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Abstract— Traditional beamforming of medical ultra-
sound images relies on sampling rates significantly higher
than the actual Nyquist rate of the received signals. This
results in large amounts of data to store and process,
imposing hardware and software challenges on the develop-
ment of ultrasound machinery and algorithms, and impact-
ing the resulting performance. In light of the capabilities
demonstrated by deep learning methods over the past
years across a variety of fields, including medical imaging,
it is natural to consider their ability to recover high-quality
ultrasound images from partial data. Here, we propose
an approach for deep-learning-based reconstruction of
B-mode images from temporally and spatially sub-sampled
channel data. We begin by considering sub-Nyquist sam-
pled data, time-aligned in the frequency domain and trans-
formed back to the time domain. The data are further
sampled spatially so that only a subset of the received
signals is acquired. The partial data is used to train an
encoder-decoderconvolutionalneural network (CNN), using
as targets minimum-variance (MV) beamformed signals that
were generated from the original, fully-sampled data. Our
approach yields high-quality B-mode images, with up to two
times higher resolution than previously proposed recon-
struction approaches (NESTA) from compressed data as
well as delay-and-sum (DAS) beamforming of the fully-
sampled data. In terms of contrast-to-noise ratio (CNR), our
results are comparable to MV beamforming of the fully-
sampled data, and provide up to 2 dB higher CNR values
than DAS and NESTA, thus enabling better and more effi-
cient imaging than what is used in clinical practice today.

Index Terms— Beamforming, deep-learning, sub-Nyquist
reconstruction, ultrasound imaging.

I. INTRODUCTION

OVER the past decades, ultrasound has become a pre-
ferred scanning modality in a variety of clinical sce-

narios due to its non-ionizing and noninvasive nature, high
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availability, and relatively low cost. The scanning process
consists of transmitting acoustic pulses to the tissue, receiving
their echos and digitally compensating their arrival time due
to the geometry, and finally summing over the channel. This
process is also referred to as beamforming.

Performing beamforming in the time domain necessitates
high sampling rates of the received signals. This requirement
originates from the time-alignment step, in which sufficient
delay resolution is obtained through oversampling and inter-
polation. In practice, signals are sampled at rates 4–10 times
higher than the transducer central frequency, leading to sam-
pling rates much higher than the Nyquist rate [1]–[3], which
is considered as the minimum sampling rate to allow full
reconstruction of the continuous-time signal before sampling
[2], [4]. This leads to vast amounts of samples to transmit and
process in order to produce the final image.

Data volume is crucial in particular in receive beamform-
ing. At this stage, averaging the signals across the array
is performed using either a pre-defined apodization, as in
delay-and-sum (DAS) beamforming [5], or a per-pixel data-
adaptive apodization, as in Wiener beamforming and coher-
ence factor [6] or minimum-variance (MV) beamforming [7].
While the latter allows for better trade-off between the main
lobe’s width and side-lobes intensity, translating to improved
resolution and contrast in the final image, its computational
cost is high and increases with data size. Therefore, it is
more expensive and harder to implement MV beamforming
in real-time clinical applications, making DAS the method of
choice, resulting in degraded image quality [8].

To circumvent the long processing time and the high com-
putational cost, a variety of techniques have emerged which
enable reconstruction of the beamformed signal from partial
data. In [3] and [9]–[11], the authors shift the process of
time-alignment to the frequency domain by drawing a con-
nection between the set of Fourier coefficients of the received
signals pre-alignment and the set of Fourier coefficients of
the beamformed signal, allowing to sample the former at
their effective Nyquist rate. A reduction to a sub-Nyquist
rate is also considered, by sampling only a subset of the
Fourier coefficients of the received signals. Reconstruction
is then performed using compressed sensing (CS) methods
[2], [12]–[14], relying on the finite-rate-of-innovation structure
of the beamformed signal [2], [12], [15].

