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Abstract—Distributed learning is envisioned as the bedrock
of next-generation intelligent networks, where intelligent agents,
such as mobile devices, robots, and sensors, exchange informa-
tion with each other or a parameter server to train machine
learning models collaboratively without uploading raw data
to a central entity for centralized processing. By utilizing the
computation/communication capability of individual agents, the
distributed learning paradigm can mitigate the burden at central
processors and help preserve data privacy of users. Despite its
promising applications, a downside of distributed learning is its
need for iterative information exchange over wireless channels,
which may lead to high communication overhead unaffordable
in many practical systems with limited radio resources such
as energy and bandwidth. To overcome this communication
bottleneck, there is an urgent need for the development of
communication-efficient distributed learning algorithms capable
of reducing the communication cost and achieving satisfactory
learning/optimization performance simultaneously. In this paper,
we present a comprehensive survey of prevailing methodologies
for communication-efficient distributed learning, including reduc-
tion of the number of communications, compression and quanti-
zation of the exchanged information, radio resource management
for efficient learning, and game-theoretic mechanisms incentiviz-
ing user participation. We also point out potential directions for
future research to further enhance the communication efficiency
of distributed learning in various scenarios.

Index Terms—Distributed learning, communication efficiency,
event-triggering, quantization, compression, sparsification, re-
source allocation, incentive mechanisms, single-task learning,
multitask learning, meta-learning, online learning

I. INTRODUCTION

Machine learning is one of the most important technologies
to enable ubiquitous artificial intelligence (AI). In conven-
tional centralized machine learning, all data is delivered from
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data owners to a central entity, which conducts centralized
training and then sends the trained model to users of AI
services. Such a centralized learning paradigm has several
disadvantages. First, transmitting huge amount of raw data
to a central processor can lead to significant traffic conges-
tion and large communication delay. This renders centralized
learning inappropriate for time-sensitive applications such as
autonomous driving. Second, conducting the entire training
procedure in a centralized manner causes substantial, if not
prohibitive, computation burden for the central processor, and
may lead to large computation latency. Third, the training data
of individual users may contain private sensitive information
(e.g., health data and financial data) and users with privacy
concerns may not be willing to share their raw data with
others.

To resolve the aforementioned issues, distributed learning
has emerged as an alternative paradigm, where data owners
train machine learning models collaboratively and distribu-
tively without uploading raw data to a central entity for cen-
tralized processing. In distributed learning, by utilizing their
communication and computation resources, intelligent devices
(e.g., smartphones) conduct local training steps by using local
datasets and exchange information with other devices or a
parameter server. Such a framework alleviates the computation
and communication burden of centralized learning, and helps
preserve data privacy of users. Due to its great potential,
distributed learning has been extensively studied in the past
decades and many distributed learning/optimization algorithms
have been proposed for a variety of distributed learning
settings (e.g., single-task learning, personalized learning, on-
line learning, fully decentralized learning over networks, and
more). Examples include distributed (sub)gradient descent
[1], distributed primal-dual method [2], alternating direction
method of multipliers [3], distributed Newton’s method [4],
etc. The convergence performance of these distributed learning
algorithms has been comprehensively analyzed for learning
problems under various conditions (convexity, nonconvexity,
strong convexity, smoothness, etc.).

Distributed learning algorithms require agents to exchange
information with each other or a parameter server. The infor-
mation often needs to be transmitted over wireless channels
and may consume substantial amount of radio resources (e.g.,
energy and bandwidth), which are scarce in practice. For
instance, mobile devices may have scarce energy due to their
limited battery capacity, and can use very narrow bandwidth
in communication systems located in densely populated urban
regions. Sensors deployed in the wild may have little energy
supply and are difficult to recharge when they run out of
energy.

In conventional distributed learning algorithms, agents have
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to send high-dimensional dense real-valued vectors to other
agents or the parameter server in every time slot, leading to
high radio resource consumption. To cope with communication
factors such as channel fading and noise, agents need to make
the most of their limited radio resources to align well with
the nature of distributed learning algorithms. Moreover, due
to the substantial consumption of radio resources, agents are
not well motivated to participate in distributed learning algo-
rithms when they are deficient in resources. If not addressed
adequately, the scarcity of wireless resources may greatly
restrict the application of distributed learning in many practical
scenarios.

To reduce the communication overhead of distributed learn-
ing algorithms, a variety of methods have been proposed
in the literature. Methodologies for communication-efficient
distributed learning can be divided into four categories. The
first type of methods aim to reduce the number of commu-
nication rounds of distributed learning algorithms and require
information exchange only when necessary [5]. The conditions
for communications to occur are devised to balance the
tradeoff between learning performance and communication
overhead. Alternatively, the second type of methods seek to
compress the information to be sent into finite number of bits
or sparse vectors through data compression techniques such as
quantization [6] and sparsification [7], [8]. The compression
methods and learning algorithms are designed jointly to miti-
gate the negative impact of compressed communications on the
learning performance. The third type of methods take practical
wireless communication factors (noise, fading, interference,
etc.) into consideration and aim to manage radio resources
optimally for learning purposes (e.g., [9]). The goal is to
achieve the best learning performance under radio resource
budget constraints. The fourth type of works investigate the
strategic behavior of agents in distributed learning [10]. Game-
theoretic mechanisms are designed to incentivize agent par-
ticipation in distributed learning algorithms, which consume
agents’ precious communication resources. There are works

combining the aforementioned four types of techniques to
further mitigate the communication overhead.

In this paper, we present a holistic overview of existing
works on communication-efficient distributed learning. The
organization of the paper is depicted in Fig. 1 and elucidated
as follows.
• In Section II, we provide a brief overview of the basic

problem formulations, algorithms, and convergence re-
sults of distributed learning, which is categorized into two
scenarios, namely, distributed learning in the presence
of a central parameter server and fully decentralized
learning over networks without parameter servers. For
both scenarios, we first consider single-task learning,
where all agents seek to learn a common model. Then,
we consider personalized learning (including multitask
learning and meta-learning), where different agents aim
to learn different (but related) models.

• In Section III, we survey communication-efficient dis-
tributed learning algorithms that reduce the number of
communication rounds. Such algorithms may conduct
multiple local update steps between consecutive com-
munication rounds according to some pre-defined rules,
or trigger communications only when certain conditions
are met as the algorithms progress. We also provide an
overview of results on characterizing the fundamental
lower bounds for the number of communications needed
to achieve certain learning performance guarantees. We
then introduce several possible future research directions
for reducing the number of communications in various
distributed learning settings.

• In Section IV, we consider communication-efficient dis-
tributed learning algorithms using compressed commu-
nications to reduce redundant information transmission.
These compression techniques include quantization, spar-
sification, error-compensated compression, as well as
other methods exploiting special structures (e.g., low
rank) of the exchanged information. Potential directions
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Fig. 2: Two multi-agent systems for distributed learning.

for future works on distributed learning with compressed
communications are also mentioned.

• In Section V, we survey resource management tech-
niques for distributed learning, which seek to achieve the
best learning performance under radio resource budget
constraints. We review results on both power allocation
and bandwidth allocation, including their integration with
other communication-efficient techniques such as user
selection. We further point out some future research
directions on this topic.

• In Section VI, we review several recent works on
game-theoretic incentive mechanism design for encourag-
ing user participation in distributed learning algorithms,
which consume substantial amount of radio resources of
users. Some potential future directions are also discussed.

• In Section VII, we conclude the paper.

II. PRELIMINARIES OF DISTRIBUTED LEARNING

In this section, we provide a brief overview of distributed
learning, a research topic extensively studied over multiple
decades. We categorize distributed learning settings based on
the presence or absence of a central entity coordinating the
learning processes. For both scenarios, we present the basic
problem formulations, prevailing algorithms, and convergence
results.

A. Distributed Learning with Parameter Server
We first consider distributed learning over a system con-

sisting of multiple agents and a central parameter server
(abbreviated as server henceforth), as illustrated in Fig. 2-
(a), where the server is able to exchange information with all
agents. Such multi-agent systems are ubiquitous. For instance,
in federated learning (FL) over cellular networks, the base
station (server) can communicate with the mobile devices
(agents) [11]–[13]. In sensor networks, the fusion center
(server) can exchange information with the sensors (agents).
In the following, we categorize distributed learning problems
into two classes depending on whether the model parameters
of the agents are the same or not.

1) Single-Task Learning: Let L(xxx;uuu, d) be the loss function
of the learning problem, where xxx,uuu, d are the model parameter,
input feature, and output value or label, respectively. For ex-
ample, we have L(xxx;uuu, d) = (uuuTxxx−d)2 for linear regression,

and L(xxx;uuu, d) = log(1+exp(−d·uuuTxxx)) for logistic regression
(d = ±1). The most standard and commonly used distributed
learning setting is the single-task learning problem below

min
xxx

f(xxx) :=

n∑
i=1

fi(xxx), (1)

where fi(xxx) =
∑
k∈Si L(xxx;uuuik, dik) is the local loss function

of agent i, and {uuuik, dik}k∈Si is the training set of agent
i. Problem (1) is referred to as empirical risk minimization
or consensus optimization in the literature of distributed
optimization. In such a single-task learning problem, agents
aim to learn a common model xxx collaboratively based on all
agents’ training data. For instance, in sensor networks, sensors
may seek to estimate the location of an object jointly by
using every sensor’s local measurements. In deep learning,
to alleviate the computational burden of training, data may be
distributed among multiple computers, which collaborate to
train a common neural network in parallel.

Problem (1) has been studied for decades [14], and a variety
of algorithms have been proposed. One of the most standard
algorithms is gradient descent (GD). At each time t, the server
broadcasts the current model xxx(t) to all agents. Each agent i
computes the local gradient ∇fi(xxx(t)) by using local training
data, and sends it to the server. The server then aggregates all
the local gradients, and updates the model according to

xxx(t+ 1) = xxx(t)− ηt
n∑
i=1

∇fi(xxx(t)),

where ηt > 0 is the stepsize. If each fi is convex and
has Lipschitz continuous gradient with constant Li, then a
fixed stepsize ηt = η ≤ 1∑n

i=1 Li
will guarantee that the GD

algorithm converges at rate O(1/t).
Another popular algorithm for solving problem (1) is

the distributed alternating direction method of multipliers
(ADMM). At each time t, each agent i sends its current local
model xxxi(t) and local multiplier λλλi(t) to the server. The server
broadcasts zzz(t + 1) = x̄xx(t) + 1

ρλ̄λλ(t) to all agents, where
x̄xx(t) = 1

n

∑n
i=1 xxxi(t), λ̄λλ(t) = 1

n

∑n
i=1λλλi(t), and ρ > 0 is

an algorithm parameter. Then, each agent i updates its local
model and multiplier in parallel as follows:

xxxi(t+ 1) = arg min
xxxi

{
fi(xxxi) +

ρ

2

∥∥∥∥xxxi +
1

ρ
λλλi(t)− zzz(t+ 1)

∥∥∥∥2
}
,

λλλi(t+ 1) = λλλi(t) + ρ(xxxi(t+ 1)− zzz(t+ 1)).

