
1

Exploiting Statistical Dependencies in Sparse

Representations for Signal Recovery
Tomer Faktor, Yonina C. Eldar, Senior Member, IEEE, and Michael Elad, Senior Member, IEEE

Abstract

Signal modeling lies at the core of numerous signal and image processing applications. A recent approach that

has drawn considerable attention is sparse representation modeling, in which the signal is assumed to be generated

as a combination of a few atoms from a given dictionary. In this work we consider a Bayesian setting and go

beyond the classic assumption of independence between the atoms. The main goal of this paper is to introduce

a statistical model that takes such dependencies into account and show how this model can be used for sparse

signal recovery. We follow the suggestion of two recent works and assume that the sparsity pattern is modeled by

a Boltzmann machine, a commonly used graphical model. For general dependency models, exact MAP and MMSE

estimation of the sparse representation becomes computationally complex. To simplify the computations, we propose

greedy approximations of the MAP and MMSE estimators. We then consider a special case in which exact MAP

is feasible, by assuming that the dictionary is unitary and the dependency model corresponds to a certain sparse

graph. Exploiting this structure, we develop an efficient message passing algorithm that recovers the underlying

signal. When the model parameters defining the underlying graph are unknown, we suggest an algorithm that learns

these parameters directly from the data, leading to an iterative scheme for adaptive sparse signal recovery. The

effectiveness of our approach is demonstrated on real-life signals - patches of natural images - where we compare

the denoising performance to that of previous recovery methods that do not exploit the statistical dependencies.

Index Terms

Sparse representations, signal synthesis, Bayesian estimation, MAP, MRF, Boltzmann machine, greedy pursuit,

unitary dictionary, decomposable model, message passing, pseudo-likelihood, SESOP, image patches, denoising.

I. INTRODUCTION

Signal modeling based on sparse representations is used in numerous signal and image processing applications,

such as denoising, restoration, source separation, compression and sampling (for a comprehensive review see [1]).

In this model a signal y is assumed to be generated as y = Ax+ e, where A is the dictionary (each of the columns

in A is typically referred to as an atom), x is a sparse representation over this dictionary, and e is additive white

Gaussian noise. Throughout this work we shall assume that the dictionary is known and fixed, and our derivations

consider both overcomplete and unitary dictionaries.

T. Faktor and Y. C. Eldar are with the Department of Electrical Engineering, Technion – Israel Institute of Technology, Haifa 32000,
Israel (e-mail: {tomerfa@tx,yonina@ee}.technion.ac.il). M. Elad is with the Computer Science Department, Technion – Israel Institute of
Technology, Haifa 32000, Israel (e-mail: elad@cs.technion.ac.il).

This work was supported in part by the Israel Science Foundation under Grants 1081/07 and 599/08, and by the European Commission’s
FP7 Network of Excellence in Wireless COMmunications NEWCOM++ (grant agreement no. 216715) and FP7-FET program, SMALL
project (grant agreement no. 225913).

2

Various works that are based on this model differ in their modeling of the sparse representation x. The classical

approach to sparse recovery considers a deterministic sparse representation and signal recovery is formulated as

a deterministic optimization problem. Some examples include greedy pursuit algorithms like orthogonal matching

pursuit (OMP) and CoSaMP, and convex relaxations like basis pursuit denoising and the Dantzig selector (for

comprehensive reviews see [1], [2]). Recent works [3], [4], [5], [6], [7], [8] suggested imposing additional assump-

tions on the support of x (the sparsity pattern), which is still regarded deterministic. These works show that using

structured sparsity models that go beyond simple sparsity can boost the performance of standard sparse recovery

algorithms in many cases.

Two typical examples for such models are wavelet trees [3] and block-sparsity [5], [6]. The first accounts for the

fact that the large wavelet coefficients of piecewise smooth signals and images tend to lie on a rooted, connected

tree structure [9]. The second model is based on the assumption that the signal exhibits special structure in the

form of the nonzero coefficients occurring in clusters. This is a special case of a more general model, where the

signal is assumed to lie in a union of subspaces [4], [5]. Block-sparsity arises naturally in many setups, such as

recovery of multi-band signals [10], [11] and the multiple measurement vector problem. However, there are many

other setups in which sparse elements do not fit such simple models.

In many applications it can be difficult to provide one deterministic model that describes all signals of interest.

For example, in the special case of wavelet trees it is well known that statistical models, such as hidden Markov

trees (HMTs) [12], are more reliable than deterministic ones. Guided by this observation, it is natural to consider

more general Bayesian modeling, in which the sparse representation is assumed to be a random vector. Many

sparsity-favoring priors for the representation coefficients have been suggested in statistics, such as the Laplace

prior, "spike-and-slab" (mixture of narrow and wide Gaussian distributions) and Student’s t distribution (for a

comprehensive review see [13]). However, the representation coefficients are typically assumed to be independent

of each other.

Here we are interested in Bayesian modeling that takes into account not only the values of the representation

coefficients, but also their sparsity pattern. In this framework sparsity is achieved by placing a prior distribution on

the support, and the representation coefficients are modeled through a conditional distribution given the support.

The most simple prior for the support assumes that the entries of the sparsity pattern are independent and identically

distributed (i.i.d.) (see e.g. [14]). However, in practice, atoms in the dictionary are often not used with the same

frequency. To account for this behavior, we can relax the assumption that the entries are identically distributed and

assign different probabilities to be turned "on" for each entry [15].

Besides the modeling aspect, another key ingredient in Bayesian formulations is the design objective. Two popular

techniques are maximum a posteriori (MAP) and minimum mean square error (MMSE) estimators. Typically these

estimators are computationally complex, so that they can only be approximated. For example, approximate MAP

estimation can be performed using a wide range of inference methods, such as the relevance vector machine [16]

and Markov chain Monte Carlo (MCMC) [17]. Such estimators are derived in [13], [18] based on sparsity-favoring

priors on x and approximate inference methods. In [14], [19] approximate MMSE estimators are developed, based

on an i.i.d prior on the support. Finally, in the special case of a square and unitary dictionary, assuming independent

3

entries in the support and Gaussian coefficients, it is well known that the exact MAP and MMSE estimators can

be easily computed [15].

Independence between the entries in the support can be a useful assumption, as it keeps the computational

complexity low and the performance analysis simple. Nevertheless, this assumption can be quite restrictive and

leads to loss of representation power. Real-life signals exhibit significant connections between the atoms in the

dictionary used for their synthesis. For example, it is well known that when image patches are represented using

the discrete cosine transform (DCT) or a wavelet transform, the locations of the large coefficients are strongly

correlated. Recent works [7], [20], [21], [22], [23], [24] have made attempts to go beyond the classic assumption

of independence and suggested statistical models that take dependencies into account. The special case of wavelet

trees is addressed in [7], [20], where HMTs are merged into standard sparse recovery algorithms, in order to

improve some of their stages and lead to more reliable recovery. Another statistical model designed to capture the

tree structure for wavelet coefficients, was suggested in [21]. An approximate MAP estimator was developed there

based on this model and MCMC inference.

Here we consider more general dependency models based on undirected graphs, which are also referred as Markov

random fields (MRFs), and focus on the special case of a Boltzmann Machine (BM). To the best of our knowledge

a BM structure for sparsity patterns was originally suggested in [22] in the context of Gabor coefficients. MCMC

inference was used there for non-parametric Bayesian estimation. In [23] the authors also use a BM structure,

which allows them to introduce the concept of interactions in a general sparse coding model. An approximate MAP

estimator is then developed by means of Gibbs sampling and simulated annealing [17]. Finally, in [24] a BM prior

on the support is used in order to improve the CoSaMP algorithm. We will relate in more detail to the recent works

which used BM-based modeling and emphasize differences between these works and our approach in Section X.

The current paper is aimed at further exploring the BM-based model proposed in [22], [23], [24]. Once we

adopt the BM as a model for the support, several questions naturally arise: how to perform pursuit for finding the

sparse representation, how to find the model parameters, and finally how to combine these tasks with dictionary

learning. In this paper we address the first two questions. For pursuit we suggest using a greedy approach, which

approximates the MAP and MMSE estimators and is suitable for any set of model parameters. We then make

additional modeling assumptions, namely a unitary dictionary and a banded interaction matrix, and develop an

efficient message passing algorithm for signal recovery which obtains the exact MAP estimate in this setup. For

learning the Boltzmann parameters we suggest using a maximum pseudo-likelihood (MPL) approach and develop

an efficient optimization algorithm for solving the MPL problem. Finally, we use a block-coordinate optimization

approach to estimate both the sparse representations and the model parameters directly from the data. This results

in an iterative scheme for adaptive sparse signal recovery.

The paper is organized as follows. In Section II we motivate the need for inserting probabilistic dependencies

between elements in the support by considering sparse representations of image patches over a DCT dictionary. In

Section III we introduce useful notions and tools from the graphical models field and explore the BM prior. Section

IV defines the signal model, along with the MAP and MMSE estimation problems. In Section V we develop several

greedy approximations of the MAP and MMSE estimators for the BM prior. We then present setups where the

4

MAP problem can be solved exactly and develop an efficient algorithm for obtaining the exact solution in Section

VI. We explore the performance of these algorithms through synthetic experiments in Section VII. Estimation of

the model parameters and adaptive sparse signal recovery are addressed in Section VIII. The effectiveness of our

approach is demonstrated on image patches in Section IX. Finally, we discuss relations to past works in Section X.

II. MOTIVATION

In this section we provide motivation for inserting probabilistic dependencies between elements in the support. We

consider a set of N = 100, 000 patches of size 8-by-8 that are extracted out of several noise-free natural images. For

each patch, we perform a preliminary stage of DC removal by subtracting the average value of the patch, and then

obtain sparse representations of these patches over an overcomplete DCT dictionary of size 64-by-256 (n-by-m)

using the OMP algorithm. We consider a model error of σ = 2, so that OMP stops when the residual error falls below

ϵ =
√
nσ = 16. We then compute the empirical marginal distributions for each of the dictionary atoms and for all

pairs of atoms, namely we approximate Pr(Si = 1), i = 1, . . . ,m and Pr(Si = 1, Sj = 1), i = 1, . . . ,m−1, j > i,

where S is a binary vector of size m and Si = 1 denotes that the ith atom is being used. The empirical conditional

probability Pr(Si = 1|Sj = 1) can then be computed as the ratio between Pr(Si = 1, Sj = 1) and Pr(Sj = 1).

We address several assumptions that are commonly used in the sparse recovery field and suggest validity tests

for each of them. The first assumption is that the elements in the support vector are identically distributed, namely

Pr(Si = 1) = p for all i, where 0 ≤ p ≤ 1 is some constant. This assumption can be examined by comparing

the marginal probabilities Pr(Si = 1) for each atom. The second assumption is independency between elements in

the support. The independency assumption between atoms i and j implies that Pr(Si = 1|Sj = 1) = Pr(Si = 1).

