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Abstract— The use of 1-bit analog-to-digital converters (ADCs)
is seen as a promising approach to significantly reduce the power
consumption and hardware cost of multiple-input multiple-
output (MIMO) receivers. However, the nonlinear distortion
due to 1-bit quantization fundamentally changes the optimal
communication strategy and also imposes a capacity penalty to
the system. In this paper, the capacity of a Gaussian MIMO
channel in which the antenna outputs are processed by an analog
linear combiner and then quantized by a set of zero threshold
ADCs is studied. A new capacity upper bound for the zero
threshold case is established that is tighter than the bounds
available in the literature. In addition, we propose an achiev-
ability scheme which configures the analog combiner to create
parallel Gaussian channels with phase quantization at the output.
Under this class of analog combiners, an algorithm is presented
that identifies the analog combiner and input distribution that
maximize the achievable rate. Numerical results are provided
showing that the rate of the achievability scheme is tight in
the low signal-to-noise ratio (SNR) regime. Finally, a new 1-bit
MIMO receiver architecture which employs analog temporal and
spatial processing is proposed. The proposed receiver attains the
capacity in the high SNR regime.

Index Terms— MIMO communications, quantization, analog
combining, capacity.

I. INTRODUCTION

THE use of multiple-input multiple-output (MIMO) tech-
nology has attracted considerable attention during the
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last two decades due to the significant capacity enhancement
it offers. This is evident in the number of wireless broadband
standards that have incorporated MIMO technology into their
specifications. However, even though its theoretical gains are
well-established in the literature, some practical concerns
(e.g. hardware cost, power consumption) arise as more antenna
elements are connected to the communication device [1].
Furthermore, recent advancements in next generation mobile
technology have pushed forward the use of much wider
transmission bandwidth and much larger antenna arrays to
achieve its performance targets [2], [3], [4]. Consequently,
there is an increasing demand for new MIMO receiver designs
that are energy-efficient and are able to reliably support high
data-rate applications.

High-speed and high-resolution analog-to-digital converters
(ADCs) are one of the primary contributors to the power
consumption of wireless receivers. The ADC power consump-
tion scales linearly with the sampling rate and exponentially
with the number of quantization bits per sample, regard-
less of the topology [5]. Thus, one straightforward design
methodology in implementing low-power MIMO receivers is
to simply replace the high-resolution ADCs connected to each
radio frequency (RF) chain with low-resolution counterparts
(usually 1-bit). We shall refer to this as the conventional low-
resolution ADC design. This receiver design is particularly
attractive for massive MIMO systems due to the hardware
scaling law – that is, the impact of hardware imperfections
on the overall spectral efficiency diminishes as the number of
antenna elements grows [6]. In fact, some early results suggest
that the power savings and cost reduction obtained from using
conventional 1-bit ADC MIMO systems may outweigh the
rate loss caused by severe quantization; even with simple
linear detection schemes [1], [7], [8]. Error rate analyses
of single-input multiple-output (SIMO) fading channels with
low-resolution output quantization have established that, under
certain conditions, the diversity order of optimal detectors is
nonzero and improves linearly with the number of receive
antennas [9], [10]. Furthermore, other receiver functionalities
(e.g. timing recovery, channel estimation) have been shown
to work with acceptable performance even if the receiver is
equipped with low-resolution ADCs [11], [12], [13], [14].

The notable benefits of the conventional low-resolution
receiver design have sparked interest in investigating the
information-theoretic limits of communication channels with
output quantization. The work of Singh et al. [15] appears
to be the first to present exact results on the capacity of
real additive white Gaussian noise (AWGN) channel with

0090-6778 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on November 21,2022 at 09:23:00 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1550-8774
https://orcid.org/0000-0003-0661-601X
https://orcid.org/0000-0003-4358-5304
https://orcid.org/0000-0003-4637-1037


BERNARDO et al.: CAPACITY BOUNDS FOR ONE-BIT MIMO GAUSSIAN CHANNELS WITH ANALOG COMBINING 7225

low-resolution ADCs. Several works that followed charac-
terized the capacity-achieving input of various single-input
single-output (SISO) channels with output quantization [16],
[17], [18], [19], [20], [21], [22]. Yet, while the main moti-
vation of using low-resolution ADCs is for scalable imple-
mentation of massive MIMO systems, the aforementioned
information-theoretic results have not been extended to the
MIMO setting. To date, the capacity of quantized MIMO
remains elusive and is analyzed through capacity bounds [23],
[24], [25], [26]. These bounds, however, can be loose in certain
signal-to-noise ratio (SNR) regimes and problem settings. For
instance, the tightness of the finite SNR upper bound and
channel inversion lower bound established in [24] depends
on the row rank and condition number of the channel. The
additive quantization noise model (AQNM) capacity lower
bound in [23] and [25] is also shown to be loose in the high
SNR regime; thus hinting at the suboptimality of Gaussian
signaling for quantized MIMO channels.

Recent literature surveys [27], [28], [29] have examined
new receiver architectures that are energy-efficient and cost-
effective but incur less performance degradation than con-
ventional low-resolution ADC systems. These architectures
include the mixed-ADC receivers [30], hybrid analog/digital
receivers [31], [32], [33], [34], and machine learning (ML)-
based receivers [35], [36]. In [37], the authors suggest two
new receiver designs, namely the hybrid blockwise receiver
and adaptive threshold receiver, that perform analog spatial
and temporal processing prior to 1-bit quantization. The idea
of using analog linear combiners prior to 1-bit quantization,
called the hybrid one-shot receiver, was initially proposed
in [38] as a means to compare performance of different
MIMO systems under various output quantization constraints.
Analog temporal processing was then incorporated in this
quantized MIMO framework to demonstrate a fundamental
tradeoff between latency and maximum achievable rate of
quantized MIMO channels in the high SNR regime [39].

In this paper, we first look at the performance of the hybrid
one-shot receiver with zero threshold ADCs. In other words,
we only observe the signs of the analog linear combiner
outputs. The zero threshold ADC setup is expected to yield a
lower capacity than its non-zero threshold counterpart. Yet, the
zero threshold case is still interesting since it eliminates the
need for an automatic gain control (AGC), which is otherwise
required in multi-level quantization to match the dynamic
range of the received signal [40]. In addition, the hybrid
one-shot receiver with zero threshold ADCs is essentially the
1-bit ADC version of the hybrid analog-digital acquisition
system used for task-based quantization [33], [34]. We then
introduce analog temporal processing to the receiver. A new
MIMO receiver architecture is proposed which uses analog
domain pipelining and adaptive phase shifters to attain higher
achievable rate than the hybrid one-shot receiver with zero
threshold ADCs. Our main contributions are summarized as
follows:

• We provide an achievability scheme for the hybrid
one-shot receiver with zero threshold ADCs. The
achievability scheme formulates the capacity problem
as a nonconvex resource allocation problem. To this

Fig. 1. System Model of MIMO with Analog Combining prior to Output
Quantization. Here, Nt = 3, Nr = 4, and Nq = 6.

end, an alternating optimization approach is presented to
obtain a local optimal solution to this nonconvex problem.

• Using the data processing inequality (DPI), we establish
a new capacity upper bound in the finite SNR regime for
the hybrid one-shot receiver with zero threshold ADCs.
More precisely, by showing that the amplitude infor-
mation is discarded in the zero threshold ADC case,
we obtain an upper bound that is tighter than the truncated
Shannon capacity (TSC) used in [37].

• Through numerical evaluation, we show that the output
produced by our alternating optimization approach is tight
in the low SNR regime. However, a gap between the
capacity upper bound and achievability scheme exists
in the high SNR regime. We characterize this gap as a
function of the number of eigenchannels and number of
sign quantizers.

