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Abstract— Reconfigurable Intelligent Surfaces (RISs) are envi-
sioned to play a key role in future wireless communications,
enabling programmable radio propagation environments. They
are usually considered as almost passive planar structures that
operate as adjustable reflectors, giving rise to a multitude
of implementation challenges, including the inherent difficulty
in estimating the underlying wireless channels. In this paper,
we focus on the recently conceived concept of Hybrid Reconfig-
urable Intelligent Surfaces (HRISs), which do not solely reflect
the impinging waveform in a controllable fashion, but are also
capable of sensing and processing an adjustable portion of it.
We first present implementation details for this metasurface
architecture and propose a convenient mathematical model for
characterizing its dual operation. As an indicative application of
HRISs in wireless communications, we formulate the individual
channel estimation problem for the uplink of a multi-user
HRIS-empowered communication system. Considering first a
noise-free setting, we theoretically quantify the advantage of
HRISs in notably reducing the amount of pilots needed for chan-
nel estimation, as compared to the case of purely reflective RISs.
We then present closed-form expressions for the Mean-Squared
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Error (MSE) performance in estimating the individual channels
at the HRISs and the base station for the noisy model. Based on
these derivations, we propose an automatic differentiation-based
first-order optimization approach to efficiently determine the
HRIS phase and power splitting configurations for minimizing
the weighted sum-MSE performance. Our numerical evaluations
demonstrate that HRISs do not only enable the estimation
of the individual channels in HRIS-empowered communication
systems, but also improve the ability to recover the cascaded
channel, as compared to existing methods using passive and
reflective RISs.

Index Terms— Reconfigurable intelligent surfaces, channel
estimation, simultaneous reflection and sensing, smart radio
environments, mean-squared error, computational graphs.

I. INTRODUCTION

RECONFIGURABLE Intelligent Surfaces (RISs) are an
emerging technology for the future sixth Generation

(6G) of wireless communications, enabling dynamically pro-
grammable signal propagation over the wireless medium [2],
[3], [4], [5]. RISs are planar structures comprised typically of
multiple metamaterial elements, whose electromagnetic (EM)
properties can be externally controlled in a nearly passive
manner, allowing them to realize various reflection and scat-
tering profiles [6]. By properly adjusting the reflection prop-
erties of the metamaterial elements, RISs can constructively
strengthen/destructively weaken the desired/undesired signals
at the target receiver(s). This ability of RISs has been exploited
in various promising communication systems, such as multi-
user Multiple-Input Multiple-Outputs (MIMOs) communica-
tions [7], [8], simultaneous wireless information and power
transfer systems [9], [10], and physical-layer security [11],
for improving the respective performance. Achieving those
performance gains with RISs often relies on accurate Channel
State Information (CSI). However, their passive nature implies
that they can only act as adjustable reflectors, and thus, neither
receive nor transmit their own data. This renders channel
estimation a significant, but challenging task for RIS-based
systems [12].

In RIS-aided uplink communications, a signal transmitted
from each User Terminal (UT) to the Base Station (BS)
undergoes at least two channels, namely, the UTs-RIS and
RIS-BS channels. With RISs being passive without any signal
processing capability, the common approach to acquire CSI is
to estimate only the entangled combined effect of the latter
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channels, i.e., the cascaded channel [13], [14], [15] at the
BS. This can be achieved by having the UTs send known
pilot symbols, which are reflected by the RIS such that the
channel outputs at the BS are used to estimate the overall
channel. This approach has, however, two main drawbacks.
First, since the number of reflective elements of RISs is
usually very large, the cascaded channel is comprised of
many unknown parameters that need to be estimated, which
requires large pilot periods, and thus, significantly reduces the
spectrum utilization efficiency. For example, for a system with
K UTs, N RIS meta-atom elements, and M BS antennas, the
cascaded channel consists of KNM coefficients. To alleviate
this drawback, several methods have been proposed to reduce
the pilots, which impose a model on the overall channel
having less coefficients, via, e.g., grouping the RIS elements
[16], exploiting the presence of a common channel [17], and
imposing a sparsity prior [18]. The second drawback of passive
RISs is that one can only estimate the cascaded channel,
instead of the individual ones, which limits the plasticity
for the transmission scheme design and restricts the network
management flexibility [19]. As discussed in [20], the indi-
vidual UTs-RIS and RIS-BS channels are needed for some
precoding designs. In addition, there exist certain scenarios
where the RIS-BS channel may vary less rapidly than the
UTs-RIS combined one. For those cases, only the UTs-RIS
channel needs to estimated frequently, thus, it is desirable to
be capable of recovering the UTs-RIS and RIS-BS channels
individually [12].

To overcome the aforementioned challenges with purely
reflective RIS, it was recently proposed to equip RISs with
minimal receive Radio-Frequency (RF) chains and antenna
elements [21], [22], [23], [24]. In such architectures, some
of the RIS elements are replaced with active receive antennas,
which are connected via dedicated RF chains to a digital pro-
cessor, and thus, have some signal processing capabilities such
as reception and decoding. While such architectures enable the
estimation of the individual UTs-RIS and RIS-BS channels,
they involve placing additional receivers along the RIS, pos-
sibly reducing its number of reflective elements. In addition,
they are incapable of estimating the exact channel, since the
signals observed at the RIS reflective elements are not mea-
sured, but only those acquired at the receive antenna elements.

In parallel to the application of metasurfaces as passive
reflective RISs, active metasurfaces have recently emerged
as an appealing technology for realizing low-cost and low-
power large-scale MIMO antennas [25]. Dynamic Metasurface
Antennas (DMAs) pack large numbers of tunably radiative
metamaterials on top of waveguides, resulting in MIMO
transceivers with advanced analog processing capabilities [26],
[27], [28], [29], [30]. While the implementation of DMAs
differs from passive RISs, the similarity in the structure of
the metamaterial elements between them indicates the fea-
sibility of designing hybrid reflecting and sensing elements.
This motivates studying the benefits from such a hybrid
metasurface architecture, as an efficient means of facilitating
RIS-empowered wireless communications, localization, and
sensing.

In our previous overview article [31], we proposed the HRIS
architecture, which is capable of simultaneously reflecting
and receiving the incoming signal in an element-by-element
controllable manner. HRISs differ from both conventional
passive RISs, which are usually metasurfaces operating in
almost energy neutral tunable reflection, as well as from
active DMAs that operate similar to conventional transceiver
antennas. In HRISs, each metamaterial element enables simul-
taneous adjustable reflection and reception of the impinging
signals. This controllable hybrid operation of HRISs yields an
architecture which generalizes RISs with interleaved recep-
tion and reflection meta-atoms, as in [21], [22], [23], and
[24]. More specifically, in [31], we overviewed the oppor-
tunities and challenges of the HRIS concept, highlighting a
hardware design for its implementation and presenting a full-
wave-simulation-based proof-of-concept. However, no techni-
cal analysis relevant to the exploitation of the signal processing
capability at the HRIS side, and consequently of the availabil-
ity of a portion of the received impinging signal, was provided.
In this work, we fill this gap by considering HRIS-assisted
multi-user MIMO communication systems and investigating
the individual channel estimation problem. We show that the
reception signal processing capability of HRISs allows the
system to simultaneously estimate the individual channels, i.e.,
the UTs-HRIS channel at the HRIS side and the HRIS-BS
at the BS, via reusing the same transmitted pilot symbols.
We first theoretically quantify the advantages of the HRIS
in terms of pilot reduction for the case without thermal
noise. Then, considering the presence of this noise, we derive
closed-form expressions for the MSEs of the estimation of
the individual channels at the HRIS and BS, respectively.
Based on these derivations, we provide a gradient-based
optimization approach to efficiently configure the HRIS
for minimizing the weighted sum-MSE, where the gradi-
ents of the complicated sum-MSE performance metric with
respect to the HRIS tunable parameters are computed using
Automatic Differentiation (AD).

