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Abstract—In recent years, algorithm unrolling has emerged as
a powerful technique for designing interpretable neural networks
based on iterative algorithms. Imaging inverse problems have par-
ticularly benefited from unrolling-based deep network design since
many traditional model-based approaches rely on iterative opti-
mization. Despite exciting progress, typical unrolling approaches
heuristically design layer-specific convolution weights to improve
performance. Crucially, convergence properties of the underly-
ing iterative algorithm are lost once layer-specific parameters are
learned from training data. We propose an unrolling technique
that breaks the trade-off between retaining algorithm properties
while simultaneously enhancing performance. We focus on im-
age deblurring and unrolling the widely-applied Half-Quadratic
Splitting (HQS) algorithm. We develop a new parametrization
scheme which enforces layer-specific parameters to asymptotically
approach certain fixed points. Through extensive experimental
studies, we verify that our approach achieves competitive perfor-
mance with state-of-the-art unrolled layer-specific learning and
significantly improves over the traditional HQS algorithm. We
further establish convergence of the proposed unrolled network
as the number of layers approaches infinity, and characterize its
convergence rate. Our experimental verification involves simula-
tions that validate the analytical results as well as comparison with
state-of-the-art non-blind deblurring techniques on benchmark
datasets. The merits of the proposed convergent unrolled network
are established over competing alternatives, especially in the regime
of limited training.

Index Terms—Algorithm unrolling, convergent, deep neural
networks, image deblurring.

I. INTRODUCTION

IMAGE deconvolution refers to the process of recovering a
sharp image from a recorded image corrupted by blur and

noise. In the computational imaging literature, motion deblur-
ring remains important since camera shakes are common in
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photography. The problem continues to attract attention because
of the popularity of smartphone cameras, wherein effective
hardware solutions such as professional camera stabilizers are
difficult to deploy due to cost and space restrictions [1], [2], [3].
Therefore, deblurring algorithms are highly desirable.

Image deconvolution consists of blind and non-blind image
deconvolution. The task of blind image deconvolution is to
recover the sharp image given only the blurry image, without
knowing the blur kernels [4], [5], [6], [7]. Non-blind image
deconvolution, where precise knowledge of the blur kernels
are assumed known a priori, continues to be an interesting
topic despite decades of algorithmic developments. In a typical
computational imaging system, the performance of non-blind
deconvolution algorithms usually determines the quality of the
reconstructed images. We concentrate on non-blind image de-
convolution with the particular case of motion deblurring when
conducting experimental studies. Nevertheless, our formulation
and analysis are versatile across blur kernels.

Early model-based works on image deblurring include Wiener
filters [8] and Richardson-Lucy iterations [9]. More recent meth-
ods benefit from studies about natural image statistics, which
demonstrate that the image gradients often follow a sparse dis-
tribution. A popular line of research thus focuses on modeling the
statistics of image gradients. One example is the Total-Variation
(TV) prior [10], which has the favorable property of being
convex and easy to optimize. However, in reality the gradient
distribution actually follows a hyper-Laplacian prior [11], [12],
[13], [14], which could be computationally demanding. Krinsh-
nan et al. [15] proposed a fast approximate algorithm based on a
Look-Up-Table (LUT). However, since gradients are low-level
image features, these methods do not capture the high-level
and non-local correlations in natural images, which has been
shown to be an important feature. Danielyan et al. [16] recast the
Block Matching 3-D (BM3D) algorithm as a frame operator, and
integrate it into the analysis and synthesis deblurring framework,
by imposing sparsity constraints over the transform coefficients.
In doing so, they are effectively modeling the image statistics at
a patch level rather than merely focusing on neighboring pixels.
More recently, Mäkinen et al. [17] introduced a method for exact
computation of the noise variance in a transform domain and
embeds the new variance calculation into the BM3D algorithm,
which yields significant improvements in BM3D denoising both
visually and in Peak-Signal-to-Noise Ratio (PSNR).

All aforementioned techniques hinge on analytic or hand-
crafted prior models, which may not faithfully fit real data
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distributions. Therefore, many works strive to learn prior models
from real data. In [18], Zoran et al. learn prior models from
real image patches using a Gaussian Mixture Model (GMM),
and integrate them into the well-known Half-Quadratic Split-
ting (HQS) framework dubbed Expected Patch Log Likelihood
(EPLL) framework with GMM prior. As a follow-up, Sun et al.
further extend this prior into multiple scales, and develop specific
priors by sampling patches from similar images. While being
more effective than conventional gradient sparsity priors, these
methods are typically slow. Rather than learning the patch dis-
tribution, Schmidt and Roth [19] learn the form of the shrinkage
operator in HQS, by approximating it with a Gaussian Radial
Basis Function (RBF), and learning the parameters through
stage-by-stage training. Buzzard et al. [20] used the idea of
Consensus Equilibrium (CE), which broadens the inclusion of
a much wider variety of both forward components and prior
components without the need for either to be expressed. This ap-
proach enables the use of trained DnCNNs, as proposed in [21],
at five different noise levels simultaneously in image denoising.

In recent years, deep neural networks have become the main-
stream approach in learning-based methods. Xu et al. [22]
learn a deconvolution Convolutional Neural Network (CNN)
by decomposing the convolution weights into separable filters,
which enable them to use large weights in the network. A
follow-up work [23] revised the weights decomposition scheme
through a low-rank approximation. Another line of research
applies pre-deconvolution techniques. Rather than feeding the
original blurry images into the network directly, one can obtain a
deconvolved image by deblurring it with a simple deconvolution
algorithm such as a Wiener filter, and then input the decon-
volved image into a network to perform artifact removal. Schuler
et al. [24] employ a Multi-Layer Perceptron (MLP) to denoise
the deconvolved patches. Zhang et al. [25] train a set of fast and
effective CNN denoisers and integrate them into a model-based
optimization method of HQS to solve the image deblurring
problem. Zhang et al. [26] stack a series of fully convolutional
networks to recover the sharp edges from the image gradi-
ents. Motivated by deep residual learning in the image super-
resolution literature [27], Wang and Tao [28] employ a very deep
CNN to remove the artifacts of the deconvolved image, which are
modeled as the residual signal. Son and Lee [29] further adopt the
residual connections from ResNet [30] into their network. Dong
et al. [31] proposed a spatially-variant MAP model (SVMAP)
by embedding deep neural networks within the constraints of
the maximum a-posteriori (MAP) framework. The work in [32]
performs deconvolution in a feature space instead of standard
image space, by combining the classic Wiener deconvolution
with deep learning features. Fang et al. [33] propose a kernel
error term to rectify the given kernel at the time of performing
the deconvolution and a residual error term is to deal with the
outliers caused by noise or saturation. Zhang et al. [34] proposes
a two-branch architecture that can perform high-quality night
photograph deblurring with sophisticated noise and saturation
regions. Aggarwal et al. [35] introduce an image reconstruction
framework with a CNN-based regularization prior alongside
conjugate gradient (CG) optimization.

While deep learning is empirically successful with suffi-
cient training data, a major drawback is that it usually sacri-
fices interpretability, as the deep networks are constructed by
stacking typical regression layers rather than derived from phys-
ical mechanisms. Gregor et al. [36], [37] develop a sparse coding
technique which could be regarded as a bridge between tradi-
tional iterative algorithms and modern deep neural networks, and
hence offers promise in filling the interpretability gap. Essen-
tially, for a particular iterative algorithm each iteration step could
be mapped into one network layer and executing the algorithm
a finite number of times means stacking such layers together.
These concatenated layers form a deep network, with algorithm
parameters mapped into network parameters. The parameters
can then be learned from real datasets via end-to-end training.
In recent years, there is a growing trend of research along this
route in various imaging fields.