In [16], a method is proposed to reduce the data and
hardware burden by using sparse arrays, namely, only a subset
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of the receive elements are activated. Processing is then
performed by convolutional beamforming, which is shown to
preserve the array beampattern under appropriate conditions
on the chosen array [17]. More specifically, the achieved
beampattern is equivalent to that of a virtual array given by
the sum co-array of the sparse array. Thus, using a sparse
array whose sum co-array includes a full uniform linear
array, yields enhanced resolution and contrast from fewer
transmitting elements. This method is integrated with Fourier
domain beamforming in [18] and [19], allowing sub-sampling
in both space and time.

The above-mentioned works perform recovery from the
partial samples by solving a minimization problem in an
iterative manner. Since the process is repeated for every
acquisition angle in the frame, this results in long processing
times. Moreover, fixed weighting is applied on the signals
prior to their summation, which results in degraded image
resolution in comparison to adaptive beamforming methods
[7], [8]. To improve on this, one would prefer to replace the
fixed weighting with adaptive weights. However, those are
calculated per scanned depth and transmission angle, making
the process computationally expensive.

Inspired by the notable performance of deep learning over
the past years across a wide range of fields and tasks
[20]–[22], medical imaging included [23], [24], different
uses of deep learning in ultrasound reconstruction have been
investigated [25], [26]. In [8], a deep-learning-based MV
beamformer is proposed, implemented with a fully-connected
neural network over fully-sampled and spatially sub-sampled
channel data. The objective is to ease the heavy computa-
tional burden of adaptive beamforming, as well as to improve
performance by learning from samples. The works [27]–[29]
target the same problem using encoder-decoder architectures,
while [30] considers the combination of deep neural networks
and MV beamforming for contrast enhancement. It suggests
an ensemble of networks operating in the frequency domain
over frequency sub-bands, either before or after computation
of the adaptive weights. In [31], the authors expand the prob-
lem to sub-sampling of transducer elements and transmission
angles. They theoretically justify their approach by drawing
a connection between the encoder-decoder architecture and
a low-rank Hankel matrix decomposition which models the
problem. Other works that consider reconstruction from a
partial set of plane-wave transmissions use fully convolutional
networks [32], [33], encoder-decoder networks [34]–[37] and
generative adversarial networks (GANs) [38], [39].

The aforementioned approaches propose fixed sampling
schemes that do not depend on the transmitted pulses or the
task at hand. This aspect is addressed in [40], where two
concatenated models are proposed. The first model learns to
sub-sample the data, while the second, whose architecture
depends on the desired task, learns the recovery. Both are
jointly trained in an end-to-end fashion. The method is tested
in several different sub-sampling tasks, including temporal
sub-sampling of partial Fourier measurements and recovery
of the original signal from them. However, this particular
task is tested in-silico only over simulated random signal
vectors; time-alignment of the sub-sampled signals, which is

required for ultrasound image recovery, is not addressed, and
neither is beamforming. Since traditional time-alignment is not
possible over a sub-sampled grid, the application to recovery of
temporally sub-sampled ultrasound data remains unexplored.

To the best of our knowledge, no other deep-learning-based
method has been proposed for the recovery of temporally
partial ultrasound channel data. Here, we address this issue
based on the results in [3] and [16]. The input to our model
are partial Fourier measurements of the received signals, from
either the full array or from a subset of channels, emulating a
sparse array. Those can be obtained by sub-Nyquist sampling
implemented in hardware, as shown in [15] and [41]. Using
a convolutional neural network (CNN) trained separately
on each reduction factor with MV-beamformed targets, our
model learns a transformation from the sub-sampled grid to a
high-quality B-mode image. Despite the significant reduction
in data volume, the CNN outperforms fully-sampled DAS
in terms of resolution and is comparable to fully-sampled
MV-beamforming in terms of contrast-to-noise ratio (CNR).
As such, it offers improved image quality compared to the
DAS beamformer used in clinical systems today, at a much
lower cost in terms of hardware and software.

The remainder of this article is organized as follows.
Section II shortly reviews DAS and Fourier domain beam-
forming. Section III introduces our proposed method, which
is verified in Sections IV and V. Results are discussed in
Section VI.

II. EXISTING BEAMFORMING METHODS

A. Delay-and-Sum (DAS) Beamforming

Consider a phased-array transducer of M elements aligned
along the x-axis, where m0 denotes the central element, and
δm denotes the distance to the mth element.

