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Compressed Fourier-Domain Convolutional
Beamforming for Sub-Nyquist
Ultrasound Imaging

Alon Mamistvalov*™ and Yonina C. Eldar

Abstract—Efficient ultrasound (US) systems that
produce high-quality images can improve current clinical
diagnosis capabilities by making the imaging process
much more affordable and accessible to users. The most
common technique for generating B-mode US images is
delay-and-sum (DAS) beamforming, where an appropriate
delay is introduced to signals sampled and processed at
each transducer element. However, sampling rates that
are much higher than the Nyquist rate of the signal are
required for high-resolution DAS beamforming, leading
to large amounts of data, making remote processing of
channel data impractical. Moreover, the production of
US images that exhibit high resolution and good image
contrast requires a large set of transducer elements, which
further increases the data size. Previous works suggest
methods for reduction in sampling rate and in array size.
In this work, we introduce compressed Fourier domain
convolutional beamforming, combining Fourier domain
beamforming (FDBF), sparse convolutional beamforming,
and compressed sensing methods. This allows reducing
both the number of array elements and the sampling rate
in each element while achieving high-resolution images.
Using in vivo data, we demonstrate that the proposed
method can generate B-mode images using 142 times less
data than DAS. Our results pave the way toward efficient
US and demonstrate that high-resolution US images can be
produced using sub-Nyquist sampling in time and space.

Index Terms— Array processing, beamforming, com-
pressed sensing (CS), medical ultrasound (US), sparse
arrays.

NOMENCLATURE
M Transducer array geometry.
| M| Size of array M.

min(M), max(M) Minimum and maximum element of

array M.
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Discrete linear convolution over Fourier
coefficients and discrete linear convolu-
tion over spatial dimension.

Signal received at the mth transducer
element.

Dynamically delayed received signal
used for beamforming in direction 6.
Beamformed signal at direction 6.
Normalized delayed signal at channel
m.

Time duration of the receiving signal.
kth Fourier coefficient of the received
signal at channel m.

kth Fourier coefficient of the beam-
formed signal.

kth Fourier coefficient of the delayed
signal at channel m.

Sampling rate for traditional beamform-
ing.

Number of samples required for tradi-
tional beamforming.

Effective bandpass bandwidth of the
received signal.

Cardinality of S.

Nyquist sampling rate of effective
bandpass bandwidth of the received sig-
nal.

Subset of £ used for sub-Nyquist sam-
pling.

Cardinality of fsy.

Number of time samples corresponding
to sub-Nyquist rate.

I. INTRODUCTION

LTRASOUND (US) imaging is one of the most common
medical imaging methods. It offers a wide range of
noninvasive applications, including cardiac, fetal, and breast
imaging. In traditional US, imaging is performed by transmit-
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ting acoustic pulses along a narrow beam from an array of
transducer elements. While propagating, echoes are scattered
by acoustic impedance perturbations in the tissue and detected
by the same array of transducers. The data collected by the
receiving elements are then stored and processed to create an
image line via beamforming [1]. In the process of beamform-
ing, the signals are aligned by introducing appropriate time
delays and subsequently averaged. Beamforming allows to
focus and steer the beam to the desired direction corresponding
to the transmission path or a point in space. This results
in signal-to-noise ratio (SNR) improvement together with
improved angular localization, which makes it one of the main
components in the imaging cycle.

The standard approach for beamforming is delay-and-sum
(DAS) beamforming [2], [3] due to its low computational cost
and real-time capabilities. In DAS beamforming, delays are
implemented digitally after sampling the signals in order to
align the data, before averaging over the channels. To allow
high-resolution time delays and avoid artifacts caused by the
digital implementation of beamforming in time, US signals
are typically sampled at a rate 4-10 times higher than their
Nyquist rate [4].

To generate US images with high resolution and image con-
trast, the beam pattern of the beamformer should have narrow
main lobe and low sidelobes [2], [5]. Although being simple
for real-time applications, DAS suffers from low image resolu-
tion and contrast. Increasing the number of array elements can
improve image quality when keeping the array pitch below half
a wavelength to avoid grating sidelobes [6]. However, a large
number of transducer elements, each sampling the signal at
high rates, result in an enormous amount of data that need to
be stored and processed, as well as many sampling channels.
The large amount of data leads to impractical demands on
the hardware and system power when considering portable
devices and wireless probes. Therefore, rate reduction in time
and space, together with image quality enhancement, is of
great importance for portable US devices.

Several methods have been studied recently for data, power,
and sampling rate reduction. Reduction in sampling rate has
been investigated in several studies based on the combination
of compressed sensing (CS) [7]-[10] and sub-Nyquist sam-
pling [4] by exploiting the finite rate of innovation (FRI) [11]
structure of the received US signal. It was shown in [8]
and [9] that DAS beamforming can be implemented equiv-
alently in the Fourier domain, leading to frequency-domain
beamforming, with sampling rates lower than those known
in today’s commercial US systems. This was later extended
to plane-wave imaging [12]. The suggested sub-Nyquist sys-
tem was implemented in the context of radar [13] based
on the ideas of Xampling presented in [7] and [14]-[17].
A CS-based synthetic transmit aperture technique is presented
in [18]. This method increases the frame rate by transmit-
ting a small number of randomly apodized plane waves and
uses CS to recover the full channel data. However, none
of the methods above considered the reduction in receiving
elements.