Prior unrolling works on blind deblurring [38], [39], [40],
[41], [42] have already demonstrated the merits of this technique.
For (photon limited) non-blind deblurring, Sanghvi et al. [43]
unroll a Plug-and-Play algorithm for a fixed number of iterations
while specifically addressing the scenario of Poisson noise.
However, to ensure good performance in practice, the network
layers deviate from the original iterations in that layer-specific
parameters are adopted, potentially jeopardizing convergence.
Similar issues also persist in other unrolling works [44], where
custom layers are incorporated, and convergence guarantees for
unrolled networks have become a common open question.

From an algorithmic perspective, HQS is a generic and widely
applied technique for solving prior-based non-blind image de-
blurring. The convergence of conventional HQS is established
in [45], where Wang et al. derive strong convergence properties
for the algorithm including finite convergence for certain vari-
ables. In addition, they quantitively characterize the convergence
rate, which turns out to be at least q-linear [46] when fixing the
penalty parameters. In practice, the convergence speed could be
further accelerated when combined with a continuation scheme.
Nevertheless, their analysis is restricted to the scenarios where
the parameters are fixed per iterations, and hence cannot be
directly applied to many unrolling approaches where the pa-
rameters are altered.

Motivations and Contributions: In existing unrolled deep
networks for blind image deblurring [39], [41], [42], signifi-
cant performance gains (in the sense of reconstructed image
quality) have been demonstrated by layer-specific learning in-
cluding the case of unrolled HQS [39], [47]. The introduction of
layer-specific learned parameters such as independent filters per
layer also has a significant drawback in that it undermines the
convergence guarantees associated with traditional HQS, whose
parameters are recurrent across iterations.

In this paper, we propose a custom unrolled HQS network
that preserves the analytical merits of HQS while simultane-
ously retaining the practical performance benefits of unrolling.
Different from prior independent layer-specific learning, we
develop a structured per-layer parameterization which we prove
effectively leads to convergence. The main contributions of this
paper are as follows:
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� Deep Convergent Unrolling for Non-blind deblurring
(DECUN): We propose a deep interpretable neural net-
work called DECUN by unrolling the widely-applied
HQS algorithm. To ensure convergence and network
modeling power/performance, we develop a specific struc-
tured parametrization scheme.

� Analysis of DECUN Properties: We prove the convergence
of DECUN under the aforementioned parametrization.
Furthermore, we quantitatively characterize its conver-
gence rate both in a general form and for certain special
cases. We verify our theoretical findings via simulation
studies.

� Performance and Computational benefits: By experimen-
tal comparison with state-of-the-art deblurring techniques,
DECUN achieves a favorable gain of PSNR by about 1dB
and an SSIM of 0.1 over both traditional iterative algo-
rithms and modern deep neural networks, while preserving
convergence and interpretability.

We note that on the theoretical front there are works con-
centrating on analyzing the convergence of Learned Iterative
Shrinkage and Thresholding Algorithm (LISTA). In particular,
Chen et al. [48] derive necessary conditions for the network
parameters to obey in order to ensure convergence; Liu et al. [49]
further analytically specify a formula for the network weights.
Our work is of the same spirit in that we also develop conditions
for parameters and analyze convergence; however, we focus on
a different underlying iterative algorithm (HQS vs. LISTA) and
carry out specific realistic experimental studies for non-blind
image deblurring.

The rest of the article is organized as follows. In Section II we
introduce both traditional and unrolled HQS. In Section III, we
discuss our new parameterization scheme, and provide rigorous
convergence analysis and characterize the convergence rate of
our proposed unrolled network, dubbed DECUN; in Section IV
we verify our theory through simulation studies and demonstrate
the practical advantages of DECUN via extensive experimental
studies including enhanced generalizability. Section V con-
cludes the paper.

II. UNROLLED HQS FOR IMAGE DEBLURRING

A. Formulation of the Deblurring Problem

Assuming the camera motion is purely translational and the
scene is planar (ignoring the depth variations), image blurring
can be modeled as a discrete convolution process [50]

y = k ∗ u+ n, (1)

where y ∈ Rm denotes the observations of the signal u ∈ Rn,
received from a system with impulse response k ∈ Rk and
n ∈ Rm is an additive random noise process which is usually
modeled as independent identically distributed (i.i.d.) Gaussian.
By re-writing convolution as a matrix multiplication, we can
cast (1) into the following formula:

y = Ku+ n, (2)

where K ∈ Rm×n is the Toeplitz matrix corresponding to the
convolution kernel k. In non-blind deconvolution, it is assumed
that K is pre-determined and the goal is to solve for u.

In reality, k is usually considered as a low-pass filter since it
essentially performs temporal averaging of displaced versions
of the original signal u. In this regard, K is an ill-posed linear
operator and the non-blind deconvolution problem is typically an
ill-posed linear inverse problem. In order to recover u faithfully,
we pose additional assumptions on the structure of u. These as-
sumptions can be expressed as statistical priors, or deterministic
regularizers. In particular, a popular prior model leverages natu-
ral image statistics, which enforces gradient sparsity of the latent
imageu. This can be achieved by regularizing the �1-norm of im-
age gradients, which is well-known to be a convex function. This
technique, commonly called total variation minimization [51],
reduces to solving the following convex optimization problem:

min
u∈Rn

μ

2
‖y −Ku‖22 + ‖Dxu‖1 + ‖Dyu‖1, (3)

where Dx,Dy ∈ Rn×n are the gradient operators which cap-
ture horizontal and vertical image gradients, respectively, and
μ > 0 is a regularization parameter that controls the strength of
enforcing gradient sparsity. In practice, image gradients can be
computed by linear filtering and Dx,Dy are Toeplitz operators.
For expositional ease, we identify the operatorsDx andDy with
their underlying filters henceforth.

B. Solving Non-Blind Deconvolution Using HQS

A widely employed algorithm for solving (3) is the HQS algo-
rithm [45]. By introducing auxiliary variables wx,wy ∈ Rn as
surrogates of image gradients, (3) can be cast into the following
constrained minimization problem:

min
u,wx,wy∈Rn

μ

2
‖y −Ku‖22 + ‖wx‖1 + ‖wy‖1,

subject to Dxu = wx, Dyu = wy. (4)

We can relax the equality constraints in (4) to yield

min
u,wx,wy∈Rn

μ

2
‖y −Ku‖22 + ‖wx‖1 + ‖wy‖1

+
β

2

(‖Dxu−wx‖22 + ‖Dyu−wy‖22
)
, (5)

where β > 0 is a parameter controlling the relaxation strength.
The HQS algorithm proceeds by minimizing over u andwx,wy

in an alternating fashion. A desirable property of (5) is that
each sub-problem (over u or over w) admits closed-form so-
lutions, enabling to express the iteration steps analytically for
l = 1, 2, . . .

M←
∑
i∈x,y

Di
TDi +

μ

β
KTK,

ul ←M−1

⎛⎝∑
i∈x,y

Di
Twl

i +
μ

β
KTy

⎞⎠
wl+1

x ← s 1
β

(
Dxu

l
)
, wl+1

y ← s 1
β

(
Dyu

l
)
, (6)
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where sλ is the soft-thresholding operator defined elementwise
as sλ(x) = sgn(x) ·max{|x| − λ, 0}. Since Dx,Dy,K are all
Toeplitz operators, matrix inversion can be implemented effi-
ciently via the Discrete Fourier Transform (DFT).