The imaging cycle begins at time t = 0, when a short
pulse is transmitted from the array in direction θ . Denote
by (x, z) = (ct sin θ, ct cos θ) the coordinates of the pulse at
time t, as it propagates through the tissue at speed c. Assume
that a point reflector positioned at this location scatters the
energy such that an echo is received by all array elements,
at a time depending on their location. Beamforming is the
operation of averaging the reflections while compensating for
these differences in arrival time.

Let ϕm(t) be the signal received by the mth element, and

τ̂ (t; θ) = t + dm(t; θ)

c
(1)

be its time of arrival, where

dm(t; θ) =
�

(ct cos θ)2 + (δm − ct sin θ)2 (2)

is the distance traveled by the reflection to the element.
Applying an appropriate delay to the mth signal results in its
alignment to the origin m0

ϕ̂m(t; θ) = ϕm(τm(t; θ)) (3)

where

τm(t; θ) = 1

2

�
t +

�
t2 − 4(δm/c)t sin θ + 4(δm/c)2

�
. (4)
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The final beam is derived by averaging the aligned signals
received by the entire array

�(t; θ) = 1

M

M�
m=1

ϕ̂m(t; θ). (5)

B. Fourier Domain Beamforming

Applying appropriate time delays necessitates high sam-
pling rates, 4–10 times higher than the probe’s central fre-
quency. To address this problem, it was shown in [3] that
beamforming can be implemented equivalently in the fre-
quency domain, bypassing the need for oversampling as no
shifts are actually performed.

Let c[k] be the kth Fourier series coefficient of the beam
�(t; θ), which can be expressed as

c[k] = 1

M

M�
m=1

ĉm[k] (6)

where ĉm[k] is given by

ĉm[k] = 1

T

� T

0
I[0,TB (θ)](t)ϕ̂m(t; θ)e−i(2π/T )kt dt . (7)

Here, I[0,TB (θ)] is an indicator function for the beam’s support
and T is defined by the penetration depth of the transmitted
pulse. Following the derivation in [42] and [3], ĉm[k] can be
written as

ĉm[k] =
�

n

cm[k − n]Qk,m,θ [n] (8)

where cm[k] are the Fourier coefficients of the signal received
in the mth element with no time-alignment applied to it, and
Qk,m,θ [n] are the Fourier coefficients of a distortion function
qk,m(t; θ), that effectively transfers the beamforming delays
defined in (4) to the frequency domain. The function qk,m(t; θ)
depends on the geometry of the array alone, and therefore,
its Fourier coefficients can be computed offline and stored in
memory.

Since most of the energy of {Qk,m,θ [n]} is concentrated
around the dc component, the infinite sum in (8) can be
approximated sufficiently with the finite sum

ĉm[k] ∼=
�

n∈ν(k)

cm[k − n]Qk,m,θ [n] (9)

where ν(k) depends on the decay properties of {Qk,m,θ [n]}.
Substituting (9) into (6) yields the beamformed signal in the
frequency domain

c[k] ∼= 1

M

M�
m=1

�
n∈ν(k)

cm[k − n]Qk,m,θ [n]. (10)

Applying an inverse Fourier transform on {c[k]} results in
the beamformed signal in time. The relationship (10), proves
that the Fourier coefficients of the beam can be obtained
as a linear combination of the Fourier coefficients of the
non-delayed received signals. Therefore, it is possible to
transfer the process of beamforming to the frequency domain
while yielding similar results.

Fig. 1. Temporal sub-sampling scheme per one transmission angle.
Each fully-sampled signal is digitally filtered using a bandpass filter of the
desired width around the central transmission frequency. The acquired
subset of Fourier coefficients is then multiplied by the corresponding
Fourier coefficients {Qk,m,θ[n]} (9), effectively applying TOF-correction
in the frequency domain [3]. The resulting signals are zero-padded and
transformed back to the time domain.

The required set of Fourier coefficients of the received
signals can be obtained in hardware using low-rate sampling,
significantly lower than the rate required for time-domain
beamforming [15], [41]. Further reduction to a sub-Nyquist
rate is achieved by obtaining only a subset of the coefficients,
resulting in a subset of the beam’s coefficients. In this scheme,
however, the inverse Fourier transform does not sufficiently
recover the beamformed signal in time, and additional methods
are required for full recovery.

