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Abstract—Non-orthogonal communications are expected to play
a key role in future wireless systems. In downlink transmissions,
the data symbols are broadcast from a base station to different
users, which are superimposed with different power to facilitate
high-integrity detection using successive interference cancellation
(SIC). However, SIC requires accurate knowledge of both the
channel model and channel state information (CSI), which may
be difficult to acquire. We propose a deep learning-aided SIC de-
tector termed SICNet, which replaces the interference cancellation
blocks of SIC by deep neural networks (DNNs). Explicitly, SICNet
jointly trains its internal DNN-aided blocks for inferring the soft
information representing the interfering symbols in a data-driven
fashion, rather than using hard-decision decoders as in classical
SIC. As a result, SICNet reliably detects the superimposed symbols
in the downlink of non-orthogonal systems without requiring any
prior knowledge of the channel model, while being less sensitive
to CSI uncertainty than its model-based counterpart. SICNet is
also robust to changes in the number of users and to their power
allocation. Furthermore, SICNet learns to produce accurate soft
outputs, which facilitates improved soft-input error correction de-
coding compared to model-based SIC. Finally, we propose an online
training method for SICNet under block fading, which exploits the
channel decoding for accurately recovering online data labels for
retraining, hence, allowing it to smoothly track the fading envelope
without requiring dedicated pilots. Our numerical results show that
SICNet approaches the performance of classical SIC under perfect
CSI, while outperforming it under realistic CSI uncertainty.
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I. INTRODUCTION

W IRELESS communications are facing escalating
throughput, connectivity and scalability specifications.

To meet these demanding requirements, wireless systems may
be expected to evolve from conventional orthogonal to non-
orthogonal solutions [1], [2]. Non-orthogonal multiple access
(NOMA) techniques allow users to simultaneously share the
wireless channel resources for supporting heterogeneous end-
devices, which inevitably imposes interference.

Sophisticated methods have been proposed for symbol de-
tection in the presence of interference [3]. In the context of
downlink (DL) non-orthogonal systems, where a base station
(BS) transmits a set of superimposed messages to different users
over a shared channel, the successive interference cancellation
(SIC) algorithm has been shown to be particularly suitable. This
is due to its ability to approach the achievable rate region of
such channels, when combined with superposition coding at the
BS [1], [2], whilst its complexity only grows linearly with the
number of users.

The conventional SIC algorithm is model-based, i.e. it relies
on knowledge of the underlying statistical model. In particular,
implementing SIC detection requires each user to have accurate
knowledge of the channels between the BS and each of the
users; its performance, however, is degraded in the presence
of realistic imperfect channel state information (CSI) [4]. Ac-
curate estimation of CSI may be challenging, especially in
rapidly fluctuating high-Doppler frequency division duplexing
scenarios, where the DL channels cannot be estimated at the
BS based on channel-reciprocity. Furthermore, the conventional
SIC algorithm assumes that the interference can be cancelled by
subtraction. However, this may not be the case in the presence of
non-linearities due to hardware impairments of low-resolution
analog-to-digital convertors [5] and non-linear amplifiers [6].
Finally, when the symbol detector has to produce log-likelihood
ratios (LLRs) for channel decoding, the SIC algorithm typically
suffers from model mismatch, since for simplicity it assumes
Gaussian distributed residual interference, which has limited
accuracy [7].

An alternative approach to symbol detection, which does not
rely on any knowledge of the underlying channel model, is based
on learning the detection rule in a data-driven manner. There has
been growing interest in the application of machine learning in
digital communication tasks, including symbol detection [8]–
[10]. Deep neural networks (DNNs) are known to reliably
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infer knowledge in complex environments [11], while relying
solely on data to learn their mapping. DNN-aided receivers
can thus operate accurately without requiring any knowledge of
the underlying channel model and its parameters. Nonetheless,
previous contributions on DNN-based transceivers designed for
the non-orthogonal DL, including [12]–[15], jointly learned the
overall transmission path as an end-to-end autoencoder (AE).
For example, a multicarrier autoencoder (MC-AE) was proposed
in [12], which was shown to provide enhanced frequency diver-
sity gain for both coherent single-user and multi-user uplink
(UL)/DL communications, outperforming its subcarrier index
modulation based counterparts [16], [17]. A similar MC-AE
concept was introduced for energy detection-based non-coherent
systems in [15]. These previous contributions assume an equal
power allocation scheme applied to all users, therefore, lim-
iting their suitability for exploiting the established benefits of
SIC detection combined with superposition coding. In [14], a
precoder and an SIC-based decoder were jointly optimized as
an AE in the multi-input multi-output NOMA (MIMO-NOMA)
DL, assuming the availability of perfect CSI at the transmitter
side. Finally, the constellation of a two-user NOMA DL was
designed by training an AE in [13]. However, all these AE-based
schemes require knowledge of the channel model for jointly
training both the transmitter and receiver, and - similarly to the
classic model-based techniques - require accurate CSI.

Conventional DNNs require massive amounts of data for
training, and lack the clear physical interpretation of model-
based approaches. It was recently proposed to integrate DNNs
into model-based symbol detection algorithms [18]–[20], result-
ing in hybrid model-based/data-driven receivers, which learn
to carry out established detection algorithms from relatively
small data sets without requiring any knowledge of the chan-
nel model. In particular, the authors of [18], [19] introduced
data-driven implementations of both the Viterbi algorithm and
of the BCJR scheme, which are applicable for finite-memory
channels. Furthermore, the authors of [20] presented a receiver
that learns to carry out soft interference cancellation. This
receiver operation is designed for the UL of non-orthogonal
systems, where the task is to detect all transmitted symbols.
By contrast, in the non-orthogonal downlink of this treatise,
the receiver only has to recover its corresponding symbol
that is corrupted by interference. These previously proposed
DNN-aided symbol detectors motivate the design of a hybrid
model-based/data-driven implementation of the SIC algorithm
for the DL of non-orthogonal systems, which is our focus
here.

In this contribution, we present SICNet, which is a DNN-aided
receiver architecture that learns to implement the SIC algorithm
from labeled data. SICNet is derived by representing the SIC
algorithm as an interconnection of basic building blocks, each
trained to cancel the interference imposed by a given user.
Despite the similar acronym, SICNet is fundamentally different
from DeepSIC [20]. Although both receivers belong to the class
of hybrid model-aided networks [21], they differ both in their
objective and in their operation. Specifically, SICNet is designed
for the non-orthogonal DL, where the task is to recover a single
desired symbol in the presence of both interference as well as

noise, and does so by learning to implement the SIC algorithm,
which is known to be eminently suitable for such scenarios.
By contrast, DeepSIC focuses on the joint recovery of multiple
interfering symbols, representing an UL setup, while relying on
the classic parallel soft interference cancellation method [22].
Thus, the scheme in [20] relies on a larger number of detection
and interference cancellation steps compared to SIC, since the
goal of SIC is to detect a single symbol [3]. As a result, the overall
architecture of SICNet is different from that of DeepSIC, and
it harnesses a much lower number of neural building blocks,
making it more suitable for mobile DL receivers.