• To close the gap mentioned above, we introduce a new
ADC mechanism, called pipelined phase ADC, which
incorporates analog temporal processing in the quanti-
zation process. By incorporating this ADC mechanism to
the receiver, we show that the high SNR capacity can
be attained. We compare the achievable rate of our pro-
posed receiver to that of the adaptive threshold receiver
in [37]. Numerical results are presented showing that
the proposed receiver outperforms the adaptive threshold
receiver when the eigenvalues of the channel are equal.

The rest of the paper is organized as follows: Section II
formulates the system model and the problem we aim to
address. Sections III and IV present the details of the achiev-
ability scheme and the derivation of the capacity upper bound,
respectively, for the hybrid one-shot receiver with zero thresh-
old ADCs. Section V provides numerical results and analysis
for the achievability scheme and the capacity upper bound
established in Sections III and IV. Sections VI and VII discuss
the proposed receiver along with analysis of its achievable rate.
We also compare its performance with existing work. Finally,
Section VIII concludes the paper.

II. PROBLEM FORMULATION

We consider a discrete-time memoryless MIMO sys-
tem shown in Figure 1 with Nt transmit antennas and
Nr receive antennas. The input vector x satisfies the power
constraint E[||x||2] ≤ P . The input-output relationship
between transmitted symbol x ∈ CNt×1 and received
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symbol w ∈ CNr×1 is

w = Hx + z, (1)

where H ∈ CNr×Nt is the fixed MIMO channel gain known
at the transmitter and receiver, and z ∼ CN (0, σ2INr) is a
circular-symmetric zero-mean complex Gaussian noise vector
with noise variance σ2. We further assume that H is a full
rank matrix. The receiver is equipped with Nq sign quantizers
and an analog linear combiner A ∈ CNq×Nr preprocesses the
signal before quantization. This receiver structure has been
widely adopted in various applications, such as in task-based
quantization [33], [34]. The output vector y ∈ CNq×1 can be
written as

y = sign (�{Aw}) = sign (�{AHx + z′}) , (2)

where z′ = Az and the sign{·} function is applied to every
element of the real vector.

We note the differences between our problem setup and
the system model of the hybrid one-shot receiver formulated
in [37] and [41]. In their work, the quantized output vector y
is expressed as y = sign(Aw + t), where A ∈ RNq×Nr ,w ∈
RNr×1, and t ∈ RNq×1. In contrast, the entries of x, H, and
A in our problem setup are complex-valued quantities. The
threshold vector t is also set to be the all-zero vector. The
t = 0 case is particularly appealing from a practical viewpoint
since receivers employing zero-threshold ADCs do not require
AGC during the data detection phase [1]; thus further reducing
the hardware complexity and cost. Moreover, by restricting the
setup to t = 0, we are able to derive tighter capacity bounds
for this problem setup than simply plugging in t = 0 to the
capacity bounds established in [37] and [41] for general t.

For a fixed configuration of the analog combiner A, the
capacity expression of model (2) can be written as

C(A) = max
FX

IA(x;y), (3)

where we used the subscript A in (3) to indicate that the
mutual information between the transmitted signals and the
sign quantizer outputs are induced by a choice of A. With
slight abuse of notation, we use FX to refer to FX (x). We are
interested in the largest input-output mutual information over
all configurations of the analog linear combiner. Mathemati-
cally, we seek for the capacity C, which is defined as

C = max
A

C(A), (4)

as well as the optimal A and FX that achieve this capacity.
It is known that, under general assumptions, the maximizing

input distribution of a channel with finite output cardinality is
discrete with finite number of mass points [42]. By combining
the concavity of the mutual information over the input distrib-
ution and the discreteness of the optimal input distribution,
numerical algorithms [43], [44] can be used to obtain the
input distribution that solves problem (3) in the general case.
The computation, however, may involve multi-dimensional
integration, and the complexity would grow exponentially with
the number of sign quantizers. For the special case of Nr = Nq

and A = INq×Nq (i.e. no analog preprocessing), [24] estab-
lished capacity bounds which are tight in some SNR regimes
and under certain channel conditions.

While C(A) in problem (3) is known to be a concave
maximization problem, it is not clear whether C in problem (4)
can be solved by some provably optimal method in the
quantized setting. This problem formulation was considered
in [41], which showed that C can be attained in the infinite
SNR regime by choosing an A that maximizes the partitions of
the transmit signal space. Moreover, C in problem (4) can be
upper bounded by the TSC = min{CMIMO−AWGN, Nq} [37],
[45]. Here, CMIMO−AWGN is the MIMO AWGN channel
capacity without quantization and Nq is the number of 1-bit
quantizers. The TSC bound serves as a universal upper bound
for the capacity of any discrete-time memoryless MIMO
channel with any Nq-bit quantization at the output. This
bound, however, does not utilize the information about t.

In the following section, we present an achievability scheme
that frames (4) as a resource allocation problem of the transmit
power and sign quantizers over all eigenchannels of H. The
resulting transmit power and sign quantizer allocation corre-
spond to specific choices of FX and A, respectively, which
are not necessarily optimal. Effectively, the rate of this scheme
gives a lower bound on the solution of (4). We also show that
the rate of this achievability scheme is tight in the low SNR
regime. However, it does not attain the high SNR capacity
when min{Nt, Nr} < 2Nq.

III. ACHIEVABILITY SCHEME FOR THE

HYBRID ONE-SHOT RECEIVER

In this section, we establish an achievable result for the
capacity of the MIMO system depicted in Figure 1. The key
idea in this achievability result is to configure A such that the
channel becomes a set of parallel SISO subchannels with phase
quantization at the output. We then use the capacity-achieving
input for this channel as our transmit strategy.

First, we apply the singular value decomposition (SVD) to
the channel matrix H to get the following matrix factorization:

H = UΣVH , (5)

where Σ ∈ CNr×Nt is a diagonal matrix. The first
Nσ = min {Nt, Nr} diagonal entries are the singular values
{√λi}i=Nσ

i=1 arranged in non-increasing order (that is λi ≥
λi+1), and the remaining diagonal entries are zeros. The
matrices U ∈ CNr×Nr and V ∈ CNt×Nt are unitary matrices.
Suppose we define x̃ = Vx as the precoded transmitted
symbols. Then, y can be written as

y = sign
(�{

A(UΣVH x̃) + z′
})

= sign (�{A(UΣx) + z′}) . (6)

Without loss of generality, we can set the analog linear
combiner A as a product of two matrices Φ ∈ CNq×Nr and
UH ∈ CNr×Nr . Equation (6) then simplifies to

y = sign (�{Φ(Σx) + z′}) ,

and the optimization problem (4) becomes

C = max
Φ

max
FX

IΦ(x;y), (7)

where we used the subscript Φ to emphasize the dependence
of the mutual information in the choice of Φ.
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Fig. 2. Illustration of how ΦPH is constructed for a MIMO channel with
Nσ = 2, Nq = 5, and s = [3, 2]T .