Therefore, we can test for independency by comparing the marginal and conditional probabilities for each pair of

atoms. Next we turn to the block-sparsity assumption. Assuming that i and j are in the same cluster implies that

the conditional probabilities Pr(Si = 1|Sj = 1) and Pr(Sj = 1|Si = 1) are near 1.

To examine the validity of each of the above-mentioned assumptions, we compute the variables

Ri =

∣∣∣∣log10(Pr(Si = 1)

p

)∣∣∣∣ , 1 ≤ i ≤ m

Ui,j =

∣∣∣∣log10(Pr(Si = 1|Sj = 1)

Pr(Si = 1)
+ δ

)∣∣∣∣ , 1 ≤ i, j ≤ m (1)

Vi,j = |log10 (Pr(Si = 1|Sj = 1) + δ)| , 1 ≤ i, j ≤ m

where p denotes the average probability of an entry to be turned "on" , namely p , 1
m

∑m
l=1 Pr(Sl = 1), R is a

vector of size m and U, V are matrices of size m-by-m. We use δ = 0.1, so that for Pr(Si = 1|Sj = 1) = 0 we

get a value 1 in Ui,j and Vi,j (i and j denote the row and column indices respectively). In each of the functions

in (1) a near-zero result implies that the corresponding assumption is valid; as we go further away from zero the

validity of the assumption decreases. The logarithms are used to improve the visibility of the results.

The results are shown in Fig. 1. On the left we plot the values in R. This plot demonstrates that the individual

frequencies can be very far from the average one. Consequently, the DCT atoms are used with varying frequencies.

The matrix U is displayed in the middle. The black color, which corresponds to near-zero values, is dominant. This

5

0 100 200
0

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

Figure 1. Validity tests for several assumptions on the support vector: identical distributions, independency and block-sparsity. Left: A plot
of R, Middle: An image of U , Right: An image of V .

illustrates that the independency assumption is satisfactory for many pairs of DCT atoms. However, some pairs

exhibit significant interactions (see the white diagonals near the main diagonal and the bright spots). The image

on the right displays the matrix V , which is dominated by the white color, corresponding to near-one values. High

values in the entries Vi,j or Vj,i indicate that it is not reasonable to assume that the corresponding atoms belong

to the same cluster in a block-sparse model (regardless of the block sizes). Since this is the case for most pairs of

DCT atoms, we conclude the block-sparsity approach does not capture the dependencies well in this example.

It is interesting to note that while the OMP algorithm reveals different frequencies of appearance for the atoms

and significant correlations between pairs of atoms, it in fact makes no use of these properties. Therefore, it seems

plausible that a stochastic model that will capture the different nature of each atom, as well as the important

interactions between the atoms, can lead to improved performance. In this paper we will show how this can be

accomplished in a flexible and adaptive manner. In Section IX we will return to this very set of patches and show

that the proposed model and methods do better service to this data.

III. BACKGROUND ON GRAPHICAL MODELS

The main goal of this paper is using graphical models for representing statistical dependencies between elements

in the sparsity pattern and developing efficient sparse recovery algorithms based on this modeling. In order to set the

ground for the signal model and the recovery algorithms, we provide some necessary notions and methods from the

vast literature on graphical models. We begin by presenting MRFs and explain how they can be used for describing

statistical dependencies. We then focus on the BM, a widely used MRF, explore its properties and explain how

it can serve as a useful and powerful prior on the sparsity pattern. For computational purposes we may want to

relax the dependency model. One possible relaxation, which often reduces computational complexity and still bears

considerable representation power, is decomposable models. Finally, we present a powerful method for probabilistic

inference in decomposable models, coined belief propagation. Decomposability will be a modeling assumption in

Section VI and the algorithm we propose in Section VI-B will be based on belief propagation techniques.

A. Representing Statistical Dependencies by MRFs

In this subsection we briefly review MRFs and how they can be used to represent statistical dependencies. This

review is mainly based on [25]. A graphical model is defined by its structural and parametric components. The

structural component is the graph G = (V, ε) where V is a set of nodes (vertices) and ε is a set of undirected

edges (links between the nodes). In a graphical model there is a one-to-one mapping between nodes {1, 2, . . . ,m}

6

5

42

3

1

(a) Graph

0 W12 W13 0 0

W12 0 W23 W24 0

W13 W23 0 W34 W35

0 W24 W34 0 W45

0 0 W35 W45 0

(b) Interaction matrix

Figure 2. A simple dependency model for 5 variables. This is a chordal graph with 3 missing edges. The interaction matrix in the
corresponding BM is banded.

and random variables {S1, S2, . . . , Sm}. Let SA, SB, SC stand for three disjoint subsets of nodes. We say that

SA is independent of SC given SB if SB separates SA from SC , namely all paths between a node in SA and

a node in SC pass via a node in SB . Thus, simple graph separation is equivalent to conditional independence.

The structure can be used to obtain all the global conditional independence relations of the probabilistic model.

By "global" we mean that conditional independence holds for all variable assignments and does not depend on

numerical specifications. For a visual demonstration see Fig. 2(a); using the above definition it easy to verify for

example that S1 is independent of S4, S5 given S2, S3.

Turning to the parametric component, note that the joint probability distribution is represented by a local

parametrization. More specifically, we use a product of local nonnegative compatibility functions, which are referred

to as potentials. The essence of locality becomes clearer if we define the notion of cliques. A clique is defined as

a fully-connected subset of nodes in the graph. If Si and Sj are linked, they appear together in a clique and thus

we can achieve dependence between them by defining a potential function on that clique. The maximal cliques of

a graph are the cliques that cannot be extended to include additional nodes without losing the property of being

fully connected. Since all cliques are subsets of one or more maximal cliques, we can restrict ourselves to maximal

cliques without loss of generality. For example, in Fig. 2(a) the maximal cliques are C1 = {1, 2, 3}, C2 = {2, 3, 4}

and C3 = {3, 4, 5}. To each maximal clique C we assign a nonnegative potential ΨC(SC). The joint probability is

then given as a product of these potentials, up to a normalization factor Z:

Pr(S) , 1

Z

∏
C

ΨC(SC). (2)

If the potentials are taken from the exponential family, namely ΨC(SC) = exp {−EC(SC)}, then Pr(S) =

1
Z exp{−E(S)}, where E(S) =

∑
C EC(SC) is the energy of the system.

B. The Boltzmann Machine

In this subsection we focus on the BM, a widely used MRF. We are about to show that this can serve as a useful

and powerful prior on the sparsity pattern. The BM distribution is given by:

Pr(S) =
1

Z
exp

(
bTS +

1

2
STWS

)
, (3)

where S is a binary vector of size m with values in {−1, 1}m, W is symmetric and Z is a partition function of

the Boltzmann parameters W, b that normalizes the distribution. We can further assume that the entries on the main

7

diagonal of W are zero, since they contribute a constant to the function STWS. In this work the BM will be used

as a prior on the support of a sparse representation: Si = 1 implies that the ith atom is used for the representation,

whereas for Si = −1 this atom is not used.

The BM is a special case of the exponential family with an energy function E(S) = −bTS− 1
2S

TWS. The BM

distribution can be easily represented by an MRF - a bias bi is associated with a node i and a nonzero entry Wij in

the interaction matrix results in an edge connecting nodes i and j with the specified weight. Consequently, the zero

entries in W have the simple interpretation of missing edges in the corresponding undirected graph. This means

that the sparsity pattern of W is directly linked to the sparsity of the graph structure. From graph separation we get

that if Wij = 0 then Si and Sj are statistically independent given all their neighbors {Sl}l∈ N(i)∪N(j), l ̸=i,j . For

example, if the matrix W corresponds to the undirected graph that appears in Fig. 2(a) then W14 = W15 = W25 = 0.

This matrix is shown in Fig. 2(b).

The maximal cliques in the BM are denoted by C1, . . . , CP and we would like to assign potential functions

{ΨCi
(SCi

)}Pi=1 to these cliques that will satisfy the requirement exp
(
bTS + 1

2S
TWS

)
=

∏P
i=1ΨCi

(SCi
). One

possible choice is to assign each of the terms in E(S) using a pre-specified order of the cliques: biSi is assigned to

the clique that consists of Si and appears last in the order and a non-zero term WijSiSj is assigned to the clique

that consists of Si, Sj and appears last in the order.

Next, we turn to explore the intuitive meaning of the Boltzmann parameters. In the simple case of W = 0,

the BM distribution becomes Pr(S) = 1
Z

∏m
i=1 exp (biSi). Consequently, {Si}mi=1 are statistically independent

and this assumption is referred as "independency". Using straight forward computations we get Pr(Si = −1) =

exp(−2bi) Pr(Si = 1) for i = 1, . . . ,m. Since Pr(Si = −1) + Pr(Si = 1) = 1, Si has the following marginal

probability to be turned "on":

pi , Pr(Si = 1) =
1

1 + exp(−2bi)
, 1 ≤ i ≤ m. (4)

When W is nonzero, (4) no longer holds. However, the simple intuition that Si tends to be turned "off" as bi

becomes more negative, remains true.

We would now like to understand how to describe correlations between elements in S. To this end we focus on

the simple case of a matrix W of size 2-by-2, consisting of one parameter W12, and provide an exact analysis for

this setup. In order to simplify notations, from now on we use pi|j(u|v) to denote Pr(Si = u|Sj = v). Using these

notations we can write down the following relation for the simple case of a pair of nodes:

p1 = p1|2(1|1)p2 + p1|2(1| − 1)(1− p2), (5)

where

p1|2(1|1) =
1

1 + exp(−2b1 − 2W12)
, p1|2(1| − 1) =

1

1 + exp(−2b1 + 2W12)
. (6)

From (5) we see that p1 is a convex combination of p1|2(1| − 1) and p1|2(1|1). Hence, for W12 > 0 we have

p1|2(1| − 1) < p1 < p1|2(1|1) and for W12 < 0 we have p1|2(1|1) < p1 < p1|2(1| − 1).

For a general matrix W these relations are no longer strictly accurate. However, they serve as useful rules

of thumb: for an "excitatory" interaction (Wij > 0) Si and Sj tend to be turned "on" ("off") together, and for

8

an "inhibitory" interaction (Wij < 0) Si and Sj tend to be in opposite states. The intuition into the Boltzmann

parameters provides some guidelines as to how the BM prior can be used for sparse representations. If the values

of the biases in the vector b are negative "enough" and there are few strong excitatory interactions, then the mean

cardinality of the support tends to be small. This reveals some of the power of the BM as a prior on the support in

the signal model. It can achieve sparsity and at the same time capture statistical dependencies and independencies

in the sparsity pattern.

To conclude this section, note that standard sparsity-favoring models can be obtained as special cases of the

BM model. For W = 0 and bi =
1
2 ln

(
p

1−p

)
for all i, which correspond to an i.i.d. prior, the cardinality k has a

Binomial distribution, namely k ∼ Bin(p,m). For a low value of p the cardinalities are typically much smaller than

m, so that plain sparsity is achieved. BM can also describe a block-sparsity structure: Assuming that the first k1

entries in S correspond to the first block, the next k2 to the second block, etc., the interaction matrix W should be

block-diagonal with "large" and positive entries within each block. The entries in b should be chosen as mentioned

above to encourage sparsity.