Convergence of HQS has been established in [45] under mild
technical assumptions. Furthermore, it has been shown that the
convergence rate is at least q-linear, namely

‖wl+1 −w∗‖ ≤ λ‖wl −w∗‖,
where 1λ < 1 depends on Dx,Dy and K. The analysis in [45]
hinges on the fact that Dx,Dy and β are fixed parameters
across iterations, and does not apply to unrolling since learned
parameters change per layer/iteration.

C. Deep Unrolled Half-Quadratic Splitting

In conventional HQS iterations (6), the operators Dx,Dy ,
or their underlying gradient filters, are determined analytically.
The parameters β, μ are also chosen as fixed values. In practice,
better filters and parameters can be learned from real datasets
through end-to-end training to improve performance. Indeed,
as discussed in [36], for a particular iterative algorithm, each
iteration step can be considered as one layer of a network, and
executing the iterative steps corresponds to concatenating these
layers together to form a deep network. For instance, the iteration
steps in (6) comprise a series of linear mappings, followed by
non-linear soft-thresholding operations, which together form a
single network layer. In this way, the HQS algorithm is unrolled
into a deep network, which we train end-to-end to optimize the
filters and parameters.

Therefore, we further generalize HQS by adopting different
parameters Dl

x,D
l
y, β

l per layer. In addition, for each layer

we use C filters instead of two, i.e., we embed {Dl
i}Ci=1 into

each layer. With these generalizations, each network layer now
comprises the following iterations:

Ml ←
C∑
i=1

Dl
i

T
Dl

i +
μ

βl
KTK,

ul ←Ml−1
(

C∑
i=1

Dl
i

T
wl

i +
μ

βl
KTy

)
,

wl+1
i ← s 1

βl

(
Dl

iu
l
)
, i = 1, 2, . . . , C. (7)

To simplify the notations, let wl = [wl
1
T
,wl

2
T
, . . . ,wl

C
T
]
T

,

Dl = [Dl
1
T
,Dl

2
T
, . . . ,Dl

C
T
]
T

and sl(·) = s 1

βl
(·). Then itera-

tions (7) can be re-written as

Ml ← DlTDl +
μ

βl
KTK, (8)

ul ←Ml−1
(
DlTwl +

μ

βl
KTy

)
, (9)

wl+1 ← sl
(
Dlul

)
. (10)

1In our analysis λ plays the role of q.

Furthermore, define

hl(wl) = Dlul = DlMl−1
(
DlTwl +

μ

βl
KTy

)
. (11)

We may express the iterations succinctly as

wl+1 = sl
(
hl
(
wl
))

. (12)

With the mappings sl, hl defined, the unrolled network can be
visually depicted as a diagram in Fig. 1. Compared to tradi-
tional HQS, unrolled HQS performs much better in practice
thanks to its enriched set of parameters [39]; furthermore, it
typically executes merely tens of layers in practice, as opposed
to hundreds or thousands of iterations, and is usually much
more computationally efficient than HQS. However, since Dl

and βl are layer-specific parameters learned with training data,
the convergence guarantee for HQS no longer holds, as we will
demonstrate empirically in Section IV-A; additionally, inter-
pretability might be undermined because the unrolled network,
when having infinitely many layers, may no longer converge to
a particular fixed point. Nevertheless, as we will formally prove
in Section III, under certain conditions, if both the filters and
the parameters are asymptotically fixed, i.e., both converge to
certain fixed values, then the convergence guarantee could be
preserved.

III. DEEP CONVERGENT, UNROLLED HQS

In this section, we first propose a deep interpretable con-
vergent neural network architecture dubbed Deep Convergent
Unrolling for Non-blind Deblurring (DECUN) by developing
a new parametrization scheme in HQS. Then, we provide a
convergence proof and determine the convergence rate.

A. Convergence Analysis of DECUN

In [45], convergence is established for fixed D, μ and β,
where the mappings s and h are fixed per iteration. However,
in unrolled HQS, the fixed point of sl ◦ hl is not defined. We
hypothesize that, if {Dl}l and {βl}l are convergent sequences,
i.e., liml→∞Dl = D̄ and liml→∞ βl = β̄, then {wl}l converges
to a fixed point of s∗ ◦ h∗, with s∗, h∗ being the asymptotic
mappings of sl and hl, respectively.

In particular, we propose the following parameterization:

Dl = D̄+ ξlE
l, βl = β̄ + γl, (13)

where ξl and γl are both real vanishing sequences with
liml→∞ ξl = 0 and liml→∞ γl = 0, and D̄,El are both Toeplitz
matrices representing discrete convolutions, and El is norm-
bounded. SinceEl’s are layer-specific parameters, the number of
parameters for Dl does not decrease due to the parameterization
scheme shown in (13), which enables the unrolled network
to still retain significant modeling power. In practice, D̄, β̄
and El’s are learned from real-world training data whereas
ξl and γl are chosen real sequences. Next, we formally prove
that, this approach leads to convergence and characterizes the
convergence rate.

Assumption 1: For any iteration l, N (K) ∩N (Dl) = {0},
where N (·) represents the null space of a matrix.
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Fig. 1. Diagram of the unrolled HQS network. Trainable parameters are colored in blue. The linear operatorhl is defined in (11), whereas sl is the soft-thresholding
operator defined in (20).

This assumption ensures the nonsingularity of Ml defined in
(8), so that Gl = Dl(Ml)

−1
(Dl)

T
could be well defined and

used in Theorem 2.
Theorem 1: (Convergence result) For a fixed μ > 0, under

Assumption 1 and the parameterization given in (13), suppose
ξl ∈ R, γl ∈ R are absolutely summable, meaning

∑
l |ξl| and∑

l |γl| both converge. Furthermore, suppose that {El}l forms a
bounded sequence, i.e., ‖El‖ ≤M for some M > 0. Then the
sequence {(wl,ul)} generated by executing DECUN defined
in (9) and (10) from any starting point {(w0,u0)} converges to
{(w∗,u∗)} as l→∞.

Proof: See Appendix A. �
Essentially, Theorem 1 dictates that once we execute DECUN

for infinitely many layers, its output converges to a certain fixed
point. In other words, DECUN corresponds to a convergent iter-
ative algorithm, which dramatically enhances its interpretability.
We further quantify the convergence rate of DECUN in the
theorem below:

Theorem 2: (Convergence rate) Under Assumption 1, let
Gl = Dl(Ml)

−1
(Dl)

T
where Ml is defined in (8) and suppose

that Dl and βl follow the parametrization in (13) under the con-
ditions of Theorem 1. Then the sequence {(wl,ul)} generated
by (9) and (10) converges to {(w∗,u∗)} with convergence rate
satisfying

‖wl+1 −w∗‖

≤ (λmax)
l+1‖w0 −w∗‖+ F−1

(
B(w)

1− λmaxe−jw

)
(14)

where λmax = max{λ1, λ2, . . . , λl0 ,
√

1
2 [1 + ρ(G∗)]} with

λl =
√

ρ((Gl)2)), andρ(G∗) andρ((Gl)2)) represent the spec-
tral radii of matrix G∗ and (Gl)2 respectively. Here B(w) is the
discrete-time Fourier transform of

bl = 3|ξl|‖u∗‖+ 2|γl|
(β̄)

2 (15)

and

u∗ =
(
(D̄)

T
D̄+

μ

β̄
KTK

)−1(
(D̄)

T
w∗ +

μ

β̄
KTy

)
(16)

where w∗ is the fixed point of s∗ ◦ h∗: w∗ = s∗(h∗(w∗)), which
could be achieved from (9) and (10) as l→∞.

