity. In additional tests, it is shown that the bandwidth occupied in each
band can also be very low without impeding the performance, as seen in Fig. 15,
where the support of signals with very low bandwidth (just 10% occupancy within
the 20MHz band) is correctly detected.
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Fig. 14 Screenshot from the MWC recovery software: low rate samples acquired from one MWC
channel at rate 120MHz (top), digital reconstruction of the entire spectrum, performed from sub-
Nyquist samples (middle), true input signal x.t/ showed using a fast spectrum analyzer (bottom)

Signal Reconstruction

Once the support is recovered, the data is reconstructed from the sub-Nyquist
samples. Reconstruction is performed by inverting the reduced sampling matrix
AS in the recovered support, applying (11). This step is performed in real time,
reconstructing the signal bands zŒn� one sample at a time, with low complexity due
to the small dimensions of the matrix-vector multiplication. We note that reconstruc-
tion does not require interpolation to the Nyquist grid. The active transmissions are
recovered at the low rate of 20MHz, corresponding to the bandwidth of the slices
z.f /.

The prototype’s digital recovery stage is further expanded to support decoding of
common communication modulations, including BPSK, QPSK, QAM, and OFDM.
An example for the decoding of three QPSK modulated bands is given in Fig. 16,
where the I/Q constellations are shown after reconstructing the original transmitted
signals xS (11), from their low rate and aliased sampled signals zn (8). The I/Q
constellations of the baseband signals is displayed, each individually decoded using
a general QPSK decoder. In this example, the user broadcasts text strings that are
then deciphered and displayed on screen.



20 D. Cohen et al.

Fig. 15 The setup is identical to Fig. 14. In this case, the individual transmissions have low
bandwidth, highlighting the structure of the signal when folding to baseband

There are no restrictions regarding the modulation type, bandwidth, or other
parameters, since the baseband information is exactly reconstructed regardless
of its respective content. Therefore, any digital modulation method, as well as
analog broadcasts, can be transmitted and deciphered without loss of informa-
tion, by applying any desirable decoding scheme directly on the sub-Nyquist
samples.

By combining both spectrum sensing and signal reconstruction, the MWC
prototype serves as two separate communication devices. The first is a state-
of-the-art CR that can perform real-time spectrum sensing at sub-Nyquist rates,
and the second is a unique receiver able to decode multiple data transmissions
simultaneously, regardless of their carrier frequencies while adapting to temporal
spectral changes in real time. In cases where the support of the potential active
transmissions is a priori known (e.g., potential cellular carriers), the MWC
may be used as an RF demodulator that efficiently acquires several frequency
bands simultaneously. Other schemes would require a dedicated demodulation
channel for each potentially active band. In this case, the mixing sequences
should be designed so that their Fourier coefficients are nonzero only in
the bands of interest, increasing SNR, and the support recovery stage is not
needed [33].
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Fig. 16 Demodulation, reconstruction, and detection of Nsig D 3 inputs from sub-Nyquist
samples using the MWC CR prototype. At the bottom, the signal is sampled by an external
spectrum analyzer showing the entire bandwidth of 3 GHz. Sub-Nyquist samples from an MWC
channel zi Œn� in the Fourier domain are displayed in the middle. The I/Q phase diagrams, showing
the modulation pattern of the transmitted bands after reconstruction from the low rate samples, are
presented at the top left. In the upper right corner, we see the information that was sent on each
carrier, proving successful reconstruction

Statistics Detection

In the previous sections, we reviewed recent sub-Nyquist sampling methods that
reconstruct a multiband signal, such as a CR signal, from low rate samples.
However, the final goal of CRs often only requires detection of the presence or
absence of the PUs’ transmissions and not necessarily their perfect reconstruction.
In this case, several works have proposed performing detection on second-order
signal statistics, which share the same frequency support as the original signal.
In particular, power and cyclic spectra have been considered for stationary and
cyclostationary [13] signals, respectively. Instead of recovering the signal from
the low rate samples, its statistics are reconstructed and the support is estimated
[32, 34–40].

Recovering second-order statistics rather than the signal itself benefits from two
main advantages. First, it allows to further reduce the sampling rate, as we will
discuss in the remainder of this section. Intuitively, statistics have fewer degrees
of freedom than the signal itself, requiring less samples for their reconstruction.
This follows from the assumption that the signal of interest is either stationary or
cyclostationary. Going one step further, the sparsity constraint can even be removed
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in this case, and the power/cyclic spectrum of non-sparse signals is recoverable from
samples obtained below the Nyquist rate [32, 34, 37, 38, 40]. This is useful for CRs
operating in less sparse environments, in which the lower bound of twice the Landau
rate may exceed the Nyquist rate. Second, the robustness to noise is increased due
to the averaging performed to estimate statistics. This is drastically improved in the
case of cyclostationary signals in the presence of stationary noise. Indeed, exploiting
cyclostationarity properties exhibited by communication signals allows to separate
them from stationary noise, leading to better detection in low SNR regimes [41].
In this section, we first review power spectrum detection techniques in stationary
settings and then extend these to cyclic spectrum detection of cyclostationary
signals.

Power Spectrum-Based Detection

In the statistical setting, the signal x.t/ is modeled as the sum of uncorrelated
wide-sense stationary transmissions. The stationarity assumption is key to further
reducing the sampling rate. In frequency, stationarity is expressed by the absence of
correlation between distinct frequency components. Specifically, as shown in [42],
the Fourier transform of a wide-sense stationary signal is a nonstationary white
process, such that

EŒX.f1/X
�.f2/� D Sx.f1/ı.f1 � f2/: (19)

Here, the power spectrum Sx.f / of x.t/ is the Fourier transform of its autocorre-
lation rx.�/. Thus, obviously, the support of Sx.f / is identical to that of X.f /. In
addition, due to (19), the autocorrelation matrix of the N spectrum frequency slices
of x.t/ comprising x.f / is diagonal, containing only N degrees of freedom, which
allows sampling rate reduction.

Another intuitive interpretation to the reduced number of degrees of freedom
in statistics recovery is given in the time domain. There, the autocorrelation of
stationary signals rx.�/ D E Œx.t/x.t � �/� is only a function of the time lags � .
The cardinality of the difference set, namely, the set that contains the time lags, may
be greater than that of its associated original set, up to the order of its square, for
an appropriate choice of sampling times [35,43]. When the sampling scheme is not
tailored to power spectrum recovery, the sampling rate can be as low as the Landau
rate [38], which constitutes a worst-case scenario in terms of sampling rate. With
appropriate design, the autocorrelation or power spectrum may be estimated from
samples with arbitrarily low average sampling rate [34,35,43–45] at the expense of
increased latency.