C. Decomposable Graphical Models

We now consider decomposability in graphical models [25], [26]. A triplet {A,B,C} of disjoint subsets of nodes

is a decomposition of a graph if its union covers all the set V , B separates A from C and B is fully-connected. It

follows that a graphical model is regarded as decomposable if it can be recursively decomposed into its maximal

cliques, where the separators are the intersections between the cliques. It is well known that a decomposable graph

is necessarily chordal [27]. This means that each of its cycles of four or more nodes has a chord, which is an

edge joining two nodes that are not adjacent in the cycle. Consequently, for a given MRF we can apply a simple

graphical test to verify that it is decomposable.

In Section VI we consider decomposable BMs. This assumption implies that the matrix W corresponds to a

chordal graph. We now provide some important examples for decomposable graphical models and their corre-

sponding interaction matrices. Note that a graph which contains no cycles of length four is obviously chordal as it

satisfies the required property in a trivial sense. It follows that a graph with no edges, a graph consisting of non-

overlapping cliques and a tree are all chordal. The first example is the most trivial chordal graph and corresponds

to W = 0. The second corresponds to a block-diagonal matrix and as we explained in Section III-B it can describe

a block-sparsity structure. Tree structures are widely used in applications that are based on a multiscale framework.

A visual demonstration of the corresponding matrix is shown in [26].

Another common decomposable model corresponds to a banded interaction matrix. In an Lth order banded matrix

only the 2L + 1 principal diagonals consist of nonzero elements. Assuming that the main diagonal is set to zero,

we have that there can be at most (2m− (L+1))L nonzero entries in an Lth order banded W , instead of m2−m

nonzeros as in a general interaction matrix. Consequently, the sparsity ratio of W is of order L/m. This matrix

corresponds to a chordal graph with cliques Ci = {Si, . . . , Si+L} , i = 1, . . . ,m− L. For example, the matrix in

Fig. 2(b) is a second order banded matrix of size 5-by-5. This matrix corresponds to a chordal graph (see Fig. 2(a))

with three cliques.

9

1, 2, 3 2, 3, 4 3, 4, 5

C1 C2 C3

m12 m32

m23
m21ΨC1

(SC1
) ΨC2

(SC2
) ΨC3

(SC3
)

Figure 3. A clique tree which is constructed for the graph that appears in Fig. 2. In this case the clique tree takes the form of a simple
chain of size 3. Potential functions are defined for each of the cliques and exact probabilistic inference is performed by message passing.

Chordal graphs serve as a natural extension to trees. It is well known [25] that the cliques of a chordal graph

can be arranged in a clique tree, which is called a junction tree. In a junction tree T each clique serves as a vertex

and any two cliques containing a node v are either adjacent in T or connected by a path made entirely of cliques

containing v. For a visual demonstration see Fig. 3, where a clique tree is constructed for the chordal graph of Fig.

2(a). In this case where the interaction matrix is banded, the clique tree is simply a chain. It can easily be verified

that this is in fact true for a banded interaction matrix of any order.

We now turn to describe belief propagation, a powerful method for probabilistic inference tasks like computation

of single node marginal distributions and finding the most probable configuration. Exact probabilistic inference can

become computationally infeasible for general dependency models as it requires a summation or maximization over

all possible configurations of the variables. For example, in a general graphical model with m binary variables the

complexity of exact inference grows exponentially with m. However, when the graph structure is sparse, one can

often exploit the sparsity in order to reduce this complexity. The inference tasks mentioned above can often be

performed efficiently using belief propagation techniques [25]. More specifically, in a decomposable MRF exact

inference takes the form of a message passing algorithm, where intermediate factors are sent as messages along

the edges of the junction tree (see for example the messages passed along the chain in Fig. 3). For more details

on message passing see [25].

The complexity of exact inference via message passing strongly depends on the tree-width of the graph. In

a decomposable model this is defined as the size of the largest maximal clique minus one. For example, in the

special case of a BM with an Lth order banded W we have that the tree-width is L. We can conclude that for a

decomposable model there is an obvious tradeoff between computational complexity and representation power. For

example, in the special case of an Lth order interaction matrix the computational complexity of exact inference

decreases with L, but at the same time the graphical model captures fewer interactions. Nevertheless, decomposable

models can serve as a useful relaxation for a general dependency model, as they can achieve a substantial decrease

in the complexity of exact inference, while still capturing the significant interactions.

IV. BM GENERATIVE MODEL

In this section we use the BM for constructing a stochastic generative signal model. We consider a signal y

which is modeled as y = Ax+ e, where A is the dictionary of size n-by-m, x is a sparse representation over this

dictionary and e is additive white Gaussian noise with variance σ2
e . We denote the sparsity pattern by S ∈ {−1, 1}m,

where Si = 1 implies that the index i belongs to the support of x and Si = −1 implies that xi = 0. The nonzero

coefficients of x are denoted by xs, where s is the support of x. Following [23] we consider a BM prior for S

and a Gaussian distribution with zero mean and variance σ2
x,i for each nonzero representation coefficient xi. Note

10

that the variances of the non-zero representation coefficients are atom-dependent. It follows that the conditional

distribution of xs given the support s is

Pr(xs|s) =
1

det (2πΣs)
1/2

exp

{
−1

2
xTs Σ

−1
s xs

}
(7)

where Σs is a k× k diagonal matrix with diagonal elements (Σs)i,i = σ2
x,si and k is the cardinality of the support

s. Using the assumption on the noise we can also write down the conditional distribution for the signal y given its

sparse representation:

Pr(y|xs, s) =
1

(2πσ2
e)

n/2
exp

{
− 1

2σ2
e

∥y −Asxs∥22
}
. (8)

The proposed generative model combines a discrete distribution for S and continuous distributions for x given

S and y given x, so that computations of posterior distributions should be handled carefully. Notice that an empty

support s necessarily implies x = 0, so that Pr(x = 0) is a discrete distribution (it equals Pr(S = −1m×1)).

However, for nonzero vectors v we have that Pr(x = v) is a continuous distribution. Using Bayes’ law we can

deduce that just like Pr(x), the posterior Pr(x|y) is a mixture of a discrete distribution for x = 0 and a continuous

distribution for all nonzero values of x. Our goal is to recover x given y. However, from the above discussion

we have that given y, the representation vector x equals zero with a nonzero probability, whereas for any nonzero

vector v the event x = v occurs with probability zero. It follows that the MAP estimator for x given y leads to the

trivial solution x = 0, rendering it useless.

The distribution Pr(s|y) however is a discrete one. Therefore, we suggest to first perform MAP estimation of

s given y and then proceed with MAP estimation of x given y and the estimated support ŝ [15]. This suggestion

aligns with previous approaches in the sparse recovery field. In fact, standard algorithms for sparse recovery, such as

OMP, take a similar approach - they first obtain an estimate for the support which minimizes the residual error and

then rely on this estimate for the signal reconstruction. Indeed, even the celebrated l1-norm minimization approach

is often used as a means to find the support, followed by a least squares step for finding the final representation

values (this is known as debiasing).

We begin by developing an expression for Pr(y|s) by integrating over all possible values of xs ∈ Rk:

Pr(y|s) =
∫
xs∈Rk

Pr(y|xs, s) Pr(xs|s)dxs = C
1

det
(

1
σ2
e
AT

s AsΣs + I
)1/2

exp

{
1

2σ2
e

yTAsQ
−1
s AT

s y

}
(9)

where C = 1/(2πσ2
e)

n/2 exp
{
− 1

2σ2
e
∥y∥22

}
is a constant and Qs = AT

s As + σ2
eΣ

−1
s . This leads to the following

estimator for the support:

ŝ
MAP

=argmax
s∈Ω

Pr(s|y) = argmax
s∈Ω

Pr(y|s) Pr(s)

=argmax
s∈Ω

[
1

2σ2
e

yTAsQ
−1
s AT

s y −
1

2
ln (det (Qs)) +

1

2
STWS +

(
b− 1

4
v

)T

S

]
(10)

where vi = ln (σ2
x,i/σ2

e) and S depends on s through Si = 2 · 1[i ∈ s]− 1 for all i, with 1[·] denoting the indicator

function. The feasible set Ω denotes all 2m possible supports. In terms of S, this is the set of all vectors satisfying

11

S2
i = 1 for all i. Note that for an empty support the two first terms in (10) vanish.

Once we have an estimate ŝ = ŝMAP of the support, we can compute a MAP estimator of x using the same

formula as in the oracle estimator (see [15]):

x̂ŝ
MAP

= argmax
xŝ∈Rk

Pr (xŝ|y, ŝ) = Q−1
ŝ AT

ŝ y. (11)

We now turn to MMSE estimation of x given y. Here we have:

x̂MMSE = E[x|y] =
∑
s∈Ω

Pr(s|y)E[x|y, s], (12)

where E[x|y, s] equals argmax
x

Pr (x|y, s) [15] and is computed using the oracle formula: E[xs|y, s] = Q−1
s AT

s y

for the on support entries (and the off support entries are set to zero).

In the sequel we first focus on the case where all model parameters - the Boltzmann parameters W, b, the

variances
{
σ2
x,i

}m

i=1
, the dictionary A and the noise variances σ2

e are known. For a general dictionary A and an

arbitrary symmetric interaction matrix W the exact MAP and MMSE estimators require an exhaustive search or

sum over all 2m possible supports. To overcome the infeasibility of the combinatorial search or sum, we consider

two approaches. In the first, developed in Section V, we approximate the MAP and MMSE estimators using greedy

methods. An alternative strategy is to make additional assumptions on the model parameters, namely on A and

W , that will make exact estimation feasible. This approach is addressed in Section VI, where we consider unitary

dictionaries A and decomposable BMs. The more practical setup where the model parameters are also unknown

is considered in Section VIII, for which we derive efficient methods for estimating both the sparse representations

and the model parameters from a set of signals.

V. GREEDY PURSUIT FOR APPROXIMATE MAP AND MMSE ESTIMATION

Throughout this section we assume an arbitrary dictionary and an arbitrary symmetric interaction matrix and

make use of the BM-based generative model to solve a fundamental sparse coding problem - finding the sparse

representation of a signal from noisy observations. As we have seen in the previous section, exact MAP and

MMSE estimation in this setup require an exhaustive search or sum over all 2m possible supports. To simplify the

computations, we propose using a greedy approach. In this section we suggest three greedy pursuit algorithms for

our model-based sparse recovery problem. The two first algorithms are OMP-like and thresholding-like pursuits

which approximate the MAP estimate of the support s given the signal y. The third pursuit method is a randomized

version of the proposed OMP-like algorithm (similar to the rand-OMP method [19]), which approximates the MMSE

estimate of the representation vector x given the signal y.