Several approaches for generating US images using fewer
receiving elements were studied in the literature. One example

is relying on the analog implementation of subaperture and
microbeamformers [19], where part of the beamformation is
moved to the probe handle. However, this requires producing
expensive integrated circuits with high power consumption
and affects image quality [20]. Other methods considered
the usage of sparse arrays [21]-[24] where some of the
elements are removed. Cohen and Eldar [25] introduced a
new beamforming method called convolutional beamforming
algorithm (COBA). They showed that by applying COBA, the
resulting beampattern is equivalent to that of the virtual array
given by the sum coarray [26], [27]. Therefore, one can use
thinned sparse arrays, whose sum coarray is a full uniform
linear array (ULA), and obtain the same beampattern that
would have been obtained using the original full array. Using
COBA together with sparse economic array geometries can
result in a large reduction of receiving elements, as shown
in [25] and [28]-[34]. Although achieving reduction in the
number of receiving elements, these techniques did not address
lowering the sampling rate.

In [35], we presented the idea of combining both sampling
rate reduction and spatial reduction. It was shown that US
signals acquired by a sparse array can be subsampled to their
effective Nyquist rate, delayed in the frequency domain, and
then convolutionally beamformed, resulting in a US image
with high image quality but produced from a small dataset.
However, in [35], the structure of the convolutionally beam-
formed signal was not exploited to reduce the sampling rates
to sub-Nyquist rates.

The main goal of this article is to present a beamforming
and recovery method that reduces the number of receiving
elements while sampling each of the channels at a rate
lower than the Nyquist rate. We aim for a beamformer that
preserves or improves image quality in terms of resolution
and contrast when compared to DAS beamforming. To achieve
this goal, we introduce a compressed frequency-domain con-
volutional beamforing algorithm (CFCOBA), which recon-
structs the convolutionally beamformed signal from only a
portion of the signal’s Fourier coefficients and allows advanced
imaging techniques such as harmonic imaging and coherent
compounding [36].

We begin by introducing the relationship between the
Fourier coefficients of the received signal to those of the
convolutionally beamformed signal based on [9] and [25].
This relation uses the frequency equivalent of delaying sig-
nals in time and sparse arrays with desired sum coarray
properties. We then show that the Fourier coefficients of the
convolutionally beamformed signal can be calculated effi-
ciently using the fast Fourier transform (FFT), making its
implementation in real time possible. The proposed method
for calculating the convolutionally beamformed signal Fourier
coefficients requires only a portion of the signals’ bandwidth
and uses sparse arrays, resulting in massive data size reduc-
tion. To reconstruct the convolutionally beamformed signal,
we prove that the signal obeys an FRI model based on the
square of the known transmitted acoustic pulse, which enables
recovery using known CS methods.

Next, we evaluate the suggested technique on simulated
and in vivo data of several body parts scanned by different
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US machines. Using this data, we show that US images
can be produced without impacting image quality and even
improving it when compared to DAS using up to two orders
of magnitude less data. The data used for the proposed method
are sampled at a rate lower than its effective Nyquist rate,
which is typically much lower than its highest frequency.
Thus, we illustrate that CFCOBA allows preservation of image
quality with up to 142-fold reduction in data size due to the
lower sampling rate and efficient sparse arrays used upon
reception. Our approach offers significant data size reduction
compared to common methods used today, combined with an
efficient implementation, which can impact the system size,
power consumption, cost, and mobility, making remote and
wireless US imaging feasible.

The rest of this article is organized as follows. Section II
discusses several beamforming methods such as DAS, Fourier
domain beamforming, and COBA, together with examples
of sparse arrays. Section III first presents our approach for
combining data reduction in the acquiring array size and the
sampling rate and then considers further reduction in sampling
rate and reconstruction of the signal using CS methods.
The performance of the suggested technique is evaluated in
Section IV using phantom and in vivo scans. This article is
concluded in Section V.

Nomenclature summarizes the notation used throughout
this article.

Il. ULTRASOUND BEAMFORMING TECHNIQUES

In most US imaging systems, the US image is built line by
line for each direction 8 using multiple transducer elements to
transmit and receive acoustic pulses. In that way, beamforming
can be performed both during transmission and reception.
We consider a ULA, M, comprised of |[M| = 2N — 1
transducer elements aligned along the x-axis. The imaging
cycle starts at + = O when the pulse is transmitted by
each transducer element, resulting in a beam propagating at
direction 6 through the tissue. The energy is scattered by
reflectors and the echoes are received by all elements at times
that depend on their location.