Once trained, SICNet implements SIC detection, without
requiring any knowledge of the underlying channel model,
e.g., without restricting the operation to linear channels. We
demonstrate that SICNet trained on data from a channel with
a given signal-to-noise ratio (SNR) approaches the performance
of the model-based SIC algorithm used for symbol detection,
which relies on accurate SNR-dependent CSI. Furthermore,
SICNet substantially outperforms its model-based counterpart
in the presence of CSI uncertainty, under both linear and
non-linear channels, indicating its potential to facilitate ac-
curate symbol detection in non-orthogonal DL systems. Ad-
ditionally, SICNet can readily adapt to time-variant DL sce-
narios, such as adding a new user and changing the order of
the power assignment among the users, at the cost of low-
complexity retraining and without requiring to rebuild its DNN
structure.

We also show that, when SICNet is used for producing soft
symbols provided for a forward error correction (FEC) decoder,
it yields improved decoding accuracy compared to using the
model-based SIC with full CSI for the same purpose. This is
a benefit of the fact that SICNet, which operates in a model-
agnostic manner, learns to compute more accurate bit-wise LLRs
compared to SIC, which assumes a Gaussian distributed inter-
ference recovery error. Finally, we design an FEC coding-aided
online training method for SICNet in order to make its DNNs
adapt to the variations of block fading channels without requiring
new training data. In particular, we exploit the presence of FEC
codes as indication for the correctness in detecting a block of
symbols, as done in [18], [23], [24], in order to accurately form
a relatively small number of labels, which are sufficient for
retraining SICNet with a few epochs. Table I summarizes the
main contributions of this work and explicitly compares them to
the literature of learning-aided DL detection in non-orthogonal
systems.

The rest of this paper is organized as follows. Section II
details the system model and briefly reviews the SIC algorithm.
Section III presents the proposed SICNet. Section IV discusses
how SICNet can be combined with FEC decoding and FEC-
aided online training. Our numerical evaluations are provided in
Section V. Finally, Section VI concludes the paper.

Throughout the paper, R denotes the set of real numbers,
and Rn stands for the n Cartesian product of R. We use E[·],
p(·), andPr(·) for the stochastic expectation, probability density
function (PDF), and probability mass function, respectively,
while N (0, σ2) is the Gaussian distribution with zero mean and
variance σ2.
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TABLE I
COMPARING OUR CONTRIBUTIONS TO THE LITERATURE OF LEARNING FOR THE DL OF NON-ORTHOGONAL SYSTEMS

Fig. 1. Downlink non-orthogonal system with K users.

II. SYSTEM MODEL

We begin by describing the system model for which we derive
SICNet. With that aim, we first present the channel model
in Subsection II-A and then formulate the symbol detection
problem in Subsection II-B. We then review the model-based
SIC algorithm in Subsection II-C.

A. Non-Orthogonal DL Channel Model

Consider a non-orthogonal DL, where a BS transmits data
simultaneously toK users within the same time- and frequency-
resources, as illustrated in Fig. 1. For simplicity, we focus on
scenarios where both the BS and the users are equipped with
a single antenna. The BS transmits a set of symbols {xk}Kk=1,
each intended for a different user, via superposition coding, as
in the power-domain non-orthogonal DL [2]. In particular, the
symbolxk intended to userk is amplified with transmitted power
Pk for k = 1, . . .,K. These signals are superimposed at the BS,
resulting in the channel input x which is given by:

x =
K∑
k=1

√
Pkxk. (1)

We assume that the symbols are mutually independent, and
that each symbol xk ∈ R is drawn from an M -point constella-
tionS, having unit mean power, i.e., |S| = M , and E[|xk|2] = 1.
While the digital constellation is assumed to have unit power
regardless of its order M , the superposition coding utilized in
the downlink scales the power of each transmitted symbol via
the coefficients {Pk}, to facilitate decoding, as detailed in [1],
[2]. For the sake of simplicity, we assume that the symbols have
the same modulation order M , although it is straightforward
to extend our work to a generalized scenario, where different

modulation orders are used for different users. Our work can also
be easily adapted to complex-valued signals, by representing
them using real vectors of extended dimension.

While we do not impose a specific model on the DL channel,
we assume that it is memoryless and that the channel outputs
at the K users, denoted {yk}Kk=1, are mutually independent
conditioned on x, i.e. the joint conditional PDF of the channel
outputs satisfies

p(y1, . . . , yK |x) =
K∏
k=1

p(yk|x). (2)

A commonly used DL model which obeys (2) is the linear
Gaussian broadcast channel. Here, the channel output observed
by user k is given by

yk = hkx+ wk = hk

(
K∑
i=1

√
Pixi

)
+ wk, (3)

where hk ∈ R is the channel coefficient between the BS and
user k, and wk ∈ R is additive white Gaussian noise (AWGN).

B. Problem Formulation

Our goal is to design a symbol detection mechanism for each
user of index k = 1, . . .,K, namely, a mapping x̂k : R �→ S, so
that x̂k is an estimate of xk from the observed channel output yk.
As detailed in the previous subsection, we do not assume any
prior knowledge of the channel model at the receiver, except
that its input–output relationship takes the generic form in (2).
Furthermore, we do not require the users to know their power
allocation coefficients {Pk}Kk=1, but we assume that they know
their order, which is written henceforth as P1 ≥ P2. . . ≥ PK

without loss of generality. Note that the conventional SIC re-
quires that each user knows both the power of all users and
their power order, in addition to accurate channel knowledge.
Each user of index k has access to a labeled data set of T
samples, denoted by {y(t)k , x

(t)
1 , . . . , x

(t)
K }Tt=1. In practice, such

data typically corresponds to preamble and pilot transmissions.
We assume that the number of pilots is limited to be on the order
of a few several thousands of samples, which is the length of a
typical LTE preamble [25, Ch. 17].

The lack of channel model knowledge combined with the
presence of labeled data motivates a data-driven design based
on DNNs. However, the fact that the dataset is limited, indicates
that it is preferable to incorporate some domain knowledge in
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our design, rather than directly applying a black-box DNN. In
particular, the relevant domain knowledge here is that in the
downlink, the symbols are mutually independent, take values in
S and are superimposed with power allocations satisfying P1 ≥
P2. . . ≥ PK . For such scenarios, it is preferable for the k-th
user to successively detect the interfering symbols x1, . . . , xk−1

before recovering its desired xk, rather than detecting it directly.
This recovery mechanism is the SIC algorithm, detailed in the
following.

C. Successive Interference Cancellation

The SIC algorithm is commonly adopted in the NOMA liter-
ature, due to its simplicity and its ability to approach the achiev-
able rate region of linear Gaussian non-orthogonal broadcast
channels (3), when combined with superposition coding [1]. A
superposition code determines the power assigned to the symbol
intended for each user. A common approach to select these
codes is to allocate more power to users having poorer channel
gains [1], [2], [26]. Such a formulation, which is intended to
facilitate detection at each user and boost fairness, requires
some assessment of the quality-based ordering of the individual
channels at each receiver. Alternatively, one can determine the
superposition code based on the application layer requirements
and priorities. Regardless of how the superposition code is deter-
mined, it controls the power levels {Pk}Kk=1, and we henceforth
assume that P1 ≥ P2. . . ≥ PK .