A. Design Φ to Create Phase Quantizers

Prior to multiplying Φ, we have Nσ parallel complex
AWGN channels. The matrix Φ can be used to create sym-
metric phase quantizers and connect these phase quantizers
to each eigenchannel. First, we define an Nr × 1 quantizer
allocation vector s = [s1, · · · , sNσ ,01×Nr−Nσ ]T such that∑Nσ

i=1 si = Nq and si ≥ 0. The entries si correspond to
the number of sign comparators used to discretize the output
of the i-th channel. The set of si sign comparators creates a
2si-sector phase quantizer connected at the output of the i-th
channel. An illustrative example is shown in Figure 2 where
three (rotated) sign quantizers are connected at the output of
eigenchannel 1 to realize a 6-sector phase-quantized channel
and two (rotated) sign quantizers are connected at the output of
eigenchannel 2 to realize a 4-sector phase-quantized channel.
In this case, we have s = [3, 2]T and Φ becomes

Φ = [φ1, φ2], where

{
φ1 = [1, ej π

3 , ej 2π
3 , 0, 0]T

φ2 = [0, 0, 0, 1, ej π
2 ]T

.

More generally, the Φ matrix is a horizontal stacking of
φk ∈ CNq×1 for k = 1, · · · , Nr. The first Nσ column vectors
can be expressed as

φk = [01×�k−1
i=0 si

e1×sk
0

1×�Nq
i=k+1 si

]T (8)

for all k ∈ {1, · · · , Nσ}, where the l-th entry of esk×1,

denoted as e(l)
sk×1, is e

jπ(l−1)
sk . The remaining Nr − Nσ

column vectors of Φ are all-zero vectors. Effectively, we define
QPH

K (·) : C �→ Z as a function that performs a K-sector
symmetric phase quantization to map a complex value to an
integer value between 0 to K−1. The output of the i-th phase-
quantized eigenchannel is then

y(i)
q = QPH

2si

(√
λix(i) + z(i)

)
, (9)

where x(i) and z(i) are the i-th entry of x and z, respectively.
We shall call this choice of Φ as ΦPH and the corresponding
analog combiner as APH = ΦPHUH . Note that

C = max
A

C(A) ≥ C(APH) (10)

with equality if APH is the analog combiner configuration that
maximizes C(A). Thus, the quantity C(APH) is the rate of
our achievability scheme and is a lower bound for problem (4).

To solve C(APH), we present two function definitions
that correspond to the conditional probability and conditional
entropy of a Gaussian channel with K-sector phase quantiza-
tion at the output.

Definition 1: The phase quantization probability function,

W
(K)
y (ν, θ), is defined as

W (K)
y (ν, θ) =

∫ 2π
K (y+1)−π−θ

2π
K y−π−θ

fΦ|N (φ|ν) dφ, (11)

where fΦ|N(φ|ν) is

=
e−ν

2π
+

√
ν cos (φ) e−ν sin2(φ)

[
1 − Q

(√
2ν cos (φ)

)]
√

π
,

(12)

and Q(x) is the Gaussian Q-function, θ ∈ [−π, π], and ν ≥ 0.
Definition 2: The phase quantization entropy, wK(ν, θ),

is defined as1

wK(ν, θ) = −
K−1∑
y=0

W (K)
y (ν, θ) log W (K)

y (ν, θ) (13)

for any θ ∈ [−π, π], ν ≥ 0, and K > 1. The function
W

(K)
y (ν, θ) is given in Definition 1.
From [21, Theorem 1], the capacity-achieving input of a

Gaussian channel with K-sector phase quantization at the
output is a rotated K-phase shift keying (PSK) and the capac-
ity can be computed numerically. Consequently, we formulate
C(APH) as

C(APH) = max
si,ρi

Nσ∑
i=1

Cφ

(
si,

λiρi

σ2

)
(14a)

s.t.
Nσ∑
i=1

si = Nq (14b)

Nσ∑
i=1

ρi ≤ P (14c)

ρi ≥ 0 , si ∈ {0, 1, · · · , Nq}, (14d)

where Cφ(s, ν) is the capacity of a scalar Gaussian channel
with SNR= ν and 2s-sector phase quantization at the output.
Mathematically,

Cφ(s, ν) =

{
log 2 s − w2s

(
ν, π

2s

)
, s ≥ 1

0, otherwise
. (15)

The objective function of (14) is the sum capacity of the Nσ

parallel eigenchannels with phase quantization at the output.
A 2si-PSK with amplitude

√
ρi is transmitted over the

i-th eigenchannel to attain the capacity. The optimization
of {si}Nσ

i=1 corresponds to the optimization of ΦPH (conse-
quently, APH) whereas the optimization of {ρi}Nσ

i=1 gives the
optimal FX that attains C(APH).

1All log() terms in this paper are in base 2 unless specified otherwise.
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B. Alternating Optimization Approach

One major issue with optimization problem (14) is its
nonconvex stucture due to the discrete parameters in the
search space. In this subsection, we present a polynomial-time
heuristic method that maximizes the objective function in (14).
The approach is based on alternating optimization of the
parameters.

First, we define the parameter Ns to be the number of active2

eigenchannels that we intend to use for transmission. Note
that the Ns active eigenchannels in the achievability scheme
correspond to the eigenchannels having the Ns strongest
singular values. The optimality of this choice is formalized
in the following lemma.

Lemma 1: If the optimal strategy has Ns active eigen-
channels, then the eigenvalues of those eigenchannels should
be {λi}i=Ns

i=1 . In other words, these channels should have the
strongest eigenvalues among Nσ eigenchannels.

Proof: See Appendix A. �
By Lemma 1, we can rewrite problem (14) without loss of

optimality as

C(APH) = max
si,ρi,Ns

Ns∑
i=1

log 2 si − w2si

(
λiρi

σ2
,

π

2si

)
(16a)

s.t.
Ns∑
i=1

si = Nq (16b)

Ns∑
i=1

ρi ≤ P (16c)

ρi ≥ 0 , si ∈ {0, · · · , Nq} (16d)

Ns ∈ {1, · · · , Nσ}. (16e)

Next, note that for fixed Ns and {si}Ns
i=1, the optimization

problem (16) can be simplified to

min
ρi

Ns∑
i=1

w2si

(
λiρi

σ2
,

π

2si

)
(17a)

s.t.
Ns∑
i=1

ρi ≤ P (17b)

ρi ≥ 0 ∀i ∈ {1, 2, · · · , Ns}, (17c)

which has a convex structure. This is because w2si(ν, θ) is
convex on ν [21, Proposition 2] and the summation of non-
negative convex functions preserves convexity. Consequently,
the optimal power allocation, denoted {ρ′i}Ns

i=1, can be solved
efficiently using standard convex solvers.

For fixed Ns and {ρi}Ns
i=1, problem (16) becomes a dis-

crete optimization over the parameters {si}Ns
i=1. This optimal

2An eigenchannel is active if it has a nonzero transmit power and a nonzero
quantizer allocation. Otherwise, it is inactive.

allocation of the sign quantizers, denoted {s′i}Ns
i=1, can be

solved using a dynamic programming approach. We define
a state space Sstate with each state being the tuple (i, nq),
where i ∈ {0, · · · , Ns} and nq ∈ {0, · · · , Nq}. Define also
the function f(i, nq) as the sum capacity of channels 1 to i
when there are nq sign quantizers that can be allocated to these
i channels. This function f(i, nq) can be expressed using the
recurrence relation in (18), as shown at the bottom of the page.
The value of f(Ns, Nq) gives the sum capacity for Ns active
eigenchannels with Nq sign quantizers. We can also compute
the optimum choice of k per state (i, nq) as

s(i, nq) = arg max
k∈{1,··· ,nq}

{
f(i − 1, nq − k) + Cφ

(
k,

λiρi

σ2

)}
.

The proof that the dynamic programming approach solves
the optimal quantizer allocation for a fixed Ns and fixed power
allocation is presented in Appendix B. We simply iterate over
all Ns ∈ {1, · · · , Nσ} and then for each value, alternate
between the two optimization procedures until convergence.

