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Abstract

The COVID-19 pandemic has adversely affected millions all over the world. Efficient and effective testing of
individuals for COVID-19, via modalities such as reverse transcription polymerase chain reaction (RT-PCR)
is a crucial factor in combating this menace. Given the widespread scarcity of testing resources including
testing kits, reagents, skilled manpower and available time, pooled testing has been advocated as a method
of speed-up. Pooling involves mixing together small portions of ‘samples’ of different individuals, followed
by testing the pools instead of the individual samples. It has been observed that a much smaller number
of pools, as compared to the number of samples, is sufficient to allow for accurate prediction of the health
status of the constituent samples, under the common and reasonable assumption that only a small number
of the samples were infected. Artificial Intelligence (AI) has emerged as a key tool in improving the pre-
diction accuracy as well as efficiency of pooled testing. Such algorithmic tools are often studied within the
frameworks of group testing and compressed sensing. In this chapter, we present algorithmic tools for pooled
testing and recovery, giving a broad description of the use of AI for pooled testing in the context of COVID-19.

Keywords: pooled testing, group testing, compressed sensing, RT-PCR, sensing matrix design, sparse
regression, Dorfman testing, adaptive and non-adaptive testing

1 Introduction

The Coronavirus disease 2019 (COVID-19) pandemic has already forced lockdowns all over the globe, and has
claimed more than five million lives worldwide. In order to handle and contain pandemics, and particularly
COVID-19, large portions of the population should be frequently tested [1]. One of the main difficulties in
doing so stems from the limited testing resources and the lengthy duration required to identify the presence
of an infection [2].

The main diagnosis tool for COVID-19 tests is based on Ribonucleic acid (RNA) extraction via qualitative
reverse transcription polymerase chain reaction (RT-PCR). Although various technological alternatives have
been proposed [3,4], the RT-PCR process remains the leading and most widely spread method for COVID-19
testing. The output of this procedure represents an estimate of the viral load in the tested sample [5]. A
major bottleneck associated with this form of COVID-19 testing follows from the fact that each RT-PCR
machine can simultaneously process a fixed number of samples, and its procedure tends to be quite lengthy,
on the order of a few hours for each test.

A leading method to tackle the time-consuming nature of RT-PCR, whose duration often lasts between
3 ∼ 4 hours, and the limited capacity associated with the detection scheme, is to increase the efficiency of
COVID-19 tests using pooling techniques [6,7]. Pooling builds on the fact that empirical observations suggest
a low prevalence rate, namely, most tests are wasteful as most individual samples will return as negative.
Consequently, for large populations, testing grouped samples can facilitate the aim of providing quick yet
accurate results economically at an increased throughput. In pooling, each sample processed, i.e., each input
to the RT-PCR machine, is comprised of a mixture of small portions of several samples taken from different
patients (one sample per patient). When the infected patients constitute a small subset of the overall tested
individuals, pooling-based schemes allow accurate recovery using a number of tests which is notably smaller
than the number of patients [8]. While pooling can significantly increase the throughput of testing and thus
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boost rapid and accessible diagnosis for tracking of the pandemic, the fact that it relies on the examination
of mixed samples implies that dedicated artificial intelligence (AI) methods are required for the automated
and rapid identification of the infected subjects and the recovery of their viral loads.

In this chapter we review recovery methods for pooled COVID-19 tests. These AI methods can be
divided according to two main mathematical frameworks for such recovery procedures: group testing (GT)
and compressed sensing (CS). To describe methods belonging to these families, we begin by presenting a
mathematical model which formulates the problem of pooled testing recovery in Sec. 2. We elaborate on the
subtleties and the specific assumptions and requirements which characterize COVID-19 testing. Based on the
modelling of the pooled recovery setting, we review the application of GT, which was originally designed for
testing infections in large populations, for COVID-19 pooled testing in Sec. 3. Our review examines different
GT schemes along with their relevance in the context of COVID-19. We proceed to discuss recovery methods
which arise from CS theory in Sec. 4. The framework of CS deals with the recovery of sparse signals [9,10],
and such methods were proposed for recovery from pooled COVID-19 tests in [11–16]. We conclude the
chapter with a qualitative comparison between these families of AI methods in Sec. 6, and identify the
setting in which one is likely to be preferable over the other for pooled COVID-19 tests.

2 System Model

In this section we present the system model for which we review pooled recovery algorithms in Sec. 3-4.
As we focus on COVID-19 testing, we begin by identifying the specific characteristics that arise from this
application of pooling in Sec. 2.3, based on which we formulate the recovery problem in Sec. 2.4.

2.1 The PCR Process

We begin with an overview of the RT-PCR process following [17]. We refer the reader to [18,19] for a more
detailed description.

In the RT-PCR method for COVID-19 testing, a sample in the form of naso- or oro-pharyngeal swabs
is collected from a patient, following which it is mixed into a liquid medium. The RNA molecules of
the virus (if present) in the original sample and thus also in the liquid medium, get transformed into
complementary DNA (cDNA). This conversion from RNA to cDNA occurs by a process termed reverse
transcription. To this mixture, DNA fragments called primers are added. These primers behave in a manner
that is ‘complementary’ to the existing cDNA and get attached to certain specific sections of the cDNA (if
the virus is present in the sample). This cDNA then undergoes a process of exponential amplification inside
the RT-PCR machine during several cycles of alternate heating and cooling. Roughly per cycle, the cDNA is
doubled in number. Fluorescent markers added to this mixture produce a visible fluorescence effect, observed
almost immediately on a computer screen, in response to, and directly proportional to, the total amount
of amplified cDNA. The time when the amount of fluorescence is observed to exceed a machine-specific
threshold is known as the cycle threshold (CT). A smaller CT value indicates greater number of copies of
the virus, and a larger CT value indicates a lower number (potentially even zero). Usually CT values lie
anywhere between 16 to 35 cycles in real experiments. Statistics of typically observed CT values are reported
in [20]. In particular, we note that RT-PCR can detect even single molecules. A single molecule typically
would have a CT value of around 40 cycles. An RT-PCR machine can typically test 96 samples in parallel,
and the testing time is between 3 to 4 hours.

