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Abstract—Quantizers take part in nearly every digital signal pro-
cessing system that operates on physical signals. They are com-
monly designed to accurately represent the underlying signal, re-
gardless of the specific task to be performed on the quantized data.
In systems working with high-dimensional signals, such as mas-
sive multiple-input multiple-output (MIMO) systems, it is bene-
ficial to utilize low-resolution quantizers, due to cost, power, and
memory constraints. In this paper, we study quantization of high-
dimensional inputs, aiming at improving performance under res-
olution constraints by accounting for the system task in the quan-
tizers design. We focus on the task of recovering a desired signal
statistically related to the high-dimensional input, and analyze two
quantization approaches. We, first, consider vector quantization,
which is typically computationally infeasible, and characterize the
optimal performance achievable with this approach. Next, we focus
on practical systems that utilize hardware-limited scalar uniform
analog-to-digital converters (ADCs), and design a task-based quan-
tizer under this model. The resulting system accounts for the task by
linearly combining the observed signal into a lower dimension prior
to quantization. We then apply our proposed technique to channel
estimation in massive MIMO networks. Our results demonstrate
that a system utilizing low-resolution scalar ADCs can approach
the optimal channel estimation performance by properly account-
ing for the task in the system design.

Index Terms—Massive MIMO, quantization, hybrid receivers.

I. INTRODUCTION

D IGITAL signal processing and communications systems
use quantized representations of continuous-amplitude

physical quantities [1]. These digital representations are typi-
cally designed to accurately match the original analog signal,
by minimizing some distortion measure between the analog sig-
nal and the digital representation [2], regardless of the task of
the system. Nonetheless, in many cases, the system task is not to
recover the analog signal, but to extract some other information
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from its quantized representation [3]. It is therefore possible that
in such systems – which we refer to as task-based quantizers –
one can obtain further performance improvements in terms of
the quantization rate necessary to achieve a certain performance.

Practical quantizers typically utilize scalar uniform analog-
to-digital convertors (ADCs) [1]. Recent years have witnessed
a growing interest in systems operating with quantized large-
scale vectors obtained using low-resolution scalar ADCs. One
of the main applications considered is massive multiple-input
multiple-output (MIMO) communications [4]–[18], which is a
key technology for the realization of next generation wireless
networks [19]. In such systems, a wireless base station (BS) is
equipped with a large number of antennas [20]–[22]. The BS first
quantizes the received signal using a set of ADCs, commonly
implementing scalar uniform quantization. Then, the quantized
representation is used to estimate the underlying channel [4]–
[10] and/or recover the transmitted messages [5]–[17]. For large-
scale inputs, i.e., large number of BS antennas, accurate quantiz-
ers become costly in terms of power and memory usage, partic-
ularly when utilizing a large bandwidth, making low-resolution
quantization essential for realizing massive MIMO systems [19].
As the task in massive MIMO is not to recover the input signal,
but to estimate the channel or decode the transmitted message,
reasonable performance with low-resolution scalar quantizers
has been observed [4]–[18]. However, most prior works assume
that the quantizers are fixed, commonly assuming one-bit sign
quantization [5], [6], [9], [16]. Thus, they do not characterize
the achievable performance when the quantizers are designed to
account for the system task.

In the presence of multivariate inputs, joint (vector) quanti-
zation is known to outperform scalar quantization [23, Ch. 10].
Task-based vector quantization can be considered as an indirect
lossy-source coding setup [2]. In such scenarios, one wishes to
recover a desired source based on a discrete representation of
its noisy version, in the sense of minimizing a given distortion
measure [24]. For the mean-squared error (MSE) distortion, it
was shown in [25] that the optimal system which achieves the
rate-distortion curve, namely, uses the minimal number of bits
per input sample required to achieve a fixed distortion, applies
vector quantization to the minimum MSE (MMSE) estimate of
the desired source. This observation was used in [26], [27] to
study sampling and vector quantization of continuous-time sig-
nals. Nonetheless, in the presence of high-dimensional inputs,
vector quantization becomes infeasible, so that practical task-
based quantization approaches are required.

Task-based quantization with scalar uniform ADCs, referred
to as hardware-limited task-based quantization, can be real-
ized by allowing analog linear processing prior to quantization
[28]. MIMO communications systems utilizing both analog and
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digital processing are known as hybrid architectures [12], [29],
[30], and are the focus of a large amount of recent works. In
particular, [31] compared the achievable-rate versus power ef-
ficiency tradeoff for various analog combining systems, [12]
and [32] designed hybrid architectures aimed at maximizing the
achievable rate and signal recovery MSE, respectively, with full
channel state information (CSI), while [13] studied bit allocation
for minimizing the quantization error when the analog combin-
ing is set to the largest channel eigenmodes, using high rate quan-
tization analysis. Additionally, [14] studied the achievable rate
with imperfect CSI when distinct sets of inputs are each com-
bined in the analog domain to maximize the receive power, while
[33] characterized bounds on the capacity of MIMO communi-
cations with analog combining and one-bit quantizers. Most pre-
vious works which designed hybrid MIMO receivers, e.g., [12],
[13], [32], considered finite-size inputs and required CSI in their
design, and thus cannot be utilized for massive MIMO channel
estimation. Specifically, the joint design of analog combining,
quantization rule, and digital processing, to optimize the accu-
racy of massive MIMO channel estimation with scalar ADCs
has not yet been studied, to the best of our knowledge.

In this work we study task-based quantization for channel es-
timation in massive MIMO systems operating with scalar ADCs.
Our analysis is based on an extension of the hardware-limited
task-based quantization framework proposed in our previous
work [28], which studied parameter estimation from a finite-
sized quantized observed signal. The work [28] proposed to
jointly optimize the analog combining, quantization rule, and
digital processing, to minimize the MSE in recovering the de-
sired finite-sized vector. Here, we extend the study of [28] to ac-
count for asymptotically large data, developing a framework for
task-based quantization with high-dimensional inputs, and then
apply the resulting analysis to massive MIMO systems, which
are commonly studied in the asymptotic number of antennas
regime [20], [21]. In particular, we focus on massive MIMO
channel estimation, carried out in a time-division duplex (TDD)
manner [20]–[22]. Unlike previous works on hybrid architec-
tures optimization with low-resolution quantization, e.g., [12],
[13], [32], our work does not require knowledge of the channel.
In fact, in the presence of adjustable analog combining hardware,
such as dynamic metasurface antennas [34], our analysis can be
combined with previously proposed hybrid systems by recon-
figuring the analog combining hardware once the channel is ac-
curately estimated. We also note that our analysis can be applied
to different tasks, such as signal recovery and noise mitigation.

We begin by studying task-based vector quantization using in-
direct lossy source coding theory. We characterize the minimal
achievable average MSE for any quantization system operat-
ing with a fixed quantization rate, namely, a fixed number of
bits per input sample. Then, we study the performance when
vector quantization is carried out independently from the task,
referred to as task-ignorant vector quantization. Since the in-
put dimensionality here is asymptotically large, we are able to
explicitly obtain the achievable performance, unlike [28], using
indirect rate-distortion theory. Studying vector quantizers allows
us to quantify the performance bounds of task-based quantiza-
tion with large-scale inputs, and in particular, understand the
fundamental limits of massive MIMO channel estimation.

Next, we study task-based quantization with scalar uniform
ADCs, allowing analog combining prior to quantization. While
analog combining can contribute in aspects other than improving
the performance with finite-resolution quantizers, e.g., reduc-
ing the number of costly RF chains in massive MIMO systems

[32], we focus here on the achievable performance for a given
quantization rate. For this setup we propose a task-based quan-
tization system with linear analog and digital processing which
minimizes the average MSE under such hardware-limited struc-
ture constraints. We show that, unlike in the fixed size regime
studied in [28], for large-scale inputs an important parameter
which greatly affects the system performance is the analog com-
bining ratio, which determines how the number of scalar quan-
tizers grows as the input size tends to infinity.

Then, we focus on massive MIMO systems, and show how
the proposed task-based quantization system can be applied to
channel estimation from quantized measurements. We note that
in this scenario the inputs are gathered over different antennas as
well as over different time instances. Since in some cases, it may
be desirable to combine only samples received at the same time
instance, to avoid introducing delays in the analog domain, we
also derive the system which minimizes the average MSE subject
to the constraint that only inputs taken at the same time instance
can be combined. This constraint reduces the complexity of the
resulting system at the cost of degraded MSE performance. In
our numerical study, we illustrate the fundamental performance
limits of massive MIMO channel estimation achievable using
vector quantizers, and compare these limits to our proposed
task-based quantization systems with scalar ADCs, and to mas-
sive MIMO channel estimators which operate only in the digital
domain. Our results demonstrate that the proposed quantizers,
which utilize practical low-resolution scalar ADCs, are capable
of approaching the optimal performance, achievable using vec-
tor quantizers, and outperform previously proposed estimators.

The rest of this paper is organized as follows: Section II re-
views some basics in quantization theory. Section III extends
the results of [28] to large-scale data, and Section IV applies
them to massive MIMO channel estimation. Section V provides
simulation examples. Finally, Section VI concludes the paper.

Throughout the paper, we use boldface lower-case letters for
vectors, e.g., x; the ith element of x is written as (x)i. Matrices
are denoted with boldface upper-case letters, e.g., M , and we
use (M)i,j to denote its (i, j)th element. We use In to denote
the n× n identity matrix. Sets are expressed with calligraphic
letters, e.g., X , and Xn is the nth order Cartesian power of X .
Hermitian transpose, transpose, complex conjugate, stochastic
expectation, and mutual information are written as (·)H , (·)T ,
(·)∗, E{·}, and I(·; ·), respectively. For a real number a, we use
a+ � max(a, 0); 〈·〉 denotes the integer divisor (plus one) of the
value in the brackets (minus one), namely, 〈n〉m � �n−1

m �+ 1.
We use Tr (·) to denote the trace operator, δ(·) is the indicator
function, ⊗ is the Kronecker product, R and C are the sets of
real and complex numbers, respectively. All logarithms are taken
to base-2. Finally, for an n× n matrix X , x = vec (X) is the
n2 × 1 vector obtained by stacking the columns of X .

II. PRELIMINARIES IN QUANTIZATION THEORY

To formulate the task-based quantization setup. we first briefly
review standard quantization notions. While parts of this review
also appear in our previous work [28], it is included for com-
pleteness. We begin with the definition of a quantizer:

Definition 1 (Quantizer): A quantizer QN,K
M (·) with logM

bits, input size N , input alphabet X , output size K, and output
alphabet X̂ , consists of: 1) An encoding function geN : XN �→
{1, 2, . . . ,M} � M which maps the input from XN into a
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discrete index i ∈ M. 2) A decoding function gdK : M �→ X̂K

which maps each index i ∈ M into a codeword qi ∈ X̂K .
The quantizer output for inputxN = {xi}Ni=1 ∈ XN is x̂K =

gdK
(
geN
(
xN
))

� QN,K
M (x). Scalar quantizers operate on a

scalar input, i.e., N = 1 and X is a scalar space, while vec-
tor quantizers have a multivariate input. Note that when X is
a vector space, then each xi is a random vector. When the in-
put size and output size are equal, namely, N = K, we write
QN

M (·) � QN,N
M (·).