When the loss functions fi’s are strongly convex and have
Lipschitz continuous gradients, distributed ADMM converges
to the global optimal solution at a linear rate [15]. Many other
optimization algorithms can also be used to solve single-task
distributed learning problem (1), such as momentum accelera-
tion methods (e.g., heavy ball and Nesterov’s algorithms), and
(quasi-)Newton’s methods.

In some applications, the training data changes with time.
Agents may collect new data in real time and discard outdated
data. Correspondingly, the loss functions also vary across
time. Such a scenario is referred to as online learning and
has been investigated extensively [16], [17]. Let us denote
the local loss function of agent i at time t by fi,t and let
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ft(xxx) =
∑n
i=1 fi,t(xxx) be the global loss function at time

t. Let {xxx∗(t)} be some performance benchmark, e.g., the
dynamic optimal model xxx∗(t) = arg minxxx∈X ft(xxx) or the
best fixed model xxx∗(t) = xxx∗ = arg minxxx∈X

∑T
t=1 ft(xxx),

where X is the set of admissible model parameters and T
is the time horizon. Our goal is to determine a series of
model parameters xxx(t) sequentially such that the regret, i.e.,∑T
t=1 ft(xxx(t))−

∑T
t=1 ft(xxx

∗(t)), is minimized. In particular, if
the regret is sublinear with respect to T , then the time-average
loss incurred by the selected models xxx(t) is no greater than that
of the benchmark xxx∗(t) asymptotically, as T goes to infinity.
One of the most standard online optimization algorithms is
online gradient descent (OGD) [18], i.e.,

xxx(t+ 1) = PX

(
xxx(t)− ηt

n∑
i=1

∇fi,t(xxx(t))

)
, (2)

where PX stands for projection onto X . In the algorithm, the
server broadcasts the current model xxx(t) to the agents and
each agent i sends the local gradient ∇fi,t(xxx(t)) to the server.
With the stepsize being ηt = 1√

t
, under certain technical

assumptions, it has been shown that the regret of OGD is
upper bounded by O(

√
T ) and is thus sublinear [18].

2) Personalized Learning: In practice, different agents may
have different model parameters to learn, in which case
problem (1) is not a suitable formulation. Such a scenario
is referred to as personalized learning, where each agent has
its own personal model to infer. One viable formulation for
personalized learning is multitask learning, where each agent
i seeks to learn its own model xxxi. Even though the models
of different agents are distinct, they are still related and we
should take their relationship into account when formulating
the learning problem. This leads to the following standard
formulation for multitask learning [19]:

min
XXX,ΩΩΩ

n∑
i=1

fi(xxxi) + γ · tr
(
XXXΩΩΩ−1XXXT

)
, (3a)

s.t. ΩΩΩ � 000, tr(ΩΩΩ) = 1, (3b)

where XXX = [xxx1, ...,xxxn], γ > 0 is a regularization parameter,
and tr(·) stands for the trace of a matrix. The matrix ΩΩΩ
characterizes the relationship between the models of different
agents, and the regularization term tr

(
XXXΩΩΩ−1XXXT

)
is used

to promote such relationship in the learning outcome. In
problem (3), we aim to learn both the models of all agents
and the relationship between these models jointly. To this
end, we can use alternating optimization methods [19], [20].
In other words, the agents first optimize over XXX with fixed
ΩΩΩ in a parallel manner and send their local models to the
server. Then, the server optimizes over ΩΩΩ with fixed XXX ,
and broadcasts the new relationship ΩΩΩ to all agents. Under
certain technical conditions, convergence of such alternating
optimization methods to the globally optimal solution can be
guaranteed [19].

In addition to multitask learning, another recently popular
framework for personalized learning is meta-learning initiated
in [21], [22]. In meta-learning, agents collaborate to learn a
common meta-model. Starting from the meta-model, an agent
can adapt to new tasks readily by using very limited local
data and simple training iterations, e.g., a few gradient descent

steps. The most standard form of meta-learning can be cast as
the following optimization problem:

min
xxx

n∑
i=1

fi(xxx− α∇fi(xxx)), (4)

where α > 0 is the stepsize for local adaptation, i.e., one-step
gradient descent. Let Fi(xxx) := fi(xxx−α∇fi(xxx)) be the meta-
function of agent i. To solve problem (4), we can still use GD
algorithm, i.e., xxx(t + 1) = xxx(t) − ηt

∑n
i=1∇Fi(xxx(t)), where

each agent i sends ∇Fi(xxx(t)) = (III−α∇2fi(xxx(t)))∇fi(xxx(t)−
α∇fi(xxx(t))) to the server at each time t. Various distributed
personalized learning algorithms have been studied in [23]–
[26] from the viewpoint of distributed optimization.

B. Fully Decentralized Learning without Parameter Server

Many multi-agent systems do not have any central entity
capable of communicating with all agents. Instead, the agents
form a network, where two agents linked by an edge are able
to exchange information with each other, as illustrated in Fig.
2-(b). For instance, large-scale sensor networks may not have
fusion centers, and sensors can only communicate with other
nearby sensors. In ad hoc networks without base stations (e.g.,
battlefield networks without communication infrastructure),
mobile devices can only communicate with other nearby
devices. In the absence of central servers, the learning algo-
rithms have to be fully decentralized and only communications
between one-hop neighbors are allowed. In the following, we
discuss fully decentralized single-task learning and multitask
learning over multi-agent networks without central entities.

1) Single-Task Learning: One of the most prevailing fully
decentralized optimization algorithms for solving the single-
task learning problem (1) is the decentralized gradient descent
(DGD) method proposed by [1]. Let Ni be the set of neighbors
of agent i. In DGD, each agent i updates its local model xxxi(t)
by using a convex combination of its neighbors’ local models,
followed by a local gradient descent step, i.e.,

xxxi(t+ 1) =
∑

j∈Ni∪{i}

aijxxxj(t)− ηt∇fi(xxxi(t)),

where aij is the (i, j)-th entry of a doubly stochastic weight
matrixAAA. We have aij = 0 for j /∈ Ni∪{i}, so that each agent
only communicates with its neighbors. It has been shown in
[1] that, if a constant stepsize ηt is used, all local models
converge to a neighborhood of the optimal solution to (1)
with rate O(1/t). If diminishing stepsizes are used, the DGD
algorithm can converge to the exact optimal solution with rate
O(1/

√
t). Since the seminal work [1], a variety of first-order

decentralized optimization algorithms have been developed to
solve the consensus optimization problem (1) in various set-
tings, including constrained decentralized optimization in [27],
decentralized optimization over time-varying networks in [28],
decentralized optimization over directed networks (e.g., the
push-pull algorithm, in [29]), and decentralized optimization
over time-varying directed networks (e.g, the push-subgradient
algorithm, in [30]). Additionally, by using gradient information
of the last two steps, the EXTRA algorithm proposed in [31]
can converge to the exact optimal solution with a constant step-
size. To accelerate the convergence rate, distributed Nesterov
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gradient descent algorithm was developed in [32]. Distributed
zero-order algorithms with gradient tracking were studied in
[33], where one could only evaluate the objective functions
at finitely many points. Further, second-order decentralized
optimization algorithms have also been studied, such as de-
centralized Newton’s method with truncated approximation
of inverse Hessian matrices in [4], and decentralized BFGS
algorithm (a quasi-Newton method using gradient information
to approximate Newton steps) [34].

In addition to the aforementioned primal-domain meth-
ods, primal-dual algorithms have also been developed for
decentralized optimization problems. One of the most widely
used primal-dual methods for solving problem (1) is the
decentralized ADMM, in which each agent i updates its local
model xxxi(t) (i.e., primal variable) and multiplier φφφi(t) (i.e.,
dual variable) as follows:

xxxi(t+ 1) = arg min
xxxi

{
fi(xxxi) +φφφi(t)

Txxxi + ρ|Ni|‖xxxi‖2

− ρ

(
|Ni|xxxi(t) +

∑
j∈Ni

xxxj(t)

)T

xxxi

}
,

(5a)

φφφi(t+ 1) = φφφi(t) + ρ

|Ni|xxxi(t+ 1)−
∑
j∈Ni

xxxj(t+ 1)

 ,

(5b)

where | · | stands for the cardinality of a set. At each time t,
each agent i needs to broadcast its current local model xxxi(t) to
all the neighbors in Ni. When the loss functions are strongly
convex and have Lipschitz continuous gradients, it has been
shown in [3] that decentralized ADMM has linear convergence
rate. Following [3], a series of variants of decentralized
ADMM have been developed. To reduce the computational
burden and avoid solving optimization subproblems in each
iteration, linearized ADMM and quadratically approximated
ADMM have been proposed in [35], [36], which use linear
and quadratic approximations for fi(xxxi) in step (5a) to obtain
closed-form update equations.

When the training data is collected in real-time and the loss
functions are time-varying, decentralized online optimization
problems have been studied. A decentralized online gradient
descent algorithm was developed in [37], where the regret of
every agent was upper bounded by O(

√
T ). A decentralized

online saddle-point algorithm was proposed in [38], and a
decentralized online push-sum algorithm was developed for
directed graphs in [39]. Moreover, dynamic decentralized
ADMM was studied in [40] and was shown to converge to
a neighborhood of the dynamic optimal solution, where the
size of the neighborhood depended on the variation speed of
the loss functions.