The main contributions of this paper are summarized as
follows:
• Hybrid Reflecting and Sensing RIS Architecture: We

focus on the recently conceived concept of HRISs, which
enables metasurfaces to reflect the impinging signal in an
element-by-element controllable manner, while simulta-
neously sensing a portion of it. We specifically discuss
the feasibility of hybrid meta-atom elements, present their
high-level description, and provide a mathematical model
for HRIS-empowered wireless systems in a manner that
is amenable to system design.

• Estimation of the Individual Channels in HRIS-Aided Sys-
tems: We present an initial study on the potential gains
of HRISs in multi-user MIMO communication systems,
by considering the individual channels estimation prob-
lem. We first characterize the number of pilots needed
to estimate the channels for the case without noise, and
analytically demonstrate the gains of HRISs compared
to pure reflective RISs. We then consider typical noisy
settings and derive the MSE for the estimation of the
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UTs-HRIS channel at the HRIS and the HRIS-BS channel
at the BS.

• AD-based Gradient Optimization for HRIS Configura-
tion: Since the MSE depends on the configuration of the
HRIS, we formulate a weighted sum-MSE minimization
problem. The resulting problem is very challenging due
to the complicated form of the objective and the large
number of optimization variables. To deal with this,
we propose a gradient-based solution to efficiently solve
the problem. Inspired by the recent work [32], the gradi-
ents of the complicated sum-MSE objective function with
respect to the HRIS parameters are computed analytically
with AD. The effectiveness of the proposed algorithm is
verified numerically.

• Numerical Evaluation: Our simulation results showcase
the inherent trade-off of HRISs concerning their ability
to estimate the individual channels. Furthermore, it is
demonstrated that, even when one aims to solely estimate
the cascaded channel, HRISs outperforms conventional
(nearly) passive and reflective RISs [17] when the same
pilot length is used.

The remainder of this paper is organized as follows.
Section II presents the proposed model for generic HRIS
operation as well as the proposed HRISs-assisted channel esti-
mation approach. The individual channel estimation problem is
investigated in Section III, which also includes the proposed
gradient-based optimization for the HRISs phase and power
splitting parameters. Numerical evaluations are presented in
Section IV, and Section V provides concluding remarks.

Throughout the paper, we use boldface lower-case and
upper-case letters for vectors and matrices, respectively,
while calligraphic letters are used for sets. The vector-
ization operator, transpose, conjugation, Hermitian trans-
pose, trace, and expectation are represented by vec(·),
(·)T , (·)†, (·)H , Tr (·), and E{·}, respectively. The notation
blkdiag {A1,A2, . . . ,An} denotes a block diagonal matrix
with diagonal blocks given by A1,A2, . . . ,An, and [A]i,j
denotes the (i, j)-th element of A. Finally, C is the set of
complex numbers.

II. HRISS AND SYSTEM MODELING

We first present a high-level description of the proposed
hybrid metamaterial elements, followed by the considered
system model for HRIS-empowered wireless communications.
We then detail a simple, yet convenient, model for the HRIS
operation and present the proposed approach for the estimation
of the individual channels.

A. Hybrid Metasurfaces

A rich body of literature has examined the fabrication
of solely reflective RISs using metamaterials. A variety of
implementations have been recently presented in [6] and [33],
ranging from RISs that change the wave propagation inside
a multi-scattering environment for improving the received
signal, to those which realize anomalous reflection, such
that the reflected beam does not follow Snell’s law and is
directed towards desired directions. More recently, RISs which

Fig. 1. Illustration of a hybrid meta-atom which is capable of simultaneously
reflecting a portion of its impinging wave in a reconfigurable manner, while
feeding another portion of it to a receiving RF chain for baseband processing.

simultaneously refract and reflect their impinging signals were
proposed to offer 360◦ coverage [34], [35], [36]. In all
those efforts, the RIS is not designed to sense the impinging
signal.

Metasurfaces can be designed to operate in a hybrid
reflecting and sensing manner. Such hybrid operation requires
that each metasurface element is capable of simultaneously
reflecting a portion of the impinging signal and receiving
another portion of it in a controllable manner. As illustrated
in Fig. 1, a simple mechanism for implementing such an
operation is to couple each element to a waveguide. The
signals coupled to the waveguides are then measured by
receive RF chains and used to infer the necessary information
about the channel. A detailed description of the practical
implementation of such hybrid metamaterials can be found
in [37], where it was experimentally demonstrated that such
surface configurations of hybrid metamaterials can be used
to reflect in a reconfigurable manner, while using the sensed
portion of the signal to locally recover its angle-of-arrival.
In this paper, we are interested in examining the potential
benefits of the HRIS paradigm in wireless communications.
To this end, we present in the sequel a simple model capturing
the simultaneous reflecting and sensing operation of HRISs,
which is later on deployed to study HRIS-empowered wireless
communications.

B. HRIS Operation Modeling

To model the dual reflection-reception operation of HRISs,
we consider a hybrid metasurface comprised of N meta-atom
elements, where each element is capable of simultaneously
reflecting a portion of the impinging signal and receiving
another portion of it in a controllable manner. Let rl(n)
denote the radiation observed by the l-th HRIS element (l =
1, 2, . . . , N ) at the n-th time instance. A portion of this signal,
dictated by the parameter ρl (n) ∈ [0, 1], is reflected with a
controllable phase shift ψl (n) ∈ [0, 2π), and thus the reflected
signal from the l-th element at the n-th time instant can be
mathematically expressed as:

yRF
l (n) = ρl (n) eȷψl(n)rl(n). (1)
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Fig. 2. A simple model for the proposed HRIS operation. The parameter
ρl models the portion of the impinging signal at the l-th meta-atom of the
HRIS that gets tunably reflected, while ψl and ϕr,l model the meta-atom’s
controllable phase shift and the joint effect of its response together with the
analog phase shift before the r-th receive RF chain, respectively.

The remainder of the observed signal is locally processed via
analog combining and digital processing. The signal forwarded
to the r-th RF chain via combining, with r ∈ {1, 2, . . . , Nr},
from the l-th element at the n-th time instant is consequently
given by

yRC
r,l (n) = (1− ρl (n))eȷϕr,l(n)rl(n), (2)

where ϕr,l (n) ∈ [0, 2π) represents the adjustable phase that
models the joint effect of the response of the l-th meta-atom
and the subsequent analog phase shifting. The proposed HRIS
operation model is illustrated in Fig. 2.

The operation of conventional passive and reflective RISs
can be treated as a special case of the HRIS architec-
ture, by setting all ρl (n) in (1) equal to 1. Compared
with existing relay techniques, HRISs bring forth two major
advantages. First, HRISs allow full-duplex operation (i.e.,
simultaneous reflection and reception) without inducing any
self-interference, which is unavoidable in full-duplex relaying
systems. Second, HRISs require low power consumption since
they do not need power amplifiers utilized by active transmit
arrays; a typical receive RF consists of a low noise amplifier,
a mixer that downconverts the signal from RF to baseband, and
an analog-to-digital converter [38]. HRISs are also different
from the concept of active RISs, which integrate the power
amplifiers into the antenna elements of RISs [39]. Hence,
active RISs are capable of amplifying the reflected signals,
but without the signal reception and decoding capability.