In the standard quantization problem, a QN
M (·) quantizer

is designed to minimize some distortion measure dN : XN ×
X̂N �→ R+ between its input and its output. The performance
of a quantizer is therefore characterized using two measures:
The quantization rate, defined as R � 1

N logM , and the ex-
pected distortion E{dN (xN , x̂N )}. For a fixed input size N
and codebook size M , the optimal quantizer is given by

QN,opt
M (·) = min

QN
M (·)

E
{
dN
(
xN , QN

M

(
xN
))}

. (1)

Characterizing the optimal quantizer via (1) and the opti-
mal tradeoff between distortion and quantization rate is in gen-
eral a very difficult task. Consequently, optimal quantizers are
typically studied assuming either high quantization rate, i.e.,
R → ∞, see, e.g., [35], or asymptotically large input size,
namely, N → ∞, typically with stationary inputs, via rate-
distortion theory [23, Ch. 10]. For example, when the quantizer
input represents a stationary source, and the distortion measure is
subadditive, i.e., for anyN1,N2,xN1 ∈ XN1 , x̂N1 ∈ XN1 ,xN2

∈ XN2 , x̂N2 ∈ XN2 , it holds that dN1+N2
({xN1 ,xN2}, {x̂N1 ,

x̂N2}) ≤ dN1
(xN1 , x̂N1) + dN2

(xN2 , x̂N2). Then, by [36,
Thm. 5.9.1] the optimal distortion in the limit N → ∞ for a
fixed rate R is given by the distortion-rate function:

Definition 2 (Distortion-rate function): The distortion-rate
function for a stationary source {xi}∞i=1 with respect to the sub-
additive distortion measure dN is defined as

Dx (R) = lim
N→∞

min
f
x̂N |xN : 1

N I(x̂N ;xN)≤R

1

N
E
{
dN

(
x̂N ,xN

)}
.

(2)
The minimization in (2) is carried out over all conditional dis-

tributions fx̂N |xN which satisfy the given constraint on the re-
sulting mutual information. The marginal output distribution of
{x̂i}which obtains the minima in (2) is referred to henceforth as
the optimal marginal distortion-rate distribution. One scenario
where Dx (R) is given in closed-form is when each xi is a zero-
mean L× 1 proper-complex Gaussian random variable (RV)
[37, Def. 1], i.e., X = CL, such that for each l ∈ {1, 2, . . . , L},
the source {(xi)l}∞i=1 is stationary1 with scalar power spectral
density (PSD) sx : [0, 2π) �→ R+, thus its multivariate PSD is
Sx(·) = E{xix

H
i }sx(·). The distortion-rate function for this

scenario is given in the following example:
Example 1: Let {xi}∞i=1 be zero-mean proper-complex

L× 1 Gaussian source with multivariate PSD Sx(ω) =
Σxsx(·), and let the eigenvalue decomposition of Σx ∈ CL×L

be given by Σx = UxΛxU
H
x . The distortion-rate function for

1Following [36], we use the term stationary source for stationary and ergodic
signals with time index i = {1, 2, . . .}.

x with the MSE distortion is [38, Cor. 1]

DG(R,Σx, sx) =
1

2π

∫ 2π

0

L∑

i=1

min
(
ζ, (Λx)i,i sx(ω)

)
dω,

(3a)
where ζ > 0 is the solution to

R =
1

2π

∫ 2π

0

L∑

i=1

(
log

(Λx)i,i sx(ω)

ζ

)+

dω. (3b)

The optimal marginal distribution for this setup is a zero-mean
proper-complex multivariate Gaussian distribution with PSD
Sx̂(ω) = UxΛx̂(ω)U

H
x , where Λx̂(ω) is a diagonal matrix

with diagonal entries (Λx̂(ω))i,i =
(
(Λx)i,i sx(ω)− ζ

)+
.

Comparing high rate analysis for scalar quantizers and rate-
distortion theory for vector quantizers demonstrates the sub-
optimality of serial scalar quantization. For example, for quan-
tizing a large-scale real-valued Gaussian random vector with
i.i.d. entries and sufficiently large quantization rate R, where
one would imagine there is little benefit in quantizing the en-
tries jointly over quantizing each entry independently, vector
quantization notably outperforms serial scalar quantization [39,
Ch. 23.2].

Finally, we introduce the notion of dithered quantization,
which will be frequently used in our analysis of hardware-limited
task-based quantization systems:

Definition 3 (Dithered quantizer): A scalar quantizer Q1
M

implements serial non-subtractive uniform dithered quantiza-
tion [40], referred to henceforth as dithered quantization, with
support γ and quantization spacing Δ = 2γ

M , if its output for
an input sequence y1, y2, . . . , yP can be written as Q1

M (yi) =
q (Re {yi + zi}) + j · q (Im {yi + zi}). Here, z1, . . . , zP are
i.i.d. RVs with i.i.d. real and imaginary parts uniformly dis-
tributed over

[−Δ
2 ,

Δ
2

]
, mutually independent of the input, and

q(·) implements uniform quantization defined as

q(α) =

⎧
⎨

⎩
−γ +Δ

(
l + 1

2

) α− l ·Δ + γ ∈ [0,Δ]

l ∈ {0, 1, . . . ,M − 1}
sign (α)

(
γ − Δ

2

) |α| > γ.

Note that when M = 2, the uniform quantizer q(y) is a
standard one-bit sign quantizer of the form q(α) = c · sign(α),
where the c > 0 is determined by the support γ.

In the following we study hardware-limited systems assuming
dithered quantizers. Our motivation for using dithered quantiz-
ers stems from the fact that conventional analysis of uniform
quantizers, e.g., [41], does not lead to a tractable model for the
quantizer output, nor does it extend to the task-based setup. How-
ever, when using dithered quantizers, the digital representation
of an input which is in the support of the quantizer can be written
as the sum of the quantizer input and an additive uncorrelated
white noise signal [40]. This significantly facilitates our analy-
sis and allows to characterize the system which minimizes the
MSE. Nonetheless, it is emphasized that this property of dithered
quantizers is also approximately satisfied in uniform quantiza-
tion without dithering for various input distributions, including
Gaussian inputs2 [42]. Therefore, the rigorous analysis which
follows from considering dithered quantization, also holds

2For a Gaussian input with magnitude smaller than γ with sufficiently high
probability, if the quantization spacing is in the order of the input standard
deviation (or smaller), then the output can be modeled as the input corrupted by
additive uncorrelated white noise, even without dithering [42, Sec. VII].
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TABLE I
MAIN MODEL NOTATIONS

approximately when using standard uniform quantizers without
dithering, as demonstrated in [28].

III. TASK-BASED QUANTIZATION OF LARGE-SCALE DATA

We now extend the analysis of task-based quantization car-
ried out in our previous work [28], which considered fixed-size
signals, to asymptotically large input signals. The motivation
of this extension stems from the need to properly design and
characterize quantizers for massive MIMO systems, which is
our main target application discussed in Section IV. To that aim,
we first present the problem formulation in Subsection III-A,
and derive the achievable MSE without quantization constraints
in Subsection III-B. Then, we study task-based quantization
with vector quantizers in Subsection III-C and with hardware-
limited quantizers in Subsection III-D. Focusing on the asymp-
totic regime allows us to rigorously characterize the achievable
performance of vector quantizers, for which we were only able
to obtain bounds in the finite horizon case studied in [28]. For
the hardware-limited case, we formulate the dependency of task-
based quantization systems on how the system parameters grow
proportionally with the size of the input signal, i.e., the quanti-
zation rate and the analog combining ratio.

A. Problem Formulation

We study task-based quantization with asymptotically large
observations and a proportionally large desired signal. The de-
sign objective of the quantizer is to quantize the observations
such that the desired signal can be accurately recovered from
the quantized observations in the sense of minimizing the MSE.
The desired signal consists of N zero-mean K × 1 random
vectors {gi}Ni=1, sampled from a stationary source with mul-
tivariate autocorrelation function E{gi+lg

H
i } = Σgc[l], where

Σg ∈ CK×K is Hermitian and positive semi-definite, while c[·]
is an absolutely summable scalar autocorrelation function sat-
isfying c[0] = 1. By letting s(·) be the discrete-time Fourier
transform (DTFT) of c[·], the corresponding multivariate PSD
is given by Σgs(·). The observations are a set of L× 1 random
vectors {yi}Ni=1 with multivariate PSD Σys(·), where L ≥ K,
and each vector yi is related to its corresponding gi via the

same conditional probability measure, denoted fy|g . The model
assumption that the size of the desired signal is not larger than
that of the observed signal allows us to clearly demonstrate the
benefits of task-based quantization as noted in [28], and faith-
fully represent our main target application of channel estimation
in massive MIMO systems discussed in Section IV.

We assume that the MMSE estimator which stems from fy|g
is linear, i.e., there exists Γ ∈ CK×L such that the MMSE es-
timate of gi from {yi′ } can be written as g̃i = Γyi, for each
i ∈ {1, . . . , N}. Since we focus on large-scale data, N is arbi-
trarily large. Clearly, this setup specializes to the case in which
the desired signal and the observed signal consist of i.i.d. el-
ements. Such scenarios arise, for example, in signal recovery
over memoryless channels, where gi is the channel input at time
index i and yi is the corresponding channel output, or alterna-
tively, in the estimation of fast fading memoryless channels, in
which gi is the unknown channel at time index i and gi is the
channel output. Furthermore, in Section IV we show that this
model can also represent channel estimation in massive MIMO
systems with correlated antennas.

We write the desired vector and the observed vector as g =

vec([g1, . . . , gN ]T ) andy = vec
(
[y1, . . . ,yN ]T

)
, respectively.

By lettingC be aN ×N Toeplitz matrix whose entries are given
by (C )i1,i2 = c[i1 − i2] for each i1, i2 ∈ {1, . . . , N}, it holds
that the covariance matrices of g and y are equal to Σg ⊗C
and Σy ⊗C , respectively. The main model notations along
with their meaning in the massive MIMO setup considered in
Section IV are summarized in Table I. The proposed sys-
tem forms a quantized representation of g based on the ob-
served y, using up to logM bits, where the quantization rate

R � 1
NK logM is fixed. An illustration of such a system is de-

picted in Fig. 1.
The distortion measure for a quantized representation ĝ is the

average MSE, defined as

μ � lim
N→∞

1

NK
E{‖g − ĝ‖2}. (4)

We consider vector quantizers as well as hardware-limited
quantizers. In the following we elaborate on these systems:
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Fig. 1. Task-based quantization system.

Fig. 2. Task-ignorant quantizer.

Fig. 3. Hardware-limited task-based quantization system.

Vector Quantizers: Joint (vector) quantization is known to be
superior to separate (scalar) quantization [39, Ch. 23]. Thus,
analyzing systems utilizing vector quantizers provides the fun-
damental limits of task-based quantization with large-scale in-
puts. We consider two different vector quantization systems:

1) Task-based optimal vector quantization - in the op-
timal quantization system, the quantizer QNL,NK

M (·) in
Fig. 1 is the vector quantizer which minimizes the distor-
tion between the quantized representation ĝ and g. The
performance of this system represents the optimal distor-
tion achievable with any quantization system operating at
rate R.

2) Task-ignorant vector quantization - here, the quantizer
is designed to recover the observed y separately from the
task, using the optimal vector quantizer for representing
y, namely, the quantizer here is ignorant of the task and
is designed to accurately represent the observations. The
desired vector g is estimated from the quantized represen-
tation using the MMSE estimator, as illustrated in Fig. 2.
This is a plausible system when the quantizer is ignorant
of the task.