2) Multitask Learning: In addition to the single-task prob-
lem (1), decentralized multitask learning problems over multi-
agent networks without any central entity have also been
studied in the literature. In such a case, each agent i has
an individual model xxxi to learn, and the local models of
different agents are related. One of the most common methods
of characterizing this relationship is to introduce a link cost

gij(xxxi,xxxj) for each pair of neighboring agents i and j. For
instance, gij(xxxi,xxxj) = ‖xxxi −xxxj‖2 − b2ij can be used to make
neighbors’ models close to each other, where bij is some
constant. The link costs are either added to the objective
function of the learning problem, i.e.,

min
xxx1,...,xxxn

n∑
i=1

fi(xxxi) +

n∑
i=1

∑
j∈Ni

gij(xxxi,xxxj), (6)

or used as constraints of the learning problem, i.e.,

min
xxx1,...,xxxn

n∑
i=1

fi(xxxi) (7a)

s.t. gij(xxxi,xxxj) ≤ 0,∀i, j ∈ Ni. (7b)

For problem (6), decentralized linearized ADMM and decen-
tralized Newton’s method were proposed in [41] and [42],
respectively, both of which could achieve linear convergence
rate. For problem (7), a primal-dual optimization method was
developed in [43] to handle the constraints, and convergence
rate for the objective and constraint functions were shown to
be O(t−1/2) and O(t−1/4), respectively.

Furthermore, when the training data is collected sequentially
and the loss functions vary across time, decentralized multitask
adaptive learning algorithms have been proposed in [44],
[45], where agents are clustered and neighboring clusters
have similar models. When the model parameters are sparse,
ADMM-based and subgradient-based decentralized multitask
adaptive learning algorithms have been developed in [46].

III. REDUCING THE NUMBER OF COMMUNICATIONS IN
DISTRIBUTED LEARNING

Conventional distributed learning algorithms require agents
to exchange information with the server or neighboring agents
in every time instant, which can lead to a high communi-
cation overhead. In this section, we provide an overview of
communication-efficient distributed learning algorithms that
reduce the number of communications, and point out several
potential directions for future work.

A. Multiple Local Update Steps Between Communications

One of the most commonly used approaches for improving
the communication efficiency of distributed learning is to
exchange information periodically instead of at every time
instant. Between consecutive communications, agents conduct
multiple steps of local model updates based on local data. In
[5], such a method for distributed learning in a server-agent
system has been investigated. Let τ ∈ {1, 2, ...} be the number
of local model update steps between two consecutive global
aggregations, i.e., communications between the server and the
agents. When the time index t is not an integer multiple of τ ,
each agent i conducts a local gradient descent step to update
the local model xxxi(t), i.e.,

xxxi(t) = xxxi(t− 1)− η∇fi(xxxi(t− 1)).
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Otherwise, when t is an integer multiple of τ , each agent i
sends xxxi(t − 1) − η∇fi(xxxi(t − 1)) to the server. The server
aggregates the information from all agents to obtain

x̃xx(t) =
1

n

n∑
i=1

(xxxi(t− 1)− η∇fi(xxxi(t− 1))).

Then, the server broadcasts x̃xx(t) to all agents and each agent
i updates its new local model to be xxxi(t) = x̃xx(t). In such
an algorithm, global aggregations occur once every τ time
instants.

Suppose we are concerned with M types of radio resources,
e.g., energy and bandwidth, and the budget for type-m re-
source is Rm, m = 1, ...,M . When models are updated locally
without information exchange (i.e., t is not an integer multiple
of τ ), the multi-agent system consumes cm amount of type-m
resource. If, in addition to local model update steps, global
aggregation happens and information exchange between the
server and the agents is needed, the system consumes bm
amount of type-m resource. We usually have bm > cm since
global aggregation consumes additional resources. Let T be
the number of time instants of the algorithm and K = T/τ be
the number of global aggregations. When global aggregation
occurs, the server sets f̃ ← min{f(x̃xx(t)), f̃} so that f̃ records
the best loss function values at time t = 0, τ, 2τ, .... Our goal is
to achieve the best loss function values subject to the resource
constraints, i.e.,

min
τ,K∈{1,2,...}

min
k=0,...,K

f(x̃xx(kτ)) (8a)

s.t. (T + 1)cm + (K + 1)bm ≤ Rm, ∀m = 1, ...,M,
(8b)

T = τK, (8c)

where the additional “+1” in (8b) accounts for the last global
aggregation. In [5], an algorithm for solving problem (8)
approximately has been proposed when the resource con-
sumptions {cm, bm} are known in advance. When {cm, bm}
are unknown and can vary with time, a control algorithm
estimating the parameters and adjusting the values of τ on-
the-fly has been developed.

Similarly, the federated averaging (FedAvg) algorithm in
[47] lets each agent conduct multiple steps of local model
updates between two global aggregations in distributed learn-
ing of deep networks. In addition, FedAvg selects a dynamic
subset of agents, instead of all agents, to participate in model
updating and global aggregation, which further improves the
communication efficiency. It was shown in [47] through ex-
tensive numerical experiments that FedAvg could reduce the
communication overhead by one to two orders of magnitudes.
Further, in [48], the authors studied rigorously the reason why
periodic model averaging (i.e., global aggregation) could work
as well as parallel mini-batch SGD (with global aggregation
in every time instant) and achieve linear speedup with respect
to the number of agents. In particular, it was shown that
the dominant term in the convergence bound for distributed
learning with periodic model averaging was O(1/

√
nt), which

was not affected by the model-averaging period. Further, in
[49], the convergence rate of local stochastic gradient descent
(SGD) was analyzed, where global aggregation occurred only
at certain time instants. For smooth strongly convex learning

problems, it was shown that local SGD converged at the same
rate as standard mini-batch SGD did. By using local SGD,
the number of communication rounds could be reduced by a
factor of O(

√
T ), where T is the total number of update steps.

Additionally, post-local SGD, i.e., a mixture of mini-batch
SGD and local SGD, was proposed in [50], and was shown to
achieve better tradeoff between communication efficiency and
generalized performance for deep learning. The convergence
rate of local SGD with periodic averaging was further analyzed
in [51] for nonconvex loss functions satisfying the Polyak-
Łojasiewicz condition. It was shown that O((nT )

1
3 ) rounds

of communications suffice to achieve a convergence rate of
O(1/nT ), which maintained linear speedup with respect to
the number of agents. Further, the number of local model
updates per round of global aggregation was adjusted in an
adaptive manner in [52], so that the runtime of the distributed
learning algorithm was minimized when communication de-
lay existed. FL with heterogeneous number of local updates
among agents was studied in [53]. The authors developed a
novel FL algorithm to compensate for the heterogeneity caused
by agents’ different computation speeds and dataset sizes.
Additionally, to improve the convergence rate of local SGD, a
slow momentum algorithm was proposed in [54], where agents
performed local momentum model update and synchronized
periodically through global aggregations. A comprehensive
comparison between local SGD and mini-batch SGD was
presented in [55], and it was shown that the two algorithms
could outperform each other in certain regimes.

In addition to local SGD, SGD with elastic averaging was
proposed in [56], where proximal terms were included in the
loss functions to allow some slacks between the local models
at the agents and the global model at the server. The approach
was shown to have better learning performance in the deep
learning setting where many local minima existed. Momentum
versions of elastic averaging SGD were also developed in [56].
Further, cooperative SGD, a unified framework for a variety of
local SGD algorithms (e.g., local SGD with averaging, elastic
averaging SGD, and decentralized local SGD over networks
without central server), was proposed and analyzed in [57],
which improved upon prior results on local SGD in terms
of convergence bounds and applicability. A new decentralized
primal-dual algorithm named decentralized communication
sliding method was developed in [58] for networked multi-
agent networks without central entities, where inter-agent
communications were skipped while individual agents solved
local optimization subproblems iteratively. In [59], the authors
investigated semi-decentralized FL over a clustered network,
which consisted of a server and multiple clusters of agents.
Each cluster was comprised of a cluster head and multiple
normal agents. Within each cluster, agents performed multiple
SGD iterations based on local datasets and aperiodically
engaged in consensus procedures within the cluster by using
fully decentralized device-to-device (D2D) communications.
Meanwhile, the cluster heads conducted inter-cluster model
aggregation through the help of the central server. Within such
a framework, an adaptive control algorithm was developed in
[59] to tune the stepsize, D2D communication rounds, and
global aggregation periods, with the goal of minimizing the
overall system loss due to energy consumption, delay, and FL

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2023.3242710

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on February 08,2023 at 07:20:33 UTC from IEEE Xplore.  Restrictions apply. 



7

performance. Moreover, in [60], a hierarchical FL framework
was presented, where clients, edge servers and cloud server
exchanged information with each other to learn collaboratively.

Different from GD, a communication-efficient dual coor-
dinate ascent algorithm was put forth in [61], where local
computation was used in a primal-dual method to reduce
the communication overhead dramatically. A communication-
efficient federated deep learning method was proposed in
[62], where parameters of the deep layers were updated less
frequently than those of the shallow layers to reduce the
communication overhead. A temporally weighted aggregation
strategy was introduced at the server to make use of the
previously trained local models of the agents. Besides single-
task learning problem (1), meta-learning (c.f. problem (4))
algorithms with reduced number of communications have also
been studied to facilitate communication-efficient personalized
learning. In [23], a personalized FedAvg algorithm was pro-
posed for distributed meta-learning problems, where a subset
of agents conducted multiple local gradient descent steps with
respect to their local meta-functions and global aggregation
was performed periodically. For nonconvex loss functions,
the convergence rate (to a first-order stationary point) of the
algorithm was analyzed, and the impact of the closeness of the
underlying distributions of agents’ data (measured in terms
of total variation and Wasserstein distance) on the learning
performance was characterized.

B. Event-Triggering
The communication patterns of distributed learning algo-

rithms in the aforementioned works in the previous subsection
follow some predefined rules independent from the algorithm
iterates, e.g., periodic global aggregation with a predefined
period. Another generic approach to reducing the number
of communications is to exchange information only when
certain conditions related to the algorithm iterates are met
during algorithm execution. Such an approach is named event-
triggering, where communications occur only when a certain
event is triggered. The triggering event can be devised so that
the information is exchanged only when necessary. This can
potentially reduce the communication cost without degrading
the learning performance much.