2.2 Mathematical Model

The readings provided in RT-PCR testing provide an indication on the presence and level and infection. In
some cases, one can approximate the relationship between the cycle time of a sample and its viral load using
a statistical model [17, 19, 21]. Due to the fact that the growth of cDNA molecules is exponential [19] (as
also explained in Sec. 2.1), the number of molecules of viral cDNA in a sample i at cycle time t is given
by: zi(1 + qa)

t, where zi is the initial viral load in the sample (before the RT-PCR process began), and
qa ∈ [0, 1] is an amplification factor. Here t is a real number, and ⌊t⌋ denotes the number of RT-PCR cycles
that have passed. The fluorescence ξi(t) of the ith pool at time t is directly proportional to the number of
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virus molecules. Hence we have:
ξi(t) = K · zi(1 + qa)

t, (1)

where K is a constant of proportionality.
Let F be the threshold value of the fluorescence, and assume that the fluorescence of pool i reaches the

value F at some cycle time τi, according to (1). Due to factors such as the stochasticity of the RT-PCR
process reaction and the measurement error/quantization in the RT-PCR machine, the CT value that is
output by the machine will not reflect this true cycle time. In other words, the true cycle time τi and the
recorded cycle time ti are statistically related, and this relationship can be modelled as τi = ti+ ei, where ei
is interpreted as the error in recording the value of τi. Here ei is modeled as a zero-mean Gaussian random
variable with variance σ2

e . We assume 0 < σ2
e ≪ 1, as we expect this error to not be too high. Plugging in

ξi(τi) = F , we have from (1) that

F = K · zi(1 + qa)
τi = K · yi(1 + qa)

ti , (2)

where yi is defined to be the noisy initial viral load of sample i corresponding to a noisy observed CT value
ti. Hence,

yi = zi(1 + qa)
τi−ti = zi(1 + qa)

ei . (3)

The above stochastic relationship constitutes an approximate model of the underlying statistics of RT-PCR
measurements, which one may use for designing and analyzing pooling methods, as discussed in the sequel.

2.3 Pooled COVID-19 Tests

The common approach in testing for the presence of COVID-19 is based on the RT-PCR method. Here, a
sample is collected, most commonly based on nasopharyngeal or oropharyngeal swabs or saliva [22]. The
presence of infection is then examined by RNA extraction via RT-PCR measurements, quantifying the viral
load in the sample. The RT-PCR process is quite time consuming (on the typical order of several hours),
and can simultaneously examine up to a given number of m inputs (commonly on the order of several tens
of samples). This results in a major bottleneck, particularly when the number of patients, denoted by n, is
much larger than m.

A candidate approach to reduce the test duration utilizes pooling [6]. Pooling considers a small mixture
of pooled samples rather than the total number of samples. To model this procedure in a generic manner,
let f ∈ Rn

+ represent the samples vector, i.e., the viral loads of each of the subjects, whose entries f1, . . . , fn
denote the viral loads of the n individuals. If fi = 0, then the ith individual is not infected. Pooled testing
is comprised of two stages: pooling and measurement.

Pooling refers to the mapping of the n samples f into a lower-dimensional vector z ∈ Rm
+ , with m < n.

Here, each entry of z is obtained by mixing a subset of the samples in f determined by the binary valued
pooling matrix Φ ∈ {0, 1}m×n, such that

zi = gpool ({fj |Φi,j = 1}) , i ∈ {1, . . . ,m}. (4)

In (4), gpool(·) represents how the viral loads of the mixed samples are mapped into the viral load of the
pool. In direct (non-pooled) testing, one can write zi = fi and Φ as the n × n diagonal matrix. While
pooling is commonly modelled as averaging, i.e., gpool(X ) = 1

|X |
∑

x∈X x, in many applications, including

COVID-19 testing, the relationship between the pool and the mixed samples is more complex and includes
stochasticity and dilution [6].

Measurement refers to reading of the pooled vector z into the observed vector y ∈ Rm
+ . This is carried

out via the element-wise mapping gmeas(·), such that yi = gmeas(zi) for each i ∈ {1, . . . ,m}. For RT-PCR,
the mapping gmeas(·) represents a procedure which involves the conversion of the sample into complementary
DNA through reverse transcription, followed by examining its reaction in response to the heating and cooling
cycle through a chemical process to quantify the number of virus particles (as earlier described in Sec. 2.1).
The measurement procedure typically involves some level of uncertainty and distortion, and thus gmeas(·) is
typically stochastic. Under some approximations detailed in Sec. 2.2, one can approximate gmeas(·) using
the noise model in (3).

An illustration of the overall flow of pooled RT-PCR-based COVID-19 testing is depicted in Fig. 1. On
the left side of the figure, we show the true viral loads of all n items. In particular, we see that the first
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Figure 1: Pooled RT-PCR testing illustration.

item is infected in a medium level, the fourth item is infected in a low level, and all other items are not
infected. Next, pooling is done based on a testing matrix, which is generated prior to obtaining the samples.
For example, the first pooled test involves samples from the first, third, and fifth items. This results in a
measurement vector, denoted by z. This vector is fed to the recovery algorithm, which should be able to tell
that the first item is infected (with some medium level viral load), the fourth item is infected (with some
low level viral load), and all other items are not infected.

While the above description of the pooling and measurement procedure are generic, its application to
RT-PCR-based COVID-19 tests gives rise to the following characteristics:

A1 The number of infected measurements, denoted by k, is much smaller than the number of tested
individuals n. Typically k ≤ 0.1n, i.e., up to 10% of the tested population is infected. This number
often varies between non-symptomatic patients (where k is typically much smaller than 10%) and
symptomatic ones.

A2 The RT-PCR measurements are noisy, i.e., some level of random distortion is induced in the overall
process, encapsulating the randomness in the acquisition of the samples, their mixing, and the RT-PCR
reading. As a result, the pooling and measurement procedures gpool(·) and gmeas(·) may be noisy and
unknown, with one possible model for gmeas(·) being the relationship formulated in Sec. 2.2.

A3 There is a limit, denoted by L > 1, on the number of subjects which can be mixed together in a single
measurement. A typical limit on the number of subjects mixed together is L = 32 [6]. Furthermore,
the portion taken from each sample for the pooled measurements is identical, e.g., one cannot mix 30%
from one patient with 70% from another patient into a single pool.

While the characteristics are identified for swab-based RT-PCR tests, they also hold for other forms of
contagious disease testing, including, e.g., serological tests [23].

2.4 Recovery from Pooled Tests

Pooling is based on mixing the samples of groups of patients together, forming m mixed samples out of the
overall n patients. Then, the presence of COVID-19 for each of the tested individuals must be recovered
from the mixed RT-PCR measurements, either directly, i.e., in a one-shot fashion, or in an adaptive manner,
which involves additional tests [24]. When testing for COVID-19, the following requirements must also be
accounted when designing the recovery procedure:
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Figure 2: Pooled testing recovery illustration, divided into desired outputs following Examples 1-3.

R1 One-shot tests, where we fully identify all subjects from a single RT-PCR operation, are often preferable
over adaptive techniques, which involve having to carry out additional tests based on the results. In
particular, one-shot methods are simpler to automate, being less dependent on human intervention
compared to adaptive schemes, and thus typically reduce the overall duration of the testing procedure
(though not necessarily the number of pooled tests m).

R2 In some cases, one is interested not in only identifying whether a subject is infected or not, but also in
some score on the viral load. This can be either the viral load itself, or a discrete score.

Per R2 the objective of recovery from COVID-19 pooled tests is to recover a score on the infection of
each subject. To formulate this, we define a mapping, Q : R+ 7→ Q, which translates a viral load into
the corresponding score, while Q is a set describing all possible infection status. Some examples of such
mappings of interest are:

Example 1. When one is only interested in detecting whether a subject is infected or not, then Q = {0, 1},
with Q(x) = 1 when x is larger than some infection threshold, and Q(x) = 0 otherwise.