The remaining computational bottleneck in solving the opti-
mization problem is the evaluation of Cφ(s, ν) in (15). This is
because the phase quantization entropy contains integral terms
that need to be computed numerically. To this end, we define
a function C̃φ(s, ν) which closely approximates Cφ(s, ν) as
follows:

C̃φ(s, ν) =

{
log 2 s − w̃2s

(
ν, π

2s

)
, s ≥ 1

0, otherwise
, (19)

where

w̃2s(ν,
π

2s
) = −

2s−1∑
y=0

W̃ (2s)
y

(
ν,

π

2s

)
log W̃ (2s)

y

(
ν,

π

2s

)
,

(20)

W̃ (2s)
y

(
ν,

π

2s

)

=
1
G

· π

sR

R−1∑
r=0

fΦ|N
(π

s

(
y +

r

R

)
− π − θ

∣∣∣ν) , (21)

and G =
∑2s−1

y=0 W̃
(2s)
y

(
ν, π

2s

)
. We approximate the integral

terms using midpoint rule of definite integrals. R corresponds
to the number of rectangles to be used in the approximation
and π

sR is the width of a rectangle. The factor 1/G ensures

that the set
{

W̃
(2s)
y

(
ν, π

2s

)}2s−1

y=0
forms a probability simplex.

The plots of C̃φ(s, ν) and C̃φ(s, ν) for different s, and the
squared approximation error are plotted in Figures 3a and 3b,
respectively. Here, we fix R = 9 and observe different values
of s. At this choice of R, we can see small approximation
errors for all ν and s considered. Throughout this paper, the
setting R = 9 is used for evaluating C̃φ(s, ν).

f(i, nq) =

⎧⎨
⎩

0 , i = 0 or nq = 0

max
k∈{1,··· ,nq}

{
f(i − 1, nq − k) + log 2k − w2k

(
λiρi

σ2 , π
2k

)}
, otherwise (18)
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Fig. 3. (a) Plots of Cφ(s, ν) and C̃φ(s, ν) for different s; and (b) Squared approximation error of Cφ(s, SNR) and C̃φ(s, ν) vs ν for different values
of s. We set R = 9.

Algorithm 1 outlines the alternating optimization approach.
Here, the power allocation and quantizer allocation steps are
referred to as optimization procedure #1 and #2, respectively.
We use C̃φ(s, ν) instead of Cφ(s, ν) in these optimization
procedures. The optimized {ρi}Ns

i=1, {si}Ns
i=1, and Ns are then

used to construct the approximate solution for the analog linear
combiner APH and the distribution FX that attains C(APH).
We shall denote these approximate solutions produced by
Algorithm 1 as ÂPH and F̂X. While (19) is used to optimize
APH and FX, we still use (15) to evaluate C∗ in Line 15. The
computational complexity of computing ÂPH and F̂X using
Algorithm 1 is

O

(
Nσ {T1 + T2} log

1
ε1

)
, (22)

where

T1 = O

(
max

{
N3

σT 3
cap,F

}
log

Nσ

ε2

)
T2 = O

(
NσN2

qTcap

)
Tcap = O(NqR).

The quantities T1 and T2 account for the computational
complexity of optimization procedures #1 and #2, respectively.
For optimization procedure #1, interior point method is used
to solve the convex power allocation problem. The expression
max

{
N3

σT 3
cap,F

}
in T1 is the number of operations per itera-

tion [46, Section 1.3.1] and log
(

Nσ

ε2

)
accounts for the number

of iterations [46, Section 11.3.3]. The parameter F is the cost
of evaluating the first and second derivatives of the objective
function and constraints. The parameters ε1 and ε2 set the
convergence criterion for the alternating optimization scheme
and the optimization procedure #1, respectively. Finally, Tcap

is the computational complexity of evaluating C̃φ(s, ν).
We note that Algorithm 1 only guarantees convergence to

a local optimal solution of problem (14). This is because
C(APH) is not jointly convex over the parameters {ρi} and
{si}. Furthermore, C(APH) is just a lower bound on C. Thus,

we have

C(ÂPH) ≤ C(APH) ≤ C.

It is therefore necessary to establish an upper bound on (4) to
gauge how far, at worst, is C(ÂPH) to the exact capacity C.

IV. CAPACITY UPPER BOUND FOR THE

HYBRID ONE-SHOT RECEIVER

A. Capacity Upper Bound 1

We now derive an upper bound for the capacity expression
in (4). First, we use the high SNR capacity results in [41] and
apply it to CNσ to establish C in the infinite SNR regime,
which we denote as C∞. That is, we maximize the number of
regions created by arranging the hyperplanes in Nσ complex
dimensions. By doing this, we maximize the output entropy.
For the special case where all the hyperplanes intersect the
origin, [47] proved that the number of regions created by Nq

hyperplanes in 2Nσ real dimensions is

M∞ = 2
2Nσ−1∑

i=0

(
Nq − 1

i

)
, (23)

where
(

n
m

)
= 0 if m > n. Consequently, C∞ = logM∞ by

choosing an FX that induces a uniform output distribution.

B. Capacity Upper Bound 2

The capacity upper bound established in the previous sub-
section is quite loose in the finite SNR case. To establish a
tighter capacity upper bound in the finite SNR regime, we note
that the sign quantizer only requires the phase information of
its input in order to output −1 or +1. Suppose we define a
function Θk(·) that extracts the phase information of the k-th
output of the analog combiner, and another function that maps
the phase detector output to +1 when it is inside the region
[−π

2 , π
2 ] and is mapped to −1 otherwise. Then, the system

model in Figure 4 is the same as the system model depicted
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Algorithm 1 Alternating Optimization to Get Local
Optimal Solution to Problem (14)

Input: Nσ , {λi}Nσ
i=1, σ2, Nq, P

Output: ÂPH, F̂X, C∗

1 C∗ = 0, N∗
s = 0, Ns = 1 // Initialize

2 Set ε1 // Set convergence condition
3 for Ns = 1 to Nσ do

/* Uniform allocation of si */

4 si =
�Nq

Ns

� ∀i ∈ {1, · · · , Nq mod Ns},

5 si =
�Nq

Ns

� ∀i ∈ {Nq mod Ns + 1, · · · , Ns}
6 repeat

/* Optimization Procedure #1 (optimize
power allocation) */

7 Solve {ρ∗
i }Ns

i=1 using the formulation in (17).

8 C1 =
�Ns

i=1 C̃φ

�
si,

λiρ∗
i

σ2

�

9 ρi = ρ∗
i ∀i ∈ {1, · · · , Ns}

/* Optimization Procedure #2 (optimize
quantizer allocation) */

10 Solve {s∗i }Ns
i=1 using dynamic programming.

11 C2 =
�Ns

i=1 C̃φ

�
s∗i , λiρi

σ2

�

12 si = s∗i ∀i ∈ {1, · · · , Ns}
13 until C2 − C1 < ε1
14 if C2 > C∗ and si > 0 ∀i ∈ {1, · · · , Ns} // Update

optimal values
15 then

16 C∗ =
�Ns

i=1 log 2 si − w2si

�
λiρi
σ2 , π

2si

�

17 N∗
s = Ns, s′i = si, ρ′

i = ρi ∀i ∈ {1, · · · , N∗
s }

18 ΦPH = [φ1, · · · , φN∗
s
, · · · , 0], where φk is from (8).

19 ÂPH = ΦPHUH

20 F̂Xi = 2s′i-PSK with amplitude
�

ρ′
i

in Figure 1. It then follows that the capacity of the two system
models are equal. By the DPI, we have

IA(x;y) ≤ IA(x; ỹ),

and an upper bound on the channel capacity can be established
by maximizing the mutual information between the input x
and the outputs of the phase detectors. Define Θi:j to be
the phase detector outputs from index i to index j, and
z′i:j to be the noise components at the output of the analog
combiner from index i to index j. The following lemma further
simplifies the capacity maximization problem.