We first review power spectrum recovery techniques that do not exploit any
specific design. We then present methods that further reduce the sampling rate by
adapting the sampling scheme to the purpose of autocorrelation or power spectrum
estimation. Finally, we extend these results to the cyclostationary model.
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Power Spectrum Recovery
In this section, we first focus on sampling with generic MWC or multicoset schemes
without specific design of the mixing sequences or cosets, respectively.

To recover Sx.f / from the low rates samples z.f /, consider the correlation
matrix of the latter Rz.f / D EŒz.f /zH.f /� [38]. Using (7), Rz.f / can be
related to correlations between the slices x.f /, that is Rx.f / D EŒx.f /xH.f /� as
follows

Rz.f / D ARx.f /AH ; f 2 Fs : (20)

From (19), the correlation matrix Rx.f / is diagonal and contains the power
spectrum Sx.f / at the corresponding frequencies, as

Rx.i;i/ .f / D Sx.f C ifs �
fNyq

2
/; f 2 Fs : (21)

Recovering the power spectrum Sx.f / is thus equivalent to recovering the matrix
Rx.f /. Exploiting the fact that Rx.f / is diagonal and denoting by rx.f / its
diagonal, (20) can be reduced to

rz.f / D . NAˇ A/rx.f /; (22)

where rz.f / D vec.Rz.f // concatenates the columns of Rz.f /. The matrix NA is
the conjugate of A andˇ denotes the Khatri-Rao product [46].

Generic choices of the sampling parameters, either mixing sequences or cosets,
which are only required to ensure that A is full spark, are investigated in [38].
Then, the Khatri-Rao product . NAˇ A/ is full spark as well if M > N=2, that is the
number of rows of A is at least half the number of slices N . The minimal sampling
rate to recover rx.f /, and consequently Sx.f /, from rz.f / in (22) is thus equal
to the Landau rate KB , namely, half the rate required for signal recovery [38].
The recovery of rx.f / is performed using the procedure presented in the context
of signal recovery on (22), that is CTF, support recovery, and power spectrum
reconstruction (rather than signal reconstruction).

The same result for the minimal sampling rate is valid for non-sparse signals, for
which KB is in the order of fNyq [38]. The power spectrum of such signals may
be recovered at half their Nyquist rate. This means that even without any sparsity
constraints on the signal in crowded environments, a CR can retrieve the power
spectrum of the received signal by exploiting the stationarity property of the latter.
In this case, the system (22) is overdetermined, and rx.f / is obtained by a simple
pseudo-inverse operation.

Obviously, in practice, we do not have access to Rz.f /, which thus needs to be
estimated. The overall sensing time is divided intoNf frames of lengthNs samples.
In [38], different choices of Nf and Ns are examined for a fixed sensing time. In
order to estimate the autocorrelation matrix Rz.f / in the frequency domain, we
first compute the estimates of zi .f /; 1 � i � M , denoted by Ozi .f /, using the fast
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Fourier transform (FFT) on the samples zi Œn� over a finite time window. We then
estimate the elements of Rz.f / as

ORz.i; j; f / D
1

Nf

NfX

`D1

Oz`.i; f /Oz`.j; f /; f 2 Fs; (23)

where Oz`.i; f / is the value of the FFT of the samples zi Œn� from the `th frame, at
frequency f . In practice, the number of samples dictates the number of FFT coef-
ficients in the frequency domain and therefore the resolution of the reconstructed
power spectrum.

Once Orx.f / is reconstructed, the following test statistic,

�i D
X

f 2Fs

jOrxi .f /j
2; 1 � i � N; (24)

may be adopted in order to detect the occupied support. Here, Orxi .f / is the i th entry
of Orx.f /, and the sum is performed over the frequency band of interest to detect
the presence of a PU. Alternatively, other detection statistics can be used on the
reconstructed power spectrum, such as eigenvalue-based test statistics [47].

Power Spectrum Sensing: Tailored Design
Sampling approaches specifically designed for estimating the autocorrelation of
stationary signals at much finer lags than the sample spacings have been studied
recently in detail [35,43,44,48]. The key observation here is that the autocorrelation
is a function of the lags only, namely, the differences between pairs of sample times.
Thus, it is estimated at all-time lags contained in the difference co-array, composed
of all the differences between pairs of elements from the original sampling array.
Since the size of the difference co-array may be greater than that of the sampling
set, it is possible to sample below the Nyquist rate and estimate the correlation at
all lags on the Nyquist grid, from the low rate samples. Therefore, the sampling
times should be carefully chosen so as to maximize the cardinality of the difference
co-array.

The first approach we present adopts multicoset sampling previously reviewed
while specifically designing the cosets to obtain a maximal number of differences. In
the previous section, the results were derived for any coset selection. Here, we show
that the sampling rate may be lower if the cosets are carefully chosen. When using
multicoset sampling, the sampling matrix A in (20) or (22) is a partial Fourier matrix
with .i; k/th element ej

2�
N ci k . A typical element of . NAˇ A/ is then ej

2�
N .ci�cj /k . If all

cosets are distinct, then the size of the difference set over one period is greater than
or equal to 2M � 1. This bound corresponds to a worst-case scenario, as discussed
in the previous section, and leads to a sampling rate of at least half Nyquist in the
non-sparse setting and at least Landau for a sparse signal with unknown support.
This happens, for example, if we select the first or last M cosets or if we keep only
the even or odd cosets.
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Fig. 17 Minimal sparse ruler of order M D 6 and length N D 10

To maximize the size of the difference set and increase the rank of . NAˇ A/, the
cosets can be chosen [35,48] using minimal linear and circular sparse rulers [49]. A
linear sparse ruler is a set of integers from the interval Œ0; N �, such that the associated
difference sets contain all integers in Œ0; N �. Intuitively, it can be seen as a ruler with
some marks erased but still able to measure all integer distances between 0 and its
length. For example, consider the minimal sparse ruler of length N D 10. This
ruler requires M D 6 marks, as shown in Fig. 17. Obviously, all the lags 0 � � �
10 on the integer grid are identifiable. There is no closed form expression for the
maximum compression ratioM=N that is achievable using a sparse ruler; however,
the following bounds hold

p
�.N � 1/

N
�
M

N
�

p
3.N � 1/

N
; (25)

where � � 2:4345 [48]. A circular or modular sparse ruler extends this idea to
include periodicity. Such designs that seek minimal sparse rulers, that is rulers with
minimal number of marks M , allow to achieve compression ratios M=N on the
order of

p
N . As N increases, the compression ratio may be arbitrarily low.

Two additional sampling techniques specifically designed for autocorrelation
recovery are nested arrays [43] and co-prime sampling [44], presented in the context
of autocorrelation estimation as well as beamforming and DOA estimation applica-
tions. In nested and co-prime structures, similarly to multicoset, the corresponding
co-arrays have more degrees of freedom than those of the original arrays, leading
to a finer grid for the time lags with respect to the sampling times. We now briefly
review both sampling structures and their corresponding difference co-arrays and
show how the autocorrelation of an arbitrary stationary signal can be recovered on
the Nyquist grid from these low rate samples.