Traditionally, US beamforming is performed for each imag-
ing direction, 8, by averaging the received signals at different
array elements while compensating for the differences in
arrival time by alligning the signals using time shifts [8], [37].
This is referred to as DAS beamforming. In practice, DAS
beamforming is performed digitally in the time domain. The
applied delays are on the order of nanoseconds, which results
in a sampling rate that can be as high as hundreds of
megahertz [38], a requirement that is impractical. Therefore,
US data signals are sampled at lower rates, on the order
of tens of megahertz, and fine delay resolution is obtained
by subsequent digital interpolation that adds an additional
computational load. Yet, these lower rates are still typically
much higher than the Nyquist rate of the signal that is twice
its bandwidth [4] and often reach 4—-10 times the transducer
central frequency. These high sampling rates, together with
the large number of array elements used, result in a huge

amount of data, which makes the processing of US channel
data inefficient and very difficult to do using portable devices.

A. Frequency-Domain Beamforming

To reduce the sampling rate, frequency-domain beamform-
ing was suggested in [8] and [9]. Chernyakova et al. [9]
showed the equivalence of performing beamforming in time
and in the Fourier domain. It was then shown that beam-
forming can be performed efficiently using a small number of
Fourier coefficients of the received signals, which translates
to a low sampling rate. Specifically, let c[k] denote the kth
Fourier series coefficient of the beamformed signal and ¢, [k]
the kth Fourier series coefficient of the received signal at
channel m. Chernyakova et al. [9] showed that

1 M| N>
clkl = o D7 eulk — nlQumolnl. ()
m=1 n=—N;

Here, the variables Qy ,:¢[n] are the Fourier coefficients of
a distortion function that is determined solely by the geometry
of the imaging setup and can be computed offline once and
in advance. Using the Fourier coefficients of the distortion
function, delaying is transferred to the frequency domain. The
summation in (1) is actually infinite; however, in practice,
it can be replaced by a relatively small finite summation due
to the decay properties of {Qy .:¢0[n]} and the fact that most
of the energy of this set is centered around the dc component.
Thus, {Qm:e[nl} decays rapidly for n < —N;j, n > Ny,
where Nj, N, € N. Appropriate zero padding and applying
an inverse Fourier transform (IFFT) to {c[k]} results in the
time-domain beamformed signal.

The importance of (1) is that it only requires the nonzero
Fourier coefficients of the received signal. Those coefficients
are obtained from sub-Nyquist samples of the signal at each
receiving element. As shown in [9], the beamformed signal
will contain at most (B + N; 4+ N;) nonzero frequency
components, where B is the cardinality of the set of ks
for which c¢,[k] is nonzero. In practice, due to the fast
decaying property of the distortion function, B > Nj, N
implies that the bandwidth of the beamformed signal equals B.
Hence, to perform beamforming in frequency, we need only
a portion of the Fourier coefficients of the signal. To obtain
them, we use the Xampling mechanism proposed in [7]. The
implementation of this mechanism is discussed in [13]. The
output is sampled at its effective Nyquist rate and the required
Fourier coefficients are the Fourier transform of the output.
This yields a data size reduction of Ny /B, where Ny is the
number of samples required for DAS beamforming.

B. Convolutional Beamforming

The Fourier domain beamforming (FDBF) method above
focused on reducing sampling rate in time. An alternative
method, COBA [25], [28], was suggested in order to reduce
the number of array elements, assuming high sampling rate
in time. COBA produces images, at least as good as those
obtained by DAS, using fewer array elements. Here, we briefly
present the COBA and propose a sparse array geometry that
allows reduction in the number of elements.
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Let ¢, (p,0) denote the delayed signal at channel m,
sampled at sampling intervals 7y = (1/f;), where f; is the
sampling rate used for traditional DAS and p stands for the
pth sample. Cohen et al. [25] defined the beamformed signal
in COBA as

N—-1 N—-1
Ocopa(p; )= D D wa(p; Oun(p;0) ()

n=—(N—1) m=—(N—1)

U (p; 0) = 00 13 (p: 0)] 3)

with 2, (p, ) and |$,.(p, #)| being the phase and the mag-
nitude of ¢,,(p, 0), respectively. The operation in (3), ensures
that the amplitude of each product in (2) will be on the same
order of the received signal at each channel.

The imaging characteristics in US, such as contrast and res-
olution, are determined by the beampattern of the beamformer.
Specifically, a large number of elements ensure a narrow main
lobe and low sidelobes, leading to high resolution and contrast.
Hence, to analyze the imaging properties, the beampattern of
the beamformer is often considered. To that end, in [25], it was
shown that the effective beampattern of COBA is given by

osind
a,,exp(—jwo 51Cn n) 4)

where a, are intrinsic apodization weights given by a = I; *
I . Here, I is a binary vector whose mthentry is 1 if m € M,
wy is the central frequency of the transducer, and J,, = nd, with
o0 being the distance between two consecutive array elements.

The key point from (4) is that the effective beampattern
obtained by COBA is equivalent to the beampattern that
would have been obtained using the sum coarray of the given
physical array [26], [27], [39], which produces images with
better resolution and contrast. The sum coarray is defined in
Definition 1.