Lemma 2: Suppose we have Nσ ≤ Nq. Suppose further

that there exists an analog linear combiner A =
[
A1

A2

]
such

that AH =
[
A1H
A2H

]
=

[
B1

B2

]
, where B1 ∈ CNσ×Nt and B2 ∈

C(Nq−Nσ)×Nt . If B1 is full rank and ỹ = [ỹ(1) ỹ(2)]H , where
ỹ(1) = Θ1:Nσ(B1x + z′1:Nσ

) and ỹ(2) = ΘNσ+1:Nq(B2x +
z′Nσ+1:Nq

), then

IA(x; ỹ) = IA1(x; ỹ(1)).

Moreover, if IA(x; ỹ) is achieved by a B1 that is not full rank,

then there exists an A′H =
[
B′

1

B′
2

]
(where B′

1 being full rank)

and a distribution FX′ such that IA(x; ỹ) = IA′(x′; ỹ).
Proof: See Appendix C. �

To put it simply, Lemma 2 shows that we only need to
consider Nσ phase detector outputs since considering more
phase detector outputs than Nσ does not increase the mutual
information. Thus, without loss of generality, we can consider
the maximization of IA1(x; ỹ(1)) with B1 = A1H being full
rank. In the remainder, we will show that C in problem (4) can
be upper bounded by the capacity of a Gaussian MIMO chan-
nel with phase detectors at the output. The capacity-achieving
input of this channel is also characterized.

Suppose we denote ỹ
(1)
i as the i-th element of ỹ(1), ỹ(1)

i:j as
the elements of ỹ(1) from index i to index j, and hA1(·) as
the differential entropy function induced by A1. Then, we get
the following upper bound on maxA1 maxFX IA1(x; ỹ(1)):

= max
A1

max
FX

hA1(ỹ
(1)) − hA1(ỹ

(1),x)

= max
A1

max
FX

Nσ∑
i=1

hA1(ỹ
(1)
i |ỹ(1)

1:i−1)

−
Nσ∑
i=1

hA1(ỹ
(1)
i |ỹ(1)

1:i−1,x)

(a)

≤ max
A1

max
FX

Nσ∑
i=1

hA1(ỹ
(1)
i ) −

Nσ∑
i=1

hA1(ỹ
(1)
i |ỹ(1)

1:i−1,x)

(b)

≤ max
A1

max
FX

Nσ∑
i=1

hA1(ỹ
(1)
i )

−
Nσ∑
i=1

hA1(ỹ
(1)
i |ỹ(1)

1:i−1, ỹ
(1)
i+1:Nσ

,x)

= max
Ã1 s.t. B1has orthogonal rows

max
FX

Nσ∑
i=1

[
hÃ1

(ỹ(1)
i )

−hÃ1
(ỹ(1)

i |x)
]

= max
Ã1 s.t. B1has orthogonal rows

max
FX

Nσ∑
i=1

IÃ1
(x; ỹ(1)

i )

= max
FX

Nσ∑
i=1

IUH
1

(x; ỹ(1)
i ).

The first two lines follow from the definition of mutual
information and the use of the chain rule. The inequalities
(a) and (b) follow from the fact that conditioning reduces
entropy. Note that equality in both (a) and (b) can be achieved

if and only if ỹ
(1)
i is independent of ỹ(1)

1:i−1 and ỹ(1)
i+1:Nσ

.
Since we are able to choose A1, an appropriate choice of
A1 that achieves equality in the third and fourth line should
make B1 have mutually orthogonal rows. Existence of such
B1 is guaranteed since Nσ ≤ Nt. Doing so gives us the fifth
line. We call this choice Ã1. The sixth line follows from the
definition of mutual information. Finally, we obtain the last
line using the fact that, out of all the orthonormal bases for the
range of H, SVD produces the orthonormal basis for which the
total channel gain along each direction is maximized.3 Thus,
Ã1 should be UH

1 , where U1 contains the columns of U

3Recall the Maximum Variance Formulation of Principal Component Analy-
sis (PCA) and its connection to SVD.
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Fig. 4. Modified System Model with Sign Quantization broken down to
two-stages: (1) Phase Detection and (2) Phase-to-bit.

corresponding to the Nσ nonzero eigenvalues. Consequently,
B1 = ΣNσ (the first Nσ rows of Σ).

The above result shows that IA1(x; ỹ(1)) can be upper
bounded by the input-output mutual information of a Gaussian
product channel with Nσ eigenchannels; each eigenchannel
has a phase detector at the output. Using this, we can now
establish the capacity upper bound in the finite SNR.

Proposition 1: The solution to (4) can be upper bounded
by (24), as shown at the bottom of the page.

Proof: By considering the limiting case of
[21, Theorem 1] with b → ∞, the capacity-achieving
input of the i-th Gaussian channel with phase detector at
the output is an ∞-PSK (i.e. a circle with radius

√
ρi)

for all SNR. Optimal power allocation is applied to the
eigenchannels to get the desired capacity upper bound result.

�
The first and second terms of (24) are the differential

output entropy and conditional differential entropy, respec-
tively. Problem (24) is a convex optimization problem. The
convexity of the objective function in (24) comes from
[21, Proposition 2]. Finally, by combining (24) and C∞, we get
the upper bound

CUB = min {Cφ−detector, C∞} . (25)

For the zero threshold ADC case, this capacity upper bound is
tighter than the TSC bound established in [37] since it takes
into account the fact that sign quantization throws away the
amplitude information. Currently, the analysis framework we
developed only applies to the t = 0 case. Extension of the
analysis framework to general t is a potential subject for future
work and we are exploring proof techniques that can be used to
extend this current framework to general t. In the next section,
we compare (25) and the TSC bound.

V. NUMERICAL EVALUATION OF THE ACHIEVABILITY

SCHEME AND UPPER BOUND

In this section, we investigate the performance of our
achievability scheme and how close it is to our established

capacity upper bound in (25). We consider a fixed 4×4 chan-
nel H with eigenvalues λ1 = 1.6, λ2 = 1.2, λ3 = 0.8, and
λ4 = 0.4. We also set P = 1 and vary the SNR by changing
the noise variance σ2. We fix the number of sign quantizers
to Nq = 12. Even though a 4 × 4 MIMO setup is considered
to generate the numerical results, we note that the insights
obtained in this small setup are applicable to larger MIMO
settings.

The achievable rate of Algorithm 1, denoted C(ÂPH),
is depicted in Figure 5a. The individual rates of each eigen-
channel are also given in Figure 5a to see how the rate
at each eigenchannel changes with SNR. For comparison,
we also superimpose the capacity upper bound given in (25)
and the TSC bound. Note that the gap between the TSC
bound and our capacity upper bound corresponds to the rate
loss incurred when the amplitude information of the received
signal is thrown away in a MIMO Gaussian channel. The
values of {ρ′i}Ns

i=1 and {s′i}Ns
i=1 computed by Algorithm 1 are

shown in Figures 6a and 6b, respectively. These parameters
are used to construct ÂPH and F̂X according to Lines 17-19
of Algorithm 1.