As indicated in (10), Fourier domain beamforming incor-
porates DAS beamforming of the partial data and thus yields
similar resolution; however, how to integrate adaptive beam-
forming is not clear. To overcome this challenge, we intro-
duce a deep-learning-based approach, substituting adaptive
beamforming on the sub-sampled grid by learning a direct
transformation to a high-quality B-mode image.

III. METHOD

A. Data Sub-Sampling and Pre-Processing

Our pre-processing pipeline consists of digitally emulating
temporal sub-sampling with two sampling factors, each consti-
tuting a distinct dataset, and applying time-of-flight (TOF) cor-
rection in the frequency domain. The two datasets are denoted
in the following as Dtemp×a

, Dtemp×b
, where a, b are the sam-

pling factors. Specifically, each dataset is created as follows:
The fully-sampled signals are first transformed to the Fourier
domain; then, they are filtered using a rectangular bandpass
filter which corresponds to the desired frequency band around
the transmission’s central frequency. The resulting coefficients
are multiplied with the Fourier coefficients {Qk,m,θ [n]} (9),
following the method in [3]. From this point on we assume
that we are given only the temporally sub-sampled data. Then,
the data is transformed back to the time domain by restoring
the negative spectrum of each signal (i.e., its transposed-
conjugate, since the signals are real-valued), padding with
an appropriate-sized vector of zeros to maintain the original
resolution in time, and performing an inverse discrete Fourier
transform. The process is described in Fig. 1.

Since no additional processing steps are performed on the
under-sampled data to account for the loss of frequencies
outside the selected bandwidth, transforming it back to the
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Fig. 2. Elements position of (a) full array (b) sparse array. In this example, M/2 = 9, A = 3, and B = 3.

Fig. 3. Overview of the proposed method’s pipeline. (a) Temporal sub-sampling and time-of-flight correction of the fully-sampled data in the
frequency domain, as detailed in Fig. 1. (b) Spatial sub-sampling, which digitally emulates reception from a sparse array [16] (optional). (c) Slicing
the sub-sampled data to samples, each consisting of data from three consecutive transmission angles. (d) Permuting the second and third dimensions
of each sample, such that the signals received across the array constitute the different channels of input to the network. (e) Feeding the sample to
the neural network. (f) Prediction of the network, which consists of the beamformed radio frequency signal in one transmission angle.

time domain introduces aliasing artifacts as well as degraded
resolution. However, working in this domain rather than
staying in the frequency domain, allows us to model the
recovery of the sub-sampled signals and their beamforming
as a standard computer-vision problem, somewhat similar to
image enhancement or artifact removal. Moreover, it simplifies
the task since the difficulties of designing a neural network that
operates in the frequency domain and works with complex
numbers are avoided.

To further reduce data volume, a third dataset Dspatio−temp is
generated by sampling Dtemp×a

spatially, following the sparse
arrays approach presented in [16]. The sampling pattern is
obtained as follows. Let M be the full array’s width, and
A, B ∈ N+ be a factorization of M/2 such that AB = M/2.
Define the arrays UA, UB , and UC as

UA = {−(A − 1), . . . , 0, . . . , A − 1}
UB = {m A: m = −(B − 1), . . . , 0, . . . , B − 1}
UC = {m: |m| = M − A, . . . , M − 1}. (11)

Then the indices of half of the desired array are given by

Û = UA ∪ UB ∪ UC (12)

and indices for the entire sparse array are obtained by sym-
metrically concatenating those around the central element

U = �
M/2 − Û

� ∪ �
M/2 + Û

�
. (13)

As an example, for M/2 = 9, A = 3, and B = 3, the set Û
has only 13 elements out of 17 in the full array, as depicted
in Fig. 2.

In contrast to [16], no convolution is performed on the
filtered data before it is introduced to the network since

such pre-processing resulted empirically in degraded results.
This can be explained by the fact that the network does not
integrate components inspired by the concept of convolutional
beamforming, and moreover, is required to learn different,
more complex apodization weights. Since those are computed
originally from the signals themselves rather than from the
convolved signals, feeding the latter as input to the network
might resolve in a harder learning task.