Proof: See Appendix B. �
Theorem 2 provides a generic formula for the convergence

rate of DECUN; however, it may be hard to pursue unless
B(w) is of a tractable form. In the following, we will derive
simplified formulas of (14) under two common circumstances.
Indeed, as can be seen from (14), the convergence rate depends
on two parts. One depends on the spectral radii of (Gl)2. It is
easy to see that ρ((Gl)2) ≤ ρ((Gl)) < 1 and (λmax)

l+1 << 1,
since Gl is symmetric, postive definite. Another depends on the
convergence rate of both ξl and γl. When ξl = ξl with 0 < ξ < 1
and γl = γl with 0 < γ < 1, then B(w) in (14) yields

B(w) =
3‖u∗‖

1− ξe−jw
+

2

(β̄)
2

1

1− γe−jw
(17)

so that (14) yields

‖wl+1 −w∗‖ ≤ (λmax)
l+1‖w0 −w∗‖

+
3‖u∗‖

ξ − λmax

(
ξl+1 − (λmax)

l+1
)

+
2

(β̄)2(γ − λmax)
(γl+1 − (λmax)

l+1). (18)

If ξl = ( 1
l+1 )

p, γl = ( 1
l+1 )

p with p ≥ 1, then (14) yields

‖wl+1 −w∗‖ ≤ (λmax)
l+1‖w0 −w∗‖

+

(
3‖u∗‖+ 2

(β̄)2

) l∑
i=0

(λmax)
l−i
(

1

i+ 1

)p

. (19)

From (18), (19) we observe that the overall convergence rate
depends on the decaying rate of ξl and γl, and becomes faster

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on April 17,2024 at 04:49:17 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: DEEP, CONVERGENT, UNROLLED HALF-QUADRATIC SPLITTING FOR IMAGE DECONVOLUTION 579

when both series vanish quicker; in particular, when they are
both geometric series then the convergence rate is linear. It is
worth noting that in practice faster decay does not necessarily
yield better performance because this merely implies that the
speed of converging to a fixed point is high, which does not
provide a guarantee that the fixed point is superior. Improved
model performance can be obtained by better-chosen parameters
which are learned from real datasets through end-to-end training
in practice.

Wang et al. [45], conduct a similar analysis on the HQS
algorithm (Theorem 3.4 and Theorem 3.5). In comparison,
unrolled HQS generalizes it by altering the parameters across
layers, and falls back to HQS when ξl = 0 and γl = 0, ∀l. In
addition, when unrolled HQS converges, the convergent point
is the same as HQS when using D̄ and β̄ as its parameters. In
this regard, Theorem 1 could be considered as a generalization
of Theorem 3.4 in [45] and covers a much wider variety of sce-
narios. Compared to Theorem 3.5 in [45], Theorem 2 provides
a more sophisticated formula for convergence rate since it deals
with more complex cases. The convergence rate of DECUN
expectedly is slower than that of traditional HQS, but in practice,
it provides significant performance gains even with a small
number of layers, as we will demonstrate in Section IV. Our
simulation studies in Section IV-A shed some light on how it
simplifies under common choices of ξl and γl.

B. Connections to Related Analytical Work in Unrolled Deep
Networks

We compare our method against related works that also
conduct theoretical analysis along with developing unrolled
network architectures, such as [48], [49], [52]. In contrasting
our asymptotic convergence analyses against that of [48], it
introduces a partial weight coupling structure as a necessary
condition for the convergence guarantee of LISTA, in addition
to the sparsity assumption of the underlying signal to be recov-
ered. This structure, primarily aimed at facilitating convergence
analysis, might limit the model’s capacity by constraining the
number of parameters. In comparison, our proposed DECUN’s
parameterization scheme strikes a balance between analytical
rigor and practical merits. It allows the network to maintain
its capacity and, consequently, its practical performance, with-
out compromising on the convergence guarantee. Furthermore,
while LISTA primarily seeks to enhance the efficiency of sparse
coding algorithms and generally does not surpass its analytical
counterparts in recovering higher-quality sparse solutions, our
experimental studies demonstrate DECUN’s effectiveness in
recovering latent images of superior quality.

Regarding the work of [52], while it also integrates neural net-
works (INN) into iterative reconstruction algorithms, our work
differs significantly in the following aspects: 1) Chun et al. [52]
construct Momentum-Net by applying the Block Proximal Ex-
trapolated Gradient method using a Majorizer (BPEG-M) frame-
work to solve an iterative model-based image reconstruction
(MBIR) problem. They replace the proximal mapping with a
learnable deep neural network in a layer-specific manner. In
contrast, we construct the entire deep network, named DECUN,

by unrolling and reparametrizing the HQS algorithm, and con-
vergence of DECUN is guaranteed by the new parameterization
scheme, as detailed in (13). While both approaches provide
convergence guarantees, theirs relies on technical assumptions
that are somewhat challenging to verify prior to executing their
algorithm (as these depend on the properties of critical points and
fixed points). Our method, however, only requires mild technical
assumptions that are generally valid in most practical scenarios.
2) Chun et al. [52] do not characterize convergence rate, whereas
we derive a detailed formula for the convergence rate in (14).
3) The application domain of [52] is medical imaging, which
differs from our focus on natural image deblurring.

The work in [49] is centered on establishing the analytical
formula for optimal LISTA weights, showing that these weights
offer a convergence rate comparable to those derived from
training data. Their work focuses on the sparse coding problem
and not focused on deconvolution.

IV. EXPERIMENTAL VALIDATION

In this section, we first provide numerical results on conver-
gence verification as well as convergence rate calculation, which
justifies the convergence guarantee of our proposed method.
Then, we compare DECUN with state-of-the-art deblurring
techniques through experiments, which illustrates DECUN’s
superior performance and computational benefits. Via cross-
validation, we set the hyperparameterμ = 5× 104. As the train-
ing loss function to learn D̄, El, β̄, we use a linear combination
of the Mean Squared Error (MSE) together with Mean Absolute
Error (MAE), since MSE and MAE are two loss-terms widely
used in non-blind image deconvolution literature [23], [26].
Though l1 norm in MAE loss is non-differentiable at 0, MAE
loss has been widely used in neural networks as a training
loss function [53], [54], and many modern machine learning
frameworks like PyTorch, have already incorporated support
for MAE loss in training [55]. In addition, in [56] researchers
have conducted thorough experiments to show that MAE loss
provides superior results to differentiable alternatives such as
MSE loss. The Adam optimizer [57] is employed to learn the
DECUN network parameters. The code and trained models are
available at https://github.com/6zhc/DECUN.

A. Numerical Simulation

In order to verify the convergence of our proposed method, we
carried out a set of experiments on a 256× 256 image selected
from [12]. A motion blur kernel k is chosen from [12], which is
applied to the image with additive Gaussian noise n with zero
mean and standard deviation 10−5. To further demonstrate the
convergence of our proposed method, we define the error value

as Error = ‖wl−w∗‖
‖w∗‖ , and calculate how this value change with

respect to iteration l from 1 to 30, where ‖w∗‖ is the fixed point
obtained by executing 500 iterations.

First of all, in order to illustrate the convergence property of
our proposed method, we set the number of filtersC = 2, and the
parameters ξl and γl as two forms of diminishing sequences: in
one form, we take them to be exponential series, i.e., we choose
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Fig. 2. Convergence comparison of our proposed method with three different
types of parameter settings.