Definition 1 Sum Coarray): Consider a linear array M and
define the set

where

2N-1)

2

n=—2(N—1)

Hcopa(0) =

Su={n+m:n,meM). 5)

The sumset Sy, of the set M is defined to consist of the
distinct elements of S,,. The array with elements located at
no and n € Sy is the sum coarray of M.

The sum coarray is larger than the original array, which
leads to improved imaging performance due to the effective
beampattern. Therefore, a thinned array, comprised of the
original array after removing some of its elements, can be
used to actually reduce the data size. By preserving the desired
sum coarray, the beampattern is not changed and might be
improved.

Specific array geometries that were previously suggested
include fractal arrays [28], [30]-[34], which were shown to
generate a wide variety of good sparse arrays. Fractal arrays
are defined recursively by

Wo =0
Wr+1 = UneG(Wr + nLr)» reN (6)

where the array G is the generator array in fractal terminology,
with min(G) = 0. The translation factor L is given by
L =2max(G) + 1, where r is the array order. The resulting
array, W, is composed of spatially arranged copies of G. This
choice leads to very thin arrays with desirable properties and
coarrays that include the ULA of size |M]|.

Using thinned arrays leads to reduction in power and data
rates since less data are sampled, processed, and stored.

I1l. COMPRESSED FREQUENCY-DoOMAIN COBA

We now consider reconstruction of the convolutional beam-
formed signal from partial frequency data. We first show in
Section III-A that FDBF can be combined with COBA [35],
in order to sample at the Nyquist rate. Then, in Section III-B,
we show that we can further reduce the rate in time leading
to a method that allows to recover high-quality beamformed
data from subsamples in both time and space.

A. Frequency-Domain COBA

We first show that FDBF can be combined with COBA [35].
This leads to an efficient beamforming method using a small
number of array elements, each sampled at the effective
Nyquist rate of the signal, without impacting the image quality
compared to DAS.

Consider a ULA of desired aperture |M| and a given array
geometry U C M corresponding to a desired array following
Section II. The signal ¢,,(¢; ) is acquired by the receiving
element m. Let ¢,,[k] be the kth Fourier series coefficient of
the received signal at channel m

2z

1
otk = 7 [ 07 ooy (e 0)e a1

As stated in [9], a typical US signal has one main band
of energy, of bandwidth B. The energy outside this band is
much lower, and hence, the sampling rate of the signal is
set to achieve a consecutive set of the Fourier coefficients of
the received signals, S, such that |f| = B. This implies that
the sampling rate of the signal is dictated by the bandwidth
of the signal and denoted by figy = B/T, with T being the
pulse penetration depth.

Next, as shown in (1), by multiplying the Fourier coeffi-
cients of the distortion function and the Fourier coefficients
of the received signals elementwise, an appropriate delay
is applied to the received signals, obtaining the Fourier
coefficients of the delayed signal. The frequency-domain
delayed (FDD) signal, #'PP(p; 0), is obtained by applying
an IFFT on (1), before spatial domain summation. Here, p
denotes the pth sample of the signal on the time grid of the
delayed signal, p =1, ..., Ny. By plugging g%,];DD(p; 6) into
(3), we get

uy"®(p: 0) = uy"°(p; 0). (8)

We refer to time domain delayed as TDD, which holds
for a signal delayed using traditional time-domain delaying.
The key idea is that the delay can be achieved regardless of
the array geometry. Having obtained the equivalence of the
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delayed signals in time and frequency, we can easily proceed
in applying COBA.

Finally, we plug both the time domain and the FDD signals
into (2) and proceed according to COBA as given in (2),
which results in equivalence of the convolutional beamforming
applied to TDD signal and FDD signal.

By combining COBA and FDBE, one can sample using a
sparse set of array elements each sampled at the Nyquist rate
of the signal. The resulting data size reduction is therefore
(IM)/|U|)(Ns/B), where |M| and |U| are the original and
the thinned arrays size, respectively, Ny is the number of
samples traditionally needed for DAS, and B is the actual
signal bandwidth.

B. Exploiting the Fourier Coefficients Relationship

We now show how to further reduce the samlping in time
without affecting image quality. To this end, we first derive a
relation between the Fourier coefficients of the convolutionally
beamformed signal and the Fourier coefficients of the received
signals at the channels of U, the desired array geometry
defined in Section II-B. Then, we examine the FRI structure of
the convolutionally beamformed signal and prove that based on
the FRI model, we can reconstruct the convolutionally beam-
formed signal from only a portion of its Fourier coefficients.

To obtain the desired relation, we describe several steps
and the following calculation is performed for selected ¢ and
for signals that correspond to FDD; those subscripts are not
written explicitly for brevity. We aim to reduce the sampling
rate further than proposed in [35], by obtaining a set of
consecutive Fourier coefficients, fsy < f. The set By is
acquired using an appropriate filter [7]

(1) = / (D) £t — nyTox)dt ©)

where

L@ =" fa+IT)

I=—r

(10)

r is a constant determined by the support of the transmitted
pulse, T is the duration of the received signals, and Ty is the
sampling period for sub-Nyquist sampling. The filter, f (),
satisfies the following frequency response:

2wk
0, it o="25 k¢ B
- 2wk
Flo) =41, ifw:%, kepy D
arbitrary, else.