The resulting signal model at the HRIS can be expressed
in vector form, as follows. By stacking the received signals
rl(n), l = 1, 2, . . . , N and the reflected signals yRF

l (n), l =
1, 2, . . . , N at the N × 1 complex-valued vectors r(n) and
yRF(n), respectively, it follows from (1) that:

yRF(n) = Ψ (ρ (n) ,ψ (n)) r(n), (3)

with Ψ (ρ (n) ,ψ (n)) ≜ diag([ρ1 (n) eȷψ1(n), ρ2 (n) eȷψ2(n),
. . . , ρN (n) eȷψN (n)]). Similarly, by letting yRC(n) ∈ CNr×1

be the reception output vector at the HRIS, the following
expression is deduced:

yRC(n) = Φ (ρ (n) ,ϕ (n)) r(n), (4)

Fig. 3. The considered HRIS-empowered multi-user MIMO communication
system operating in the uplink direction.

where the Nr × N matrix Φ (ρ (n) ,ϕ (n)) represents the
analog combining carried out at the HRIS receiver. When the
l-th meta-atom element is connected to the r-th RF chain, then
[Φ (ρ (n) ,ϕ (n))]r,l = (1− ρl (n))eȷϕr,l(n), while when there
is no such connection (e.g., for partially-connected analog
combiners) it holds that [Φ (ρ (n) ,ϕ (n))]r,l = 0.

The reconfigurability of HRISs implies that the parameters
ρ (n) as well as the phase shifts ψ (n) and ϕ (n) are externally
controllable. It is noted that when an element is connected to
multiple receive RF chains, then additional dedicated analog
circuitry (e.g., conventional networks of phase shifters) is
required to allow the signal to be forwarded with a different
phase shift to each RF chain, at the possible cost of additional
power consumption. Nonetheless, when each element feeds a
single RF chain, then the model in Fig. 2 can be realized
without such circuitry by placing the elements on top of
separated waveguides (see, e.g., [25]).

C. HRIS-Assisted Channel Sounding

In order to investigate the capabilities of HRISs in facilitat-
ing multi-user wireless communications, we henceforth study
the problem of channel estimation in RIS-empowered systems,
being one of the main challenges associated with conventional
almost passive and reflective RISs [19], [33]. In particular,
we consider an uplink multi-user MIMO system, where a BS
equipped with M antenna elements serves K single antenna
UTs with the assistance of a HRIS, as illustrated in Fig. 3.
We assume that there is no direct link between the BS and
any of K UTs, and thus communication is done only via
the HRIS. Let H ∈ CM×N denote the channel gain matrix
between the BS and HRIS, and gk ∈ CN be the channel gain
vector between the k-th UT (k = 1, 2, . . . ,K) and HRIS.
We consider independent and identically distributed (i.i.d.)
Rayleigh fading for all channels with H and each gk having
i.i.d. zero-mean Gaussian entries with variances β and γk,
respectively, denoting the path losses. In addition, for notation
simplicity, we define the matrix G ≜ [g1, · · · , gK ].

We consider a simple pilot-based channel training protocol,
where the channel estimation time τ is divided into B sub-
frames, and each sub-frame consists of T times slots such
that τ = BT , as depicted in Fig. 4. We assume that the
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Fig. 4. The frame structure for channel estimation using the proposed HRIS.

channel coherence time is larger than the channel estimation
time, i.e., the duration of the B sub-frames. The reconfigurable
parameters of the HRIS remain constant during each sub-
frame of T time slots and vary from one sub-frame to another.
Orthogonal pilot sequences {sk}Kk=1 are sent repeatedly over
the B sub-frames, where sk ≜ [sk (1) , sk (2) , . . . , sk (T )] ∈
C1×T is the pilot sequence of the k-th UT satisfying for
1 ≤ k1, k2 ≤ K: sk1s

H
k2

= T , if k1 = k2; and sk1s
H
k2

= 0,
if k1 ̸= k2. In Fig. 4, s(t) ≜ [s1 (t) , s2 (t) , . . . , sK (t)]T

collects the pilot signals of the K UTs at each t-th time slot
for each sub-frame, and Ω (b) ≜ [ρ(b),ϕ(b),ψ(b)] includes
all the optimization variables of the HRIS at each b-th sub-
frame. Consequently, the signal received at the HRIS at each
t-th time slot for each b-th sub-frame is given by:

yRC (b, t) = Φ (ρ(b),ϕ(b))Gs(t) + zRC (b, t) , (5)

where Φ (ρ(b),ϕ(b)) represents the reception matrix of the
HRIS during the b-th sub-frame and zRC (b, t) ∈ CNr is
a zero-mean Additive White Gaussian Noise (AWGN) with
entries having the variance σ2

RC. Similar to the derivation of
(5), the signal received at the BS at each t-th time slot for
each b-th sub-frame can be expressed as:

yBS (b, t) = HΨ (ρ(b),ψ(b)) Gs(t) + zBS (b, t) , (6)

where zBS (b, t) ∈ CM is a zero-mean AWGN having i.i.d.
elements each with variance σ2

BS.
Let yRC (b) ≜ [yRC (b, 1) ,yRC (b, 2) , . . . ,yRC (b, T )] ∈

CNr×T be the matrix collecting the received signals at the
HRIS over T time slots for each b-th block, i.e.:

yRC (b) = Φ (ρ(b),ϕ(b))GS + zRC (b) , (7)

with zRC (b) ≜ [zRC (b, 1) , zRC (b, 2) , . . . ,zRC (b, T )] ∈
CNr×T and S ≜ [s(1), s(2), . . . , s(T )], where it holds that
SSH = T IK . We, then, define yRC as the Nr B × T
matrix generated by stacking the rows of the B matrices
yRC (1) ,yRC (2) , . . . ,yRC (B). From (7), yRC can be writ-
ten as a linear function of the UTs-HRIS channel G as

yRC = ARC ({ρ(b),ϕ(b)})GS + zRC, (8)

where zRC ∈ CNr B×T results from the row stacking of
the matrices zRC(1), zRC(2), . . . ,zRC(B), while the matrix
ARC ∈ CNr B×N is defined as:

ARC ({ρ(b),ϕ(b)})

≜
[
Φ (ρ(1),ϕ(1))T , · · · ,Φ (ρ(B),ϕ(B))T

]T
. (9)

Similarly, by letting yBS (b) ≜ [yBS (b, 1) ,yBS (b, 2) , . . . ,
yBS (b, T )] ∈ CM×T be the matrix including the received
signals at BS during the T time slots for each b-th sub-frame,
we have:

yBS (b) = HΨ (ρ(b),ψ(b))GS + zBS (b) , (10)

where zBS (b) ≜ [zBS (b, 1) , . . . ,zBS (b, T )] ∈ CM×T .
As in conventional RIS-empowered communication sys-

tems, e.g., [4], [40], we assume that the BS maintains a
high-throughput direct link with the HRIS. For passive RISs,
this link is used for controlling the RIS reflection pattern.
In HRISs, which have reception, thus measurement collection,
capabilities, this link is also used for conveying valuable
information from the HRIS to the BS. Therefore, inspired
by the recent discussions for autonomous RISs with basic
computing and storage capabilities [41], [42], we focus on
channel estimation carried out at both the HRIS side as well
as the BS. Our goal is to characterize the achievable MSE
in recovering the UTs-HRIS channel G from (8), along with
the MSE in estimating H at the BS from (10) and from the
estimate of G, denoted Ĝ, provided by the HRIS. The pilot
matrix S in (8) and (10) is assumed to be known at both
the HRIS and BS. It ia also noted that different HRIS con-
figurations {ρ(b),ϕ(b),ψ(b)} result in different pilot signal
strengths in (8) and (10). Therefore, we also aim at configuring
the HRIS controllable parameters in order to facilitate channel
estimation based on the characterized MSE.