ξl = ξl and γl = γl with 0 < ξ < 1 and 0 < γ < 1; in another
form, we select the p-series as ξl = ( 1l )

p and γl = ( 1l )
p with p ≥

1. In comparison, we choose random sequences for both of them,
in which both ξl and γl satisfy Gaussian random distribution
ξl ∼ N (0, σ2

ξl
) and γl ∼ N (0, σ2

βl
), where σξl = σβl

= l/60.
The convergence comparison results are shown in Fig. 2. As can
be seen from Fig. 2, it is obvious that when the parameters are in
converging forms (e.g. ξl = ξl and γl = γl with 0 < ξ < 1 and
0 < γ < 1; and ξl = ( 1l )

p and γl = ( 1l )
p with p ≥ 1), the error

value Error = ‖wl−w∗‖
‖w∗‖ is convergent with respect to the iteration

l. In contrast, the error value Error = ‖wl−w∗‖
‖w∗‖ is divergent when

the parameters ξl and γl are chosen to be divergent (e.g. ξl ∼
N (0, σ2

ξl
) and γl ∼ N (0, σ2

βl
)), which confirms our claim that

convergence is guaranteed when ξl and γl are both convergent,
and the method is divergent otherwise.

Next, we take the logarithm of Error = ‖wl−w∗‖
‖w∗‖ as log(Error)

to further speculate the convergence rate of our proposed
method. The numerical results of both error values Error =
‖wl−w∗‖
‖w∗‖ and log(Error) value are shown in Fig. 3, where the

parameters ξl and γl are set to be the form ξl = ξl and γl = γl

with 0 < ξ < 1 and 0 < γ < 1. As can be seen from Fig. 3(a),
when the parameter ξ and γ change from 0.2 to 0.8 with the

step of 0.2, both error values Error = ‖wl−w∗‖
‖w∗‖ and log(Error)

converge with respect to iteration l. Furthermore, Fig. 3(b)
shows that the smaller the parameters ξ and γ are, the faster

the convergence speed of error values Error = ‖wl−w∗‖
‖w∗‖ are.

In addition, we also choose the parameters ξl and γl as
the form ξl = ( 1

l+1 )
p and γl = ( 1

l+1 )
p with p ≥ 1 satisfying

liml→+∞( 1
l+1 )

p = 0. To show convergence of our proposed

method, we calculate both error values Error = ‖wl−w∗‖
‖w∗‖ and

log(Error) with p = 1, 2, 3 and 4. The numerical results in this
case are illustrated in Fig. 4. As shown in Fig. 4(a), both error

values Error = ‖wl−w∗‖
‖w∗‖ and log(Error) are convergent with

respect to iteration l for p = 1, 2, 3 and 4. The plot in Fig. 4(b)
clearly illustrates that the convergence speed of error value

Error = ‖wl−w∗‖
‖w∗‖ is much faster for larger parameter p.

Fig. 3. (a) Error = ‖wl−w∗‖
‖w∗‖ with parameters ξ = 0.2, 0.4, 0.6, and 0.8

and γ = 0.2, 0.4, 0.6, and 0.8; (b) log(Error) with parameters
ξ = 0.2, 0.4, 0.6, and 0.8 and γ = 0.2, 0.4, 0.6, and 0.8.

Fig. 4. (a) Error = ‖wl−w∗‖
‖w∗‖ with parameter p = 1, 2, 3, and 4; (b)

log(Error) with parameter p = 1, 2, 3, and 4.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on April 17,2024 at 04:49:17 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: DEEP, CONVERGENT, UNROLLED HALF-QUADRATIC SPLITTING FOR IMAGE DECONVOLUTION 581

B. Experiments on Benchmark Image Datasets

1) Training and Test Datasets Setup:
� Training dataset for Linear Motion Kernels: Microsoft

Common Objects in Context (MS COCO) [58] is a
large-scale detection, segmentation, and captioning dataset
which consists of 328K images. We randomly selected
800 images from it and cropped them into 424× 424
pixels. 300 linear motion kernels are generated by ran-
domly choosing lengths from 0 to 20pixels and angles
between 0 and π, followed by 2D spatial interpolation.
Each clear image is convolved with every blur kernel (fol-
lowed by the addition of Gaussian noise with 1% standard
deviation) resulting in 800× 300 training image pairs.

� Testing dataset for Linear Motion Kernels: Berkeley Seg-
mentation Dataset 500 (BSD500), which consists of 500
natural images, was used to test the trained model. 100
images from BSD500 were chosen and 10 motion linear
kernels that are non-overlapping with training kernels were
applied along with noise addition to generate the 100× 10
test images.

� Training dataset for General Motion Kernels: As before,
we selected 800 images from MS COCO and cropped
them into 424× 424 pixels. For blur kernels, we gener-
ated 10000 nonlinear kernels by recording camera motion
trajectories with the method proposed in [59]. For each step
in the training stage, we randomly chose a batch of clear
images and blur kernels from 800 clear images and 10000
nonlinear kernels, convolved each clear image with a blur
kernel, and added Gaussian noise to the blurry images with
1% noise standard deviation.

� Testing dataset for General Motion Kernels: 100 im-
ages from BSD500 were chosen along with 100 nonlin-
ear kernels (non-overlapping with training). Furthermore,
to demonstrate the versatility and generalizability of the
model across different datasets, we also chose 300 images
from the VOC2012 [60] along with another 300 nonlinear
kernels and cropped them into 288× 456 pixels. Convolu-
tion with blur kernels followed by noise addition provides
our test set.

Note that, we purposely use training and testing imagery
from distinct datasets to examine how well competing methods
perform, i.e. generalize, across datasets.

2) Quantitative Performance Measures: To quantitatively
assess the performance of various methods in different scenarios,
we use the Peak-Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM) [61].

3) Number of Parameters: In our investigation, we examine
the impact of varying layer counts on network performance. This
analysis will be detailed further in the ablation study (Section
IV-C). Referring to Table II, we observe the network’s behavior
with differing layer quantities. Consequently, for the DECUN
network’s comparison with SOTA, we designate the number of
layers L as 30 and the number of filters C as 4. Regarding
the number of parameters within the DECUN framework, the
total count of trainable layer-specific filters across the entirety
of the network amounts to C × L. Moreover, the network

TABLE I
ABLATION STUDY SHOWING BENEFITS OF DEEP UNROLLED NETWORKS –

CONVERGENT AND OTHERWISE OVER TRADITIONAL HQS

TABLE II
DECUN PERFORMANCE W.R.T NUMBER OF LAYERS

comprises one additional trainable filter, the filter D̄, and a
trainable parameter, the relaxation strength β̄. Summing up,
the comprehensive tally of trainable parameters in the DECUN
network totals (C × L+ C)× Sfilter + 1, where Sfilter is the
size of the filter. The DECUN framework, employed for SOTA
analysis, features 4 trainable filters with the size of 3× 3 in
each of its 30 layers. Therefore, the total number of parameters
is calculated as (30× 4 + 4)× (3× 3) + 1 = 1117. Compared
with state-of-the-art methods e.g., MoDL [35] with 188K pa-
rameters used, DWDN [32] deployed with 7.05M parameters
and INFWIDE [34] that uses 15.74M parameters, the proposed
DECUN employs the fewest parameters, leading to significant
computational savings.