Let Nyy be the number of samples acquired by sub-Nyquist
sampling of the received signal. We define the compressed
frequency-domain signal by

®(n5)creopa = Z Z Bn(15) P (125)

nelU meU

12)

where ny = 0,..., Ngw — 1 are the discrete time samples
and ¢,,(ny) and @, (n,) are the delayed signals at channels m
and n, respectively, with the delay applied in the frequency
domain. Each of the delayed signals has B;y = |fS,n| Fourier

coefficients that are not zero, dictated by the filters width. The
Fourier coefficients of the acquired signals are zero padded to
length Nyy = 2By — 1. Based on the multiplication in the
time domain, the signal (f)(ns)CFCOBA has 2B,y — 1 nonzero
Fourier coefficients.

Next, we write the Fourier coefficients of the convolution-
ally beamformed signal based on the Ny samples acquired

Nyy—1
elklcrcosa = D, D Z ¢z(ng)¢m(ns>exp( kns)

leU meU n;=
(13)

By plugging the Fourier series coefficients of the delayed
signal at each channel, we have

¢lklcrcosa
Nyy—1 Nyy—1

gD 2D IDIDILALEL Y

leU meU ng=0 p=0

Niﬂ[] (2m- ) (—mk ) 14
Cilq]1€ex €ex ng
! P NsN P NsN

q=0

where the number of nonzero elements of {c,,[pl}, {ci[q]} is

Bgn. Using the fact that
_ NsNa 1f q + p = k
0, else

Noy—1 )
Z exp(Nz”
¢lklcrcoBa = Nsnv Z Z Z ¢mlpléilql]

ng=0
leU meU p+q=k

=Ny DD @Ik

leU meU

5)

we get

(16)

where the last equation is obtained by setting ¢ = k — p.
Hence, the resulting vector ¢lk]crcopa has support size
2By — 1 = Nyy and k € Sp,, where Sp, is the sumset
of fin [26], [27].

Finally, plugging the Fourier coefficients of the delayed
signal, in the frequency domain, into (16), we get the Fourier
coefficients of the convolutionally beamformed signal

ClklcrcoBa
=N 2.2
leU meU
N2 N2
( D enlk —w]Qemlwl x> Cz[k—h]Qk,z[h])
w=7N1 h=7N1

a7

where the length of the sequence c,,[k — w] is Ny;y with
Bgn elements that are not zero. To efficiently calculate (17),
we follow [25] noticing that (12) can be written as

Dcrcopa(ng) = Z Z

leSy mvelU:m+v=I

> (v #utn),

IESU

U (5 )ty (1)

(18)
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where Sy is the sum coarray of U. Due to the linear operations
in the temporal dimension that led to (17), we can plug the
results into (18) leading to

¢lklcrcoBa = Nsw Z(C * *C) [k]

leSy

19)

which denotes the 2-D convolution operation, one over the
temporal dimension and one over the spatial dimension. This
calculation can be easily calculated using IFFT and appropriate
zero padding based on the convolution theorem, which leads
to an efficient implementation with run time complexity of
order O(|U|Nyy log(|U|N;n)).

The same derivation can be applied to the convolutionally
beamformed signal, sampled at the traditional sampling rate
for DAS beamforming. The signal is defined by

d(na)cosa = D D ba(1)bm ()

nelU meU

(20)

where ng € {0, ..., Ny — 1} is the nyth sample of the delayed
signal, and the signals are delayed in the frequency domain
based on (1). In this case, the size of the set of the nonzero
Fourier coefficients is B > B;y and Ny > N,n. This results
in

¢lklcopa
= ]vstz Z
leU meU
N2 N2
( D enlk —wlQemlwl x > Cl[k—h]Qk,z[h])
w=—N, h=—N;
(2D
where {c,[kI}2% C {clkg" and e[kl = k],

Vk € fsn. The resulting subsampled signal Fourier coefficients
thus satisfy

&Nklcrcopa = ¢M[klcopa Yk € Sp,y . (22)

We next discuss reconstruction based on this partial set of
Fourier coefficients.

C. FRI Structure Derivation

We first show that the convolutionally beamformed signal
follows an FRI model.

Theorem 1: Let Ci)(t)COBA be the convolutionally bead-
formed signal defined in (20) over continuous time. For any
acquiring array, U, the convolutionally beamformed signal can
be modeled as an FRI signal, i.e., it has the following structure:

s
®(t)copa = stg(f -

Is) (23)

where S is the number of scattering elements in the tissue in
certain direction 8, g(t) = h’(t), where h(t) is the transmitted
pulse shape and {b,} and {z;} are the unknown amplitudes of
the reflections and the times at which the reflection from the
sth scatterer arrived at the receiving element, respectively.