Example 2. Often in practice, one is interested in a discrete score of the viral load, For example, possible
discrete score outputs are no (no virus), low (borderline), mid (infected), and high (highly infected); this
requirement implies that Q = {no, low,med, high}. The decision regions are defined by the pre-specified
thresholds τ1, . . . , τ|Q|−1, such that Q(x) maps a value of x not larger than τ1 is treated as not infected,
while, e.g., a value in the range (τ1, τ2] is treated as a low level of infection.

Example 3. When the desired output is the actual viral load, then Q = R+, with Q(x) = x.

Based on the characteristics of pooled COVID-19 tests detailed above, the recovery problem can be
formulated as the estimation of Q(f) (where Q(·) is applied element-wise) from z, denoted by f̂ ∈ Qn. In
particular, for the subset of k infected items of a total of n inspected patients, the goal in pooled recovery is to
formulate an algorithm for reconstructing f̂ from y, possibly along with the design of the m×n measurement
matrix Φ. The measurement matrix should guarantee that at most L subjects are mixed in each pool-test,
such that the recovery algorithm can identify the subset of infected items and their representation of the
viral load using the recovery algorithm, from the observed vector y. The recovery procedure is visualized in
Fig. 2.
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AI-based recovery algorithms typically fall into either of the following mathematical frameworks: GT,
which is concerned with detecting the presence of infection (e.g., Example 1), and CS, which originates from
the recovery of sparse continuous-amplitude vectors, and is thus more naturally suitable for recovering the
actual viral loads (e.g., Example 3). We discuss these approaches in Sec. 3-4, respectively. The recovery
of a discrete yet non-binary score, as in Example 2, requires an extension of GT techniques, which we also
present in Sec. 3.

3 Group Testing Methods for COVID-19

GT is a mathematical theory derived for detecting infections in large populations. It was introduced by
Robert Dorfman in [25], who suggested GT for identifying syphilis-infected draftees during World War II.
Since then, GT has been long studied and utilized in many fields, such as biology and chemistry [26, 27],
communications [28–30], sensor networks [31], pattern matching [32], web services [33], and cyber secu-
rity [34–36].

Broadly speaking GT is a framework for group detection problems of binary variables, i.e., each subject
can either be infected or not infected [8]. GT is traditionally adaptive, requiring multiple sequential tests [25]
in order to achieve a minimal number of overall tests from which the presence of infection can be inferred.
Nonetheless, GT can also be applied in a one-shot (non-adaptive) manner [37], avoiding the need to mix
new samples during the testing procedure, as studied for COVID-19 pooled testing in [38, 39]. Therefore,
in the following we divide our description of GT methods into adaptive and non-adaptive. Unless stated
otherwise, our description henceforth focuses on linear measurements, that is we consider gpool(f) = Φf to
be the common setting for GT studies.

3.1 Adaptive GT Methods

GT was originally proposed as an adaptive procedure. The simple scheme proposed by Dorfman partitions
the patients into distinct sets of size B that are pooled together. Then, the subjects of each pool which is
tested as positive are re-tested separately one-by-one, where the measurements are assumed to be noiseless,
i.e., gmeas(z) = z. The resulting formulation is stated below as Algorithm 1.

Algorithm 1: Dorfman Adaptive GT [25]

Init: Subjects to be inspected f ∈ Rn
+, set size B

Pooling:
1 Set number of pools to m = ⌈n/B⌉;
2 Set measurement matrix such that (Φ)i,j = 1 if i ∈ [(j − 1) ·B, j ·B) and (Φ)i,j = 0 otherwise;
Measurement:

3 Measure y;
Recovery:

4 Set f̂ = 0;
5 for each j such that yj ̸= 0 do

6 Set each f̂i for which (Φ)i,j = 1 by testing fi individually;
7 end

Dorfman’s method, which is simple to implement and highly intuitive, has been used for COVID-19
pooled testing in [6, 7, 40]. When one has prior knowledge of the number of defective items k, the setting
of B which minimizes the maximal number of tests is B =

√
n/k [41]. The adaptive nature of Algorithm 1

stems from the fact that it operates in two stages. Yet, adaptive GT can be more efficient in terms of
the maximal number of tests when operating with multiple stages in a recursive manner. A representative
implementation of recursive adaptive GT is the methods proposed in [42] which is based on binary splitting.
Broadly speaking, binary splitting recursively partitions the subjects as long as they contain at least one
infected item. The resulting procedure is formulated as Algorithm 2. Recursive adaptive GT based on binary
splitting is known to be most beneficial when the k is much smaller compared with n, Furthermore, it was
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conjectured in [43] that GT, and pooling in general, should only be applied when the subjects are indeed
sparse (as per A1), and particularly when k < n/3.

Algorithm 2: Binary Splitting Adaptive GT [42]

Init: Subjects to be inspected f ∈ Rn
+, index of first subject i

Pooling:
1 Set measurement matrix Φ to be the 1× n all-ones vector;
Measurement:

2 Measure (the scalar) y;
Recovery:

3 if y ̸= 0 then
4 if n = 1 then

5 Set f̂i as infected;
6 end
7 else
8 Invoke Algorithm 2 for f1, . . . , f⌈n/2⌉ with first index i;
9 Invoke Algorithm 2 for f⌈n/2⌉+1, . . . , fn with first index i+ ⌈n/2⌉;

10 end

11 end
12 else

13 Set f̂i, . . . , f̂i+n−1 as not infected;
14 end

The major drawback of adaptive GT for COVID-19 pooled testing stems from the fact that it requires
additional procedures based on the results. This implies that laboratory technicians must save swabs taken
from patients in addition to those mixed into the pools, and then possibly mix them again based on the
outcome of the lengthy RT-PCR procedure. This can constitute a major bottleneck and notably burden
laboratory technicians for both two-stage GT (as in Algorithm 1), and even more so for recursive GT (as in
Algorithm 2).

3.2 Non-Adaptive GT Methods

Non-adaptive GT operates in a one-shot manner, detecting the presence of infections among all patients
without requiring additional tests to be acquired based on previous results. Unlike the adaptive techniques
detailed in the previous section, where the recovery algorithm typically dictates the measurement matrix Φ,
non-adaptive methods can typically be carried out with different polling patterns. Therefore, in the following
we first discuss how to set the pooling matrix Φ, after which we review some representative recovery methods
designed for both noiseless and noisy settings.

3.2.1 Pooling Matrix

To determine the testing matrix Φ, one must first fix the number of the pool-tests m. GT theory dictates
that m should satisfy m = (1 + ϵ)k log2 n, for some ϵ > 0, as this is the sufficient number of pool-test for
which reliable recovery in noiseless GT can be guaranteed [44]. The parameter ϵ controls the probability
of error of the procedure [44]. In practice, the number of pools-tests is often dictated by the measurement
setup, e.g., it may be constrained to be an integer multiple of the number of inputs accepted by an RT-PCR
machine.