Hardware-Limited Quantizers: Vector quantization may be
difficult to implement, especially for large input sizes. Conse-
quently, systems utilizing vector quantizers may not be feasible
in practice. As discussed in the introduction, practical systems
typically implement quantization using scalar ADCs. In such
systems, each continuous-amplitude element is converted into a
discrete representation using a single quantization rule, which
commonly corresponds to uniform quantization. This operation
can be modeled using identical scalar uniform quantizers. In par-
ticular, we consider the system depicted in Fig. 3. The observed
vector y, is projected into CP , where P ≤ NL, using some pre-
quantization processing carried out in the analog domain. As
arbitrary processing may be difficult to implement in analog, we
henceforth restrict our attention to linear pre-quantization pro-
cessing only. This analog combining is modeled via the matrix
A ∈ CP×NL. We write the number of scalar quantizers P in
terms of its integer quotient and remainder with respect to N ,
denoted Pq and Pr, respectively, i.e.,

P = Pq ·N + Pr, 0 < Pr < N. (5)

The motivation for expressing P using N in (5) stems from
the fact that for large-scale inputs, N tends to infinity, and thus
Pq and Pr represent how P scales accordingly. These scaling

parameters play an important role when analyzing the perfor-
mance of hardware-limited task-based quantizers, as shown in
Subsection III-D.

The real and imaginary parts of each entry ofAy are quantized

using the same scalar quantizer with resolution M̃ � �M1/2P �,
denoted Q1

M̃
(·). Define the analog combining ratio

r � P

NL
=

Pq

L
+

Pr

NL
. (6)

Note that M̃ = �2 R
2·r �. The overall quantization rate is 2·P

NL

log(M̃) ≤ 1
NL logM = R. The identical scalar quantizers Q1

M̃
implement dithered quantization, as defined in Def. 3. The quan-
tizer is designed to operate within the support γ, namely, the
amplitude of the input is not larger than γ with sufficiently large
probability. To guarantee this, we fix γ to be some multiple
η of the maximal standard deviation of the input. For exam-
ple, for proper-complex Gaussian inputs, when η ≥ √

2 the am-
plitude of both the real and imaginary parts of the input are
smaller than the support with probability over 94%. We assume
that η <

√
3/2M̃, such that the variable κ � η2(1− 2η2

3M̃2
)−1

is strictly positive. Note that η = 2 satisfies this requirement for
any M̃ ≥ 2, i.e., the ADC is implemented using scalar quantizers
with at least one bit.

Finally, in the digital domain, the system approximates the
linear MMSE estimate based on the output of the ADC, denoted
q ∈ CP , where (q)i = Q1

M̃

(
(Ay)i

)
. Consequently, the estimate

can be written as ĝ = Bq for some B ∈ CNK×P . We focus on
linear digital processing to keep the analysis tractable, and since
linear estimators are commonly used in our main application,
massive MIMO channel estimation with quantized outputs [5],
[7]. This restriction is not expected to notably affect the overall
performance, especially when the error due to quantization is
small, as the MMSE estimator in the considered setup is linear.

B. No Quantization Constraints

As a preliminary step, we note that the MMSE estimate of
g from y, denoted g̃ consists of the K × 1 random vectors
{g̃i}Ni=1, sampled from a stationary source with multivariate
PSD Sg̃(·) = ΓΣyΓ

Hs(·). Since 1
2π

∫ 2π

0 s(ω)dω = c[0] = 1,
the average MMSE can be written as

μMMSE =
1

K
Tr
(
Σg − ΓΣyΓ

H
)
. (7)

The MMSE in (7) is achievable without quantization, and thus
serves as a lower bound on the achievable distortion of the quan-
tization systems discussed in the following subsections.

C. Vector Quantization

We now study the average MSE achievable of the vector quan-
tization systems detailed in Subsection III-A. We note that for
fixed size inputs, the achievable performance of vector quantiz-
ers can only be obtained in terms of upper and lower bounds, see
[28, Prop. 1]. However, as we show next, for large-scale data,
we explicitly characterize the minimal achievable average MSE
for each system using indirect rate-distortion theory analysis,
which considers asymptotically large inputs.

1) Optimal Vector Quantizer: The optimal vector quantizer
minimizes the MSE between the unknown desired vector and the
system output. Recovering the desired signal g from quantized
observations is a special case of indirect lossy source coding
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[24]. For the MSE distortion, it follows from [25] that the optimal
vector quantizer first recovers the MMSE estimate g̃, and then
uses a vector quantizer to represent g̃. The resulting MSE is
given in the following theorem:

Theorem 1: The MSE of the optimal vector quantizer is

μOpt = μMMSE +
1

K
Dg̃

(
L

K
·R
)
, (8)

where Dg̃(·) is the distortion-rate function, given in Def. 2, of
the random vector g̃ with the MSE distortion.

Proof: See Appendix A.
Theorem 1 holds since the MMSE estimate g̃ represents a

stationary source, thus, in the limit N → ∞, the minimal MSE
for a fixed quantization rate is given by the distortion-rate func-
tion. The achievable average MSE in (8) constitutes the minimal
achievable distortion of any system which recovers g from y us-
ing up to R bits per input sample.

2) Task-Ignorant Vector Quantizer: In task-ignorant quanti-
zation, the desired signal is estimated from the quantized obser-
vations, which are in turn designed to yield an accurate repre-
sentation of the input signal. The resulting quantization system,
depicted in Fig. 2, first quantizes y via a quantizer QNL

M (·),
which minimizes the MSE between its output and y. Then, g
is estimated from the output of the quantizer using the MMSE
estimator. Characterizing the average MSE of such systems is in
general a challenging task, due to difficulty in formulating the
conditional distribution of the desired signal given the output of
the quantizer QNL

M (·). However, in the special case where the
signals are i.i.d., and thus s(ω) = 1, the resulting average MSE
is given in the following theorem:

Theorem 2: When {yi} are i.i.d. the average MSE of the
task-ignorant vector quantizer is given by

μIgn = μMMSE +
1

K
Tr
(
(Γ)H Γ (Σy −Σy,D(R))

)
. (9)

Here, Σy,D(R) is the covariance matrix of the optimal marginal
distribution which achieves the distortion-rate function Dy (R)
with the MSE distortion, given in Def. 2.

Proof: See Appendix B.
Theorem 2 exploits the fact that when y consists of N i.i.d.

L× 1 vectors, then, as N grows arbitrarily, the output of the op-
timal quantizer for representing y converges to a set of N i.i.d.
vectors, each distributed via the optimal marginal distribution
which achieves Dy (R). In our numerical study in Section V it
is illustrated that for relatively small quantization rates, there is
a notable gap between the performance of task-ignorant quanti-
zation and the optimal average MSE in (8).

D. Hardware-Limited Quantization

We now characterize the optimal hardware-limited task-based
quantization system, using the setup depicted in Fig. 3. We de-
rive the analog combining matrix and digital processing matrix
which minimize the average MSE, denoted Ao and Bo, respec-
tively, and the corresponding support γ.

To formulate the proposed system, define the K × L matrix
Γ̃ � ΓΣ1/2

y , and let {φi} be its singular values arranged in de-

scending order. Note that for i > rank
(
Γ̃
)
, φi = 0. Let {λi} be

the singular values of Γ̃⊗C arranged in descending order, and
define the function ϕ(α) �

(
α− 1

)+
, α ∈ R+. Recall that κ

is defined as κ = η2
(
1− 2η2

3M̃2

)−1
, where η is the ratio of the

quantizer support to the maximal input standard deviation. The

hardware-limited quantization system which minimizes the av-
erage MSE is stated in the following theorem:

Theorem 3: In the hardware-limited quantization system
which minimizes the average MSE, the analog combining matrix
Ao is given by Ao = UAΛA(V H

AΣ−1/2
y ⊗C−1/2), where

� V A ∈ CL×L is the right singular vectors matrix of Γ̃.
� ΛA ∈ CP×NL is a diagonal matrix with diagonal entries

(ΛA)2l,l =
4κ

3M̃2 · rϕ(ζ · λl), (10a)

where ζ is set such that 4κ
3M̃2·P

∑P
l=1ϕ(ζ · λl) = 1, r is

defined in (6), and M̃ = �2 R
2·r �.

� UA ∈ CP×P is a unitary matrix which guarantees that
UAΛAΛH

AUH
A has identical diagonal entries, which can

be obtained via [54, Alg. 2.2].
The support of the ADC is given by γ2 = κ

r , and the digital
processing matrix is

Bo = (ΓΣy ⊗C ) (Ao)H

×
(
Ao (Σy ⊗C ) (Ao)H +

4γ2

3M̃2
IP

)−1

. (10b)

The corresponding achievable average MSE at the limitN → ∞
when Pq ≥ rank(ΓΣyΓ

H) is given by

μHL = μMMSE +
1

2π

∫ 2π

0

1

K

K∑

i=1

φ2
i s(ω)

ϕ(ζ · φi

√
s(ω)) + 1

dω.

(10c)

Furthermore, when the signals consists of uncorrelated vectors,
i.e., c[τ ] = δτ , the asymptotic average MSE for any Pq ≥ 0
reduces to

μHL = μMMSE +
1

K

min(K,Pq)∑

i=1

φ2
i

ϕ(ζ · φi) + 1
+ δ(Pq<K)

×
⎛

⎝1

K

K∑

i=Pq+1

φ2
i − (r · L− Pq)

φ2
Pq+1ϕ(ζ · φPq+1)

ϕ(ζ · φPq+1) + 1

⎞

⎠ . (10d)

Proof: See Appendix C.
Theorem 3 extends [28, Thm. 1] to asymptotically

large complex-valued inputs. A notable difference between
Theorem 3 and [28, Thm. 1] is in the performance expression in
(10c)–(10d): While [28, Thm. 1] studied the MSE with finite-
size inputs, here we consider the asymptotic average MSE. Thus
(10c)–(10d) depend on how the number of scalar quantizers
grow with the input size, and not on the exact number of in-
puts and scalar quantizers.

Note that when Pr in (5) does not grow proportionally with
N , i.e., limN→∞ Pr

N = 0, then by (5), r · L = Pq , and the last
summand in (10d) vanishes. When Pr equals zero, i.e., P is an
integer multiple of N , and c[τ ] = δτ , the optimal system pro-
cessesyi using the same transformation for each i ∈ {1, . . . , N}
separately, as stated in the following corollary:

Corollary 1: When Pr = 0 and c[τ ] = δτ , the hardware-
limited system which minimizes the MSE applies the same
mapping to each yi separately. This mapping includes analog
combining via the matrix Ao, scalar quantizers with support
γ2 = κ

r , and digital processing with matrix Bo. In particular,
Ao = UAΛAV H

AΣ−1/2
y , where

� V A ∈ CL×L is the right singular vectors matrix of Γ̃.
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� ΛA∈ CPq×L is diagonal with entries (ΛA)2i,i=
4κ·ϕ(ζ·φi)

3M̃2·Pq
,

where ζ is set such that 4κ
3M̃2·Pq

∑Pq

i=1ϕ(ζ · φi) = 1.
� UA ∈ CPq×Pq is a unitary matrix for which UAΛAΛH

A

UH
A has identical diagonal entries.

The matrix Bo = Γ̃V AΛH
A(ΛAΛH

A + 4γ2

3M̃2
IPq

)−1UH
A repre-

sents the digital processing. The achievable average MSE is
given by:

μHL = μMMSE +
1

K

min(K,Pq)∑

i=1

φ2
i

ϕ(ζ · φi) + 1

+
δ(Pq<K)

K

K∑

i=Pq+1

φ2
i . (11)

Proof: The corollary follows directly from Theorem 3. In
particular, (11) and the requirement on ζ are obtained from
Theorem 3 since r · L = Pq when P = Pq ·N . The resulting
Ao is a special case of Ao in Theorem 3 for P = Pq ·N , and
Bo is obtained by plugging Ao ⊗ IN into (10b). �

Corollary 1 is quite surprising in light of known results in vec-
tor quantization. It is well-known that with unrestricted vector
quantizers, jointly processing a set of RVs is beneficial even if
they are i.i.d. [39, Ch. 23]. However, Corollary 1 indicates that
in the presence of scalar ADCs, if it is possible to process i.i.d.
RVs using the same mapping separately, i.e., when Pr = 0 and
the same number of scalar quantizers can be assigned to each
yi, then this strategy minimizes the MSE.