To formulate the model-based SIC algorithm, consider a linear
Gaussian channel (3). Based on this, the SIC detector of user k
operates in the following iterative fashion. First, user k detects
the signal of the user having the highest power, i.e., user 1, while
treating the interference as noise, using the maximum likelihood
(ML) criterion, which here is given by x̂1 = argminx1∈S |yk −√
P1hkx1|. Then, the contribution of user 1 to yk is eliminated

for decoding the signal of user 2. Explicitly, the symbol of user
2 is recovered using the ML estimate in which the interfering
signal of user 1 is estimated by x̂1, yielding,

x̂2 = argmin
x2∈S

∣∣∣(yk −
√

P1hkx̂1

)
−
√

P2hkx2

∣∣∣ . (4)

This SIC process continues in this manner recursively, until the
symbol of user k is detected. This can be achieved by hard
decision, i.e., providing an estimate of the transmit xk via

x̂k = arg min
xk∈S

∣∣∣∣∣
(
yk −

k−1∑
i=1

√
Pihkx̂i

)
−
√

Pkhkxk

∣∣∣∣∣ . (5)

The usage of different power assigned to different users allows
user k to detect the symbols of its preceding users, namely
x1, . . ., xk−1, with high accuracy. This makes the SIC proce-
dure particularly suitable for its symbol detection in the non-
orthogonal downlink at a low complexity and high reliability.
For comparison, if user k directly detects its own symbol while
treating the signals of other users as interference, it is likely to
achieve degraded detection performance due to the presence of
severe interference from other users, which SIC cancels by its
iterative procedure.

Alternatively, SIC can be used to provide soft outputs repre-
sented by the LLR for each bit embedded in the symbolxk . These
outputs are particularly useful when combined with soft-input
FEC decoders. In particular, letting βn be the n-th bit of symbol
xk, we partition S into two subsets S(0)

n and S(1)
n which satisfy

βn = 0 andβn = 1, respectively, i.e.,S(0)
n ∪ S(1)

n = S . Here, we
assume that user k does not know the coding schemes of other
users, i.e. its FEC decoder does not decode the transmitted bits
of other users for SIC operation, but directly decodes its own bits
only. As such, upon denoting z = yk −∑k−1

i=1

√
Pihkx̂i, when

the constellation symbols are equiprobable, the LLR of βn can
be expressed from (5) as

Ln = log
Pr (βn = 0|z)
Pr (βn = 1|z) = log

∑
xk∈S(0)

n
p (z|xk)∑

xk∈S(1)
n

p (z|xk)
, (6)

where p(z|xk) is the PDF of z conditioned on xk. Note that
it is difficult to exactly determine p(z|xk). Therefore, in order
to estimate the LLR Ln, the interference-detection-error-plus-
noise term z −√

Pkhkxk is often approximated by Gaussian
noise wk in (3) with zero mean and variance σ2, resulting in [26]

p (z|xk) ≈ 1√
2πσ

exp

(
−
∣∣∣z −√Pkhkxk

∣∣∣2/ 2σ2

)
. (7)

The combination of superimposed coding and SIC detection
allows the BS to simultaneously serve multiple users with the
same resources, while achieving significantly improved band-
width efficiency over orthogonal architectures. However, in
order to implement SIC in the non-orthogonal DL, the receiver
must have exact CSI for each user, i.e. evaluating (5) requires
accurate knowledge of hk. In particular, the detection perfor-
mance of SIC strongly depends on the accuracy of recovering
the interfering symbols in the preceding iterations. There is
a significant performance loss, when the CSI of the users is
imperfect, as shown in [4]. In some important wireless sce-
narios, including rapidly fluctuating high-Doppler frequency
division duplexing scenarios and the family of systems aided
by reconfigurable intelligent surfaces [27], obtaining accurate
CSI may be challenging. Another limitation is that the channel
has to obeys the linear form in (3), for which the detector
can cancel the interference by demodulation, remodulation and
subtraction, making it suitable only for linear channels. Such
models may not hold when using low-resolution receivers [5]
and non-linear amplifiers [6]. Each user is also required to know
the power allocation coefficients assigned to each of the users
in the network for reliable symbol detection. Moreover, when
soft outputs are required, the SIC may be unable to provide an
accurate estimate of the LLRs to be used by a soft FEC decoder
due to the approximation of the conditional PDF in (7) as being
Gaussian.

Such fundamental limitations of the SIC, combined with the
feasibility of integrating DNNs into model-based receiver algo-
rithms for learning-aided computation of specific model-based
steps [18], [19] including interference cancellation [20] moti-
vates the use of DNNs to replace the interference cancellation
blocks of SIC. This allows continued operation, when the knowl-
edge of accurate CSI, the channel model, the power coefficients
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Fig. 2. Proposed SICNet detector of user 3 in a non-orthogonal downlink
channel shared by K = 3 users.

and even M -ary modulation type are no longer required at the
user side, as presented in the next sections.

III. SICNET

To address the aforementioned issues of the conventional
SIC receiver, we propose a DNN-based SIC detector called
SICNet. Explicitly, SICNet uses deep learning to recover a soft
estimate of the interference of each user rather than applying
the hard-decision ML detector used in the conventional scheme.
In the following, we present the architecture of our SICNet
in Subsection III-A, followed by its training procedure and a
discussion in Subsection III-B-III-C.

A. SICNet Architecture

The architecture of SICNet is illustrated in Fig. 2. For the
sake of simplicity, we consider a non-orthogonal DL supporting
K = 3 users, and focus our description of the architecture on
user k = 3. A SICNet architecture designed for K users can be
devised based on Fig. 2 described as follows.

Our design of SICNet builds upon the insight that the SIC
method is comprised of multiple basic building blocks, each
corresponding to the recovery of the symbol of a different user.
Inspired by [20], we implement SIC in a data-driven fashion
by preserving its overall flow as an interconnection of building
blocks, while replacing each block by a dedicated DNN. In
particular, each building block implements symbol recovery,
and can thus be treated as a classification task, which is capable
of learning from data in a model-agnostic manner using deep
classifiers. As a result, SICNet of user k consists of k different
DNN blocks, where DNN block i is used to detect the soft
information pi of user i for i = 1, . . ., k. More particularly,
pi ∈ RM represents an estimate of the conditional distribution
of the corresponding symbol, given the past estimates, formu-
lated as:

pi =

⎡
⎢⎣

p̂ (xi = α1|yk,p1, . . . ,pi−1)
...

p̂ (xi = αM |yk,p1, . . . ,pi−1)

⎤
⎥⎦ , (8)

where αj is the j-th constellation symbol of S and p̂(xi =
αj |yk,p1, . . . ,pi−1) is a parametric estimate of the probability
of xi decoded as αj conditioned on yk and the previous soft
estimates p1, . . . ,pi−1, for j = 1, . . .,M .

In SICNet, each conditional distribution estimate pi is the
output vector of the DNN block i, which satisfies

∑M
j=1 p̂(xi =

αj |yk,p1, . . . ,pi−1) = 1. This can be naturally implemented
by using a softmax activation [15] at the output layer of each
DNN block. The input data of DNN block i includes both yk
and the outputs from i− 1 former blocks, namely p1, . . .,pi−1.
More specifically, those elements are concatenated to form an

Fig. 3. An illustration of the i-th DNN of SICNet.

input vector of the size [1 + (i− 1)M ] for DNN block i, which
can be reduced to length [1 + (i− 1)(M − 1)], since the sum
of the entries of each pi always equals one. Thus its last entry
is determined by its first M − 1 entries. An illustration of an
implementation of the i-th building block DNN using a fully-
connected network having two hidden layers, as used in our
numerical study in Section V, is depicted in Fig. 3. As seen in
Fig. 2, the input to SICNet, which is the input of the first DNN
block (i = 1), is yk. As such, the input of SICNet for user k is
only its received signal yk, i.e., no CSI information and no prior
knowledge of the power allocation {Pk} is required at each user.