C. Ablation Study

To provide insights into the design of our network, we first
carry out a series of experimental studies to investigate the
influence of three key design factors: 1.) the filter sequence type
among all the layers, and 2.) the number of layers L. To train
the models, 800 cropped images are chosen from MS COCO
dataset and 10000 nonlinear kernels were generated with the
method proposed in [59]. For each step in the training stage,
we randomly chose a batch of clear images and blur kernels,
convolved each clear image with a blur kernel, and added
Gaussian noise to the blurry images with a 1% std. In the testing
stage, 200 images from MS COCO and 200 nonlinear kernels
non-overlapping with training were used for the ablation study
results presented next. We compare the proposed DECUN with
traditional HQS and Unrolled Layer specific learning (U-LSL).
All three methods are designed with 10 layers and 2 filters in
each layer. In this case, the main difference between the three
methods is the relationship of filters between each layer. For
traditional HQS, each layer’s filters are always horizontal and
vertical image gradient filters andβ is fixed too. For DECUN, we
follow the proposed parameterization in (13) with ξl = 0.5l and
γl = 0.5l. Then U-LSL is the deep unrolled HQS network with
independent layer-specific learning of filters (and βl), which
leads to the least restrictions. Table I summarizes the numerical
scores corresponding to these three methods. Both U-LSL and
DECUN benefit from training data-inspired deep learning of
parameters. U-LSL performs the best unsurprisingly as it affords
the most modeling power. DECUN performs much better than
the traditional HQS and only slightly worse than U-LSL. In all
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Fig. 5. Visual comparisons over BSD dataset using linear kernels.

TABLE III
QUANTITATIVE COMPARISON OVER BSD DATASET AND LINEAR KERNELS

future experiments, we will stick to DECUN comparisons with
state-of-the-art.

We next study the effects of different numbers of layers L.
The network performance over different choices of the network
layer number is summarized in Table II with the number of filters
C set to 4. As the network layer number increases, the network
performance clearly improves but the rate of improvement de-
creases, which is consistent with the common observation that
deeper networks tend to perform better. We observe diminishing
performance gains after 30 layers. For results reported next, we
set L = 30 and C = 4.

D. Comparisons Against State of the Art

We select ten state-of-the-art methods to compare against.
Among them, EPLL [18], BM3D [17], SVMAP [31], IN-
FWIDE [34], MoDL [35], and DWDN [32] are iterative algo-
rithms, some of which have learned components. MLP [24],
IRCNN [25], FCNN [26], and FNBD [29] are fully deep learn-
ing methods. The iterative algorithms are interpretable, and
convergent but suffer from long execution time. In contrast,
the deep learning methods could potentially achieve superior
performance in image quality measures (when training is suffi-
cient) but lack interpretability. We will demonstrate that DECUN
combines the advantages of both categories.

1) Evaluation on Trajectory Linear Kernels: Fig. 5 shows
sample test images. The scores of various methods are presented
in Table III. DECUN emerges overall as the best method, as
evidenced by its faithful preservation of high-frequency textures
and details. EPLL uses patch level Maximum a-Posteriori esti-
mates to reconstruct images from learned natural image patch
statistics, which is time-consuming but performs the best among
all the iterative algorithms. BM3D emerges as a generic denois-
ing method and is later adopted into the deblurring domain.
However, the collaborative filtering process might eliminate

important high-frequency details in the images. SVMAP uses
the neural network to predict per-pixel spatially-variant features
and, together with the maximum a-posteriori framework, keeps
the most texture feature and has the best performance among
all the other states of the art. Among deep learning-based ap-
proaches, FCNN performs second best, and FNBD performs
mildly worse than FCNN, as they share similar ideas. Specifi-
cally, FCNN uses fast convolutional neural networks to remove
the artifacts produced by the Wiener filter, whereas FNBD does
it via a residual network with long/short skip connections. MLP
uses a regularized inversion of the blur kernel in the Fourier
domain as a first step and then applies a denoising network to
suppress the high-frequency artifacts. IRCNN performs denois-
ing before feeding the images into a deblurring optimization
method, which may potentially result in loss of textures. IN-
FWIDE [34] introduces a dual-path structure that specifically
eliminates noise and reconstructs overexposed areas within the
visual domain, but for images that only have Gaussian noise
added, this structure may not be able to fully exhibit its entire
range of capabilities. DWDN [32] employed a U-Net structure
refinement module to predict the deblurred image from the
deconvolved deep features. This approach necessitated that the
dimensions of the image be multiples of 8. To adapt DWDN
for use with the BSD dataset, which has images of dimensions
321× 481 pixels, we implemented a sliding window technique.
Although DWDN demonstrates exceptional performance in im-
age deblurring, the application of the sliding window method
resulted in visible segmentation boundaries in some of the
deblurred images.

2) Evaluation on Trajectory Nonlinear Kernels: Sample test
images and visual examples of reconstructed images from dif-
ferent methods are shown in Fig. 6. Scores of all the methods are
summarized in Table IV. The deblurring problem on nonlinear
kernels is much more challenging than linear kernels due to
their significantly higher diversity. Therefore, the overall scores
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Fig. 6. Visual comparison over BSD dataset and nonlinear kernels.

TABLE IV
QUANTITATIVE COMPARISON OVER BSD DATASET AND NONLINEAR KERNELS

Fig. 7. Visual comparison among the top four highest scoring methods.

on nonlinear kernels are typically lower than those of linear
kernels but generally follow the same trend. Again DECUN
outperforms all competing methods and better reconstructs
high-frequency details, followed by FCNN, and EPLL ranks as
the top-performing iterative algorithm. Among other methods,
SVMAP preserves textures well thanks to its per-pixel spatially-
variant features prediction, but still underperforms DECUN.
Since the quantitative score of EPLL, FCNN, SVMAP, and
DECUN is close, we zoomed in on the elephant region and
compared four processed regions in Fig. 7. Due to patch-level
processing, there are clear boundaries between patch and patch
in the images processed by the EPLL. The image processed by
FCNN may lack contrast in some regions, such as the grass in
the elephant feet region. SVMAP processed the images to the
smoothest image among all four images, but it also led to losing
too much detail. Overall the image processed by DECUN is
closest to the sharp image and performs best in detail among
all the methods. DWDN [32] use multi-scale feature refinement
component to progressively restore fine-scale detail from the
deconvolved features, which required the dimensions of the
input image to be multiples of 8. Therefore, we cropped the
image into 288× 456 pixels and compared the SOTA including
the DWDN with DECUN. Visual representations of the recon-
structed images, originating from blurred versions created using

the VOC2012 Dataset, can be viewed in Fig. 8. The score of all
methods over the VOC dataset and nonlinear kernels is detailed
in Table V. The multi-scale feature refinement module enables
DWDN to restore image details and sharpen text, achieving good
performance in metrics. However, noticeable artifacts appear
on some images, as illustrated by the first row of images in
Fig. 8. Furthermore, we enhance the SOTA by incorporating
the MoDL [35] framework. This is achieved by adapting the
measurement operator A, which converts image data into the
measurement domain in [35], into a Toeplitz matrix K that
aligns with the convolution kernel k, based on (2). From both
visual cues and quantitative scores, it’s evident that DECUN
consistently aligns closest to the original sharp images, standing
out as the method that most faithfully preserves detail across
varied datasets.

3) Computational Comparisons: Table VI summarizes the
execution time of each method for processing a typical blurred
image of resolution 480× 320 and a blur kernel of size 44× 44.
We include measurements of the running time of each method
to deblur this image on GPU. Specifically, the two benchmark
platforms are 1.) Intel Core i7-6900K, 3.20GHz CPU, 62.7GB
of RAM, and 2.) an NVIDIA TITAN X GPU. The results
are included in Table VI. Iterative algorithms (EPLL, BM3D,
SVMAP) usually run hundreds of iterations, which cost much
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Fig. 8. Visual comparison over VOC dataset and nonlinear kernels.