We use the event-triggered projected DGD algorithm for
problem (1) in [63] as a concrete example to illustrate the
event-triggering approach. Consider a fully decentralized net-
work without central entities. Each agent i sends its local
model xxxi(t) to its neighbors only when certain conditions
are met. In addition to xxxi(t), each agent i maintains an-
other variable x̃xxi(t), which stands for the latest sent local
model up to time t. Thus, at time t, agent i has access to
xxxi(t), x̃xxi(t), {x̃xxj(t)}j∈Ni . Then, agent i updates its local model
as follows:

xxxi(t+ 1)

= PX

xxxi(t) +
∑
j∈Ni

aij (x̃xxj(t)− x̃xxi(t))− η∇fi(xxxi(t))

 ,

where X is a common constraint set for the local models, and
AAA = [aij ] is a symmetric doubly stochastic weight matrix.
The triggering event for communications depends on the gap

between the new local model xxxi(t+1) and the latest sent local
model x̃xxi(t). Let Ci(t) be the triggering threshold of agent i at
time t. If ‖xxxi(t+1)−x̃xxi(t)‖ ≥ Ci(t), agent i sends xxxi(t+1) to
all neighbors and sets x̃xxi(t+ 1) = xxxi(t+ 1). Otherwise, agent
i does not send anything and sets x̃xxi(t+ 1) = x̃xxi(t). In other
words, agents communicate with neighbors only when the
differences between the latest sent models and the current true
models are large enough. The impact of the event-triggering
thresholds {Ci(t)} on the performance of the decentralized
learning algorithm was analyzed in [63]. Convergence could
be guaranteed as long as the event-triggering thresholds are
square-summable. If the loss functions are strongly convex and
the event-triggering thresholds are geometrically decaying, the
local models converge to some neighborhood of the optimal
solution with linear convergence rate, where the size of the
neighborhood is proportional to the constant stepsize η.

In [64], the authors proposed an event-triggered multi-agent
optimization algorithm over a complete network, where each
agent was able to communicate with all other agents. Each
agent sent its current local model to others when it detected
that other agents’ estimates of its local model were sufficiently
different from the true local model. Later, an edge-based event-
triggered projected DGD algorithm over fully decentralized
networks was developed in [65], where an agent sent its
current local model to one of its neighbors only when the
difference between the current model and the latest sent one
was larger than an edge-specific threshold. With diminishing
stepsizes and event-triggering thresholds, the convergence of
the algorithm was analyzed for convex loss functions and
the impact of the triggering thresholds on the convergence
rate was investigated. The convergence rate of event-triggered
decentralized SGD was further analyzed in [66] for nonconvex
loss functions, in the presence of diminishing stepsizes and
triggering thresholds. Moreover, a continuous-time decentral-
ized event-triggered DGD algorithm was proposed in [67],
which was independent of the parameters of the loss functions
and free of Zeno behavior (i.e., not requiring infinite number
of communications within a finite period of time).

A decentralized event-triggered continuous-time zero-
gradient-sum algorithm was proposed in [68], where the
triggering condition depended on the distance between the
latest sent local model and the current local model as well as
the consensus gap between the neighboring agents’ models.
The algorithm was shown to be free of Zeno behavior. In
particular, the inter-communication time was lower bounded
by some positive constant. For strongly convex loss func-
tions, exponential convergence rate of the algorithm to the
optimal solution was established. Moreover, event-triggered
decentralized zero-gradient-sum algorithms over directed net-
works were proposed in [69], where both continuous-time
and discrete-time algorithms were considered. Further, in [70],
the event-triggering approach was applied to a more general
distributed optimization problem with affine constraints, which
encompassed the distributed learning problem (1) and the
network utility maximization problem as special cases. An
event-triggered augmented Lagrangian method was put forth,
where the triggering condition was related to the primal
gradient of the augmented Lagrangian. In addition, a de-
centralized event-triggered gradient tracking algorithm was
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proposed in [71], where linear convergence to the optimal
solution was established by using sporadic communications.
A decentralized event-triggered gradient-push algorithm over
directed networks was developed in [72], and the convergence
of the algorithm was established under summable stepsizes
and triggering thresholds. Moreover, a decentralized event-
triggered coordinate descent algorithm was studied in [73]. An
event-triggered (a.k.a. communication-censored) decentralized
ADMM algorithm was developed in [74]. It was shown that
the censored ADMM converged to the optimal solution if the
loss functions were convex and the event triggering thresholds
were summable. If the loss functions were strongly convex and
the triggering thresholds were decaying geometrically, then the
censored ADMM exhibited linear convergence rate. Further,
when the loss functions were time-varying, an event-triggered
decentralized online subgradient method was developed in
[75], where the impact of the triggering thresholds on the
regret of each agent was characterized explicitly.

The integration of event-triggering and quantization was
considered in [76], which proposed a continuous-time event-
triggered DGD algorithm with dynamic quantization. The dy-
namic quantization scheme consisted of a dynamic encoder for
the transmitting agent and a dynamic decoder for the receiving
agent. The scheme quantized the difference of the latest sent
local model and current local model with increasing accuracy,
which made use of the convergence effect of the algorithm.
It was shown in [76] that the algorithm could converge to
the optimal solution without encountering Zeno behavior.
Analogously, a discrete-time event-triggered quantized DGD
algorithm was developed in [77] for time-varying directed
graphs, where the dynamic quantization scheme still included
dynamic encoding and decoding methods with finite number
of quantization levels. It was shown that the algorithm could
converge to the optimal solution even with one-bit information
exchange in each time instant with triggered event, and the
convergence rate was O(log t/

√
t) for convex loss functions.

An event-triggered distributed learning algorithm termed
lazily aggregated gradient (LAG) for server-agent systems was
developed in [78]. In LAG, each agent sent the difference of
the current local gradient and the last sent local gradient to
the server when this difference was larger than some threshold
related to the weighted temporal variation of the global model.
Meanwhile, the server sent the current model to an agent only
when the difference between the local model of the agent and
the global model of the server was larger than some threshold
pertaining to the temporal variation of the global model. In
other words, LAG conducted event-triggering for both the
downlink and uplink communications between the server and
the agents. It was shown in [78] that LAG exhibited linear con-
vergence rate and O(1/t) convergence rate for the scenarios
of strongly convex loss functions and convex loss functions,
respectively. When the loss functions were nonconvex, LAG
converged to a first-order stationary point with rate O(1/

√
t).

In addition, LAG with quantized gradients was put forth in
[79], which saved both the number of communication rounds
and the number of bits per communication round. For strongly
convex loss functions, such an algorithm was shown to have
the same linear convergence rate as standard GD did. The LAG
algorithm was further extended to policy gradient (PG) method

for reinforcement learning (RL) in [80]. It was shown that the
LAG approach could achieve the same convergence rate as
vanilla PG method did, and the number of communications
could be significantly reduced, especially when the reward
functions of the agents were sufficiently heterogeneous. Other
approaches to reducing the number of communications include
dynamically increasing batch sizes in parallel SGD to achieve
the best tradeoff between communication and computation
(measured by the number of stochastic gradients called) [81],
and properly infusing redundancy to the training data for
distributed SGD [82].

C. Performance Limits
Several papers have investigated the fundamental lower

bounds on the number of communications to achieve certain
learning performance guarantees.

The communication complexity of distributed convex op-
timization was investigated in [83]. The paper considered a
simple setting where each of two processors had access to
a different convex function fi, i = 1, 2. The two processors
exchanged binary information with each other until they found
a point minimizing f1(xxx) + f2(xxx) (corresponding to single-
task learning problem (1) with two agents) within some
error ε. It was shown in [83] that the minimal number of
communication rounds to achieve this goal was Ω(d log(1/ε)),
where d was the dimension of the decision variable (i.e.,
the model parameter in the context of learning). In [84], the
authors studied lower bounds for the number of communi-
cation rounds needed to solve distributed learning problems
over complete networks, where each agent was capable of
broadcasting to everyone. They identified cases where existing
distributed learning algorithms were worst-case optimal, as
well as scenarios where improvements were possible. They
showed that, if the loss functions of different agents were not
similar, a large number of communications was necessary even
when agents had infinite computation power. Lower bounds
for the communication complexity of solving distributed linear
systems and linear programming were studied in [85]. Further,
the minimax communication complexity of distributed con-
vex stochastic optimization problems was examined in [86],
where every agent had access to the stochastic gradients of
a common objective function. Lower bounds on the number
of communications and the corresponding optimal algorithm
with matching upper bounds (up to logarithmic factors) were
presented. In addition, information-theoretic lower bounds on
the query complexity of stochastic convex optimization were
investigated in [87], [88].

D. Future Directions
Several potential directions for future work in this domain

are listed below.
1) Reducing the Number of Communications for Distributed

Online Learning: There are relatively few works on reducing
the number of communications for distributed online learn-
ing. In [75], an event-triggered distributed online subgradient
method was developed to reduce the number of communi-
cations for distributed online learning. Nevertheless, reference
[75] did not quantify the communication overhead of the algo-
rithm explicitly and did not study the optimal tradeoff between
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learning performance and communication cost. Moreover, [75]
was focused on online single-task learning and did not take
other forms of learning problems into consideration. Many
aspects of distributed online learning with reduced number of
communications are yet to be explored.

For distributed online learning in server-agent systems, the
conventional approach is to use the OGD algorithm (2), where
global aggregation occurs at every time instant. Alternatively,
we can let each agent conduct local GD update steps for τ time
instants based on the local training data collected during this
time period (i.e., the local loss functions during this period).
Every τ time instants, each agent sends the difference of the
local model, i.e., xxxi(t + τ) − xxxi(t), to the server. The server
aggregates all the local models and computes the new global
model, which is broadcast to all agents. Suppose K rounds of
global aggregation occur during the execution of the algorithm,
i.e., T = Kτ time instants in total. We can then characterize
the relation between the parameters τ,K and the regret of
the online learning algorithm through regret analysis. Under
given communication resource budgets, one can seek to obtain
the optimal τ,K yielding the minimal time-average regret. It
is also possible to extend this framework to other distributed
online learning problems, such as those with constraints not
amenable to computationally efficient projection operators.
These problems can be handled through primal-dual methods
using Lagrangian (c.f. [2]), and we can study the optimal
tradeoff between the communication overhead and learning
performance as measured by regret and constraint violations.

In addition, it is possible to revisit the event-triggered
decentralized online optimization problem over fully decen-
tralized networks without any central server. In [75], the
relation between event-triggering thresholds and the regret
of each agent has been characterized. One can further study
the relation between event-triggering thresholds and the com-
munication overhead, based on which the optimal triggering
thresholds can be designed to achieve the best regret under
given communication budget.

2) Reducing the Number of Communications for Distributed
Personalized Learning: Most of prior works on distributed
learning algorithms with reduced number of communications
are focused on single-task learning problems. Two exceptions
are [23] and [25], where infrequent communications are con-
ducted to alleviate the communication overhead for solving
personalized learning problems. One can further develop an
event-triggered approach to distributed meta-learning so that
the number of local updates per communication round is not
a fixed number and can vary according to the needs of the
algorithm based on triggering rules. It would also be possible
to consider distributed online meta-learning algorithms with
reduced number of communications, when the training data is
collected in real time.