The traditional GT method of generating Φ for non-adaptive recovery draws its elements in an i.i.d.
fashion according to a Bernoulli distribution with parameter p. A common choice for p is p = 1− 2−1/k, for
which the probability of each element in z to be zero is 1/2. When k is unknown, p is chosen using a rough
approximation of k. A major drawback of this approach is that A3 is not necessarily satisfied, and there is
some chance that too many patients will be mixed into the same pool causing dilution. This can be relieved
by forcing the columns of Φ, as well as the rows of Φ, to be typical, such that every column/row to have
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exactly ⌈p ·m⌉ ≤ L and ⌈p ·n⌉ ones, respectively [38]. In practical testing setups, one is interested in using a
fixed deterministic matrix, rather than having to work with random matrices. Thus, Φ should be generated
once before the pooling starts, after which it can be used for multiple pooling experiments.

3.2.2 Noiseless Linear Non-Adaptive Recovery

Noiseless recovery methods are designed for linear noiseless measurements, such that y = z = Φf . For such
settings, common strategies attempt to classify the subjects into Dnd and Dd based on observing which
are mixed into a non-infected pool and which are mixed into an infected one. The identification of the
Dnd is carried out using Comp. The purpose of Comp is to characterize Dnd subjects as those pooled
into a non-infected pool, while classifying the remaining patients as possible defective (PD). The resulting
procedure is summarized below as Algorithm 3.

Algorithm 3: Combinatorial Orthogonal Matching Pursuit [45,46]

Init: Pooled measurements y ∈ Rm
+ , pooling matrix Φ, infection threshold τ

1 Mark each {f̂j}nj=1 as PD;

2 for i = 1, . . . ,m do
3 if yi ≤ τ then

4 Set f̂j as Dnd (Q(0)) for each j such that (Φ)i,j ̸= 0;
5 end

6 end

While Algorithm 3 only divides the patients into Dnd and PD, it can also be extended to identify some
of the subjects as Dd. The rationale here is that whenever a pool is tested as infected, one of the subjects
mixed into that specific pool must be infected. Therefore, if only one PD subject is mixed into an infected
pool, then this subject is Dd. The resulting steps are summarized as Algorithm 4.

Algorithm 4: Definitely Defective Non-Adaptive Recovery [47]

Init: Pooled measurements y ∈ Rm
+ , pooling matrix Φ, infection threshold τ

1 Apply Comp (Algorithm 3) to obtain Dnd and PD subjects;

2 for each PD subject f̂j do

3 if ∃yi > τ such that (Φ)i,j ̸= 0 while (Φ)i,j′ = 0 for each j′ ̸= j with PD f̂j′ then

4 Set f̂j as Dd;
5 end

6 end

The Dd procedure in Algorithm 4 can be repeated sequentially, i.e., iteratively using previously identified
Dd subjects to repeat the detection procedure. This iterative operation is referred to as SequentialComp [47].
It is noted though that these algorithms may result in some of the patients being classified as neither Dd
nor Dnd, implying that a policy for dealing with such cases is required (though it is likely to be infrequently
applied).

Algorithms 3-4 can be used as preliminary processing, after which the remaining PD patients are detected
using alternative recovery methods. In particular, for settings where one is interested in recovering the viral
loads and not just which patients are infected, Comp can be used at pre-processing to identify the Dnd
subjects and reduce the number of patients whose viral load must be estimated; the viral loads of these
remaining PD subjects can then be recovered using methods that are not limited to detection, e.g., loopy
belief propagation (LBP) [39], CS [12], and even least-squares estimation [38].

3.2.3 Noisy Non-Linear Non-Adaptive Recovery

The non-adaptive GT recovery algorithms detailed in the previous section are designed for settings where
the measurements are linear and noiseless, such that y = z = Φf . Some of these techniques can be extended
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Figure 3: Representation of pooling procedure as a loopy factor graph.

to the presence of additive noise, i.e., when y = z +w where w is a noise signal, by increasing the number
of pools, as in e.g., noisy Comp [37]. However, these methods do not naturally extend to setting where
the relationship between the measurements and the pooled viral loads is not only noisy, but also non-linear
(namely z is not equal to Φf) as in (4), which is often the case in RT-PCR-based COVID tests.

When the pooling and measurement mapping are stochastic yet their distribution is known, the recovery
rule which minimizes the error probability, and holds for both linear and non-linear measurements, is the
maximum a-posteriori probability (MAP) rule

f̂ = argmax
s∈Qn

P (s|y). (5)

However, even when the underlying distribution is fully known, computing MAP estimates is a computa-
tionally prohibitive task whose burden grows exponentially with n. Nonetheless, its decision rule can be
approached with complexity that only grows linearly with n via the LBP algorithm [48], [41, Ch. 3.3].

Consider our pooled testing setup, where the task is to estimate the discrete-valued vector s ∈ Qn with
entries si = Q(fi) from the observed y ∈ Rm

+ . Such settings correspond to Example 1 (where |Q| = 2) and
Example 2. Given a pooling pattern matrix Φ, the joint probability distribution of y, s can be expressed as
a partition

P (y, q) = P (y|s)P (s) = P (s)

m∏
i=1

P (yi|Si), (6)

where Si = {sj |(Φ)i,j = 1}. Note that the factorization in (6) is dictated by the pooling pattern Φ, while
the combined stochastic effect of the pooling and measurement procedures is encapsulated in the conditional
distribution P (yi|Si). By defining gi(Si) := P (yi|Si), (6) can be represented as a factor graph as illustrated
in Fig. 3, with m function nodes {gi} and n variable nodes {si}.

LBP is an iterative algorithm that approximates the marginal a-posteriori probabilities by propagat-
ing messages in the factor graph domain according to a flooding schedule [49]. Messages are initialized

{µ(0)
gi→sj (s), µ

(0)
sj→gi(s)} for each s ∈ Q and for every function node gi and variable node sj which share an

edge in the factor graph, i.e., Φi,j = 1. Then, for each vertex, the messages are shared downstream with
their neighbors in an iterative fashion. For iteration index t, the variable-to-function messages are computed
via

µ(t+1)
sj→gi(s) =

∏
f∈N (sj)/gi

µ
(t)
f→sj

(s), (7)

and the function-to-variable messages are obtained as

µ(t+1)
gi→sj (s) =

∑
Si/sj

gi(Si)
∏

z∈N (gi)/sj

µ(t)
z→gi(z), (8)

where N (v) denotes the set of neighbors of a given node v. Note that the neighbours of variable nodes are
all function nodes, while the neighbors of function nodes are all variable nodes.
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Figure 4: Pooling procedure with loopy learned factor graph.

Assuming convergence after T iterations, the a-posteriori probability can be approximated as the product
of all incoming messages

P̂ (sj = s|y) ∝
∏

f∈N (sj)

µ
(T )
f→sj

(s). (9)

The resulting LBP algorithm is summarized below as Algorithm 5.