Theorem 3 and Corollary 1 indicate that the analog combining
ratio r, and particularly the value of Pq , play an important part
in the performance of hardware-limited systems. Guidelines for
setting these values are stated in the following corollary:

Corollary 2: In order to minimize the average MSE,Pq must

not be larger than the rank of Γ̃ΣyΓ̃
H

.
Proof: The proof is obtained by repeating the arguments in

[28, Appendix D], and is thus omitted for brevity. �
In order to compare the achievable average MSE in Theorem 3

to the fundamental limit in Theorem 1, one must specify the dis-
tribution of the observations, as we do in the following example:

Example 2: Consider the case where the MMSE estimate
g̃ has i.i.d. proper-complex Gaussian entries with variance σ2

g̃ .
Here, the excess average MSE of the optimal vector quantizer
of Theorem 1 is

μOpt − μMMSE =
1

K
DG

(
L

K
R, σ2

g̃IK , 1

)
(a)
= σ2

g̃2
− L

K R, (12a)

where DG(·) is defined in (3), and (a) follows from the
distortion-rate function of Gaussian RVs [39, Ch. 23]. Next, we
compute the excess average MSE of a hardware-limited quan-
tizer with analog combining ratio r = L

K , namely, Pr = 0 and
Pq = K. By noting that φ2

i = σ2
g̃ for each i, it follows from

Corollary 1 that

μHL − μMMSE =
σ2
g̃

3
4κ M̃

2 + 1

(a)
=

σ2
g̃

3
4κ �2−

L
2K ·R�2 + 1

, (12b)

where (a) holds as r = L
K . Note that (12a)–(12b) imply that as

R increases, the ratio of the excess average MSEs satisfies

μHL − μMMSE

μOpt − μMMSE
�

4κ

3
=

4η2

3− 2η2

M̃2

. (12c)

As we assume that the quantized input is within the support and
each scalar quantizer uses at least one bit, i.e., η ≥ 2 and M̃ ≥ 2,
(12c) is strictly larger than one, as expected.

Example 2 shows that, when the MMSE estimate has i.i.d. en-
tries, the excess average MSE of hardware-limited quantization
with large-scale inputs scales with respect to the quantization
rate R proportionally to the optimal vector quantizer. This in-
dicates that the proposed hardware-limited quantization system
can approach the optimal performance with an average MSE gap
that becomes negligible as μOpt approaches the average MMSE
μMMSE. A similar relation to (12c) can be obtained for any dis-
tribution using the upper bound on the distortion-rate function
in [47, Eq. (6)].

Although Example 2 focuses on the case where the MMSE
estimate has i.i.d. entries, in the simulations study in Section V
we demonstrate that the hardware-limited system of Theorem 3
can also approach the optimal MSE of Theorem 1 in massive
MIMO channel estimation with quantized measurements, where
the entries of the MMSE estimate are correlated. The application
of our results to such setups is described in the following section.

IV. APPLICATION: MASSIVE MIMO CHANNEL ESTIMATION

An important application of our study on task-based quan-
tization with large-scale inputs is channel estimation in mas-
sive MIMO communications networks. Specifically, in massive
MIMO systems, there is a strong need to operate with simple
low-resolution quantizers, as increasing quantization rate results
in a sharp increase in power consumption and memory usage.
The problem of channel estimation from quantized measure-
ments has received considerable attention, most notably in mas-
sive MIMO systems with large-scale inputs [4]–[7], but also
for finite-scale inputs [44]–[46]. As discussed in the introduc-
tion, previous works on massive MIMO channel estimation fo-
cus only on the digital processing, while hybrid architectures
utilizing analog combiners were designed assuming CSI [12],
[13], [32]. By applying the analysis of Section III, we are able
to jointly optimize both the analog and the digital processing
to improve the channel estimation performance under a given
quantization rate constraint.

In the following we first present the massive MIMO system
model in Subsection IV-A. Then, we discuss the fundamental
limits of massive MIMO channel estimation without quantiza-
tion in Subsection IV-B. Finally, in Subsection IV-C we show
how the results of Section III can be applied to characterize the
achievable performance and design the corresponding massive
MIMO channel estimators.

A. Massive MIMO System Model

We consider pilot-aided channel estimation in a multi-cell
multi-user MIMO system with nc cells. In each cell, a BS
equipped with an array of equally-spaced N antennas serves K
single-antenna user terminals (UTs). The antennas are not nec-
essarily half-wavelength spaced, hence, the channel outputs can
be spatially correlated. We focus on the massive MIMO regime,
namely, the number of antennas N is sufficiently large to carry
out large-scale (asymptotic) analysis.

The massive MIMO channel follows a block-fading model
[20]. To formulate the model, let Dl,m be a K ×K diagonal
matrix with positive diagonal entries {dl,m,u}Ku=1 representing
the attenuation between the uth UT of the mth cell and the lth
BS, l,m ∈ {1, . . . , nc} � Nc. Without loss of generality, we
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Fig. 4. Massive MIMO channel estimation with nc = 2 cells.

assume that for each l ∈ Nc, the coefficients {dl,l,u}Ku=1 are ar-
ranged in descending order. Furthermore, let H l,m ∈ CN×K be
a random proper-complex zero-mean Gaussian matrix with i.i.d.
entries of unit variance, representing the instantaneous chan-
nel response between the UTs of the mth cell and the lth BS,
l,m ∈ Nc. For each (l1,m1) �= (l2,m2), H l1,m1

and H l2,m2

are mutually independent, and we assume a block-fading model
for {H l,m}l,m∈Nc

. To account for coupling induced by antenna
spacing, we use Cl ∈ CN×N to model the receive side correla-
tion, i.e.,

(
Cl

)
k1,k2

represents the correlation between the an-
tennas of indexes k1 and k2. Following conventional models for
antenna coupling, e.g., Jakes model [48], the fact that the anten-
nas are equally-spaced implies that Cl is a Toeplitz matrix with
unit diagonal entries, and we write cl[k1 − k2] =

(
Cl

)
k1,k2

, and
set sl(·) to be the DTFT of cl[τ ]. The overall random channel
matrix from the UTs in the mth cell to the lth BS is given by
Gl,m = C

1/2
l H l,mDl,m. Let wl[i] ∈ CN , l ∈ Nc, be an i.i.d.

zero-mean proper-complex Gaussian signal representing the ad-
ditive channel noise at the lth BS. Due to the antenna coupling at
the BS, the noise is also spatially correlated, and its covariance
matrix is σ2

WCl, with σ2
W > 0.

Channel estimation is carried out in a TDD fashion. Each UT
sends a deterministic orthogonal pilot sequence (PS) consisting
of L symbols, where the PSs are the same in all cells and known
to the BSs. The BSs use the knowledge of the PSs to estimate
the channel. Let θu[i] be the ith pilot symbol of the uth user in
each cell, u∈{1, . . . ,K}�K, i∈{1, . . . , L}�L. The channel
output at the kth antenna of the lth BS at time instance i ∈ L is

yl,k[i] =

nc∑

m=1

K∑

u=1

(Gl,m)k,u θu[i] + (wl[i])k . (13)

The orthogonality of the PSs implies that for all l,m ∈ K,∑L
i=1θl[i]θ

∗
m[i] = L · δm,k. Furthermore, the PS length,L, must

not be smaller than the number of UTs, K [20, Sec. III-A].
Each BS uses up to logM bits to represent the received signal
{yl,k[i]}, from which an estimate of the corresponding channel
in vector g

l,l
� vec (Gl,l), denoted ĝ

l,l
, is produced. An illus-

tration of the considered setup with nc = 2 cells is depicted in
Fig. 4.

Our goal is to derive the achievable average MSE in esti-
mating the channel matrix at a given cell with index l ∈ Nc,
and to characterize the corresponding quantization scheme. As
common in the massive MIMO literature, see, e.g., [20]–[22],
we assume that the BS knows: 1) the pilot symbols; 2) the
channel input-output relationship, i.e., that the channel output
are obtained from the PS via (13); and 3) the statistical model

of the channel and the noise. This knowledge is utilized in
the design of the quantization system to facilitate the estima-
tion of each realization of the channel. In our analysis, we fix
the quantization rate, defined here as R � 1

N ·L logM , and de-
rive the achievable MSE in the large number of antennas limit,
μl � limN→∞ 1

N ·K E{‖g
l,l

− ĝ
l,l
‖2}.

B. Achievable MSE without Quantization Constraints

As a preliminary step, we characterize the average MSE with-
out quantization, namely, the average MMSE. As stated in the
previous subsection, the BSs use the orthogonal PSs to produce
the MMSE estimate of their corresponding channel responses.
Define the N × L random matrices Y l and W l, such that
(Y l)k,i = yl,k[i] and (W l)k,i = (wl[i])k, as well as theK × L

deterministic matrix Θ with entries (Θ)u,i = θu[i]. From (13)
we have that for all l ∈ Nc:

Y l =

nc∑

m=1

Gl,mΘ+W l, (14)

or, alternatively, by writing y
l
� vec(Y l), gl,m

� vec(Gl,m),

and wl � vec(W l), (14) can be written as

y
l
=

nc∑

m=1

(
ΘT ⊗ IN

)
g
l,m

+wl. (15)

Since the PSs are orthogonal it holds that ΘΘH = L · IK . The
covariance matrix of y

l
is given by Σy

l
= Σyl

⊗Cl, where

Σyl
�

nc∑

m=1

ΘTD2
l,mΘ∗ + σ2

W IL. (16)

Next, define the coefficients φl,u �
√

fl,udl,l,u where

fl,u �
Ld2l,l,u

σ2
W + L

∑nc

m=1d
2
l,m,u

, l ∈ Nc, u ∈ K, (17)

as well as theK ×K diagonal matrices {Φl}l∈Nc
and {F l}l∈Nc

with diagonal entries {φl,u}Ku=1 and {fl,u}Ku=1, respectively.
The MMSE channel estimate and its statistical characterization
are stated in the following lemma:

Lemma 1: The MMSE estimate of g̃
l,l

� vec
(
G̃l,l

)
from y

l

is given by

g̃
l,l

= L−1 (F lΘ
∗ ⊗ IN )y

l
. (18)

Furthermore, the vector form of the MMSE estimate g̃
l,l

�
vec
(
G̃l,l

)
is a zero-mean N ·K × 1 Gaussian random vector

with covariance matrix E{g̃
l,l
g̃H
l,l
} =

(
Φ2

l ⊗ IN

)
.

Proof: The lemma follows from [22, Lem. 1], thus its proof
is omitted for brevity. �

Lemma 1 can be used to obtain the average MMSE in the
limit N → ∞, as stated in the following corollary:

Corollary 3: The average MMSE in estimating g
l,l

is

μMMSE
l =

1

K

K∑

u=1

(
d2l,l,u − φ2

l,u

)
. (19)

Proof: The corollary follows since the covariance matrix of
g
l,l

isD2
l,l ⊗Cl. Thus, lettingN → ∞, it follows from Szego’s

theorem [50] combined with Lemma 1 and the fact that cl[0] = 1
that the asymptotic average MMSE is given by (19). �
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Having characterized the MMSE channel estimate for the
massive MIMO setup without quantization, we are now ready
to introduce quantization, and apply the results of Section III.

C. Achievable MSE With Quantized Channel Outputs

We now show how Theorems 1–3 can be used to characterize
the achievable average MSE for massive MIMO channel esti-
mation with quantization constraints.