Additionally, one can study distributed multitask learning
algorithms for solving problems (3) (for server-agent systems),
and (6), (7) (for fully decentralized networks without central
servers) by using reduced number of communications. It would
be possible to examine the relations between the communica-
tion patterns (e.g., number of local updates per communication
round or event-triggering rules) and the learning performance,
and design the best algorithms to achieve the best tradeoff

between communication cost and learning performance.
3) Performance Limits for Generic Distributed Learning

Problems: Even though some prior works have studied the
fundamental performance tradeoff between the number of
communications and the learning performance, they are only
concerned with specific scenarios of distributed learning, e.g.,
linear programming, and learning over complete graphs. We
still lack a clear understanding of the fundamental tradeoff
between learning performance and number of communications
in the general distributed learning setting. One can start from
the most basic setting, namely the static single-task distributed
learning problem (1), and determine lower bounds on the
number of communications needed to arrive at an ε-suboptimal
model. It would be interesting to see if standard algorithms
(e.g., GD and ADMM) or their variants can achieve the best
communication complexity. If not, one can seek to design
such optimal (in order sense) algorithms achieving the best
learning performance with limited communication budget.
Afterwards, it would be possible to extend the framework
to more complicated scenarios, such as distributed online
learning and distributed personalized learning.

IV. COMPRESSING THE COMMUNICATIONS IN
DISTRIBUTED LEARNING

In addition to reducing the number of communication
rounds, another general approach to improving the commu-
nication efficiency of distributed learning algorithms is to
compress the information exchanged in each communication
round. In this section, an overview of distributed learning
algorithms using compressed communications is presented.

A. Quantization

One of the most widely used compression methods for
distributed learning is quantization, where the information to
be exchanged is transformed into discrete values that can be
encoded into a finite number of bits. Quantization techniques
can reduce the number of communicated bits, and thus enable
distributed learning in systems with scarce communication
bandwidth, such as crowded Metropolitan areas with scarce
spectrum resources. The study of quantized incremental dis-
tributed learning algorithms was pioneered in [6], which aimed
at solving the single-task learning problem (1) by using a
finite number of bits per communication. In the incremental
algorithm, all agents were numbered (labeled) in advance and
took turns to update the model parameters according to the
order prescribed by the labeling. The model updates were
cycled through the network. Let Λ ⊂ Rd be a d-dimensional
lattice, where each entry of xxx ∈ Λ is an integer multiple of
some given δ > 0 (the width of the lattice). Denote the set of
possible model parameters by X . At each cycle k, an agent i
receives the model xxxi−1,k from its predecessor, agent i − 1,
and computes the new model by a quantized gradient descent
step as follows:

xxxi,k = Q(xxxi−1,k − η∇fi(xxxi−1,k)),

where the quantizer Q is the projection operator associated
with the set X ∩Λ. Then, agent i sends the new model xxxi,k to
its successor, agent i+ 1. After one completed cycle of model
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updates, we set xxx0,k+1 = xxxk = xxxn,k and begin the next cycle.
It has been shown in [6] that, as k goes to infinity, the gap
between f(xxxk) and the optimal value is upper bounded by
some number pertaining to the quantization resolution δ. The
smaller δ is, the better the learning performance becomes (i.e.,
the smaller f(xxxk) becomes).

The approach in [6] required the network to maintain
an ordering of the agents and was not fully decentralized.
Alternatively, a fully decentralized quantized DGD algorithm
was proposed in [89], where each agent i updated its local
model in each time slot t as follows:

xxxi(t+ 1) = Q

 ∑
j∈Ni∪{i}

aijxxxj(t)− ηt∇fi(xxxi(t))

 ,

so that each agent only needed to transmit a quantized local
model to its neighbors. The impact of the number of quan-
tization levels on the convergence rate was investigated. To
mitigate the negative effect of quantization on the learning
performance, a universal vector quantization scheme was put
forth in [90] for FL over rate-constrained wireless channels
in a server-agent system. It was shown that the distortion
due to quantization vanishes as the number of agents in-
creases. Moreover, a distributed dual-averaging method us-
ing quantized communications was developed in [91]. When
deterministic quantizers were used, the algorithm converged
to a suboptimal point, where the suboptimality depended
on the quantization resolution. When probabilistic quantizers
were used, the algorithm converged to the optimal solution
in expectation, and the impact of quantization resolution on
the convergence rate was investigated. Analogously, quantized
ADMM algorithm was studied in [92] by using deterministic
and probabilistic quantizers, and the effect of quantization
accuracy on the learning performance was characterized. In
addition, a variant of DGD using multiple quantized consensus
communication steps per local gradient descent was proposed
in [93] to allow more flexible tradeoff between communication
and computational costs.

A compression scheme named quantized SGD (QSGD)
was proposed in [94] to allow for a smooth tradeoff be-
tween communication bandwidth and convergence time of the
learning algorithms. QSGD enjoyed guaranteed convergence
for both convex and nonconvex loss functions, and could
be equipped with stochastic variance-reduction techniques to
further accelerate convergence. Another method of achieving
convergence to the exact optimal solution by exchanging only
quantized values was proposed in [95], which studied fully
decentralized quantized optimization problems over networks.
At each time t, each agent i updated its local model as follows:

xxxi(t+ 1)

= (1− ε+ εaii)xxxi(t) + ε
∑
j∈Ni

aijQ(xxxj(t))− ηε∇fi(xxxi(t)),

where ε is some positive parameter to be chosen and η is
the stepsize. The stochastic quantizer Q was assumed to
be unbiased and have bounded variance. By setting ε =
O(1/T

3γ
2 ) and η = O(1/T

γ
2 ), it was shown for strongly

convex loss functions that E[‖xxxi(T ) − xxx∗‖2] ≤ O(1/T γ),
where γ is an arbitrary number in (0, 1/2) and T is the number

of time slots. The algorithm achieved exact convergence to
the optimal solution xxx∗ by allocating diminishing weights
to the quantized information received from neighbors. A
similar approach was adopted in [96], where the weights for
neighboring agents’ quantized models converged to zero as
the quantized DGD algorithm progressed. It was shown that,
with random quantization schemes, the convergence rates for
convex loss functions and strongly convex loss functions were
O
(

δ2

(1−σ)2
log t

t
1
4

)
and O

(
δ2

(1−σ)3
log t

t
1
3

)
, respectively, where δ is

the length of the quantization interval and 1−σ is the spectral
gap of the underlying communication graph.

A decentralized lazy mirror descent method with differential
exchanges was developed in [97] for fully decentralized learn-
ing problems over rate-constrained noisy wireless channels. To
combat the channel noise and rate constraints, the algorithm
used quantization and power control techniques jointly. Be-
sides local models, agents also maintained the disagreements
in their estimates of neighbors’ local models due to noise
and rate constraints, and exchanged the quantized differences
with neighbors. To guarantee convergence to the optimal
solution, the algorithm designed two sequences. One sequence
controlled the consensus rate (i.e., the weights of neighbors’
noisy quantized information), and the other one controlled
the transmission power when sending the differential signals.
The impact of transmission power and quantization resolution
on the convergence rate was characterized. A quantized FL
algorithm was devised in [98], where transmission power and
quantization bits were jointly allocated across the agents to
minimize the communication errors.

An iteratively refined quantization scheme was proposed
for inexact (accelerated) proximal gradient methods in [99].
During the progression of the algorithm, the center of the
quantization range changed as the estimates of the optimal
point varied, and the quantization range shrank as the estimates
became more and more accurate. If the loss functions were
strongly convex, with appropriately designed dynamic quanti-
zation scheme (appropriate shrinkage rate of the quantization
range), the algorithm converged to the optimal solution at
linear rate. A similar approach based on DGD was adopted
in [100], where an adaptive quantization scheme was used.
As the algorithm progresses, one becomes more and more
confident on the location of the optimal solution and adjusts
the quantization codebook accordingly to make the quantized
values more accurate. For convex or strongly convex loss func-
tions, it was shown in [100] that such an adaptive quantization
approach would not degrade the convergence rate compared to
vanilla DGD with perfect communications, except for constant
factors depending on the quantization resolution. Following
this line of research, in [101], the authors designed dynamic
quantization methods compressing the exchanged information
into a few bits while still maintaining the linear convergence
rate of the distributed learning algorithms. The convergence
time of the algorithm was characterized as a function of the in-
formation transmission rate. Similar dynamic quantizers were
applied to distributed gradient tracking algorithms to achieve
linear convergence rates by using finite-bit communications
in [102], [103]. By using an analogous dynamic quantization
scheme, [104] sought to minimize the number of quantization
levels for achieving exact convergence. Exploiting dynamic
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quantizers, [105] explored the minimal number of quantiza-
tion levels to ensure convergence of DGD over time-varying
directed graphs. It was shown that one-bit communications
sufficed when certain system parameters were chosen properly.

A hierarchical gradient quantization method for distributed
learning was proposed in [106]. The stochastic gradient was
decomposed into its norm and normalized gradient blocks,
which were quantized using a uniform quantizer and a low-
dimensional Grassmannian codebook, respectively. A bit-
allocation scheme was used to determine the resolution of
the low-dimensional quantizers for the gradient blocks. The
convergence rate of this algorithm was analyzed in terms
of the quantization bits. A double quantization method for
distributed learning was developed in [107], where both the
gradients (uplink transmission) and the models (downlink
transmission) were quantized. The method was amenable to
asynchronous implementation, and could be combined with
gradient sparsification and momentum techniques to further
improve the communication efficiency and convergence rate.
Moreover, a quantized Frank-Wolfe algorithm was put forth
in [108] to obtain a communication-efficient projection-free
(thus alleviating the computational burden) approach. The con-
vergence of the algorithm was analyzed for both convex and
nonconvex problems. Quantized saddle-point algorithms were
developed in [109] for decentralized stochastic optimization
with pairwise constraints between neighbors, which could be
used for multitask learning. The impact of quantization reso-
lution on the convergence rate of the algorithms was examined
for both the sample feedback and the bandit feedback (where
only the values of the loss functions at two random points were
revealed at each time) settings. Quantization of data instead of
gradients was proposed in [110], which outperforms gradient
compression significantly when model dimension is large.