A. OMP-like MAP

We begin with the OMP-like algorithm and explain its core idea. Our goal is to estimate the support which

achieves the maximal value of the posterior probability Pr(S|y). This means that our objective function is the one

that appears in (10). We start with an empty support, which means that {Si}mi=1 are all −1. At the first iteration, we

check each of the m possible elements that can be added to the empty support and evaluate the term in (10). The

12

entry i∗ leading to the largest value is chosen and thus Si∗ is set to be +1. Given the updated support, we proceed

exactly in the same manner. In every iteration we consider all the remaining inactive elements and choose the one

that leads to the maximal value in (10) when added to the previously set support. The algorithm stops when the

value of (10) is decreased for every additional item in the support.

In each iteration only one entry in S changes - from −1 to 1. This can be used to simplify some of the terms

that appear in (10):

1

2
STWS =

1

2

∑
i,j

WijSiSj = C1 + 2
∑
j

WijSj

bTS =

m∑
i=1

biSi = C2 + 2bi (13)

m∑
i=1

ln (σ2
x,i/σ2

e)Si = C3 + 2 ln
(
σ2
x,i

)
where C1, C2, C3 are constants that will not be needed in our derivation. Consequently, in each iteration it is

sufficient to find an index i (out of the remaining inactive indices) that maximizes the following expression:

V al(i) =
1

2σ2
e

yTAskQ
−1
sk A

T
sky −

1

2
ln (|det (Qsk)|) + 2W T

i Sk + 2bi −
1

2
ln
(
σ2
x,i

)
(14)

where sk is the support estimated in iteration k− 1 with the entry i added to it, Qsk = AT
skAsk + σ2

eΣ
−1
sk and W T

i

is the ith row of W . A pseudo-code for the proposed OMP-like algorithm is given in Algorithm 1.

Algorithm 1 Greedy OMP-like algorithm for approximating the MAP estimator of (10)
Input: Noisy observations y ∈ Rn and model parameters W, b, {σx,i}mi=1 , A, σe.
Output: A recovery ŝMAP for the support.

s0∗ = ∅, S0
∗ = −1m×1

k = 1
repeat

for i /∈ sk−1
∗ do

sk = sk−1
∗ ∪ i

Sk[j] =

{
Sk−1
∗ [j] , j ̸= i

1 , j = i
Evaluate V al(i) using (14).

end for
i∗ = argmaxi {V al(i)}

sk∗ = sk−1
∗ ∪ i∗, Sk

∗ [j] =

{
Sk−1
∗ [j] , j ̸= i∗

1 , j = i∗
k = k + 1

until Pr
(
sk∗|y

)
< Pr

(
sk−1
∗ |y

)
Return: ŝMAP = sk−1

∗

We now provide some intuition for the expressions in (14). The term yTAskQ
−1
sk A

T
sky is equivalent to the residual

error
∥∥rk∥∥2

2
, where rk = y − Ask

(
AT

skAsk
)−1

AT
sky is the residual with respect to the signal. To see this, notice

13

that the following relation holds: ∥∥∥rk∥∥∥2
2
= ∥y∥22 − yTAsk

(
AT

skAsk
)−1

AT
sky. (15)

Using the definition of Qsk it can be easily verified that the two terms take a similar form, up to a regularization

factor in the pseudoinverse of Ask . Next, we turn to the terms W T
i Sk and bi. The first corresponds to the sum

of interactions between the ith atom and the rest of the atoms which arise from turning it on (the rest remain

unchanged). The second term is the separate bias for the ith atom. As the sum of interactions and the separate bias

become larger, using the ith atom for the representation leads to an increase in the objective function. Consequently,

the total objective of (14) takes into consideration both the residual error with respect to the signal and the prior on

the support. This can lead to improved performance over greedy pursuit algorithms like OMP and CoSaMP, which

are aimed at minimizing the residual error alone.

B. Thresholding-like MAP

To simplify computations, we can consider a thresholding-like version of Algorithm 1. Again we start with an

empty support and compute V al(i) using (14) for i = 1, . . . ,m, just as we do in the first iteration of Algorithm 1.

We then sort the indices according to V al(i) in a descending order and consider m candidate supports for solving

the MAP estimation problem, where the kth candidate consists of the first k elements in the above order. Among

these supports we choose the one that maximizes the posterior probability Pr(S|y). A pseudo-code for the proposed

thresholding-like algorithm is given in Algorithm 2.

Algorithm 2 Greedy thresholding-like algorithm for approximating the MAP estimator of (10)
Input: Noisy observations y ∈ Rn and model parameters W, b, {σx,i}mi=1 , A, σe.
Output: A recovery ŝMAP for the support.

for i ∈ {1, . . . ,m} do
s = i

S[j] =

{
−1 , j ̸= i

1 , j = i
Evaluate V al(i) using (14).

end for
Sort V al(i) in a descending order and arrange the indices 1, . . . ,m according to this order.
for k ∈ {1, . . . ,m} do

Set s(k) to include the first k elements in above order.
Compute Pr

(
s(k)|y

)
.

end for
k∗ = argmaxk

{
Pr

(
s(k)|y

)}
Return: ŝMAP = s(k∗)

C. Random OMP-like MMSE

Another alternative is using a randomized version of Algorithm 1 which approximates the MMSE estimate. The

algorithmic framework remains the same as before, except for two changes. First, instead of adding to the support

the element that maximizes V al(i) in each iteration, we make a random choice with probabilities 1
Z1

exp{V al(i)}

14

for all the candidates i, where Z1 is a constant that normalizes the probabilities. Second, we perform J0 runs of

this algorithm and average the resulting sparse representations {x(l)}J0

l=1 that are computed using (11) to obtain the

final estimate for x. A pseudo-code for the proposed randomized greedy algorithm is given in Algorithm 3.

Algorithm 3 Randomized version of Algorithm 1 for approximating the MMSE estimator of (12)
Input: Noisy observations y ∈ Rn, model parameters W, b, {σx,i}mi=1 , A, σe and number of runs J0.
Output: A recovery x̂MMSE for the representation vector.

for l = 1 to J0 do
x(l) = 0m×1

s0∗ = ∅, S0
∗ = −1m×1

k = 1
repeat

for i /∈ sk−1
∗ do

sk = sk−1
∗ ∪ i

Sk[j] =

{
Sk−1
∗ [j] , j ̸= i

1 , j = i
Evaluate V al(i) using (14).

end for
Choose i∗ in random with probabilities 1

Z1
exp{V al(i)}.

sk∗ = sk−1
∗ ∪ i∗, Sk

∗ [j] =

{
Sk−1
∗ [j] , j ̸= i∗

1 , j = i∗
k = k + 1

until Pr
(
sk∗|y

)
< Pr

(
sk−1
∗ |y

)
ŝ = sk−1

∗
Compute x

(l)
ŝ using (11).

x
(l)
ŝC = 0.

end for
Return: x̂MMSE = 1

J0

J0∑
l=1

x(l)

D. Related Pursuit Methods

To conclude this section, we mention some related works. First, note that for W = 0 and equal biases bi for all i,

which correspond to an i.i.d. prior, the proposed algorithms resemble the FBMP method suggested in [14]. Second,

the recent work of [24] used a BM-based Bayesian modeling for the sparse representation to improve the CoSaMP

algorithm. The inherent differences between our greedy approach and the one suggested in [24] are explained in

Section X.

VI. EXACT MAP ESTIMATION

A. Model Assumptions

In this section we consider a simplified setup where exact MAP estimation is feasible. A recent work [15] treated

the special case of a unitary dictionary for independent-based priors, and developed closed-form expressions for

15

the MAP and MMSE estimators. We follow a similar route here and assume that the dictionary is unitary. 1 In this

case we can make a very useful observation which is stated in Theorem 1. A proof of this theorem is provided in

Appendix A.

Theorem 1: Let A be a unitary dictionary. Then the BM distribution is a conjugate prior for the MAP estimation

problem of (10), namely the a posteriori distribution Pr(S|y) is a BM with the same interaction matrix W and a

modified bias vector q with entries:

qi = bi +
1

4

{
σ2
x,i

σ2
e(σ

2
e + σ2

x,i)

(
yTai

)2 − ln

[
1 +

σ2
x,i

σ2
e

]}
(16)

for all i, where ai is the ith column of A.

Notice in (16) that qi is linearly dependent on the original bias bi and quadratically dependent on the inner

product between the signal y and the atom ai. This aligns with the simple intuition that an atom is more likely to

be used for representing a signal if it has an a priori tendency to be turned "on" and if it bears high similarity to

the signal (this is expressed by a large inner product). From Theorem 1 the MAP estimation problem of (10) takes

on the form of integer programming. More specifically, this is a Boolean quadratic program (QP):

maximize
S

(
qTS +

1

2
STWS

)
s.t. S2

i = 1, 1 ≤ i ≤ m. (17)

This is a well-known combinatorial optimization problem [28] that is closely related to multiuser detection in

communication systems, a long-studied topic [29]. The Boolean QP remains computationally intensive if we do not

use any approximations or make any additional assumptions regarding the interaction matrix W . The vast range

of approximation methods used for multiuser detection, like SDP relaxation, can be adapted to our setup. Another

approximation approach, which is commonly used for energy minimization in the BM, is based on a Gibbs sampler

and simulated annealing techniques [17]. Our interest here is in cases for which simple exact solutions exist. We

therefore relax the dependency model, namely make additional modeling assumptions on W .

We first consider the simple case of W = 0, which corresponds to the independency assumption. Using Theorem

1, we can follow the same analysis as in Section III-B for W = 0 by replacing the bias vector b by q. Consequently,

in this case we have:

Pr(S|y) =
m∏
i=1

Pr(Si|y), (18)

where Pr(Si = 1|y) = 1/(1+exp(−2qi)) for all i. Notice that Pr(Si = 1|y) > Pr(Si = −1|y) if qi > 0. This means

that the ith entry of Ŝ
MAP

equals 1, namely i is in the support, if qi > 0. Using (16) we obtain the following MAP

estimator for S:

Ŝi,MAP =

 1,

−1,

∣∣yTai∣∣ > √
2σe

ci

√
ln

[
1−pi√
1−c2ipi

]
otherwise

(19)

1In this context we would like to mention that assuming a unitary dictionary A is equivalent to the case z = x + w, where there is no
dictionary, namely A is the identity matrix, and we have noisy observations of a signal with a BM prior. To see that, multiply each of the
sides in the signal equation y = Ax+ e by AT . In the resulting equation AT y = x+ AT e, the noise w = AT e has the same distribution
as the original noise e and AT y is the transformed signal. We would like to thank Prof. Phil Schniter for this constructive observation.

16

where pi is defined in (4) and ci =
√

σ2
x,i/(σ2

x,i+σ2
e). These results correspond to those of [15] for the MAP estimator

under a unitary dictionary.