Finally, following (5), a hard estimate of the symbol of interest
xk is obtained by taking to the largest element of pk, which is
the output vector of DNN block k, i.e.,

x̂k = argmax
α∈S

p̂ (xk = α|yk,p1, . . . ,pk−1) . (9)

Furthermore, SICNet can also be used to provide bit-wise LLR
estimates, as we will discuss in Section IV.

While the design of SICNet is inspired by DeepSIC, proposed
in [20] for multi-user detection in the non-orthogonal uplink,
the resultant model-aided networks are notably different. In
particular, the number of neural building blocks in SICNet is
determined by the order of the specific user in the superposition
code, as illustrated in Fig. 2. For instance, the architecture of the
receiver of user 2 is comprised of 2 DNNs blocks, while user 3
utilizes 3 such blocks. Nonetheless, SICNet can also cope with
perturbations of the order of the users in the superposition code
without having to change its architecture, as we numerically
demonstrate in Subsection V-B. DeepSIC requires a much larger
number of building blocks, which is set to the number of users in
the UL, multiplied by a fixed number of iterations, typically 5.
Furthermore, the successive operation of SICNet implies that
each constituent DNN has a different number of inputs, as
illustrated in Fig. 3, while in DeepSIC the architecture of all
constituent DNNs is identical, since each building block takes
the soft-detection representation of all interfering symbols as
its inputs. Consequently, SICNet uses a small number of neural
building blocks compared to DeepSIC, and each DNN block
differs from that used by DeepSIC.

In contrast to the conventional SIC, SICNet uses a soft es-
timate of the interfering symbols, which is not hard-canceled
by subtraction, hence it is not restricted to channels of the form
(3). Furthermore, the model-agnostic nature of DNN classifiers
and their ability to operate reliably in complex and analyti-
cally intractable settings imply that SICNet does not require
the knowledge of the channel model in its detection process.
Hence, our scheme can work for arbitrary channel models in a
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data-driven manner, which is not the case for its classical coun-
terpart. Finally, SICNet does not require its users to know the
power coefficients of other users and their modulation schemes,
while classical SIC relies on this information in its detection
process, as shown in (4)-(5). In fact, SICNet only has to know
the rank-order of user powers and the modulation alphabet size
M , which decide the number of DNN blocks and the output
dimension of each DNN block, respectively.

B. Training SICNet

Next, we describe the training procedure of SICNet, focusing
on an arbitrary user of index k. First, we represent the training
data as {y(t)k ,q

(t)
1 , . . .,q

(t)
k }, where yk is the received signal

of user k, and qi ∈ RM is the one-hot encoding of xi, for
i = 1, . . ., k, representing the true label of pi, i.e., the output
of DNN block i. As qi is a one-hot vector, its elements are
all zeros, except for a unique element being one. The index
of this unit element is the index of the constellation symbol
of user i, which is m for xi = αm ∈ S . Using the softmax
activation as the output layer of each DNN block in SICNet pro-
duces a soft probabilistic estimate of the corresponding symbol.
Consequently, the loss measure is based on the cross entropy
function, which is a well-established loss function for training
deep classifiers amongst others, because it facilitates gradient
based training [28]. The resulting loss is computed over each
batch of T data samples as follows:

L (θ) = − 1
T

T∑
t=1

k∑
i=1

ϕi

M∑
j=1

q
(t)
i,j log p

(t)
i,j , (10)

where θ denotes the trainable parameters of SICNet including
the weights and biases of all DNN blocks, q(t)i,j and p

(t)
i,j are the

j-th elements of q(t)
i and p

(t)
i , respectively, where p

(t)
i is the

output of DNN block i corresponding to the label q(t)
i . The

coefficients {ϕi} are non-negative weighting hyperparameters,
which enable balancing the loss in recovering the interference
terms and that in recovering the soft estimate of the symbol
of interest xk. In particular, for ϕk = 1 and ϕi = 0 for i 	= k,
the loss accounts only for the recovery of the symbol of interest,
thus, it is henceforth termed as the local loss, where only the data
corresponding to the user of interest, i.e., {y(t)k ,q

(t)
k }, is used for

training. Alternatively, for ϕi = 1 for every i ∈ {1, . . . , k}, the
resultant loss referred to as the combined loss, equally accounts
for the interference terms and the symbol of interest. Using the
combined loss obviously requires training data corresponding
to both the user of interest and to the preceding users, i.e.,
{y(t)k ,q

(t)
1 , . . .,q

(t)
k }. As such, the combined loss explicitly en-

courages each DNN block to detect its corresponding symbol,
while the local loss accounts only for the ability of the final DNN
block to detect the user’s symbol.

To update the parameters of SICNet, the stochastic gradient
descent (SGD) optimizer is used based on the loss function (10).
The SGD update rule at the n-th iteration is given by

θn+1 := θn − η∇L (θn) , (11)

where η denotes the learning rate and ∇L(·) is the gradient of
the loss function evaluated at a randomly sampled mini-batch of
the training data. The loss function in (10) is taken over all the
DNNs in the SICNet architecture, allowing us to jointly update
the parameters of all k DNN blocks.

In our numerical study we train SICNet relying on a specific
SNR and then test it at different SNRs. This means that the
training overhead can be reduced, since we do not have to
retrain the DNN model for different SNRs. Moreover, SICNet
requires only a small dataset for training to achieve the desired
performance. Details of the training SNR, data size and other
hyperparameters are provided for our simulations in Section V.1

C. Discussion

We next discuss some of the advantages and challenges which
arise from the design of SICNet. Firstly, we note that SICNet
is specifically tailored for detecting superimposed signals in
non-orthogonal DL communications, given its SIC structure.
Consequently, when trained using data corresponding to the
same channel for which it is tested, SICNet is expected to
approach the performance of the model-based SIC detector, as
numerically demonstrated in Section V. Moreover, our scheme
is less sensitive to CSI uncertainty, since it does not rely on the
explicit formulation of the channel’s input-output relationship,
but rather learns it implicitly from data. This allows SICNet to
achieve superior performance over the classical detector, when
relying on realistic imperfect CSI. In particular, SICNet can be
trained without knowing the channel model or requiring the
noise to be additive, which makes it particularly suitable for
non-orthogonal systems, where the channel model is complex, as
it is commonly the case in the presence of hardware impairments.
Furthermore, in contrast to the model-based SIC detector, SIC-
Net only requires the users to know the order of the superposition
code, rather than the actual power allocation coefficients of each
user in the network. While this partial knowledge is exploited
by SICNet, we numerically show in Section V that it is robust
to perturbations in the superposition code.

An additional benefit of SICNet, discussed in the following
section, follows from its ability to produce soft estimates in a
model-agnostic fashion. In particular, when the model-based
SIC is used for producing soft outputs, it typically relies on
approximations of the distribution of the error term, as in (7),
due to the difficulty in explicitly characterizing its PDF. SIC-
Net, which relies on deep learning to produce its conditional
distribution estimates, does not have to know the model of the
interference and its estimation error, rather it learns solely from
data. Consequently, once properly trained, SICNet is capable
of implicitly learning to accurately produce bit-wise LLRs for
improving the overall decoding performance when combined
with soft-input FEC decoders, as detailed in Section IV.