III. ESTIMATION OF THE INDIVIDUAL CHANNELS

In this section, we quantify the HRIS potential in facili-
tating estimation of all individual channels in the uplink of
HRIS-empowered multi-user MIMO communication systems.
In the considered model, the individual UTs-HRIS channel is
estimated at the HRIS side based on (8), while the individual
HRIS-BS channel is estimated at the BS from (10) using the
estimation Ĝ, which is provided by the HRIS. In this section,
we first study the number of pilots needed to estimate the
channels for a noise-free setting in Subsection III-A, where
G and H can be identified with no errors. Then, we express
the achievable channel estimation MSE for noisy reception in
Subsection III-B, which we then use to optimize the HRIS
in Subsection III-C. A discussion on the proposed channel
estimation approach is provided in Subsection III-D.

A. Channel Estimation for Noise-Free Channels

We begin by considering communications carried out in the
case of without noise, where the noise terms in (5) and (6)
are set to be zero, i.e., σ2

RC = σ2
BS = 0. In such scenarios,

one should be able to fully recover both H and G from the
observed signals yRC(n) and yBS(n). The number of pilots
required to achieve accurate recovery is stated in the following
proposition.

Proposition 1: In the case of without noise, H and G can
be accurately recovered when the number of pilots τ satisfies
the inequality:

τ ≥ N ·max
{
1,KN−1

r

}
. (11)
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Proof: The proof is provided in Appendix A.
Proposition 1 demonstrates the intuitive benefit of HRISs in

facilitating individual channel estimation with reduced number
of pilots, as compared to existing techniques for estimating
the cascaded UTs-RIS-BS channels (e.g., [17]). For instance,
for a multi-user MIMO system with M = 16 BS antennas,
Nr = 8 HRIS RF chains, K = 8 UTs, and N = 64 HRIS
elements, the adoption of an HRIS allows recovering H and
G separately using τ = 64 pilots. By contrast, the method
proposed in [17] requires transmitting over 90 pilots to identify
the cascaded channel coefficients [H]m,l[G]l,k for l, k and
m = 1, 2, . . . ,M . This reduction in pilot signals is directly
translated into improved spectral efficiency, as less pilots are
to be transmitted in each coherence duration.

B. Channel Estimation for Noisy Channels

The characterization of the number of required pilots in
Proposition 1 provides an initial understanding of the HRIS’s
capability in providing efficient channel estimation. However,
as Proposition 1 considers an effectively noise-free setup, it is
invariant of the fact that HRISs split the power of their received
signal r(n) between the reflected and received components.
In the presence of noise, this division of the signal power may
result in Signal-to-Noise Ratio (SNR) degradation. Therefore,
we next study channel estimation using HRISs in the presence
of noise, quantifying the achievable MSE in estimating the
individual UTs-HRIS and HRIS-BS channels for a fixed HRIS
configuration {ρ(b),ϕ(b),ψ(b)}. For notation brevity, in the
following, we define the set of HRIS parameters affecting its
reception as Φ ≜ {ρ(b),ϕ(b)}, the HRIS parameters affecting
the reception at the BS as Ψ(b) ≜ Ψ(ρ(b),ψ(b)), and the
overall HRIS parameters as Ω ≜ {ρ(b),ϕ(b),ψ(b)}. We also
make the assumption that the noise powers at the HRIS and
BS are of the same level, i.e., σ2

BS = σ2
RC = σ2.

We begin by characterizing the achievable MSE perfor-
mance in recovering G at the HRIS using its locally collected
measurements for a given HRIS parameterization, denoted
by EG (Φ).

Theorem 1: The UTs-HRIS channel G can be recovered
with the following MSE performance:

EG (Φ) = Tr

{(
R−1

G + T
Γ
K
ARC (Φ)H ARC (Φ)

)−1
}

where RG ≜
(∑K

k=1 γk

)
IN ; Γ ≜ Pt

σ2 represents the transmit

SNR with Pt denoting each UT’s power used for transmitted
the pilot symbols.

Proof: The proof is given in Appendix B.
Theorem 1 allows to compute the achievable MSE in

estimating G at the HRIS side for a given configuration of
its reception phase profile, determined by Φ, i.e., by {ρ(b)}
and {ϕ(b)}.

Lemma 1: Let Ĝ and G̃ = G−Ĝ denote the estimation of
G and its corresponding estimation error, respectively. From
Appendix B, the distributions of Ĝ and G̃ are respectively
given by

Ĝ ∼ CN (0,Σ (Φ)) , G̃ ∼ CN
(
0,RG̃ (Φ)

)
,

where RG̃ (Φ) and Σ (Φ) are defined as RG̃ (Φ) ≜(
R−1

G + TΓK−1ARC (Φ)H ARC (Φ)
)−1

and Σ ≜ RG

ARC (Φ)H
(
ARC (Φ) RGARC (Φ)H + K (TΓ)−1

INrB

)−1

ARC (Φ)RH
G .

Lemma 1 provides the statistical results for the estimation
of G with respect to the reconfigurable parameters Φ; more
specifically, to {ρ(b)} and {ϕ(b)}. This estimation can be used
from the BS to estimate the channel matrix H . In particular,
letting the HRIS convey the estimation of G to the BS (via
their control link) allows achieving the MSE in recovering H ,
as described by means of the following theorem. Recall that
the BS observes the reflected portion of the signal at the output
of the HRIS-BS channel.

Theorem 1 and Theorem 2 (as shown at the bottom of the
next page) allow us to evaluate the achievable MSE for the
recovery of the individual channels G and H . The fact that
these MSEs are given as functions of the HRIS parameters
Ω enables us to numerically optimize the HRIS configuration
for the estimation of the individual channels. In Section IV,
our numerical evaluation of the MSE performance reveals the
fundamental trade-off between the ability to recoverG andH ,
which is dictated mostly by the parameter ρ determining the
portion of the impinging signal being reflected; the remaining
portion is sensed and used for channel estimation at the HRIS
side.

C. HRIS Configuration Optimization

The formulation of the channel estimation MSE given
previously for a fixed HRIS configuration motivates the opti-
mization of its parameters. We henceforth seek to optimize
the HRIS parameters Ω = {ρ (b) ,ψ (b) ,ϕ (b)} so as to
minimize the weighted-sum MSE. Mathematically, the opti-
mization problem under investigation is formulated as follows:

min
{ρ(b),ψ(b),ϕ(b)}

EH ({ρ (b) ,ψ (b) ,ϕ (b)})

+ EG ({ρ(b),ϕ(b)})
s.t. [ρ(b)]p ∈ [0, 1], [ψ(b)]p ∈ [0, 2π],

b = 1, 2, . . . , B, p = 1, 2, . . . , N,
[ϕ(b)]q ∈ [0, 2π], q = 1, 2, . . . , N ×Nr. (12)

Problem (12) is non-convex and challenging to solve, even
when using numerical approaches based on Bayesian opti-
mization, as previously proposed for RIS configuration in
complex settings [43]. This is because the dimension of the
optimization variables is extremely high when the number of
antennas at the BS and the number of meta-atom elements at
the HRIS are large. We thus propose to tackle the HRIS recon-
figuration problem in (12) via a gradient-based optimization
approach.