To see that the massive MIMO system model detailed in
Subsection IV-A is a special case of the general model described
in Subsection III-A, we note that by writing yi = [yl,i[1], . . . ,
yl,i[L]]

T , it holds that the set {yi}Ni=1 consists of L× 1 zero-
mean Gaussian random vectors with autocorrelation E{yi1y

H
i2
}

= Σyl
cl[i1 − i2]. Similarly, by lettinggi be the ith row ofGl,l, it

holds that {gi}Ni=1 are K × 1 zero-mean Gaussian random vec-
tors with autocorrelation E{gi1g

H
i2
} = D2

l,lcl[i1 − i2]. Finally,
by Lemma 1 it holds that the MMSE estimate of Gl,l from the
channel output y

l
is given by the set of MMSE estimates of

gi from yi for each i ∈ {1, . . . , N}, which can be written as
g̃i = Γyi with Γ = L−1F lΘ

∗. We thus conclude that the mas-
sive MIMO channel estimation setup is a special case of the
general problem formulation stated in Subsection III-A.

In the following, we first show how Theorems 1–2 charac-
terize the achievable average MSE when the BS uses vector
quantizers. Then, we apply Theorem 3 to obtain the minimal
achievable average MSE when the BS uses hardware-limited
quantizers. Finally, we note that in massive MIMO systems,
the BS may be able to linearly combine only channel outputs
received at the same time instance. By incorporating this con-
straint into the structure hardware-limited systems, we derive the
minimal achievable average MSE and the resulting quantization
system for this form of restricted hardware-limited quantization.

1) Vector Quantization: In Subsection III-A we discussed
two vector quantization systems: the optimal vector quantizer,
which is designed to recover the unknown channel g

l,l
, and the

task-ignorant vector quantizer, which represents the observed
signal y

l
separately from the task of estimating the channel.

Applying Theorem 1, we obtain the minimal achievable aver-
age MSE of any quantization system operating with quantization
rate R, as stated in the following proposition:

Proposition 1: The average MSE of the optimal vector quan-
tizer for massive MIMO channel estimation is given by

μOpt
l = μMMSE

l +
1

K
DG

(
L

K
·R,Φ2

l , 1

)
, (20)

where DG(·) is defined in (3a).
Proof: The proposition follows directly from Theorem 1 by

noting that in the limit N → ∞, the MMSE estimate g̃
l,l

can be
represented as an L× 1 Gaussian source with multivariate PSD
Sg̃(ω) = Φ2

l for each ω ∈ [0, 2π] by Lemma 1. �
Using Theorem 2, we characterize the achievable average

MSE with vector quantization carried out separately from the
task for the case when {yi} are i.i.d., namely, cl[τ ] = δτ . This
is stated in the following proposition:

Proposition 2: When cl[τ ] = δτ , the average MSE of the task
ignorant vector quantizer for massive MIMO channel estimation
is given by

μIgn
l = μMMSE

l +
1

K · L2
Tr
(
ΘTF 2

lΘ
∗ (Σyl

−Σyl,G(R)
))

,

(21)

Fig. 5. Massive MIMO channel estimation with scalar ADCs.

where Σyl
is defined in (16), and Σyl,G(R) is the covariance

matrix of the optimal marginal distribution which achieves the
distortion-rate function DG

(
R,Σyl

, 1
)
, defined in (3a).

Proof: The proposition is a result of Theorem 2, obtained by
substituting Γ = L−1F lΘ

∗ in (9), as {yi} are i.i.d. Gaussian
with covariance matrix Σyl

. Therefore, (9) becomes

μIgn
l = μMMSE

l

+
1

K
Tr
((

L−1F lΘ
∗)H (L−1F lΘ

∗) (Σy −Σy,D(R))
)

(a)
= μMMSE

l +
1

K · L2
Tr
(
ΘTF 2

lΘ
∗
(
Σyl

−Σy′
l
,G(R)

))
,

(22)

where (a) holds sinceF l is diagonal with non-negative diagonal
entries. �

Note that since y
l

is Gaussian, Σyl,G(R) can be obtained
using the inverse waterfilling algorithm [23, Ch. 10.3].

2) Hardware-Limited Quantization: Utilizing vector quan-
tization in massive MIMO systems is likely to be infeasible
due to its extremely high complexity for large-scale inputs. It
is thus desirable to utilize serial scalar uniform ADCs, corre-
sponding to the hardware-limited quantization setup described in
Subsection III-A. Here, the linear mapping carried out in the ana-
log domain can be implemented using a fully connected network
with complex gains, as considered in [51]–[53]. In some cases,
networks with controllable gains may be complex to implement,
and more restricted linear structures are desirable. Constrained
analog combiners can represent common practical architectures
such as phase shifter networks [29], antenna selection struc-
tures [11], discrete cosine beamforming [30], and Lorentzian
constrained phase combiners, which are encountered when us-
ing metasurface antennas [34]. For such scenarios, our analysis
constitutes a lower bound on the achievable MSE, and can be
used to facilitate the design of restricted analog combiners by ap-
proximating the resulting complex gain combiner matrix using
a feasible structure, see, e.g., [31], [32], [34]. An illustration of
a receiver, representing the lth BS in a massive MIMO network,
applying channel estimation with hardware-limited quantization
is depicted in Fig. 5.

We note that by setting the analog combining matrix Al to be
the identity matrix, the resulting system specializes the standard
model for MIMO channel estimation with quantized measure-
ments, as in, e.g., [5]–[7]. Consequently, the ability to jointly
optimize the analog combining, which represents the linear pro-
cessing of y

l
carried out in analog, along with the setting of

the support and the digital processing, is the main difference be-
tween task-based quantization and previously proposed quantiz-
ers. In Section V we numerically illustrate that jointly designing
the quantization system components significantly improves the
estimation accuracy over previously proposed schemes, and that
the resulting hardware-limited system can approach the optimal
performance achievable with vector quantizers.
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Using Theorem 3, we next characterize the minimal achiev-
able average MSE in estimating massive MIMO channels using
hardware-limited quantizers. To that aim, let {λl,u} be the sin-
gular values of L−1F lΘ

∗Σ1/2
yl

⊗Cl arranged in descending
order. The resulting optimal hardware-limited quantization sys-
tem for a fixed quantization rate R and analog combining ratio
r, is stated in the following proposition:

Proposition 3: In the hardware-limited quantization system
which minimizes the average MSE, the analog combining matrix
Ao

l is given by Ao
l = UAΛA(V H

AΣ−1/2
yl

⊗C
−1/2
l ), where

� V A ∈ CL×L is the right singular vectors matrix of L−1F l

Θ∗Σ1/2
yl

.
� ΛA ∈ CP×L·N is a diagonal matrix with diagonal entries

(ΛA)2u,u =
4κ

3M̃2 · rϕ(ζ · λl,u), (23a)

where ζ is set such that 4κ
3M̃2·P

∑P
u=1ϕ(ζ · λl,u) = 1.

� UA ∈ CP×P is a unitary matrix which guarantees that
UAΛAΛH

AUH
A has identical diagonal entries.

The support of the ADC is given by γ2 = κ
r , and the digital

processing matrix is

Bo
l =

(
D2

l,lΘ
∗ ⊗Cl

)
(Ao

l )
H

×
(
Ao

l

(
Σyl

⊗Cl

)
(Ao

l )
H +

4γ2

3M̃2
IP

)−1

. (23b)

The corresponding achievable average MSE in the limitN → ∞
when Pq ≥ rank (Φl) is given by

μHL
l = μMMSE +

1

2πK

∫ 2π

0

K∑

u=1

φ2
l,usl(ω)

ϕ(ζφl,u

√
sl(ω)) + 1

dω.

(23c)

Furthermore, when cl[τ ] = δτ , the asymptotic average MSE for
each Pq ≥ 0 is given by

μHL
l = μMMSE +

1

K

min(K,Pq)∑

u=1

φ2
l,u

ϕ(ζ · φl,u) + 1
+

δ(Pq<K)

K

×
(

K∑

u=Pq+1

φ2
l,u − (rL− Pq)

ϕ(ζφl,Pq+1)φ
2
l,Pq+1

ϕ(ζφl,Pq+1) + 1

)

. (23d)

Proof: The proposition is a result of Theorem 3. In particular,
here ΓΣyΓ

H = Φ2
l . Setting this in Theorem 3 proves (23a),

(23c), and (23d). Finally, (23b) is obtained from (10b) by noting
that for the massive MIMO setup,

ΓΣy = L−1F lΘ
∗
(

nc∑

m=1

ΘTD2
l,mΘ∗ + σ2

W IL

)

(a)
= L−1F l

(

L

nc∑

m=1

D2
l,m + σ2

W IK

)

Θ∗ (b)
= D2

l,lΘ
∗, (24)

where (a) follows since ΘΘH = L · IK , and (b) follows from
the definition of F l in (17). �

We note that the matrix Ao
l in Proposition 3 linearly com-

bines the vector y
l
, which represents the channel outputs re-

ceived over the entire channel estimation period. Thus, Ao
l can

linearly combine samples taken from different antennas, i.e.,
spatial combining, and at different time instances, i.e., temporal
combining. While spatial combining can be implemented using
simple hardware, see, e.g., [32], temporal combining requires

storing samples for different durations in analog, which may be
difficult when the number of training symbols L is large. Con-
sequently, we next characterize the optimal system when Al is
restricted to implement only spatial combining.

3) Spatial Analog Combining: In Proposition 3 we charac-
terized the achievable average MSE when the input to the scalar
ADCs can be written as any linear transformation of all the chan-
nel outputs, y

l
. Consequently, we allowed samples from differ-

ent time instances and different receive antennas to be jointly
combined. In fact, it follows from Corollary 1 that if P is an in-
teger multiple of N and the channel outputs are spatially uncor-
related, i.e., P = Pq ·N and cl[τ ] = δτ , then the optimal ana-
log combining matrix isAo

l = A′
l ⊗ IN , for someA′

l ∈ CPq×L.
Namely, the optimal matrix Ao

l implements only temporal com-
bining, and does not utilize spatial combining. Since in some
cases it may be preferable not to combine samples received at
different time instances in the analog domain to avoid the need to
store data in analog, in the following we restrict the analog com-
bining matrix to operate only on samples received at the same
time instance. It should be noted that this is the model used in
previous works on analog combining design for MIMO systems
[12], [13], [32], which assumed full CSI and fixed quantizers.

To formulate the resulting setup, we use P̃ to denote the
number of samples quantized at each time instance, i.e., the
number of RF chains, and let Ãl ∈ CN×P̃ represent the analog
combining, applied to each received channel output. Here, at
each time index i ∈ L, the vector Ãlyl[i] is quantized using P̃
identical scalar quantizers. As the overall number of quantiza-
tion levels is fixed to M , each scalar quantizer has resolution
M̃ = �M1/(2L·P̃ )�.