Several challenges are associated with SICNet in its current
form. Being a data-driven implementation of the SIC algorithm,
it recovers the symbols based on the rank-order dictated by

1The implementation of our SICNet on Python/Tensorflow can be found at
https://github.com/ThienVanLuong/SICNet.
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the superposition code. This implies that changing the coding
scheme would require adapting SICNet. Nonetheless, the change
in the order of the users or the introduction of a new user in the
DL does not necessarily imply that the architecture of SICNet
has to be modified, since SICNet is still able to maintain high-
integrity detection with mismatched architecture by retraining
it with the local loss objective, as we numerically demonstrate
in Subsection V-B. An additional scenario in which SICNet has
to be retrained is when the underlying statistical model of the
channel changes. In particular, SICNet is designed for stationary
channels, where the same mapping can be reliably applied over
multiple time instances, and the channel conditions remain static
during both the training and testing periods. SICNet can be
applied reliably even when trained using channel conditions and
SNRs which are different from those used for testing, as we
will numerically demonstrate in Section V. However, when the
channel conditions change considerably over time, one would
eventually have to retrain SICNet to maintain reliable operation.
A compelling technique of online training due to changes in
either the channel conditions or the superposition code is to
train from coded transmissions in a self-supervised manner,
as proposed in [18], which we carefully adapt for SICNet in
Section IV.

Finally, when the number of users increases, the complexity of
the conventional SIC escalates due to the need to carry out more
interference cancellation steps. Accordingly, the complexity of
SICNet - which is reminiscent of the model-based SIC - also
scales with the number of users. In such scenarios, one may have
to carefully fine-tune the DNN hyperparameters for achieving
the desired performance, and utilize DNNs having a large num-
ber of inputs, when cancelling the interference of users having
lower power. This task is likely to be feasible even for large
non-orthogonal networks, since DNNs are inherently compliant
with high-dimensional data. In fact, the amalgamation of the
SIC algorithm with DNNs in SICNet may allow it to carry out
detection more promptly than model-based techniques due to the
fact that DNNs conveniently lend themselves to parallelization.
Therefore, this drawback - which SICNet inherits from the
model-based algorithm - is expected to be less severe for a
data-driven implementation than for the classical SIC algorithm.

IV. SICNET RELYING ON FEC DECODING

In this section, we integrate SICNet with FEC decoding for
coded downlink non-orthogonal systems. In particular, we first
discuss how SICNet can produce LLRs to be used for FEC
decoding in Subsection IV-A. Then, in Subsection IV-B we
design an FEC-aided online training strategy for SICNet in
the presence of block fading, where the proposed FEC-coded
receiver can adapt to the variations of block fading channels
without requiring dedicated pilot transmissions.

A. SICNet With Soft-Decoding

For coded non-orthogonal DL, the message intended for user
k, denoted by the bit vector bk, k = 1, . . .,K, is encoded by a
FEC encoder at the transmitter before being mapped into M -ary
symbols xk. These symbols are then superimposed onto those
of other users via (1). It is straightforward to employ hard FEC

decoding to both SIC and SICNet, where information bits, which
are estimated from decodedM -ary symbols, are fed directly to a
hard FEC decoder for decodingbk . Note that these two detectors
decode M -ary symbols based on hard decisions, as shown in (5)
for SIC and in (9) for SICNet. Therefore, we now focus on soft
decoding relying on bit-wise LLRs. Moreover, akin to the soft
decoder of the classical SIC presented in Subsection II-C, we
assume that user k only knows his/her coding scheme, but does
not know the codes used by other users. Thus we allow each
user to decode only his/her corresponding message.

As noted in Subsection II-C, using the model-based SIC to
produce soft outputs often results in an inaccurate estimate of
the LLRs, since the errors in recovering the preceding symbols
are not accounted for in the postulated PDF (7). As a result, the
coded performance of SIC relying on soft decoding degrades
significantly, as analyzed in Subsection V-C. To address this
fundamental issue, we propose a soft decoder for SICNet, which
directly computes the LLR of each message bit {βn} based on
the soft output vector pk produced by SICNet. In particular, the
fact that SICNet produces pk given in (8), whose entries are
conditional distribution estimates, allows the LLRs in (6) to be
computed via:

Ln = log
Pr (βn = 0|yk)
Pr (βn = 1|yk) ≈ log

∑
αj∈S(0)

n
pk,j∑

αj∈S(1)
n

pk,j
, (12)

where pk,j = p̂(xk = αj |yk,p1, . . . ,pk−1) is the j-th entry of
pk and j = 1, . . .,M . The LLRs are then fed to a soft FEC
decoder for decoding bk.

Using SICNet for computing the LLRs builds upon the ability
of DNNs to learn conditional distributions in a model-agnostic
manner from data. Interestingly, this simple extension allows
SICNet to provide higher-accuracy LLRs than the soft decoder
of SIC, which is based on the inaccurate Gaussian approxima-
tion, leading to better coded performance, as demonstrated in
Subsection V-C.

B. FEC-Aided Online Training

The combination of SICNet with coded communications can
be exploited to learn to adapt to block fading channel conditions
without requiring dedicated pilot transmissions. Here, we follow
the guidelines proposed in [18] to enable online training of
SICNet from decoded codewords in a self-supervised manner.
This strategy exploits the capability of FEC codes to correct
detection errors and to provide feedback on the accuracy of the
outputs of SICNet.

In block fading channels, the channel input-output distribution
(2) remains unchanged within a transmission block, while vary-
ing from one block to another. We assume that those variations
are gradual, i.e. that while the channel can change dramatically
over multiple blocks, the variations between consecutive blocks
are limited in the sense that a symbol detector applicable for
one channel block is also expected to operate adequately under
the statistical model of the following block. Our goal is to allow
SICNet adapt to the changes of block fading over time, where
FEC codes are exploited for recovering data labels used for
retraining of SICNet online.
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Fig. 4. FEC-aided online training model of SICNet.

In coded non-orthogonal DL operating over block fading
channels, each fading block corresponds to the transmission of
a superimposed message. In particular, for every fading block,
the data bit vectors bk, k = 1, . . .,K are encoded by an FEC
encoder prior to being modulated intoM -ary symbolsxk, which
are then superimposed for transmissions. To characterize the
ability of SICNet to adapt to the block-wise variations in the
underlying statistical model, consider the k-th user employing
SICNet for symbol detection, as illustrated in Fig. 4. For simplic-
ity, we focus on the usage of hard estimates. Here, the symbols of
the k users x̂1, . . ., x̂k estimated from the soft outputsp1, . . .,pk

of SICNet are demodulated into uncoded bits, which are then
decoded by a FEC decoder to obtain k estimates of the users’
information bits, denoted by b̂1, . . ., b̂k. The FEC decoding
procedure implies that successful decoding is achievable, i.e.
that {b̂i} are equal to the transmitted messages, even when {x̂i}
are different from the transmitted {xi}. This property can be
exploited for generating the postulated transmitted symbols as
proposed in [18], which can be used to train SICNet. Specifically,
the estimated bits are re-encoded and re-modulated to obtain
M -ary symbols x̂′

1, . . ., x̂
′
k, which represent the postulated trans-

mitted symbols. As a result, by mapping x̂′
1, . . ., x̂

′
k into one-hot

vectors, we can generate online labels q1, . . .,qk corresponding
to the current channel output yk for retraining SICNet without
requiring dedicated pilot transmissions, making it adaptable to
the variations of block fading channels.