The gradients of the sum-MSE objective function with
respect to the HRIS parameters can be computed analytically
with AD [44], which is extensively used for machine learning
applications. To compute the gradients of a differentiable
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function automatically, AD expresses the function as a com-
putational graph and applies the back-propagation algorithm
to retrieve the gradients. To justify the use of AD, we recall
that the sum-MSE objective function is composed of basic
differentiable operations, such as the matrix trace operation.
Moreover, the composition of differentiable functions results
in a differentiable function, and thus the sum-MSE objective
function is differentiable, allowing us to apply AD.

For notation brevity, in the following, we define
f (x) as the objective function of (12) with x ≜
[ρ (1) , . . . ,ρ (B) ,ψ (1) , . . . ,ψ (B) ,ϕ (1) , . . . ,ϕ (B)]
including the elements of the set Ω of the HRIS parameters
in a vector form. To deal with the inequality constraints on
the HRIS free variables, we add a barrier regularization term
to the objective function of (12), resulting in the following
optimization problem:

min
x∈C

L(x) ≜ f(x) + λBC(x). (13)

where λ ∈ R is a regularization hyperparameter, C denotes the
feasible set of x, given by equation C ≜

{
x ∈ RBN(2+Nr) :

0 ≤ xi ≤ 1,∀i ∈ [1, BN ] and 0 ≤ xi ≤ 2π,∀i ∈
[BN + 1, BN (2 +Nr)]

}
, and BC(x) represents the barrier

function, which adds a high penalty to the points approaching
the feasible region’s boundaries. Formally, a barrier function
BC(x) is any function that satisfies: i) BC(x) ≥ 0 ∀x ∈ C; and
ii) BC(x) → ∞ ∀x → ∂C, where ∂C denotes the boundaries
of the feasible region. In the problem formulation in (13),
we adopt the barrier function:

BC(x) =
BN∑
i=1

(
1
xi

+
1

1− xi

)

+
BN(2+Nr)∑
i=BN+1

(
1
xi

+
1

2π − xi

)
, (14)

which is differentiable, returns non-negative values in the
feasible set, and is not bounded as the variables approach the
feasible set’s boundaries. To solve the resulting minimization
problem, we apply a gradient-based iterative approach, where
at each iteration we compute the derivative with an AD
tool (we used PyTorch’s autograd engine [45]) and update
the parameters with a first-order optimizer (e.g., gradient
descent and its variants, such as Adam [46]). The solution
using a conventional gradient descent algorithm with AD is
summarized in Algorithm 1.

Algorithm 1 HRIS Configuration for Weighted-Sum MSE
Minimization
Initialize: x(0), step-size η, and t← 0.

1: while stopping criteria is not satisfied do
2: Update the objective value L(x) in (13).
3: Compute the gradients using the AD-based back-

propagation algorithm ∇xL(x(t)).
4: Update the parameters vector via x(t+1) ← x(t) −

η∇xL(x(t)).
5: Update t← t+ 1.
6: end while

Output: {ρ (b) ,ψ (b) ,ϕ (b)} ← x(t).

The computational complexity of Algorithm 1 is mainly
dominated by the objective value calculation in Step 2 and
the gradient calculation in Step 3. To update the objective
function value in Step 2, we need to compute the MSE values
of EG (Φ) defined in Theorem 1 and EH (Ω) defined in
Theorem 2. The computational complexities of EG (Φ) and
EH (Ω) are O

(
N3
)

and O
(
M3N3

)
, respectively, mainly

coming from the matrix inversion operation. The computa-
tional complexity of computing the gradients in Step 3 is
O
(
BN (2 +Nr)

(
N3 +M3N3

))
[47]. As a result, the total

computational complexity of Algorithm 1 can be approximated
as O

(
Imax (BN (2 +Nr) + 1)

(
N3 +M3N3

))
, with Imax

denoting the maximum of iterations.

D. Discussion

The fact that HRISs require less pilots naturally follows
from their ability to provide additional Nr reception ports,
while simultaneously acting as a dynamically configurable
reflector. It is noted that our results in the previous subsections
are obtained assuming that the UTs-HRIS channel G is
estimated at the HRIS, and its estimate is then forwarded to the
BS. Furthermore, exploiting the HRIS as an additional non-
co-located receive port can also facilitate data transmission
once the channels are estimated. Though, in this case, one
would also have to account for possible rate limitations on the
HRIS-BS link. We leave the study of these additional usages
of HRISs for future research.

The study of HRISs, combined with the numerical eval-
uations in Section IV that follows, only reveal a portion of
the potential of HRISs in facilitating wireless communication
over programmable environments. To further understand the

Theorem 2: The HRIS-BS channel H can be recovered with the following MSE performance:

EH (Ω) = Tr

((
1
β IMN +

(
K
∑B
j=1

∑B
i=1 Tr

([
D(Ω)−T

]
i,j

)
Ψ(i)Σ (Φ)Ψ(j)H

)T
⊗ IM

)−1
)
,

where D(Ω) is a BK ×BK matrix which can be partitioned into B ×B blocks with each block being a K ×K submatrix.
The i-th row and j-th column block of D(Ω) is defined as:

[D (Ω)]i,j =
{

β
KTr

(
Ψ(j)HΨ(i)RG̃ (Φ)

)
IK + (TΓ)−1IK , if i = j

β
KTr

(
Ψ(j)HΨ(i)RG̃ (Φ)

)
IK , if i ̸= j

Proof: The proof is provided in Appendix C.
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contribution of HRISs, one should also study their impact
on data transmission, as well as consider the presence of
an additional direct channel between the UTs and the BS.
Furthermore, the simplified model used in this work is based
on the hybrid metamaterial model presented in [31]. To this
end, additional experimental studies of this model are required
to formulate a more accurate physically-compliant model for
the behavior of HRISs; see [48] and references therein for
recent modeling research. In addition, as an initial study
on HRIS-assisted channel estimation, we consider all the
channels following the i.i.d. Rayleigh fading model. In prac-
tice, the i.i.d. Rayleigh fading model may not be physically
accurate in modeling the planar surface arrays, requiring
more accurate but complicated channel modeling such as
spatially correlated channel model. In that case, it would
be quite a challenging task to derive the closed-form MSE
expressions for individual channels. Machine learning-based
tools may be applied to optimize/configure the parameters of
HRIS when the more accurate spatially correlated channel
model is adopted. These extensions are also left for future
work.

Our proposed hybrid RIS structure is different from another
emerging hybrid RIS concept, called simultaneously transmit-
ting and reflecting (STAR)-RIS [34], [35], [36]. In STAR-RIS,
each antenna element splits its incident signal power into
two parts, i.e., one part of the signal is reflected in the
same space as the incident signal, and the other part of the
signal is transmitted to the opposite space of the incident
signal. Hence, STAR-RIS is capable of simultaneous reflection
and refraction (passing the signal through the surface to
its other side), without having any receiving or decoding
capability.

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of
the proposed channel estimation approach for the uplink of
HRIS-empowered multi-user MIMO communication systems.
Specifically, we present simulation parameters in Section IV-A
and then provide our numerical results in Section IV-B.