It can be observed that C(ÂPH) is tight in the low SNR
regime and outperforms the naive approach of simply setting
the ρi’s and si’s to be equal. In this regime, the optimal
strategy is for the transmitter to use 2Nq-PSK signaling and
send the symbols over the strongest eigenchannel. Simultane-
ously, the receiver configures APH in such a way that all sign
quantizers are connected to the output of the strongest eigen-
channel. With Nq → ∞, the transmission strategy produced by
the achievability scheme is an ∞-PSK sent over the strongest
eigenchannel. Meanwhile, the analog linear combiner is con-
figured to form an ∞-bit phase quantizer (or a phase detec-
tor). Thus, the gap between the achievable rate and capacity
upper bound in the low SNR regime vanishes as Nq grows
unbounded. There also exists SNR thresholds, above which we
activate the strongest inactive eigenchannel for transmission.
The individual rates in Figure 5a have nonmonotonic behavior
and sharp transitions within the SNR range considered. This
can be attributed to the discrete nature of optimizing {si}.
Nonetheless, the achievable rate remains smooth.

At this point, one might expect that uniform allocation
would have the same performance as Algorithm 1 in all SNR
regimes if H = INσ×Nσ (i.e. eigenvalues are equal). In the
classical waterfilling scheme for Gaussian channels, there is no
loss of optimality if power is uniformly allocated among sub-
channels with identical eigenvalues. However, as depicted in
Figure 5a, there is a gap between C(APH) and the achievable
rate of the hybrid one-shot receiver under uniform allocation
of {ρi} and {si} in the low SNR regime. Thus, there is still
some benefit, albeit small, in optimizing {ρi} and {si} when
H = INσ×Nσ .

Cφ−detector = Nσ log(2π) − min
ρi:
�

i ρi=P

⎧⎨
⎩

Nσ∑
i=1

∫ π

−π

fΦ|N

(
φ
∣∣∣λiρi

σ2

)
log

1

fΦ|N
(
φ
∣∣∣λiρi

σ2

) dφ

⎫⎬
⎭ (24)

where fΦ|N (φ|ν) is given in (12)
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Fig. 5. Rate vs. SNR of the Achievability Scheme when (a) {λi}4
i=1 = {1.6, 1.2, 0.8, 0.4} and when (b) {λi}4

i=1 = {1.0, 1.0, 1.0, 1.0}. Also superimposed
are the individual rates, TSC bound, proposed upper bound, and the achievable rate under uniform allocation of {ρi} and {si}.

Fig. 6. Computed values of (a) {ρ′i}4
i=1 and (b) {s′i}4

i=1 as a function of SNR for Figure 5a.

Another intriguing observation in our numerical results
is that the values of {ρ′i}Ns

i=1 and {s′i}Ns
i=1 given in

Figures 6a and 6b do not always favor the eigenchannel with
the largest eigenvalue. For instance, the strongest eigenchannel
does not get the largest share in the available quantizers at
SNR = 9 dB and SNR = 10 dB. To validate the result of
Algorithm 1, we perform exhaustive search on the optimal

{ρi}Nσ

i=1 and {si}Nσ

i=1 to get C(APH). That is, we solve the
convex power allocation strategy in (17) for all possible config-
urations of {si}Nσ

i=1. This guarantees finding the global optimal
solution in problem (14). There are a total of

(
Nq+Nσ−1

Nσ−1

)
con-

figurations that satisfy
∑Nσ

i=1 si = Nq. We tabulate the top 5
solutions for the joint optimization of {ρi}Nσ

i=1 and {si}Nσ

i=1 for
SNR = 9 dB and SNR = 10 dB in Tables Ia and Ib, respec-
tively. It can be seen that the optimal {ρi}Nσ

i=1 and {si}Nσ

i=1

(marked in blue) obtained by exhaustive search match those
produced by Algorithm 1.

Despite the good agreement between our achievability
scheme and the established capacity upper bound in the low
SNR regime, the performance gap between the two widens as
the SNR is increased in Figure 5a. We shall refer to the rate of
our scheme in the infinite SNR regime as R

(scheme)
∞ . R

(scheme)
∞

is maximized if the quantizers are uniformly allocated to
the Nσ eigenchannels. In case Nq is not divisible by Nσ,
we simply distribute the excess sign quantizers equally among
the Nq mod Nσ strongest eigenchannels. The number of
possible outputs is

Mscheme =

⎧⎨
⎩
{

2
⌈

Nq
Nσ

⌉}u

×
{
2
⌊

Nq
Nσ

⌋}Nσ−u

,
⌊

Nq
Nσ

⌋
> 0{

2
⌈

Nq
Nσ

⌉}u

, otherwise
,
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TABLE I

TOP 5 (OUT OF 455) JOINT OPTIMIZATION OF {ρi}Nσ
i=1 AND {si}Nσ

i=1 PRODUCED BY EXHAUSTIVE SEARCH FOR

(a) SNR = 9 DB AND (b) SNR = 10 DB. HERE, Nσ = 4, Nq = 12, AND {λi}4
i=1 = {1.6, 1.2, 0.8, 0.4}

Fig. 7. (a) Ratio of C∞/R
(scheme)
∞ as a function Nσ and Nq, and (b) plot of C∞/R

(scheme)
∞ for Nσ = 2, 4, 6.

where u = Nq mod Nσ. The rate of our achievability scheme
in the infinite SNR regime is R

(scheme)
∞ = logMscheme.

To quantify the gap between C∞ and R
(scheme)
∞ under different

Nq and Nσ, we plot their ratio as a function of Nσ and Nq in
Figure 7a. It can be observed that R

(scheme)
∞ coincides with C∞

when 2Nq ≤ Nσ . This is the case in which we assign at most
one sign quantizer to each real dimension. When 2Nq > Nσ,
a logarithmic increase in C∞/R

(scheme)
∞ is observed as Nq is

increased. This is depicted in Figure 7b. The suboptimality of
our achievability scheme in the infinite SNR regime comes
from the restriction imposed on the matrix Φ. In our scheme,
we simply design Φ to connect a sign quantizer to a single
eigenchannel and then choose the input distribution for each
eigenchannel independently. On the other hand, C∞ is derived
based on the intuition that a sign quantizer can be connected
to multiple eigenchannels; thereby creating a hyperplane that
passes through more than 2 real dimensions. In effect, the
number of quantization regions created by Nq intersecting
hyperplanes can exceed that of our achievability scheme.

VI. MIMO RECEIVER WITH PIPELINED PHASE ADC

To overcome the rate loss in the high SNR regime, we devi-
ate our attention away from the one-shot receiver model and
instead incorporate analog temporal and spatial processing
techniques in the receiver design. To this end, we present a
new MIMO receiver that utilizes an analog linear combiner
and a more complex form of ADC structure. We call this
ADC structure the pipelined phase ADC, since the key idea
is borrowed from the pipelined ADC topology [48]. In the
subsequent discussion, we shall elaborate on the operation of
this pipelined phase ADC. We then give a formal description
of the new MIMO receiver in Section VI-B and show how it
can achieve the high SNR capacity of Nq bits/channel use.

A. The Pipelined Phase ADC

Figure 8a depicts a block diagram of the pipelined phase
ADC. This ADC is composed of L−1 pipeline stages, where
L depends on the number of 1-bit ADCs. Each pipeline stage
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Fig. 8. (a) Block diagram of an (L − 1)-stage Pipelined Phase ADC and (b) an illustrative example (for L = 3) to demonstrate the quantization process
per stage.

consists of an analog delay element, in the form of a sample-
and-hold (S/H) block, and a phase shifter to perform analog
temporal processing. At the l-th pipeline stage, we apply 1-bit
quantization to the input to get yl. The 1-bit output yl is then
used by the phase shifter to apply an appropriate rotation to
the S/H output.4 This phase shifted signal is then fed to the
next pipeline stage for further processing.