In general, the proposed online training mechanism requires
user k to know the channel coding schemes of its preceding users
indexed by 1, . . ., k − 1, as it must decode their corresponding
messages in order to provide the labels required for evaluating
the loss function (10). When this knowledge is not available, e.g.,
as in the scenario discussed in Subsection IV-A, the k-th user
can still retrain SICNet using only his/her own decoded message
by setting the loss measure not to account for the recovery of
the interference. This can be done by setting ϕi = 0 for i 	= k in
(10), i.e., the local loss is used. Furthermore, while the proposed
online training mechanism is detailed for SICNet using hard
FEC decoders, it can also be applied when SICNet is combined
with soft FEC decoders. In that case, one should simply replace
the demodulation block of Fig. 4 with the LLR calculation
block. Here, the soft outputs of SICNet, namely, p1, . . .,pk,
are used for computing the LLRs of k users as presented in the
previous subsection. The proposed online training SICNet based
on both hard and soft FEC decoding can track the variations of
block fading without any CSI estimation, whilst this cannot be
achieved by the conventional SIC, as numerically demonstrated
in Subsection V-C.

TABLE II
A SUMMARY OF SIMULATION PARAMETERS

Finally, we note that the proposed online training scheme
builds upon successful FEC decoding following [18]. Nonethe-
less, SICNet can also be combined with alternative techniques
to allow a DNN-aided receiver to track time-varying channel
conditions at a modest overhead. These include the application of
meta-learning for optimizing the hyperparameters of the training
algorithm [29]; the pre-training of multiple receivers as a deep
ensemble [30]; and the usage of soft symbol-level outputs, rather
than FEC decoding, as a measure of confidence for producing
labels from data, as proposed in [31], [32]. We leave the study
of the combination of SICNet with these methods to facilitate
online training for future investigations.

V. NUMERICAL EVALUATIONS

In this section, we numerically evaluate the performance
of SICNet, comparing it to the model-based SIC algorithm.
Both perfect and imperfect CSI are considered. In addition to a
linear Gaussian channel, we also consider a non-linear quantized
Gaussian channel. In the following, we introduce the parameters
used for evaluating SICNet, followed by its symbol error rate
(SER) when used for symbol detection, as well as the coded bit
error rate (BER), when combined with FEC decoding.

A. Implementation Setting

1) Simulation Parameters: The parameters used in our sim-
ulations of SICNet are summarized in Table II. We consider a
non-orthogonal DL system supporting K = 3 users, focusing
on user k = 3, which involves the highest number of interfer-
ence cancellation steps. The BS sends BPSK symbols to all
users, i.e., M = 2. The power coefficients for user 1, 2, and
3 are P1 = 16, P2 = 4, and P3 = 1, respectively. The power
coefficients remain unchanged during the training and testing
phases unless otherwise stated. Each DNN block of SICNet is
comprised of two fully-connected hidden layers as illustrated in
Fig. 3, whose dimensions are provided in Table II. SICNet is
trained in an end-to-end fashion using the Adam optimizer [34]
with a learning rate of η = 0.001. The training set is comprised
of as few as 5000 symbols generated from a channel at an SNR of
6 dB, which was empirically shown to offer a good performance,
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when testing over channels having various SNR levels.2 Both
loss types presented in Subsection III-B, namely, local loss and
combined loss, are considered. Finally, the remaining hyperpa-
rameters, such as, the testing data size, epochs, and batch size,
are detailed in Table II. The hyperparameters in Table II have
been selected using the grid-search method in order to provide
the best performance, while minimizing complexity and training
time. For example, we have tentatively trained our SICNet at
different training SNRs, namely 3, 4, . . . , 10 dB, and found that
6 dB provides the best BER performance in a range of testing
SNRs of interest.

2) Channel Models: We consider two channel models: a
linear Gaussian channel as in (3), and a non-linear quantized
Gaussian channel. For both channels, we assume that the channel
coefficient of user 3 is static by simply setting h3 = 1 over
both the training and testing phases. As such, for the linear
Gaussian channel, the received signal of user 3 is written as
y3 = x+ w3, where x =

∑3
i=1

√
Pixi, while for the quantized

Gaussian channel, it is given by y3 = Q(x+ w3) [35], where
Q(·) represents a 3-bit quantization, given by

Q(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sign(u) |u| < 2,

3 × sign(u) 2 < |u| < 4,

5 × sign(u) 4 < |u| < 6,

7 × sign(u) |u| > 6.

(13)

To model different levels of CSI, the channel known to the
model-based receiver, and used to generate training for SICNet,
is given by a noisy estimate ĥ3 = h3 + e, whereh3 = 1 is the ac-
tual channel used during testing, and e ∼ N (0, ε2) is the channel
estimation error. In particular, the conventional SIC uses ĥ3 for
decoding instead of h3, while SICNet is trained using samples
generated from the erroneous channel, with ŷ3 = ĥ3x+ w3 or
ŷ3 = Q(ĥ3x+ w3) for linear and quantized Gaussian channels,
respectively. We set ε2 = 0 for perfect CSI, and ε2 = 0.01 for
imperfect CSI. In order to obtain the data used for training SIC-
Net, we first randomly generate the data symbols sent to the K
users, {xk}Kk=1, which are then used to obtain the superimposed
code x based on (1). Through the channel of user k, we obtain
the corresponding received signal yk, which is combined with
the symbols sent from the BS to users to create the training data
set, here for user k.

B. SER Performance

We first numerically evaluate the SER of SICNet compared
to the model-based SIC, when used for symbol detection, i.e. to
produce hard decisions of the transmitted symbols. Fig. 5 depicts
our SER comparison between the proposed SICNet trained with
both loss measures, and the conventional SIC under the linear
Gaussian channel, for both perfect and imperfect CSI conditions.
We observe in Fig. 5 that when trained and tested for the same
channel, SICNet achieves a SER performance approaching that
of the conventional SIC operating with perfect knowledge of
the channel model and its parameters. This indicates that our

2Here, we set the channel to satisfy E[|hk|2] = 1. As a result, the SNR is
defined for the user of interest (i.e., user k = 3) as 1/σ2, whereσ2 is the variance
of the Gaussian noise.

Fig. 5. SER comparison between the proposed SICNet and conventional SIC
under linear Gaussian channels with both perfect and imperfect CSI. Here, the
proposed SICNet is trained with both local and combined losses.

Fig. 6. SER comparison between the proposed SICNet and conventional SIC
under quantized Gaussian channels with both perfect and imperfect CSI. Here,
the proposed SICNet is trained with both local and combined losses.

DNN-aided detector learns to implement the model-based SIC
algorithm from data, while being trained for a single SNR level.
Furthermore, under CSI uncertainty, the SER of the conventional
SIC is notably degraded, while our SICNet still achieves accurate
detection, where its SER is within a minor gap of its performance
with perfect CSI. For example, at a SER of 10−3, the channel
imperfection causes an SNR loss of less than 0.5 dB for SICNet
compared to the perfect CSI condition. Finally, despite only
using the local data for training, the local loss achieves SER
values within a minor gap to that of the combined loss under
both CSI scenarios.