In its simplest form, the nested array [43] structure has two levels of sampling
density. The first-level samples are at the N1 locations f`TNyqg1�`�N1 , and the
second-level samples are at the N2 locations f.N1 C 1/kTNyqg1�k�N2 . This nonuni-
form sampling is then repeated with period .N1C1/N2TNyq. Since there areN1CN2
samples in intervals of length .N1C1/N2TNyq, the average sampling rate of a nested
array sampling set is given by

fs D
N1 CN2

.N1 C 1/N2TNyq
	

1

N1TNyq
C

1

N2TNyq
; (26)

which can be arbitrarily low since N1 and N2 may be as large as we choose, at the
expense of latency.

Now, consider the difference co-array which has contribution from the cross-
differences and the self-differences. The non-negative cross-differences, normalized



26 D. Cohen et al.

by TNyq for clarity, are given by

n D .N1 C 1/k � `; 1 � k � N2; 1 � ` � N1: (27)

All differences in the range 1 � n � .N1 C 1/N2 � 1 are covered, except for
the multiples of N1 C 1. These are precisely the self-differences among the second
array. As a result, the difference co-array is a filled array represented by the set
of all integers �Œ.N1 C 1/N2 � 1� � n � Œ.N1 C 1/N2 � 1�. Going back to our
autocorrelation or power spectrum estimation problem, this result shows that by
proper averaging, we can estimate R.�/ at any lag � on the Nyquist grid for any
stationary signal from the nested array samples, with arbitrarily low sampling rate.

Co-prime sampling involves two uniform sampling sets with spacingN1TNyq and
N2TNyq, respectively, whereN1 andN2 are co-prime integers. Therefore, the average
sampling rate of such a sampling set, given by

fs D
1

N1TNyq
C

1

N2TNyq
; (28)

can be made arbitrarily small compared to the Nyquist rate 1=TNyq.
The associated difference set normalized by TNyq is composed of elements of

the form n D N1k � N2`. Since N1 and N2 are co-prime, there exist integers k
and ` such that the above difference achieves any integer value n. Therefore, the
autocorrelation can be estimated by proper averaging, as

ORŒn� D
1

Q

Q�1X

qD0

x.N1.k CN2q//x
�.N2.`CN1q//; (29)

where Q is the number of snapshots used for averaging. Again, the autocorrelation
of any stationary signal may be estimated over the Nyquist grid from samples with
arbitrarily low rate, and without any sparsity constraint.

The main drawback of both techniques, besides the practical issue of analog
bandwidth and channel synchronization similarly to multicoset sampling, is the
added latency required for sufficient averaging. In addition, nested array sampling
still requires one sampler operating at the Nyquist rate. Thus, there is no saving in
terms of hardware but only in memory and computation.

Cyclostationary Detection

Communication signals typically exhibit statistical periodicity, due to modulation
schemes such as carrier modulation or periodic keying [50]. Therefore, such signals
are better modeled as cyclostationary rather than stationary processes. A character-
istic function of such processes, the cyclic spectrum S˛x .f /, extends the traditional
power spectrum to a two dimensional map, with respect to two frequency variables,
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angular and cyclic. The cyclic spectrum exhibits spectral peaks at certain frequency
locations, the cyclic frequencies, which are determined by the signal’s parameters,
particularly the carrier frequency and symbol rate [41]. This constitutes the main
advantage of cyclostationary detection. Stationary noise and interference exhibit no
spectral correlation [41], as shown in (19), rendering such detectors highly robust
to noise. Compressive power spectrum recovery techniques have been extended to
reconstruction of the cyclic spectrum from the same compressive measurements. In
this section, we first provide some general background on cyclostationarity and then
review sub-Nyquist cyclostationary detection approaches.

Cyclostationarity
A process x.t/ is said to be wide-sense cyclostationary with period T0 if its mean
	x.t/ D EŒx.t/� and autocorrelation Rs.t; �/ D EŒx.t/x.t C �/� are both periodic
with period T0 [13], that is

	x.t C T0/ D 	x.t/; Rx.t C T0; �/ D Rx.t; �/; (30)

for all t 2 R. Given a wide-sense cyclostationary random process, its autocorrela-
tion Rx.t; �/ can be expanded in a Fourier series

Rx.t; �/ D
X

˛

R˛x.�/e
j 2�˛t ; (31)

where the sum is over integer multiples of the fundamental frequency 1=T0 and the
Fourier coefficients, referred to as cyclic autocorrelation functions, are given by

R˛x.�/ D
1

T0

Z T0=2

�T0=2

Rx.t; �/e
�j 2�˛tdt: (32)

The cyclic spectrum is the Fourier transform of (32) with respect to � , namely,

S˛x .f / D

Z 1

�1

R˛x.�/e
�j 2�f �d�; (33)

where ˛ is referred to as the cyclic frequency and f is the angular frequency [13]. If
there is more than one fundamental frequency 1=T0, then the process x.t/ is said to
be poly-cyclostationary in the wide sense. In this case, the cyclic spectrum contains
harmonics (integer multiples) of each of the fundamental cyclic frequencies [41].
These cyclic frequencies are governed by the transmissions’ carrier frequencies and
symbol rates as well as modulation types.

An alternative and more intuitive interpretation of the cyclic spectrum expresses
it as the cross-spectral density S˛x .f / D Suv.f / of two frequency-shifted versions
of x.t/, u.t/ and v.t/, such that

u.t/ , x.t/e�j�˛t ; v.t/ , x.t/eCj�˛t : (34)

Then, from [42], it holds that
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S˛x .f / D Suv.f / D E

h
X
�
f C

˛

2

�
X�

�
f �

˛

2

�i
: (35)

Thus, the cyclic spectrum S˛x .f / measures correlations between different spectral
components of x.t/. Stationary signals, which do not exhibit spectral correlation
between distinct frequency components, appear only at ˛ D 0. This property is the
key to robust detection of cyclostationary signals in the presence of stationary noise,
in low SNR regimes.

The support region in the .f; ˛/ plane of the cyclic spectrum of a bandpass cyclo-
stationary signal is composed of four diamonds, as shown in Fig. 18. Therefore, the
cyclic spectrum S˛x .f / of a multiband signal with K uncorrelated transmissions is
supported over 4K diamond-shaped areas. Figure 19 illustrates the cyclic spectrum
of two modulation types, AM and BPSK.