Proof: From [8], we know that the delayed signal at each
element has the form

N
égm(t) = Zas,mh(t - ts)-

(24)

Substituting (24) into (20), we get

S S
Dcopa(t) =) Z(Z as,,h(t—m)( > agmh(t — tsf)).
s=1

leU meU s'=1
(25)

Next, we assume that h(f) is supported on a compact
interval [0, A), A > 0, meaning that h(r — t;) is supported
on [t;, t; + A). We also assume that z; > A so that in (25),
all pairwise multiplications of & (z — t,) that involve s # s’ are
zero. Thus, the beamformed signal is of the form

Dcopal(t) = Z Z(Z ds 1as mh (t — S))

leU meU
= Z(Z Z s, 1Ay m)h (t— ty)
leU meU
= stg(t —1) (26)
s=1
where g (1) = h%(1). [ |

Using the FRI structure of the convolutionally beamformed
signal, we now address its reconstruction.

Corollary 1.1: Let {é[k]CFCOBA}keS/ng be the set of size
2B;y — 1 > 28 nonzero consecutive Fourier coefficients of
the CFCOBA signal defined in (12). Based on the FRI model,
this signal can be recovered from a partial set of its Fourier
coefficients by solving

¢crcoa = GVb (27

where ¢crcopa 1S a vector of size 2B,y — 1 with the nonzero
{é[k]CpCOBA}kEsAN as its entries, G is a diagonal matrix of size
(2Bsy — 1) x 2Bsy — 1) with G(2zk/T) on its diagonal, V
is a Fourier matrix of size 2B,y — 1 x S with (k, s)th element
e~/ (@m)/Dks “and b is the S-length vector with the amplitudes,
{bs}, as its entries.

Proof: We begin by noticing that the signal is completely
defined by 2S unknown parameters that are the amplitudes
{bs} and the delays {¢,}. For a duration 7', the Fourier series
expansion of (26) can be written as

1 7S |
7/ stg(l — t;)e I @m/Dk gy
0 s=1
s
2rk o
I

s=1

Clklcrcoa =

(28)

where ¢[k]crcopa are the Fourier coefficients of the convolu-
tionally beamformed signal and G(w) is the continuous time
Fourier transform of g(¢). Writing (28) in matrix form results
in (27). This problem is invertible as long as 2By — 1 > S
and the time delays #, # ty, Vs # s’. The formulation in (27)
is a standard spectral analysis problem and can be solved for

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on January 30,2022 at 09:24:27 UTC from IEEE Xplore. Restrictions apply.



MAMISTVALOV AND ELDAR: COMPRESSED FOURIER-DOMAIN CONVOLUTIONAL BEAMFORMING FOR SUB-NYQUIST US IMAGING 495

Fractal array

{ECFCOBA [ﬂ]}

Recover the
signalusing

uLA geometry for
A = f1, ..., |nr) Generate - -
¢ ; fractal array — imaging U < M
=q. (6)
Calculate the
Obtainthe N
US analog desired signal Fourier
signal Fourier {Cm[n]}_ coefficients of
coefficients at - the,
- convolutionalby
SMsampling—
2 beamformed
=d-(9) signal—eq. (19)
Giomect!ry Calculate the
ase distortion
parameters function {Qk,—m,s‘ r"]}
Fourier
coefficients
[8-9]

Fig. 1.

MESTA
eg.(32)

Measurement
matrix A —
eq. (31)

CFCOBA algorithm and implementation flow. The basic steps include acquisition using a sparse array (6) and low rate sampling the signal

(11). Using the geometry-based precalculated distortion function [8], [12], obtaining the convolutionally beamformed Fourier series coefficients (19).
Finally, recovering the signal by solving the /; optimization problem with NESTA (32), using the appropriate measurement (31).

the unknown parameters {t, b} f:l, using methods such as the

annihilating filter [40]. |
In practice, the recovery problem can be solved using CS
methods as will be discussed next.

D. Reconstruction Using CS

To address recovery using CS methods, we begin with (28).
By quantizing the delays with step 7y, = (1/f;), such that
ty = q,Ts, and letting Ny = |T/T;], the Fourier coefficients
can be written as

27k !
”) (29)

S by i @0k,
T
s=0

We define the vector b of length N to consist of

Es _ b, if 5 =g
0, else.

The recovery problem then reduces to determining the
S-sparse vector b from

clklcrcosa = G(
(30)

écrcopa = GDb = Ab (31)

where D is a (2B;y — 1) X Ny matrix, formed by taking the set
Sp,, of rows from an Ny x Ny FFT matrix. This formulation
is a classic CS problem and can be solved using many CS
techniques. Choosing N,y > CL(log Ny)* rows uniformly at
random for some constant C > 0, the matrix A obeys the RIP
with high probability [41].

In practice, due to speckle, the coefficient vector b, defined
in (30), is only approximately sparse. To reconstruct b, we use
the /; norm, leading to

mgin [1b]11 s.t [|Ab = écrcopall2 <€ (32)
with € being an appropriate noise level. This optimization
problem can be solved using various known techniques, such
as interior-point methods [42] or iterative shrinkage ideas [43],
[44]. This optimization problem results in reconstruction of

both strong and weak reflectors, as will be shown next through
various examples.