Algorithm 5: Loopy Belief Propagation [50, Ch. 26]

Init: Pooled measurements y ∈ Rm
+ , pooling matrix Φ

1 Initialize {µ(0)
fi→sj

(s), µ
(0)
sj→fi

(s)} uniformly, i.e., setting (µ)i =
1

|Q| for each i ∈ Q;

2 for t = 0, · · ·T − 1 do
3 Update variable-to-function messages via (7);
4 Update function-to-variable messages via (8) to compute f(Si);

5 end
6 for j = 1 . . . , n do
7 Recover infection levels of possibly defective samples by

f̂j = argmax
s∈Q

∏
f∈N (sj)

µ
(T )
f→sj

(s). (10)

8 end

Algorithm 5 is suitable for non-linear and noisy settings, and is not constrained to detecting infection,
being allowed to produce estimates within any predefined finite dictionary. However, it can be computa-
tionally demanding, particularly when the number of patients n is relatively large. For this reason, it is
often preferable to carry out Comp as a preliminary stage for reducing the dimensionality of the problem.
Furthermore, it relies on knowledge of the stochastic model relating the viral loads and the measurements.
In traditional GT, simplified models are often adopted [41, Ch. 3]. In COVID-19 testing, when the measure-
ments correspond to the RT-PCR readings of the pool tests, one may either resort to approximated models,
as suggested in Sec. 2.2. Alternatively, as proposed in [39], deep learning tools can be exploited to learn to
compute the function nodes as a form of learned factor graphs [51], by training a neural classifier to predict
Si = {sj |Ai,j = 1} ∈ Q|Si| from yi. This form of AI-aided recovery allows to carry out LBP recovery with
either binary levels (Example 1) or multi-level classification (Example 2) over the learned factor graph as
illustrated in Fig. 4. This form of recovery preserves the suitability of LBP to exploit the statistical struc-
tures induced by known pooling pattern Φ while leveraging to model-agnostic nature of neural networks to
bypass the need to impose an approximated model on the pooling and RT-PCR measurement processes.
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3.3 Summary

GT provides powerful AI methods for pooling and recovery from pooled measurements. These techniques
are most suitable when one is interested in merely identifying the presence of infection, as in Example 1, and
when the pooling and measurement procedures can be reliably modeled as linear (and preferably noiseless)
operations. GT tools can be applied in both an adaptive and a non-adaptive manner, where the former is
quite intuitive yet is less attractive for COVID-19 tests due to its associated overhead in terms of additional
technician labour. Furthermore, GT methods, and particularly Comp, can be used as pre-processing steps
combined with alternative recovery algorithms, including CS-based discussed in the following section, as
means for reducing the dimensionality and complexity of automated recovery.

4 Compressed Sensing for Pooled Testing for COVID-19

CS is a popular sub-field in the areas of signal and image processing [9, 10]. It involves the acquisition of
signals or images directly in compressed format, with a focus on saving acquisition or measurement time.
This is different from conventional sensing where a signal or image is acquired in its entirety followed by
possibly lossy compression using techniques such as JPEG, JPEG2000 or MPEG.

Consider a signal/image f in vectorized format with n elements. Instead of directly measuring every
element of f , it is sensed indirectly via a ‘sensing matrix’ Φ of size m× n,m ≪ n leading to the acquisition
of m measurements in a vector y. This is represented mathematically as:

y = Φf + η, (11)

where η is a noise vector with m elements. We note that the matrix-vector operation Φf is accomplished via
hardware, in a specific manner dictated by the architecture of the compressive device. The aim is to recover
f given y and Φ. This problem is ill-posed in general since m ≪ n and this forms an under-determined
linear system, even if η were equal to the zero vector. However CS theory states that in the absence of
measurement noise, this system of linear equations has a unique solution provided two sufficient conditions
are met: (Q1) the underlying signal f is sparse, i.e. most of its entries are zero, and (Q2) the sensing
matrix Φ has a nullspace which contains no sparse vector other than the zero vector. These conditions are
sufficient to ensure unique recovery of f from y,Φ [52]. Moreover, the recovery of f can be accomplished
by efficient techniques such as linear programming [53] and various greedy methods. Furthermore, the error
in the recovery of f is robust against noise and increases gradually as the noise variance increases.

In many imaging applications, f is not sparse in itself, but is expressible as a sparse or weakly sparse
linear combination of column vectors from an orthonormal basis Ψ such as the discrete wavelet transform
(DWT) or discrete cosine transform (DCT) in the following manner:

f = Ψθ =

n∑
l=0

Ψlθl. (12)

Here a weakly sparse linear combination refers to a linear combination in which most of the coefficients are
equal to or very close to zero. That is, the coefficient vector θ is sparse or weakly-sparse. In this case, the
measurement model can be written as:

y = ΦΨθ + η, (13)

and we seek to recover θ from y,Φ,Ψ. Upon recovering θ, it is easy to recover f since f = Ψθ. Recovery
can be efficiently performed using estimators such as the LASSO:

θ̂λ = argminθ∥y −ΦΨθ∥22 + λ∥θ∥1 (14)

or basis pursuit denoising:
θ̂λ = argminθ∥θ∥1 s.t. ∥y −ΦΨθ∥2 ≤ ε (15)

where λ and ε depend on the variance of the noise in η. In both cases, there are theoretical guarantees for
the recovery of θ [53,54]. These guarantees extend to a variety of different noise models. Matrices generated
randomly from the zero mean Gaussian distribution or the ±1 Bernoulli distribution have been proved to
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Figure 5: RT-PCR pooling process in a compressive framework. The results of m = t RT-PCR pools are on
the RHS in the form of vector y, which is a noisy version of Φf . The entries of Φ are represented by crosses
(0) and ticks (1).

obey a property called the Restricted Isometry Property (RIP) [55] with very high probability provided
m is lower bounded by a quantity proportional to s log n where s is the number of non-zero entries in the
underlying signal. The RIP implies the property (Q2) mentioned earlier involving the null-space.

4.1 Compressed Sensing Forward Model for Pooled RT-PCR

A model similar to that in (11) can be presented for pooled inference in the case of RT-PCR. Using the
notations introduced in Sec. 2, this can be expressed by writing gpool(f) = Φf , such that the measurement
output y = gmeas(Φf) is given by:

y = Φf ◦ (1 + qa)
e =⇒ ∀i ∈ [m], yi = Φif(1 + qa)

ei , (16)

where ◦ denotes the element-wise multiplication of two vectors. Here we note the following:

1. f is a real-valued but sparse vector of n elements where each entry fi represents the viral load in
the sample of the ith individual. The sparsity assumption on f is essential for good quality recovery
using CS algorithms and it is well justified due to the low prevalance rates in COVID-19 testing [56]
as explained earlier.

2. Φ is a m × n binary pooling matrix. A pool is created by mixing together small but equal portions
of the samples of a subset of the n individuals. For the ith pool, this information is contained in the
non-zero entries of the ith row of Φ, i.e. in Φi.

3. y is a vector of viral loads in the m different pools.

4. The noise model here is not additive unlike that in (11) which is typically used in CS, but multiplicative
as explained in Sec. 2.2 with qa ∈ [0, 1] representing an amplification factor and each entry of e being
distributed as per N (0, σ2

e) where 0 < σe ≪ 1. Comparing with (3), the role of fi is played by the
appropriate viral load value in the ith pool, given by Φif .

The reader may refer to Fig. 5 for greater clarity in the pooling process.
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4.2 CS Algorithms for Recovery

Referring to (16), the aim is to recover the sparse vector f from y,Φ. Since f is real-valued (and also
non-negative), such a procedure gives us viral-load values as opposed to just a binary indicator health status
indicator (‘infected’ versus ‘non-infected’) as obtained from traditional group testing techniques surveyed in
Sec. 3.