To add dependencies into our model, we may consider two approaches, each relying on a different assumption on

W . First, we can assume that all entries in W are non-negative. If this assumption holds, then the energy function

defined by the Boltzmann parameters W, q is regarded "sub-modular" and it can be minimized via graph cuts

[30]. The basic technique is to construct a specialized graph for the energy function to be minimized such that the

minimum cut on the graph also minimizes the energy. The minimum cut, in turn, can be computed by max flow

algorithms with complexity which is polynomial in m. The recent work [24] is based on this approach and we will

relate to it in more detail in Section X.

Here we take a different approach, which seems to be more appropriate for our setup. This method makes an

assumption on the structural component of the MRF - we assume that the BM is decomposable with a small

tree-width. This type of MRF was explored in detail in Section III-C. The above assumption implies that the

matrix W has a special sparse structure - it corresponds to a chordal graph where the size of the largest maximal

clique is small. As we have seen in Section III-C, decomposable models can serve as a very useful relaxation for

general dependency models. Another motivation for this assumption arises from the results that were shown in

Section II for the special case of image patches and a DCT dictionary. It was shown there that independency can

be considered a reasonable assumption for many pairs of DCT atoms. This observation has the interpretation of

a sparse structure for the interaction matrix W . Consequently, it seems plausible that a matrix W with a sparse

structure can capture most of the significant interactions in this case.

From Theorem 1 it follows that if the above assumption on the structure of W holds for the BM prior on S

it also holds for the BM posterior (since both distributions correspond to the same interaction matrix). We can

therefore use belief propagation techniques to find the MAP solution. We next present in detail a concrete message

passing algorithm for obtaining an exact solution to (17) under a banded W matrix.

To conclude this subsection note that the use of belief propagation techniques [25] has recently become very

popular in the sparse recovery field [31], [32], [33]. However, these works provide a very limited treatment to the

structure of the sparsity pattern. We will relate in more detail to these recent works and emphasize the contribution

of our work with respect to them in Section X.

B. The Message Passing Algorithm

Before we go into the details of the proposed message passing algorithm, we make a simple observation that

will simplify the formulation of this algorithm. As we have seen in Section III-B, a posterior BM distribution with

parameters W, q can be written (up to a normalization factor which has no significance in the MAP estimation

problem) as a product of potential functions defined on the maximal cliques in the corresponding graph:

exp

(
qTS +

1

2
STWS

)
=

P∏
i=1

ΨCi
(SCi

) (20)

17

where P is the number of maximal cliques. By replacing the potentials {ΨCi
(SCi

)} with their logarithms, which

are denoted by
{
Ψ̃Ci

(SCi
)
}

, we remain with quadratic functions of the variables of {Si}mi=1:

STWS + qTS =

P∑
i=1

Ψ̃Ci
(SCi

) . (21)

This can be very useful from a computational point of view as there is no need to compute exponents, which can

lead to large values. Each product that appears in a standard message passing algorithm is replaced by summation.

For concreteness we will focus on the special case of an Lth order banded interaction matrix W of size m-by-m,

as described in Section III-C. In this case the maximal cliques are Ci = {Si, . . . , Si+L} , i = 1, . . . ,m−L, so that

all cliques are of size L + 1 and the tree-width is L. The clique tree takes the form of a simple chain of length

m− L. We denote the "innermost" clique in this chain by Ck, where k =
⌈
m−L−1

2

⌉
. We choose an order for the

cliques where the cliques at both edges of the chain appear first and the "innermost" clique appears last and set the

clique potentials according to the rule of thumb that was mentioned in Section III-B. Consequently, the logarithms

of the potentials are given by:

Ψ̃Ci
=

qiSi +
i+L∑
l=i+1

WilSiSl , 1 ≤ i ≤ k − 1

k+L∑
j=k

qjSj +
k+L−1∑
j=k

k+L∑
l=j+1

WjlSjSl , i = k

qi+LSi+L +
i+L−1∑
l=i

Wl,i+LSlSi+L , k + 1 ≤ i ≤ m− L

(22)

Ψ̃Ci
is a function of Si, . . . , Si+L. We pass messages "inwards" starting from C1 and Cm−L until the clique Ck

receives messages from both sides:

mi,i+1 =

max
Si

Ψ̃Ci
, i = 1

max
Si

Ψ̃Ci
+mi−1,i , 2 ≤ i ≤ k − 1

(23)

mi,i−1 =

max
Si+L

Ψ̃Ci
, i = m− L

max
Si+L

Ψ̃Ci
+mi+1,i , m− L− 1 ≤ i ≤ k + 1

The arguments that correspond to each of the maximization operators are denoted by Φi,i+1, i = 1, . . . , k− 1 and

Φi,i−1, i = k+1, . . . ,m−L (these have the same form as the messages with "max" replaced by "argmax"). Note

that mi,i+1,Φi,i+1 depend on Si+1, . . . , Si+L and mi,i−1,Φi,i−1 on Si, . . . , Si+L−1. The MAP estimates are then

computed recursively by: (
S∗
k , . . . , S

∗
k+L

)
= argmax

Sk,...,Sk+L

Ψ̃Ck
+mk−1,k +mk+1,k

S∗
i = Φi,i+1

(
S∗
i+1, . . . , S

∗
i+L

)
, i = k − 1, . . . , 1 (24)

S∗
i+L = Φi,i−1

(
S∗
i , . . . , S

∗
i+L−1

)
, i = k + 1, . . . ,m− L.

The message passing algorithm in this case is summarized in Algorithm 4.

18

Algorithm 4 Message passing algorithm for obtaining the exact MAP estimator of (10) in the special case of a
unitary dictionary and a banded interaction matrix
Input: Noisy observations y and model parameters W, b, {σx,i}mi=1 , A, σe. A is unitary and W is an Lth order

banded matrix.
Output: A recovery ŜMAP for the sparsity pattern of x.
Step 1: Set the bias vector q for the BM posterior distribution Pr(S|y) using (16).
Step 2: Assign a potential function Ψ̃Ci

(SCi
) for each clique Ci = {Si, . . . , Si+L} , i = 1, . . . ,m− L using (22).

Step 3: Pass messages "inwards" starting from C1 and Cm−L until the "innermost" clique Ck receives messages
from both sides using (23).
Step 4: Obtain the MAP estimate for S using (24).

An important observation is that the complexity of the proposed algorithm is exponential in L and not in m.

More specifically the complexity is O(2L ·m). As the value of L is part of our modeling, even when m is relatively

large (and the exhaustive search which depends on 2m is clearly infeasible), the exact MAP computation is still

feasible as long as L remains sufficiently small. If we have for example L = γ log2(m) then the complexity is

O(m1+γ), namely it is polynomial in m.

VII. SIMULATIONS ON SYNTHETIC SIGNALS

In this section we test the recovery algorithms that were proposed in the two previous sections (see Algorithms

1-4) and compare their performance to that of two previous sparse recovery methods. The first is OMP, a standard

pursuit algorithm. The OMP algorithm is used only for identifying the support. Then the recovered support is

used to obtain an estimate for the representation vector using (11), just as the MAP estimators. The second is

an approximate MAP estimator that is based on Gibbs sampling and simulated annealing as suggested in [23].

Since we do not have access to the code and parameters of the algorithm from [23], our implementation is not

exactly the same as the one in [23]. Rather, we chose to set the number of rounds for the Gibbs sampler so that

its computational complexity is roughly the same as the OMP-like MAP method (see Algorithm 1). This choice

was made after exploring the influence of the number of rounds for the Gibbs sampler on its performance. We

observed that if we increase the number of rounds by a factor of 10 with respect to the above suggestion, then

performance improves only slightly. This behavior is associated with the slow convergence of the Gibbs sampler.

As for annealing, we used a geometric schedule: Tk+1 = βTk, where Tk is the "temperature" used in the kth round.

The initial "temperature" is set to be high (around 600) and β satisfies a final "temperature" of 1. We assume here

that all the parameters of the BM-based generative model are known and use this model to create random data sets

of signals, along with their sparse representations. A standard Gibbs sampler is used for sampling sparsity patterns

from the BM. The sampled supports and representation vectors are denoted by
{
s(l), x(l)

}N

l=1
.

We begin by examining a setup that satisfies the simplifying assumptions of Section VI. We assume that A is

an m-by-m unitary DCT dictionary with m = 64 and that W is a 9th order banded interaction matrix. The values

of the model parameters are in the following ranges: [−1, 1] for the nonzero entries in W , [−3,−2] for the biases

{bi}mi=1 and [15, 60] for the variances {σx,i}mi=1. In this case we can apply all of the algorithms that were suggested

in this paper. However, for concreteness we chose to apply here only Algorithms 1,3 and 4, leaving Algorithm 2

19

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
e

N
or

m
al

iz
ed

 e
rr

or
 in

 th
e

su
pp

or
t

MAP − exact
MAP − OMP−like
MAP − Gibbs sampler
MMSE − random OMP−like
OMP

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
e

R
el

at
iv

e
re

co
ve

ry
 e

rr
or

MAP − exact
MAP − OMP−like
MAP − Gibbs sampler
MMSE − random OMP−like
OMP
oracle

Figure 4. Normalized error in identifying the support (25) and relative recovery error (26) for the 64-by-64 unitary DCT dictionary and a
9th order banded interaction matrix. Results are shown for a data set with average cardinality |s| = 9.8.

for the second set of synthetic experiments. In Algorithm 3 we performed J0 = 10 runs of the random greedy

pursuit.

We compare the performance of the five algorithms for different noise levels - σe is in the range [2, 30]. For each

of the above-mentioned algorithms we evaluate two performance criteria. The first one is the average normalized

error in identifying the true support:

1− 1

N

N∑
l=1

|s(l) ∩ ŝ(l)|
max(|s|, |ŝ|)

. (25)

Note that for the random greedy algorithm we evaluate the support error using the indices of the k largest coefficients

(in absolute value) in the obtained solution x̂ as the recovered support ŝ. The second criterion is the relative recovery

error, namely the mean recovery error for the representation coefficients normalized by their energy:√√√√√√√√
N∑
l=1

∥x̂(l) − x(l)∥22
N∑
l=1

∥x(l)∥22

. (26)

The relative error is also evaluated for the Bayesian oracle estimator, namely the oracle which knows the true

support. Note that for a unitary dictionary the relative error for the representation coefficients is in fact also the

relative error for the noise-free signal, since ∥Au∥22 = ∥u∥22 for any vector u. The results appear in Fig. 4.

Several observations can be made from the results in Fig. 4. First, all BM-based pursuit methods outperform the

OMP algorithm. Notice that the message passing algorithm (exact MAP) performs well and the performance of

the OMP-like algorithm is not too far off. Second, the OMP-like MAP outperforms Gibbs sampling, for the same

computational complexity. Finally, the randomized version of the OMP-like method obtains a recovery error which

is roughly the same as exact MAP (recall that the random greedy algorithm approximates the MMSE estimator).