A high-level flow and suggested implementation of the
proposed method is shown in Fig. 1, for a specific image line.

V. EVALUATION RESULTS

We now demonstrate the performance of the proposed
beamforming algorithm in comparison to DAS and the non-
compressed version of Fourier domain COBA. The methods
are applied to point scatters simulated data, tissue-mimicking
phantoms Gammex 403GSLE and 404GSLE, and RF data
acquired from healthy volunteers. For verifying the wide
variety of possible usages, we tested the methods on different
datasets, each of different body parts. We present here in vivo
cardiac data, kidney data, liver data, and bladder data. The
proposed method is also quantitatively evaluated and compared
to standard DAS in terms of contrast and image resolutions.

For evaluating axial and lateral resolution, full-width at half-
maximum (FWHM) is calculated for in vivo data and phantom
scans. The contrast ratio (CR) [25], [45] is calculated for
contrast evaluation. CR is evaluated from two regions in each
image: the cyst mimicking part and its background. The value
is calculated prior to log compression, and it is obtained using

CR = 201og10(ﬂ)
Kb

where u, and u. denote the means of the background and the
cyst, respectively.

Acquisition was performed using the GE breadboard ultra-
sonic scanner and the Verasonics Vantage 256 system. The
scans made with the GE US machine were performed using 64
channels phased array probe, with a radiated depth of 16 cm.
The probe carrier frequency was 3.4 MHz and the sampling
rate was 16 MHz leading to 3328 samples per image line.
The scans made with the Verasonics US machine were done
using the 64-element phased array transducer P4-2v, with
frequency response centered at 2.72 MHz and a sampling rate
of 10.8 MHz. For the Verasonics setup, 1920 samples per
image line were used. The simulated data were obtained using

(33)
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Fig. 2. Point scatterers simulated images obtained with (a) DAS and (b) compressed frequency-domain COBA—fractal geometry (36-fold reduction).

Fig. 3. Anechoic cyst phantom images obtained with (a) DAS and (b) compressed frequency-domain COBA—fractal geometry (36-fold reduction).

the Verasonics simulator based on the same setup used for the
in vivo scans. The images were generated using standard steps,
including log compression and interpolation.

For the fractal array geometry, we used the generator array
G = {0,1} and array order 4, leading to 15 elements.
To perform beamforming in frequency, with the GE imaging
setup, we used 400 and 100 samples at each of the channels of
the fractal array geometry, leading to noncompressed and com-
pressed frequency COBA images, respectively. This implies a
142-fold reduction in data size. For the Verasonics machine
480, 230 samples were used to perform noncompressed and
compressed imaging using the sparse arrays leading to a
reduction as high as 36 times less data. To solve (32), we used
the Nesterov’s algorithm (NESTA) [46], [47].

Table I shows a quantitative evaluation of the lateral and
axial resolution of the compared reconstruction methods.
The resolution is calculated from the in vivo scans and
averaged over the four organs and for phantom scan data.
The results were estimated by computing FWHM for each
possible lateral and axial cut per frame and averaging the
results over the total number of possible cuts per frame, i.e.,
for each image, the average resolution was calculated for
both axial and lateral cuts, therefore presenting a reliable
measure of the total image resolution without any prefer-
ence to a specific direction. As can be seen, the resolution
for the suggested method is comparable and effectively the
same such as DAS resolution. The result makes sense due
to the chosen fractal array geometry, which after CFCOBA
yields the same effective array characteristics as described
in Sections II-B and III-B.

Quantitative evaluation of CR is performed for the
tissue-mimicking phantom using (33). The regions for calcu-
lating the contrast ratio are shown in Fig. 3. The CR of DAS
and CFCOBA is —5.9 and —25 dB, respectively. These results
indicate that CFCOBA is comparable to DAS and outperforms
it in terms of image contrast, using much fewer array elements
and samples for image formation.

Figs. 2 and 3 show the beamformed US images obtained
from point scatterers simulation and phantom scans datasets.
Figs. 2(a) and (b) and 3(a) and (b) show the standard DAS and
the proposed beamforming method, CFCOBA, respectively.
The resulting images clearly show that the proposed method
outperforms standard methods for US imaging. It can be seen
that in the point scatterers simulated data, the points are less
blurred and the center of the reflector can be easily noticed.
In the phantom setup scans, the strong reflectors are seen
as good as in DAS images, and large noise reduction can
be observed, i.e., the background “white noise” is much less
observed emphasizing the contrast improvement.

The resulting in vivo US images are shown in Figs. 4-7.
The images show four different frames of different body
parts, where Figs. 4(a)-7(a) correspond to standard DAS,
Figs. 4(b)-7(b) stand for COBA [25] with full ULA,
Figs. 4(c)-7(c) stand for noncompressed Fourier domain
COBA [35], and Figs. 4(d)-7(d) present the proposed com-
pressed beamforming method. It can be easily seen that
although the images are not identical, the resulting images,
using compressed frequency-domain COBA, outperform those
produced by standard DAS, not only in terms of image
resolution and contrast but also in terms of image noise, using

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on January 30,2022 at 09:24:27 UTC from IEEE Xplore. Restrictions apply.