Cyclic Spectrum Recovery
In the previous section, we showed how the power spectrum Sx.f / can be
reconstructed from correlations Rz.f / between the samples obtained using the
MWC or multicoset sampling. To that end, we first related Sx.f / to the slices’

Fig. 18 Support region of
the cyclic spectrum of a
bandpass cyclostationary
signal with carrier frequency
fc and bandwidth B

Fig. 19 Cyclic spectrum magnitude of signals with (a) AM and (b) BPSK modulations
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correlation matrix Rx.f / and then recovered the latter from Rz.f /. Here, this
approach is extended to the cyclic spectrum S˛x .f /. We first show how it is related

to shifted correlations between the slices, namely, Ra
x.
Qf / D E

h
x. Qf /xH. Qf C a/

i
,

for a 2 Œ0; fs� and Qf 2 Œ0; fs � a�. Next, similarly to power spectrum
recovery, Ra

x.
Qf / is reconstructed from shifted correlations of the samples Ra

z .
Qf / D

E

h
z. Qf /zH. Qf C a/

i
. Once the cyclic spectrum S˛x .f / is recovered, we estimate

the transmissions’ carriers and bandwidth by locating its peaks. Since the cyclic
spectrum of stationary noise n.t/ is zero for ˛ ¤ 0, cyclostationary detection is
more robust to noise than stationary detection.

The alternative definition of the cyclic spectrum (35) implies that the elements
in the matrix Ra

x.
Qf / are equal to S˛x .f / at the corresponding ˛ and f . Indeed, it is

easily shown [32] that

Ra
x.
Qf /.i;j / D S

˛
x .f /; (36)

for

˛ D .j � i/fs C a

f D �
fNyq

2
C Qf �

fs

2
C
.j C i/fs

2
C
a

2
: (37)

Here Ra
x.
Qf /.i;j / denotes the .i; j /th element of Ra

x.
Qf /. This means that each entry

of the cyclic spectrum S˛x .f / can be mapped to an element from one of the
correlation matrices Ra

x.
Qf / and vice versa. Using (7) and similarly to (20) in the

context of power spectrum recovery, we relate the shifted correlations matrices of
x.f / and z.f / as

Ra
z .
Qf / D ARa

x.
Qf /AH ; Qf 2 Œ0; fs � a� ; (38)

for all a 2 Œ0; fs�.
Recall that, in the context of stationary signals, Rx.f / is diagonal. Here,

understanding the structure of Ra
x.
Qf / is more involved. It was shown [32] that

Ra
x.
Qf / contains nonzero elements on its 0, 1, and �1 diagonals and anti-diagonals.

Besides the nonzero entries being contained only in the three main and anti-
diagonals, additional structure is exhibited, limiting to two the number of nonzero
elements per row and column of the matrix Ra

x.
Qf /. The above pattern follows from

two main considerations. First, each frequency component, namely, each entry of
x.f /, is correlated to at most two frequencies from the shifted vector of slices
x. Qf C a/, one from the same frequency band and one from the symmetric band.
Second, the correlated component can be either in the same/symmetric slice or in
one of the adjacent slices.

Figures 21 and 22 illustrate these correlations for a D 0 and a D fs=2,
respectively. First, in Fig. 20, an illustration of the spectrum of x.t/, namely, X.f /,
is presented for the case of a sparse signal buried in stationary noise. It can be seen
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Fig. 20 Original spectrum X.f /. The cyclostationary transmissions are shown as a triangle-,
trapezoid-, and rectangle-shaped spectral components, buried in a flat stationary noise

Fig. 21 (a) Spectrum slices vector x. Qf /, (b) correlated slices of x. Qf / in the matrix R0
x.
Qf /

that frequency bands of X.f / either appear in one fp-slice or are split between two
slices at most since fp � B . The resulting vector of spectrum slices x.f / and the
correlations between these slices without any shift, namely, R0

x.
Qf /, are shown in

Fig. 21a, b, respectively. In Fig. 21b, we observe that self-correlations appear only
on the main diagonal since every frequency component is correlated with itself. In
particular, the main diagonal contains the noise’s power spectrum (in green). Cross-
correlations between the yellow symmetric triangles appear in the 0-anti-diagonal,
whereas those of the blue trapezes are contained in the �1 and C1 anti-diagonals.
The red rectangles do not contribute any cross-correlations for a D 0.

Figure 22a, b show the vector x. Qf / and its shifted version x. QfCa/ for a D fs=2,
respectively. The resulting correlation matrix Ra

x.
Qf / appears in Fig. 22c. Here, the

self-correlations of the triangle-shaped frequency component appear in the main
diagonal and that of the trapezoid-shaped component in the �1 diagonal. The cross-
correlations all appear in the anti-diagonal for the shift a D fs=2. Note that since
the noise is assumed to be wide-sense stationary, from (19), a noise frequency
component is correlated only with itself. Thus, n.t/ contributes nonzero elements
only on the diagonal of R0

x.
Qf /.
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Fig. 22 (a) Spectrum slices vector x. Qf /, (b) spectrum slices shifted vector x. Qf C a/, for a D
fs=2, (c) correlated slices of x. Qf / and x. Qf C a/ in the matrix Ra

x.
Qf /, with a D fs=2

To recover Ra
x.
Qf / from Ra

z .
Qf /, structured CS techniques are used in [32] that

aim at reconstructing a sparse matrix while taking into account its specific structure,
as described above. Once the cyclic spectrum is reconstructed, the number of
transmissions and their respective carrier frequencies and bandwidths are estimated,
as discussed in the next section. The detection performed on the cyclic spectrum is
more robust to stationary noise than power spectrum-based detection, at the expense
of a slightly higher sampling rate, as shown in [32]. More precisely, in the presence
of stationary noise, the cyclic spectrum may be reconstructed from samples obtained
at 4=5 of the Nyquist rate, without any sparsity assumption on the signal. If the
signal of interest is sparse, then the minimal sampling rate is further reduced to 8=5
of the Landau rate [32].

Carrier Frequency and Bandwidth Estimation
Many detection and classification algorithms based on cyclostationarity have been
proposed (see reviews [13,14]). To assess the presence or absence of a signal, a first
group of techniques requires a priori knowledge of its parameters and particularly
of the carrier frequency, which is the information that CRs should uncover in the
first place. A second strategy focuses on a single transmission, which does not fit
the multiband model. Alternative approaches apply machine learning tools to the
modulation classification of a single signal with unknown carrier frequency and
symbol rate. Besides being only suitable for a single transmission, these methods
require a training phase, which would be a main drawback for CR purposes. In
particular, these techniques can only cope with PUs whose modulation type and
parameters were part of the training set.
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For CR purposes, we need a detector designed to comply with certain require-
ments: (1) carrier frequency and bandwidth estimation rather than simple detection
of the presence or absence of a signal; (2) blind detection, namely, without knowl-
edge of the carrier frequencies, bandwidths, and symbol rates of the transmissions;
(3) simultaneous detection of several transmissions; (4) non-learning approach, i.e.,
with no training phase. The parameter estimation algorithm, presented in [51], is a
simple parameter extraction method from the cyclic spectrum of multiband signals
that answers these requirements. It allows the estimation of several carriers and
several bandwidths simultaneously, as well as the number of transmissions, namely,
half the number of occupied bands K=2 for real-valued signals. The proposed
parameter estimation algorithm can be decomposed into the following four main
steps: preprocessing, thresholding, clustering, and parameter estimation.