TABLE V
QUANTITATIVE COMPARISON OVER VOC DATASET AND NONLINEAR KERNELS

TABLE VI
PER IMAGE RUN TIME COMPARISON

longer time than other methods. In particular, EPLL iterates over
each individual patch (8*8pixels), leading to the longest time to
process a single image. On the contrary, deep learning methods
(MLP, IRCNN, FCNN, FNBD) process images in an end-to-end
fashion with hardware accelerations and are generally much
faster. However, deep generic networks typically carry out a
large number of filters and operations to ensure adequate mod-
eling power, which induces a higher computational burden and
slower inference speed. Among all the methods, DECUN stands
out as the fastest-running method and is almost two times as fast
as its leading competitor (FNBD). Compared to traditional itera-
tive algorithms, DECUN runs much fewer number of iterations.
On the other hand, as the network itself encodes domain knowl-
edge through unrolling, it is free from over-parametrization and
much more compact compared to generic off-the-shelf deep
networks. As it stands, it outperforms other state-of-the-art
techniques while achieving significant computational savings
simultaneously.

4) Evaluation in Limited Training Scenarios: Three meth-
ods with the highest score in the previous evaluation (FCNN,
SVMAP, and DECUN) are chosen to be trained on a limited
dataset with nonlinear kernels. In particular, this limited dataset
contains only 10% of the training images used for the results
in Table IV. The test image set remains the same as the Testing
dataset for nonlinear kernels. Fig. 9 shows the results. The state-
of-the-art deep learning approach FCNN with a large number of
parameters seems to overfit when training is reduced. Compared

to the network trained on the whole dataset, FCNN’s perfor-
mance on the limited dataset has a considerable drop. Because
SVMAP utilizes powerful image priors, this technique exhibits
expected training robustness and shows a relatively more modest
drop. With the fewest parameters among the three methods,
DECUN does the best in a limited training scenario. Note that
DECUN achieves the smallest gap (esp. in SSIM) between the
model trained on the limited dataset and the whole dataset
thereby exhibiting superior generalizability. Remarkably, the
PSNR/SSIM scores for DECUN in limited training are still
higher than competing alternatives, even as they have access
to full training.

V. CONCLUSION

This paper proposes a DEep, Convergent Unrolling Net-
work (DECUN) based on half-quadratic splitting (HQS) which
achieves the simultaneous goals of enhancing performance, in-
terpretability and providing theoretical convergence guarantees
for the unrolled network. In order to ensure convergence along
with substantial network modeling power, we develop a new
parametrization scheme and carry out rigorous analytical studies
to establish the convergence guarantee of the proposed unrolled
network as well as quantify the convergence rate. Our analytical
claims are verified through simulation studies that demonstrate
convergence. Finally, we experimentally compare DECUN with
state-of-the-art deblurring techniques, which demonstrates its
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Fig. 9. Performance evaluation in a limited training set-up.

favorable performance, particularly in the low-training regime
and enhahnced computational benefits. While this study focuses
on the non-blind image deblurring problem; a viable future
research direction is carrying out similar analysis towards blind
image deconvolution problems.

APPENDIX A
PROOF OF THEOREM 1

We leverage selected technical results that help us establish
Theorem 1. The following two lemmas are adapted from [45],
which state that both sl and hl are non-expansive operators.

Lemma 1: For x ∈ R2, the 2D shrinkage function sl : R2 →
R2 defined as

sl(x) = s 1

βl
(x) � max

{
‖x‖2 − 1

βl
, 0

}
x

‖x‖2 , (20)

where βl > 0, is nonexpansive

‖sl(x1)− sl(x2)‖2 ≤ ‖x1 − x2‖2. (21)

Furthermore, if ‖sl(x1)− sl(x2)‖2 = ‖x1 − x2‖2, then
sl(x1)− sl(x2) = x1 − x2.

Proof: Refer to Proposition 3.1 in [45]. For an alternative
proof method, the shrinkage function sl(·) is the proximity
operator of the l1 norm. Theorem 3 in [62] shows that the
proximity map for a closed convex set is non-expansive. �

Lemma 2: Assume N (K) ∩ N (D̄) = 0, where N (·) repre-
sents the null space of a matrix. Then for any w �= w̃ ∈ Rn, it
holds that

‖hl(w)− hl(w̃)‖2 ≤ ‖w − w̃‖2. (22)

Proof: Refer to Propostion 3.2 in [45]. �
Lemma 3: Let {ak}k be a real non-negative sequence. If

ak+1 ≤ ak + εk for all k, εk ≥ 0 and
∑∞

k=1 εk converges, then
ak also converges.

Proof: Refer to Lemma 3.1 in [63] with the setting of χ = 1
and βn chosen as a zero sequence with n ≥ 0.

We are now ready to prove Theorem 1.
Proof: According to the assumption on Dl, βl and the

norm bounded sequence {El}l, we have liml→+∞Dl =
liml→+∞(D̄+ ξlE

l) = D̄ and liml→+∞ βl = liml→+∞(β̄ +
γl) = β̄. It therefore follows that

lim
l→+∞

Ml = lim
l→+∞

(Dl)
T
Dl +

μ

βl
KTK

= (D̄)
T
D̄+

μ

β̄
KTK = M∗. (23)

By continuity of sl and hl, ∀x ∈ Rn, we have

liml→+∞ sl(x) = max
{
‖x‖2 − 1

β̄
, 0
}

x
‖x‖2 := s∗ and

liml→+∞ hl(x) = D̄(M∗)−1
[
(D̄)

T
(x) + μ

β̄
KTy

]
:= h∗(x)

Invoking Lemma 1 and 2, we have ‖sl(hl(wl))− sl(hl(w̃))‖ ≤
‖hl(wl)− hl(w̃)‖ ≤ ‖wl − w̃‖.

Furthermore, Lemma 1 and 2 ensures non-expansiveness of
the shrinkage operator s∗ and the function h∗; suppose w̃ is any
fixed point of s∗ ◦ h∗, that w̃ = s∗(h∗(w̃)), then we have

‖wl+1 − w̃‖ = ‖sl(hl(wl))− s∗(h∗(w̃))‖
= ‖sl(hl(wl))− sl(hl(w̃))

+ sl(hl(w̃))− s∗(h∗(w̃))‖
≤ ‖sl(hl(wl))− sl(hl(w̃))‖
+ ‖sl(hl(w̃))− s∗(h∗(w̃))‖

= ‖wl − w̃‖+ ζl, (24)

where we write ζl = ‖sl(hl(w̃))− s∗(h∗(w̃))‖. We are going
to show that

∑l
l=1 ζ

l converges, which indicates that the real
non-negative sequence ‖wl+1 − w̃‖ converges as well accord-
ing to Lemma 3. The assertion holds trivially if ‖h∗(w̃)‖ <
1
β̄

, as it will be the case that ‖Dlũ‖ < 1
βl for l sufficiently

large. Otherwise, ‖D̄ũ‖ > 0. Choose l sufficiently large so that

|βl − β̄| ≤ β̄
2 , ‖(Dl − D̄)ũ‖ < ‖D̄ũ‖

2 , we have

‖sl(hl(w̃))− s∗(h∗(w̃))‖
= ‖hl(w̃)− h∗(w̃)− (χl(hl(w̃))− χ∗(h∗(w̃))‖

=
∥∥∥(Dl − D̄)ũ−

(
1

βl

Dlũ

‖Dlũ‖ −
1

β̄

D̄ũ

‖D̄ũ‖
)∥∥∥

≤
∥∥∥(Dl − D̄)ũ

∥∥∥+ ∥∥∥∥ 1

βl

Dlũ

‖Dlũ‖ −
1

β̄

D̄ũ

‖D̄ũ‖
∥∥∥∥

≤ ‖Dl − D̄‖‖ũ‖+
∥∥∥∥( 1

βl
− 1

β̄

)
Dlũ

‖Dlũ‖
∥∥∥∥

+
1

β̄

∥∥∥∥ Dlũ

‖Dlũ‖ −
D̄ũ

‖D̄ũ‖
∥∥∥∥
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= ‖ξl‖‖ũ‖+ |β
l − β̄|
βlβ̄