We now provide some additional observations that were drawn from similar sets of experiments which are not

shown here. We observed that the performance gaps between the exact MAP and its approximations are associated

20

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
e

N
or

m
al

iz
ed

 e
rr

or
 in

 th
e

su
pp

or
t

MAP − OMP−like
MAP − Gibbs sampler
MAP − thresholding−like
MMSE − random OMP−like
OMP

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
e

R
el

at
iv

e
re

co
ve

ry
 e

rr
or

 in
 r

es
pe

ct
 to

 th
e

no
is

e−
fr

ee
 s

ig
na

l

MAP − OMP−like
MAP − Gibbs sampler
MAP − thresholding−like
MMSE − random OMP−like
OMP
oracle

Figure 5. Normalized error in identifying the support (25) and relative recovery error with respect to the noise-free signal (27) for the
64-by-256 overcomplete DCT dictionary and a general interaction matrix. Results are shown for a data set with average cardinality |s| = 10.3.

more with the "strength" of the interactions than with the average cardinality. When we tested higher (less negative)

biases and weaker interactions, so that the average cardinality remains roughly the same, the approximations align

with the exact MAP (except for the Gibbs sampler which still performs slightly poorer). As for higher noise levels,

we noticed that all algorithms exhibit saturation in their performance. In this setup the OMP tends to choose an

empty support. The convergence criterion for OMP is ∥y−Asxs∥2 < η
√
nσe, where η is a constant which is close

to 1. This is a standard criterion used for denoising with OMP. When σe is large, it happens often that the OMP

stops before using any atom.

Next, we turn to the case of a redundant dictionary and a general (non-sparse) interaction matrix. We use the

64-by-256 overcomplete DCT dictionary. All the rest of model parameters are the same as before, expect for

the interaction matrix which is no longer banded and its values are in the range [−0.1, 0.1]. For this setup exact

MAP estimation is no longer possible and we can use only the greedy approximations for MAP and MMSE (see

Algorithms 1-3). We evaluate the average normalized error in the support (25) and the relative recovery error with

respect to the noise-free signal: √√√√√√√√
N∑
l=1

∥Ax̂(l) −Ax(l)∥22
N∑
l=1

∥Ax(l)∥22

. (27)

The results are shown in Fig. 5. We see that both the OMP-like MAP and the Gibbs sampler outperform the OMP

algorithm. However, there is a small performance gap in favor of the OMP-like MAP. In terms of the recovery

error, we can see that this performance gap increases with the noise level. Notice that the randomized version of

the OMP-like method achieves only a slightly better recovery error with respect to the original one. Finally, the

thresholding-like method is the worst for noise levels below σe = 10 (even OMP performs better). However, as

the noise level increases its performance becomes close to that of the OMP-like MAP. Consequently, this method

seems adequate for high noise levels.

21

VIII. ADAPTIVE SPARSE SIGNAL RECOVERY

In an actual problem suite we are given a set of signals
{
y(l)

}N

l=1
from which we would like to estimate both

the sparse representations and the model parameters. We address the joint estimation problem in this section. Note

that throughout this section we will assume that the noise variance σ2
e is known. This is a a typical assumption in

denoising setups with Gaussian noise. We also assume that the dictionary is fixed and known. Dictionary learning

is a common practice in the sparse recovery field (see for example [34]). However, for concreteness we will not

address here how to merge dictionary learning into the adaptive scheme and we will leave this for future work.

A. Model Estimation

We begin with the model estimation problem. This means that we have a data set of i.i.d. examples D ={
y(l), x(l), S(l)

}N

l=1
, from which we would like to learn the model parameters Θ =

[
W, b,

{
σ2
x,i

}m

i=1

]
. To estimate

Θ we suggest a maximum likelihood (ML) approach, and using the BM generative model we can write:

Θ̂ML = argmax
Θ

Pr (D|Θ) = argmax
Θ

m∑
i=1

L(σ2
x,i) + L(W, b), (28)

where

L(σ2
x,i) =

1

2

N∑
l=1

[
1

σ2
x,i

(
x
(l)
i

)2
+ ln

(
σ2
x,i

)]
1
[
i ∈ s(l)

]
(29)

L(W, b) =
1

2

N∑
l=1

[(
S(l)

)T
WS(l) + bTS(l)

]
−N ln(Z(W, b)) (30)

are the log likelihood functions for the model parameters. This decomposition allows separate estimation of the

variances {σ2
xi
}mi=1 and the Boltzmann parameters W, b.

Starting with the variances we have the close-form estimator:

σ̂2
x,i =

N∑
l=1

(
x
(l)
i

)2
1
[
i ∈ s(l)

]
N∑
l=1

1
[
i ∈ s(l)

] . (31)

Similar estimators for the variances were also used in [23].

ML estimation of W, b is computationally intensive due to the exponential complexity in m associated with

the partition function Z(W, b). Therefore, we turn to approximated ML estimators. A widely used approach is

applying Gibbs sampling and mean-field techniques in each iteration of a gradient-based optimization algorithm.

These methods were used in [23], which is the only work that considered estimating the BM parameters for sparsity

models. However, we suggest using a different approach which seems to be much more efficient - MPL estimation.

This approach was presented in [35] and revisited in [36], where it was shown that the MPL estimator is consistent.

This means that in the limit of infinite sampling (N → ∞), the PL function is maximized by the true parameter

values.

The basic idea in MPL estimation is to replace the BM prior Pr(S|W, b) by the product of all the conditional

distributions of each node Si given the rest of the nodes SiC :
∏m

i=1 Pr (Si|SiC ,W, b). Each of these conditional

22

distributions takes on the simple form

Pr (Si|SiC ,W, b) = C̃ exp
{
Si

(
W T

i S + bi
)}

(32)

where W T
i is the ith row of W and C̃ is a normalization constant. Since this is a probability distribution for a

single binary node Si it follows that C̃ =
(
2 cosh

(
W T

i S + bi
))−1. Consequently, we replace Pr(S|W, b) by

m∏
i=1

Pr (Si|SiC ,W, b) =

m∏
i=1

exp
{
Si

(
W T

i S + bi
)}

2 cosh
(
W T

i S + bi
) =

exp
{
ST (WS + b)

}
2m

∏m
i=1 cosh

(
W T

i S + bi
) . (33)

We define the log-PL by:

Lp(W, b) =

N∑
l=1

m∑
i=1

ln
(
Pr

(
S
(l)
i |S(l)

iC ,W, b
))

=

[
N∑
l=1

(
S(l)

)T (
WS(l) + b

)
− 1Tρ

(
WS(l) + b

)]
−mN ln(2)

(34)

where ρ(z) = ln(cosh(z)) and the function ρ(·) operates on a vector entry-wise. To explore the properties of the

log-PL function it is useful to place all the Boltzmann parameters - there are p = (m2+m)/2 unknowns ((m2−m)/2 in

the upper triangle of W and m in b) - in a column vector u. For each example S(l) in the data set we can construct

matrices B(l), C(l) so that B(l)u =
(
S(l)

)T (
WS(l) + b

)
and C(l)u = WS(l) + b.

Using these notations the log-PL function of (34) can be re-formulated as:

Lp(u) =

N∑
l=1

[
B(l)u− 1Tρ

(
C(l)u

)]
−mN ln(2). (35)

The gradient and the hessian of Lp(u) are given by:

∇Lp(u) =

N∑
l=1

[(
B(l)

)T
−
(
C(l)

)T
ρ′
(
C(l)u

)]
(36)

∇2Lp(u) =−
N∑
l=1

[(
C(l)

)T
diag

(
ρ′′

(
C(l)u

))
C(l)

]
, (37)

where ρ′(z) = tanh(z) and ρ′′(z) = 1 − tanh2(z). Since ρ(z) is a convex function, it follows that the log-PL

function is concave in u. Therefore, as an unconstrained convex optimization problem, we have many reliable

algorithms that could be of use.

In [36] MPL estimation is treated by means of gradient ascent (GA) methods. These methods are very simple, but

it is well-known that they suffer from a slow convergence rate [37]. Another optimization algorithm which converges

more quickly is Newton [37]. Note however that the problem dimensions here can be very large. For example,

when m = 64 as in an 8-by-8 image patch and a unitary dictionary, we have p = 2080 unknown parameters. Since

Newton iterations requires inverting the Hessian matrix, it becomes computationally demanding. Instead we would

like to use an efficient algorithm that can treat large-scale problems. To this end we suggest the sequential subspace

optimization (SESOP) method [38], which is known to lead to a significant speedup with respect to gradient ascent.

The basic idea in SESOP is to use the following update rule for the parameter vector in each iteration:

uj+1 = uj +Hjαj , (38)

23

where Hj is a matrix consisting of various (normalized) direction vectors in its columns and αj is a vector containing

the step size in each direction. In our setting we use only the current gradient gj = ∇Lp(u
j) and M recent steps

pi = ui − ui−1, i = j − M, . . . , j − 1, so that Hj is a p-by-M + 1 matrix for sufficiently large j. We use the

abbreviation SESOP-M for this mode of the algorithm. The vector αj is determined in each iteration by an inner

optimization stage. Since we use a small number of directions, maximizing Lp(u
j+1) with respect to αj is a small-

scale optimization problem and we can apply Newton iterations to solve it, using ∇αjLp(u
j+1) =

(
Hj

)T ∇Lp(u
j+1)

and ∇2
αjLp(u

j+1) =
(
Hj

)T ∇2Lp(u
j+1)Hj .

To initialize the algorithm we set the interaction matrix to zero, namely we allow no interactions. We then perform

a separate MPL estimation of b where W is fixed to zero, which results in

b̂0i = atanh

[
1

N

N∑
l=1

S
(l)
i

]
, (39)

for all i. We stop the algorithm either when the norm of the gradient vector ∇Lp(u) decreases below a pre-

determined threshold ϵ, or after a fixed number of iterations J1. A pseudo-code that summarizes the learning

algorithm for the Boltzmann parameters is provided in Algorithm 5.

Algorithm 5 A SESOP-M algorithm for obtaining the MPL estimator of the Boltzmann parameters

Input: A data set of supports
{
S(l)

}N

l=1
.

Output: A recovery Ŵ , b̂ for the Boltzmann parameters.
Initialization: Set Ŵ to zero and b̂0 according to (39), and construct from them a column vector û0.
j = 0
repeat

Step 1: Evaluate Lp(û
j) and ∇Lp(û

j) using (35)-(36).
Step 2: Set the matrix Hj using the current gradient ∇Lp(û

j) and M previous steps
{
ûi − ûi−1

}j−1

i=j−M
.

Step 3: Determine the step sizes αj by Newton iterations.
Step 4: ûj+1 = ûj +Hjαj .
j = j + 1

until ∇Lp(û
j) < ϵ or j ≥ J1

Return: Ŵ , b̂ extracted out of ûj .