We give a more concrete example of the quantization
mechanism through an illustrative example in Figure 8b. Here,
we assume L = 3 so there are two pipeline stages and three
1-bit ADCs. The input signal is given by the magenta dot
(shown in Figure 8b.i). The real component of the signal is
fed to a 1-bit ADC of the 1st pipelined stage to produce
y1 (Figure 8b.iv). Since it falls at the LHS of the y-axis

4We note that a 1-bit digital-to-analog converter (DAC) might be required
to interface the ADC output to the phase shifter. However, the 1-bit DAC can
be eliminated if the analog phase shifter is digitally-controlled.

(cyan region), the 1-bit ADC outputs y1 = −1. Consequently,
this implies a clockwise phase shift of π

2 = 900 (Figure 8b.ii);
which will be fed to the next pipeline stage. This signal falls
at the RHS of the y-axis (orange region); thus producing
y2 = +1 (Figure 8b.v). Notice that the intersection of
the cyan and orange regions forms a quantization region of
a 2-bit phase quantizer. With y2 = +1, the signal at NXT2 is
phase shifted by π

4 = 450 counter clockwise. The last ADC
outputs y3 = +1 since the resulting signal falls in the RHS of
y-axis (purple region) (Figure 8b.vi). The intersection of the
cyan, orange, and purple regions is a quantization region of a
3-bit phase quantizer.

In general, the pipelined phase ADC enables us to create
an L-bit phase quantizer with length-L − 1 delay using L
1-bit ADCs. Note that a flash ADC structure would require 2L

comparators to construct an L-bit phase quantizer. Moreover,
because the analog pipelining structure enables each 1-bit
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Fig. 9. (a) System Model of MIMO Receiver with Pipelined Phase ADCs, and its (b) equivalent model.

ADC to extract 1-bit of information at each channel use,
the maximum rate of L bits/channel use is achievable. Note
that the first L − 1 channel uses are strictly less than this
rate since some analog delay elements do not contain signals
initially. However, the definition of channel capacity applies
for asymptotically large block lengths. Thus, this finite length
delay is negligible in the asymptotic regime.

The proposed pipelined phase ADC has some resemblance
with the ADC mechanism used in the adaptive threshold
receiver recently proposed in [37]. While both ADC topologies
exploit analog domain pipelining, the latter adaptively chooses
the locations of the 1-bit ADC thresholds in the current
channel use based on the previous channel uses. The former
applies an appropriate phase shift to the input of the next
pipeline stage depending on the 1-bit ADC output in the
current pipeline stage.

B. Proposed Receiver

The block diagram for the proposed MIMO receiver
employing pipelined phase ADCs is shown in Figure 9a.
An analog combiner is used to perform analog spatial process-
ing of the received signals. The S data streams at the analog
combiner output are each fed to an LS-bit pipelined phase
ADC to produce Nq =

∑S
i=1 Li bits every channel use.

The achievability scheme presented in Section III can be
extended to this receiver structure. We consider the SVD
of the channel, which gives a precoded transmit strategy
x̃ = Vx and an analog linear combiner A = UH

1 . Thus,
there are S = Nσ parallel data streams. Note that an L-bit
pipelined phase ADC is equivalent to an L-bit phase quantizer
(with some finite delay due to pipelining). As a result, the
same reasoning in Section III can be used to adapt (14) to
this receiver architecture. The resulting optimization problem
is

max
Li,ρi

Nσ∑
i=1

Li − w2Li

(
λiρi

σ2
,

π

2Li

)
(26a)

s.t.
Nσ∑
i=1

Li = Nq (26b)

Nσ∑
i=1

ρi ≤ P (26c)

ρi ≥ 0, Li ∈ {1, · · · , Nq} (26d)

Consequently, Algorithm 1 can also be adapted to produce
a heuristic solution to (26) by modifying Lines 7 and 10
accordingly.

As SNR grows unbounded, w2Li

(·, π
2Li

)
vanishes and (26a)

approaches Nq bits/channel use. This is the maximum rate
that any channel with Nq-bit output quantization can achieve.
Note that this rate can be larger than C∞ established in
Section IV-A. This is because the inclusion of analog temporal
processing allows an analog sample to be quantized multiple
times; thus the combinatorial geometry approach used in
Section IV-A should be modified accordingly. To this end,
we simply use the trivial upper bound Nq bit/channel use.

For the capacity upper bound in the finite SNR regime,
we can use the DPI argument in Section IV-B to show that
Cφ−detector upper bounds the capacity of our proposed MIMO
receiver. The following corollary of Proposition 1 extends this
result.

Corollary 1: The capacity of the Gaussian channel employ-
ing the MIMO receiver with pipelined phase ADCs can be
upper bounded by (24).

Proof: To prove the claim, we consider the equivalent
receiver model in Figure 9b. By DPI, the capacity is bounded
by the maximum mutual information between the transmitted
symbols and the output of the phase detector. Moreover, the
finite length delay prior to the phase detector does not change
the capacity. �

We also point out that the use of sample-and-hold blocks,
1-bit digital-to-analog converters (DACs), and analog phase
shifters in the pipelined phase ADCs entails additional power
consumption to the MIMO receiver. In this work, we simply
focus at how analog spatial and temporal processing can be
used to maximize the achievable rate of a MIMO receiver for a
given number of 1-bit ADCs. Determining the best architecture
from an energy efficiency standpoint can be a future direction
of this study.

VII. NUMERICAL RESULTS FOR THE MIMO RECEIVER

WITH PIPELINED PHASE ADCS

In this section, we examine the achievable rate of the MIMO
reciever with pipelined phase ADCs. A 4×4 MIMO Gaussian
channel with Nq = 12 available 1-bit ADCs is considered.
We set P = 1 and vary the SNR by changing the noise
variance σ2. Moreover, we look at two sets of eigenvalues
for the experiment setup: (a) λ1 = 1.6, λ2 = 1.2, λ3 = 0.8,
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Fig. 10. Achievable Rate vs. SNR of the Proposed Receiver for (a) λ1 = 1.6, λ2 = 1.2, λ3 = 0.8, and λ4 = 0.4; and (b) λ1 = λ2 = λ3 = λ4 = 1
(Nq = 12). The rate is compared to that of the adaptive threshold receiver.

and λ4 = 0.4; and (b) λ1 = λ2 = λ3 = λ4 = 1. We shall
refer to these channel setups as setup A and setup B.

The achievable rates of the MIMO receiver employing
pipelined phase ADCs for the two for setup A and setup B
are depicted in Figure 10a and 10b, respectively. To compute
the achievable rate, we modify Algorithm 1 as described
in Section VI. We also superimpose the achievable rate of
the hybrid one-shot receiver with zero threshold ADCs, the
capacity upper bound described in Section VI, and the TSC
bound. It can be observed that the achievability scheme for
the MIMO receiver with pipelined phase ADCs is tight with
our established upper bound in the low SNR regime and
also attains the high SNR capacity of Nq bits/channel. While
the gap between the achievable rate of MIMO receiver with
pipelined phase ADCs and that of the hybrid one-shot receiver
in Section III is small in the low SNR regime, this gap
gradually increases with SNR. This demonstrates that the rate
increase provided by incorporating analog temporal processing
in our receiver design is more pronounced in the high SNR
regime.

We compare the performance of our proposed receiver to
that of the adaptive threshold receiver in [37]. Since the adap-
tive threshold receiver is designed for real MIMO channels,
we made some modifications in the channel setup for fair
comparison. We considered an 8 × 8 real MIMO Gaussian
channel with eigenvalues λ′

2i−1 = λ′
2i = λi for i = 1, 2, 3, 4.