A more aggressive quantization approach is to compress
the exchanged information to two possible values, i.e., one
bit, or three possible values. A ternary gradient approach
was proposed for distributed learning in [111], where only
three possible values were transmitted. The convergence of
the algorithm was established theoretically. It was shown
via numerical experiments that the algorithm could reduce
the bandwidth requirement significantly without affecting the
learning performance much. In addition, a signSGD algorithm
was studied in [112], where each agent sent only the signs
of the local gradients and the server used a majority vote to
aggregate the signs. An FL algorithm using one-bit gradient
quantization and over-the-air majority rule aggregation was
proposed in [113] for distributed learning over noisy fading
wireless channels. The effects of wireless communication
factors, e.g., channel fading, noise, channel estimation errors,
were investigated comprehensively. It was shown that the neg-
ative effects of these factors vanished as the number of agents
grew. Another one-bit quantization approach proposed in [114]
used only the signs of the relative models of neighbors, i.e., the
signs of the differences between agents’ models and neighbors’
models. In the model adopted, at each time t, each agent i
updates its local model according to

xxxi(t+ 1)

= xxxi(t) + γηt
∑
j∈Ni

aij sgn(xxxj(t)− xxxi(t))− ηt∇fi(xxxi(t)),

where γ > 0 is some algorithm parameter to be chosen. It was
shown in [114] that the convergence of the algorithm could
be guaranteed if γ is sufficiently large, and the convergence
rate was the same as that of the vanilla DGD using the
exact models of neighbors. The DGD algorithm based on
signs of relative models was extended to the online scenario
in [115], where the training data was collected sequentially
and the loss functions varied across time. It was proved that
the method could achieve the same regret (in order sense)
as standard OGD did. Additionally, an FL framework of
training binary neural networks (BNNs) with binary model
parameters was proposed in [116], where agents only needed
to upload binary parameters to the server. Conditions ensuring
the convergence of the proposed BNN training algorithm were
derived theoretically.

To further reduce the communication overhead, quantization
techniques can be used in conjunction with other methods. An
FL algorithm using quantization, probabilistic device selec-
tion, and resource allocation jointly was proposed in [117].
The method could improve the learning performance and
reduce the training time significantly. Quantization techniques
were integrated with variance reduction to further accelerate
the convergence in [118]. Moreover, in [119], an FL algo-
rithm combining periodic averaging, partial agent participa-
tion, and quantization was developed. The impact of these
communication-efficient techniques on the convergence rate
was investigated for strongly convex as well as nonconvex
problems. Convergence analysis of the FedAvg algorithm with
non-i.i.d. dataset distributions, partial agent participation, and
finite-precision quantization was presented in [120]. It was
shown that, to achieve O(1/t) convergence rate, transmitting
the models required a logarithmic number of quantization
levels, while transmitting the model differentials required only
a constant number of quantization levels. A joint quantization
and noise insertion approach for distributed learning was put
forth in [121], which was able to achieve differential privacy
and communication efficiency simultaneously.

B. Sparsification

In addition to quantization, another popular approach to
compressing the communications in distributed learning algo-
rithms is sparsification, where only a small subset of entries
of the raw information vectors are transmitted.

It was observed in [7], [122] that most entries of the
gradients used in DGD algorithm are very close to zero.
Motivated by this observation, in [122], the authors proposed
to map 99% of the gradient entries to zero and only transmit
the rest. Empirical experiments indicated that this could reduce
the communication cost significantly without degrading the
learning performance much. The author of [7] also reduced the
amount of communications by three orders of magnitude for
training deep neural networks. The authors in [123] proposed
to sparsify gradients used in SGD based on their magnitudes.
Combining sparsified gradients and local error correction,
the algorithm could provide convergence guarantees for both
convex and nonconvex loss functions. A variant of parallel
block coordinate descent algorithm based on independent spar-
sification of local gradients was proposed in [124]. Moreover,
[125] proposed a sparsification scheme that minimized the
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total error incurred by sparsification throughout the learning
processes under total communication budget constraint. It was
found that the hard-threshold sparsifier, a variant of the Top-
k sparsifier (sending the k entries with largest magnitudes
and discarding the rest) with k determined by a constant
threshold, was the optimal sparsifier under such a criterion.
For convex as well as nonconvex loss functions, the conver-
gence of distributed learning algorithms using such a hard-
threshold sparsifier in conjunction with error feedback was
analyzed. It was proved in [125] that the algorithm had the
same asymptotic convergence and linear speedup properties
as SGD, and unlike conventional Top-k sparsifier, had no
performance loss due to data heterogeneity. To further reduce
the communication overhead of distributed learning, a global
Top-k sparsifier was proposed in [126], where the k gradient
entries with globally largest absolute values from all agents
were transmitted. It was shown that such a sparsifier incurred
much less communication cost compared to conventional
local Top-k sparsifier. Additionally, a modified sparsified SGD
algorithm, namely the global renovating SGD, was proposed
in [127], where previous-round global gradients were utilized
to estimate the current global gradient and renovate the current
zero-sparsified gradients. While mitigating the communica-
tion overhead, the algorithm made the convergence direction
closer to the centralized optimization, thus accelerating the
distributed learning. Convergence guarantees of rate O(1/

√
t)

were provided for nonconvex learning problems.

The impact of wireless communication factors (e.g., channel
fading, noise, power control) on sparsified distributed learn-
ing algorithms has also been investigated in the literature.
FL over bandwidth-limited fading multiple access channels
was studied in [128]. The authors proposed a compressed
analog distributed SGD algorithm, where agents first spar-
sified their local gradients and then projected the resultant
sparse vector into a low-dimensional vector for bandwidth
reduction. Through bandwidth-limited wireless channels, these
low-dimensional vectors from the agents were sent to the
server, where the aggregation was conducted by over-the-air
computations. A power allocation scheme was devised to align
the received gradients at the server. A convergence analysis for
this approach was presented in [129]. It was shown that the
probability of reaching a small neighborhood of the optimal
solution converged to one as time went to infinity. In [130],
an online learning approach was developed to minimize the
overall training time of FL algorithms and achieve the near-
optimal communication-computation tradeoff by controlling
the sparsity of the gradients. A compressive sensing (CS)
approach was proposed in [131] for FL over massive MIMO
systems, where sparse signals constructed from local gradients
were transmitted by devices and a CS algorithm was developed
to reconstruct local gradients at the central server.

In [132], the authors integrated sparsification with atomic
decomposition (e.g., singular value decomposition, Fourier
transform), where the atoms of the atomic decomposition
of the gradients were sparsified. Notable methods such as
QSGD in [94] and TernGrad in [111] could be regarded as
special cases of sparsified atomic decomposition algorithm.
It was shown in [132] that sparsifiying the singular values
of neural network gradients, rather than their entries, led to

significantly faster distributed training. A convex optimization
formulation for minimizing the coding length of the stochastic
gradients in distributed learning was proposed in [133], where
entries of the gradients were randomly dropped out and
the remaining entries were amplified to keep the sparsified
gradients unbiased. A simple and fast algorithm for solving
this optimization problem was developed with guaranteed
sparsity. The convergence rates of distributed learning algo-
rithms with sparse model averaging and gradient quantization
were investigated for both convex and nonconvex problems in
[134]. Besides first-order algorithms, second-order distributed
learning algorithms with sparsification were also studied. In
[135], a distributed approximated Newton’s method was pro-
posed based on δ-approximate compressors, which included
Top-k sparsifier as a special case. It was shown that the
algorithm was able to achieve the same rate of convergence as
state-of-the-art second-order distributed learning algorithms by
incurring much less communication overhead. Sparsification
was also applied to deep learning in [136], where only the
important entries of the gradients were sent. Momentum resid-
ual accumulation was designed for tracking outdated residual
gradient coordinates to avoid low convergence rate caused
by sparse updates. Sparsified gradient descent algorithm was
implemented as a library in [137].

C. Error-Compensated Compression

Compressing the exchanged information usually leads to
errors in distributed learning. As the learning algorithms
progress, the errors caused by compression in each time
slot accumulate and may degrade the learning performance
severely. A remedy to this issue is to provide error feedback
to the agents, who compensate for the errors dynamically
to avoid error accumulation. Recently, following this general
approach, a series of distributed learning algorithms with
error-compensated compression have been developed, which
can reduce the communication overhead significantly without
compromising the learning performance much.

We use here the communication-compressed decentralized
SGD algorithm proposed in [138] as an illustrative exam-
ple for the error-compensated compression approach. The
problem considered in [138] is the single-task decentralized
learning problem (1) over a connected undirected network.
The expected local loss function of each agent i is given by
fi(xxx) = Eξi∼Di [Fi(xxx, ξi)], where ξi is the local data, Di is the
data distribution, and Fi is the loss function. Let Q : Rd 7→ Rd
be a (possibly probabilistic) compression operator satisfying
the following property:

EQ[‖Q(xxx)− xxx‖2] ≤ (1− δ)‖xxx‖2, ∀xxx ∈ Rd, (9)

where the expectation is taken with respect to the internal
randomness of the compressor Q, and δ ∈ (0, 1) is a constant.
Many popular compressors satisfy property (9), including
sparsifiers (e.g., Top-k and Rand-k (randomly picking k out
of d entries to transmit)), random gossiping (transmitting with
certain probability), and other random quantizers. Each agent i
maintains (|Ni|+2) variables, namely xxxi(t), {x̂xxj(t)j∈Ni∪{i}},
where x̂xxj(t) is an approximate local model of agent j. In each
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time t, agent i first samples ξi(t) ∼ Di. Then it updates its
local model according to

xxxi(t+ 1) = xxxi(t) + γ
∑
j∈Ni

aij(x̂xxj(t)− x̂xxi(t))

− ηt∇Fi(xxxi(t), ξi(t)), (10)

where γ > 0 is an algorithm parameter to be selected. Note
that in (10), agent i uses the approximate model x̂xxj(t) instead
of the exact model xxxj(t) (j ∈ Ni), which is not accessible to
agent i. Afterwards, agent i computes

qqqi(t) = Q(xxxi(t+ 1)− x̂xxi(t)), (11)

and sends qqqi(t) to all neighbors in Ni. Symmetrically, it
receives qqqj(t) from all neighbors j ∈ Ni, and updates the
approximate local model by

x̂xxj(t+ 1) = qqqj(t) + x̂xxj(t), ∀j ∈ Ni ∪ {i}. (12)

This algorithm conducts error-compensation in steps (11) and
(12). Specifically, step (11) compresses the difference between
the new local model xxxi(t + 1) and the previous approximate
local model x̂xxi(t), which contains errors caused by compressed
communications so far. Thus, in (12), qqqj(t) is able to partially
offset the compression errors in the previous approximate
model x̂xxj(t). In particular, if Q is replaced by an identity
mapping at time t, then combining (11) and (12) yields
x̂xxi(t + 1) = xxxi(t + 1) readily (i.e., zero error), no matter
how large the gap x̂xxi(t) − xxxi(t) was previously. It has been
shown in [138] that, if the loss functions {fi} are µ-strongly
convex, then the algorithm converges at rate O( σ

2

µnt ), where
σ2 is the variance of the stochastic gradients ∇Fi(xxx, ξi).
This recovers the convergence rate of mini-batch SGD with
perfect communications. In the convergence bound, commu-
nication compression (e.g., the compression accuracy factor
δ) only affects higher order terms that are negligible as time
t goes to infinity. This suggests that the error-compensated
decentralized learning algorithm in [138] is able to reduce
communication overhead significantly (by sending information
compressed by Q) without degrading the learning performance
much. Numerical experiments show that, to achieve the same
learning performance, the number of bits communicated by
the error-compensated algorithm is smaller than that of vanilla
SGD by orders of magnitude. Decentralized learning algo-
rithms with error-compensated compressed communications
were also studied in [139], where two different compression
strategies, namely extrapolation compression and difference
compression, were used. When the compressors were unbiased
and had bounded variances, it was shown for nonconvex learn-
ing problems that the algorithm converged at rate O(1/

√
nt),

matching the convergence rate of centralized learning with
perfect communications. Error-compensated compression and
event-triggered communications were combined to further
improve the communication efficiency of decentralized opti-
mization algorithms in [140]. Further, momentum SGD with
error-compensated compressed communications was studied
in [141], which imposed weaker assumptions on the variance
and dissimilarity of the gradients. Decentralized optimization
with sparsification and error-compensated compression was
investigated in [142].