Each sub-sampled dataset is used to train and test the
network separately. It is introduced to the network in 3-D data
cubes in order to exploit correlation in all three dimen-
sions, each input sample consisting of all scanned depths
per three consecutive transmission angles θ j−1, θ j , θ j+1, and
all channels of either the original or the sparse array. The
network’s output is the beamformed signal at transmission
angle θ j (see Fig. 3). Correspondingly, each target consists
of the MV-beamformed signal at θ j .

B. Network Architecture

The desired output of our deep-beamformer is an enhanced
B-mode image. Hence, an exact recovery of each sub-sampled
signal prior to beamforming is not necessarily required.
In other words, we would rather let the network learn a
non-exact recovery from the partial samples of each signal
to the original signal, if such is able to produce a better
beamformed image. To allow that relaxation, we tackle the
recovery from partial samples and beamforming jointly in a
single model, instead of handling each stage separately.

Our learning model is a variant of UNet, an encoder-decoder
CNN which was originally developed for segmentation tasks
with limited amount of training data [43]. It consists of three
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Fig. 4. Proposed architecture. The number of channels in each block is indicated above the block’s first box; the light-gray arrow in each block
indicates an additional residual connection, which enables the summation of the block’s input with its output. The final averaging of beamformed
signals from three transmission angles to one is indicated in the last box.

blocks in a contractive path, three blocks in an expansive
path and one bottleneck block between them; corresponding
blocks are connected with skip connections, i.e., concatena-
tion along the third dimension. Each block of the model
consists of two 3 × 3 convolutions, followed by either a
max-pooling layer for a contractive block or an upsampling
layer for an expansive block, both operating along the first
dimension.

Moreover, Parametric ReLU (PReLU) [44] is used as an
activation function rather then ReLU in order to assist the
learning process. The model outputs three lines of the beam-
formed image, which corresponds to the data slice of three
consecutive transmission angles we entered as input. We then
average over the three angles to get a single line of the
beamformed image.

Choosing UNet may seem non-trivial due to the large
receptive field created in the deeper layers of the model, toward
the bottleneck. It promotes both local and more global features,
the latter being typically used in tasks which consider large
objects, such as segmentation and classification. Nevertheless,
UNet’s compatibility to some classes of inverse problems was
addressed in [45], and examples of it being applied to different
reconstruction problems, ultrasound reconstruction included,
were published over the last years [35], [46]. In essence, the
class of inverse problems consists of tasks in which a signal is
retrieved from a set of measurements, obtained by some for-
ward model. They can be solved by iterative processes which
aim to minimize the distance between the actual measurements
and the approximated signal after it passes through the forward
model, with some regularization derived from prior knowledge
about the signal. Such solutions include a multiplication of the
operator associated with the forward model with its adjoint
and an inversion of the result. Therefore, when the support
of the filters associated with these operations is not compact,
large receptive field may be a desirable feature in a network
that learns to output similar results [45]. An overview of the
chosen architecture is given in Fig. 4.

C. Loss Function

Ultrasound channel data is characterized by a large dynamic
range, and is typically compressed after beamforming to
obtain the final B-mode image. Therefore, to promote visual
similarity between the output of a learning model and its cor-
responding beamformed target, we follow [8] and apply com-
pression within the loss function used in training, in a variant
of mean-squared-error (MSE). The function, named signed-
mean-squared-logarithmic-error (SMSLE), is defined as

LSMSLE = 0.5 · 		log10

�
B+

Pred

� − log10

�
B+

MV

�		2
2

+0.5 · 		log10

�
B−

Pred

� − log10

�
B−

MV

�		2
2 (14)

where B+, B− are the positive and negative parts of the radio
frequency beamformed data, BPred is the model’s prediction
and BMV is the MV-beamformed target [8].