The preprocessing simply aims at compensating for the presence of stationary
noise in the cyclic spectrum at the cyclic frequency ˛ D 0, by attenuating the
energy of the cyclic spectrum at this frequency. Thresholding is then applied to
the resulting cyclic spectrum in order to find its peaks. The locations and values of
the selected peaks are then clustered using k-means to find the corresponding cyclic
feature, after estimating the number of clusters by applying the elbow method [52].
It follows that, apart from the cluster present in DC, the number of real signals,
namely, Nsig D K=2, is equal to half the number of clusters. Next, the carrier
frequency fi , which corresponds to the highest peak [41], is estimated for each
transmission. The bandwidth Bi is found by locating the edge of the support of the
angular frequencies at the corresponding cyclic frequency ˛i D 2fi .

Results presented in [32] demonstrate that cyclostationary-based detection, as
described in this section, outperforms energy detection carried on the signal’s
spectrum or power spectrum, at the expense of increased complexity. We now show
similar results obtained from hardware simulations, performed using the prototype
from Fig. 12.

Hardware Simulations: Robustness to Noise

Cyclostationary detection has been implemented in the MWC CR prototype. The
analog front-end is identical to that of the original prototype, and only the digital
recovery part is modified since the cyclic spectrum is recovered directly from the
MWC low rate samples. Preliminary testing suggests that sensing success is achiev-
able at SNRs lower by 10 dB than those allowed by energy detection performed on
the recovered spectrum or power spectrum. Representative results shown in Figs. 23
and 24 demonstrate the advantage of cyclostationary detection over energy detection
in the presence of noise. The figures show the reconstructed cyclic spectrum from
samples of the MWC prototype as well as cross-sections at f D 0 and ˛ D 0, which
corresponds to the power spectrum. This increased robustness to noise comes at the
expense of more complex digital processing on the low rate samples, stemming from
the higher dimensionality involved, since we reconstruct the 2-dimensional cyclic
spectrum rather than the 1-dimensional (power) spectrum.
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Fig. 23 Screenshot from the MWC with cyclostationary detection. The input signal is composed
of Nsig D 3 transmissions (or K D 6 bands) with carriers f1 D 320MHz, f2 D 600MHz and
f3 D 860MHz. (a) The recovered cyclic spectrum from low rate samples. (b) The cyclic spectrum
profile at the angular frequency f D 0; the cyclic peaks are clearly visible at twice the carrier
frequencies. (c) The power spectrum recovery is displayed and shown to fail in the presence of
noise
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Fig. 24 The setup is identical to Fig. 23, with carrier frequencies f1 D 220MHz, f2 D 380MHz
and f3 D 720MHz
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Collaborative Spectrum Sensing

Collaborative Model

Until now, we assumed direct observation of the spectrum. In practice, the task
of spectrum sensing for CR is further complicated due to physical channel effects
such as path loss, fading, and shadowing [15]. To overcome these practical issues,
collaborative CR networks have been considered, where different users share their
sensing results and cooperatively decide on the licensed spectrum occupancy.

The different collaborative approaches can be distinguished according to several
criteria [15]. First, cooperation can be either centralized or distributed. In centralized
settings, the data is sent to a fusion center which combines the shared data to jointly
estimate the spectrum or determine its occupancy. In the distributed approach, the
CRs communicate among themselves and iteratively converge to a common estimate
or decision. While centralized cooperation does not require iterations and can reach
the optimal estimate based on the shared data, convergence to this estimate is not
always guaranteed in its distributed counterpart. On the other hand, the latter is
less power hungry and more robust to node and link failure, increasing the network
survivability. An additional criterion concerns the shared data type; the CRs may
share local binary decisions on the spectrum occupation (hard decision) or a portion
of their samples (soft decision).

We consider the following collaborative model. A network of Nrec CRs receives
the Nsig transmissions, such that the received signal at the j th CR is given by

x.j /.t/ D

NsigX

iD1

rij .t/ D

NsigX

iD1

si .t/ 
 hij .t/: (39)

The channel response hij .t/ is determined by fading and shadowing effects. Typical
models are Rayleigh fading, or small-scale fading, and log-normal shadowing, or
large-scale fading [16, 53, 54]. In the frequency domain, the Fourier transform of
the j th received signal is given by

X.j /.f / D

NsigX

iD1

Si .f /Hij .f /: (40)

Therefore, the support of x.j /.t/ is included in the support of the original signal
x.t/. Since the transmissions are affected differently by fading and shadowing from
each transmitter to each CR, we can assume that the union of their respective
supports is equivalent to the frequency support of x.t/. The goal here is therefore
to assess the support of the transmitted signal x.t/ from sub-Nyquist samples of the
received x.j /.t/; 1 � j � Nrec, by exploiting their joint frequency sparsity.

A simple and naive approach is to perform support recovery at each CR from
its low rate samples and combine the local binary decisions, either in a fusion
center for centralized collaboration or in a distributed manner. In this hard decision
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strategy, the combination can be performed using several fusion rules such as AND,
OR, or majority rule. Although this method is attractive due to its simplicity and
low communication overhead, it typically achieves lower performance than its soft
decision counterpart. To mitigate the communication overhead, soft decision-based
methods can rely on sharing observations based on the low rate samples with smaller
dimensions, rather than the samples themselves. In the next section, we review such
techniques both in centralized and distributed contexts.

Centralized Collaborative Support Recovery

One approach [55, 56] to centralized spectrum sensing considers a digital model
based upon a linear relation between the M sub-Nyquist samples z.j / at CR j and
N Nyquist samples x.j / obtained for a given sensing time frame, namely,

z.j / D Ax.j /; (41)

where A is the sampling matrix. In particular, the authors consider multicoset
sampling where z selects certain samples from the Nyquist grid x and A is the
corresponding selection matrix. The goal is to recover the power spectrum of the
true signal x, assumed to be stationary. To that end, the covariance matrices of sub-
Nyquist and Nyquist samples are related by the following quadratic equation

Rz
.j / D ARx

.j /AH ; (42)

where Rx
.j / is diagonal. Each CR sends its autocorrelation matrix Rz

.j / to the
fusion center. The common sparsity of the diagonal of Rx

.j / is then exploited in
the frequency domain across all CRs to jointly reconstruct them at the fusion center,
using a modified simultaneous orthogonal matching pursuit (SOMP) [21] algorithm.