As the pandemic began spreading all over the world, a number of research works that used CS estimators
for pooled testing emerged in the literature. These techniques include the Tapestry approach [17], the multi-
stage approach in [38], the P-BEST method [57] and the initial work in [58]. We survey the algorithms
employed in these techniques here below:

1. In the Tapestry approach [17, 59], a number of different CS algorithms were explored and compared
– on synthetically generated as well as real data. These algorithms include the LASSO [54] with
non-negativity constraints (Nnlasso) (see 14), sparse Bayesian learning [60] Sbl, non-negative least
squares Nnls or non-negative least absolute deviation Nnlad [61], and greedy algorithms such as
orthogonal matching pursuit [62] with non-negativity constraints Nnomp [63]. The Nnls and Nnlad
approaches were also experimented with in [14]. These algorithms were executed after the traditional
group testing algorithm Comp described in Sec. 3 and outlined in Alg. 3. This was deemed particularly
advantageous if there exist some pools with zero viral load, which immediately implies that the viral
loads of the samples which contributed to this pool are all zero. Using this Comp step improves
prediction performance and also improves computational efficiency as it reduces the problem size. As
Comp is only a binary approach, the subsequent steps involving estimation of real-valued viral loads
remain very important. Theoretical properties of this combined approach were explored in detail
in [17]. It was empirically observed that Comp followed by Sbl yielded the best performance among
all other approaches such as Nnlasso, Nnls, Nnlad and Nnomp. An adaptive, multi-stage extension
of the Tapestry system was presented in [64] (also see Sec. 6).

2. The multi-stage approach in [38] adopts a unique multi-stage strategy that beautifully combines three
techniques: a variant of Comp called ‘definite defectives’ (Dd) described in Sec. 3 and outlined in
Alg. 4, followed by a maximum-likelihood approach from [65] (also called ‘Boolean compressed sensing’),
followed by an iterative viral loads estimation algorithm. Extensive experiments showcase the beneficial
contribution of each of the three stages.

3. The P-BEST approach [57] followed the same strategy as their group’s earlier work on pooled testing
in agricultural applications [66,67]. The estimator here is a form of Nnlasso but with the viral loads
quantized to three values: 0,1,2 (see Eqn. 1 of [66]), representing zero viral loads, intermediate viral
loads and high viral loads respectively.

4. To our best knowledge, the earliest piece of work on use of CS for COVID-19 testing appeared in [58]
where a basis pursuit denoising (Bpdn) approach (see 15) was adopted.

4.2.1 Details of Algorithms

For the sake of completeness, we briefly explain the various algorithms referred to in the previous section:
Nnlasso, Bpdn, Nnlad, Nnls, Sbl and Nnomp.

1. Nnlasso: This approach works by minimizing the following cost function:

J1(f) ≜ ∥y −Φf∥22 + λ∥f∥1 s. t. f ⪰ 0, (17)

where ⪰ refers to an element-wise ≥ inequality and 0 refers to a vector of zeros with the same number
of elements as in f . The minimization procedure proceeds by standard algorithms such as iterative
shrinkage and thresholding (ISTA) or its fast variants [68]. The regularization parameter λ ideally
depends on the noise level but can be selected using cross-validation.

2. Bpdn: This is a constrained version of the earlier Nnlasso problem, and acquires the form of mini-
mizing the following cost function:

J2(f) ≜ ∥f∥1 s. t. ∥y −Φf∥22 ≤ ε and f ⪰ 0, (18)

13



where ε depends on the noise level.

3. Nnlad and Nnls: These methods work based on minimizing only the data fidelity term with a non-
negativity constraint. This non-negativity constraint is enough to guarantee uniqueness and stability
of the solution with high probability, in conjunction with a random binary matrix Φ, as analyzed
in [14,61]. The cost function for Nnlad is given as follows:

J3(f) ≜ ∥y −Φf∥1 s. t. f ⪰ 0. (19)

The cost function for Nnls is
J4(f) ≜ ∥y −Φf∥22 s. t. f ⪰ 0. (20)

4. Nnomp: This is a variant of the popular orthogonal matching pursuit (Omp) algorithm. Omp is a very
well known greedy approximation technique [62], and the variant imposes a non-negativity constraint
on the solution. The original algorithm requires the solution of multiple least-squares solution of
increasing sizes in every iteration. In the variant, we would require least-squares solutions with non-
negativity constraints which adds to the overall computational cost. Fast variants have been developed
in [63].

5. Sparse Bayesian Learning (Sbl): This [60, 69] is a non-convex optimization algorithm based on
Expectation-Maximization (EM). In recent empirical studies on compressed sensing, Sbl has demon-
strated the best reconstruction performance in comparison to many other algorithms [70]. Sbl considers
a Gaussian likelihood function for y given Φf and a Gaussian prior on every element of f with different
unknown variances for each element, in the following manner:

p(y|Φf) =
exp(−∥y −Φf∥22/(2σ2))

(2πσ2)m/2
(21)

p(fi; γi) =
exp(−f2

i /(2γi))√
2πγi

; γi ≥ 0. (22)

In this formulation, note that both x and {γi}ni=1 are unknown. Many theoretical results regarding
the properties of the EM procedure in Sbl are analyzed in [60]. In particular, it is proved that all
local minima are sparse vectors. Unlike the previous algorithms, no non-negativity constraint on the
elements of f is explicitly imposed.

Most of the aforementioned use a squared loss for the fidelity function which is essentially related to additive
Gaussian noise. However, we know that for CS used for RT-PCR, the noise is multiplicative as seen in
Sec. 2.2 and (16). However, following [71, Sec. 7], if we perform a first order Taylor series approximation
on both sides of (16), we obtain the following:

yi ≈ Φif +Φif [log(1 + qa)]ei. (23)

This approximation is reasonably accurate because the error term ei (see Sec. 2.2) is a Gaussian random
variable with a small variance. Given this approximated noise model, one would have preferred a fidelity
term of the form

∑m
i=1(yi − Φif)2/(Φif)2. However this function is non-convex and the squared loss∑m

i=1(yi −Φif)2 has been widely used instead.
As explained here, CS-based algorithms infer quantitative viral load information. Although a non-infected

person has a viral load of zero, the algorithms may report very small non-zero viral loads for such samples.
This is due to small algorithmic biases, which can produce unduly low specificity rates (high false positives).
To prevent this, the viral loads must be put through some threshold τ such that any estimated viral load
value (call it x̂i is to be regarded as zero if x̂i < τ , and non-zero otherwise. Such strategies have been followed
in the literature [17]. The optimal choice of the threshold τ needs to be decided a priori by ‘learning’ on past
data comparing pooling to sequential testing so as to optimize one of the performance measures outlined in
Sec. 4.3. The optimal threshold τ may potentially vary based on prevalence rates.
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4.3 Assessment of Algorithm Performance and Experimental Protocols

The various algorithms in the literature are typically compared with respect to the following criteria, where
the f̂ refers to an estimate of f :

1. RMSE := ∥f − f̂∥2/∥f∥2

2. Number of false positives (FP) := |{i : fi = 0, f̂i > 0}|

3. Number of false negatives (FN) := |{i : fi > 0, f̂i = 0}|

4. Sensitivity (also called Recall or True Positive rate) := #correctly detected positives/#actual positives

5. Specificity (also called True Negative Rate) := #correctly detected negatives/#actual negatives.

The experiments to assess the performance of the various CS algorithms can be classified broadly as experi-
ments on (1) synthetic and (2) real data.