Fig. 6 compares the SER of the proposed SICNet using the two
losses with the model-based SIC under the quantized Gaussian
channel, for both perfect and imperfect CSI conditions. Again,
it is observed in Fig. 6 that our SICNet achieves similar SER
values as the model-based scheme, when the CSI is perfect.
Although the channel is non-linear, the quantization resolution is
sufficient to allow the interference to be approximately canceled
by subtraction, and thus the model-based SIC algorithm still
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Fig. 7. SER performance of the proposed SICNet for user 2 and user 3, trained
using different number of training samples, under linear Gaussian channels.
Here, SICNet is trained with the aid of the local loss using data from the true
underlying channel.

achieves accurate recovery here. However, when the CSI is
imperfect, our scheme significantly outperforms its conventional
counterpart, which suffers from a relatively high error floor, i.e.,
> 10−2. In particular, SICNet is hardly affected here by the
imperfect CSI. This is likely to be due to the fact that the presence
of quantization results in the training data under imperfect CSI
being quite similar to that generated from the true channel. This
validates the efficiency of SICNet under quantized Gaussian
channels, even with imperfect CSI, where the model-based SIC
achieves poor SER performance. These observed gains follow
from the usage of DNNs for decoding soft-information for each
symbol, which allows SICNet to learn to implement SIC without
relying on channel modelling. Again, it is observed via Fig. 6
that using the local loss, the proposed SICNet achieves SER
values, which are similar to the combined loss under quantized
Gaussian channels.

In the numerical results presented in Figs. 5-6, SICNet is
trained using merely 5000 labeled samples, representing, e.g. pi-
lots and preamble sequences routinely used in wireless schemes.
In order to numerically quantify the number of samples required
for training SICNet corresponding to different users having
different order in the superposition code, we next compare the
training of user 3 to that of user 2. We depict in Fig. 7 the
accuracy of SICNet when trained using different numbers of
training samples at the SNRs of 9 dB and 12 dB. It is observed
from Fig. 7 that for both users, SICNet can in fact be accurately
trained with much less than 5000 samples, and often as few as
1000 samples are sufficient. For example, at the SNRs of 9 dB
and 12 dB, SICNet requires only 200 samples and 1000 samples,
respectively, for achieving a SER performance which is very
close to that trained using 5000 samples. This is due to the fact
that SICNet is a hybrid model-based and data-driven scheme,
which incorporates the SIC structure into its design, allowing
us to significantly reduce the amount of training, which can be
translated into using less pilots and hence improved spectral
efficiency. Furthermore, the results reported in Fig. 7 indicate
that although different users may require different numbers

Fig. 8. SER performance of the proposed SICNet of user 3 when adding the
new user 4 to the existing non-orthogonal DL system of three users. Herein,
linear Gaussian channels with both perfect and imperfect CSI are considered,
conventional SIC is included for comparison, and SICNet is trained only with
the local loss.

of DNN blocks, using a relatively small amount of pilots for
training SICNet is sufficient for different users achieving their
desired performance.

We proceed by numerically evaluating the robustness of
SICNet to perturbations in the superposition coding scheme,
focusing on linear Gaussian channels, trained with the local loss
objective. Since the architecture of SICNet is dictated by the
order of the power assignment among the users, our aim here
is to study the ability of SICNet to handle modifications in this
order by retraining. In Fig. 8 we depict the SER performance of
the SICNet of user 3, i.e. of the user of interest, when adding the
new user 4 to the existing system of three users. In particular, this
user has a power coefficient of P4 = 1/9, which is lower than
that of all the existing users, hence resulting in the new order of
P1 > P2 > P3 > P4. In this context, the architecture of SICNet
detailed in Table II still matches the superposition coding, since
the power coefficient of user 3 is still the third lowest in the new
system, i.e., the majority of interference emanates from users 1
and 2. In Fig. 8, we investigate the associated SER performance
both with and without retraining using the local loss in the new
4-user system. For retraining, a new dataset of 5000 samples is
used that also takes the impact of the added user into account.
Observe in Fig. 8 that the new source of interference results in
some SER degradation compared to the scenario without this
user seen in Fig. 5. However, SICNet succeeds in maintaining
an accurate detection both with and without retraining, while
exhibiting improved robustness to imperfect CSI compared to
the model-based SIC.

In the scenario considered in Fig. 8, the introduction of the
new user 4 does not affect the power assignment order of users
1-3, mainly resulting in lightly increased interference treated as
additional effective noise. Fig. 9 illustrates the SER performance
of SICNet for user 3, when the order of users changes, i.e., the
superposition code used by the BS is modified. In particular,
we keep the transmit power of user 2 and 3 unchanged, i.e.,
P2 = 4 and P3 = 1, while user 1 now has the lowest power of
P1 = 1/9. As such, the power order of the users has changed
from P1 > P2 > P3 into P2 > P3 > P1. In this simulation, we
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Fig. 9. SER performance of the proposed SICNet of user 3 when changing
the rank-order of users in the existing non-orthogonal DL system of three users,
under linear Gaussian channels with both perfect and imperfect CSI. Here,
conventional SIC is also included for comparison, while SICNet is trained only
with the local loss.

investigate the SER of user 3, both with and without retraining,
when its SICNet architecture remains that detailed in Table II, i.e.
it does not match the new downlink systems. In order to make
conventional SIC adapt to such a change of the users’ power
allocation in this scenario, user 3 has to know its new power
order, which is now P2 > P3 > P1. Then, it would detect and
cancel the symbol of user 2 first before detecting its own symbol
using the ML detection of (5). As such, compared to the original
power order, user 3 does not have to detect the signal of user 1,
who previously had the highest power. Similar to the scenario
of adding a new user in Fig. 8, we do not have to change the
architecture of SICNet. However, here we observe that retraining
with the aid of both perfect and imperfect data using the local
loss allows SICNet to continue approaching the performance of
the model-based SIC operating with the aid of perfect CSI. In
particular, the usage of the local loss, which accounts solely for
the desired local symbol results in SICNet learning from data
to overcome its mismatched interconnection of building blocks,
without enforcing its first DNN block to recover the interfering
symbol of user 1.

Next, we consider the scenario in which the non-orthogonal
downlink system changes in both the number of users and their
power assignment order. In Fig. 10 we evaluate the case of adding
user 4 with P4 = 64, while P1, P2, and P3 remain unchanged,
as in Table II. Hence, the introduction of user 4 yields a new
power assignment order of P4 > P1 > P2 > P3. In contrast to
the previous order, P3 is now assigned the fourth lowest power,
i.e., it has interference from three users. The straight-forward
application of SICNet here is to rebuild its structure by adding
one more DNN block. However, as we are focused here on the
robustness of SICNet to modifications in the downlink setup,
we keep the existing structure of SICNet with three blocks,
detailed in Table II. By observing Fig. 10, we note that SICNet
trained for the original downlink setup with three users no longer
reliably detects the desired symbols. However, the same SICNet
architecture can still approach the accuracy of the model-based
SIC with perfect CSI by retraining it with data corresponding to
the new DL configuration. These results demonstrate that while

Fig. 10. SER performance of the proposed SICNet of user 3 when adding
user 4 to the existing system of three users, making the power assignment order
changed. Here, conventional SIC is also included for comparison, while SICNet
is trained only with the local loss. Linear Gaussian channels with both perfect
and imperfect CSI are used.