To further promote perception-based similarity between the
beamformed signals, a second term, 1-D variant of structural
similarity index (SSIM) [47], was added to the loss function.
This term, which employs similar compression, is given by

LSSIM = 0.5 · �
1 − SSIM1D

�
log10

�
B+

Pred

�
, log10

�
B+

MV

���
+0.5 · �

1 − SSIM1D
�
log10

�
B−

Pred

�
, log10

�
B−

MV

���
(15)

where SSIM1D is defined for two signals x , y as

SSIM1D(x, y) =
�
2μxμy + C1

��
2σxy + C2

�
�
μ2

x + μ2
y + C1

��
σ 2

x + σ 2
y + C2

� . (16)

Here, μx , μy, σx , σy, and σxy are the means, standard devi-
ations and cross correlation of the two images, calculated
over an 11-pixel 1-D sliding Gaussian window (σ = 1.5),
and C1, C2 are constants meant to stabilize the division in
image regions where the local means or standard deviations
are close to zero. We choose the stabilization constants to be
C1 = (k1 · L)2, C2 = (k2 · L)2 where L is the dynamic range
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of pixel values and k1 = 0.01, k2 = 0.03 as suggested by
Wang et al. [48].

Overall, the model was optimized using the following cost
function:

L = 0.5 · LSMSLE + 0.5 · LSSIM. (17)

D. Metrics for Evaluation

To the best of our knowledge, no other approach was pro-
posed for deep-learning-based reconstruction from temporally
sub-sampled data. Therefore, we cannot directly compare our
model to other deep-leaning based state-of-the-art approaches.
Instead, we concentrate on quantitative evaluation to demon-
strate the benefits of our model. CNR is used to evaluate
contrast, and full-width-at-half-maxima (FWHM), calculated
over simulated point scatterers and in vivo data, is used to
evaluate axial and lateral resolution. Overall similarity to the
target image is evaluated using SSIM.

CNR and gCNR are evaluated over beamformed phantom
scans after envelope detection and logarithmic compression.
It is calculated from two regions with different intensities in
each image, namely, an anechoic cyst phantom scan and its
background, and is given by

CNR = 20 · log10

⎛
⎝ | μc − μb |�

σ 2
c + σ 2

b

⎞
⎠ (18)

where μc, μb, σc, and σb are the means and standard devi-
ations of the anechoic cyst phantom and the background,
respectively [49]. Similarly, we also used the generalized
CNR (gCNR) metric for evaluation over beamformed phantom
scans. This metric is less sensitive to large dynamic ranges as
in ultrasound scans. The gCNR is calculated using

gCNR = 1 −
� ∞

−∞
min

x
{po(x), pi(x)}dx (19)

where pi and po are prior probabilities assigned based on the
size of the regions of interest, pi is inside the region of interest,
and po is outside the region of interest.

FWHM is calculated by first computing the peaks per
column and row in each image frame, and then calculating the
width for each peak, and averaging the results over all axial
and lateral cuts in the frame, respectively. By averaging over
all possible cuts, we obtain a reliable resolution measurement
that does not prefer a specific image direction.

SSIM is evaluated per dataset over the test set of each of
the three folds, in reference to the fully-sampled MV target
images. It is defined for two images x , y as in (16), with the
exception of using a 2-D sliding window as in the original
definition of the function [48].

IV. EXPERIMENTAL SETUP

In vivo data for training and testing was acquired by
scanning three healthy volunteers, using a P4-2v Verasonics
phased-array transducer with 64 elements.

The scanning procedure was not a predefined protocol but
an in-house scan of healthy volunteers and a visiting doctor

that performed the scanning. Approval of the institutional
review board (IRB) of Weizmann Institute of Science and
informed consent were obtained for collecting the in vivo
data. The dataset consists of organs of the abdominal cavity—
liver, gallbladder, bladder, kidneys, and the Aorta. The carrier
frequency was 2.7 MHz and the sampling rate was 10.9 MHz,
which is twice the Nyquist rate, resulting in 1918 sam-
ples per image line. Two temporally sub-sampled datasets
were generated from it using the described scheme. In the
first, Dtemp×5

, 400 samples per image line were sampled,
resulting in sampling rate of 0.42 of the Nyquist rate and
fivefold reduction in comparison to the original data vol-
ume. In the second, Dtemp×9

, 220 samples per image line
were sampled, resulting in a sampling rate of 0.23 of the
Nyquist rate and ninefold reduction in comparison to the
original data volume. As described in Section III-A, a third
dataset, Dspatio−temp, was generated by spatial sampling of
Dtemp×5

, omitting 37 out of the 64 transmitting elements. This
results in 11-fold reduction in comparison to the original data
volume.