For the prediction of f from y,Φ from synthetically generated data [14,17,38,58], the vector f is chosen
to be sufficiently sparse and the non-zero entries are drawn uniformly at random from the interval [0, 32768].
Alternatively, the distribution of cycle threshold (CT) values [20, Fig. 3] could be used to generate CT data
and convert those into viral loads, although such an approach has not been followed in the literature to our
best knowledge. The pools have been synthetically simulated using the noise model from (16) using different
types of Φ matrices, as surveyed later in Sec. 4.4.

For the experiments on real data, the work in [17] used artificially injected viral RNA to create positive
samples. These data were obtained from the Wyss Institute at Harvard, USA and the National Centre for
Biological Sciences, India. In [17], pooling matrices of sizes 16× 40 and 24× 60 were used and the number
of infected samples was varied between 0 and 4 (prevalence rate up to 10%). Experimental results on pooled
inference showed mostly 0 and much less commonly 1 or 2 false negatives, and between 0 and 3 false positives
with the distribution of false positives skewed heavily towards 0 or 1. The work in [57] used left-over samples
that had been previously tested for COVID19. Their experiments considered pooling matrices of size 48×384
with the number of positive samples ranging between 2 to 5 (prevalence rate less than 1%). Their approach
yielded no false negatives and an occasional false positive.

4.4 Choice of Pooling Matrices

Pooling matrices for compressive recovery in pooled testing must allow for successful recovery of f from y.
Moreover, unlike typical CS, these matrices must also obey certain additional physical constraints (unique
to pooling tasks) which have been explained elaborately in [17,71]. We briefly explain these constraints here
below. These constraint have been mentioned earlier in Sec. 2.3, but we explain them here again in the
context of specifying properties of compressed sensing matrices.

1. The pooling matrix must be binary, for ease of pooling. Thus, Φij = 0 means that the jth sample did
not contribute to the ith pool, and Φij = 1 means that a (small) fixed volume from the jth sample
contributed to the ith pool. Note that the contributing volumes are equal across pools and across
samples. It is understood that the total sample of a single individual will contribute to multiple pools.
Hence while creating a pool, only small (fixed-volume) portions from the contributing samples are
collected and mixed together.

2. They must be sparse, again for ease of pooling. Sparsity of Φ is required to ensure two important
properties: (Z1) that not too many samples contribute to a given pool, and (Z2) that a single sample
does not contribute to too many different pools. Property (Z1) is important because the sample volume
added to an RT-PCR reaction in the RT-PCR machine is fixed. Due to this, an increase in pool size
means that each sample would contribute a smaller amount of that volume to any given pool. This can
adversely affect the power of RT-PCR to differentiate positive samples from negative ones. Property
(Z2) is important because the contribution of one sample to a very large number of pools could lead
to sample depletion.
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Several different types of combinatorial design strategies have been used in the literature to designΦmatrices
so as to obey the aforementioned constraints. The work in [17] uses Kirkman triple matrices where each
sample contributes to exactly 3 pools and each pool is created from a fixed number of samples. These m×n
Kirkman matrices also have additional flexibility in terms of size, namely that n can be any integer multiple
of C(m, 3). Kirkman matrices are also adjacency matrices that correspond to certain types of ‘expander
graphs’ which have interesting properties in compressed sensing, including obeying a variant of the RIP as
discussed in detail in [17]. As they satisfy the RIP, it follows that they allow for good compressive recovery.
The work in [57, 66] uses matrices designed from Reed-Solomon codes seeking inspiration from the rich
classical literature on error correcting codes [72], allowing inherent robustness to experimental noise and
variations in viral concentration.

In addition, there exists a large body of literature on the combinatorial design of binary sensing matrices
[73–75]. However these designs are applicable to only fixed sizes, which may not be relevant to the sizes
required for RT-PCR pooling. For example, the proposed designs in [75] have sizes r2 × rl+1 where r is a
prime power, and l is an integer such that 1 < l < r. This choice of matrix size may not be immediately
relevant to RT-PCR and has unnatural restrictions. To address this issue, the recent work in [71] considers
sparse balanced binary matrices of arbitrary size. These matrices have the property that all columns of the
matrix contain an equal number of ones, and that all rows of the matrix also contain an equal number of
ones. These can be designed for a much wider variety of matrix sizes.

4.5 Choice of Number of Pools

The choice of m, the number of pools, is an important aspect of the design of Φ. Let us denote the number of
non-zero entries in the underlying viral loads vector f by s. Intuitively speaking, the smaller the value of s,
the smaller will be the required number of pools m. As per compressed sensing theory, m is Ω(s log n) [53,76].
However s is usually unknown, and hence configuring an acceptable number of pools is a difficult task. There
are two ways to get some rough estimate of s: (1) use knowledge of prevalence rates from a particular city
or area where the pooling is being performed, and (2) determine s on the fly directly from the pooled tests.
The latter has been accomplished in [17] using binary pooling matrices Φ using properties of the binomial
distribution, based on a technique proposed in [77, 78]. These techniques, of course, provide only estimates
which could be error-prone, but they do give a good idea of the number of pools required. In fact, if it turns
out that s is too high, pooling may not longer be a viable option due to loss of accuracy, and sequential
testing is then preferable [17]. In the present literature [17,38,57,58], the number of pools is chosen somewhat
conservatively assuming low values of s, and without necessarily always computing s as a first step.

5 Use of Side Information in Pooled Inference

In this section, we cover a very different aspect of pooled inference – namely, the use of extra information,
or side information. We first describe the different types of side information, followed by its use in CS
algorithms and then its use for improving traditional group testing methods such as Dorfman pooling.

The sparsity of f is a useful and valid assumption given the generally low prevalence rates for COVID-
19 [56]. However, there is additional side information (SI) that is available in such applications, which can
improve the performance of pooled inference. One form of SI is knowledge of the prevalence rate. This was
exploited by means of a probabilistic decoder based on message passing in [79]. Other forms of SI can include
knowledge of an individual’s symptoms, medical history and travel history. Over and above this, knowledge
of family memberships is useful SI, because COVID-19 is likely to spread from one family member to another.
Here the notion of a family includes not just the conventional notion, but also includes groups of people in
frequent close contact, such as health care professionals working in the same hospital wing, students sharing
the same dorm, security officers working at the same checkpoint, etc. Furthermore, contact tracing has been
widely employed as a means to control the pandemic [80, 81]. Such information, includes the duration of
contact between pairs of individuals and measures of physical proximity (distance). Such information can be
collected using one or more of the following methods: Bluetooth in mobile phones [82], the global positioning
system [83], manual inquiries by social workers [84, 85], and financial transaction data [81, 83]. There are
privacy issues associated with the collection of contact tracing or family information, however it should be
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noted that these types of side information have one advantage – namely that they do not require collection
of medical history information or medical data.