Fig. 11. SER comparison between the proposed SICNet and conventional SIC
using QPSK modulation, under linear Gaussian channels with both perfect and
imperfect CSI. Here, the proposed SICNet is trained using both the local and
combined losses.

the architecture of SICNet is determined by the superposition
code, it is robust to modifications in the code and the network
setup, and can be utilized for different power assignments by
retraining.

Finally, we demonstrate that while the preceeding numeri-
cal evaluations focus on real-valued BPSK symbols, SICNet
can be applied to arbitrary complex modulation schemes. To
that aim, in Fig. 11 , we investigate the SER performance of
SICNet when detecting complex-valuedM -ary symbols (QPSK
modulation), in comparison to the conventional SIC detector
under linear Gaussian channels. Here, a static complex chan-
nel h3 = 0.4472 + 0.8944j is employed instead of the unitary
channel used in the aforementioned BPSK simulations. More-
over, in contrast to the BPSK case, the DNN blocks are now
fed with the real and imaginary components of the complex
received signal y3. The training parameters of Table II are
reused, except for the training SNR and the number of training
epochs, which are now 8 dB and 250 epochs in this simulation.
Both perfect and imperfect CSI scenarios are considered. Our
SICNet is trained using both the combined and local loss. We
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Fig. 12. Coded BER comparison between proposed SICNet and conventional
SIC using the 1/2-rate convolutional code under linear Gaussian channels. Here,
the proposed SICNet detector is trained with the local loss.

observe in Fig. 11 that our scheme applied to complex-valued
symbols still performs well under both perfect and imperfect
CSI conditions. In particular, similar to the BPSK results of
Fig. 5, SICNet approaches the model-based SIC under perfect
CSI, while outperforming this baseline under imperfect CSI.
Additionally, the performance of our scheme trained using the
local loss is close to that trained employing the combined loss.
These observations confirm that the proposed SICNet is also
efficient for complex-valued modulated symbols.

C. Coded BER Performance

We numerically evaluate SICNet in a coded communications
scenario, where its outputs are used by a FEC decoder to recover
the transmitted bits. Here, we consider only a linear Gaussian
channel, for which the model-based SIC algorithm is designed.
We employ a 1/2-rate convolutional code using the octally
represented generator polynomials [7; 5], while utilizing both
hard and soft FEC decoders. We also assume that both SICNet
and classical SIC are unaware of the coding schemes of the
preceding users, i.e., the FEC decoder is used to decode the data
bits of the user of interest only. Accordingly, we train SICNet
with the local loss measure, which was shown in the previous
subsection to achieve similar performance to that of training
with the combined loss, without requiring any knowledge of the
coding schemes of the other users sharing the channel resources.

Fig. 12 compares the coded BER performance of our proposed
SICNet and that of the classical SIC. As user 3 only knows
his/her coding scheme, he/she does not decode the interference,
i.e., the FEC decoder is used for decoding his/her own data
bits only in both SICNet and its model-based counterpart. It
is observed via Fig. 12 that the power of FEC coding allows
SICNet to achieve improved accuracy at sufficiently high SNRs
over the uncoded scheme, where the soft decoder achieves
a better BER than the hard decoder. Moreover, using a soft
decoder, the proposed FEC-coded SICNet outperforms the con-
ventional counterpart both for hard and soft decoders, while both
schemes exhibit a similar BER, when a hard-decoder is used.
These numerical observations demonstrate the ability of SICNet,
which operates in a model-agnostic manner, while learning
its mapping from data, to produce bit-wise LLRs of higher

Fig. 13. Coded BER performance of SICNet with FEC-aided online training
and baselines under block fading channels and Gaussian noise. Here, the
proposed SICNet detector is trained with the local loss.

accuracy compared to those computed by the model-based SIC
method, that relies on an approximation of the distribution of
the decontaminated channel output.

Next, we demonstrate how the power of coded communica-
tions can be exploited to facilitate online retraining of SICNet
in block fading channels. Fig 13 illustrates the coded BER com-
parison between our SICNet with FEC-aided online training and
its baselines under block fading channels and Gaussian noise.
Here, the channel of user 3 varies between blocks according
to h3(t) = 0.8 + cos( 2πt

17 ), where t = 0, 1, . . ., 99 is the fading
block index. As such, there is a total of 100 fading blocks, each
of which contains 1000 data bits, which produce 2000 uncoded
bits when the 1/2 convolutional code [7,5] is used. The classical
SIC employs a hard decoder to achieve better BER as shown in
Fig. 12, while SICNet uses two decoder types. Here, SICNet
is initially trained with 200 epochs over 5000 data samples
of the first block with t = 0, and then the FEC-aided online
training detailed in Subsection IV-B is performed using only
10 epochs over 2000 online-recovered samples each following
block. We also include the BER of SICNet trained only with
initial CSI, i.e., without online training, for comparison. It is
shown in Fig. 13 that when the SNR is sufficiently high, i.e.,> 12
dB, SICNet with online training approaches the performance of
classical SIC, which relies on perfect instantaneous CSI, whose
performance is degraded under imperfect CSI. Our SICNet using
soft decoder even outperforms its baseline with perfect CSI
at SNRs in excess of 13 dB. This benefit is substantial, since
unlike the classical scheme, our scheme does not suffer from
any channel estimation overhead, instead, it only involves a
lightweight re-training process relying on a few epochs. More-
over, SICNet trained with the initial CSI achieves poor coded
BER performance, indicating the importance of the proposed
FEC-aided online training in order to accurately track block
fading channels. However, observe from Fig. 13 that SICNet
only performs well at relatively high SNRs. At low SNRs one
can utilize alternative self-supervised learning strategies, such
as the symbol-level confidence approach proposed in [31], or the
online training based on syndrome codes [23]. We set aside the
joint study of SICNet with such strategies for our future research.
Additionally, the benefits of SICNet can be exploited in a range

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on November 17,2022 at 12:30:16 UTC from IEEE Xplore.  Restrictions apply. 



11888 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 11, NOVEMBER 2022

of emerging scenarios such as short-packet communications [36]
and physical layer security [37]. We leave the study of such
setups for our future work.

VI. CONCLUSION

In this paper, we proposed SICNet, which is a deep learning-
aided receiver for the downlink of non-orthogonal systems.
In particular, SICNet uses DNNs to replace the interference
cancellation blocks of the model-based SIC, where the soft
information of each symbol is decoded by DNNs, rather than by
hard-decision ML detection. As a result, SICNet learns to im-
plement the model-based SIC in a data-driven manner, without
requiring any knowledge of channel models. Simulation results
showed that SICNet approaches the performance of the model-
based SIC scheme endowed with perfect CSI, and substantially
outperforms its model-based counterpart under CSI uncertainty,
for both linear and non-linear channels. Additionally, SICNet
is shown to be robust to variations in the superposition code,
and can reliably detect without reconstructing its architecture,
and often even without retraining. It was also demonstrated that
SICNet learns to produce accurate LLRs, leading to an improved
performance over the model-based SIC, when combined with
soft FEC decoding. Finally, we designed an FEC-aided online
training scheme for SICNet, which is capable of adapting to the
changes of block fading channels, achieving a BER performance
close to or even better than the model-based SIC employing
perfect CSI at high SNRs, particularly when soft decoder is used.
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