The considered setup is a special case of the model illustrated
in Fig. 5, with analog combining matrixAl = IL ⊗ Ãl andP =

P̃ · L. The analog combining ratio is thus r = P
L·N = P̃

N . Since
r is fixed and positive, letting N grow arbitrarily large implies
that P̃ grows proportionally. Let σ2

l be the maximal diagonal
entry of Σyl

, namely, σ2
l � maxi=1,...,L

(
Σyl

)
i,i

. Under this
setting, the optimal system and the corresponding average MSE
are stated in the following proposition:

Proposition 4: In the hardware-limited quantization system
with spatial analog combining which minimizes the average
MSE, the analog combining matrix Ãl is given by Ãl = U ÃΛÃ

V H
Ã
C

−1/2
l , where U Ã guarantees that U ÃΛÃΛH

Ã
UH

Ã
has

identical diagonal entires [54, Alg. 2.2]; V H
Ã

is the eigenmatrix
of Cl; and ΛÃ is diagonal with diagonal entries {āi}, which are
the solution to the convex optimization problem:

{āi}P̃i=1 = argmax
{ai}P̃i=1

P̃∑

i=1

K∑

u=1

L · φ4
l,u · a2i · λCl,i

L · φ2
l,u · a2i + f2

l,u

subject to
4κ · σ2

l

3M̃2 · P̃
P̃∑

i=1

a2i =, . (25a)

where λCl,i is the i-th largest eigenvalue of Cl. The support of

the ADC is γ2 = 3M̃2

4 , and the digital processing matrix is

B̃
o

l =
(
D2

l,lΘ
∗ ⊗ClÃ

H

l

)

((
Σyl

⊗ ÃlClÃ
H

l

)
+

4γ2

3M̃2
ILP̃

)−1

. (25b)
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The corresponding achievable average MSE in the limitN → ∞
is given by

μsHL
l = μMMSE

l +
1

K

K∑

u=1

φ2
l,u

− r

K

K∑

u=1

lim
P̃→∞

1

P̃

P̃∑

i=1

L · φ4
l,u · ā2i · λCl,i

L · φ2
l,u · ā2i + f2

l,u

. (25c)

Proof: See Appendix D.
The asymptotic average MSE in (25c) can be numerically

evaluated by considering a large fixed value of N , for which the
set {āi}P̃i=1 can be computed by solving the concave optimiza-
tion problem in (25a). When the BS antennas are not coupled,
i.e., cl[τ ] = δτ , (25c) can be obtained in closed-form, as stated
in the following corollary:

Corollary 4: When cl[τ ] = δτ , the asymptotic achievable av-
erage MSE using spatial analog combining is given by

μsHL
l = μMMSE

l +
1

K

K∑

u=1

⎛

⎝φ2
l,u − r · φ4

l,u

φ2
l,u +

4κ·σ2
l

3M̃2·L · f2
l,u

⎞

⎠ .

(26)

Proof: For cl[τ ] = δτ it holds that λl,i = 1 for each i.

Thus, as the mapping ξ(x) �
∑K

u=1

L·φ4
l,u·x

L·φ2
l,u·x+f2

l,u
is concave [55,

3.2.1], we have

1

P̃

P̃∑

i=1

ξ(ai) ≤ ξ

⎛

⎝ 1

P̃

P̃∑

i=1

ai

⎞

⎠ = ξ

(
3M̃2

P̃ ·L
4κP̃ ·L · σ2

l

)

, (27)

so that setting ai =
3M̃2

4κ·σ2
l

maximizes (25a). Substituting into
Proposition 4 proves the corollary. �

The channel output model in (13) implies that, when cl[τ ] =
δτ , the channel outputs received at different antennas for each
time instance i ∈ L,{yl,k[i]}Nk=1, are i.i.d. Therefore, intuitively,
combining {yl,k[i]}Nk=1 into a smaller set may result in an in-
accurate estimation. This is also demonstrated in the numerical
study in Subsection V-A, where it is shown that when the anten-
nas are uncorrelated, the proposed quantizer performs better with
increased analog combining ratio r (unlike the hardware-limited
quantizer with general analog combining, which, as noted
in Corollary 2, performs best when r ≤ K

L ). Furthermore, it
follows from the proof of Corollary 4 that for uncorrelated anten-
nas, the optimal analog spatial combining matrix Ãl multiplies
each input by a constant, whose purpose is to guarantee that the
quantized entries are within the support of the uniform scalar
quantizers. This combining is different from conventional hy-
brid beamforming, which is typically designed assuming full
CSI to better capture the energy of the transmitted signal [12],
[32]. Consequently, when the channel outputs are not spatially
correlated and the quantization system cannot combine samples
received at different time instances in the analog domain, most
of the performance gain is a result of the processing in the digital
domain. This insight is in agreement with a similar conclusion
in [31], which considered only spatial analog combining.

Finally, we note that even though the quantizer of Corollary 4
may not reduce the dimensionality of the quantized signal, it
does not operate only in digital, as it sets the support based on
the statistics of the input. Unlike previous channel estimators
for massive MIMO with quantized channel outputs, e.g., [4],
[5], [7], which operated only in the digital domain, the proposed

Fig. 6. Massive MIMO network illustration.

quantizer reduces the quantization error by properly setting the
support and scaling the channel output.

V. NUMERICAL RESULTS AND DISCUSSION

In this section we numerically evaluate the performance of
the quantization systems discussed in Section IV for massive
MIMO channel estimation. First, in Subsection V-A, we focus on
hardware-limited systems, and demonstrate how to set the num-
ber of scalar quantizers, dictated by the ratio r, by numerically
computing the value which minimizes the average MSE. Then, in
Subsection V-B, we compare the performance of the hardware-
limited quantizers to that achievable using vector quantizers,
illustrating their ability to approach optimality.

We consider a massive MIMO network consisting of nc = 7
hexagonal cells of radius 400 m, with K = 10 UTs in each cell.
As in [20], the UTs are uniformly distributed in the cell, with the
exception of a circle with radius 20 m around the BS. The atten-
uation coefficients {dl,m,u}u∈K are generated as

{ zl,m,u

ρ2
l,m,u

}
m∈K,

where {zl,m,u} are the shadow fading coefficients, indepen-
dently randomized from a log-normal distribution with standard
deviation of 8 dB, and {ρl,m,u} represent the range between the
uth UT of the mth cell and the lth BS, l,m ∈ Nc, u ∈ K [20,
Sec. II-C]. An illustration of such a network is given in Fig. 6.
We focus on the central cell in Fig. 6, and thus drop the subscript
l indicating the cell index.

We use two models for the receive side correlation cl[τ ]: Un-
correlated antennas, namely, cl[τ ] = δτ ; and Correlated anten-
nas, representing spatial correlation induced by antenna spacing
of 0.4 wavelength based on Jakes model cl[τ ] = J0 (0.8π|τ |),
where J0(·) is the zero-order Bessel function of the first type
[48]. Following [5, Sec. II-A], the pilots matrix Θ is the first
K columns of the L× L discrete Fourier transform matrix. The
noise power is σ2

W = 10−3, and for the scalar quantizers we
fix η = 2. In the following all hardware-limited quantization
systems are simulated with dithered quantizers, with the ex-
ception of the channel estimator of [7], used for comparison in
Subsection V-B, which is evaluated in the sequel with standard
non-dithered uniform quantizers as derived in [7]. Our results
are averaged over 103 Monte-Carlo simulations.

A. Selecting the Analog Combining Ratio r

We first numerically evaluate the number of scalar quantiz-
ers, dictated by the analog combining ratio r = P

N ·L , for which
the achievable average MSE of the hardware-limited quantiza-
tion systems studied in Section IV is minimized. To that aim,
we fix L = 40, and evaluate the achievable average MSE versus
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Fig. 7. Asymptotic average MSE vs. r for R = 2, uncorrelated antennas.

Fig. 8. Average MSE vs. r for R = 4, uncorrelated antennas.

Fig. 9. Average MSE vs. r for R = 2, correlated antennas.

r ∈ (0, 1] for general analog combining via Proposition 3, and
for spatial analog combining via Proposition 4. When the asymp-
totic average MSE is given by a limit expression, e.g., (25c) with
correlated antennas, we compute the MSE with N = 100 anten-
nas. Note that for r < K

L = 0.25, the number of quantized sam-
ples is smaller than the number of estimated parameters. The
achievable average MSEs for uncorrelated antennas quantiza-
tion rates R = 2 and R = 4 are depicted in Figs. 7–8, respec-
tively, and for correlated antennas with quantization rate R = 2
in Fig. 9. In Figs. 7–9 we also depict the minimal average MSE
achievable without quantization, namely, the average MMSE,
computed via Corollary 3.

We first observe in Figs. 7–9 that the analog combining ratio
has a notable effect on the average MSE of the considered
systems. In particular, for different values of r, the achievable
average MSE with quantization rate R = 2 and uncorrelated
antennas varies from 5.3 · 10−4 to 2.4 · 10−4 for general analog

combining and from 1.3 · 10−3 to 4.9 · 10−4 for spatial analog
combining. Furthermore, we note that for hardware-limited
quantizers with general analog combining, the analog com-
bining ratio which minimizes the average MSE μHL is not
larger than K

L = 0.25, in agreement with Corollary 2. This
follows since properly combining correlated samples from
different time indexes results in an error which is negligible
compared to that induced by the uniform quantizers, hence,
hardware-limited quantizers with general analog combining
operate best when the analog combining decreases the number
of quantized samples to be not larger than the number of channel
coefficients, i.e., r ≤ K

L , allowing the quantization to be carried
out with improved resolution.

When the analog combining matrix is restricted to spatial
combining, we observe in Figs. 7–8 that for uncorrelated an-
tennas, increasing the combining ratio, namely, increasing the
number of scalar quantizers, improves the average MSE μsHL.
This implies that combining only the independent samples re-
ceived at the same time index induces a more dominant error
compared to the quantization error which results from using
quantizers with lower resolution. However, when the antennas
are correlated, the error induced by combining the correlated
samples is less notable compared to the uncorrelated case, and
thus setting an analog combining ratio smaller than one can
minimize the overall average MSE. In particular, it is noted in
Fig. 9 that increasing the analog combining ratio from r = 0.8
to r = 1, for which the number of bits M̃ = 2 does not change,
hardly affects the overall performance, even though more sam-
ples quantized at the same resolution are processed in the digital
domain. Additionally, as expected, for all values of r and for all
considered scenarios, the minimal MSE achievable with gen-
eral analog combining is smaller than the special case where it
is restricted to spatial combining.

Finally, recall that the number of quantization levels is M̃ =

�2 R
2r �, thus different values of r may result in the same M̃, most

notably when R is small and r is relatively large. Consequently,
when increasing r does not reduce M̃, the overall performance
is typically improved by increasing r as more samples are pro-
cessed in digital. However, when increasing r causes the ADC
quantization to be less accurate, the average MSE typically in-
creases. For example, in Figs. 7 and 9 we explicitly mark the re-
gions of r for which M̃ = 2 and M̃ = 3. Observing the average
MSEs in these regions, we note that for uncorrelated antennas
with a fixed M̃, μsHL decreases quite sharply as r increases, due
to the relationship between μsHL and r in (26). In both Figs. 7
and 9 we note that μsHL increases substantially when switching
from M̃ = 3 to M̃ = 2. For general analog combining, increas-
ing r for fixed M̃ has a less notable effect on the average MSE,
as in this case (23d) only depends on r through the setting of ζ.

The numerical study in Figs. 7–9 can be used for determining
the combining ratio r when using hardware-limited quantizers.
In particular, the insights gained in this study are used in the
comparison of hardware-limited quantization to task-based vec-
tor quantization in the following subsection.

B. Hardware-Limited vs. Vector Quantization

We now compare the average MSE of hardware-limited quan-
tization, which utilizes scalar ADCs, to that achievable using
vector quantizers. In particular, we compare the performance
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Fig. 10. Average MSE vs. R, uncorrelated antennas.

of the hardware-limited quantizers to the optimal vector quan-
tizer, computed via Proposition 1; to the average MSE achiev-
able using task-ignorant vector quantization, computed via
Proposition 2; and to the channel estimator of [7], which ex-
tends the 1-bit Bussgang-LMMSE estimator of [5] to multiple
bits. The Bussgang estimator of [7] is computed by setting the
number of antennas to N = 100 = 10K and the support of the
quantizers to γ = 1. The performance of the estimator of [7]
is numerically averaged over 103 Monte Carlo simulations in
which the estimator processes a uniform non-dithered quantized
version of the channel output. Note that [7] considered a single
cell thus we expect its channel estimation accuracy to be im-
paired due to the presence of intercell interference. Finally, we
compute the achievable MSE of the linear MMSE digital es-
timator given in (D.2) with no analog combining and γ = 1.
Comparing this digital only estimator to μsHL quantifies the
gain of properly setting the support and the analog scaling in the
spatial-only system of Proposition 4.