In [71,86], two classes of estimators are explored to explicitly account for family information and contact
tracing information to improve the performance of pooled inference. The first class of techniques involves
extensions of the LASSO such as the group LASSO [87] or the overlapping group LASSO [88]. The group
LASSO uses the fact that the number of infected families is small (as opposed to the number of individuals,
as in normal sparsity). This is extended to handle overlapping ‘families’ as determined from contact tracing
information. This class of techniques uses quantitative information and the multiplicative noise model in RT-
PCR. The second class of techniques in [71,86] involves extensions of Bayesian algorithms such as generalized
approximate matching pursuit (GAMP) to account for family structure and contact tracing information. This
model is explicitly for binary health status vectors (as opposed to viral load vectors) and accounts for binary
noise in the pooled results. This latter set of techniques explicitly accounts for person-to-person transmission
probabilities. Both classes of techniques demonstrate superior empirical performance (in terms of number
of false positives and false negatives) over their counterparts which account for no family or contact tracing
SI and use only the sparsity of the vector of viral loads or health statuses. Independent work in [89,90] also
demonstrated the benefits of community-based SI on the performance of pooling. The emphasis of the work
in [89, 90] is to use the community information to design effective encoders, for which the authors provide
theoretical analysis. They employ a loopy belief propagation (LBP) decoder which accounts for community
information and show that it outperforms the basic LBP variant which does not account for such information.
Their decoders work in tandem with binary health status vectors.

There exist many other pieces of work which account for SI, mostly in the form of prevalence rates or prior
infection probabilities, but they do not do so in a non-adaptive CS framework but rather in the framework of
traditional group testing algorithms such as Dorfman pooling. Such individual prior infection probabilities
can be derived based on factors such as medical or travel history, age, gender, etc. In particular in works
such as [91–93], there is emphasis on segregating people into different groups based on their individual prior
infection probabilities, and performing pooling of samples belonging to individuals from a given group only.
This is in tune with recent publications from the WHO [94] which note reduction in the number of tests if
pooling is performed on samples of people with similar infection probability values. There also exist works
such as [95–98] which account for correlations between samples of different individuals (represented as nodes
of a graph). Such correlations can be obtained from various aspects of a social graph or via contact tracing
information. However the works in [95–98] propose adaptive algorithms, quite unlike the non-adaptive CS
based algorithms considered in [71,86,89,90].

6 Comparative Discussion and Summary

In this chapter, we surveyed the applications of AI techniques influenced by GT and CS algorithms to pooled
testing of COVID-19 RT-PCR samples. Here, we present a comparative discussion of the relative advantages
and disadvantages of the two approaches:

1. Traditional approaches such as Dorfman’s method are two-stage procedures. In particular, the output
of the first stage acts as an input to the second stage. In both stages, RT-PCR testing is required,
and the two stages cannot be executed in parallel. Such approaches are termed ‘adaptive’. On the
other hand, non-adaptive GT and CS based approaches test all pools in parallel and the individual
health status values are made available. These are only single-stage approaches and also referred to
as being ‘one-shot’. Note that even if these non-adaptive approaches employ different algorithms in
a sequential manner (e.g., [17, 38]), there is only one testing stage. As RT-PCR is a time-consuming
process requiring about 4 hours, a single-stage procedure is more efficient in terms of time.

2. Adaptive approaches typically have shown lower false-negative and false-positive rates as compared
to non-adaptive approaches [17, 64], even though the non-adaptive approaches do perform quite well.
However the work in [17] which focuses on non-adaptive CS-based algorithms typically reports a re-
quirement of fewer tests than with Dorfman’s method, besides the fact that the former algorithms do
not require more than one stage of testing unlike Dorfman’s method which requires two stages. A
similar set of simulations were run here for different number of infected samples (in simulation) and
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comparative results for Dorfman pooling and the Comp-Sbl algorithm from Sec. 4.2.1 are presented
in Fig. 6 and 7.

3. Both classes of methods require prior knowledge of the number of non-zeros in f to configure the
optimal number of tests. Also see Sec. 4.5. In the existing literature, however, this knowledge has not
been explicitly used for configuring the number of required tests.

4. With some exceptions, most adaptive techniques work in a regime where f is binary. The selection
of non-adaptive approaches should typically depend on what type of output is required. When one
seeks to recover the viral loads for diagnosis (as in Example 3), non-adaptive approaches that use
CS naturally treat f as non-negative real-valued [17, 38, 57, 58]. When one is interested in merely
identifying the presence of infection, GT methods are natural candidates being designed for regimes
where f is binary, though one can also adopt binary variations of CS techniques, see, e.g., [79, 89,90].

Pooling for RT-PCR has been employed on the ground in several countries and university campuses. An
incomplete list of this is presented in [99]. In most of these places, each pool typically contained contributions
from about a dozen or two dozen samples. The listing at [99] includes many provinces/states in countries
such as USA, UK Switzerland, India, Ecuador, Israel, China, Belgium, Brazil and many others. The listing
mentions several large pooling based studies or experiments, involving thousands and occasionally even
millions of samples. Most of these experiments employed GT techniques, most commonly Dorfman pooling
(Algorithm 1), although a few employed CS based methods [57, 100] as explained in Sec. 4. The usage
of pooling was shown to yield notable savings and considerable increase in testing throughput [101]. We
believe that this widespread usage of pooling amply illustrates its practical relevance during this pandemic.
This also illustrates the importance of artificial intelligence and algorithmic tools in combating the spread
of COVID-19.

The AI algorithms covered in this survey chapter typically do not require training in the conventional
sense that many AI techniques use. However the algorithms can benefit from prior information which can
be ‘learned’ by observing relevant COVID-19 data. This includes inference of prevalence rates as explained
in Sec. 4.5, or the choice of optimal thresholds in compressed sensing algorithms (see Sec. 4.2.1) to decide
whether certain viral loads are to be regarded as zero or non-zero, or side information as explained in Sec. 5.
One could further incorporate ideas from AI or ML techniques that have mined useful knowledge from
available data regarding the spread of COVID-19, including information from the epidemiology literature
[102]. The incorporation of such information to improve the performance of pooling is a good avenue for
future research.
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Figure 6: Average number of tests, i.e. number of pools (top sub-figure) and optimal poolsize (bottom sub-
figure), required for Dorfman pooling with n = 961 samples, with s denoting the number of infected samples.
Dorfman pooling yields no false positives or false negatives. Compare these results with the sensitivity and
specificity results with the CS algorithm Comp-Sbl in Fig. 7. These results are similar to Tables 3 and 6
of [17].
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Figure 7: Average sensitivity (top sub-figure) and specificity (bottom sub-figure) results for the CS algorithm
Comp-Sbl with m = 93 pools and n = 961 samples, where the number of infected samples is denoted as s.
Compare these results with the number of tests required for Dorfman pooling in Fig. 6. The variance values
for all entries are very small. As can be seen, the number of pools required is smaller than that for Dorfman
pooling. These results are similar to Tables 3 and 6 of [17].
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