+
1

β̄

∥∥∥∥‖D̄ũ‖Dlũ− ‖Dlũ‖D̄ũ

‖Dlũ‖‖D̄ũ‖
∥∥∥∥

≤ ‖ξl‖‖ũ‖+ 2|βl − β̄|
β̄2

+
2

β̄

‖‖D̄ũ‖(Dl − D̄)ũ+ (‖D̄ũ‖ − ‖Dlũ‖)D̄ũ‖
‖D̄ũ‖2

≤ ‖ξl‖‖ũ‖+ 2|βl − β̄|
β̄2

+
2

β̄

‖D̄ũ‖‖(Dl − D̄)ũ‖+ ‖D̄ũ−Dlũ‖‖D̄ũ‖
‖D̄ũ‖2

≤ ‖ξl‖‖ũ‖+ 2|γl|
β̄2

+
2

β̄

‖ξl‖‖ũ‖
‖D̄ũ‖ (25)

where ũ = (D̄TD̄+ μ
β̄
KTK)−1(D̄Tw̃ + μ

β̄
KTy), which is

bounded. The convergence of
∑

l ζ
l follows from that of

∑
l ‖ξl‖

and
∑

l |γl|.
Now that {wl}l is bounded, let w∗ be any limit point of it

and {wli}i be a subsequence such that limi→∞wli = w∗. Let
l→ +∞, (24) becomes

lim
l→+∞

‖wl+1 − w̃‖ (26)

≤ lim
l→+∞

‖wl − w̃‖ = lim
i→∞
‖wli − w̃‖ = ‖w∗ − w̃‖ (27)

which implies that all limit point of {wk}, if more than one,
have an equal distance to w̃. On the other hand,

‖wli+1 − s∗(h∗(w∗))‖
= ‖sli(hli(wli))− s∗(h∗(w∗))‖
≤ ‖sli(hli(wli))− sli(hli(w∗))‖
+ ‖sli(hli(w∗))− s∗(h∗(w∗))‖
≤ ‖wli −w∗‖+ ‖sli(hli(w∗))− s∗(h∗(w∗))‖,

which implies limi→∞wli+1 = s∗(h∗(w∗)), so that s∗(h∗(w∗))
is also a limit point of {wk} which is required to have
the same distance to w̃ as w∗ does, that is ‖w∗ − w̃‖ =
‖s∗(h∗(w∗))− w̃‖ = ‖s∗(h∗(w∗))− s∗(h∗(w̃))‖. Since w̃ is
any fixed point of s∗(h∗(·)), replacing w̃ with w∗ in (26) gives
rise to liml→∞ ‖wl −w∗‖ = limi→∞ ‖wli −w∗‖ = ‖w∗ −
w∗‖ = 0, which implies

lim
l→∞

wl = w∗. (28)

Combining (9) and (28) leads to

lim
l→+∞

ul

= lim
l→+∞

(
DlTDl +

μ

βl
KTK

)−1(
DlTwl +

μ

βl
KTy

)
= u∗

which completes the proof of Theorem 1. �

APPENDIX B
PROOF OF THEOREM 2

According to (11), (12) as well as the expansiveness of sl in
(21), we have

‖wl+1 −w∗‖
= ‖sl(hl(wl))− s∗(h∗(w∗))‖
= ‖sl(hl(wl))− sl(hl(w∗)) + sl(hl(w∗))− s∗(h∗(w∗))‖
≤ ‖hl(wl)− hl(w∗)‖+ ‖sl(hl(w∗))− s∗(h∗(w∗))‖.

(29)

For the term ‖hl(wl)− hl(w∗)‖ alongside with (11), we have

‖hl(wl)− hl(w∗)‖2

= ‖Dl(Ml)−1(Dl)T(wl −w∗)‖2

= ‖Gl(wl −w∗)‖2

= (wl −w∗)T(Gl)2(wl −w∗)

≤ ρ((Gl)2)‖wl −w∗‖2 (30)

so that

‖hl(wl)− hl(w∗)‖ ≤
√

ρ((Gl)2)‖wl −w∗‖ (31)

whereGl = Dl(Ml)−1(Dl)T, andρ((Gl)2) is the spectral radii
of the matrix (Gl)2 satisfying ρ((Gl)2) ≤ ρ(Gl) ≤ 1. Then we
are going to calculate the upper bound of the term ‖sl(hl(w∗))−
s∗(h∗(w∗))‖. According to the definition of sl in (10) and (25)
by replacing ũ with u∗, we have

‖sl(hl(w∗))− s∗(h∗(w∗))‖

≤ ‖ξl‖‖u∗‖+ 2|γl|
(β̄)

2 +
2

β̄

‖ξl‖‖u∗‖
‖D̄u∗‖ . (32)

Combining the condition of ‖h∗J(w∗)‖ = ‖D̄u∗‖ ≥ 1
β̄

, (32)
further equals to

‖sl(hl(w∗))− s∗(h∗(w∗))‖ ≤ 3‖ξl‖‖u∗‖+ 2|γl|
(β̄)

2 (33)

where u∗ = ((D̄)TD̄+ μ
β̄
KTK)−1((D̄)Tw∗ + μ

β̄
KTy).

Combining (31) and (33), (29) becomes

‖wl+1 −w∗‖ ≤ λl‖wl −w∗‖+ bl (34)

where λl =
√

ρ((Gl)2)), bl = 3‖ξl‖‖u∗‖+ 2|γl|
(β̄)

2 and u∗ is de-

fined in (16).
We next show that, ∃λmax so that λl ≤ λmax < 1, ∀l.

Indeed, since Gl is symmetric positive semi-definite,
ρ(Gl) = ‖Gl‖ is continous over Dl and βl, and hence
liml→∞Gl = G∗ = D̄(D̄T D̄+ μ

β̄
KTK)

−1
D̄. Choose

l0 ∈ N sufficient large so that |ρ(Gl)− ρ(G∗)| < 1
2 [1−

ρ(G∗)], ∀l ≥ l0, then ρ(Gl) < 1
2 [1 + ρ(G∗)] < 1, ∀l ≥ l0.

Pick λmax = max{λ1, λ2, . . . , λl0 ,
√

1
2 [1 + ρ(G∗)]}, then we

have λl ≤ λmax < 1, ∀l. Iterating (34) with l times, we have

‖wl+1 −w∗‖
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≤ (λmax)
l+1‖w0 −w∗‖+

l∑
i=0

(λmax)
l−ibi

= (λmax)
l+1‖w0 −w∗‖+ (λmax)

l ⊗ bl

= (λmax)
l+1‖w0 −w∗‖+ F−1

(
̂(λmax)l � b̂l

)
= (λmax)

l+1‖w0 −w∗‖+ F−1
(

B(w)

1− λmaxe−jw

)
(35)

where ⊗ is the discrete convolution operator, ̂(λmax)l =
1

1−λmaxe−jw
, and B(w) is the Discrete-time Fourier transform

of (λmax)
l and bl respectively.
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