A. Simulation Setup

In our simulations, the pathlosses of the individual channels

H and gk are modeled as β = λ0

(
dH

d0

)−αh

and γk =

λ0

(
dk

d0

)−αg

, respectively, where λ0 = −20 dB denotes a
constant pathloss at the reference distance d0 = 1 m, while
dH and dk are the distances from the HRIS to the BS and kth
UT, respectively. The pathloss exponents were set as αh = 2.2
and αg = 2.1. The above wireless channel parameters were
also adopted in [17]. We consider a 2D Cartesian coordinate
system in which the BS and the HRIS are respectively located
at points (0, 0) and (0, 50 m), while the K users were randomly
generated in an area centered at (30 m, 50 m) with a radius
of 10 m. In addition, we have set the numbers of antennas at
the BS and the number of meta-atom elements at the HRIS as
M = 16 and N = 64, respectively, and the number of UTs
as K = 8, unless otherwise stated.

Fig. 5. Convergence behavior of the weighted-sum MSE for the pro-
posed channel estimation algorithm with different random initialization using
Nr = 8 receive RF chains at the HRIS, transmit SNR of Γ = 100 dB, and
τ = 104 pilots symbols.

B. Simulation Results

We first demonstrate the convergence behavior of our
proposed AD-based Algorithm 1 for solving the considered
channel estimation problem. Specifically, Fig. 5 depicts the
convergence of the achievable weighted sum-MSE for different
random initialization of the optimization variables, when the
number of receive RF chains at the HRIS is set to Nr = 8,
the transmit SNR Γ = 100 dB, and the pilot length is
τ = 104. It can be observed that for each randomly generated
initialization, the proposed algorithm converges to a fixed
value within 100 iterations, and typically with much fewer
iterations, verifying its relatively fast convergence. Therefore,
we have set the maximum number of iterations to be 100 for
Algorithm 1 in the following simulation experiments.

In Fig. 6, we show the trade-off between the normalized
MSE performances when estimating the UTs-HRIS channel
G at the HRIS and the HRIS-BS channel H at the BS for
different values of the power splitting parameter ρ; we have
assumed that all the elements of the HRIS have the same
power splitting parameter ρ. In the figure, we have set the
transmit SNR to Γ = 100 dB and the pilot length τ =
104. In addition, “Optimized Phase” denotes that the phase
variables of the HRIS have been optimized using Algorithm 1,
and “Random Phase” indicates that the HRIS phase variables
were generated randomly. It can be observed from Fig. 11(a)
that the normalized MSE of estimating the individual channel
G increases significantly as ρ increases. This happens because
as ρ increases, each meta-atoms element of the HRIS splits less
power of the impinging signal for channel estimation. It is also
shown in Fig. 11(b) that as ρ increases, the normalized MSE
of estimating the individual channel H decreases gradually.
This improvement ceases when ρ approaches 1, implying that
the HRIS behaves as a purely passive RIS and the individual
channels cannot be disentangled. This clearly demonstrates the
fundamental trade-off between the accuracy in estimating each
of the individual channels, which is dictated by the way that
the HRIS splits the power of the impinging signal. In addition,
it is evident from the figure that the channel estimation
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Fig. 6. Normalized MSE performance of the proposed channel estimation
algorithm in recovering the combined UTs-HRIS channel G at the HRIS and
the HRIS-BS channel H at the BS using τ = 104 pilots symbols.

performance of the “Optimized Phase” case is slightly better
than that of the “Random Phase,” especially when the power
splitting parameter ρ approaches its maximum value. This
performance enhancement will become more significant when
also optimizing the power splitting parameter ρ, as will be
demonstrated in the sequel.

We now compare the channel estimation performance,
considering our proposed HRIS-based approach (labeled as
“Proposed HRIS”), the existing passive reflective RIS-based
approach of [17] (labeled as “Reflective RIS”), and two
baseline schemes (labeled as “Proposed HRIS with Partial
Connection” and “Proposed HRIS with Random Parameters”).
The former baseline scheme adopts a partially-connected
analog combiner at the HRIS receiver, i.e., each antenna
element just connects to only one receive RF chain, like the
DMA structure defined in [26], and the corresponding power
splitting parameters and phase configurations are optimized
using Algorithm 1. With the latter baseline scheme, the
power splitting parameters and phase profiles are randomly
generated within the feasible set. In addition, since the channel
estimation approach proposed in [17] can only estimate the
cascaded channel, we also calculated the resulting cascaded

Fig. 7. Normalized MSE performance of the cascaded channel estimation
versus the transmit SNR Γ for τ = 104 pilots symbols for each of the
K = 8 UTs. Various versions of the proposed HRIS with Nr = 8 receive
RF chains and a reflective RIS have been considered.

channel estimation for the proposed approach, using our
estimated individual BS-HRIS channel Ĥ and the UTs-HRIS
channel Ĝ = [ĝ1, ĝ2, . . . , ĝK ]. Specifically, the normalized
MSE performance of the estimated cascaded channel with our
HRIS-based approach was calculated as follows:

ec ≜
E
{∑K

k=1

∥∥∥Ĥdiag (ĝk)−Hdiag (gk)
∥∥∥2

F

}
E
{∑K

k=1 ∥Hdiag (gk)∥
2
F

} . (15)

In Fig. 7, we demonstrate the normalized MSE of the
cascaded channel estimation as a function of the transmit
SNR value Γ for the considered estimation methods, using
Nr = 8 receive RF chains for our HRIS architecture. The
method “Reflective RIS” in [17] was found to require at least
92 pilot symbols, and thus, we set the pilot length to τ = 104.
As shown in the figure, the HRISs sensing capability is trans-
lated into improved cascaded channel estimation accuracy,
as compared to the state of the art. For example, the proposed
HRISs (even with the random configuration case “Proposed
HRIS with Random Parameters”) can achieve a much lower
normalized MSE than that of the “Relective RIS.” In addition,
it can be observed that the performance of the case “Proposed
HRIS with Partial Connection” is comparable with that of
the “Proposed HRIS,” which indicates the effectiveness of our
proposed HRIS even when using the lower power consumption
and hardware complexity partially-connected analog combiner.

We also plot the normalized MSE of the cascaded channel
against the pilot sequence length τ in Fig. 8, considering
the transmit SNR value Γ = 100 dB and Nr = 8 received
RF chains at the HRIS. Evidently, the proposed HRIS-based
approaches can significantly reduce the error of the cascaded
channel estimation, as compared to the passive reflection RIS.
Moreover, we see that for the proposed HRIS, the normalized
MSE decreases rapidly at first and then tends to slow down as
the pilot length increases. As before, our proposed HRIS with
a partially-connected analog combiner is capable of achieving
comparable channel estimation accuracy with that of HRIS
with a fully-connected analog combiner.
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Fig. 8. Normalized MSE performance of the cascaded channel estimation
versus the pilot symbols’ length τ used by each of the K = 8 UTs,
considering the transmit SNR Γ = 100 dB. All schemes compared in Fig. (7)
have been considered.

Fig. 9. Normalized MSE performance of the cascaded channel estimation
versus the number of HRIS element N , considering the pilot signal length
τ = 144 and transmit SNR Γ = 100 dB. All schemes compared in Fig. (7)
have been considered.