Furthermore, we set SNR = 2P/σ2 instead of SNR = P/σ2.
The adaptive threshold receiver effectively creates parallel
real eigenchannels with uniform quantization at the output.
The transmit strategy for the acheivability scheme described
in [37] is to send equiprobable pulse amplitude modulation
(PAM) over each eigenchannel. The power allocation per
PAM strategy is obtained using the conventional waterfilling
algorithm for the unquantized AWGN channel. Using this
power allocation scheme, an exhaustive search procedure is
performed to allocate the 1-bit ADCs. The achievable rate

results in Figure 10a and 10b show that the achievable
rate of our proposed receiver may have inferior or superior
performance than the adaptive threshold receiver depending
on the SNR and channel eigenvalues.

One potential reason why our proposed receiver works
better in some cases is because the transmit power and the 1-bit
ADC allocation are jointly optimized. This is in contrast to the
adaptive threshold receiver which performs separate optimiza-
tion of the transmit power and ADC allocation. On the other
hand, the adaptive threshold receiver extracts the amplitude
information, which is neglected by our proposed receiver. This
may explain why the adaptive threshold receiver outperformed
our proposed receiver in Figure 10a. Nonetheless, we point out
that the adaptive threshold receiver requires AGCs to adjust
the dynamic range of the received signal.

VIII. CONCLUSION

In this work, we analyzed the capacity of a point-to-point
Gaussian MIMO channel in which the receiver is equipped
with Nq 1-bit ADCs and an analog linear combiner prior to
quantization. In particular, we focused on the zero-threshold
ADC case. Our first contribution is an achievability scheme
in which the analog combiner is configured to create parallel
Gaussian channels with phase quantization at the output. The
achievable rate of this constructed channel is evaluated using
an alternating optimization approach. We then etablished a
new capacity upper bound that is tighter than the TSC bound
when the ADCs are restricted to have zero threshold. This
upper bound serves as a measure of the worst-case gap
between the rate of our achievability scheme and the capacity
of the channel. Our numerical results showed that the rate
of our achievability scheme is tight in the low SNR regime.
However, a performance gap exists in the high SNR regime
whenever Nσ ≤ 2Nq. More precisely, when this condition is
satisfied, we observed that the ratio of the channel capacity
and the rate of our achievability scheme in the infinite SNR
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regime grows logarithmically with the number of 1-bit ADCs.
To overcome this, a new receiver is proposed that implements
joint analog spatial and temporal processing through the use
of an analog combiner and pipelined phase ADCs. We showed
that the proposed receiver achieves the high SNR capacity of
Nq bits/channel use and outperforms the adaptive threshold
receiver [37] when the channel eigenvalues are equal. Further
research needs to be conducted to be able to generalize these
results to multi-user setting and different fading environments.
As mentioned in Section VI, investigation of the best architec-
ture from an energy efficiency viewpoint is another interesting
research direction.

APPENDIX A
PROOF OF LEMMA 1

Suppose the optimal strategy O′ uses the ordered set of
eigenchannels with eigenvalues

S′ = {λ1, · · · , λNs+1}\λi

for some integer i ∈ {1, · · · , Ns}. The power and sign quantiz-
ers allocated to the k-th eigenchannel in this optimal strategy
O′ are denoted as ρ′k and s′k, respectively. Define another
strategy O∗ which uses the ordered set of eigenchannels with
eigenvalues S∗ = {λ1, · · · , λNs}. Let ρ∗k and s∗k be the power
and sign quantizer allocation in the k-th eigenchannel when
the strategy O∗ is used. If we set ρ∗k = ρ′k and s∗k = s′k
∀k = 1, · · · , i − 1, i + 1, · · · , Ns and let ρ∗i = ρ′Ns+1 and
s∗i = s′Ns+1, then the difference between the rate of O∗ and
O′ is

RO∗ − RO = w2si

(
λNs+1ρ

∗
i

σ2
,

π

2si

)
− w2si

(
λiρ

∗
i

σ2
,

π

2si

)
≥ 0.

The inequality comes from the monotonic decreasing property
of phase quantization entropy with respect to ν [21, Proposi-
tion 1] and λNs+1 ≤ λi. This contradicts the assumption that
strategy O′ is optimal.

APPENDIX B
PROOF OF CORRECTNESS OF THE DYNAMIC

PROGRAMMING APPROACH

The key technique in showing the correctness is through
strong induction. First, the base case i = 0 or nq = 0 is
true since if there is no channel to send information or there
is no sign quantizer that can output produce the output y,
then I(x;y) should be 0. Next, we prove the inductive step.
Assume f(i′, n′

q) be the optimal solution for all i′ < i.
We need to show f(i, nq) is the optimal solution for the state
(i, nq). Note that the sum capacity of channels 1 to i with nq

available sign quantizers can be expressed as

i∑
j=1

log 2 sj − w2sj

(
λjρj

σ2
,

π

2sj

)

=
i−1∑
j=1

log 2 sj − w2sj

(
λjρj

σ2
,

π

2sj

)

+ log 2 si − w2si

(
λiρi

σ2
,

π

2si

)

≤ f(i − 1, nq − si) + log 2 si − w2si

(
λiρi

σ2
,

π

2si

)
.

The first line follows from isolating the capacity of the i-th
channel from channels i to i−1. The inequality in the second
line follows from the optimality of f(i′, n′

q) and equality is
achieved by choosing the optimal si. Hence, the problem
has an optimal substructure property. The algorithm considers
all possible choices of si and compares their values. Thus,
optimality of f(i, nq) is guaranteed.

APPENDIX C
PROOF OF LEMMA 2

By the chain rule of mutual information, we have

IA(x; ỹ) = IA(x; ỹ(1), ỹ(2))
= IA1 (x; ỹ(1)) + IA2(x; ỹ(2)|ỹ(1)).

The claim is proven if we can show that IA2(x; ỹ(2)|ỹ(1)) = 0.
In other words, x → ỹ(1) → ỹ(2) should form a Markov chain.
The term IA2(x; ỹ(2)|ỹ(1)) can be expressed as

= IA2

(
x; ejỹ(2) ∣∣ ỹ(1)

)
= IA2

(
x; ej

�
z′

Nσ+1:Nq−B(2){B(1)}†z′
1:Nσ

� ∣∣∣∣ ỹ(1)

)

= IA2

(
x; z′Nσ+1:Nq

− B(2){B(1)}†z′1:Nσ

∣∣ ỹ(1)
)

= 0.

The equality in the first line follows from the fact that ej(·) is
bijective. The second equality is obtained by noting that

exp
(
jỹ(2)

)
· exp

(
−jB(2){B(1)}†ỹ(1)

)
= exp

(
j(ỹ(2) − B(2){B(1)}†ỹ(1))

)
= exp

(
j(z′Nσ+1:Nq

− B(2){B(1)}†z′1:Nσ
)
)

,

where {·}† is the Moore-Penrose inverse operator. Since
the transmitted symbol and the phase of the additive noise
components are independent, IA2(x; ỹ(2)|ỹ(1)) = 0.

To prove the second claim, we note that we have full
control over A. If B1 is not full rank, we can create A′

by permuting the rows of A to make B′
1 full rank. This,

in effect, reorders the elements of ỹ but does not change the
mutual information since reordering is a bijective mapping.
Thus, IA(x; ỹ) = IA′(x; ỹ). If no such row permutation
of rows can make B1 full rank, then this implies that
rank{AH} < Nσ . We can simply use an analog combiner A′

with rank{A′H} = Nσ and employ a transmit strategy FX′

that only uses the rank{AH} out of the Nσ eigenchannels so
that IA(x; ỹ) = IA′(x′; ỹ).
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