MAMISTVALOV AND ELDAR: COMPRESSED FOURIER-DOMAIN CONVOLUTIONAL BEAMFORMING FOR SUB-NYQUIST US IMAGING 497

Fig. 4. GE US machine cardiac images obtained with (a) DAS, (b) COBA—full ULA, (c) Noncompressed frequency-domain COBA—fractal geometry
(85-fold reduction), and (d) compressed frequency-domain COBA—fractal geometry (142-fold reduction).

Fig. 5. Verasonics US machine kidney images obtained with (a) DAS, (b) COBA—full ULA, (c) noncompressed frequency-domain COBA—fractal
geometry (17-fold reduction), and (d) compressed frequency-domain COBA—fractal geometry (36-fold reduction).

Fig. 6. Verasonics US machine liver images obtained with (a) DAS, (b) COBA—full ULA, (c) noncompressed frequency-domain COBA—fractal
geometry (17-fold reduction), and (d) compressed frequency-domain COBA—fractal geometry (36-fold reduction).

Fig. 7. Verasonics US machine bladder images obtained with (a) DAS, (b) COBA—full ULA, (c) noncompressed frequency-domain COBA—fractal
geometry (17-fold reduction), and (d) compressed frequency-domain COBA—fractal COBA geometry (36-fold reduction).

two orders of magnitude less data. When comparing the results to performing DAS uses a linear interpolation of the time
to the former proposed method, noncompressed FDBF, the samples, according to the delay that should be applied, the
outcome images do not differ much. computational complexity for this kind of interpolation is

We now compute the computational complexity of O(N), for a given input of size N. In our case, N = Ny
CFCOBA and compare it to DAS. The common technique and the interpolation is performed for all acquiring elements
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TABLE |
RESOLUTION EVALUATION

in-vivo data Phantom data
[[ axial | lateral [ axial | Tateral

Beamforming method

DAS 3.68 4.92 32 4.5
CFCOBA 3.7 4.52 3.6 4.6
TABLE Il

COMPUTATIONAL COMPLEXITY

Beamforming method
DAS
CFCOBA

Experiment 1
2 x 10°
2 x 107

Experiment 2
1.3 x 10°
8 x 10%

to obtain one line of the image; therefore, the total number
of operations for DAS is given by |M| x Ng. In CFCOBA,
the total number of operations is given by |U| N,y (log(Nsy )+
log(|U|)) for calculating the Fourier coefficients of the signal
using 2-D FFT. For the recovery using the CS method, the
complexity is given by N, per image line, and hence, the
total number of operations is given by |U|N;y (log(Nsy) +
log(|U|) + NfN. Table 1T shows the comparison of the two
methods for image recovery for the two setups we used, i.e.,
using the GE US machine, experiment 1, and the Verasonics
setup, experiment 2, as can be seen in both setups, the
suggested method outperforms DAS in terms of the estimated
number of operations, resulting in order of magnitude fewer
operations. For DAS, 64 receiving elements were used in
both experiments, with 3328 samples for the GE setup and
1920 samples for the Verasonics setup. In CFCOBA, we used
the fractal array geometry resulting in 15 receiving elements
for both setups, using 100 samples in the GE experiment
and 230 samples for the Verasonics.

These results combined with the quantitative results validate
that a significant reduction in both the number of acquiring
elements and the sampling rate can be achieved using the
proposed technique without degrading image quality and even
improving it when compared to traditional DAS using an
efficient method.

V. CONCLUSION

In this article, we proposed a new beamforming method
for high-quality B-mode US images. The suggested technique
is based on Xampling, frequency-domain beamforming, CS,
sparse arrays, and convolutional beamforming all implemented
efficiently. This combination allows producing a beamformer
that can outperform the widely used DAS using fewer receive
elements and data.

We extended frequency-domain COBA presented in [35]
and showed that the COBA can be performed directly in the
frequency domain. This results in up to 33-fold reduction
in sampling rate and 142 times less data combining with
sparse convolutional beamforming, without impacting image
quality and even improving it. The huge reduction is achieved
by sampling the signals at sub-Nyquist rates and using the
Xampling mechanism. To reconstruct the signal from partial
frequency data, we derived an FRI model for the convolu-
tionally beamformed signal, which resulted in replicas of the

square of the known transmitted pulse. This result enabled
usage of CS recovery methods.

Finally, we validated our technique both on simulated data
and on in vivo channel data of a variety of body parts,
acquired by two different US machines, resulting in high-
quality B-mode US images, using orders of magnitude less
data.

Our results prove that the idea of compressed US imaging
is feasible for practical use, leading to potential reduction in
US cost, power consumption and size, and paving the way
toward efficient US imaging.
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