Threefold cross-validation was used in training, result-
ing in three trained models per dataset. Each model was
trained and validated using a different subset of two patients
in an 80%–20% split, setting the third patient aside for
testing. Each prediction of the model corresponds to the
beamformed signal in one transmission angle; as each frame
consists from 128 transmissions, this results in 4 ·104 training
samples and 2 · 104 testing samples in average per fold.
No organ-wise division was performed during training or
testing, meaning that both stages operate on data from multiple
organs. Targets for training were generated from MV beam-
forming of the fully-sampled data, time-aligned in the time
domain.

For quantitative evaluation of CNR, tissue-mimicking phan-
toms Gammex 403GSLE and 404GSLE were scanned by the
64-element phased array transducer P4-2v with similar trans-
mission specifications as the in vivo dataset. For calculating
the FWHM we created a dataset of point scatters simulations
using the Verasonics simulator for the P4-2V phased array US
probe, using the same setup that was used for the in vivo and
phantom scans.

The network was implemented with Keras, using Tensorflow
backend. It was trained separately on each dataset for up to
100 epochs using Adam optimizer, with an initial learning rate
of 3 · 10−5 for the temporal sub-sampling and 3 · 10−6 for the
spatial-temporal sub-sampling. Weights were initialized using
He Normal initialization [44].

V. RESULTS

In this section we evaluate the suggested method; we
present quantitative and qualitative evaluations followed by
a discussion of the results.

A. Numerical Study

Table I presents a quantitative evaluation of the lateral and
axial resolution of the proposed method, averaged over the
three models trained per reduction factor. The results were
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Fig. 5. Simulated point scatterers, obtained by (1) DAS (fully-sampled), (2) MV (fully-sampled), (3) NESTA (Dtemp×5 ), (4) NESTA (Dtemp×9 ), (5) NESTA
(Dspatio-temp), (6) proposed method (Dtemp×5 ), (7) proposed method (Dtemp×9 ), and (8) proposed method (Dspatio-temp). In (5), NESTA is applied after
convolving the data according to the convolutional beamforming framework. Predictions of the proposed method are averaged over the three models
trained per reduction factor. While the proposed method demonstrates high axial resolution over the simulated frames, lateral resolution seems
slightly degraded, and in frames which were sub-sampled by the ×9 sampling factor, axial halos are visually detected.

Fig. 6. Anechoic cyst phantom scan, obtained by (1) DAS (fully-sampled), (2) MV (fully-sampled), (3) NESTA (Dtemp×5 ), (4) NESTA (Dtemp×9 ),
(5) NESTA (Dspatio-temp), (6) proposed method (Dtemp×5 ), (7) proposed method (Dtemp×9 ) and (8) proposed method (Dspatio-temp). In (5), NESTA is
applied after convolving the data according to the convolutional beamforming framework. Red circles indicate the regions used for computing the
CNRs and gCNRs.

TABLE I
RESOLUTION EVALUATION WITH FULL WIDTH AT HALF

MAXIMA (FWHM) PARAMETER

calculated for simulated point scatters and in vivo test data,
as detailed in Section III-D. Table II presents a quantitative
evaluation of CNR and gCNR, as well as similarity of the

TABLE II
CNR, STRUCTURAL SIMILARITY INDEX (SSIM)

EVALUATION AND GCNR

network’s outputs to the MV targets, assessed on the phantom
scans and in vivo test scans, respectively. Again, results
were averaged over the three models trained per reduction
factor.