To demonstrate the effectiveness of MPL estimation via SESOP, we now show some results of synthetic

simulations. We use a Gibbs sampler to generate N = 16, 000 support vectors from a BM prior with the following

parameters: W is a 9th order banded matrix of size 64-by-64 with nonzero entries drawn independently from

U [−0.5, 0.5] and b is a vector of size 64 with entries drawn independently from N (−1.5, 1). We then use these

supports as an input for the learning algorithm and apply 50 iterations of both GA and SESOP-2 to estimate the

Boltzmann parameters. The results are shown in Fig. 6. We can see on the top that SESOP outperforms GA both in

terms of convergence rate of the PL objective and recovery error for the interaction matrix. This is also demonstrated

visually on the middle and bottom, where we can see that for the same number of iterations SESOP reveals much

more interactions than GA. In fact, if we set to zero the entries in the true W that correspond to rarely used atoms

(i.e. if the appearance frequency of atoms i or j is very low then we set Wij = 0), we can see that SESOP was

24

0 10 20 30 40 50
4.95

5

5.05

5.1

5.15

5.2

5.25

5.3

5.35

5.4

5.45
x 10

5

Iteration number

V
al

ue
 o

f l
og

 p
se

ud
o−

lik
el

ih
oo

d
fu

nc
tio

n

GA
SESOP−2
True

0 10 20 30 40 50
0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

Iteration number

A
ve

ra
ge

 r
ec

ov
er

y
er

ro
r

fo
r

th
e

in
te

ra
ct

io
n

m
at

rix

GA
SESOP−2

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

Figure 6. Top - results of MPL estimation via GA and SESOP: The value of the log-PL objective and the average recovery error for the
interaction matrix per entry as functions of the number of iterations. Middle (from left to right): The true interaction matrix W and MPL
estimate via GA ŴGA. Bottom (from left to right): MPL estimate via SESOP ŴSESOP , a banded version of it and a matrix consisting of
the interactions in W which are more likely to be revealed using the given data set. We can see that the latter two are very close.

able to learn most of the significant interactions 2.

B. Joint Model Estimation and Pursuit

We now turn to the joint estimation problem, where both the sparse representations and the model parameters are

unknown. We suggest using a block-coordinate optimization approach for approximating the solution of the joint

estimation problem, which results in an iterative scheme for adaptive sparse signal recovery. Each iteration in this

scheme consists of two stages. The first is sparse coding where we apply one of the pursuit algorithms that were

proposed throughout this paper to obtain estimates for the sparse representations based on the most recent estimate

for the model parameters. If the dictionary is unitary and the interaction matrix is banded we apply the message

passing scheme of Algorithm 4. Otherwise we use a greedy pursuit (see Algorithms 1-3). This is followed by model

update where we re-estimate the model parameters given the current estimate of the sparse representations. We use

(31) for the variances and MPL estimation via SESOP (see Algorithm 5) for the Boltzmann parameters.

2An atom is labeled as "rarely used" if it is active in less than 0.3% of the data samples. This is an arbitrary definition, but it helps in
showing that the estimated parameters tend to be quite correct.

25

For a setup where the interaction matrix is assumed to be banded, we suggest performing a post-processing of

the MPL estimate. More specifically, we define the energy of W as the l1 norm for the entries in the banding zone.

The basic idea is to perform pairwise permutations in Ŵ , namely switch the roles of pairs of atoms, so that the

energy will be maximal. A greedy approach can be used, so that in each iteration we replace the roles of one pair

of atoms, where this replacement is optimal in the sense of maximizing the energy. The algorithm converges when

we cannot increase the energy anymore. At this point we set all entries located outside the banding zone to zero.

The suggested post-processing stage serves as a projection onto the banding constraint. Note that the estimated

biases and variances should also be modified to account for the changes in the atom roles.

IX. SIMULATIONS ON IMAGE PATCHES

The paper starts with a motivating example on image patches of size 8-by-8 that are extracted out of natural

images (see Section II), showing that there are overlooked dependencies. We now return to this very set of patches

and show that the proposed approach does better service to this data. We add white Gaussian noise to these patches

and apply the adaptive BM-based sparse recovery scheme that was suggested in the previous section on the noisy

patches. We consider two methods that follow this approach. In the first method we fix the dictionary to be the 64-

by-64 unitary DCT and assume that the interaction matrix is 9th order banded. Therefore we use message passing

(Algorithm 4) for the sparse coding stage and apply post-processing on the learned model parameters to satisfy the

banding constraint. The second method uses a fixed overcomplete DCT dictionary of size 64-by-256 and assumes

nothing on the interaction matrix. Here we use OMP-like pursuit (Algorithm 1) for sparse coding.

To initialize the parameters of the adaptive BM-based methods, we set all the variances to 502 and use an

i.i.d. prior on the support, namely Pr(Si = 1) = p for all i. This prior is obtained by the Boltzmann parameters

Ŵ = 0m×m and b̂i = 0.5 ln(p/(1−p)) for all i. Note that p has the intuitive meaning of the ratio k/m where k is

our prior belief on the mean cardinality of the support. We use a prior belief that the average cardinality for image

patches is k = 10. We then perform two iterations for each of the adaptive schemes.

Note that we are not suggesting here an improved image denoising algorithm, and in contrast to common denoising

methods, we do not exploit self-similarities in the image (see for example [39]). Therefore our comparison is

limited to denoising schemes that recover each patch separately. For concreteness we also avoid here comparing

our approach with methods that are based on dictionary learning (see for example [34]). For a comparison with

K-SVD denoising [40] which is based on sparse coding via OMP and dictionary learning, see our recent paper

[41].

We compare our approach to two simple denoising schemes which apply the OMP algorithm on the noisy patches

using the 64-by-64 unitary DCT and the 64-by-256 overcomplete DCT dictionaries. Throughout this section we use

the abbreviations "unitary OMP", "unitary BM recovery", "overcomplete OMP" and "overcomplete BM recovery"

to denote the four methods. Average denoising errors per pixel are evaluated for the four methods and for 6 noise

levels: σe ∈ {2, 5, 10, 15, 20, 25}. A summary of the denoising results is given in Table I, where the best result for

each noise level is highlighted.

These results show that the adaptive BM-based approach suggested throughout this paper obtains better denoising

performance on noisy image patches than a standard sparse recovery algorithm such as OMP. For the unitary DCT

26

σe Unitary OMP Unitary BM recovery Overcomplete OMP Overcomplete BM recovery
2 2.58 2.24 2.52 2.46
5 4.79 4.29 4.9 4.69
10 7.55 6.85 7.72 7.19
15 9.76 8.81 9.94 9.12
20 11.64 10.53 11.82 10.71
25 13.33 12.1 13.49 12.08

Table I
SUMMARY OF AVERAGE DENOISING RESULTS (ROOT-MSE PER PIXEL).

dictionary, the performance gaps of BM recovery with respect to OMP vary from 0.84[dB] to 1.23[dB] for the

different noise levels. When we turn to the overcomplete DCT dictionary, the performance gaps vary from 0.21[dB]

to 0.96[dB]. Note that for both dictionaries OMP obtains a similar performance, with a slight performance gap in

favor of the unitary dictionary. As for the BM recovery, the message passing algorithm (used for the unitary case)

outperforms the OMP-like algorithm (used for the overcomplete case) for all noise levels, except for σe = 25,

where the two algorithms exhibit similar performance. This is associated, at least in part, with the accuracy of the

pursuit algorithm: exact MAP for the unitary case versus approximate MAP for the overcomplete case. To take

full advantage of the redundancy in the dictionary, one should use dictionary learning. We leave this for future

work, where we intend to merge dictionary learning into the adaptive scheme, in order to benefit from both the

BM generative model and a dictionary which is better fitted to the data.

X. RELATION TO PAST WORKS

In this section we briefly review several related works and emphasize the contributions of our paper with respect

to them. We begin with recent works [22], [23], [24] that used the BM as a prior on the support of the representation

vector. In recent years capturing and exploiting dependencies between dictionary atoms has become a hot topic

in the model-based sparse recovery field. In contrast to previous works like [3], [7], [20], [21] which considered

dependencies in the form of tree structures, [22], [23], [24] propose a more general model for capturing these

dependencies.

The authors of [22] use a BM prior on the sparsity pattern of Gabor coefficients to capture persistency in the

time-frequency domain. They adopt a non-parametric Bayesian approach and address the estimation problems by

MCMC inference methods. In their work the Boltzmann parameters are assumed to be known and fixed. This is

contrast to our work where we develop efficient methods for estimating both the sparse representations and the

Boltzmann parameters.

The work of [23] makes use of a BM prior in the more general context of a sparse coding model, which is

represented by a graphical model. They provide a biological motivation for this modeling through the architecture of

the visual cortex. We used exactly the same graphical model in our work (see Section IV). In [23] MAP estimation

of the sparse representation is addressed by Gibbs sampling and simulated annealing. These techniques often suffer

from a slow convergence rate, so that the algorithm is stopped before the global maximum is reached. In the current

work we suggest alternative pursuit methods for MAP estimation. As we have seen in the synthetic simulations

of Section VII our suggested pursuit methods outperform the one suggested in [23]. For learning the Boltzmann

27

parameters the authors of [23] suggest Gibbs sampling and mean-field approximations for estimating the gradient

of the likelihood function in every iteration of a GA algorithm. This method has a much higher computational

complexity, compared to the pseudo-likelihood approach that we take in this work, as it requires Gibbs sampling

in each iteration.

Next, we turn to [24]. This work adapts a signal model like the one presented in [23], with several modifications.

First, it is assumed that all the weights in the interaction matrix W are nonnegative. Second, the Gaussian

distributions for the nonzero representation coefficients are replaced by parametric utility functions. The main

contribution of [24] is using the BM generative model for extending the CoSaMP algorithm, a well known greedy

method. The extended algorithm, referred to as lattice matching pursuit (LaMP), differs from CoSaMP in the stage

of the support update in each iteration, which becomes more accurate. This stage is now based on graph cuts and

this calls for the nonnegativity constraint on the entries of W . The rest of the iterative scheme however remains

unchanged and is still based on "residuals": in each iteration we compute the residual with respect to the signal

and the algorithm stops when the residual error falls below a pre-determined threshold.

There are several fundamental differences between our work and the one reported in [24]. While both take a

greedy approach, we use the Bayesian framework to its full extent. The BM-based generative model is incorporated

into all of the stages of the greedy algorithms, including the stopping rule. Our greedy algorithms work for an

arbitrary interaction matrix and in this sense they are more general than LaMP. Furthermore, LaMP requires the

desired sparsity level as an input to the algorithm. In contrast, our approach assumes nothing about the cardinality,

and instead maximizes the posterior with respect to this unknown. LaMP also makes use of some auxiliary functions

that need to be finely tuned in order to obtain good performance. These are hard to obtain for the generative model

we are considering. Because of all these reasons, it is hard to suggest a fair experimental comparison between the

two works.

We now turn to recent works [31], [32], [33] which considered graphical models and belief propagation for

sparse recovery . All of these works represent the sparse recovery setup as a factor graph [25] and perform sparse

decoding via belief propagation. Note however that the two first works use the typical independency assumption

on the representation coefficients. More specifically, [31] assumes that the coefficients are i.i.d. with a mixture

of Gaussians for their distribution. Hence, the main contribution of these works is exploiting the structure of the

observations using graphical models. This is in contrast to our work where we focus on structure in the sparsity

pattern in order to exploit dependencies in the representation vector.