In Fig. 9, we study the effect of the number of HRIS
element N on the performance of cascaded channel estimation,
considering the transmit SNR value Γ = 100 dB and the
pilot signal length τ = 144. From Fig. 9, it is observed
that the normalized cascaded channel MSE of the proposed
HRIS-based approaches decreases significantly with increasing
N , while for the passive reflection RIS [17], the normalized
cascaded channel MSE reduces very slowly. Moreover, it is
observed that, as the increase of N , the performance gap
between our proposed HRIS with a partially-connected analog
combiner and our proposed HRIS with a fully-connected
analog combiner is gradually reduced, which is consistent with
our observations from Figs. 7 and 8.

In Fig. 10, we investigate the effect of the number Nr
of receive RF chains on the cascaded channel estimation
accuracy, considering the same transmit SNR with Fig. 8 and
different pilot sequence lengths τ . It is illustrated that, as Nr
increases, the normalized cascaded channel MSE decreases
initially and then converges to a constant value. This happens
because the observed pilot signals increase proportionately

Fig. 10. Normalized MSE performance of the cascaded channel estimation
versus the number of the receive RF chains Nr at the HRIS, considering the
transmit SNR Γ = 100 dB and τ = {104, 144} pilot symbols’ length at each
of the K = 8 UTs. The proposed HRIS and a reflective RIS are compared.

Fig. 11. Comparison of the individual channel estimation performance over
the transmit SNR Γ.

to the number of receive RF chains, thereby increasing the
accuracy of channel estimation. However, once the observed
pilot signals exceed a threshold, increasing their number
further will not reduce the channel estimation error. Moreover,
it is evident from the figure that the proposed HRIS-based
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approach achieves higher channel estimation accuracy than the
one based on the conventional passive RIS, even when only
few receive RF chains are used. For example, in the case of
τ = 104, the proposed HRIS requires only Nr = 5 receive RF
chains to achieve significantly improved channel estimation
performance. Additionally, we see that the required Nr value
decreases as the pilot length increases.

Finally, Fig. 11 compares the individual channel estimation
performance between our proposed method with that of the
alternating least squares based algorithm (labeled as “ALS”)
in [49] and the two-timescale based algorithm (labeled as
“Two-Timescale”) in [19], considering Nr = 8 received RF
chains at the HRIS and the pilot signal length τ = 104. From
Fig. 11, it can be observed that our proposed HRIS method
performs significantly better than the “ALS” and the “Two-
Timescale” methods in terms of estimating the individual
channel G (between Users and RIS). While for estimating the
individual channel H (between BS and RIS), our proposed
HRIS method achieves a better performance than the “Two-
Timescale” method, but worse than the “ALS” method. This
is because the power splitting operation at the HRIS will
lower the signal strength at the BS and the channel estimation
error at the HRIS will also be forwarded to the BS. These
observations indicate that our proposed HRIS architecture will
be greatly beneficial for communication scenarios with two-
timescale channel property, e.g., G needs to be estimated
frequently due to the mobility of users, whereas the quasi-
static channel H only needs to be estimated over a long
period.

V. CONCLUSION

In this paper, we studied wireless communications aided
by HRISs, which are metasurfaces capable of simultaneously
reflecting and sensing impinging signals in a dynamically
controllable manner. We presented a simple model for the
operation of HRIS-empowered multi-user MIMO communi-
cations systems, and investigated their potential to facilitate
channel estimation, as an indicative application. We showed
that for the case without noise, HRISs enable to significantly
save pilot overhead compared to that required by purely
reflective RISs. We also quantified the achievable estimation
error performance for the case with noise. In particular,
we derived the individual MSE for estimating individual
channels at the HRISs and BS, and proposed a gradient-
based approach to configure the HRISs for minimizing the
weighted sum-MSE. Our simulation results showcased the
impactful role HRISs in RIS-empowered communications in
estimating the individual channels as well as the cascaded
channel over existing methods relying on nearly passive and
reflective RISs.

APPENDIX A
PROOF OF PROPOSITION 1

By discarding the noise term in (8), the received pilot signal
at the HRIS is given by

yRC = ARC ({ρ(b),ϕ(b)})GS. (A.1)

By using the identity vec(ABC) =
(
CT ⊗A

)
vec(B),

we can rewrite (A.1) as follows:

vec (yRC) =
(
ST ⊗ARC ({ρ(b),ϕ(b)})

)
vec(G). (A.2)

In the latter expression, we define A1 ≜ ST ⊗
ARC ({ρ(b),ϕ(b)}). If A1 is a full-column-rank matrix,
then vec (G) can be recovered from (A.2) as vec (G) =

A†1vec (yRC), where A†1 =
(
AH

1 A1

)−1

AH
1 is the pseudoin-

verse of A1. Once we obtain the perfect estimate of vec (G),
then the channel matrix G can be recovered accordingly. The
dimension of A1 is Nrτ by NK, and recall that τ = BT .
Thus, in order to guarantee that A1 has a full column rank,
the pilot length τ should satisfy the following inequality:

τ ≥ NK

Nr
. (A.3)

On the other hand, by discarding the noise term in (10), the
received pilot signal at the BS during T time slots for each
b-th sub-frame can be expressed as

yBS (b) = HΨ (ρ(b),ψ(b))GS, (A.4)

or equivalently,

vec (yBS (b)) =
(
(Ψ (ρ(b),ψ(b))GS)T ⊗ IM

)
vec(H).

(A.5)

In the sequel, we make use of the notation ȳBS for
the Mτ × 1 vector generated by stacking the vectors
vec (yBS (1)) , vec (yBS (2)) , . . . , vec (yBS (B)). It follows
from (A.5) that we can express yBS as ȳBS = A2vec (H),
where A2 ∈ CM τ×M N is given by

A2 = [Ψ (ρ(1),ψ(1))GS, · · · ,Ψ (ρ(B),ψ(B))GS]T

⊗IM , (A.6)

Similarly toA1 before, we can perfectly recover vec(H) ifA2

is a full-column-rank matrix, i.e., it holds: vec(H) = A†2ȳBS,

where A†2 =
(
AH

2 A2

)−1

AH
2 . In order to guarantee that A2

has a full column rank, the pilot length τ should satisfy the
following inequality:

τ ≥ N. (A.7)

By putting (A.3) and (A.7) together, we conclude that the
number of pilots τ should satisfy the inequality:

τ ≥ N max
{

1,
K

Nr

}
, (A.8)

which completes the proof of Proposition 1.

APPENDIX B
PROOF OF THEOREM 1

For notation brevity, we define Φ ≜ {ρ(b),ϕ(b)} during
the proof of Theorem 1. To estimate the channels between the
HRIS and the UTs, we project yRC in (8) on SH , yielding

ỹRC =
1
T
yRCS

H = ARC (Φ)G+ z̃RC, (B.1)
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where z̃RC ≜ 1
T zRCS

H , whose distribution is given by
CN

(
0,K(TΓ)−1INrB

)
. According to (B.1), the linear esti-

mation that minimizes the mean-square-error (MSE) of the
estimation of G has the following form [50]:

Ĝ = M0ỹRC, (B.2)

where M0 is the linear estimator, which can be obtained by
solving the following problem:

Mo ≜ arg min
M

E
{∥∥∥G− Ĝ∥∥∥2

F

}
= arg min

M
E
{
∥G−MỹRC∥

2
F

}
. (B.3)

The error of this estimator can be given by

EG (Φ) = E
{
∥G−MỹRC∥

2
F

}
= Tr (RG)− Tr

(
RGARC (Φ)H MH

)
−Tr (MARC (Φ) RG)

+ Tr
(
M

(
ARC (Φ) RGARC (Φ)H

+K (TΓ)−1 INrB

)
MH

)
, (B.4)

where RG = E
[
GGH

]
=
(∑K

k=1 γk

)
IN denotes the

covariance matrix of G. Since the second-order channel statis-
tics vary slowly with time in general, here we assume that RG

can be perfectly estimated at the HRIS. The optimal Mo can
be found from ∂EG (Φ) /∂M = 0 and is given by

Mo = RGARC (Φ)H
(
ARC (Φ) RGARC (Φ)H

+K (TΓ)−1 INrB

)−1

. (B.5)

Substituting (B.5) into (B.4) and using (A+BCD)−1 =
A−1−A−1B

(
DA−1B +C−1

)−1
DA−1, the MMSE esti-

mation error of G can be derived as

EG (Φ) = Tr
{(
R−1

G + TΓK−1ARC (Φ)H ARC (Φ)
)−1
}
.

