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Abstract: Multiplexed imaging enables the measurement of multiple proteins in situ, offering an unprecedented opportunity to chart
various cell types and states in tissues. These imaging modalities are penetrating every aspect of biological research in
diverse fields, including cancer, immunology, development and neuroscience. However, analyzing these multiplexed tissue
images is a challenging task. Current workflows are mostly based on pipelines that were developed for isolated cells in
suspension and thus require manual inspection and annotation of multi-channel images, which is difficult and tedious. Most
importantly, these methods do not scale to allow large-scale studies across many multiplexed images. Introducing AI to
these workflows should give rise to faster and at-scale analysis of multiplexed tissue images.

Background. The tumor microenvironment (TME) is
comprised of many different cell types, including ma-
lignant cells, but also non-transformed cells, such as fi-
broblasts, immune cells, neurons, lymphatics and vascu-
lature. Each of these cell types can further assume a va-
riety of phenotypes, defined by co-expression of multiple
proteins. These cells organize in spatially-structured ar-
rangements, exhibiting microenvironmental niches, nutri-
ent gradients and cell-cell interactions. In recent years, it
has become increasingly appreciated that this ecosystem,
collectively termed the TME, plays a crucial role in medi-
ating complex phenomena, such as tumor progression and
response to treatment [1, 2].

Potential bottlenecks. Recent technological advance-
ments in spatial profiling methodologies hold promise to
fully capture the complexity of the TME and elucidate
trans-cellular interactions in cancer. Methodologies like
Multiplexed Ion Beam Imaging by Time of Flight (MIBI-
TOF [3]) or Co-Detection by Indexing (CODEX [4]) al-
low gauging the expression of a multitude of proteins
in tissue specimens while preserving tissue architecture.
Multiplexed tissue images contain rich information on
cell types and states and the sub-cellular localization of
this data. However, analyzing these multiplexed images
presents the biggest bottleneck to fully adopting these
technologies in broader biological research. Analysis of
this data is complex, and existing pipelines are limited and
inadequate.

Analysis of multiplexed images is typically executed
as a sequence of procedures, which includes image pre-
processing [5], cell segmentation [6, 7], cell classifica-
tion [8], and spatial analysis [9, 10]. These tasks are per-
formed in a linear sequence, although it is clear that infor-
mation from tasks that are executed later in the pipeline
could be beneficial for tasks that are executed early. For
example, knowledge of the classes of cells would highly
improve cell segmentation. Moreover, these workflows
often require manual inspection and annotation of multi-
channel images, which is intractable due to the large num-
ber of proteins measured in each experiment. Finally, the
workflows are often tailored to a specific panel of proteins
or target tissue, and as such do not allow cross-study data
integration. While artificial intelligence (AI) has been ap-
plied to tackle specific tasks in these workflows, its appli-
cation has been very restrictive. Although some success is

reported in tackling specific sub-tasks, e.g., cell segmenta-
tion [6, 7] and cell classification [11], curating the appro-
priate data and manually annotating it for each sub-task is
still prohibitively time consuming and inefficient.

Altogether, the analysis of multiplexed images relies
on fragmented pipelines with limited use of AI, mainly in
the form of supervised models that require arduous label-
ing efforts.

Approach. In this project, we propose to develop a uni-
fied AI model for multiplexed tissue data. Inspired by
recent trends in computer vision and deep learning, we
take a more holistic approach: developing and training a
single representation for the domain of multiplexed tis-
sue images. This representation is an embedding of local
multiplexed image regions (e.g., cells or TMEs) into high-
dimensional vectors. Training this representation results
in these vectors being organized in a semantic way in the
high-dimensional embedding space. That is, we can ex-
pect vectors representing similar cells, or having similar
biological properties, to be close to each other in the em-
bedding space. Consequently, reasoning about biological
properties becomes very trivial using this embedding. For
example, one can perform cell classification by running
simple algorithms, like k-means or k-nearest-neighbors,
on the embeddings of cells to discover cell types.