Note that the analog combining ratio must satisfy r ≤ R
2 in

order to have log M̃ ≥ 1, i.e., to assign at least one bit for each
scalar quantizer. Combining this with the numerical study of
the values of r in Subsection V-A, we set r = min

(
K
L , R

2

)

when using the system with general analog combining, and
r = min

(
1, R

2

)
when restricted to spatial analog combining and

cl[τ ] = δτ .
In Fig. 10 we fix the number of pilot symbols to L = 40,

and evaluate the achievable average MSE versus R ∈ [0.5, 8]
for uncorrelated antennas. Observing Fig. 10, we note that the
performance of the hardware-limited quantizer with general ana-
log combining μHL approaches the optimal performance μOpt,
achievable with vector quantizers, for quantization rates larger
than R = 1.5. It is emphasized that while μOpt is smaller than
μHL, both measures are within a gap which is negligible com-
pared to the average MMSE, which constitutes the error floor.
The existence of this error floor is an inherent property of task-
based quantization problems, in which, unlike standard quanti-
zation, the error cannot be made arbitrarily small by increasing
the quantization rate, as it cannot be smaller than the average
MMSE. Furthermore, the performance of the hardware-limited
quantizer with spatial combining μsHL also approaches μOpt as
R increases, and effectively coincides with the minimal achiev-
able MSE for R > 5. The estimator of [7], which operates only
in the digital domain and assumes no intercell interference, is
outperformed by our proposed systems for all considered quan-
tization rates. The digital only estimator, which is designed for
multiple cells yet operates only in the digital domain, is also out-
performed by μsHL, especially at quantization rates R ∈ [3, 6],

Fig. 11. Average MSE vs. L for R = 2, uncorrelated antennas.

Fig. 12. Average MSE vs. R, correlated antennas.

where setting the support of the quantizers can notably reduce
the quantization error. Furthermore, even for R = 2 where one-
bit quantizers are used without analog combining, the MSE of
the digital only estimator is still larger than μsHL. This follows
since properly setting the support, as done in Proposition 4, is
still beneficial here as it controls the energy of the dither signal.

These results indicate that properly designed quantization sys-
tems operating with scalar ADCs can approach the optimal per-
formance for channel estimation in massive MIMO systems.
Additionally, we note that for nearly all the considered quanti-
zation rates, our proposed hardware-limited system with general
analog combining outperforms vector quantization carried out
separately from the channel estimation task. This demonstrates
the clear benefits of taking the task of the system into account
when designing quantizers for massive MIMO systems.

Next, we fixR = 2. In this case, when no analog combining is
applied, each complex sample is represented using two bits, and
thus the real and imaginary part are quantized using one-bit sign
quantizers. In Fig. 11, we compare the achievable MSEs versus
L ∈ [10, 100] for uncorrelated antennas. From Fig. 11 we note
that as L increases, the hardware-limited quantizer with gen-
eral analog combining approaches the optimal performance for
a fixed quantization rate R, as its analog combining ratio K

L de-
creases. When this happens, uniform quantization can be carried
out at more accurately for the same R, reducing the quantization
error. Furthermore, the quantizer with spatial analog combin-
ing, which, following the results of Subsection V-A, does not
decrease its combining ratio as L increases, also demonstrates
a steady improvement in the average MSE. This behavior is in
agreement with the fact that asL → ∞,μsHL in (26) approaches
μMMSE.

So far we have considered the case of uncorrelated anten-
nas. In Fig. 12 we compare the achievable average MSEs of the
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Fig. 13. Average MSE vs. σ2
d for R = 2.

hardware-limited quantizers to the optimal vector quantizer and
to the digital only quantizer for the correlated antennas setup.
As in Fig. 10, we compute the average MSE versus R ∈ [0.5, 8]
when the number of pilot symbols is fixed to L = 40. Based
on the numerical study of the values of r in Subsection V-A,
we use here r = min

(
K
L , R

2

)
when using the system with gen-

eral analog combining, and r = min
(
0.8, R

2

)
when restricted

to spatial analog combining. Recall that the asymptotic average
MSE of the task-ignorant vector quantizer is given in Proposi-
tion 2 only for uncorrelated antennas, and is thus not evaluated
in this correlated setup. Observing Fig. 12 we note that, similarly
to the uncorrelated setup in Fig. 10, μHL is within a very small
gap from optimal performanceμOpt for quantization rates larger
thanR = 1.5. The hardware-limited quantizer with spatial com-
bining, which for the uncorrelated case required the quantization
rate to be R > 5 to approach μOpt, is capable of achieving near-
optimal performance for R > 3 here, due to its ability to exploit
the spatial correlation. It is also observed that the average MSE
of estimating the channel only in the digital domain is notably
higher compared to μsHL. This indicates that, as noted in [17],
spatial correlation in massive MIMO systems with quantized
outputs can be exploited by combining the samples received at
the same time instance, leading to more accurate recovery.

Finally, we note that our hardware-limited quantizers require
accurate knowledge of the channel input-output statistical re-
lationship, from which, e.g., the covariance matrix Σyl

is ob-
tained. In practice, such a-priori knowledge may not be available,
and one must utilize noisy estimates of the channel parameters
instead of their actual value. In order to evaluate the robustness
of the proposed quantization systems to inaccurate knowledge
of the underlying channel, we numerically compute the average
MSE achieved when using a noisy estimate of the UTs attenua-
tion {dl,m,u}, given by dl,m,u + σd · wl,m,u, for each m ∈ Nc

and u ∈ K, where {wl,m,u} are i.i.d. zero mean Gaussian RVs
with unit variance. Inaccurate knowledge of {dl,m,u} leads to
a noisy estimation of the covariance matrix Σyl

and the ma-
trix Γ. For each simulated realization of {dl,m,u}, we evaluate
the average MSE over 40 realizations of {wl,m,u}. We con-
sider both correlated a well as uncorrelated antennas, recalling
that the average MMSE in Corollary 3 is identical in both. In
Fig. 13 we depict the computed average MSEs of our proposed
hardware-limited quantizers with N = 100 antennas and fixed
quantization rate R = 2 compared to the digital only estima-
tor, versus the coefficients noise level σ2

d ∈ [0, 0.2]. Since the
average MSEs here are computed by simulating the proposed

quantization systems, and not by computing an analytical ex-
pression, we do not simulate vector quantizers, which are very
computationally complex to implement at large input sizes. Ob-
serving Fig. 13, we note that while the performance of all consid-
ered quantizers degrades rapidly asσ2

d increases, the relative gain
of our proposed quantizers compared to digital only estimation
is maintained. This behavior is observed for both uncorrelated
as well as correlated antennas. These results indicate that the
benefits of the proposed hardware-limited quantizers hold also
in the presence of inaccurate CSI.

The simulation results presented in this section demonstrate
the fundamental performance limits of channel estimation in
massive MIMO systems, and illustrate that properly designed
hardware-limited quantization systems are capable of approach-
ing these limits at relatively low quantization rates.

VI. CONCLUSIONS

In this work we studied task-based quantization with large-
scale inputs. We first derived the average achievable MSE when
using vector quantization, and extended our earlier analysis of
task-based quantization systems operating with scalar ADCs to
large-scale data. Then, we showed how these results can be ap-
plied to studying channel estimation in massive MIMO systems
with quantized inputs. Our numerical results demonstrate that
the minimal achievable average MSE in massive MIMO chan-
nel estimation can be approached by properly designed quan-
tization systems utilizing scalar low-resolution ADCs, and that
the proposed approach outperforms previous channel estimators
operating only in the digital domain.

APPENDIX

A. Proof of Theorem 1

Recall that the optimal quantizer for finite N quantizes the
MMSE estimate [25]. Thus, using the notation QNK

M (·) =
QNK,NK

M (·), the minimal average MSE is given by

1

NK
min

QNL,NK
M (·)

E

{∥
∥
∥g −QNL,NK

M

(
y
)∥∥
∥
2
}

= μMMSE +
1

NK
min

QNK
M (·)

E
{∥
∥g̃ −QNK

M

(
g̃
)∥∥2
}
. (A.1)

The second summand in (A.1) is the minimal average distor-
tion in quantizing the MMSE estimate g̃ at rate 1

NK logM =
L
K

1
NL logM = L

K ·R. Since g̃ consists ofN zero-mean random
vectors sampled from a stationary distribution, it follows from
[36, Ch. 5.9] that forN → ∞, the minimal achievable distortion
coincides with the distortion-rate function for g̃, namely,

lim
N→∞

1

N
min

QNK
M (·)

E
{∥
∥g̃ −QNK

M

(
g̃
)∥∥2
}
= Dg̃

(
L

K
·R
)
.

Substituting this in (A.1) proves the theorem. �

B. Proof of Theorem 2

To prove the theorem, we first express the excess distortion
due to quantization. Then, we let N → ∞, and show that the
excess distortion coincides with the second summand in (9).
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From the orthogonality principle, the resulting distortion in
estimating g̃ from the quantized y is given by

1

NK
E
{∥
∥g − E

{
g
∣
∣QNL

M

(
y
)}∥∥2

}

=
1

NK
E
{∥
∥g − g̃

∥
∥2
}
+

1

NK
E
{∥
∥g̃ − E

{
g
∣
∣QNL

M

(
y
)}∥∥2

}

(a)
= μMMSE +

1

NK
E
{∥
∥g̃ − E

{
g̃
∣
∣QNL

M

(
y
)}∥∥2

}
, (B.1)

where (a) follows since g �→ y �→ QNL
M (y) form a Markov

chain, thus, by [43, Prop. 4], E{g|QNL
M (y)}=E{g̃|QNL

M (y)}.
Next, we note that g̃ = (Γ⊗ IN )y, it thus follows that

E
{∥
∥g̃ − E

{
g̃
∣
∣QNL

M

(
y
)}∥∥2

}

= E
{∥
∥(Γ⊗ IN )

(
y − E

{
y
∣
∣QNL

M

(
y
)})∥∥2

}

(a)
= Tr

((
ΓHΓ⊗ IN

) (
Σy −ΣQNL

M (y)

))
, (B.2)

where (a) holds as the optimal quantizer output is uncorrelated
with the quantization error [2, Sec. III]. Since y consists here of
N i.i.d. L× 1 random vectors distributed as y, it follows from
[39, Ch. 23.2] that in the limitN → ∞, the output of the optimal
quantizer consists ofN i.i.d.L× 1 random vectors whose distri-
bution is the marginal distortion-rate distribution which achieves
Dy (R), i.e., ΣQNL

M (y) = Σy,D(R)⊗ IN . Plugging this into

(B.2) and letting N → ∞ yields

lim
N→∞

1

K ·N E
{∥
∥g̃ − E

{
g̃
∣
∣QNL

M

(
y
)}∥∥2

}

=
1

K
Tr
(
ΓHΓ (Σy −Σy,D(R))

)
. (B.3)

Combining (B.3) and (B.1) proves the theorem. �

C. Proof of Theorem 3

For a finite N , the optimal system and the resulting MSE
for the considered setup can be obtained from [28]. Con-
sequently, in the following we formulate the results of [28]
(adapted to complex-valued signals), and then let N grow to
infinity, obtaining Theorem 3. In particular, under the model
detailed in Subsection III-A, the optimal digital processing in
(10b) is obtained from [28, Lem. 1]. The analog combining of
[28, Thm. 1] is given by Ao = UAΛA(V H

AΣ−1/2
y ⊗C−1/2),

where (ΛA)2l,l =
4κ

3M̃2·rϕ(ζ · λl). The waterfilling parameter

ζ > 0 is set such that 4κ
3M̃2·r

∑P
l=1ϕ(ζ · λl) = NL, which can

be written as 4κ
3M̃2·P

∑P
l=1ϕ(ζ · λl) = 1. The support is set to

satisfy

γ2 = κ max
l=1,...,P

E

{∣
∣
∣
(
Aoy

)
l

∣
∣
∣
2
}
, (C.1)

and is thus given by γ2 = κ
P Tr(ΛAΛH

A) = κ
r .