Distributed learning algorithms with error-compensated
communication compression have also been studied for server-
agent systems. A sparsified SGD algorithm with error-
compensation was developed in [143], and was shown to
converge at the same rate as vanilla SGD. Distributed SGD
with error-compensated stochastic quantization was proposed
in [144], and its convergence was analyzed for the case of
quadratic optimization, though its convergence rate was not
shown to be the same as vanilla SGD. Error-compensated
signSGD was developed in [145], and the algorithm was
shown to achieve the same convergence rate as vanilla SGD.
An asynchronous error-compensated distributed SGD algo-
rithm composing quantization and sparsification was proposed
in [146], where each agent communicated with the server
infrequently at different time instants. It was shown in [146]
that despite this aggressive compression, the algorithm could
achieve the same convergence rate as vanilla SGD for both
convex and nonconvex problems. A general framework for de-
vising and analyzing error-compensated quantized distributed
learning algorithms was presented in [147], where linear
convergence rates could be guaranteed. Linearly converging
error-compensated distributed SGD with improved conver-
gence rate was developed in [148] based on loopless Katyusha
method. Error-compensated communication compression was
further extended to distributed learning algorithms with vari-
ance reduction techniques in [149], where the variance of
stochastic gradient was reduced by taking a moving average
over all historical gradients. In such a case, only using the
compression error in the previous time instant was not enough
for fully compensating for the compression errors. An error-
compensation algorithm using the compression errors from
the previous two time instants was proposed and was shown
to achieve the same convergence rate as the case with-
out compression. A distributed SGD with double-pass error-
compensated compression was proposed in [150], where the
compression was conducted at both the server and the agents.
Hessian-based error-compensated compression was developed
in [151], which was especially suitable for ill-conditioned
problems. A saddle-point algorithm with error-compensated
compression was studied in [152] to solve decentralized mul-
titask learning problems.

D. Other Compression Methods

In addition to quantization, sparsification and error-
compensated compression techniques, researchers have de-
vised other communication compression methods for dis-
tributed learning algorithms. In [153], the models sent by
the agents to the server were restricted to have certain struc-
tures such as low-rank in order to reduce the communication
overhead. In [8], a variety of techniques were employed to
reduce the communication bandwidth of distributed learn-
ing algorithms comprehensively, including momentum correc-
tion, local gradient clipping, momentum factor masking, and
warm-up training. In [154], a low-rank gradient compressor
based on power iterations was proposed for distributed learn-
ing that could achieve test performance on par with SGD.
Communication-efficient FL algorithms based on sketching
were devised in [155]. Additionally, communication-efficient
multi-agent actor-critic algorithm for multi-agent RL over
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directed graphs was examined in [156], where each agent only
sent two scalars at each time.

FL based on over-the-air computation was proposed in
[157] to reduce the bandwidth requirement by exploiting the
superposition property of wireless multiple-access channels.
The algorithm used joint device selection and beamforming
design, which were modeled as a sparse low-rank optimization
problem. To solve this nonconvex problem, a difference-of-
convex (DC) algorithm with global convergence guarantee was
developed. The effects of over-the-air analog aggregation (e.g.,
waveform superposition and communication latency reduction)
on the performance of FL algorithms were further investigated
in [158], [159]. Moreover, [160] developed a band-limited
coordinate descent approach by k-sparsifying the gradients and
transmitting the gradient entries over k subcarriers through
wireless channels. Learning-driven communication error min-
imization was studied by jointly optimizing the power allo-
cation and learning rates. In [161], the learning rate of the
FL algorithm was optimized dynamically and beamforming
subject to power constraints was also designed.

E. Future Directions

We provide two potential directions for future work on
distributed learning with compressed communications.

1) Communication Compression for Distributed Online
Learning: Prior work on distributed online learning with
compressed communications is rather limited. A decentralized
online learning algorithm using the signs of the relative local
models of neighboring agents has been proposed in [115]. The
approach required each agent to be able to observe the signs of
the models of neighbors relative to its own model, which might
not be the case in practice. One future direction of research
would be to devise distributed online learning algorithms that
quantize/compress the local models directly (instead of the
relative local models, i.e., the difference between neighbors’
models). The quantization/compression schemes will have to
be designed such the degradation of online learning perfor-
mance (e.g., regret and constraint violations) is minimal.

One possible approach is to design a dynamic quantizer,
which adjusts the length and the center of the quantization
interval on-the-fly. Specifically, as the algorithm progresses
and becomes more confident about the location of the dynamic
optimal solution, the length of the quantization interval could
be shrunk, leading to higher quantization resolution. This can
potentially reduce the communication overhead of distributed
online algorithms without hurting the regret and constraint
violations in order sense. A challenge to this approach is that,
unlike static learning problems, the optimal solutions of online
learning problems change with time and it is more difficult
to locate them with high confidence. Technical assumptions
limiting the temporal variation speed of the online problems
may be needed to resolve this issue. Another approach would
be to adjust the algorithm parameters, e.g., the combination
weights of decentralized OGD algorithm, so that the impact
of the quantization errors vanishes gradually as the algorithm
progresses.

It is also possible to devise error-compensated compression
schemes for distributed online learning. When the training data
is collected sequentially and loss functions vary with time,

it would be interesting to see if the compression errors can
still be compensated for dynamically so that the regret is not
affected by communication compression in order sense.

2) Performance Limits under Communication Rate Con-
straints: Most existing works on distributed learning with
compressed communications are focused on algorithm design.
Yet little is known about the fundamental performance limits
of distributed learning when communications are compressed.
With limited communication bandwidth, the data rate of
information exchange in distributed learning algorithms is
constrained. Under such communication rate constraints, one
would seek to establish lower bounds for the training loss (e.g.,
the gap between the loss functions of the trained model and
the optimal model) or testing performance (e.g., generalization
error), and ascertain the impact of communication rate on these
lower bounds. It would be interesting to see if existing learning
algorithms with compressed communications can achieve such
lower bounds in order sense. If not, one could look into
designing novel compression methods to match the derived
performance lower bounds.

V. RESOURCE MANAGEMENT FOR
COMMUNICATION-EFFICIENT DISTRIBUTED LEARNING

The information exchange required by distributed learning
algorithms consumes substantial amount of radio resources,
such as energy and bandwidth, which are scarce in many prac-
tical circumstances. In this section, we provide an overview of
resource management techniques for communication-efficient
distributed learning algorithms, which seek to achieve the best
learning performance under resource budget constraints.

A. Power Allocation
A variety of power allocation schemes have been proposed

to obtain satisfactory performance for FL under energy con-
straints. For FL over wireless networks, in [162], the authors
took transmission energy (arising from sending local models
to the server) and computation energy (arising from the local
training steps) into consideration, and minimized the total
energy consumption subject to constraints on computation and
communication latencies. An iterative algorithm was devel-
oped to solve this optimization problem, where closed-form
solutions for time/power/bandwidth allocation were derived.
In [9], a joint transmit power allocation and device selection
problem was studied to achieve the best FL performance over
wireless networks. A closed-form expression for the conver-
gence rate of the FL algorithm was first derived to quantify the
impact of wireless factors on the training loss. Then, based on
this convergence rate, the optimal scheme for transmit power
allocation, user selection, and uplink resource block allocation
was developed. Additionally, a resource allocation problem
was formulated in [163], [164] to achieve the optimal tradeoff
between FL convergence and energy consumption. Such a
resource allocation problem was nonconvex, and was decom-
posed into three convex subproblems. The globally optimal
resource allocation scheme was obtained by characterizing the
solution structures of the subproblems.

Convergence analysis of FL over noisy fading wireless
channels was studied in [165] recently. Power allocation
problems were formulated to minimize the convergence bound
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subject to a set of average and maximum power constraints
at individual edge devices. The problems were transformed
into convex forms, and their structured optimal solutions,
appearing in the form of regularized channel inversion, were
obtained by using the Lagrangian duality method. Moreover,
FL system with over-the-air analog gradient aggregation was
examined in [166]. Dynamic agent participation scheduling
and power allocation schemes were proposed to optimize the
training performance under energy constraints of the agents,
where both the communication and computation energy con-
sumptions were taken into account. The energy consumption
of FL algorithms has been studied by other approaches as
well, beyond power control. In [167], the total cost of FL,
arising from the training time and energy consumption, was
minimized by choosing agent participation and the number of
local iterations. Solution properties of the formulated problem
were derived to identify the design principles of FL algorithms.
Further, a semi-asynchronous federated learning algorithm was
developed in [168], where the server aggregated a certain
number of local models based on their arrival orders in each
time. A convergence bound for the algorithm was established,
and the training time was minimized under communication
cost constraints and FL accuracy constraints by choosing an
appropriate number of participating agents.