To train this model with minimal manual anno-
tation effort, we will also leverage new advances in
self-supervised training methods, e.g. [12]. The effi-
cacy of these self-supervised representations was recently
demonstrated by tackling complex visual tasks, such as
classification and segmentation, using simple computa-
tional tools applied to vectors in the learned embedding
space [13, 14, 15].

Expected outcome. In this project, we will develop a
self-supervised paradigm for training deep neural net-
works on multiplexed tissue images. The effectiveness
of the learned representations will be showcased by tack-
ling biological analysis tasks in a zero-shot manner. For
example, demonstrating cell classification using a simple
k-means clustering method, similar to [13]. If successful,
this approach could revolutionize the field of multiplexed
imaging analysis, making it widely accessible to cancer
researchers and applicable to large clinical studies.
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Monoclonal antibody (mAb)-based immunotherapy has become a chief component of cancer therapy
along with surgery, chemotherapy, and radiation, with monoclonal antibodies having significant
advantages over other methods due to the possibility of side-effect-free treatment1. One limiting factor of
mAb treatment is the lack of speicific targets, as some cancers have no identifiable epitope that has been
found. Therefore, sequencing tumor-infiltrating B cells is pivotal to understanding humoral tumor
immunity and may lead to the discovery of antibodies against previously unknown targets. Recently,
advances in single-cell RNA sequencing have enabled researchers to sequence the entire immunoglobulin
(Ig) repertoire of B cells from the tumor microenviroment2–7. These experiments often result in hundreds
to thousands of unique antibody sequences from which a small number must be selected to be evaluated
as monoclonal antibodies. This selection is crucial as selected antibodies must display excellent
“developability” characteristics (namely high stability, specificity, and expressibility)8–10 to be useful
therapeutics, and thus selecting the wrong antibody can lead to complete dead ends. Here, we propose to
leverage recent advances in machine learning-based protein structure prediction and computational
antibody optimization11,12 to develop a new method for selecting and optimizing antibody sequences
based on structural and energetic principles13–15. This method will be completely automated, making it
accessible for non-experts in antibody engineering. Ariel has experience engineering antibodies and has
developed a method for antibody humanization, and Nachi has sequenced the B cells residing in the
tumor-draining lymph nodes of several ovarian cancer patients and is now selecting mAbs to express,
demonstrating their suitableness for this project. This work can help to decipher the
antibody-mediated response and identify novel therapeutics for ovarian cancer, which is poorly
understood and does not respond to immunotherapy treatment.

Current approaches rely on algorithms to generate clonal antibody trees based purely on antibody
sequences, and a small number of members of the most clonally expanded B cells are selected, as they are
predicted to have the highest affinity16,17. This approach is well suited for data from rodent immunizations
with a strong clonal response leading to a small number of sequences to choose from but falls short for
large and complicated datasets such as those obtained from single-cell RNA seq of anti-tumor antibodies.
There may not be many expanded clones to choose from, and at some point, clonality becomes
insignificant as the minimal differences provide no benefit18. In this way, current approaches will
essentially select randomly from these expanded clones, which may not select for the most optimal
antibodies and may limit the selection to antibodies against a target antigen (or epitope) that is common at
a selected time point, thus reducing diversity.

Our method will first eliminate any antibody sequences containing post-translational modification
motifs, which are known to cause antibody heterogeneity in therapeutic formulations. Then, we will
predict the structure of each remaining antibody sequence acquired from the single-cell sequencing and
cluster the predicted structures, yielding a set of diverse clusters. Within each cluster, we will use Rosetta
all-atom calculations to rank the antibodies by energy and then use methods developed in the Fleishman
Lab to optimize the stability, expressibility, and humanness of the top antibodies, yielding a small number
of structurally diverse antibody sequences that are predicted to exhibit excellent developability
characteristics11,12. Successful completion of this work will both allow for the discovery of antibodies
that traditional methods for selection would miss in our data sets and will remove the need for
further optimization of discovered antibodies.
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