A comparison view of the beamformed simulated data
and anechoic cyst phantom is presented in Figs. 5 and 6,
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Fig. 7. Abdominal cavity images from testsets of two of the folds, obtained by (1) DAS (fully-sampled), (2) MV (fully-sampled), (3) NESTA (Dtemp×5 ),
(4) NESTA (Dtemp×9 ), (5) NESTA (Dspatio-temp), (6) proposed method (Dtemp×5 ), (7) proposed method (Dtemp×9 ), and (8) proposed method (Dspatio-temp).
In (5), NESTA is applied after convolving the data according to the convolutional beamforming framework.

respectively. Fig. 7 presents temporally and spatially sub-
sampled in vivo data from testsets of the different reduction
factors, beamformed by the proposed method and compared
to the previously suggested approaches.

B. Discussion

An example frame from the simulated set, reconstructed
by all compared methods, is presented in Fig. 5. Improved
lateral resolution can be seen in the images reconstructed by
the suggested method over all reduction factors, in comparison
to the NESTA reconstructions. In particular, side beams which
are present at the NESTA reconstruction of the ×11 reduction
factor (Fig 5, image 5) are not present at all in the suggested
method’s reconstruction (Fig. 5, image 8). However, in the
image which was sub-sampled by the ×9 sampling factor
(Fig. 5, image 7), axial halos are visually detected. We believe

that these results stem from the fact that the networks were
not trained on synthetic data, and therefore, had difficulty in
compensating for input differences over the temporally-harder
dataset.

In Fig. 6, improved contrast in comparison to DAS can
be seen in the ×5 and ×11 reduction factors (images 6, 8),
while degradation is apparent over the ×9 reduction factor
(image 7).

Fig. 7 depicts that over Dtemp×5
and Dspatio−temp, our method

yields results that are visually comparable to the target images
in terms of both resolution and contrast. Moreover, there is
good preservation of speckles and weaker reflections. Over
Dtemp×9

, however, slight suppression of speckles and mild pale
artifacts are detected, especially in low SNR areas at the
margins of the frame.

In terms of CNR, our method is comparable to DAS and
MV over the ×5 sub-sampling factor, but is slightly degraded
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over the ×9 sampling factor; in comparison to NESTA, it is
again slightly degraded over the ×5 sub-sampling factor but
is better over the ×9 sampling factor. These last results
suggest more robustness to the reduction in sampling rate.
For the gCNR metric, the proposed method is comparable
to NESTA although achieving slightly worse results in the
first dataset. However, in the higher reduction cases, we get
an effectively similar gCNR to NESTA. Therefore, these
results combined with the CNR prove the high robustness
of the proposed method to data size reduction in terms of
contrast.

One of the notable advantages of the suggested technique
is that unlike other adaptive beamforming techniques, such
as MV, the proposed method, once learned can be used to
beamform different types of scanned objects, and indeed it can
be seen to recover high quality US images of a wide range of
organs.

Finally, we consider two issues regarding the suggested
method. First, a possible drawback of the proposed mechanism
can be the fact that it does not produce an actual B-mode US
image, but only a single beamformed image line. However,
there are well-known steps of post-processing to visualize the
image which can be added here as well. Second, using delayed
data as target means our network should be able to produce
both negative and positive values. Therefore, one limitation of
the architecture is that we must use activation functions that do
not truncate negative values (ReLU for example). Using ReLU
in deep learning has been proven to make models faster in
backpropagation time, the gradients tends to vanish less, and
we get a sparser representation of the data; however, in our
method we cannot use standard ReLU due to the reason we
mentioned above.

VI. CONCLUSION

In this work we presented a deep-learning-based method
for high-quality reconstruction of temporally and spatially
sub-sampled channel data, obtained by the schemes presented
in [3] and [16]. We have shown that an encoder-decoder CNN,
trained on multiorgan scans using a loss function which incor-
porates domain knowledge, can be used to directly learn the
production of high-quality B-mode images from the degraded
data. Our method yields results with high resolution and
contrast, which are comparable to model-based beamforming
of the fully-sampled data. It performs particularly well on
moderate temporal sampling, either with or without spatial
sampling; yet, it seems to be more resilient to reduction
in temporal sampling rate than the iterative reconstruction
method which was previously used for the task in [3] and [16].
These results indicate that our method can be plugged into
previously proposed schemes of sub-Nyquist and sparse-
array ultrasound processing, to improve performance while
alleviating the requirements of the data’s transmission and
processing.
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