The resulting optimal average excess MSE compared to the
MMSE in [28, Thm. 1] under this setting can be written as

MSEN (Ao) =
1

NK

NK∑

l=1

λ2
l −

1

NK

min(NK,P )∑

l=1

ϕ(ζ · λl) · λ2
l

ϕ(ζ · λl) + 1
.

(C.2)

When both sums in (C.2) have the same number of summands,

i.e., Pq ≥ rank(Γ̃ΣyΓ̃
H
), (C.2) yields

MSEN (Ao) =
1

NK

NK∑

l=1

λ2
l

ϕ(ζ · λl) + 1
. (C.3)

By letting λC ,k be the k-th largest eigenvalue of C , it follows
that each singular value λl can be written as λl = φi

√
λC ,k

for some pair of indexes i ∈ {1, . . . ,K} and k ∈ {1, . . . , N},
where each l corresponds to a different (i, k) pair. The average
MSE in (C.3) can thus be written as

MSEN (Ao) =
1

K

K∑

i=1

1

N

N∑

k=1

φ2
iλC ,k

ϕ(ζ · φi

√
λC ,k) + 1

. (C.4)

Since the mapping f(x) � x
ϕ(ζ·√x)+1

is continuous over R+

and since the rows of C are absolutely summable, it follows
from Szego’s theorem [50, Eq. (1.6)] that in the limit N → ∞,
(C.4) becomes

MSE (Ao) =
1

K

K∑

i=1

1

2π

∫ 2π

0

φ2
i s(ω)

ϕ(ζ · φi

√
s(ω)) + 1

dω,

(C.5)

thus proving (10c).
Now, when c[l] = δl, then λl = φ〈l〉N and s(ω) ≡ 1. In this

case, we can write (C.2) for any setting of P as

MSEN (Ao) =
1

NK

P∑

l=1

φ2
〈l〉N

ϕ(ζ · φ〈l〉N ) + 1
+

1

NK

NK∑

l=P+1

φ2
〈l〉N .

(C.6)
In order to express (C.6) in the limit N → ∞, we recall that by
(5), P < NK implies that Pq < K, thus, (C.6) becomes

MSEN (Ao) =
1

NK

Pq ·N∑

l=1

φ2
〈l〉N

ϕ(ζ · φ〈l〉N ) + 1

+
1

NK

K·N∑

l=(Pq+1)·N+1

φ2
〈l〉N +

1

NK

Pq ·N+Pr∑

l=Pq ·N+1

φ2
〈l〉N

ϕ(ζ · φ〈l〉N) + 1

+
1

NK

(Pq+1)·N∑

l=Pq ·N+Pr+1

φ2
〈l〉N

=
1

K

Pq∑

i=1

φ2
i

ϕ(ζ · φi) + 1
+

1

K

K∑

i=Pq+1

φ2
i

− Pr

NK

φ2
(Pq+1)ϕ(ζ · φ(Pq+1))

ϕ(ζ · φ(Pq+1)) + 1
.

Writing Pr

NK = r · L− Pq yields an expression which does not
depend on N , and thus holds for N → ∞. Combining this with
(C.5) while setting s(ω) ≡ 1 proves (10d). �

D. Proof of Proposition 4

To prove the proposition, we first characterize the achievable
average MSE for a fixed Ãl using [28, Lem. 1]. Then, as in
[28, Appendix C], we derive the optimal unitary rotation for a
given Ãl, and obtain the analog combining matrix as well as
the resulting average MSE. We characterize the average excess
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MSE compared to the average MMSE, from which the overall
average MSE can be obtained by adding μMMSE

l .
Note that spatial analog combining can be written as a special

case of the hardware-limited setup by fixing A = IL ⊗ Ãl and
P = P̃ · L. Under this setting, it can be shown that for a given
Ãl, the achievable average MSE for fixed N when setting the
digital processing B̃ to the linear MMSE estimator is given by

MSEN

(
Ãl

)

=
1

K
Tr
(
Φ2

l

)− 1

NK
Tr

(
(
ΘTD4

l,lΘ
∗ ⊗ ÃlC

2
l Ã

H

l

)

×
((

Σyl
⊗ ÃlClÃ

H

l

)
+

4γ2

3M̃2
I P̃ ·L

)−1
)

. (D.1)

Similarly, the optimal digital processing matrix is given by

Bo
l

(
Ãl

)
=
(
D2

l,lΘ
∗ ⊗ClÃ

H

l

)

×
((

Σyl
⊗ ÃlClÃ

H

l

)
+

4γ2

3M̃2
I P̃ ·L

)−1

. (D.2)

Next, recall that γ is set to η times the maximal standard
deviation of the quantizer input. Thus, by (C.1),

γ2 = κ max
i=1,...,P̃ ·L

E

{∣
∣
∣
((

IL ⊗ Ãl

)
y
l

)

l

∣
∣
∣
2
}

(a)
= κ · σ2

l · max
i=1,...,P̃

(
ÃlClÃ

H

l

)2

i,i
, (D.3)

where (a) holds by writing the covariance of y
l

and as the max-
imal diagonal entry of a Kronecker product of positive semi-
definite matrices is the product of the maximal diagonal entries
[49, Ch. 7.8]. Defining Ā � ÃlC

1/2
l and substituting (D.3) in

(D.1) results in

MSEN

(
Ā
)
=

1

K
Tr
(
Φ2

l

)

− 1

K ·N Tr

(
(
ΘTD4

l,lΘ
∗ ⊗ ĀClĀ

H
)((

Σyl
⊗ ĀĀ

H
)

+
4κ · σ2

l

3M̃2
max

i=1,...,P̃

(
ĀĀ

H
)2

i,i
I P̃ ·L

)−1
)

. (D.4)

Using (D.4), we can now characterize the optimal unitary rota-
tion for any given Ā, as stated in the following lemma:

Lemma D.1: For every matrix Ā ∈ CP̃×N there exists a uni-
tary matrix U Ã ∈ CP̃×P̃ such that

MSE
(
Ãl

)
≥ MSE

(
U ÃÃl

)
=

1

K
Tr
(
Φ2

l

)

1

K ·N Tr

(
(
ΘTD4

l,lΘ
∗ ⊗ ĀClĀ

H
)

×
((

Σyl
⊗ ĀĀ

H
)
+

4κ · σ2
l

3M̃2 · P̃ Tr
(
Ā

H
)
I P̃ ·L

)−1
)

. (D.5)

The unitary matrixU Ã is a set such thatU ÃĀĀ
H
UH

Ã
is weakly

majorized by all possible rotations of ĀĀ
H .

Proof: The lemma is obtained by repeating the arguments in
[28, Lem. C.1], thus its proof is omitted for brevity. �

We can now characterize the optimal Ā as the matrix which
minimizes (D.5). Note that the right hand side of (D.5) is in-
variant to replacing Ā with α ·UĀ for any α > 0 and for any

unitary U . Consequently, we can fix 4κP̃ ·L·σ2
l

3M̃2
P̃ ·L·P̃ Tr(ĀĀ

H
) = 1.

and thus, minimizing (D.5) reduces to solving

argmax
Ā

Tr

(
(
ΘTD4

l,lΘ
∗ ⊗ ĀClĀ

H
)

((
Σyl

⊗ ĀĀ
H
)
+ I P̃L

)−1
)

,

subject to
4κ · σ2

l

3M̃2 · P̃ Tr
(
ĀĀ

H
)
= 1. (D.6)

By (D.3), the support is now γ2 =
κ·σ2

l

P̃
Tr(ĀĀ

H
) =

3M̃2
P̃ ·L
4 .

Plugging the resulting γ into (D.2) proves (25b).
In order to solve (D.6), we define the matrix

M �
(
Σyl

⊗ ĀĀ
H
)
+ I P̃ ·L =

(
IL ⊗

(
I P̃ + σ2

W ĀĀ
H
))

+
(
ΘT ⊗ I P̃

)
(

nc∑

m=1

D2
l,m ⊗ ĀĀ

H

)

(Θ∗ ⊗ I P̃ ) .

(D.7)

Applying the matrix inversion lemma to (D.7), recalling that
ΘΘH = L · IK results in

Tr
((

ΘTD4
l,lΘ

∗ ⊗ ĀĀ
H
)
M−1

)

= Tr

((
LD4

l,l ⊗
((

I P̃ + σ2
W ĀĀ

H
)−1

ĀClĀ
H
))

×
((

L

nc∑

m=1

D2
l,m ⊗

(
I P̃ + σ2

W ĀĀ
H
)−1

ĀĀ
H

)

+ IKP̃

)−1)

.

(D.8)

We note that (D.8) is invariant to replacing Ā with α ·UĀ, we
henceforth set Ā = ΛV H , where Λ ∈ CP̃×N is diagonal with
diagonal entries arranged in descending magnitude order, and
V ∈ CN×N is unitary. Substituting this in (D.8) and using the
invariance of the trace operator to cyclic permutations results in

Tr
((

ΘTD4
l,lΘ

∗ ⊗ ĀĀ
H
)
M−1

)

= Tr

(
(
LD4

l,l ⊗
(
V HClV

)) (
IK ⊗ΛΛH

)

×
((

L

nc∑

m=1

D2
l,m ⊗ΛΛH

)

+
(
IK ⊗ (I P̃ +ΛΛH

))
)−1)

.

(D.9)

Note that the matrix (IK ⊗ΛΛH)((L
∑nc

m=1D
2
l,m ⊗ΛΛH) +

(IK ⊗ (I P̃ +ΛΛH)))−1 is diagonal with non-negative diago-
nal entries arranged in descending order. Therefore, it follows
from [56, Thm. II.1] that (D.9) is maximized by setting V to
be the eigenmatrix of Cl. Thus, by letting ai be the diagonal
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entries of Λ, the objective (D.9) can be written as

Tr
((

ΘTD4
l,lΘ

∗ ⊗ ĀĀ
H
)
M−1

)

=
K∑

u=1

P̃∑

i=1

L · d4l,l,u · a2i · λl,i

1 +
(
σ2
W + L

∑nc

u=1d
2
l,m,u

)
a2i

(a)
=

K∑

u=1

P̃∑

i=1

L · φ4
l,u · a2i · λl,i

L · φ2
l,u · a2i + f2

l,u

, (D.10)

where (a) follows from the definition of fl,u in (17), and since
φ2
l,u = fl,ud

2
l,l,u. By combining (D.10) and (D.6) it holds that

the analog combining matrix which minimizes the average MSE
is given by U ÃΛÃV H

Ã
, where U Ã is given in Lemma VI-D.1,

V H
Ã

is the eigenmatrix of Cl, and ΛÃ is diagonal with diagonal
entries {āi}, which are the solution to

{āi}P̃i=1 = argmax
{ai}P̃i=1

P̃∑

i=1

K∑

u=1

L · φ4
l,u · a2i · λl,i

L · φ2
l,u · a2i + f2

l,u

subject to
4κ · σ2

l

3M̃2 · P̃
P̃∑

i=1

a2i = 1. (D.11)

The concavity of the objective in (D.11) stems from the concav-

ity of the mapping x �→ L·φ4
l,u·λl,i·x

L·φ2
l,u·x+f2

l,u
over R+.

Combining (D.4) and (D.11), noting thatN → ∞ implies that
P̃ → ∞, proves (25c), thus concluding the proof. �
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