In [55] only the autocorrelation Rz
.j / between the samples of each CR j is

considered. This approach is extended in [56] to include cross-correlations between
measurements from different CRs,

Rz.j /z.k/ D EŒz.j /.z.k//
H
�; (43)

where j and k are the indices of two CRs. Here, each CR sends its measurement
vector z.j / to the fusion center and the cross-correlations are then computed. The
cross-correlations are related to the common power spectrum sx D Frx by

Rz.j /z.j / D C.j /Sx.C.j //
H
; (44)

where Sx is the diagonal matrix that contains the power spectrum vector sx and
C.j / D A.j /FHH.j /. The sampling matrix A.j / can be different for each CR j ,
F is the N � N Fourier matrix, and H.j / is a diagonal matrix that contains the
frequency channel state information (CSI). After vectorization, similarly to (42),
theN2 auto- and cross-correlation measurements are concatenated and the goal is to
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recover sx, that is the diagonal of Sx from these. It is shown that if the total number
of samples NrecM is greater than N and these are suitably chosen to account for
enough measurement diversity, then the power spectrum sx of a non-sparse signal
can be recovered from compressed samples from a sufficient number of CRs. This
shows that the minimal rate per CR is lower by a factor of Nrec with respect to
that required for an individual CR and the number of receivers may be traded for
the number of samples per CR. However, increasing the number of samples per
CR does not increase spatial diversity, as does increasing the number of receivers.
A drawback of this technique is that CSI is traditionally unknown by the CRs and
should be estimated prior to detection.

An alternative approach [31] relies on the analog model from (7) and does not
assume any a priori knowledge on the CSI. This method considers collaborative
spectrum sensing from samples acquired via multicoset sampling or the MWC at
each CR. In this approach, the j th CR shares its observation matrix V.j /, as defined
in (10), rather than the sub-Nyquist samples themselves, and its measurement matrix
A.j /, with a fusion center. The sampling matrices are considered to be different
from one another in order to allow for more measurement diversity. However,
the same known matrix may be used to reduce the communication overhead. The
underlying matrices U.j / are jointly sparse since fading and shadowing do not affect
the original signal’s support. Capitalizing on the joint support of U.j /, the support
of the transmitted signal x.t/ can be recovered at the fusion center by solving

arg min
U.j /

SNrec
iD1 jjU

.j /jj0 (45)

s.t. V.j / D A.j /U.j /; for all 1 � j � Nrec:

To recover the joint support of U.j / from the observation matrices V.j /, both
the orthogonal matching pursuit (OMP) and iterative hard thresholding (IHT) algo-
rithms, two popular CS techniques, are extended to the collaborative setting [31].
Previously we considered support recovery from an individual CR, which boils
down to an MMV system of equations (10). CS algorithms have been extended to
this case, such as SOMP from [57] and simultaneous IHT (SIHT) presented in [58].
These now need to account for the joint sparsity across the CRs.

The distributed CS-SOMP (DCS-SOMP) algorithm [59], which extends the
original SOMP to allow for different sampling matrices A.j / for each receiver,
is adapted to the CR collaborative setting [31]. The main modification appears
in the computation of the index that accounts for the greatest amount of residual
energy. Here, the selected index is the one that maximizes the sum of residual
projections over all the receivers. Once the shared support is updated, the residual
matrices can be computed for each CR separately. The resulting modified algorithm
is referred to as block sparse OMP (BSOMP) [31]. The sparse IHT algorithm can
also be extended to this setting by selecting the indices of the common support
though averaging over all the estimated U.j / in each iteration. Once the support is
selected, the update calculations are performed separately for each receiver [31].
Both methods are suitable for centralized cooperation, in the presence of a fusion
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center. As in the previous approach, if the CSI is known, then the sampling rate
per CR can be reduced by a factor of Nrec with respect to the rate required from an
individual CR.

Distributed Collaborative Support Recovery

In the distributed approach, there is no fusion center, and the CRs are restricted
to communicate only with their neighbors. Both the digital and analog centralized
approaches have been extended to the distributed settings. First, in [60, 61], the
digital model (41) is used, and the low rate samples z.j / of the j th CR are expressed
with respect to the spectrum w.j / D Fx.j /, such that

z.j / D A.j /FHH.j /w.j /: (46)

Both unknown and known CSI cases are considered. In the first case, each CR
computes its local binary decision c.j / for each spectral band by recovering the
sparse spectrum using CS techniques and comparing the local spectrum estimate
w.j / to a chosen threshold. Then, an average consensus approach is adopted, with
respect to the shared hard decision. Specifically, each node j broadcasts its current
decision c.j /.t/ to its neighbors N .j / and updates itself by adding a weighted sum
of the local discrepancies, that is

c.j /.t C 1/ D c.j /.t/C
X

k2N .j /

˛jk.c.k/.t/ � c.j /.t//; (47)

where ˛jk is a weight associated with the edge .j; k/. If the CSI is known, then
the joint spectrum itself and not only its support can be collaboratively recovered.
Each CR iteratively solves an `1 optimization problem for the sparse spectrum w.j /

constrained to consent with one-hop neighbors. In [60], the proposed algorithm
iterates through the following steps: local spectrum reconstruction given the support
and consensus averaging on the spectrum estimate. In [61], a distributed augmented
Lagrangian algorithm is adopted.

Another approach extends the method presented in [31], based on the analog
model (7), to comply with distributed settings [30]. The i th CR contacts a random
neighbor j , chosen with some probability Pij , according to the Metropolis-Hastings
scheme for random transition probabilities,

Pij D

8
<̂

:̂

minf 1
di
; 1
dj
g .i; j / 2 E;

P
.i;k/2E maxf0; 1

di
� 1

dk
g i D j;

0 otherwise:

(48)

Here di denotes the cardinality of the neighbor set of the i th CR, and E is the set of
communication links between CRs in the network.
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A single vector, computed from the low rate samples (and that will be defined
below for each recovery algorithm), is passed between the CR nodes in the network,
rather than the samples themselves, effectively reducing communication overhead.
When a CR receives this vector, it performs local computation to update both
the shared vector and its own estimate of the signal support accordingly. Finally,
the vector is sent to a neighbor CR, chosen according to the random walk with
probability (48). Two distributed algorithms are presented in [30]. The first,
distributed one-step greedy algorithm (DOSGA), extends the OSGA from [59] to
distributed settings. The second method, referred to as randomized distributed IHT
(RDSIHT), adapts the centralized BSIHT [31] to the distributed case.