The third work [33] suggests exploiting both the structure of the observations and the structure of the sparsity

pattern, using factor graphs and belief propagation techniques. This work is actually more general than ours.

However, it leaves the specific problem that we have handled almost untouched. Various structures for the sparsity

pattern are mentioned there, including an MRF model. However, the main focus in this paper is how to efficiently

combine the observation-structure and pattern-structure. The treatment given for the sparsity-pattern decoding is

very limited and empirical results are shown only for a Markov chain structure. This is in contrast to our work

where we mainly focus on pattern-structure and address the more general setup of an MRF model.

28

XI. CONCLUSIONS

In this work we developed a scheme for adaptive model-based recovery of sparse representations, which takes

into account statistical dependencies in the sparsity pattern. To exploit such dependencies we adapted a Bayesian

model for signal synthesis, which is based on a Boltzmann machine, and designed specialized optimization methods

for the estimation problems that arise from this model. This includes MAP and MMSE estimation of the sparse

representation and learning of the model parameters. The main contributions of this work include the development

of pursuit algorithms for signal recovery: greedy methods which approximate the MAP and MMSE estimators

in the general setup and an efficient message passing algorithm which obtains the exact MAP estimate under

additional modeling assumptions. We also addressed learning issues and designed an efficient estimator for the

parameters of the graphical model. The algorithmic design is followed by convincing empirical evidence. We

provided a comprehensive comparison between the suggested pursuit methods, along with standard sparse recovery

algorithms and Gibbs sampling methods. Finally, we demonstrated the effectiveness of our approach through real-life

experiments on denoising of image patches.

APPENDIX A

PROOF OF THEOREM 1

We show how the assumption that the dictionary is unitary can be used to simplify the expression for Pr(S|y).

For a unitary dictionary we have AT
s As = I for any support s. Consequently, for a support of cardinality k the

matrix Qs = AT
s As + σ2

eΣ
−1
s is a diagonal matrix of size k-by-k with entries di = 1 + σ2

e/σ2
x,i, i = s1, . . . , sk on

its main diagonal. Straightforward computations show that the following relations hold:

yTAsQ
−1
s AT

s y =
∑
i∈s

d−1
i (yTai)

2,

ln ((det(Qs))) =
∑
i∈s

ln (di) (40)

Using the definition of S (Si = 1 implies that i is in the support and Si = −1 implies otherwise), we can

replace each sum over the entries in the support
∑

i∈s vi by a sum over all possible entries
∑m

i=1
1
2 (Si + 1) vi.

Consequently, the relations in (40) can be re-written as:

yTAsQ
−1
s AT

s y =
1

2

m∑
i=1

(Si + 1) d−1
i (yTai)

2 = C1 +
1

2
fTS

ln ((det(Qs))) =
1

2

m∑
i=1

(Si + 1) ln (di) = C2 +
1

2
gTS (41)

where C1, C2 are constants and f, g are vectors with entries fi = d−1
i (yTai)

2, gi = ln (di) for i = 1, . . . ,m. We

now place the relations of (41) into the appropriate terms in (10) and get:

ln (Pr(S|y)) = C3 +

(
b+

f

4σ2
e

− v

4
− g

4

)T

S +
1

2
STWS (42)

29

where C3 is a constant. It is now easy to verify that the posterior distribution Pr(S|y) corresponds to a BM

distribution with the same interaction matrix W and a modified bias vector which we denote by q = b+ f
4σ2

e
− v

4−
g
4 :

Pr(S|y) = 1

Z̃
exp

(
qTS +

1

2
STWS

)
(43)

where Z̃ is a partition function of the BM parameters W, q which normalizes the distribution. Using the definitions

of f , g and v we get that (16) holds.

REFERENCES

[1] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and

images,” SIAM Review, vol. 51, no. 1, pp. 34–81, Feb. 2009.

[2] J. A. Tropp and S. J. Wright, “Computational methods for sparse solution of linear inverse problems,” Proc. IEEE, vol. 98, no. 6, pp.

948–958, June 2010.

[3] C. La and M. N. Do, “Tree-based orthogonal matching pursuit algorithm for signal reconstruction,” in ICIP, Atlanta, GA, Oct. 2006.

[4] Y. M. Lu and M. N. Do, “Sampling signals from a union of subspaces,” IEEE Sig. Processing Mag., vol. 25, no. 2, pp. 41–47, 2008.

[5] Y. C. Eldar and M. Mishali, “Robust recovery of signals from a structured union of subspaces,” IEEE Trans. Inform. Theory, vol. 55,

no. 11, pp. 5302–5316, Nov. 2009.

[6] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Compressed sensing of block-sparse signals: uncertainty relations and efficient recovery,”

IEEE Trans. Signal Processing, vol. 58, no. 6, pp. 3042–3054, June 2010.

[7] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hedge, “Model-based compressive sensing,” IEEE Trans. Inf. Theory, (to appear).

[8] M. Duarte and Y. C. Eldar, “Structured compressed sensing: from theory to applications,” IEEE Trans. Signal Processing, (submitted).

[9] S. G. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1998.

[10] M. Mishali and Y. C. Eldar, “Reduce and boost: recovering arbitrary sets of jointly sparse vectors,” IEEE Trans. Signal Processing,

vol. 56, no. 10, pp. 4692–4702, Oct. 2008.

[11] M. Mishali and Y. C. Eldar, “Blind multi-band signal reconstruction: compressed sensing for analog signals,” IEEE Trans. Signal

Processing, vol. 57, no. 3, pp. 993–1009, Mar. 2009.

[12] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, “Wavelet-based statistical signal processing using hidden Markov models,” IEEE

Trans. Signal Processing, vol. 46, no. 4, pp. 886–902, Apr. 1998.

[13] M. W. Seeger, “Bayesian inference and optimal design for the sparse linear model,” Journal of Machine Learning Research, vol. 9,

pp. 759–813, Apr. 2008.

[14] P. Schniter, L. C. Potter, and J. Ziniel, “Fast Bayesian matching pursuit,” in ITA, La Jolla, CA, Jan. 2008.

[15] J. S. Turek, I. Yavneh, M. Protter, and M. Elad, “On MMSE and MAP denoising under sparse representation modeling over a unitary

dictionary,” Tech. Rep., CS Dept., Technion – Israel Institite of Technology, Haifa, Israel, 2010.

[16] M. E. Tipping, “Sparse Bayesian learning and the relevance vector machine,” Journal of Machine Learning Research, vol. 1, no. 4,

pp. 211–244, 2001.

[17] R. M. Neal, “Probabilistic inference using Markov chain Monte Carlo methods,” Tech. Rep., CS Dept., University of Toronto, 2003.

[18] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Processing, vol. 56, no. 6, pp. 2346–2356, 2008.

[19] M. Elad and I. Yavneh, “A plurality of sparse representations is better than the sparsest one alone,” IEEE Trans. Inf. Theory, vol. 55,

no. 10, pp. 4701–4714, Oct. 2009.

[20] M. F. Duarte, M. B. Wakin, and R. G. Baraniuk, “Wavelet-domain compressive signal reconstruction using a hidden Markov tree

model,” in ICASSP, Las Vegas, NV, Apr. 2008.

[21] L. He and L. Carin, “Exploiting structure in wavelet-based Bayesian compressive sensing,” IEEE Trans. Signal Processing, vol. 57,

no. 9, pp. 3488–3497, Sept. 2009.

[22] P. J. Wolfe, S. J. Godsill, and W. J. Ng, “Bayesian variable selection and regularization for time-frequency surface estimation,” J. R.

Statist. Soc. B, vol. 66, no. 3, pp. 575–589, June 2004.

30

[23] P. J. Garrigues and B. A. Olshausen, “Learning horizontal connections in a sparse coding model of natural images,” in Advances in

Neural Information Processing Systems 20, J.C. Platt, D. Koller, Y. Singer, and S. Roweis, Eds., pp. 505–512. 2008.

[24] V. Cevher, M. F. Duarte, C. Hedge, and R. G. Baraniuk, “Sparse signal recovery using Markov random fields,” in Advances in Neural

Information Processing Systems 21, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds., pp. 257–264. 2009.

[25] M. I. Jordan, “Graphical models,” Statistical Science, vol. 19, no. 1, pp. 140–155, 2004.

[26] A. Wiesel, Y. C. Eldar, and A. O. Hero III, “Covariance estimation in decomposable Gaussian graphical models,” IEEE Trans. Signal

Processing, vol. 58, no. 3, pp. 1482–1492, Mar. 2010.

[27] S. L. Lauritzen, Graphical Models, Oxford University Press, 1996.

[28] D. Z. Du and P. M. Pardalos, Eds., Handbook of Combinatorial Optimization, vol. 3, pp. 1–19, Kluwer Academic Publishers, 1998.

[29] S. Verdu, Multiuser Detection, Cambridge University Press, 1998.

[30] V. Kolmogorov and R. Zabih, “What energy functions can be minimized via graph cuts?,” IEEE Trans. on Pattern Anal. and Machine

Intelligence, vol. 26, no. 2, pp. 147–159, Feb. 2004.

[31] D. Baron, S. Sarvotham, and R. G. Baraniuk, “Bayesian compressive sensing via belief propagation,” IEEE Trans. Signal Processing,

vol. 58, no. 1, pp. 269–280, Jan. 2010.

[32] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms for compressed sensing: I. Motivation and construction,”

in Proc. Inform. Theory Workshop, Cairo, Egypt, Jan. 2010.

[33] P. Schniter, “Turbo reconstruction of structured sparse signals,” in Proc. Conf. on Inform. Sciences and Sys., Princeton, NJ, Mar. 2010.

[34] M. Aharon, M. Elad, and A. M. Bruckstein, “K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation,”

IEEE Trans. Signal Processing, vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[35] J. Besag, “Statistical analysis of non-lattice data,” The Statistican, vol. 24, pp. 179–195, 1975.

[36] A. Hyvarinen, “Consistency of pseudolikelihood estimation of fully visible boltzmann machines,” Neural Computation, vol. 18, no.

10, pp. 2283–2292, Oct. 2006.

[37] S. P. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

[38] G. Narkiss and M. Zibulevsky, “Sequential subspace optimization method for large-scale unconstrained optimization,” Tech. Rep., EE

Dept., Technion – Israel Institite of Technology, Haifa, Israel, 2005.

[39] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local sparse models for image restoration,” in ICCV, Tokyo, 2009.

[40] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over learned dictionaries,” IEEE Trans. Image

Processing, vol. 15, no. 12, pp. 3736–3745, 2006.

[41] T. Faktor, Y. C. Eldar, and M. Elad, “Denoising of image patches via sparse representations with learned statistical dependencies,” in

ICASSP, Prague, Czech Republic, May 2011, (accepted).