(B.6)

The linear MMSE estimator of G can be expressed as

Ĝ = RGARC (Φ)H
(
ARC (Φ) RGARC (Φ)H

+K (TΓ)−1 INrB

)−1

ỹRC, (B.7)

and it is easy to verify that the mean of Ĝ is zero, i.e.,
E
{
Ĝ
}

= 0. Its covariance matrix is given by

Σ (Φ) = E
{
Ĝ Ĝ

H
}

= RGARC (Φ)H
(
ARC (Φ) RGARC (Φ)H

+K (TΓ)−1 INrB

)−1

ARC (Φ)RH
G . (B.8)

We finally let G̃ = G−Ĝ denote the channel estimation error,
which has zero mean and the covariance matrix

RG̃ (Φ) =
(
R−1

G + T
Γ
K
ARC (Φ)H ARC (Φ)

)−1

.

(B.9)

The latter expression concludes the proof.

APPENDIX C
PROOF OF THEOREM 2

For notation brevity, we define Φ ≜ {ρ(b),ϕ(b)}, Ω ≜
{ρ(b),ϕ(b),ψ(b)}, and Ψ(b) ≜ Ψ(ρ(b),ψ(b)), during the
proof of Theorem 2. By projecting yBS (b) defined in (10)
on SH and scaling the resulting term by 1/T , we get the
expression:

ỹBS (b) =
1
T
yBS[l]SH = HΨ (b)G+ z̃BS (b) , (C.1)

where z̃BS (b) ≜ 1
T zBS (b)SH . By applying the identity

vec(ABC) =
(
CT ⊗A

)
vec(B), we rewrite ỹBS[l] in (C.1)

in the following vector form:

vec (ỹBS (b))

=
(
GTΨ (b)T ⊗ IM

)
vec (H) + vec (z̃BS (b))

=
(
Ĝ
T
Ψ (b)T ⊗ IM

)
vec (H)

+
(
G̃
T
Ψ (b)T ⊗ IM

)
vec (H) + vec (z̃BS (b))

(C.2)

where G̃ = G− Ĝ denotes the estimation error of G.
Let the notation yBS represent the MKB × 1 vector

generated by stacking the following vectors:
vec (ỹBS (1)) , vec (ỹBS (2)) , . . . , vec (ỹBS (b)). We can
express yBS from (C.2) as

yBS = ABSh+ ∆ABSh+ zBS︸ ︷︷ ︸
z

, (C.3)

where zBS results from stacking
vec (z̃BS (1)) , vec (z̃BS (2)) , . . . , vec (z̃BS (B)) and
h = vec (H), as well as ABS ∈ CMKB×M N and
∆ABS ∈ CMKB×M N are respectively given by

ABS ≜
[
Ψ(1)Ĝ, · · · ,Ψ(B)Ĝ

]T
⊗ IM , (C.4)

∆ABS ≜
[
Ψ(1)G̃, · · · ,Ψ(B)G̃

]T
⊗ IM (C.5)

We next define z ≜ ∆ABSh + zBS as the effective noise
vector at the BS, which includes the colored interference
forwarded from the HRIS and the local AWGN vector zBS.
We present the following Proposition, which provides the
second-order statistics of z.

Proposition C.1: The covariance matrix of z is given by
Rz (Ω) = E

{
zzH

}
= D (Ω) ⊗ IM , where D (Ω) is a

BK ×BK matrix, which can be partitioned into B×B blocks
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Eh = Eh,Ĝ

{∥∥∥∥h−RhA
H
BS

(
ABSRhA

H
BS +Rz

)−1

yBS

∥∥∥∥2
}

= EĜ

{
Tr
((
R−1
h +AH

BSR
−1
z ABS

)−1
)}

(C.9)

= EĜ

Tr

(R−1
h +

(∑B
j=1

∑B
i=1 Ψ(i)Ĝ

[
D−T

]
i,j
Ĝ
H
Ψ(j)H

)T
⊗ IM

)−1


Eh
(a)

≥ Tr

(R−1
h +

(∑B
j=1

∑B
i=1 Ψ(i)EĜ

{
Ĝ
[
D−T

]
i,j
Ĝ
H
}

Ψ(j)H
)T
⊗ IM

)−1


(b)
= Tr

(R−1
h +

(
K
∑B
j=1

∑B
i=1 Tr

([
D−T

]
i,j

)
Ψ(i)Σ (Φ)Ψ(j)H

)T
⊗ IM

)−1
 (C.11)

with each block being a K ×K submatrix. The i-th row and
j-th column block of D (Ω) is defined as

[D (Ω)]i,j

=


β
KTr

(
Ψ(j)HΨ(i)RG̃ (Φ)

)
IK + (TΓ)−1IK ,

if i = j
β
KTr

(
Ψ(j)HΨ(i)RG̃ (Φ)

)
IK ,

if i ̸= j

.(C.6)

Proof: Due to page limitations, please refer to [51] for
the proof of Proposition C.1.

For notation brevity, in the following we make use of
the simplified notations Rz and D to represent Rz (Ω) and
D (Ω), respectively. We also utilize the LMMSE estimator to
estimate h from yBS as ĥ = TyBS, where T is the optimal
solution that minimizes the following channel estimation error:

Eh = E
{∥∥∥h− ĥ∥∥∥2

}
= E

{
∥h− TyBS∥

2
}
. (C.7)

It is well-known [52] that the optimal T can be obtained as

T = E
[
hyHBS

] (
E
[
yBSy

H
BS

])−1

= RhA
H
BS

(
ABSRhA

H
BS +Rz

)−1

, (C.8)

where Rh = E
{
hhH

}
= βIMN . By substituting (C.8) into

(C.7), we get the expression of Eh in (C.9), as shown at the
top of the page.

Moreover, the following expression holds:

EĜ

{
Ĝ
[
D−T

]
i,j
Ĝ
H
}

= EN
{
Σ (Φ)1/2N

[
D−T

]
i,j
NHΣ (Φ)1/2

}
= K Tr

([
D−T

]
i,j

)
Σ (Φ) , (C.10)

where N ∈ CN×K denotes a random matrix distributed as
N ∼ CN (0, IN ).

In order to efficiently design the reflection and reception
weights of the proposed HRIS, we next approximate the MSE
defined in (C.9) with a deterministic MSE, using a standard
bounding technique. In particular, we derive the lower-bound
of Eh in (C.11), (as shown at the top of the page), where (a)
holds from the Jensen’s inequality and the fact that Tr

(
X−1

)
is a convex function with respect to X. In addition, (b) comes
from (C.10).

Putting all the above together, we obtain the lower bound of
the channel estimation error at the BS, as stated in Theorem 2,
which concludes the proof.
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