To describe the DOSGA algorithm, we first present its centralized counterpart
OSGA. Each CR computes the `2-norm of the projections of the observation matrix
V.j / onto the columns of the measurement matrix A.j /, stored in the vector w.j / of
size N . The fusion center then averages over all receivers’ vectors, such that

Ow D
1

Nrec

NrecX

jD1

w.j /; (49)

and retains the highest values of Ow whose indices constitute the support of interest.
In the absence of a fusion center, finding this average is a standard distributed
average consensus problem, also referred to as distributed averaging or distributed
consensus. DOSGA [30] then uses a randomized gossip algorithm [62] for this
purpose, where the vectors w.j / are exchanged, with the Metropolis-Hastings
transition probabilities.

Next, we turn to the RDSIHT algorithm, which adapts the centralized BSIHT
[31] to the distributed scenario. The distributed approach from [30] was inspired by
the randomized incremental subgradient method proposed in [63] and recent work
on a stochastic version of IHT [64]. A vector w of size N , that sums the `2-norms
of the rows of the estimates of U.j / before thresholding, is shared in the network
through a random walk. The indices of its k largest values correspond to the current
estimated support. When the i th CR receives w, it locally updates it by performing a
gradient step using its own objective function that is then added to w. Next, it selects
a neighbor j to send the vector to with probability Pij (48). The joint sparsity across
the CRs is exploited by sharing one common vector w by the network. It is shown
numerically in [30] that both DOSGA and RDSIHT converge to their centralized
counterparts.

Hardware Simulations: Collaborative vs. Individual Spectrum
Sensing

Here, we would like to confirm that the collaborative algorithms for spectrum
sensing perform better than their individual counterparts. We demonstrate a col-
laborative setting simulated on the MWC CR prototype, as can be seen in Fig. 25.
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Fig. 25 Screenshot from the MWC CR collaborative hardware prototype. On the upper left
side, we see the spatial map of the receivers in white and transmitters in green. On the bottom
left, the occupied band indices of the real spectral support are shown, while to the right of the
transmitter/receiver map, the estimated indices by each CR individually are presented. On the
right, we see the spectrum sensing results of 4 different algorithms: Hard Co-Op (hard decision
collaboration that selects the most popular frequency band indices), BSIHT, BSOMP, and RDSIHT.
These results show both the superiority of collaborative spectrum sensing methods over individual
detection and that of soft decision methods compared to the plain union of all the CR results

During the simulations conducted, Nrec D 5 CR receivers, spread across different
locations, are emulated, denoted by white circles on the transmitter/receiver map.
The transmitters are also positioned in various locations depicted by green x-marks.
The transmitter positions and broadcasts are mimicking the effects of physical
channel phenomena, i.e., fading and shadowing. The frequency support recovered
by each of the CRs is false, since they individually receive only a partial spectral
image of their surroundings, as expected in a real-world scenario.

In all simulated scenarios, collaborative spectrum sensing outperforms detection
realized by individual CRs. This result is expected, since the soft collaborative
methods take advantage of the spatial deployment of the receivers to reproduce the
exact spectral map of the environment. Moreover, the centralized and distributed
algorithms BSOMP, BSIHT and RDSIHT, based on soft decisions, showed superior
results in comparison with a hard decision method. The same result can be seen in
Fig. 25, where the hard decision support algorithm (Hard Co-Op) fails to recover the
entire active frequency support (depicted by red bins).

Joint Carrier Frequency and Direction Estimation

The final extension we consider is joint spectrum sensing and DOA estimation. In
order for CRs to map vacant bands more efficiently, spatial information about the
PUs’ locations can be of great interest. Consider the network of CRs presented
in Fig. 26 and focus on CR1. Now, picture a scenario where PU2, with DOA �2
with respect to CR1, is transmitting in a certain frequency band with carrier f2.
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Fig. 26 Illustration of Nsig D 3 source signals in the yz plane. Each transmission is associated
with a carrier frequency fi and DOA �i

Assuming that CR2 does not receive PU2’s transmission, CR1 may transmit in the
same frequency band in the opposite direction of PU2 toward CR2. DOA estimation
can thus enhance CR performance by allowing exploitation of vacant bands in space
in addition to the frequency domain.

Model and System Description

To formulate the joint spectrum sensing and DOA estimation problem mathemat-
ically, assume that the input signal x.t/ is composed of Nsig source signals si .t/
with both unknown and different carrier frequencies fi and DOAs �i . The main
difference between this scenario and the one that has been discussed in the previous
sections is the additional unknown DOAs �i . Figure 26 illustrates this signal model.
To recover the unknown DOAs, an array of sensors is required. A similar problem
thoroughly treated in the literature is the 2D-DOA recovery problem, where two
angles are traditionally recovered and paired. In our case, the second variable is the
signal’s carrier frequency instead of an additional angle.

Multicoset Approach

A few works have recently considered joint DOA and spectrum sensing of multiband
signals from sub-Nyquist samples. In [65] and [66], the low rate samples are
obtained using multicoset sampling. In [65], which considers the digital model (41),
both time and spatial compression are applied by selecting samples from the Nyquist
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grid and receivers from a uniform linear array (ULA), such that

ZŒn� D CsXŒn�Ct : (50)

Here, XŒn� is the matrix of Nyquist samples from all receivers in the ULA, the
selection matrices Cs and Ct operate on the spatial and time domain, respectively,
to form the matrix of compressed samples ZŒn�. The 2D power spectrum matrix
of the underlying signal is then reconstructed from the samples, where every row
gives the power spectrum in the frequency domain for a given DOA and every
column provides the power spectrum information in the angular domain for a given
frequency.

In [66], an L-shaped array with two interleaved, or multicoset, channels, with a
fixed delay between the two, �TNyq with � 2 Œ0; 1�, samples the signal below the
Nyquist rate. The delayed path signal received at themth sensor is approximated by

xdm.t/ D

KX

iD1

si .t/e
j 2�fi .t��TNyqC�m.�i //; (51)

using the narrowband assumption on the envelope si .t/. Here,K denotes the number
of transmissions, fi and �i are the carrier and DOAs of transmission i and �m.�i / is
the time difference between themth element to the reference point for a plane wave
arriving from the source i in direction �i . The samples of both paths is then written
in frequency as

Z D AX; Zd D ADX; (52)

where Z and Zd concatenate all samples for each sensor of the direct and delayed
path, respectively. Here, A is the unknown steering matrix that depends on fi and
�i , X is the unknown matrix that contains frequency slices of the signal, and

D , diag
�
ej 2�f1�TNyq � � � ej 2�fK�TNyq

�
: (53)

Exploiting correlations between samples from the direct path and its delayed
version, the frequencies and their corresponding DOAs are estimated using MUSIC
[18, 19]. However, the pairing issue between the two, that is matching each
frequency with its corresponding angle, is not discussed.