B. Bandwidth Allocation

Bandwidth allocation has also been investigated extensively
and is often utilized in conjunction with other techniques
(such as agent selection and power control) to improve the
communication efficiency of FL. In [169], for FL over wireless
networks, a stochastic optimization problem minimizing the
long-term learning loss under long-term energy constraints
was studied by selecting agent participation and allocating
bandwidth. An algorithm utilizing only the currently available
wireless channel information was devised to solve this stochas-
tic optimization problem. A joint probabilistic user selection
and resource block (spectrum bands) allocation scheme was
developed in [170] to minimize the training loss and con-
vergence time of the FL algorithm, where only those users
with significant impact on the global model were selected to
upload their local models. A joint bandwidth allocation and
device selection scheme was proposed in [171] to maximize
the training accuracy subject to total training time constraints
for latency-constrained FL. Moreover, joint power and band-
width allocation was investigated in [172] to minimize the
energy consumption, computation cost and time cost of the
FL algorithm. In [173], a channel allocation problem was
investigated to minimize the training delays subject to dif-
ferential privacy and training performance constraints. A joint
bandwidth allocation and user selection problem was examined
in [174] in the scenario of visible light communication.

Asynchronous FL with limited wireless resources was stud-
ied in [175]. A metric named effectivity score was proposed to
represent the amount of learning. An asynchronous learning-
aware transmission scheduling (ALS) problem to maximize the
effectivity score subject to resource constraints (e.g., spectrum
constraints) was formulated. When the statistical information
of the system uncertainties (e.g., channel conditions, data
arrivals, and radio resource availability) was unknown, the

scheduling problem could be solved through a Bayesian learn-
ing approach. Hierarchical FL was introduced in [176], where
small-cell base stations coordinated the mobile users within
their cells and periodically exchanged model updates with the
main base station, i.e., the server. A method was proposed
to optimize the allocation of subcarriers so as to reduce the
communication latency of the FL algorithm. In addition, a
collaborative FL architecture supporting deep neural network
(DNN) training was considered in [177], which sought to
optimally select participating devices and allocate computing
and spectrum resources. A stochastic optimization problem
with the objective of minimizing learning loss while satisfying
delay and long-term energy consumption requirements was
formulated. A deep multi-agent reinforcement learning ap-
proach was developed to solve the problem. Moreover, FL with
the assistance of intelligent reflection surface was proposed in
[178], and the delay of FL was analyzed in [179].

C. Future Directions

Several promising directions for future research on resource
management in distributed learning are discussed below.

1) Improving Communication Efficiency and Data Privacy
Simultaneously: In distributed learning, the loss functions of
the agents depend on their local private data, which often
contain sensitive information, e.g., health information and
financial information. Even though the agents do not need
to share their raw data with others in a distributed learning
setting, the exchanged information between agents and the
server may still be overheard and utilized by malicious ad-
versaries to (partially) infer the private data of the agents.
The noise in wireless channels, a nuisance from the perspec-
tive of communication, can help preserve the data privacy
by preventing adversaries from inferring the private data of
agents accurately based on the overheard noisy information.
Transmission power of agents also influence the data privacy
of agents. Large transmission power enhances the signal-to-
noise ratio at adversaries and makes it easier to infer the private
data of agents. On the other hand, low transmission power
hinders accurate information exchange in distributed learning
algorithms, and thus degrades the learning performance. It
is therefore imperative to devise power allocation schemes
(across time and agents) to balance the learning performance
and data privacy under energy budget constraints of agents.
The goal is to achieve an optimal tradeoff between learning
performance, data privacy, and communication efficiency for
distributed learning over wireless networks.

2) Impact of Wireless Interference in Decentralized Net-
works: Most of the existing works on resource management
for communication-efficient distributed learning are focused
on the server-agent setting, where all agents communicate
with a server through a multiple-access channel. When the
multi-agent system is a fully decentralized network without
a central server, each agent exchanges information with its
neighbors and the concurrent information transmissions of
different agents can cause mutual interference, which affects
the communication accuracy and the learning performance. It
is therefore important to design novel transmission scheduling
and power allocation mechanisms to mitigate the negative
effects of wireless interference on decentralized learning. For
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instance, the information transmission should be scheduled
so that agents located close to each other do not transmit
simultaneously to avoid strong interference. In addition, agents
should avoid using high transmission power to compensate
for poor channel conditions as this would lead to strong
interference to nearby agents.

3) Resource Allocation for Communication-Efficient Dis-
tributed Online Learning: Most existing resource allocation
schemes are designed for communication-efficient distributed
learning in static settings, where the loss functions are fixed.
When the training data is collected sequentially and learning
is conducted in real time, it is still unclear how to allocate
radio resources (e.g., power and bandwidth) to achieve the best
online learning performance under resource budget constraints.
One can first study the impact of limited radio resources on the
regret and constraint violations of various distributed online
learning algorithms (e.g., distributed OGD, online saddle-point
algorithm). Then, one can minimize the performance bounds
on the regret and constraint violations by allotting the radio
resources in an optimal manner.

VI. GAME THEORY FOR COMMUNICATION-EFFICIENT
DISTRIBUTED LEARNING

The information exchange required by distributed learning
algorithms consumes substantial amount of communication re-
sources, which are often scarce for users. For instance, mobile
devices may have limited amount of energy and communica-
tion bandwidth. Therefore, users may not be willing to partic-
ipate in the distributed learning algorithms or may not devote
sufficient radio resources to the learning algorithms, which
would then lead to deterioration of the learning performance.
To cope with this challenge, several recent works have devised
game-theoretic mechanisms to compensate for the resource
consumption of users and incentivize their participation in
distributed learning. In this section, we present an overview of
this line of research and point out several potential directions
for future research.

A. Existing Works
In [10], the authors studied FL in a server-agent system,

and sought to design an optimal incentive mechanism from
the server’s perspective in the presence of users’ multi-
dimensional private information, including training cost (such
as communication and computation energy cost) and com-
munication delays. The authors proposed a multi-dimensional
contract-theoretic mechanism, which summarized users’ multi-
dimensional private information into a one-dimensional cri-
terion that entails a complete ordering of users. Analysis in
various information scenarios was conducted to reveal the im-
pact of information asymmetry levels on the server’s optimal
strategy. Reputation was introduced as a metric to measure the
reliability and trustworthiness of the mobile users in [180].
A reputation-based user selection scheme was developed for
reliable FL by using a multiweight subjective logic model.
An incentive mechanism combining reputation and contract
theory was devised to motivate high-reputation users with
high-quality data to participate in the FL algorithm. Moreover,
in [181], an incentive mechanism based on deep reinforcement
learning was devised for FL to determine the optimal pricing

strategy for the server and the optimal training strategies
for the users, where the utility functions of users took their
communication and computation costs into account. Auction
mechanisms were proposed in [182] to incentivize users to
contribute communication/computation resources and private
data to FL algorithms. An approximate strategy-proof mech-
anism with guaranteed truthfulness, individual rationality and
computational efficiency was designed. To further improve the
social welfare, an automated strategy-proof mechanism based
on deep reinforcement learning was also devised. Additionally,
a hierarchical FL framework was studied in [183], where users
first transmitted local models to edge servers for intermediate
aggregation, and then edge servers communicated with the
model owner for global aggregation. Such an approach could
reduce the number of global communications and mitigate the
straggler effect of users. A hierarchical game was proposed for
the edge association and resource allocation problem, where
users’ strategies were their edge associations and the edge
servers’ strategies were their bandwidth allocation schemes.
The lower-level interaction between the users were modeled
as an evolutionary game. The upper-level interaction between
the edge servers and the model owner was modeled as a
Stackelberg differential game, where the model owner decided
an optimal reward scheme given the expected bandwidth
allocation strategies of the edge servers.

B. Future Directions

Two possible future directions on the use of game theory
for communication-efficient distributed learning are presented
below.

1) Game Theory for Communication-Efficient Fully Decen-
tralized Learning over Networks: Most existing works on the
use of game theory for distributed learning are focused on
server-agent systems, in which a central server interacts with
a set of strategic agents. Yet little is known about the strategic
behavior of agents in a fully decentralized learning setting
over a network without central entity. Decentralized learning
algorithms require agents to exchange information with neigh-
bors to facilitate collaborative learning. When determining
the amount of radio resources (e.g., energy and bandwidth)
devoted to information transmission, agents need to take
into consideration both their local resource budget constraints
and the interference to other nearby agents sending/receiving
information concurrently. For example, if an agent sends
information with very large transmission power, other nearby
concurrent transmissions cannot be received accurately due
to the strong interference, which may degrade the collabo-
rative learning performance. Using a non-cooperative game
framework, one can study the strategic behavior (e.g., power
control and spectrum usage) of agents in such a decentralized
learning setting. It would be interesting to examine the price-
of-anarchy by comparing the learning performance of a non-
cooperative game and that of a fully cooperative scenario
with globally optimal resource allocation scheme. Further, one
may devise game-theoretic incentive mechanisms (e.g., auction
and bargaining) to guide agents’ behavior and ameliorate the
performance of decentralized learning.

2) Incentive Mechanism Design for Communication-
Efficient Personalized Learning: Existing incentive mecha-

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2023.3242710

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on February 08,2023 at 07:20:33 UTC from IEEE Xplore.  Restrictions apply. 



17

nisms are mostly designed for single-task distributed learning
(problem (1)), where all agents collaborate to learn a common
model. It would be interesting to study the strategic behavior of
agents in distributed personalized learning, where each agent
has its own model to train and different agents’ models are
distinct (but related). In personalized learning, e.g., multitask
learning (problems (3), (6), (7)) and meta-learning (problem
(4)), each agent aims to obtain the best personal model by
using its scarce radio resources, and is indifferent about the
learning accuracy of other agents’ models. The decision mak-
ing processes are coupled across agents since the local models
of individual agents are related. Through a non-cooperative
game framework, one can investigate the equilibrium resource
allocation strategies of agents and the performance of person-
alized learning algorithms at the equilibrium. To improve the
learning performance, one may further devise game-theoretic
mechanisms incentivizing agents to contribute sufficient radio
resources to personalized learning algorithms.

VII. CONCLUSION

In this paper, we have presented a holistic overview of
communication-efficient distributed learning. First, we have
surveyed methods reducing the number of communication
rounds for distributed learning, including multiple local train-
ing steps between consecutive communications and event-
triggered communications. Second, we have reviewed various
communication compression schemes for distributed learning,
such as quantization, sparsification, and error-compensated
compression. Third, resource management techniques, e.g.,
power control and bandwidth allocation, have been presented
to make the most of the limited radio resources to achieve
the best learning performance. Finally, several recent studies
on the game-theoretic mechanism design for incentivizing
user participation in distributed learning have been discussed.
In addition to reviewing existing works, for each of these
communication-efficient distributed learning methods, we have
also pointed out potential directions for future research.
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