In the next section, we describe the compressed carrier and DOA estimation
(CaSCADE) system, presented in [28], that utilizes the sampling principles of the
MWC. This technique addresses the pairing problem and avoids the hardware issues
involved in multicoset sampling.
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The CaSCADE System

The CaSCADE system implements the modified, or ULA based, MWC over an L-
shaped array with 2M � 1 sensors (M sensors along the y axis and M sensors
along the z axis including a common sensor at the origin) in the yz plane. Each
transmission si .t/ impinges on the array with its corresponding DOA �i , as shown
in Fig. 27. The array sensors have the same sampling pattern as the alternative
MWC. Each sensor is composed of an analog mixing front-end, implementing one
physical branch of the MWC, that includes a mixer, a LPF, and a sampler.

By treating the L-shaped array as two orthogonal ULAs, one along the y axis and
the other along the z axis, two systems of equations similar to (15) can be derived.
For the ULA along the y axis, we obtain

y.f / D Ayx.f /; f 2 Fs; (54)

where

Ay D

2

66664

ej 2�f1�
y
1 .�1/ � � � ej 2�fK�

y
1 .�K/

:::
:::

ej 2�f1�
y
M .�1/ � � � ej 2�fK�

y
M .�K/

3

77775
: (55)

Fig. 27 CaSCADE system:
L-shaped array with M
sensors along the y axis and
M sensors along the z axis
including a common sensor at
the origin. The sub-arrays y1
and y2 (and similarly z1 and
z2) are defined in the
derivation of the 2D-ESPRIT
algorithm

d
y

z

y1 y2 y3 yM−1 yM
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Similarly, along the z axis, we get

z.f / D Azx.f /; f 2 Fs; (56)

where Az is defined accordingly. Here,

�ym .�/ D
dm

c
cos .�/ ; � z

m .�/ D
dm

c
sin .�/ (57)

denote the delays at the mth sensors in the y and z axis, respectively, with respect
to the first sensor. The matrices Ay and Az thus depend on both the unknown carrier
frequencies and DOAs. In the time domain,

yŒn� D AyxŒn�; n 2 Z (58)

zŒn� D AzxŒn�; n 2 Z: (59)

Two joint recovery approaches for the carrier frequencies and DOAs of the
transmissions are proposed in [28]. Note that once the carriers and DOAs are
estimated, the signals can be reconstructed, as shown for the alternative MWC.
For the sake of simplicity, a statistical model where x.t/ is wide-sense stationary
is considered. The first recovery approach is based on CS techniques and allows
recovery of both parameters assuming the electronic angles fi cos �i and fi sin �i
lie on a predefined grid. The CS problem is formulated in such a way that no
pairing issue arises between the carrier frequencies and their corresponding DOAs.
To that end, the samples from both ULAs are concatenated into one vector vŒn� D�
yT Œn� zT Œn�

�T
, whose correlation matrix,

R D E
�
vŒn�vH Œn�

�
D ARxAH ; (60)

is computed. Here, A D ŒAT
y AT

z �
T

and the autocorrelation matrix Rx D

E
�
xŒk�xH Œk�

�
is sparse and diagonal, from the stationarity of x.t/. From the grid

assumption, (60) may be discretized with respect to the possible values taken by
the electronic angles. The resulting sparse matrix derived from Rx is diagonal as
well, and its sparse diagonal is recovered using traditional CS techniques, similarly
to (22).

The second recovery approach, inspired by [67], extends the ESPRIT algorithm
to the joint estimation of carriers and DOAs while overcoming the pairing issue.
The 2D-ESPRIT algorithm presented in [28] is directly applied to the sub-Nyquist
samples, by considering cross-correlation matrices between the sub-arrays of both
axis. Dropping the time variable n for clarity, the samples from the sub-arrays can
be written as

y1 D Ay1x; y2 D Ay2x
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z1 D Az1x; z2 D Az2x; (61)

where y1, y2, z1, z2 are samples from the sub-arrays shown in Fig. 27. The matrices
Ay1 and Ay2 are the first and last M � 1 rows of Ay , respectively, and Az1 and Az2
are similarly defined. Each couple of sub-array matrices along the same axis are
related by

Ay2 D Ay1D


Az2 D Az1D ; (62)

where

D
 , diag
h
ej 2�f1�

y
1 .�1/ � � � ej 2�fK�

y
1 .�K/

i

D , diag
�
ej 2�f1�

z
1.�1/ � � � ej 2�fK�

z
1.�K/

�
: (63)

We can see from (63) that the carrier frequencies fi and DOAs �i are embedded
in the diagonal matrices D
 and D . Applying the ESPRIT framework on cross-
correlations matrices between the subarrays of both axis allows to jointly recover D


and D [28]. This leads to proper pairing of the corresponding elements fi�
y
1 .�i /

and fi�
z
1.�i /. The DOAs �i and carrier frequencies fi are then given by

�i D tan�1
�
†.D /i i
†.D
/i i

�
fi D

†.D
/i i

2� d
c

cos .�i /
: (64)

It is proven in [28] that the minimal number of sensors required for perfect
recovery is 2K C 1. This leads to a minimal sampling rate of .2K C 1/B , which
is slightly higher than the minimal rate 2KB required for spectrum sensing in the
absence of DOA recovery. These ideas can also be extended to jointly recover the
transmissions’ carrier frequencies, azimuth, and elevation angles in a 3D framework.

Summary

In this chapter, we reviewed several challenges imposed on the traditional task of
spectrum sensing by the new application of CR. We first investigated sub-Nyquist
sampling schemes, enabling sampling, and processing of wideband signals at low
rate, by exploiting their a priori known structure. A possible extension of these
works is to include adaptive updating of the detected support, triggered by a change
in a PU’s activity, either starting a transmission in a previously vacant band or
withdrawing from an active band. To increase efficiency, this should be performed
by taking the current detected support as a prior and updating it with respect to the
newly acquired samples, without going through the entire support recovery process
from scratch. Additional preliminary assumptions on the structure or statistical
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behavior of the potentially active signals, such as statistics on channel occupancy,
can be exploited as well.

We then considered detection challenges in the presence of noise, where second-
order statistics recovery, and in particular cyclostationary detection, is shown to
perform better than simple energy detection. Next, fading and shadowing channel
effects were overcome by collaborative CR networks. We then addressed the joint
spectrum sensing and DOA estimation problem, allowing for better exploitation of
frequency vacant bands by exploiting spatial sparsity as well. All these methods
should next be combined in order to map the occupied spectrum, in frequency,
time, and space, thus maximizing the CR network’s throughput. This would require
an adequate spectrum access protocol as well that translates the data acquired by
spectrum sensing into transmission opportunities for the CRs.

An essential part of the approach adopted in this survey is the relation between
the theoretical algorithms and practical implementation, demonstrating real-time
spectrum sensing from low rate samples using off-the-shelf hardware components.
Indeed, we believe that prototype development is an important component to
enabling sub-Nyquist sampling as a solution to the task of spectrum sensing in CR
platforms.
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